]>
Commit | Line | Data |
---|---|---|
3ba81f3e BD |
1 | /* drivers/net/ks8651.c |
2 | * | |
3 | * Copyright 2009 Simtec Electronics | |
4 | * http://www.simtec.co.uk/ | |
5 | * Ben Dooks <[email protected]> | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify | |
8 | * it under the terms of the GNU General Public License version 2 as | |
9 | * published by the Free Software Foundation. | |
10 | */ | |
11 | ||
12 | #define DEBUG | |
13 | ||
14 | #include <linux/module.h> | |
15 | #include <linux/kernel.h> | |
16 | #include <linux/netdevice.h> | |
17 | #include <linux/etherdevice.h> | |
18 | #include <linux/ethtool.h> | |
19 | #include <linux/cache.h> | |
20 | #include <linux/crc32.h> | |
21 | #include <linux/mii.h> | |
22 | ||
23 | #include <linux/spi/spi.h> | |
24 | ||
25 | #include "ks8851.h" | |
26 | ||
27 | /** | |
28 | * struct ks8851_rxctrl - KS8851 driver rx control | |
29 | * @mchash: Multicast hash-table data. | |
30 | * @rxcr1: KS_RXCR1 register setting | |
31 | * @rxcr2: KS_RXCR2 register setting | |
32 | * | |
33 | * Representation of the settings needs to control the receive filtering | |
34 | * such as the multicast hash-filter and the receive register settings. This | |
35 | * is used to make the job of working out if the receive settings change and | |
36 | * then issuing the new settings to the worker that will send the necessary | |
37 | * commands. | |
38 | */ | |
39 | struct ks8851_rxctrl { | |
40 | u16 mchash[4]; | |
41 | u16 rxcr1; | |
42 | u16 rxcr2; | |
43 | }; | |
44 | ||
45 | /** | |
46 | * union ks8851_tx_hdr - tx header data | |
47 | * @txb: The header as bytes | |
48 | * @txw: The header as 16bit, little-endian words | |
49 | * | |
50 | * A dual representation of the tx header data to allow | |
51 | * access to individual bytes, and to allow 16bit accesses | |
52 | * with 16bit alignment. | |
53 | */ | |
54 | union ks8851_tx_hdr { | |
55 | u8 txb[6]; | |
56 | __le16 txw[3]; | |
57 | }; | |
58 | ||
59 | /** | |
60 | * struct ks8851_net - KS8851 driver private data | |
61 | * @netdev: The network device we're bound to | |
62 | * @spidev: The spi device we're bound to. | |
63 | * @lock: Lock to ensure that the device is not accessed when busy. | |
64 | * @statelock: Lock on this structure for tx list. | |
65 | * @mii: The MII state information for the mii calls. | |
66 | * @rxctrl: RX settings for @rxctrl_work. | |
67 | * @tx_work: Work queue for tx packets | |
68 | * @irq_work: Work queue for servicing interrupts | |
69 | * @rxctrl_work: Work queue for updating RX mode and multicast lists | |
70 | * @txq: Queue of packets for transmission. | |
71 | * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1. | |
72 | * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2. | |
73 | * @txh: Space for generating packet TX header in DMA-able data | |
74 | * @rxd: Space for receiving SPI data, in DMA-able space. | |
75 | * @txd: Space for transmitting SPI data, in DMA-able space. | |
76 | * @msg_enable: The message flags controlling driver output (see ethtool). | |
77 | * @fid: Incrementing frame id tag. | |
78 | * @rc_ier: Cached copy of KS_IER. | |
79 | * @rc_rxqcr: Cached copy of KS_RXQCR. | |
80 | * | |
81 | * The @lock ensures that the chip is protected when certain operations are | |
82 | * in progress. When the read or write packet transfer is in progress, most | |
83 | * of the chip registers are not ccessible until the transfer is finished and | |
84 | * the DMA has been de-asserted. | |
85 | * | |
86 | * The @statelock is used to protect information in the structure which may | |
87 | * need to be accessed via several sources, such as the network driver layer | |
88 | * or one of the work queues. | |
89 | * | |
90 | * We align the buffers we may use for rx/tx to ensure that if the SPI driver | |
91 | * wants to DMA map them, it will not have any problems with data the driver | |
