]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * kernel/cpuset.c | |
3 | * | |
4 | * Processor and Memory placement constraints for sets of tasks. | |
5 | * | |
6 | * Copyright (C) 2003 BULL SA. | |
029190c5 | 7 | * Copyright (C) 2004-2007 Silicon Graphics, Inc. |
8793d854 | 8 | * Copyright (C) 2006 Google, Inc |
1da177e4 LT |
9 | * |
10 | * Portions derived from Patrick Mochel's sysfs code. | |
11 | * sysfs is Copyright (c) 2001-3 Patrick Mochel | |
1da177e4 | 12 | * |
825a46af | 13 | * 2003-10-10 Written by Simon Derr. |
1da177e4 | 14 | * 2003-10-22 Updates by Stephen Hemminger. |
825a46af | 15 | * 2004 May-July Rework by Paul Jackson. |
8793d854 | 16 | * 2006 Rework by Paul Menage to use generic cgroups |
cf417141 MK |
17 | * 2008 Rework of the scheduler domains and CPU hotplug handling |
18 | * by Max Krasnyansky | |
1da177e4 LT |
19 | * |
20 | * This file is subject to the terms and conditions of the GNU General Public | |
21 | * License. See the file COPYING in the main directory of the Linux | |
22 | * distribution for more details. | |
23 | */ | |
24 | ||
1da177e4 LT |
25 | #include <linux/cpu.h> |
26 | #include <linux/cpumask.h> | |
27 | #include <linux/cpuset.h> | |
28 | #include <linux/err.h> | |
29 | #include <linux/errno.h> | |
30 | #include <linux/file.h> | |
31 | #include <linux/fs.h> | |
32 | #include <linux/init.h> | |
33 | #include <linux/interrupt.h> | |
34 | #include <linux/kernel.h> | |
35 | #include <linux/kmod.h> | |
36 | #include <linux/list.h> | |
68860ec1 | 37 | #include <linux/mempolicy.h> |
1da177e4 | 38 | #include <linux/mm.h> |
f481891f | 39 | #include <linux/memory.h> |
1da177e4 LT |
40 | #include <linux/module.h> |
41 | #include <linux/mount.h> | |
42 | #include <linux/namei.h> | |
43 | #include <linux/pagemap.h> | |
44 | #include <linux/proc_fs.h> | |
6b9c2603 | 45 | #include <linux/rcupdate.h> |
1da177e4 LT |
46 | #include <linux/sched.h> |
47 | #include <linux/seq_file.h> | |
22fb52dd | 48 | #include <linux/security.h> |
1da177e4 | 49 | #include <linux/slab.h> |
1da177e4 LT |
50 | #include <linux/spinlock.h> |
51 | #include <linux/stat.h> | |
52 | #include <linux/string.h> | |
53 | #include <linux/time.h> | |
54 | #include <linux/backing-dev.h> | |
55 | #include <linux/sort.h> | |
56 | ||
57 | #include <asm/uaccess.h> | |
58 | #include <asm/atomic.h> | |
3d3f26a7 | 59 | #include <linux/mutex.h> |
956db3ca CW |
60 | #include <linux/workqueue.h> |
61 | #include <linux/cgroup.h> | |
1da177e4 | 62 | |
202f72d5 PJ |
63 | /* |
64 | * Tracks how many cpusets are currently defined in system. | |
65 | * When there is only one cpuset (the root cpuset) we can | |
66 | * short circuit some hooks. | |
67 | */ | |
7edc5962 | 68 | int number_of_cpusets __read_mostly; |
202f72d5 | 69 | |
2df167a3 | 70 | /* Forward declare cgroup structures */ |
8793d854 PM |
71 | struct cgroup_subsys cpuset_subsys; |
72 | struct cpuset; | |
73 | ||
3e0d98b9 PJ |
74 | /* See "Frequency meter" comments, below. */ |
75 | ||
76 | struct fmeter { | |
77 | int cnt; /* unprocessed events count */ | |
78 | int val; /* most recent output value */ | |
79 | time_t time; /* clock (secs) when val computed */ | |
80 | spinlock_t lock; /* guards read or write of above */ | |
81 | }; | |
82 | ||
1da177e4 | 83 | struct cpuset { |
8793d854 PM |
84 | struct cgroup_subsys_state css; |
85 | ||
1da177e4 LT |
86 | unsigned long flags; /* "unsigned long" so bitops work */ |
87 | cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */ | |
88 | nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */ | |
89 | ||
1da177e4 | 90 | struct cpuset *parent; /* my parent */ |
1da177e4 LT |
91 | |
92 | /* | |
93 | * Copy of global cpuset_mems_generation as of the most | |
94 | * recent time this cpuset changed its mems_allowed. | |
95 | */ | |
3e0d98b9 PJ |
96 | int mems_generation; |
97 | ||
98 | struct fmeter fmeter; /* memory_pressure filter */ | |
029190c5 PJ |
99 | |
100 | /* partition number for rebuild_sched_domains() */ | |
101 | int pn; | |
956db3ca | 102 | |
1d3504fc HS |
103 | /* for custom sched domain */ |
104 | int relax_domain_level; | |
105 | ||
956db3ca CW |
106 | /* used for walking a cpuset heirarchy */ |
107 | struct list_head stack_list; | |
1da177e4 LT |
108 | }; |
109 | ||
8793d854 PM |
110 | /* Retrieve the cpuset for a cgroup */ |
111 | static inline struct cpuset *cgroup_cs(struct cgroup *cont) | |
112 | { | |
113 | return container_of(cgroup_subsys_state(cont, cpuset_subsys_id), | |
114 | struct cpuset, css); | |
115 | } | |
116 | ||
117 | /* Retrieve the cpuset for a task */ | |
118 | static inline struct cpuset *task_cs(struct task_struct *task) | |
119 | { | |
120 | return container_of(task_subsys_state(task, cpuset_subsys_id), | |
121 | struct cpuset, css); | |
122 | } | |
956db3ca CW |
123 | struct cpuset_hotplug_scanner { |
124 | struct cgroup_scanner scan; | |
125 | struct cgroup *to; | |
126 | }; | |
8793d854 | 127 | |
1da177e4 LT |
128 | /* bits in struct cpuset flags field */ |
129 | typedef enum { | |
130 | CS_CPU_EXCLUSIVE, | |
131 | CS_MEM_EXCLUSIVE, | |
78608366 | 132 | CS_MEM_HARDWALL, |
45b07ef3 | 133 | CS_MEMORY_MIGRATE, |
029190c5 | 134 | CS_SCHED_LOAD_BALANCE, |
825a46af PJ |
135 | CS_SPREAD_PAGE, |
136 | CS_SPREAD_SLAB, | |
1da177e4 LT |
137 | } cpuset_flagbits_t; |
138 | ||
139 | /* convenient tests for these bits */ | |
140 | static inline int is_cpu_exclusive(const struct cpuset *cs) | |
141 | { | |
7b5b9ef0 | 142 | return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); |
1da177e4 LT |
143 | } |
144 | ||
145 | static inline int is_mem_exclusive(const struct cpuset *cs) | |
146 | { | |
7b5b9ef0 | 147 | return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); |
1da177e4 LT |
148 | } |
149 | ||
78608366 PM |
150 | static inline int is_mem_hardwall(const struct cpuset *cs) |
151 | { | |
152 | return test_bit(CS_MEM_HARDWALL, &cs->flags); | |
153 | } | |
154 | ||
029190c5 PJ |
155 | static inline int is_sched_load_balance(const struct cpuset *cs) |
156 | { | |
157 | return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); | |
158 | } | |
159 | ||
45b07ef3 PJ |
160 | static inline int is_memory_migrate(const struct cpuset *cs) |
161 | { | |
7b5b9ef0 | 162 | return test_bit(CS_MEMORY_MIGRATE, &cs->flags); |
45b07ef3 PJ |
163 | } |
164 | ||
825a46af PJ |
165 | static inline int is_spread_page(const struct cpuset *cs) |
166 | { | |
167 | return test_bit(CS_SPREAD_PAGE, &cs->flags); | |
168 | } | |
169 | ||
170 | static inline int is_spread_slab(const struct cpuset *cs) | |
171 | { | |
172 | return test_bit(CS_SPREAD_SLAB, &cs->flags); | |
173 | } | |
174 | ||
1da177e4 | 175 | /* |
151a4420 | 176 | * Increment this integer everytime any cpuset changes its |
1da177e4 LT |
177 | * mems_allowed value. Users of cpusets can track this generation |
178 | * number, and avoid having to lock and reload mems_allowed unless | |
179 | * the cpuset they're using changes generation. | |
180 | * | |
2df167a3 | 181 | * A single, global generation is needed because cpuset_attach_task() could |
1da177e4 LT |
182 | * reattach a task to a different cpuset, which must not have its |
183 | * generation numbers aliased with those of that tasks previous cpuset. | |
184 | * | |
185 | * Generations are needed for mems_allowed because one task cannot | |
2df167a3 | 186 | * modify another's memory placement. So we must enable every task, |
1da177e4 LT |
187 | * on every visit to __alloc_pages(), to efficiently check whether |
188 | * its current->cpuset->mems_allowed has changed, requiring an update | |
189 | * of its current->mems_allowed. | |
151a4420 | 190 | * |
2df167a3 | 191 | * Since writes to cpuset_mems_generation are guarded by the cgroup lock |
151a4420 | 192 | * there is no need to mark it atomic. |
1da177e4 | 193 | */ |
151a4420 | 194 | static int cpuset_mems_generation; |
1da177e4 LT |
195 | |
196 | static struct cpuset top_cpuset = { | |
197 | .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), | |
198 | .cpus_allowed = CPU_MASK_ALL, | |
199 | .mems_allowed = NODE_MASK_ALL, | |
1da177e4 LT |
200 | }; |
201 | ||
1da177e4 | 202 | /* |
2df167a3 PM |
203 | * There are two global mutexes guarding cpuset structures. The first |
204 | * is the main control groups cgroup_mutex, accessed via | |
205 | * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific | |
206 | * callback_mutex, below. They can nest. It is ok to first take | |
207 | * cgroup_mutex, then nest callback_mutex. We also require taking | |
208 | * task_lock() when dereferencing a task's cpuset pointer. See "The | |
209 | * task_lock() exception", at the end of this comment. | |
053199ed | 210 | * |
3d3f26a7 | 211 | * A task must hold both mutexes to modify cpusets. If a task |
2df167a3 | 212 | * holds cgroup_mutex, then it blocks others wanting that mutex, |
3d3f26a7 | 213 | * ensuring that it is the only task able to also acquire callback_mutex |
053199ed PJ |
214 | * and be able to modify cpusets. It can perform various checks on |
215 | * the cpuset structure first, knowing nothing will change. It can | |
2df167a3 | 216 | * also allocate memory while just holding cgroup_mutex. While it is |
053199ed | 217 | * performing these checks, various callback routines can briefly |
3d3f26a7 IM |
218 | * acquire callback_mutex to query cpusets. Once it is ready to make |
219 | * the changes, it takes callback_mutex, blocking everyone else. | |
053199ed PJ |
220 | * |
221 | * Calls to the kernel memory allocator can not be made while holding | |
3d3f26a7 | 222 | * callback_mutex, as that would risk double tripping on callback_mutex |
053199ed PJ |
223 | * from one of the callbacks into the cpuset code from within |
224 | * __alloc_pages(). | |
225 | * | |
3d3f26a7 | 226 | * If a task is only holding callback_mutex, then it has read-only |
053199ed PJ |
227 | * access to cpusets. |
228 | * | |
229 | * The task_struct fields mems_allowed and mems_generation may only | |
230 | * be accessed in the context of that task, so require no locks. | |
231 | * | |
3d3f26a7 | 232 | * The cpuset_common_file_read() handlers only hold callback_mutex across |
053199ed PJ |
233 | * small pieces of code, such as when reading out possibly multi-word |
234 | * cpumasks and nodemasks. | |
235 | * | |
2df167a3 PM |
236 | * Accessing a task's cpuset should be done in accordance with the |
237 | * guidelines for accessing subsystem state in kernel/cgroup.c | |
1da177e4 LT |
238 | */ |
239 | ||
3d3f26a7 | 240 | static DEFINE_MUTEX(callback_mutex); |
4247bdc6 | 241 | |
cf417141 MK |
242 | /* |
243 | * This is ugly, but preserves the userspace API for existing cpuset | |
8793d854 | 244 | * users. If someone tries to mount the "cpuset" filesystem, we |
cf417141 MK |
245 | * silently switch it to mount "cgroup" instead |
246 | */ | |
454e2398 DH |
247 | static int cpuset_get_sb(struct file_system_type *fs_type, |
248 | int flags, const char *unused_dev_name, | |
249 | void *data, struct vfsmount *mnt) | |
1da177e4 | 250 | { |
8793d854 PM |
251 | struct file_system_type *cgroup_fs = get_fs_type("cgroup"); |
252 | int ret = -ENODEV; | |
253 | if (cgroup_fs) { | |
254 | char mountopts[] = | |
255 | "cpuset,noprefix," | |
256 | "release_agent=/sbin/cpuset_release_agent"; | |
257 | ret = cgroup_fs->get_sb(cgroup_fs, flags, | |
258 | unused_dev_name, mountopts, mnt); | |
259 | put_filesystem(cgroup_fs); | |
260 | } | |
261 | return ret; | |
1da177e4 LT |
262 | } |
263 | ||
264 | static struct file_system_type cpuset_fs_type = { | |
265 | .name = "cpuset", | |
266 | .get_sb = cpuset_get_sb, | |
1da177e4 LT |
267 | }; |
268 | ||
1da177e4 LT |
269 | /* |
270 | * Return in *pmask the portion of a cpusets's cpus_allowed that | |
271 | * are online. If none are online, walk up the cpuset hierarchy | |
272 | * until we find one that does have some online cpus. If we get | |
273 | * all the way to the top and still haven't found any online cpus, | |
274 | * return cpu_online_map. Or if passed a NULL cs from an exit'ing | |
275 | * task, return cpu_online_map. | |
276 | * | |
277 | * One way or another, we guarantee to return some non-empty subset | |
278 | * of cpu_online_map. | |
279 | * | |
3d3f26a7 | 280 | * Call with callback_mutex held. |
1da177e4 LT |
281 | */ |
282 | ||
283 | static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask) | |
284 | { | |
285 | while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map)) | |
286 | cs = cs->parent; | |
287 | if (cs) | |
288 | cpus_and(*pmask, cs->cpus_allowed, cpu_online_map); | |
289 | else | |
290 | *pmask = cpu_online_map; | |
291 | BUG_ON(!cpus_intersects(*pmask, cpu_online_map)); | |
292 | } | |
293 | ||
294 | /* | |
295 | * Return in *pmask the portion of a cpusets's mems_allowed that | |
0e1e7c7a CL |
296 | * are online, with memory. If none are online with memory, walk |
297 | * up the cpuset hierarchy until we find one that does have some | |
298 | * online mems. If we get all the way to the top and still haven't | |
299 | * found any online mems, return node_states[N_HIGH_MEMORY]. | |
1da177e4 LT |
300 | * |
301 | * One way or another, we guarantee to return some non-empty subset | |
0e1e7c7a | 302 | * of node_states[N_HIGH_MEMORY]. |
1da177e4 | 303 | * |
3d3f26a7 | 304 | * Call with callback_mutex held. |
1da177e4 LT |
305 | */ |
306 | ||
307 | static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask) | |
308 | { | |
0e1e7c7a CL |
309 | while (cs && !nodes_intersects(cs->mems_allowed, |
310 | node_states[N_HIGH_MEMORY])) | |
1da177e4 LT |
311 | cs = cs->parent; |
312 | if (cs) | |
0e1e7c7a CL |
313 | nodes_and(*pmask, cs->mems_allowed, |
314 | node_states[N_HIGH_MEMORY]); | |
1da177e4 | 315 | else |
0e1e7c7a CL |
316 | *pmask = node_states[N_HIGH_MEMORY]; |
317 | BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY])); | |
1da177e4 LT |
318 | } |
319 | ||
cf2a473c PJ |
320 | /** |
321 | * cpuset_update_task_memory_state - update task memory placement | |
322 | * | |
323 | * If the current tasks cpusets mems_allowed changed behind our | |
324 | * backs, update current->mems_allowed, mems_generation and task NUMA | |
325 | * mempolicy to the new value. | |
053199ed | 326 | * |
cf2a473c PJ |
327 | * Task mempolicy is updated by rebinding it relative to the |
328 | * current->cpuset if a task has its memory placement changed. | |
329 | * Do not call this routine if in_interrupt(). | |
330 | * | |
4a01c8d5 | 331 | * Call without callback_mutex or task_lock() held. May be |
2df167a3 PM |
332 | * called with or without cgroup_mutex held. Thanks in part to |
333 | * 'the_top_cpuset_hack', the task's cpuset pointer will never | |
41f7f60d DR |
334 | * be NULL. This routine also might acquire callback_mutex during |
335 | * call. | |
053199ed | 336 | * |
6b9c2603 PJ |
337 | * Reading current->cpuset->mems_generation doesn't need task_lock |
338 | * to guard the current->cpuset derefence, because it is guarded | |
2df167a3 | 339 | * from concurrent freeing of current->cpuset using RCU. |
6b9c2603 PJ |
340 | * |
341 | * The rcu_dereference() is technically probably not needed, | |
342 | * as I don't actually mind if I see a new cpuset pointer but | |
343 | * an old value of mems_generation. However this really only | |
344 | * matters on alpha systems using cpusets heavily. If I dropped | |
345 | * that rcu_dereference(), it would save them a memory barrier. | |
346 | * For all other arch's, rcu_dereference is a no-op anyway, and for | |
347 | * alpha systems not using cpusets, another planned optimization, | |
348 | * avoiding the rcu critical section for tasks in the root cpuset | |
349 | * which is statically allocated, so can't vanish, will make this | |
350 | * irrelevant. Better to use RCU as intended, than to engage in | |
351 | * some cute trick to save a memory barrier that is impossible to | |
352 | * test, for alpha systems using cpusets heavily, which might not | |
353 | * even exist. | |
053199ed PJ |
354 | * |
355 | * This routine is needed to update the per-task mems_allowed data, | |
356 | * within the tasks context, when it is trying to allocate memory | |
357 | * (in various mm/mempolicy.c routines) and notices that some other | |
358 | * task has been modifying its cpuset. | |
1da177e4 LT |
359 | */ |
360 | ||
fe85a998 | 361 | void cpuset_update_task_memory_state(void) |
1da177e4 | 362 | { |
053199ed | 363 | int my_cpusets_mem_gen; |
cf2a473c | 364 | struct task_struct *tsk = current; |
6b9c2603 | 365 | struct cpuset *cs; |
053199ed | 366 | |
8793d854 | 367 | if (task_cs(tsk) == &top_cpuset) { |
03a285f5 PJ |
368 | /* Don't need rcu for top_cpuset. It's never freed. */ |
369 | my_cpusets_mem_gen = top_cpuset.mems_generation; | |
370 | } else { | |
371 | rcu_read_lock(); | |
da5ef6bb | 372 | my_cpusets_mem_gen = task_cs(tsk)->mems_generation; |
03a285f5 PJ |
373 | rcu_read_unlock(); |
374 | } | |
1da177e4 | 375 | |
cf2a473c | 376 | if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) { |
3d3f26a7 | 377 | mutex_lock(&callback_mutex); |
cf2a473c | 378 | task_lock(tsk); |
8793d854 | 379 | cs = task_cs(tsk); /* Maybe changed when task not locked */ |
cf2a473c PJ |
380 | guarantee_online_mems(cs, &tsk->mems_allowed); |
381 | tsk->cpuset_mems_generation = cs->mems_generation; | |
825a46af PJ |
382 | if (is_spread_page(cs)) |
383 | tsk->flags |= PF_SPREAD_PAGE; | |
384 | else | |
385 | tsk->flags &= ~PF_SPREAD_PAGE; | |
386 | if (is_spread_slab(cs)) | |
387 | tsk->flags |= PF_SPREAD_SLAB; | |
388 | else | |
389 | tsk->flags &= ~PF_SPREAD_SLAB; | |
cf2a473c | 390 | task_unlock(tsk); |
3d3f26a7 | 391 | mutex_unlock(&callback_mutex); |
74cb2155 | 392 | mpol_rebind_task(tsk, &tsk->mems_allowed); |
1da177e4 LT |
393 | } |
394 | } | |
395 | ||
396 | /* | |
397 | * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? | |
398 | * | |
399 | * One cpuset is a subset of another if all its allowed CPUs and | |
400 | * Memory Nodes are a subset of the other, and its exclusive flags | |
2df167a3 | 401 | * are only set if the other's are set. Call holding cgroup_mutex. |
1da177e4 LT |
402 | */ |
403 | ||
404 | static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) | |
405 | { | |
406 | return cpus_subset(p->cpus_allowed, q->cpus_allowed) && | |
407 | nodes_subset(p->mems_allowed, q->mems_allowed) && | |
408 | is_cpu_exclusive(p) <= is_cpu_exclusive(q) && | |
409 | is_mem_exclusive(p) <= is_mem_exclusive(q); | |
410 | } | |
411 | ||
412 | /* | |
413 | * validate_change() - Used to validate that any proposed cpuset change | |
414 | * follows the structural rules for cpusets. | |
415 | * | |
416 | * If we replaced the flag and mask values of the current cpuset | |
417 | * (cur) with those values in the trial cpuset (trial), would | |
418 | * our various subset and exclusive rules still be valid? Presumes | |
2df167a3 | 419 | * cgroup_mutex held. |
1da177e4 LT |
420 | * |
421 | * 'cur' is the address of an actual, in-use cpuset. Operations | |
422 | * such as list traversal that depend on the actual address of the | |
423 | * cpuset in the list must use cur below, not trial. | |
424 | * | |
425 | * 'trial' is the address of bulk structure copy of cur, with | |
426 | * perhaps one or more of the fields cpus_allowed, mems_allowed, | |
427 | * or flags changed to new, trial values. | |
428 | * | |
429 | * Return 0 if valid, -errno if not. | |
430 | */ | |
431 | ||
432 | static int validate_change(const struct cpuset *cur, const struct cpuset *trial) | |
433 | { | |
8793d854 | 434 | struct cgroup *cont; |
1da177e4 LT |
435 | struct cpuset *c, *par; |
436 | ||
437 | /* Each of our child cpusets must be a subset of us */ | |
8793d854 PM |
438 | list_for_each_entry(cont, &cur->css.cgroup->children, sibling) { |
439 | if (!is_cpuset_subset(cgroup_cs(cont), trial)) | |
1da177e4 LT |
440 | return -EBUSY; |
441 | } | |
442 | ||
443 | /* Remaining checks don't apply to root cpuset */ | |
69604067 | 444 | if (cur == &top_cpuset) |
1da177e4 LT |
445 | return 0; |
446 | ||
69604067 PJ |
447 | par = cur->parent; |
448 | ||
1da177e4 LT |
449 | /* We must be a subset of our parent cpuset */ |
450 | if (!is_cpuset_subset(trial, par)) | |
451 | return -EACCES; | |
452 | ||
2df167a3 PM |
453 | /* |
454 | * If either I or some sibling (!= me) is exclusive, we can't | |
455 | * overlap | |
456 | */ | |
8793d854 PM |
457 | list_for_each_entry(cont, &par->css.cgroup->children, sibling) { |
458 | c = cgroup_cs(cont); | |
1da177e4 LT |
459 | if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && |
460 | c != cur && | |
461 | cpus_intersects(trial->cpus_allowed, c->cpus_allowed)) | |
462 | return -EINVAL; | |
463 | if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && | |
464 | c != cur && | |
465 | nodes_intersects(trial->mems_allowed, c->mems_allowed)) | |
466 | return -EINVAL; | |
467 | } | |
468 | ||
020958b6 PJ |
469 | /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */ |
470 | if (cgroup_task_count(cur->css.cgroup)) { | |
471 | if (cpus_empty(trial->cpus_allowed) || | |
472 | nodes_empty(trial->mems_allowed)) { | |
473 | return -ENOSPC; | |
474 | } | |
475 | } | |
476 | ||
1da177e4 LT |
477 | return 0; |
478 | } | |
479 | ||
029190c5 | 480 | /* |
cf417141 | 481 | * Helper routine for generate_sched_domains(). |
029190c5 PJ |
482 | * Do cpusets a, b have overlapping cpus_allowed masks? |
483 | */ | |
029190c5 PJ |
484 | static int cpusets_overlap(struct cpuset *a, struct cpuset *b) |
485 | { | |
486 | return cpus_intersects(a->cpus_allowed, b->cpus_allowed); | |
487 | } | |
488 | ||
1d3504fc HS |
489 | static void |
490 | update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) | |
491 | { | |
1d3504fc HS |
492 | if (dattr->relax_domain_level < c->relax_domain_level) |
493 | dattr->relax_domain_level = c->relax_domain_level; | |
494 | return; | |
495 | } | |
496 | ||
f5393693 LJ |
497 | static void |
498 | update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c) | |
499 | { | |
500 | LIST_HEAD(q); | |
501 | ||
502 | list_add(&c->stack_list, &q); | |
503 | while (!list_empty(&q)) { | |
504 | struct cpuset *cp; | |
505 | struct cgroup *cont; | |
506 | struct cpuset *child; | |
507 | ||
508 | cp = list_first_entry(&q, struct cpuset, stack_list); | |
509 | list_del(q.next); | |
510 | ||
511 | if (cpus_empty(cp->cpus_allowed)) | |
512 | continue; | |
513 | ||
514 | if (is_sched_load_balance(cp)) | |
515 | update_domain_attr(dattr, cp); | |
516 | ||
517 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | |
518 | child = cgroup_cs(cont); | |
519 | list_add_tail(&child->stack_list, &q); | |
520 | } | |
521 | } | |
522 | } | |
523 | ||
029190c5 | 524 | /* |
cf417141 MK |
525 | * generate_sched_domains() |
526 | * | |
527 | * This function builds a partial partition of the systems CPUs | |
528 | * A 'partial partition' is a set of non-overlapping subsets whose | |
529 | * union is a subset of that set. | |
530 | * The output of this function needs to be passed to kernel/sched.c | |
531 | * partition_sched_domains() routine, which will rebuild the scheduler's | |
532 | * load balancing domains (sched domains) as specified by that partial | |
533 | * partition. | |
029190c5 PJ |
534 | * |
535 | * See "What is sched_load_balance" in Documentation/cpusets.txt | |
536 | * for a background explanation of this. | |
537 | * | |
538 | * Does not return errors, on the theory that the callers of this | |
539 | * routine would rather not worry about failures to rebuild sched | |
540 | * domains when operating in the severe memory shortage situations | |
541 | * that could cause allocation failures below. | |
542 | * | |
cf417141 | 543 | * Must be called with cgroup_lock held. |
029190c5 PJ |
544 | * |
545 | * The three key local variables below are: | |
aeed6824 | 546 | * q - a linked-list queue of cpuset pointers, used to implement a |
029190c5 PJ |
547 | * top-down scan of all cpusets. This scan loads a pointer |
548 | * to each cpuset marked is_sched_load_balance into the | |
549 | * array 'csa'. For our purposes, rebuilding the schedulers | |
550 | * sched domains, we can ignore !is_sched_load_balance cpusets. | |
551 | * csa - (for CpuSet Array) Array of pointers to all the cpusets | |
552 | * that need to be load balanced, for convenient iterative | |
553 | * access by the subsequent code that finds the best partition, | |
554 | * i.e the set of domains (subsets) of CPUs such that the | |
555 | * cpus_allowed of every cpuset marked is_sched_load_balance | |
556 | * is a subset of one of these domains, while there are as | |
557 | * many such domains as possible, each as small as possible. | |
558 | * doms - Conversion of 'csa' to an array of cpumasks, for passing to | |
559 | * the kernel/sched.c routine partition_sched_domains() in a | |
560 | * convenient format, that can be easily compared to the prior | |
561 | * value to determine what partition elements (sched domains) | |
562 | * were changed (added or removed.) | |
563 | * | |
564 | * Finding the best partition (set of domains): | |
565 | * The triple nested loops below over i, j, k scan over the | |
566 | * load balanced cpusets (using the array of cpuset pointers in | |
567 | * csa[]) looking for pairs of cpusets that have overlapping | |
568 | * cpus_allowed, but which don't have the same 'pn' partition | |
569 | * number and gives them in the same partition number. It keeps | |
570 | * looping on the 'restart' label until it can no longer find | |
571 | * any such pairs. | |
572 | * | |
573 | * The union of the cpus_allowed masks from the set of | |
574 | * all cpusets having the same 'pn' value then form the one | |
575 | * element of the partition (one sched domain) to be passed to | |
576 | * partition_sched_domains(). | |
577 | */ | |
cf417141 MK |