92 | * modifies. | |
93 | */ | |
94 | struct ks8851_net { | |
95 | struct net_device *netdev; | |
96 | struct spi_device *spidev; | |
97 | struct mutex lock; | |
98 | spinlock_t statelock; | |
99 | ||
100 | union ks8851_tx_hdr txh ____cacheline_aligned; | |
101 | u8 rxd[8]; | |
102 | u8 txd[8]; | |
103 | ||
104 | u32 msg_enable ____cacheline_aligned; | |
105 | u16 tx_space; | |
106 | u8 fid; | |
107 | ||
108 | u16 rc_ier; | |
109 | u16 rc_rxqcr; | |
110 | ||
111 | struct mii_if_info mii; | |
112 | struct ks8851_rxctrl rxctrl; | |
113 | ||
114 | struct work_struct tx_work; | |
115 | struct work_struct irq_work; | |
116 | struct work_struct rxctrl_work; | |
117 | ||
118 | struct sk_buff_head txq; | |
119 | ||
120 | struct spi_message spi_msg1; | |
121 | struct spi_message spi_msg2; | |
122 | struct spi_transfer spi_xfer1; | |
123 | struct spi_transfer spi_xfer2[2]; | |
124 | }; | |
125 | ||
126 | static int msg_enable; | |
127 | ||
128 | #define ks_info(_ks, _msg...) dev_info(&(_ks)->spidev->dev, _msg) | |
129 | #define ks_warn(_ks, _msg...) dev_warn(&(_ks)->spidev->dev, _msg) | |
130 | #define ks_dbg(_ks, _msg...) dev_dbg(&(_ks)->spidev->dev, _msg) | |
131 | #define ks_err(_ks, _msg...) dev_err(&(_ks)->spidev->dev, _msg) | |
132 | ||
133 | /* shift for byte-enable data */ | |
134 | #define BYTE_EN(_x) ((_x) << 2) | |
135 | ||
136 | /* turn register number and byte-enable mask into data for start of packet */ | |
137 | #define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg) << (8+2) | (_reg) >> 6) | |
138 | ||
139 | /* SPI register read/write calls. | |
140 | * | |
141 | * All these calls issue SPI transactions to access the chip's registers. They | |
142 | * all require that the necessary lock is held to prevent accesses when the | |
143 | * chip is busy transfering packet data (RX/TX FIFO accesses). | |
144 | */ | |
145 | ||
146 | /** | |
147 | * ks8851_wrreg16 - write 16bit register value to chip | |
148 | * @ks: The chip state | |
149 | * @reg: The register address | |
150 | * @val: The value to write | |
151 | * | |
152 | * Issue a write to put the value @val into the register specified in @reg. | |
153 | */ | |
154 | static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val) | |
155 | { | |
156 | struct spi_transfer *xfer = &ks->spi_xfer1; | |
157 | struct spi_message *msg = &ks->spi_msg1; | |
158 | __le16 txb[2]; | |
159 | int ret; | |
160 | ||
161 | txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR); | |
162 | txb[1] = cpu_to_le16(val); | |
163 | ||
164 | xfer->tx_buf = txb; | |
165 | xfer->rx_buf = NULL; | |
166 | xfer->len = 4; | |
167 | ||
168 | ret = spi_sync(ks->spidev, msg); | |
169 | if (ret < 0) | |
170 | ks_err(ks, "spi_sync() failed\n"); | |
171 | } | |
172 | ||
173 | /** | |
174 | * ks8851_rx_1msg - select whether to use one or two messages for spi read | |
175 | * @ks: The device structure | |
176 | * | |
177 | * Return whether to generate a single message with a tx and rx buffer | |
178 | * supplied to spi_sync(), or alternatively send the tx and rx buffers | |
179 | * as separate messages. | |
180 | * | |
181 | * Depending on the hardware in use, a single message may be more efficient | |
182 | * on interrupts or work done by the driver. | |
183 | * | |
184 | * This currently always returns true until we add some per-device data passed | |
185 | * from the platform code to specify which mode is better. | |
186 | */ | |
187 | static inline bool ks8851_rx_1msg(struct ks8851_net *ks) | |
188 | { | |
189 | return true; | |
190 | } | |
191 | ||
192 | /** | |
193 | * ks8851_rdreg - issue read register command and return the data | |
194 | * @ks: The device state | |
195 | * @op: The register address and byte enables in message format. | |
196 | * @rxb: The RX buffer to return the result into | |
197 | * @rxl: The length of data expected. | |
198 | * | |