578 | static int generate_sched_domains(cpumask_t **domains, |
579 | struct sched_domain_attr **attributes) | |
029190c5 | 580 | { |
cf417141 | 581 | LIST_HEAD(q); /* queue of cpusets to be scanned */ |
029190c5 PJ |
582 | struct cpuset *cp; /* scans q */ |
583 | struct cpuset **csa; /* array of all cpuset ptrs */ | |
584 | int csn; /* how many cpuset ptrs in csa so far */ | |
585 | int i, j, k; /* indices for partition finding loops */ | |
586 | cpumask_t *doms; /* resulting partition; i.e. sched domains */ | |
1d3504fc | 587 | struct sched_domain_attr *dattr; /* attributes for custom domains */ |
1583715d | 588 | int ndoms = 0; /* number of sched domains in result */ |
029190c5 PJ |
589 | int nslot; /* next empty doms[] cpumask_t slot */ |
590 | ||
029190c5 | 591 | doms = NULL; |
1d3504fc | 592 | dattr = NULL; |
cf417141 | 593 | csa = NULL; |
029190c5 PJ |
594 | |
595 | /* Special case for the 99% of systems with one, full, sched domain */ | |
596 | if (is_sched_load_balance(&top_cpuset)) { | |
029190c5 PJ |
597 | doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL); |
598 | if (!doms) | |
cf417141 MK |
599 | goto done; |
600 | ||
1d3504fc HS |
601 | dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); |
602 | if (dattr) { | |
603 | *dattr = SD_ATTR_INIT; | |
93a65575 | 604 | update_domain_attr_tree(dattr, &top_cpuset); |
1d3504fc | 605 | } |
029190c5 | 606 | *doms = top_cpuset.cpus_allowed; |
cf417141 MK |
607 | |
608 | ndoms = 1; | |
609 | goto done; | |
029190c5 PJ |
610 | } |
611 | ||
029190c5 PJ |
612 | csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL); |
613 | if (!csa) | |
614 | goto done; | |
615 | csn = 0; | |
616 | ||
aeed6824 LZ |
617 | list_add(&top_cpuset.stack_list, &q); |
618 | while (!list_empty(&q)) { | |
029190c5 PJ |
619 | struct cgroup *cont; |
620 | struct cpuset *child; /* scans child cpusets of cp */ | |
489a5393 | 621 | |
aeed6824 LZ |
622 | cp = list_first_entry(&q, struct cpuset, stack_list); |
623 | list_del(q.next); | |
624 | ||
489a5393 LJ |
625 | if (cpus_empty(cp->cpus_allowed)) |
626 | continue; | |
627 | ||
f5393693 LJ |
628 | /* |
629 | * All child cpusets contain a subset of the parent's cpus, so | |
630 | * just skip them, and then we call update_domain_attr_tree() | |
631 | * to calc relax_domain_level of the corresponding sched | |
632 | * domain. | |
633 | */ | |
634 | if (is_sched_load_balance(cp)) { | |
029190c5 | 635 | csa[csn++] = cp; |
f5393693 LJ |
636 | continue; |
637 | } | |
489a5393 | 638 | |
029190c5 PJ |
639 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { |
640 | child = cgroup_cs(cont); | |
aeed6824 | 641 | list_add_tail(&child->stack_list, &q); |
029190c5 PJ |
642 | } |
643 | } | |
644 | ||
645 | for (i = 0; i < csn; i++) | |
646 | csa[i]->pn = i; | |
647 | ndoms = csn; | |
648 | ||
649 | restart: | |
650 | /* Find the best partition (set of sched domains) */ | |
651 | for (i = 0; i < csn; i++) { | |
652 | struct cpuset *a = csa[i]; | |
653 | int apn = a->pn; | |
654 | ||
655 | for (j = 0; j < csn; j++) { | |
656 | struct cpuset *b = csa[j]; | |
657 | int bpn = b->pn; | |
658 | ||
659 | if (apn != bpn && cpusets_overlap(a, b)) { | |
660 | for (k = 0; k < csn; k++) { | |
661 | struct cpuset *c = csa[k]; | |
662 | ||
663 | if (c->pn == bpn) | |
664 | c->pn = apn; | |
665 | } | |
666 | ndoms--; /* one less element */ | |
667 | goto restart; | |
668 | } | |
669 | } | |
670 | } | |
671 | ||
cf417141 MK |
672 | /* |
673 | * Now we know how many domains to create. | |
674 | * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. | |
675 | */ | |
029190c5 | 676 | doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL); |
700018e0 | 677 | if (!doms) |
cf417141 | 678 | goto done; |
cf417141 MK |
679 | |
680 | /* | |
681 | * The rest of the code, including the scheduler, can deal with | |
682 | * dattr==NULL case. No need to abort if alloc fails. | |
683 | */ | |
1d3504fc | 684 | dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL); |
029190c5 PJ |
685 | |
686 | for (nslot = 0, i = 0; i < csn; i++) { | |
687 | struct cpuset *a = csa[i]; | |
cf417141 | 688 | cpumask_t *dp; |
029190c5 PJ |
689 | int apn = a->pn; |
690 | ||
cf417141 MK |
691 | if (apn < 0) { |
692 | /* Skip completed partitions */ | |
693 | continue; | |
694 | } | |
695 | ||
696 | dp = doms + nslot; | |
697 | ||
698 | if (nslot == ndoms) { | |
699 | static int warnings = 10; | |
700 | if (warnings) { | |
701 | printk(KERN_WARNING | |
702 | "rebuild_sched_domains confused:" | |
703 | " nslot %d, ndoms %d, csn %d, i %d," | |
704 | " apn %d\n", | |
705 | nslot, ndoms, csn, i, apn); | |
706 | warnings--; | |
029190c5 | 707 | } |
cf417141 MK |
708 | continue; |
709 | } | |
029190c5 | 710 | |
cf417141 MK |
711 | cpus_clear(*dp); |
712 | if (dattr) | |
713 | *(dattr + nslot) = SD_ATTR_INIT; | |
714 | for (j = i; j < csn; j++) { | |
715 | struct cpuset *b = csa[j]; | |
716 | ||
717 | if (apn == b->pn) { | |
718 | cpus_or(*dp, *dp, b->cpus_allowed); | |
719 | if (dattr) | |
720 | update_domain_attr_tree(dattr + nslot, b); | |
721 | ||
722 | /* Done with this partition */ | |
723 | b->pn = -1; | |
029190c5 | 724 | } |
029190c5 | 725 | } |
cf417141 | 726 | nslot++; |
029190c5 PJ |
727 | } |
728 | BUG_ON(nslot != ndoms); | |
729 | ||
cf417141 MK |
730 | done: |
731 | kfree(csa); | |
732 | ||
700018e0 LZ |
733 | /* |
734 | * Fallback to the default domain if kmalloc() failed. | |
735 | * See comments in partition_sched_domains(). | |
736 | */ | |
737 | if (doms == NULL) | |
738 | ndoms = 1; | |
739 | ||
cf417141 MK |
740 | *domains = doms; |
741 | *attributes = dattr; | |
742 | return ndoms; | |
743 | } | |
744 | ||
745 | /* | |
746 | * Rebuild scheduler domains. | |
747 | * | |
748 | * Call with neither cgroup_mutex held nor within get_online_cpus(). | |
749 | * Takes both cgroup_mutex and get_online_cpus(). | |
750 | * | |
751 | * Cannot be directly called from cpuset code handling changes | |
752 | * to the cpuset pseudo-filesystem, because it cannot be called | |
753 | * from code that already holds cgroup_mutex. | |
754 | */ | |
755 | static void do_rebuild_sched_domains(struct work_struct *unused) | |
756 | { | |
757 | struct sched_domain_attr *attr; | |
758 | cpumask_t *doms; | |
759 | int ndoms; | |
760 | ||
86ef5c9a | 761 | get_online_cpus(); |
cf417141 MK |
762 | |
763 | /* Generate domain masks and attrs */ | |
764 | cgroup_lock(); | |
765 | ndoms = generate_sched_domains(&doms, &attr); | |
766 | cgroup_unlock(); | |
767 | ||
768 | /* Have scheduler rebuild the domains */ | |
769 | partition_sched_domains(ndoms, doms, attr); | |
770 | ||
86ef5c9a | 771 | put_online_cpus(); |
cf417141 | 772 | } |
029190c5 | 773 | |
cf417141 MK |
774 | static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains); |
775 | ||
776 | /* | |
777 | * Rebuild scheduler domains, asynchronously via workqueue. | |
778 | * | |
779 | * If the flag 'sched_load_balance' of any cpuset with non-empty | |
780 | * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset | |
781 | * which has that flag enabled, or if any cpuset with a non-empty | |
782 | * 'cpus' is removed, then call this routine to rebuild the | |
783 | * scheduler's dynamic sched domains. | |
784 | * | |
785 | * The rebuild_sched_domains() and partition_sched_domains() | |
786 | * routines must nest cgroup_lock() inside get_online_cpus(), | |
787 | * but such cpuset changes as these must nest that locking the | |
788 | * other way, holding cgroup_lock() for much of the code. | |
789 | * | |
790 | * So in order to avoid an ABBA deadlock, the cpuset code handling | |
791 | * these user changes delegates the actual sched domain rebuilding | |
792 | * to a separate workqueue thread, which ends up processing the | |
793 | * above do_rebuild_sched_domains() function. | |
794 | */ | |
795 | static void async_rebuild_sched_domains(void) | |
796 | { | |
797 | schedule_work(&rebuild_sched_domains_work); | |
798 | } | |
799 | ||
800 | /* | |
801 | * Accomplishes the same scheduler domain rebuild as the above | |
802 | * async_rebuild_sched_domains(), however it directly calls the | |
803 | * rebuild routine synchronously rather than calling it via an | |
804 | * asynchronous work thread. | |
805 | * | |
806 | * This can only be called from code that is not holding | |
807 | * cgroup_mutex (not nested in a cgroup_lock() call.) | |
808 | */ | |
809 | void rebuild_sched_domains(void) | |
810 | { | |
811 | do_rebuild_sched_domains(NULL); | |
029190c5 PJ |
812 | } |
813 | ||
58f4790b CW |
814 | /** |
815 | * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's | |
816 | * @tsk: task to test | |
817 | * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner | |
818 | * | |
2df167a3 | 819 | * Call with cgroup_mutex held. May take callback_mutex during call. |
58f4790b CW |
820 | * Called for each task in a cgroup by cgroup_scan_tasks(). |
821 | * Return nonzero if this tasks's cpus_allowed mask should be changed (in other | |
822 | * words, if its mask is not equal to its cpuset's mask). | |
053199ed | 823 | */ |
9e0c914c AB |
824 | static int cpuset_test_cpumask(struct task_struct *tsk, |
825 | struct cgroup_scanner *scan) | |
58f4790b CW |
826 | { |
827 | return !cpus_equal(tsk->cpus_allowed, | |
828 | (cgroup_cs(scan->cg))->cpus_allowed); | |
829 | } | |
053199ed | 830 | |
58f4790b CW |
831 | /** |
832 | * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's | |
833 | * @tsk: task to test | |
834 | * @scan: struct cgroup_scanner containing the cgroup of the task | |
835 | * | |
836 | * Called by cgroup_scan_tasks() for each task in a cgroup whose | |
837 | * cpus_allowed mask needs to be changed. | |
838 | * | |
839 | * We don't need to re-check for the cgroup/cpuset membership, since we're | |
840 | * holding cgroup_lock() at this point. | |
841 | */ | |
9e0c914c AB |
842 | static void cpuset_change_cpumask(struct task_struct *tsk, |
843 | struct cgroup_scanner *scan) | |
58f4790b | 844 | { |
f9a86fcb | 845 | set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed)); |
58f4790b CW |
846 | } |
847 | ||
0b2f630a MX |
848 | /** |
849 | * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. | |
850 | * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed | |
4e74339a | 851 | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() |
0b2f630a MX |
852 | * |
853 | * Called with cgroup_mutex held | |
854 | * | |
855 | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | |
856 | * calling callback functions for each. | |
857 | * | |
4e74339a LZ |
858 | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 |
859 | * if @heap != NULL. | |
0b2f630a | 860 | */ |
4e74339a | 861 | static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap) |
0b2f630a MX |
862 | { |
863 | struct cgroup_scanner scan; | |
0b2f630a MX |
864 | |
865 | scan.cg = cs->css.cgroup; | |
866 | scan.test_task = cpuset_test_cpumask; | |
867 | scan.process_task = cpuset_change_cpumask; | |
4e74339a LZ |
868 | scan.heap = heap; |
869 | cgroup_scan_tasks(&scan); | |
0b2f630a MX |
870 | } |
871 | ||
58f4790b CW |
872 | /** |
873 | * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it | |
874 | * @cs: the cpuset to consider | |
875 | * @buf: buffer of cpu numbers written to this cpuset | |
876 | */ | |
e3712395 | 877 | static int update_cpumask(struct cpuset *cs, const char *buf) |
1da177e4 | 878 | { |
4e74339a | 879 | struct ptr_heap heap; |
1da177e4 | 880 | struct cpuset trialcs; |
58f4790b CW |
881 | int retval; |
882 | int is_load_balanced; | |
1da177e4 | 883 | |
4c4d50f7 PJ |
884 | /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */ |
885 | if (cs == &top_cpuset) | |
886 | return -EACCES; | |
887 | ||
1da177e4 | 888 | trialcs = *cs; |
6f7f02e7 DR |
889 | |
890 | /* | |
c8d9c90c | 891 | * An empty cpus_allowed is ok only if the cpuset has no tasks. |
020958b6 PJ |
892 | * Since cpulist_parse() fails on an empty mask, we special case |
893 | * that parsing. The validate_change() call ensures that cpusets | |
894 | * with tasks have cpus. | |
6f7f02e7 | 895 | */ |
020958b6 | 896 | if (!*buf) { |
6f7f02e7 DR |
897 | cpus_clear(trialcs.cpus_allowed); |
898 | } else { | |
899 | retval = cpulist_parse(buf, trialcs.cpus_allowed); | |
900 | if (retval < 0) | |
901 | return retval; | |
37340746 LJ |
902 | |
903 | if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map)) | |
904 | return -EINVAL; | |
6f7f02e7 | 905 | } |
1da177e4 | 906 | retval = validate_change(cs, &trialcs); |
85d7b949 DG |
907 | if (retval < 0) |
908 | return retval; | |
029190c5 | 909 | |
8707d8b8 PM |
910 | /* Nothing to do if the cpus didn't change */ |
911 | if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed)) | |
912 | return 0; | |
58f4790b | 913 | |
4e74339a LZ |
914 | retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); |
915 | if (retval) | |
916 | return retval; | |
917 | ||
029190c5 PJ |
918 | is_load_balanced = is_sched_load_balance(&trialcs); |
919 | ||
3d3f26a7 | 920 | mutex_lock(&callback_mutex); |
85d7b949 | 921 | cs->cpus_allowed = trialcs.cpus_allowed; |
3d3f26a7 | 922 | mutex_unlock(&callback_mutex); |
029190c5 | 923 | |
8707d8b8 PM |
924 | /* |
925 | * Scan tasks in the cpuset, and update the cpumasks of any | |
58f4790b | 926 | * that need an update. |
8707d8b8 | 927 | */ |
4e74339a LZ |
928 | update_tasks_cpumask(cs, &heap); |
929 | ||
930 | heap_free(&heap); | |
58f4790b | 931 | |
8707d8b8 | 932 | if (is_load_balanced) |
cf417141 | 933 | async_rebuild_sched_domains(); |
85d7b949 | 934 | return 0; |
1da177e4 LT |
935 | } |
936 | ||
e4e364e8 PJ |
937 | /* |
938 | * cpuset_migrate_mm | |
939 | * | |
940 | * Migrate memory region from one set of nodes to another. | |
941 | * | |
942 | * Temporarilly set tasks mems_allowed to target nodes of migration, | |
943 | * so that the migration code can allocate pages on these nodes. | |
944 | * | |
2df167a3 | 945 | * Call holding cgroup_mutex, so current's cpuset won't change |
c8d9c90c | 946 | * during this call, as manage_mutex holds off any cpuset_attach() |
e4e364e8 PJ |
947 | * calls. Therefore we don't need to take task_lock around the |
948 | * call to guarantee_online_mems(), as we know no one is changing | |
2df167a3 | 949 | * our task's cpuset. |
e4e364e8 PJ |
950 | * |
951 | * Hold callback_mutex around the two modifications of our tasks | |
952 | * mems_allowed to synchronize with cpuset_mems_allowed(). | |
953 | * | |
954 | * While the mm_struct we are migrating is typically from some | |
955 | * other task, the task_struct mems_allowed that we are hacking | |
956 | * is for our current task, which must allocate new pages for that | |
957 | * migrating memory region. | |
958 | * | |
959 | * We call cpuset_update_task_memory_state() before hacking | |
960 | * our tasks mems_allowed, so that we are assured of being in | |
961 | * sync with our tasks cpuset, and in particular, callbacks to | |
962 | * cpuset_update_task_memory_state() from nested page allocations | |
963 | * won't see any mismatch of our cpuset and task mems_generation | |
964 | * values, so won't overwrite our hacked tasks mems_allowed | |
965 | * nodemask. | |
966 | */ | |
967 | ||
968 | static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, | |
969 | const nodemask_t *to) | |
970 | { | |
971 | struct task_struct *tsk = current; | |
972 | ||
973 | cpuset_update_task_memory_state(); | |
974 | ||
975 | mutex_lock(&callback_mutex); | |
976 | tsk->mems_allowed = *to; | |
977 | mutex_unlock(&callback_mutex); | |
978 | ||
979 | do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL); | |
980 | ||
981 | mutex_lock(&callback_mutex); | |
8793d854 | 982 | guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed); |
e4e364e8 PJ |
983 | mutex_unlock(&callback_mutex); |
984 | } | |
985 | ||
8793d854 PM |
986 | static void *cpuset_being_rebound; |
987 | ||
0b2f630a MX |
988 | /** |
989 | * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. | |
990 | * @cs: the cpuset in which each task's mems_allowed mask needs to be changed | |
991 | * @oldmem: old mems_allowed of cpuset cs | |
992 | * | |
993 | * Called with cgroup_mutex held | |
994 | * Return 0 if successful, -errno if not. | |
995 | */ | |
996 | static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem) | |
1da177e4 | 997 | { |
8793d854 | 998 | struct task_struct *p; |
4225399a PJ |
999 | struct mm_struct **mmarray; |
1000 | int i, n, ntasks; | |
04c19fa6 | 1001 | int migrate; |
4225399a | 1002 | int fudge; |
8793d854 | 1003 | struct cgroup_iter it; |
0b2f630a | 1004 | int retval; |
59dac16f | 1005 | |
846a16bf | 1006 | cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ |
4225399a PJ |
1007 | |
1008 | fudge = 10; /* spare mmarray[] slots */ | |
1009 | fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */ | |
1010 | retval = -ENOMEM; | |
1011 | ||
1012 | /* | |
1013 | * Allocate mmarray[] to hold mm reference for each task | |
1014 | * in cpuset cs. Can't kmalloc GFP_KERNEL while holding | |
1015 | * tasklist_lock. We could use GFP_ATOMIC, but with a | |
1016 | * few more lines of code, we can retry until we get a big | |
1017 | * enough mmarray[] w/o using GFP_ATOMIC. | |
1018 | */ | |
1019 | while (1) { | |
8793d854 | 1020 | ntasks = cgroup_task_count(cs->css.cgroup); /* guess */ |
4225399a PJ |
1021 | ntasks += fudge; |
1022 | mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL); | |
1023 | if (!mmarray) | |
1024 | goto done; | |
c2aef333 | 1025 | read_lock(&tasklist_lock); /* block fork */ |
8793d854 | 1026 | if (cgroup_task_count(cs->css.cgroup) <= ntasks) |
4225399a | 1027 | break; /* got enough */ |
c2aef333 | 1028 | read_unlock(&tasklist_lock); /* try again */ |
4225399a PJ |
1029 | kfree(mmarray); |
1030 | } | |
1031 | ||
1032 | n = 0; | |
1033 | ||
1034 | /* Load up mmarray[] with mm reference for each task in cpuset. */ | |
8793d854 PM |
1035 | cgroup_iter_start(cs->css.cgroup, &it); |
1036 | while ((p = cgroup_iter_next(cs->css.cgroup, &it))) { | |
4225399a PJ |
1037 | struct mm_struct *mm; |
1038 | ||
1039 | if (n >= ntasks) { | |
1040 | printk(KERN_WARNING | |
1041 | "Cpuset mempolicy rebind incomplete.\n"); | |
8793d854 | 1042 | break; |
4225399a | 1043 | } |
4225399a PJ |
1044 | mm = get_task_mm(p); |
1045 | if (!mm) | |
1046 | continue; | |
1047 | mmarray[n++] = mm; | |
8793d854 PM |
1048 | } |
1049 | cgroup_iter_end(cs->css.cgroup, &it); | |
c2aef333 | 1050 | read_unlock(&tasklist_lock); |
4225399a PJ |
1051 | |
1052 | /* | |
1053 | * Now that we've dropped the tasklist spinlock, we can | |
1054 | * rebind the vma mempolicies of each mm in mmarray[] to their | |
1055 | * new cpuset, and release that mm. The mpol_rebind_mm() | |
1056 | * call takes mmap_sem, which we couldn't take while holding | |
846a16bf | 1057 | * tasklist_lock. Forks can happen again now - the mpol_dup() |
4225399a PJ |
1058 | * cpuset_being_rebound check will catch such forks, and rebind |
1059 | * their vma mempolicies too. Because we still hold the global | |
2df167a3 | 1060 | * cgroup_mutex, we know that no other rebind effort will |
4225399a PJ |
1061 | * be contending for the global variable cpuset_being_rebound. |
1062 | * It's ok if we rebind the same mm twice; mpol_rebind_mm() | |
04c19fa6 | 1063 | * is idempotent. Also migrate pages in each mm to new nodes. |
4225399a | 1064 | */ |
04c19fa6 | 1065 | migrate = is_memory_migrate(cs); |
4225399a PJ |
1066 | for (i = 0; i < n; i++) { |
1067 | struct mm_struct *mm = mmarray[i]; | |
1068 | ||
1069 | mpol_rebind_mm(mm, &cs->mems_allowed); | |
e4e364e8 | 1070 | if (migrate) |
0b2f630a | 1071 | cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed); |
4225399a PJ |
1072 | mmput(mm); |
1073 | } | |
1074 | ||
2df167a3 | 1075 | /* We're done rebinding vmas to this cpuset's new mems_allowed. */ |
4225399a | 1076 | kfree(mmarray); |
8793d854 | 1077 | cpuset_being_rebound = NULL; |
4225399a | 1078 | retval = 0; |
59dac16f | 1079 | done: |
1da177e4 LT |
1080 | return retval; |
1081 | } | |
1082 | ||
0b2f630a MX |
1083 | /* |
1084 | * Handle user request to change the 'mems' memory placement | |
1085 | * of a cpuset. Needs to validate the request, update the | |
1086 | * cpusets mems_allowed and mems_generation, and for each | |
1087 | * task in the cpuset, rebind any vma mempolicies and if | |
1088 | * the cpuset is marked 'memory_migrate', migrate the tasks | |
1089 | * pages to the new memory. | |
1090 | * | |
1091 | * Call with cgroup_mutex held. May take callback_mutex during call. | |
1092 | * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, | |
1093 | * lock each such tasks mm->mmap_sem, scan its vma's and rebind | |
1094 | * their mempolicies to the cpusets new mems_allowed. | |
1095 | */ | |
1096 | static int update_nodemask(struct cpuset *cs, const char *buf) | |
1097 | { | |
1098 | struct cpuset trialcs; | |
1099 | nodemask_t oldmem; | |
1100 | int retval; | |
1101 | ||
1102 | /* | |
1103 | * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY]; | |
1104 | * it's read-only | |
1105 | */ | |
1106 | if (cs == &top_cpuset) | |
1107 | return -EACCES; | |
1108 | ||
1109 | trialcs = *cs; | |
1110 | ||
1111 | /* | |
1112 | * An empty mems_allowed is ok iff there are no tasks in the cpuset. | |
1113 | * Since nodelist_parse() fails on an empty mask, we special case | |
1114 | * that parsing. The validate_change() call ensures that cpusets | |
1115 | * with tasks have memory. | |
1116 | */ | |
1117 | if (!*buf) { | |
1118 | nodes_clear(trialcs.mems_allowed); | |
1119 | } else { | |
1120 | retval = nodelist_parse(buf, trialcs.mems_allowed); | |
1121 | if (retval < 0) | |
1122 | goto done; | |
1123 | ||
1124 | if (!nodes_subset(trialcs.mems_allowed, | |
1125 | node_states[N_HIGH_MEMORY])) | |
1126 | return -EINVAL; | |
1127 | } | |
1128 | oldmem = cs->mems_allowed; | |
1129 | if (nodes_equal(oldmem, trialcs.mems_allowed)) { | |
1130 | retval = 0; /* Too easy - nothing to do */ | |
1131 | goto done; | |
1132 | } | |
1133 | retval = validate_change(cs, &trialcs); | |
1134 | if (retval < 0) | |
1135 | goto done; | |
1136 | ||
1137 | mutex_lock(&callback_mutex); | |
1138 | cs->mems_allowed = trialcs.mems_allowed; | |
1139 | cs->mems_generation = cpuset_mems_generation++; | |
1140 | mutex_unlock(&callback_mutex); | |
1141 | ||
1142 | retval = update_tasks_nodemask(cs, &oldmem); | |
1143 | done: | |
1144 | return retval; | |
1145 | } | |
1146 | ||
8793d854 PM |
1147 | int current_cpuset_is_being_rebound(void) |
1148 | { | |
1149 | return task_cs(current) == cpuset_being_rebound; | |
1150 | } | |
1151 | ||
5be7a479 | 1152 | static int update_relax_domain_level(struct cpuset *cs, s64 val) |
1d3504fc | 1153 | { |
30e0e178 LZ |
1154 | if (val < -1 || val >= SD_LV_MAX) |
1155 | return -EINVAL; | |
1d3504fc HS |
1156 | |
1157 | if (val != cs->relax_domain_level) { | |
1158 | cs->relax_domain_level = val; | |
c372e817 | 1159 | if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs)) |
cf417141 | 1160 | async_rebuild_sched_domains(); |
1d3504fc HS |
1161 | } |
1162 | ||
1163 | return 0; | |
1164 | } | |
1165 | ||
1da177e4 LT |
1166 | /* |
1167 | * update_flag - read a 0 or a 1 in a file and update associated flag | |
78608366 PM |
1168 | * bit: the bit to update (see cpuset_flagbits_t) |
1169 | * cs: the cpuset to update | |
1170 | * turning_on: whether the flag is being set or cleared | |
053199ed | 1171 | * |
2df167a3 | 1172 | * Call with cgroup_mutex held. |
1da177e4 LT |
1173 | */ |
1174 | ||
700fe1ab PM |
1175 | static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, |
1176 | int turning_on) | |
1da177e4 | 1177 | { |
1da177e4 | 1178 | struct cpuset trialcs; |
607717a6 | 1179 | int err; |
40b6a762 | 1180 | int balance_flag_changed; |
1da177e4 | 1181 | |
1da177e4 LT |
1182 | trialcs = *cs; |
1183 | if (turning_on) | |
1184 | set_bit(bit, &trialcs.flags); | |
1185 | else | |
1186 | clear_bit(bit, &trialcs.flags); | |
1187 | ||
1188 | err = validate_change(cs, &trialcs); | |
85d7b949 DG |
1189 | if (err < 0) |
1190 | return err; | |
029190c5 | 1191 | |
029190c5 PJ |
1192 | balance_flag_changed = (is_sched_load_balance(cs) != |
1193 | is_sched_load_balance(&trialcs)); | |
1194 | ||
3d3f26a7 | 1195 | mutex_lock(&callback_mutex); |
69604067 | 1196 | cs->flags = trialcs.flags; |
3d3f26a7 | 1197 | mutex_unlock(&callback_mutex); |
85d7b949 | 1198 | |
40b6a762 | 1199 | if (!cpus_empty(trialcs.cpus_allowed) && balance_flag_changed) |
cf417141 | 1200 | async_rebuild_sched_domains(); |
029190c5 | 1201 | |
85d7b949 | 1202 | return 0; |
1da177e4 LT |
1203 | } |
1204 | ||
3e0d98b9 | 1205 | /* |
80f7228b | 1206 | * Frequency meter - How fast is some event occurring? |
3e0d98b9 PJ |
1207 | * |
1208 | * These routines manage a digitally filtered, constant time based, | |
1209 | * event frequency meter. There are four routines: | |
1210 | * fmeter_init() - initialize a frequency meter. | |
1211 | * fmeter_markevent() - called each time the event happens. | |
1212 | * fmeter_getrate() - returns the recent rate of such events. | |
1213 | * fmeter_update() - internal routine used to update fmeter. | |
1214 | * | |
1215 | * A common data structure is passed to each of these routines, | |
1216 | * which is used to keep track of the state required to manage the | |
1217 | * frequency meter and its digital filter. | |
1218 | * | |
1219 | * The filter works on the number of events marked per unit time. | |
1220 | * The filter is single-pole low-pass recursive (IIR). The time unit | |
1221 | * is 1 second. Arithmetic is done using 32-bit integers scaled to | |
1222 | * simulate 3 decimal digits of precision (multiplied by 1000). | |
1223 | * | |
1224 | * With an FM_COEF of 933, and a time base of 1 second, the filter | |
1225 | * has a half-life of 10 seconds, meaning that if the events quit | |