199 | * This is the low level read call that issues the necessary spi message(s) | |
200 | * to read data from the register specified in @op. | |
201 | */ | |
202 | static void ks8851_rdreg(struct ks8851_net *ks, unsigned op, | |
203 | u8 *rxb, unsigned rxl) | |
204 | { | |
205 | struct spi_transfer *xfer; | |
206 | struct spi_message *msg; | |
207 | __le16 *txb = (__le16 *)ks->txd; | |
208 | u8 *trx = ks->rxd; | |
209 | int ret; | |
210 | ||
211 | txb[0] = cpu_to_le16(op | KS_SPIOP_RD); | |
212 | ||
213 | if (ks8851_rx_1msg(ks)) { | |
214 | msg = &ks->spi_msg1; | |
215 | xfer = &ks->spi_xfer1; | |
216 | ||
217 | xfer->tx_buf = txb; | |
218 | xfer->rx_buf = trx; | |
219 | xfer->len = rxl + 2; | |
220 | } else { | |
221 | msg = &ks->spi_msg2; | |
222 | xfer = ks->spi_xfer2; | |
223 | ||
224 | xfer->tx_buf = txb; | |
225 | xfer->rx_buf = NULL; | |
226 | xfer->len = 2; | |
227 | ||
228 | xfer++; | |
229 | xfer->tx_buf = NULL; | |
230 | xfer->rx_buf = trx; | |
231 | xfer->len = rxl; | |
232 | } | |
233 | ||
234 | ret = spi_sync(ks->spidev, msg); | |
235 | if (ret < 0) | |
236 | ks_err(ks, "read: spi_sync() failed\n"); | |
237 | else if (ks8851_rx_1msg(ks)) | |
238 | memcpy(rxb, trx + 2, rxl); | |
239 | else | |
240 | memcpy(rxb, trx, rxl); | |
241 | } | |
242 | ||
243 | /** | |
244 | * ks8851_rdreg8 - read 8 bit register from device | |
245 | * @ks: The chip information | |
246 | * @reg: The register address | |
247 | * | |
248 | * Read a 8bit register from the chip, returning the result | |
249 | */ | |
250 | static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg) | |
251 | { | |
252 | u8 rxb[1]; | |
253 | ||
254 | ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1); | |
255 | return rxb[0]; | |
256 | } | |
257 | ||
258 | /** | |
259 | * ks8851_rdreg16 - read 16 bit register from device | |
260 | * @ks: The chip information | |
261 | * @reg: The register address | |
262 | * | |
263 | * Read a 16bit register from the chip, returning the result | |
264 | */ | |
265 | static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg) | |
266 | { | |
267 | __le16 rx = 0; | |
268 | ||
269 | ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2); | |
270 | return le16_to_cpu(rx); | |
271 | } | |
272 | ||
273 | /** | |
274 | * ks8851_rdreg32 - read 32 bit register from device | |
275 | * @ks: The chip information | |
276 | * @reg: The register address | |
277 | * | |
278 | * Read a 32bit register from the chip. | |
279 | * | |
280 | * Note, this read requires the address be aligned to 4 bytes. | |
281 | */ | |
282 | static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg) | |
283 | { | |
284 | __le32 rx = 0; | |
285 | ||
286 | WARN_ON(reg & 3); | |
287 | ||
288 | ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4); | |
289 | return le32_to_cpu(rx); | |
290 | } | |
291 | ||
292 | /** | |
293 | * ks8851_soft_reset - issue one of the soft reset to the device | |
294 | * @ks: The device state. | |
295 | * @op: The bit(s) to set in the GRR | |
296 | * | |
297 | * Issue the relevant soft-reset command to the device's GRR register | |
298 | * specified by @op. | |
299 | * | |
300 | * Note, the delays are in there as a caution to ensure that the reset | |
301 | * has time to take effect and then complete. Since the datasheet does | |
302 | * not currently specify the exact sequence, we have chosen something | |
303 | * that seems to work with our device. | |
304 | */ | |
305 | static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op) | |
306 | { | |
307 | ks8851_wrreg16(ks, KS_GRR, op); | |
308 | mdelay(1); /* wait a short time to effect reset */ | |
309 | ks8851_wrreg16(ks, KS_GRR, 0); | |
310 | mdelay(1); /* wait for condition to clear */ | |
311 | } | |
312 | ||
313 | /** | |
314 | * ks8851_write_mac_addr - write mac address to device registers | |
315 | * @dev: The network device | |
316 | * | |
317 | * Update the KS8851 MAC address registers from the address in @dev. | |