1226 | * happening, then the rate returned from the fmeter_getrate() | |
1227 | * will be cut in half each 10 seconds, until it converges to zero. | |
1228 | * | |
1229 | * It is not worth doing a real infinitely recursive filter. If more | |
1230 | * than FM_MAXTICKS ticks have elapsed since the last filter event, | |
1231 | * just compute FM_MAXTICKS ticks worth, by which point the level | |
1232 | * will be stable. | |
1233 | * | |
1234 | * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid | |
1235 | * arithmetic overflow in the fmeter_update() routine. | |
1236 | * | |
1237 | * Given the simple 32 bit integer arithmetic used, this meter works | |
1238 | * best for reporting rates between one per millisecond (msec) and | |
1239 | * one per 32 (approx) seconds. At constant rates faster than one | |
1240 | * per msec it maxes out at values just under 1,000,000. At constant | |
1241 | * rates between one per msec, and one per second it will stabilize | |
1242 | * to a value N*1000, where N is the rate of events per second. | |
1243 | * At constant rates between one per second and one per 32 seconds, | |
1244 | * it will be choppy, moving up on the seconds that have an event, | |
1245 | * and then decaying until the next event. At rates slower than | |
1246 | * about one in 32 seconds, it decays all the way back to zero between | |
1247 | * each event. | |
1248 | */ | |
1249 | ||
1250 | #define FM_COEF 933 /* coefficient for half-life of 10 secs */ | |
1251 | #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */ | |
1252 | #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ | |
1253 | #define FM_SCALE 1000 /* faux fixed point scale */ | |
1254 | ||
1255 | /* Initialize a frequency meter */ | |
1256 | static void fmeter_init(struct fmeter *fmp) | |
1257 | { | |
1258 | fmp->cnt = 0; | |
1259 | fmp->val = 0; | |
1260 | fmp->time = 0; | |
1261 | spin_lock_init(&fmp->lock); | |
1262 | } | |
1263 | ||
1264 | /* Internal meter update - process cnt events and update value */ | |
1265 | static void fmeter_update(struct fmeter *fmp) | |
1266 | { | |
1267 | time_t now = get_seconds(); | |
1268 | time_t ticks = now - fmp->time; | |
1269 | ||
1270 | if (ticks == 0) | |
1271 | return; | |
1272 | ||
1273 | ticks = min(FM_MAXTICKS, ticks); | |
1274 | while (ticks-- > 0) | |
1275 | fmp->val = (FM_COEF * fmp->val) / FM_SCALE; | |
1276 | fmp->time = now; | |
1277 | ||
1278 | fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; | |
1279 | fmp->cnt = 0; | |
1280 | } | |
1281 | ||
1282 | /* Process any previous ticks, then bump cnt by one (times scale). */ | |
1283 | static void fmeter_markevent(struct fmeter *fmp) | |
1284 | { | |
1285 | spin_lock(&fmp->lock); | |
1286 | fmeter_update(fmp); | |
1287 | fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); | |
1288 | spin_unlock(&fmp->lock); | |
1289 | } | |
1290 | ||
1291 | /* Process any previous ticks, then return current value. */ | |
1292 | static int fmeter_getrate(struct fmeter *fmp) | |
1293 | { | |
1294 | int val; | |
1295 | ||
1296 | spin_lock(&fmp->lock); | |
1297 | fmeter_update(fmp); | |
1298 | val = fmp->val; | |
1299 | spin_unlock(&fmp->lock); | |
1300 | return val; | |
1301 | } | |
1302 | ||
2df167a3 | 1303 | /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ |
8793d854 PM |
1304 | static int cpuset_can_attach(struct cgroup_subsys *ss, |
1305 | struct cgroup *cont, struct task_struct *tsk) | |
1da177e4 | 1306 | { |
8793d854 | 1307 | struct cpuset *cs = cgroup_cs(cont); |
1da177e4 | 1308 | |
1da177e4 LT |
1309 | if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) |
1310 | return -ENOSPC; | |
9985b0ba DR |
1311 | if (tsk->flags & PF_THREAD_BOUND) { |
1312 | cpumask_t mask; | |
1313 | ||
1314 | mutex_lock(&callback_mutex); | |
1315 | mask = cs->cpus_allowed; | |
1316 | mutex_unlock(&callback_mutex); | |
1317 | if (!cpus_equal(tsk->cpus_allowed, mask)) | |
1318 | return -EINVAL; | |
1319 | } | |
1da177e4 | 1320 | |
8793d854 PM |
1321 | return security_task_setscheduler(tsk, 0, NULL); |
1322 | } | |
1da177e4 | 1323 | |
8793d854 PM |
1324 | static void cpuset_attach(struct cgroup_subsys *ss, |
1325 | struct cgroup *cont, struct cgroup *oldcont, | |
1326 | struct task_struct *tsk) | |
1327 | { | |
1328 | cpumask_t cpus; | |
1329 | nodemask_t from, to; | |
1330 | struct mm_struct *mm; | |
1331 | struct cpuset *cs = cgroup_cs(cont); | |
1332 | struct cpuset *oldcs = cgroup_cs(oldcont); | |
9985b0ba | 1333 | int err; |
22fb52dd | 1334 | |
3d3f26a7 | 1335 | mutex_lock(&callback_mutex); |
1da177e4 | 1336 | guarantee_online_cpus(cs, &cpus); |
9985b0ba | 1337 | err = set_cpus_allowed_ptr(tsk, &cpus); |
8793d854 | 1338 | mutex_unlock(&callback_mutex); |
9985b0ba DR |
1339 | if (err) |
1340 | return; | |
1da177e4 | 1341 | |
45b07ef3 PJ |
1342 | from = oldcs->mems_allowed; |
1343 | to = cs->mems_allowed; | |
4225399a PJ |
1344 | mm = get_task_mm(tsk); |
1345 | if (mm) { | |
1346 | mpol_rebind_mm(mm, &to); | |
2741a559 | 1347 | if (is_memory_migrate(cs)) |
e4e364e8 | 1348 | cpuset_migrate_mm(mm, &from, &to); |
4225399a PJ |
1349 | mmput(mm); |
1350 | } | |
1351 | ||
1da177e4 LT |
1352 | } |
1353 | ||
1354 | /* The various types of files and directories in a cpuset file system */ | |
1355 | ||
1356 | typedef enum { | |
45b07ef3 | 1357 | FILE_MEMORY_MIGRATE, |
1da177e4 LT |
1358 | FILE_CPULIST, |
1359 | FILE_MEMLIST, | |
1360 | FILE_CPU_EXCLUSIVE, | |
1361 | FILE_MEM_EXCLUSIVE, | |
78608366 | 1362 | FILE_MEM_HARDWALL, |
029190c5 | 1363 | FILE_SCHED_LOAD_BALANCE, |
1d3504fc | 1364 | FILE_SCHED_RELAX_DOMAIN_LEVEL, |
3e0d98b9 PJ |
1365 | FILE_MEMORY_PRESSURE_ENABLED, |
1366 | FILE_MEMORY_PRESSURE, | |
825a46af PJ |
1367 | FILE_SPREAD_PAGE, |
1368 | FILE_SPREAD_SLAB, | |
1da177e4 LT |
1369 | } cpuset_filetype_t; |
1370 | ||
700fe1ab PM |
1371 | static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val) |
1372 | { | |
1373 | int retval = 0; | |
1374 | struct cpuset *cs = cgroup_cs(cgrp); | |
1375 | cpuset_filetype_t type = cft->private; | |
1376 | ||
e3712395 | 1377 | if (!cgroup_lock_live_group(cgrp)) |
700fe1ab | 1378 | return -ENODEV; |
700fe1ab PM |
1379 | |
1380 | switch (type) { | |
1da177e4 | 1381 | case FILE_CPU_EXCLUSIVE: |
700fe1ab | 1382 | retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); |
1da177e4 LT |
1383 | break; |
1384 | case FILE_MEM_EXCLUSIVE: | |
700fe1ab | 1385 | retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); |
1da177e4 | 1386 | break; |
78608366 PM |
1387 | case FILE_MEM_HARDWALL: |
1388 | retval = update_flag(CS_MEM_HARDWALL, cs, val); | |
1389 | break; | |
029190c5 | 1390 | case FILE_SCHED_LOAD_BALANCE: |
700fe1ab | 1391 | retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); |
1d3504fc | 1392 | break; |
45b07ef3 | 1393 | case FILE_MEMORY_MIGRATE: |
700fe1ab | 1394 | retval = update_flag(CS_MEMORY_MIGRATE, cs, val); |
45b07ef3 | 1395 | break; |
3e0d98b9 | 1396 | case FILE_MEMORY_PRESSURE_ENABLED: |
700fe1ab | 1397 | cpuset_memory_pressure_enabled = !!val; |
3e0d98b9 PJ |
1398 | break; |
1399 | case FILE_MEMORY_PRESSURE: | |
1400 | retval = -EACCES; | |
1401 | break; | |
825a46af | 1402 | case FILE_SPREAD_PAGE: |
700fe1ab | 1403 | retval = update_flag(CS_SPREAD_PAGE, cs, val); |
151a4420 | 1404 | cs->mems_generation = cpuset_mems_generation++; |
825a46af PJ |
1405 | break; |
1406 | case FILE_SPREAD_SLAB: | |
700fe1ab | 1407 | retval = update_flag(CS_SPREAD_SLAB, cs, val); |
151a4420 | 1408 | cs->mems_generation = cpuset_mems_generation++; |
825a46af | 1409 | break; |
1da177e4 LT |
1410 | default: |
1411 | retval = -EINVAL; | |
700fe1ab | 1412 | break; |
1da177e4 | 1413 | } |
8793d854 | 1414 | cgroup_unlock(); |
1da177e4 LT |
1415 | return retval; |
1416 | } | |
1417 | ||
5be7a479 PM |
1418 | static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val) |
1419 | { | |
1420 | int retval = 0; | |
1421 | struct cpuset *cs = cgroup_cs(cgrp); | |
1422 | cpuset_filetype_t type = cft->private; | |
1423 | ||
e3712395 | 1424 | if (!cgroup_lock_live_group(cgrp)) |
5be7a479 | 1425 | return -ENODEV; |
e3712395 | 1426 | |
5be7a479 PM |
1427 | switch (type) { |
1428 | case FILE_SCHED_RELAX_DOMAIN_LEVEL: | |
1429 | retval = update_relax_domain_level(cs, val); | |
1430 | break; | |
1431 | default: | |
1432 | retval = -EINVAL; | |
1433 | break; | |
1434 | } | |
1435 | cgroup_unlock(); | |
1436 | return retval; | |
1437 | } | |
1438 | ||
e3712395 PM |
1439 | /* |
1440 | * Common handling for a write to a "cpus" or "mems" file. | |
1441 | */ | |
1442 | static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft, | |
1443 | const char *buf) | |
1444 | { | |
1445 | int retval = 0; | |
1446 | ||
1447 | if (!cgroup_lock_live_group(cgrp)) | |
1448 | return -ENODEV; | |
1449 | ||
1450 | switch (cft->private) { | |
1451 | case FILE_CPULIST: | |
1452 | retval = update_cpumask(cgroup_cs(cgrp), buf); | |
1453 | break; | |
1454 | case FILE_MEMLIST: | |
1455 | retval = update_nodemask(cgroup_cs(cgrp), buf); | |
1456 | break; | |
1457 | default: | |
1458 | retval = -EINVAL; | |
1459 | break; | |
1460 | } | |
1461 | cgroup_unlock(); | |
1462 | return retval; | |
1463 | } | |
1464 | ||
1da177e4 LT |
1465 | /* |
1466 | * These ascii lists should be read in a single call, by using a user | |
1467 | * buffer large enough to hold the entire map. If read in smaller | |
1468 | * chunks, there is no guarantee of atomicity. Since the display format | |
1469 | * used, list of ranges of sequential numbers, is variable length, | |
1470 | * and since these maps can change value dynamically, one could read | |
1471 | * gibberish by doing partial reads while a list was changing. | |
1472 | * A single large read to a buffer that crosses a page boundary is | |
1473 | * ok, because the result being copied to user land is not recomputed | |
1474 | * across a page fault. | |
1475 | */ | |
1476 | ||
1477 | static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs) | |
1478 | { | |
1479 | cpumask_t mask; | |
1480 | ||
3d3f26a7 | 1481 | mutex_lock(&callback_mutex); |
1da177e4 | 1482 | mask = cs->cpus_allowed; |
3d3f26a7 | 1483 | mutex_unlock(&callback_mutex); |
1da177e4 LT |
1484 | |
1485 | return cpulist_scnprintf(page, PAGE_SIZE, mask); | |
1486 | } | |
1487 | ||
1488 | static int cpuset_sprintf_memlist(char *page, struct cpuset *cs) | |
1489 | { | |
1490 | nodemask_t mask; | |
1491 | ||
3d3f26a7 | 1492 | mutex_lock(&callback_mutex); |
1da177e4 | 1493 | mask = cs->mems_allowed; |
3d3f26a7 | 1494 | mutex_unlock(&callback_mutex); |
1da177e4 LT |
1495 | |
1496 | return nodelist_scnprintf(page, PAGE_SIZE, mask); | |
1497 | } | |
1498 | ||
8793d854 PM |
1499 | static ssize_t cpuset_common_file_read(struct cgroup *cont, |
1500 | struct cftype *cft, | |
1501 | struct file *file, | |
1502 | char __user *buf, | |
1503 | size_t nbytes, loff_t *ppos) | |
1da177e4 | 1504 | { |
8793d854 | 1505 | struct cpuset *cs = cgroup_cs(cont); |
1da177e4 LT |
1506 | cpuset_filetype_t type = cft->private; |
1507 | char *page; | |
1508 | ssize_t retval = 0; | |
1509 | char *s; | |
1da177e4 | 1510 | |
e12ba74d | 1511 | if (!(page = (char *)__get_free_page(GFP_TEMPORARY))) |
1da177e4 LT |
1512 | return -ENOMEM; |
1513 | ||
1514 | s = page; | |
1515 | ||
1516 | switch (type) { | |
1517 | case FILE_CPULIST: | |
1518 | s += cpuset_sprintf_cpulist(s, cs); | |
1519 | break; | |
1520 | case FILE_MEMLIST: | |
1521 | s += cpuset_sprintf_memlist(s, cs); | |
1522 | break; | |
1da177e4 LT |
1523 | default: |
1524 | retval = -EINVAL; | |
1525 | goto out; | |
1526 | } | |
1527 | *s++ = '\n'; | |
1da177e4 | 1528 | |
eacaa1f5 | 1529 | retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page); |
1da177e4 LT |
1530 | out: |
1531 | free_page((unsigned long)page); | |
1532 | return retval; | |
1533 | } | |
1534 | ||
700fe1ab PM |
1535 | static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft) |
1536 | { | |
1537 | struct cpuset *cs = cgroup_cs(cont); | |
1538 | cpuset_filetype_t type = cft->private; | |
1539 | switch (type) { | |
1540 | case FILE_CPU_EXCLUSIVE: | |
1541 | return is_cpu_exclusive(cs); | |
1542 | case FILE_MEM_EXCLUSIVE: | |
1543 | return is_mem_exclusive(cs); | |
78608366 PM |
1544 | case FILE_MEM_HARDWALL: |
1545 | return is_mem_hardwall(cs); | |
700fe1ab PM |
1546 | case FILE_SCHED_LOAD_BALANCE: |
1547 | return is_sched_load_balance(cs); | |
1548 | case FILE_MEMORY_MIGRATE: | |
1549 | return is_memory_migrate(cs); | |
1550 | case FILE_MEMORY_PRESSURE_ENABLED: | |
1551 | return cpuset_memory_pressure_enabled; | |
1552 | case FILE_MEMORY_PRESSURE: | |
1553 | return fmeter_getrate(&cs->fmeter); | |
1554 | case FILE_SPREAD_PAGE: | |
1555 | return is_spread_page(cs); | |
1556 | case FILE_SPREAD_SLAB: | |
1557 | return is_spread_slab(cs); | |
1558 | default: | |
1559 | BUG(); | |
1560 | } | |
cf417141 MK |
1561 | |
1562 | /* Unreachable but makes gcc happy */ | |
1563 | return 0; | |
700fe1ab | 1564 | } |
1da177e4 | 1565 | |
5be7a479 PM |
1566 | static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft) |
1567 | { | |
1568 | struct cpuset *cs = cgroup_cs(cont); | |
1569 | cpuset_filetype_t type = cft->private; | |
1570 | switch (type) { | |
1571 | case FILE_SCHED_RELAX_DOMAIN_LEVEL: | |
1572 | return cs->relax_domain_level; | |
1573 | default: | |
1574 | BUG(); | |
1575 | } | |
cf417141 MK |
1576 | |
1577 | /* Unrechable but makes gcc happy */ | |
1578 | return 0; | |
5be7a479 PM |
1579 | } |
1580 | ||
1da177e4 LT |
1581 | |
1582 | /* | |
1583 | * for the common functions, 'private' gives the type of file | |
1584 | */ | |
1585 | ||
addf2c73 PM |
1586 | static struct cftype files[] = { |
1587 | { | |
1588 | .name = "cpus", | |
1589 | .read = cpuset_common_file_read, | |
e3712395 PM |
1590 | .write_string = cpuset_write_resmask, |
1591 | .max_write_len = (100U + 6 * NR_CPUS), | |
addf2c73 PM |
1592 | .private = FILE_CPULIST, |
1593 | }, | |
1594 | ||
1595 | { | |
1596 | .name = "mems", | |
1597 | .read = cpuset_common_file_read, | |
e3712395 PM |
1598 | .write_string = cpuset_write_resmask, |
1599 | .max_write_len = (100U + 6 * MAX_NUMNODES), | |
addf2c73 PM |
1600 | .private = FILE_MEMLIST, |
1601 | }, | |
1602 | ||
1603 | { | |
1604 | .name = "cpu_exclusive", | |
1605 | .read_u64 = cpuset_read_u64, | |
1606 | .write_u64 = cpuset_write_u64, | |
1607 | .private = FILE_CPU_EXCLUSIVE, | |
1608 | }, | |
1609 | ||
1610 | { | |
1611 | .name = "mem_exclusive", | |
1612 | .read_u64 = cpuset_read_u64, | |
1613 | .write_u64 = cpuset_write_u64, | |
1614 | .private = FILE_MEM_EXCLUSIVE, | |
1615 | }, | |
1616 | ||
78608366 PM |
1617 | { |
1618 | .name = "mem_hardwall", | |
1619 | .read_u64 = cpuset_read_u64, | |
1620 | .write_u64 = cpuset_write_u64, | |
1621 | .private = FILE_MEM_HARDWALL, | |
1622 | }, | |
1623 | ||
addf2c73 PM |
1624 | { |
1625 | .name = "sched_load_balance", | |
1626 | .read_u64 = cpuset_read_u64, | |
1627 | .write_u64 = cpuset_write_u64, | |
1628 | .private = FILE_SCHED_LOAD_BALANCE, | |
1629 | }, | |
1630 | ||
1631 | { | |
1632 | .name = "sched_relax_domain_level", | |
5be7a479 PM |
1633 | .read_s64 = cpuset_read_s64, |
1634 | .write_s64 = cpuset_write_s64, | |
addf2c73 PM |
1635 | .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, |
1636 | }, | |
1637 | ||
1638 | { | |
1639 | .name = "memory_migrate", | |
1640 | .read_u64 = cpuset_read_u64, | |
1641 | .write_u64 = cpuset_write_u64, | |
1642 | .private = FILE_MEMORY_MIGRATE, | |
1643 | }, | |
1644 | ||
1645 | { | |
1646 | .name = "memory_pressure", | |
1647 | .read_u64 = cpuset_read_u64, | |
1648 | .write_u64 = cpuset_write_u64, | |
1649 | .private = FILE_MEMORY_PRESSURE, | |
1650 | }, | |
1651 | ||
1652 | { | |
1653 | .name = "memory_spread_page", | |
1654 | .read_u64 = cpuset_read_u64, | |
1655 | .write_u64 = cpuset_write_u64, | |
1656 | .private = FILE_SPREAD_PAGE, | |
1657 | }, | |
1658 | ||
1659 | { | |
1660 | .name = "memory_spread_slab", | |
1661 | .read_u64 = cpuset_read_u64, | |
1662 | .write_u64 = cpuset_write_u64, | |
1663 | .private = FILE_SPREAD_SLAB, | |
1664 | }, | |
45b07ef3 PJ |
1665 | }; |
1666 | ||
3e0d98b9 PJ |
1667 | static struct cftype cft_memory_pressure_enabled = { |
1668 | .name = "memory_pressure_enabled", | |
700fe1ab PM |
1669 | .read_u64 = cpuset_read_u64, |
1670 | .write_u64 = cpuset_write_u64, | |
3e0d98b9 PJ |
1671 | .private = FILE_MEMORY_PRESSURE_ENABLED, |
1672 | }; | |
1673 | ||
8793d854 | 1674 | static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont) |
1da177e4 LT |
1675 | { |
1676 | int err; | |
1677 | ||
addf2c73 PM |
1678 | err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files)); |
1679 | if (err) | |
1da177e4 | 1680 | return err; |
8793d854 | 1681 | /* memory_pressure_enabled is in root cpuset only */ |
addf2c73 | 1682 | if (!cont->parent) |
8793d854 | 1683 | err = cgroup_add_file(cont, ss, |
addf2c73 PM |
1684 | &cft_memory_pressure_enabled); |
1685 | return err; | |
1da177e4 LT |
1686 | } |
1687 | ||
8793d854 PM |
1688 | /* |
1689 | * post_clone() is called at the end of cgroup_clone(). | |
1690 | * 'cgroup' was just created automatically as a result of | |
1691 | * a cgroup_clone(), and the current task is about to | |
1692 | * be moved into 'cgroup'. | |
1693 | * | |
1694 | * Currently we refuse to set up the cgroup - thereby | |
1695 | * refusing the task to be entered, and as a result refusing | |
1696 | * the sys_unshare() or clone() which initiated it - if any | |
1697 | * sibling cpusets have exclusive cpus or mem. | |
1698 | * | |
1699 | * If this becomes a problem for some users who wish to | |
1700 | * allow that scenario, then cpuset_post_clone() could be | |
1701 | * changed to grant parent->cpus_allowed-sibling_cpus_exclusive | |
2df167a3 PM |
1702 | * (and likewise for mems) to the new cgroup. Called with cgroup_mutex |
1703 | * held. | |
8793d854 PM |
1704 | */ |
1705 | static void cpuset_post_clone(struct cgroup_subsys *ss, | |
1706 | struct cgroup *cgroup) | |
1707 | { | |
1708 | struct cgroup *parent, *child; | |
1709 | struct cpuset *cs, *parent_cs; | |
1710 | ||
1711 | parent = cgroup->parent; | |
1712 | list_for_each_entry(child, &parent->children, sibling) { | |
1713 | cs = cgroup_cs(child); | |
1714 | if (is_mem_exclusive(cs) || is_cpu_exclusive(cs)) | |
1715 | return; | |
1716 | } | |
1717 | cs = cgroup_cs(cgroup); | |
1718 | parent_cs = cgroup_cs(parent); | |
1719 | ||
1720 | cs->mems_allowed = parent_cs->mems_allowed; | |
1721 | cs->cpus_allowed = parent_cs->cpus_allowed; | |
1722 | return; | |
1723 | } | |
1724 | ||
1da177e4 LT |
1725 | /* |
1726 | * cpuset_create - create a cpuset | |
2df167a3 PM |
1727 | * ss: cpuset cgroup subsystem |
1728 | * cont: control group that the new cpuset will be part of | |
1da177e4 LT |
1729 | */ |
1730 | ||
8793d854 PM |
1731 | static struct cgroup_subsys_state *cpuset_create( |
1732 | struct cgroup_subsys *ss, | |
1733 | struct cgroup *cont) | |
1da177e4 LT |
1734 | { |
1735 | struct cpuset *cs; | |
8793d854 | 1736 | struct cpuset *parent; |
1da177e4 | 1737 | |
8793d854 PM |
1738 | if (!cont->parent) { |
1739 | /* This is early initialization for the top cgroup */ | |
1740 | top_cpuset.mems_generation = cpuset_mems_generation++; | |
1741 | return &top_cpuset.css; | |
1742 | } | |
1743 | parent = cgroup_cs(cont->parent); | |
1da177e4 LT |
1744 | cs = kmalloc(sizeof(*cs), GFP_KERNEL); |
1745 | if (!cs) | |
8793d854 | 1746 | return ERR_PTR(-ENOMEM); |
1da177e4 | 1747 | |
cf2a473c | 1748 | cpuset_update_task_memory_state(); |
1da177e4 | 1749 | cs->flags = 0; |
825a46af PJ |
1750 | if (is_spread_page(parent)) |
1751 | set_bit(CS_SPREAD_PAGE, &cs->flags); | |
1752 | if (is_spread_slab(parent)) | |
1753 | set_bit(CS_SPREAD_SLAB, &cs->flags); | |
029190c5 | 1754 | set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); |
f9a86fcb MT |
1755 | cpus_clear(cs->cpus_allowed); |
1756 | nodes_clear(cs->mems_allowed); | |
151a4420 | 1757 | cs->mems_generation = cpuset_mems_generation++; |
3e0d98b9 | 1758 | fmeter_init(&cs->fmeter); |
1d3504fc | 1759 | cs->relax_domain_level = -1; |
1da177e4 LT |
1760 | |
1761 | cs->parent = parent; | |
202f72d5 | 1762 | number_of_cpusets++; |
8793d854 | 1763 | return &cs->css ; |
1da177e4 LT |
1764 | } |
1765 | ||
029190c5 | 1766 | /* |
029190c5 PJ |
1767 | * If the cpuset being removed has its flag 'sched_load_balance' |
1768 | * enabled, then simulate turning sched_load_balance off, which | |
cf417141 | 1769 | * will call async_rebuild_sched_domains(). |
029190c5 PJ |
1770 | */ |
1771 | ||
8793d854 | 1772 | static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont) |
1da177e4 | 1773 | { |
8793d854 | 1774 | struct cpuset *cs = cgroup_cs(cont); |
1da177e4 | 1775 | |
cf2a473c | 1776 | cpuset_update_task_memory_state(); |
029190c5 PJ |
1777 | |
1778 | if (is_sched_load_balance(cs)) | |
700fe1ab | 1779 | update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); |
029190c5 | 1780 | |
202f72d5 | 1781 | number_of_cpusets--; |
8793d854 | 1782 | kfree(cs); |
1da177e4 LT |
1783 | } |
1784 | ||
8793d854 PM |
1785 | struct cgroup_subsys cpuset_subsys = { |
1786 | .name = "cpuset", | |
1787 | .create = cpuset_create, | |
cf417141 | 1788 | .destroy = cpuset_destroy, |
8793d854 PM |
1789 | .can_attach = cpuset_can_attach, |
1790 | .attach = cpuset_attach, | |
1791 | .populate = cpuset_populate, | |
1792 | .post_clone = cpuset_post_clone, | |
1793 | .subsys_id = cpuset_subsys_id, | |
1794 | .early_init = 1, | |
1795 | }; | |
1796 | ||
c417f024 PJ |
1797 | /* |
1798 | * cpuset_init_early - just enough so that the calls to | |
1799 | * cpuset_update_task_memory_state() in early init code | |
1800 | * are harmless. | |
1801 | */ | |
1802 | ||
1803 | int __init cpuset_init_early(void) | |
1804 | { | |
8793d854 | 1805 | top_cpuset.mems_generation = cpuset_mems_generation++; |
c417f024 PJ |
1806 | return 0; |
1807 | } | |
1808 | ||
8793d854 | 1809 | |
1da177e4 LT |
1810 | /** |
1811 | * cpuset_init - initialize cpusets at system boot | |
1812 | * | |
1813 | * Description: Initialize top_cpuset and the cpuset internal file system, | |
1814 | **/ | |
1815 | ||
1816 | int __init cpuset_init(void) | |
1817 | { | |
8793d854 | 1818 | int err = 0; |
1da177e4 | 1819 | |
f9a86fcb MT |
1820 | cpus_setall(top_cpuset.cpus_allowed); |
1821 | nodes_setall(top_cpuset.mems_allowed); | |
1da177e4 | 1822 | |
3e0d98b9 | 1823 | fmeter_init(&top_cpuset.fmeter); |
151a4420 | 1824 | top_cpuset.mems_generation = cpuset_mems_generation++; |
029190c5 | 1825 | set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); |
1d3504fc | 1826 | top_cpuset.relax_domain_level = -1; |
1da177e4 | 1827 | |
1da177e4 LT |
1828 | err = register_filesystem(&cpuset_fs_type); |
1829 | if (err < 0) | |
8793d854 PM |
1830 | return err; |
1831 | ||
202f72d5 | 1832 | number_of_cpusets = 1; |
8793d854 | 1833 | return 0; |
1da177e4 LT |
1834 | } |
1835 | ||
956db3ca CW |
1836 | /** |
1837 | * cpuset_do_move_task - move a given task to another cpuset | |
1838 | * @tsk: pointer to task_struct the task to move | |
1839 | * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner | |
1840 | * | |
1841 | * Called by cgroup_scan_tasks() for each task in a cgroup. | |
1842 | * Return nonzero to stop the walk through the tasks. | |
1843 | */ | |
9e0c914c AB |
1844 | static void cpuset_do_move_task(struct task_struct *tsk, |
1845 | struct cgroup_scanner *scan) | |
956db3ca CW |
1846 | { |
1847 | struct cpuset_hotplug_scanner *chsp; | |
1848 | ||
1849 | chsp = container_of(scan, struct cpuset_hotplug_scanner, scan); | |
1850 | cgroup_attach_task(chsp->to, tsk); | |
1851 | } | |
1852 | ||
1853 | /** | |
1854 | * move_member_tasks_to_cpuset - move tasks from one cpuset to another | |
1855 | * @from: cpuset in which the tasks currently reside | |
1856 | * @to: cpuset to which the tasks will be moved | |
1857 | * | |
c8d9c90c PJ |
1858 | * Called with cgroup_mutex held |
1859 | * callback_mutex must not be held, as cpuset_attach() will take it. | |
956db3ca CW |
1860 | * |
1861 | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | |
1862 | * calling callback functions for each. | |
1863 | */ | |
1864 | static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to) | |
1865 | { | |
1866 | struct cpuset_hotplug_scanner scan; | |
1867 | ||
1868 | scan.scan.cg = from->css.cgroup; | |
1869 | scan.scan.test_task = NULL; /* select all tasks in cgroup */ | |
1870 | scan.scan.process_task = cpuset_do_move_task; | |
1871 | scan.scan.heap = NULL; | |
1872 | scan.to = to->css.cgroup; | |
1873 | ||
da5ef6bb | 1874 | if (cgroup_scan_tasks(&scan.scan)) |
956db3ca CW |
1875 | printk(KERN_ERR "move_member_tasks_to_cpuset: " |
1876 | "cgroup_scan_tasks failed\n"); | |
1877 | } | |
1878 | ||
b1aac8bb | 1879 | /* |
cf417141 | 1880 | * If CPU and/or memory hotplug handlers, below, unplug any CPUs |
b1aac8bb PJ |
1881 | * or memory nodes, we need to walk over the cpuset hierarchy, |
1882 | * removing that CPU or node from all cpusets. If this removes the | |
956db3ca CW |
1883 | * last CPU or node from a cpuset, then move the tasks in the empty |
1884 | * cpuset to its next-highest non-empty parent. | |
b1aac8bb | 1885 | * |
c8d9c90c PJ |
1886 | * Called with cgroup_mutex held |
1887 | * callback_mutex must not be held, as cpuset_attach() will take it. | |
b1aac8bb | 1888 | */ |
956db3ca CW |
1889 | static void remove_tasks_in_empty_cpuset(struct cpuset *cs) |
1890 | { | |
1891 | struct cpuset *parent; | |
1892 | ||
c8d9c90c PJ |
1893 | /* |
1894 | * The cgroup's css_sets list is in use if there are tasks | |
1895 | * in the cpuset; the list is empty if there are none; | |
1896 | * the cs->css.refcnt seems always 0. | |
1897 | */ | |
956db3ca CW |
1898 | if (list_empty(&cs->css.cgroup->css_sets)) |
1899 | return; | |
b1aac8bb | 1900 | |
956db3ca CW |
1901 | /* |
1902 | * Find its next-highest non-empty parent, (top cpuset | |
1903 | * has online cpus, so can't be empty). | |
1904 | */ | |
1905 | parent = cs->parent; | |
b4501295 PJ |
1906 | while (cpus_empty(parent->cpus_allowed) || |
1907 | nodes_empty(parent->mems_allowed)) | |
956db3ca | 1908 | parent = parent->parent; |
956db3ca CW |
1909 | |
1910 | move_member_tasks_to_cpuset(cs, parent); | |
1911 | } | |
1912 | ||
1913 | /* | |
1914 | * Walk the specified cpuset subtree and look for empty cpusets. | |
1915 | * The tasks of such cpuset must be moved to a parent cpuset. | |
1916 | * | |
2df167a3 | 1917 | * Called with cgroup_mutex held. We take callback_mutex to modify |
956db3ca CW |
1918 | * cpus_allowed and mems_allowed. |
1919 | * | |
1920 | * This walk processes the tree from top to bottom, completing one layer | |
1921 | * before dropping down to the next. It always processes a node before | |
1922 | * any of its children. | |
1923 | * | |
1924 | * For now, since we lack memory hot unplug, we'll never see a cpuset | |
1925 | * that has tasks along with an empty 'mems'. But if we did see such | |
1926 | * a cpuset, we'd handle it just like we do if its 'cpus' was empty. | |
1927 | */ | |
d294eb83 | 1928 | static void scan_for_empty_cpusets(struct cpuset *root) |
b1aac8bb | 1929 | { |
8d1e6266 | 1930 | LIST_HEAD(queue); |
956db3ca CW |
1931 | struct cpuset *cp; /* scans cpusets being updated */ |
1932 | struct cpuset *child; /* scans child cpusets of cp */ | |
8793d854 | 1933 | struct cgroup *cont; |
f9b4fb8d | 1934 | nodemask_t oldmems; |
b1aac8bb | 1935 | |
956db3ca CW |
1936 | list_add_tail((struct list_head *)&root->stack_list, &queue); |
1937 | ||
956db3ca | 1938 | while (!list_empty(&queue)) { |
8d1e6266 | 1939 | cp = list_first_entry(&queue, struct cpuset, stack_list); |
956db3ca CW |
1940 | list_del(queue.next); |
1941 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | |
1942 | child = cgroup_cs(cont); | |
1943 | list_add_tail(&child->stack_list, &queue); | |
1944 | } | |
b4501295 PJ |
1945 | |
1946 | /* Continue past cpusets with all cpus, mems online */ | |
1947 | if (cpus_subset(cp->cpus_allowed, cpu_online_map) && | |
1948 | nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY])) | |
1949 | continue; | |
1950 | ||
f9b4fb8d MX |
1951 | oldmems = cp->mems_allowed; |
1952 | ||
956db3ca | 1953 | /* Remove offline cpus and mems from this cpuset. */ |
b4501295 | 1954 | mutex_lock(&callback_mutex); |
956db3ca CW |
1955 | cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map); |
1956 | nodes_and(cp->mems_allowed, cp->mems_allowed, | |
1957 | node_states[N_HIGH_MEMORY]); | |
b4501295 PJ |
1958 | mutex_unlock(&callback_mutex); |
1959 | ||
1960 | /* Move tasks from the empty cpuset to a parent */ | |
c8d9c90c | 1961 | if (cpus_empty(cp->cpus_allowed) || |
b4501295 | 1962 | nodes_empty(cp->mems_allowed)) |
956db3ca | 1963 | remove_tasks_in_empty_cpuset(cp); |
f9b4fb8d | 1964 | else { |
4e74339a | 1965 | update_tasks_cpumask(cp, NULL); |
f9b4fb8d MX |
1966 | update_tasks_nodemask(cp, &oldmems); |
1967 | } | |
b1aac8bb PJ |
1968 | } |
1969 | } | |
1970 | ||
4c4d50f7 PJ |
1971 | /* |
1972 | * The top_cpuset tracks what CPUs and Memory Nodes are online, | |
1973 | * period. This is necessary in order to make cpusets transparent | |
1974 | * (of no affect) on systems that are actively using CPU hotplug | |
1975 | * but making no active use of cpusets. | |
1976 | * | |
38837fc7 PJ |
1977 | * This routine ensures that top_cpuset.cpus_allowed tracks |
1978 | * cpu_online_map on each CPU hotplug (cpuhp) event. | |
cf417141 MK |
1979 | * |
1980 | * Called within get_online_cpus(). Needs to call cgroup_lock() | |
1981 | * before calling generate_sched_domains(). | |
4c4d50f7 | 1982 | */ |
cf417141 | 1983 | static int cpuset_track_online_cpus(struct notifier_block *unused_nb, |
029190c5 | 1984 | unsigned long phase, void *unused_cpu) |
4c4d50f7 | 1985 | { |
cf417141 MK |
1986 | struct sched_domain_attr *attr; |
1987 | cpumask_t *doms; | |
1988 | int ndoms; | |
1989 | ||
3e84050c | 1990 | switch (phase) { |
3e84050c DA |
1991 | case CPU_ONLINE: |
1992 | case CPU_ONLINE_FROZEN: | |
1993 | case CPU_DEAD: | |
1994 | case CPU_DEAD_FROZEN: | |
3e84050c | 1995 | break; |
cf417141 | 1996 | |
3e84050c | 1997 | default: |
ac076758 | 1998 | return NOTIFY_DONE; |
3e84050c | 1999 | } |
ac076758 | 2000 | |
cf417141 MK |
2001 | cgroup_lock(); |
2002 | top_cpuset.cpus_allowed = cpu_online_map; | |
2003 | scan_for_empty_cpusets(&top_cpuset); | |
2004 | ndoms = generate_sched_domains(&doms, &attr); | |
2005 | cgroup_unlock(); | |
2006 | ||
2007 | /* Have scheduler rebuild the domains */ | |
2008 | partition_sched_domains(ndoms, doms, attr); | |
2009 | ||
3e84050c | 2010 | return NOTIFY_OK; |
4c4d50f7 | 2011 | } |
4c4d50f7 | 2012 | |
b1aac8bb | 2013 | #ifdef CONFIG_MEMORY_HOTPLUG |
38837fc7 | 2014 | /* |
0e1e7c7a | 2015 | * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY]. |
cf417141 MK |
2016 | * Call this routine anytime after node_states[N_HIGH_MEMORY] changes. |
2017 | * See also the previous routine cpuset_track_online_cpus(). | |
38837fc7 | 2018 | */ |
f481891f MX |
2019 | static int cpuset_track_online_nodes(struct notifier_block *self, |
2020 | unsigned long action, void *arg) | |
38837fc7 | 2021 | { |
cf417141 | 2022 | cgroup_lock(); |
f481891f MX |
2023 | switch (action) { |
2024 | case MEM_ONLINE: | |
2025 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; | |
2026 | break; | |
2027 | case MEM_OFFLINE: | |
2028 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; | |
2029 | scan_for_empty_cpusets(&top_cpuset); | |
2030 | break; | |
2031 | default: | |
2032 | break; | |
2033 | } | |
cf417141 | 2034 | cgroup_unlock(); |
f481891f | 2035 | return NOTIFY_OK; |
38837fc7 PJ |
2036 | } |
2037 | #endif | |
2038 | ||
1da177e4 LT |
2039 | /** |
2040 | * cpuset_init_smp - initialize cpus_allowed | |
2041 | * | |
2042 | * Description: Finish top cpuset after cpu, node maps are initialized | |
2043 | **/ | |
2044 | ||
2045 | void __init cpuset_init_smp(void) | |
2046 | { | |
2047 | top_cpuset.cpus_allowed = cpu_online_map; | |
0e1e7c7a | 2048 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; |
4c4d50f7 | 2049 | |
cf417141 | 2050 | hotcpu_notifier(cpuset_track_online_cpus, 0); |
f481891f | 2051 | hotplug_memory_notifier(cpuset_track_online_nodes, 10); |
1da177e4 LT |
2052 | } |
2053 | ||
2054 | /** | |
1da177e4 LT |
2055 | * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. |
2056 | * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. | |
f9a86fcb | 2057 | * @pmask: pointer to cpumask_t variable to receive cpus_allowed set. |
1da177e4 LT |
2058 | * |
2059 | * Description: Returns the cpumask_t cpus_allowed of the cpuset | |
2060 | * attached to the specified @tsk. Guaranteed to return some non-empty | |
2061 | * subset of cpu_online_map, even if this means going outside the | |
2062 | * tasks cpuset. | |
2063 | **/ | |
2064 | ||
f9a86fcb | 2065 | void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask) |
1da177e4 | 2066 | { |
3d3f26a7 | 2067 | mutex_lock(&callback_mutex); |
f9a86fcb | 2068 | cpuset_cpus_allowed_locked(tsk, pmask); |
470fd646 | 2069 | mutex_unlock(&callback_mutex); |
470fd646 CW |
2070 | } |
2071 | ||
2072 | /** | |
2073 | * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset. | |
2df167a3 | 2074 | * Must be called with callback_mutex held. |
470fd646 | 2075 | **/ |
f9a86fcb | 2076 | void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask) |
470fd646 | 2077 | { |
909d75a3 | 2078 | task_lock(tsk); |
f9a86fcb | 2079 | guarantee_online_cpus(task_cs(tsk), pmask); |
909d75a3 | 2080 | task_unlock(tsk); |
1da177e4 LT |
2081 | } |
2082 | ||
2083 | void cpuset_init_current_mems_allowed(void) | |
2084 | { | |
f9a86fcb | 2085 | nodes_setall(current->mems_allowed); |
1da177e4 LT |
2086 | } |
2087 | ||
909d75a3 PJ |
2088 | /** |
2089 | * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. | |
2090 | * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. | |
2091 | * | |
2092 | * Description: Returns the nodemask_t mems_allowed of the cpuset | |
2093 | * attached to the specified @tsk. Guaranteed to return some non-empty | |
0e1e7c7a | 2094 | * subset of node_states[N_HIGH_MEMORY], even if this means going outside the |
909d75a3 PJ |
2095 | * tasks cpuset. |
2096 | **/ | |
2097 | ||
2098 | nodemask_t cpuset_mems_allowed(struct task_struct *tsk) | |
2099 | { | |
2100 | nodemask_t mask; | |
2101 | ||
3d3f26a7 | 2102 | mutex_lock(&callback_mutex); |
909d75a3 | 2103 | task_lock(tsk); |
8793d854 | 2104 | guarantee_online_mems(task_cs(tsk), &mask); |
909d75a3 | 2105 | task_unlock(tsk); |
3d3f26a7 | 2106 | mutex_unlock(&callback_mutex); |
909d75a3 PJ |
2107 | |
2108 | return mask; | |
2109 | } | |
2110 | ||
d9fd8a6d | 2111 | /** |
19770b32 MG |
2112 | * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed |
2113 | * @nodemask: the nodemask to be checked | |
d9fd8a6d | 2114 | * |
19770b32 | 2115 | * Are any of the nodes in the nodemask allowed in current->mems_allowed? |
1da177e4 | 2116 | */ |
19770b32 | 2117 | int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) |
1da177e4 | 2118 | { |
19770b32 | 2119 | return nodes_intersects(*nodemask, current->mems_allowed); |
1da177e4 LT |
2120 | } |
2121 | ||
9bf2229f | 2122 | /* |
78608366 PM |
2123 | * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or |
2124 | * mem_hardwall ancestor to the specified cpuset. Call holding | |
2125 | * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall | |
2126 | * (an unusual configuration), then returns the root cpuset. | |
9bf2229f | 2127 | */ |
78608366 | 2128 | static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs) |
9bf2229f | 2129 | { |
78608366 | 2130 | while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent) |
9bf2229f PJ |
2131 | cs = cs->parent; |
2132 | return cs; | |
2133 | } | |
2134 | ||
d9fd8a6d | 2135 | /** |
02a0e53d | 2136 | * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node? |
9bf2229f | 2137 | * @z: is this zone on an allowed node? |
02a0e53d | 2138 | * @gfp_mask: memory allocation flags |
d9fd8a6d | 2139 | * |
02a0e53d PJ |
2140 | * If we're in interrupt, yes, we can always allocate. If |
2141 | * __GFP_THISNODE is set, yes, we can always allocate. If zone | |
9bf2229f PJ |
2142 | * z's node is in our tasks mems_allowed, yes. If it's not a |
2143 | * __GFP_HARDWALL request and this zone's nodes is in the nearest | |
78608366 | 2144 | * hardwalled cpuset ancestor to this tasks cpuset, yes. |
c596d9f3 DR |
2145 | * If the task has been OOM killed and has access to memory reserves |
2146 | * as specified by the TIF_MEMDIE flag, yes. | |
9bf2229f PJ |
2147 | * Otherwise, no. |
2148 | * | |
02a0e53d PJ |
2149 | * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall() |
2150 | * reduces to cpuset_zone_allowed_hardwall(). Otherwise, | |
2151 | * cpuset_zone_allowed_softwall() might sleep, and might allow a zone | |
2152 | * from an enclosing cpuset. | |
2153 | * | |
2154 | * cpuset_zone_allowed_hardwall() only handles the simpler case of | |
2155 | * hardwall cpusets, and never sleeps. | |
2156 | * | |
2157 | * The __GFP_THISNODE placement logic is really handled elsewhere, | |
2158 | * by forcibly using a zonelist starting at a specified node, and by | |
2159 | * (in get_page_from_freelist()) refusing to consider the zones for | |
2160 | * any node on the zonelist except the first. By the time any such | |
2161 | * calls get to this routine, we should just shut up and say 'yes'. | |
2162 | * | |
9bf2229f | 2163 | * GFP_USER allocations are marked with the __GFP_HARDWALL bit, |
c596d9f3 DR |
2164 | * and do not allow allocations outside the current tasks cpuset |
2165 | * unless the task has been OOM killed as is marked TIF_MEMDIE. | |
9bf2229f | 2166 | * GFP_KERNEL allocations are not so marked, so can escape to the |
78608366 | 2167 | * nearest enclosing hardwalled ancestor cpuset. |
9bf2229f | 2168 | * |
02a0e53d PJ |
2169 | * Scanning up parent cpusets requires callback_mutex. The |
2170 | * __alloc_pages() routine only calls here with __GFP_HARDWALL bit | |
2171 | * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the | |
2172 | * current tasks mems_allowed came up empty on the first pass over | |
2173 | * the zonelist. So only GFP_KERNEL allocations, if all nodes in the | |
2174 | * cpuset are short of memory, might require taking the callback_mutex | |
2175 | * mutex. | |
9bf2229f | 2176 | * |
36be57ff | 2177 | * The first call here from mm/page_alloc:get_page_from_freelist() |
02a0e53d PJ |
2178 | * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, |
2179 | * so no allocation on a node outside the cpuset is allowed (unless | |
2180 | * in interrupt, of course). | |
36be57ff PJ |
2181 | * |
2182 | * The second pass through get_page_from_freelist() doesn't even call | |
2183 | * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() | |
2184 | * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set | |
2185 | * in alloc_flags. That logic and the checks below have the combined | |
2186 | * affect that: | |
9bf2229f PJ |
2187 | * in_interrupt - any node ok (current task context irrelevant) |
2188 | * GFP_ATOMIC - any node ok | |
c596d9f3 | 2189 | * TIF_MEMDIE - any node ok |
78608366 | 2190 | * GFP_KERNEL - any node in enclosing hardwalled cpuset ok |
9bf2229f | 2191 | * GFP_USER - only nodes in current tasks mems allowed ok. |
36be57ff PJ |
2192 | * |
2193 | * Rule: | |
02a0e53d | 2194 | * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you |
36be57ff PJ |
2195 | * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables |
2196 | * the code that might scan up ancestor cpusets and sleep. | |
02a0e53d | 2197 | */ |
9bf2229f | 2198 | |
02a0e53d | 2199 | int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask) |
1da177e4 | 2200 | { |
9bf2229f PJ |
2201 | int node; /* node that zone z is on */ |
2202 | const struct cpuset *cs; /* current cpuset ancestors */ | |
29afd49b | 2203 | int allowed; /* is allocation in zone z allowed? */ |
9bf2229f | 2204 | |
9b819d20 | 2205 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) |
9bf2229f | 2206 | return 1; |
89fa3024 | 2207 | node = zone_to_nid(z); |
92d1dbd2 | 2208 | might_sleep_if(!(gfp_mask & __GFP_HARDWALL)); |
9bf2229f PJ |
2209 | if (node_isset(node, current->mems_allowed)) |
2210 | return 1; | |
c596d9f3 DR |
2211 | /* |
2212 | * Allow tasks that have access to memory reserves because they have | |
2213 | * been OOM killed to get memory anywhere. | |
2214 | */ | |
2215 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | |
2216 | return 1; | |
9bf2229f PJ |
2217 | if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ |
2218 | return 0; | |
2219 | ||
5563e770 BP |
2220 | if (current->flags & PF_EXITING) /* Let dying task have memory */ |
2221 | return 1; | |
2222 | ||
9bf2229f | 2223 | /* Not hardwall and node outside mems_allowed: scan up cpusets */ |
3d3f26a7 | 2224 | mutex_lock(&callback_mutex); |
053199ed | 2225 | |
053199ed | 2226 | task_lock(current); |
78608366 | 2227 | cs = nearest_hardwall_ancestor(task_cs(current)); |
053199ed PJ |
2228 | task_unlock(current); |
2229 | ||
9bf2229f | 2230 | allowed = node_isset(node, cs->mems_allowed); |
3d3f26a7 | 2231 | mutex_unlock(&callback_mutex); |
9bf2229f | 2232 | return allowed; |
1da177e4 LT |
2233 | } |
2234 | ||
02a0e53d PJ |
2235 | /* |
2236 | * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node? | |
2237 | * @z: is this zone on an allowed node? | |
2238 | * @gfp_mask: memory allocation flags | |
2239 | * | |
2240 | * If we're in interrupt, yes, we can always allocate. | |
2241 | * If __GFP_THISNODE is set, yes, we can always allocate. If zone | |
c596d9f3 DR |
2242 | * z's node is in our tasks mems_allowed, yes. If the task has been |
2243 | * OOM killed and has access to memory reserves as specified by the | |
2244 | * TIF_MEMDIE flag, yes. Otherwise, no. | |
02a0e53d PJ |
2245 | * |
2246 | * The __GFP_THISNODE placement logic is really handled elsewhere, | |
2247 | * by forcibly using a zonelist starting at a specified node, and by | |
2248 | * (in get_page_from_freelist()) refusing to consider the zones for | |
2249 | * any node on the zonelist except the first. By the time any such | |
2250 | * calls get to this routine, we should just shut up and say 'yes'. | |
2251 | * | |
2252 | * Unlike the cpuset_zone_allowed_softwall() variant, above, | |
2253 | * this variant requires that the zone be in the current tasks | |
2254 | * mems_allowed or that we're in interrupt. It does not scan up the | |
2255 | * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset. | |
2256 | * It never sleeps. | |
2257 | */ | |
2258 | ||
2259 | int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask) | |
2260 | { | |
2261 | int node; /* node that zone z is on */ | |
2262 | ||
2263 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) | |
2264 | return 1; | |
2265 | node = zone_to_nid(z); | |
2266 | if (node_isset(node, current->mems_allowed)) | |
2267 | return 1; | |
dedf8b79 DW |
2268 | /* |
2269 | * Allow tasks that have access to memory reserves because they have | |
2270 | * been OOM killed to get memory anywhere. | |
2271 | */ | |
2272 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | |
2273 | return 1; | |
02a0e53d PJ |
2274 | return 0; |
2275 | } | |
2276 | ||
505970b9 PJ |
2277 | /** |
2278 | * cpuset_lock - lock out any changes to cpuset structures | |
2279 | * | |
3d3f26a7 | 2280 | * The out of memory (oom) code needs to mutex_lock cpusets |
505970b9 | 2281 | * from being changed while it scans the tasklist looking for a |
3d3f26a7 | 2282 | * task in an overlapping cpuset. Expose callback_mutex via this |
505970b9 PJ |
2283 | * cpuset_lock() routine, so the oom code can lock it, before |
2284 | * locking the task list. The tasklist_lock is a spinlock, so | |
3d3f26a7 | 2285 | * must be taken inside callback_mutex. |
505970b9 PJ |
2286 | */ |
2287 | ||
2288 | void cpuset_lock(void) | |
2289 | { | |
3d3f26a7 | 2290 | mutex_lock(&callback_mutex); |
505970b9 PJ |
2291 | } |
2292 | ||
2293 | /** | |
2294 | * cpuset_unlock - release lock on cpuset changes | |
2295 | * | |
2296 | * Undo the lock taken in a previous cpuset_lock() call. | |
2297 | */ | |
2298 | ||
2299 | void cpuset_unlock(void) | |
2300 | { | |
3d3f26a7 | 2301 | mutex_unlock(&callback_mutex); |
505970b9 PJ |
2302 | } |
2303 | ||
825a46af PJ |
2304 | /** |
2305 | * cpuset_mem_spread_node() - On which node to begin search for a page | |
2306 | * | |
2307 | * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for | |
2308 | * tasks in a cpuset with is_spread_page or is_spread_slab set), | |
2309 | * and if the memory allocation used cpuset_mem_spread_node() | |
2310 | * to determine on which node to start looking, as it will for | |
2311 | * certain page cache or slab cache pages such as used for file | |
2312 | * system buffers and inode caches, then instead of starting on the | |
2313 | * local node to look for a free page, rather spread the starting | |
2314 | * node around the tasks mems_allowed nodes. | |
2315 | * | |
2316 | * We don't have to worry about the returned node being offline | |
2317 | * because "it can't happen", and even if it did, it would be ok. | |
2318 | * | |
2319 | * The routines calling guarantee_online_mems() are careful to | |
2320 | * only set nodes in task->mems_allowed that are online. So it | |
2321 | * should not be possible for the following code to return an | |
2322 | * offline node. But if it did, that would be ok, as this routine | |
2323 | * is not returning the node where the allocation must be, only | |
2324 | * the node where the search should start. The zonelist passed to | |
2325 | * __alloc_pages() will include all nodes. If the slab allocator | |
2326 | * is passed an offline node, it will fall back to the local node. | |
2327 | * See kmem_cache_alloc_node(). | |
2328 | */ | |
2329 | ||
2330 | int cpuset_mem_spread_node(void) | |
2331 | { | |
2332 | int node; | |
2333 | ||
2334 | node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed); | |
2335 | if (node == MAX_NUMNODES) | |
2336 | node = first_node(current->mems_allowed); | |
2337 | current->cpuset_mem_spread_rotor = node; | |
2338 | return node; | |
2339 | } | |
2340 | EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); | |
2341 | ||
ef08e3b4 | 2342 | /** |
bbe373f2 DR |
2343 | * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? |
2344 | * @tsk1: pointer to task_struct of some task. | |
2345 | * @tsk2: pointer to task_struct of some other task. | |
2346 | * | |
2347 | * Description: Return true if @tsk1's mems_allowed intersects the | |
2348 | * mems_allowed of @tsk2. Used by the OOM killer to determine if | |
2349 | * one of the task's memory usage might impact the memory available | |
2350 | * to the other. | |
ef08e3b4 PJ |
2351 | **/ |
2352 | ||
bbe373f2 DR |
2353 | int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, |
2354 | const struct task_struct *tsk2) | |
ef08e3b4 | 2355 | { |
bbe373f2 | 2356 | return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); |
ef08e3b4 PJ |
2357 | } |
2358 | ||
3e0d98b9 PJ |
2359 | /* |
2360 | * Collection of memory_pressure is suppressed unless | |
2361 | * this flag is enabled by writing "1" to the special | |
2362 | * cpuset file 'memory_pressure_enabled' in the root cpuset. | |
2363 | */ | |
2364 | ||
c5b2aff8 | 2365 | int cpuset_memory_pressure_enabled __read_mostly; |
3e0d98b9 PJ |
2366 | |
2367 | /** | |
2368 | * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. | |
2369 | * | |
2370 | * Keep a running average of the rate of synchronous (direct) | |
2371 | * page reclaim efforts initiated by tasks in each cpuset. | |
2372 | * | |
2373 | * This represents the rate at which some task in the cpuset | |
2374 | * ran low on memory on all nodes it was allowed to use, and | |
2375 | * had to enter the kernels page reclaim code in an effort to | |
2376 | * create more free memory by tossing clean pages or swapping | |
2377 | * or writing dirty pages. | |
2378 | * | |
2379 | * Display to user space in the per-cpuset read-only file | |
2380 | * "memory_pressure". Value displayed is an integer | |
2381 | * representing the recent rate of entry into the synchronous | |
2382 | * (direct) page reclaim by any task attached to the cpuset. | |
2383 | **/ | |
2384 | ||
2385 | void __cpuset_memory_pressure_bump(void) | |
2386 | { | |
3e0d98b9 | 2387 | task_lock(current); |
8793d854 | 2388 | fmeter_markevent(&task_cs(current)->fmeter); |
3e0d98b9 PJ |
2389 | task_unlock(current); |
2390 | } | |
2391 | ||
8793d854 | 2392 | #ifdef CONFIG_PROC_PID_CPUSET |
1da177e4 LT |
2393 | /* |
2394 | * proc_cpuset_show() | |
2395 | * - Print tasks cpuset path into seq_file. | |
2396 | * - Used for /proc/<pid>/cpuset. | |
053199ed PJ |
2397 | * - No need to task_lock(tsk) on this tsk->cpuset reference, as it |
2398 | * doesn't really matter if tsk->cpuset changes after we read it, | |
c8d9c90c | 2399 | * and we take cgroup_mutex, keeping cpuset_attach() from changing it |
2df167a3 | 2400 | * anyway. |
1da177e4 | 2401 | */ |
029190c5 | 2402 | static int proc_cpuset_show(struct seq_file *m, void *unused_v) |
1da177e4 | 2403 | { |
13b41b09 | 2404 | struct pid *pid; |
1da177e4 LT |
2405 | struct task_struct *tsk; |
2406 | char *buf; | |
8793d854 | 2407 | struct cgroup_subsys_state *css; |
99f89551 | 2408 | int retval; |
1da177e4 | 2409 | |
99f89551 | 2410 | retval = -ENOMEM; |
1da177e4 LT |
2411 | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); |
2412 | if (!buf) | |
99f89551 EB |
2413 | goto out; |
2414 | ||
2415 | retval = -ESRCH; | |
13b41b09 EB |
2416 | pid = m->private; |
2417 | tsk = get_pid_task(pid, PIDTYPE_PID); | |
99f89551 EB |
2418 | if (!tsk) |
2419 | goto out_free; | |
1da177e4 | 2420 | |
99f89551 | 2421 | retval = -EINVAL; |
8793d854 PM |
2422 | cgroup_lock(); |
2423 | css = task_subsys_state(tsk, cpuset_subsys_id); | |
2424 | retval = cgroup_path(css->cgroup, buf, PAGE_SIZE); | |
1da177e4 | 2425 | if (retval < 0) |
99f89551 | 2426 | goto out_unlock; |
1da177e4 LT |
2427 | seq_puts(m, buf); |
2428 | seq_putc(m, '\n'); | |
99f89551 | 2429 | out_unlock: |
8793d854 | 2430 | cgroup_unlock(); |
99f89551 EB |
2431 | put_task_struct(tsk); |
2432 | out_free: | |
1da177e4 | 2433 | kfree(buf); |
99f89551 | 2434 | out: |
1da177e4 LT |
2435 | return retval; |
2436 | } | |
2437 | ||
2438 | static int cpuset_open(struct inode *inode, struct file *file) | |
2439 | { | |
13b41b09 EB |
2440 | struct pid *pid = PROC_I(inode)->pid; |
2441 | return single_open(file, proc_cpuset_show, pid); | |
1da177e4 LT |
2442 | } |
2443 | ||
9a32144e | 2444 | const struct file_operations proc_cpuset_operations = { |
1da177e4 LT |
2445 | .open = cpuset_open, |
2446 | .read = seq_read, | |
2447 | .llseek = seq_lseek, | |
2448 | .release = single_release, | |
2449 | }; | |
8793d854 | 2450 | #endif /* CONFIG_PROC_PID_CPUSET */ |
1da177e4 LT |
2451 | |
2452 | /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */ | |
df5f8314 EB |
2453 | void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) |
2454 | { | |
2455 | seq_printf(m, "Cpus_allowed:\t"); | |
30e8e136 | 2456 | seq_cpumask(m, &task->cpus_allowed); |
df5f8314 | 2457 | seq_printf(m, "\n"); |
39106dcf | 2458 | seq_printf(m, "Cpus_allowed_list:\t"); |
30e8e136 | 2459 | seq_cpumask_list(m, &task->cpus_allowed); |
39106dcf | 2460 | seq_printf(m, "\n"); |
df5f8314 | 2461 | seq_printf(m, "Mems_allowed:\t"); |
30e8e136 | 2462 | seq_nodemask(m, &task->mems_allowed); |
df5f8314 | 2463 | seq_printf(m, "\n"); |
39106dcf | 2464 | seq_printf(m, "Mems_allowed_list:\t"); |
30e8e136 | 2465 | seq_nodemask_list(m, &task->mems_allowed); |
39106dcf | 2466 | seq_printf(m, "\n"); |
1da177e4 | 2467 | } |