318 | * | |
319 | * This call assumes that the chip is not running, so there is no need to | |
320 | * shutdown the RXQ process whilst setting this. | |
321 | */ | |
322 | static int ks8851_write_mac_addr(struct net_device *dev) | |
323 | { | |
324 | struct ks8851_net *ks = netdev_priv(dev); | |
325 | u16 *mcp = (u16 *)dev->dev_addr; | |
326 | ||
327 | mutex_lock(&ks->lock); | |
328 | ||
329 | ks8851_wrreg16(ks, KS_MARL, mcp[0]); | |
330 | ks8851_wrreg16(ks, KS_MARM, mcp[1]); | |
331 | ks8851_wrreg16(ks, KS_MARH, mcp[2]); | |
332 | ||
333 | mutex_unlock(&ks->lock); | |
334 | ||
335 | return 0; | |
336 | } | |
337 | ||
338 | /** | |
339 | * ks8851_init_mac - initialise the mac address | |
340 | * @ks: The device structure | |
341 | * | |
342 | * Get or create the initial mac address for the device and then set that | |
343 | * into the station address register. Currently we assume that the device | |
344 | * does not have a valid mac address in it, and so we use random_ether_addr() | |
345 | * to create a new one. | |
346 | * | |
347 | * In future, the driver should check to see if the device has an EEPROM | |
348 | * attached and whether that has a valid ethernet address in it. | |
349 | */ | |
350 | static void ks8851_init_mac(struct ks8851_net *ks) | |
351 | { | |
352 | struct net_device *dev = ks->netdev; | |
353 | ||
354 | random_ether_addr(dev->dev_addr); | |
355 | ks8851_write_mac_addr(dev); | |
356 | } | |
357 | ||
358 | /** | |
359 | * ks8851_irq - device interrupt handler | |
360 | * @irq: Interrupt number passed from the IRQ hnalder. | |
361 | * @pw: The private word passed to register_irq(), our struct ks8851_net. | |
362 | * | |
363 | * Disable the interrupt from happening again until we've processed the | |
364 | * current status by scheduling ks8851_irq_work(). | |
365 | */ | |
366 | static irqreturn_t ks8851_irq(int irq, void *pw) | |
367 | { | |
368 | struct ks8851_net *ks = pw; | |
369 | ||
370 | disable_irq_nosync(irq); | |
371 | schedule_work(&ks->irq_work); | |
372 | return IRQ_HANDLED; | |
373 | } | |
374 | ||
375 | /** | |
376 | * ks8851_rdfifo - read data from the receive fifo | |
377 | * @ks: The device state. | |
378 | * @buff: The buffer address | |
379 | * @len: The length of the data to read | |
380 | * | |
381 | * Issue an RXQ FIFO read command and read the @len ammount of data from | |
382 | * the FIFO into the buffer specified by @buff. | |
383 | */ | |
384 | static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len) | |
385 | { | |
386 | struct spi_transfer *xfer = ks->spi_xfer2; | |
387 | struct spi_message *msg = &ks->spi_msg2; | |
388 | u8 txb[1]; | |
389 | int ret; | |
390 | ||
391 | if (netif_msg_rx_status(ks)) | |
392 | ks_dbg(ks, "%s: %d@%p\n", __func__, len, buff); | |
393 | ||
394 | /* set the operation we're issuing */ | |
395 | txb[0] = KS_SPIOP_RXFIFO; | |
396 | ||
397 | xfer->tx_buf = txb; | |
398 | xfer->rx_buf = NULL; | |
399 | xfer->len = 1; | |
400 | ||
401 | xfer++; | |
402 | xfer->rx_buf = buff; | |
403 | xfer->tx_buf = NULL; | |
404 | xfer->len = len; | |
405 | ||
406 | ret = spi_sync(ks->spidev, msg); | |
407 | if (ret < 0) | |
408 | ks_err(ks, "%s: spi_sync() failed\n", __func__); | |
409 | } | |
410 | ||
411 | /** | |
412 | * ks8851_dbg_dumpkkt - dump initial packet contents to debug | |
413 | * @ks: The device state | |
414 | * @rxpkt: The data for the received packet | |
415 | * | |
416 | * Dump the initial data from the packet to dev_dbg(). | |
417 | */ | |
418 | static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt) | |
419 | { | |
420 | ks_dbg(ks, "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n", | |
421 | rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7], | |
422 | rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11], | |
423 | rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]); | |
424 | } | |
425 | ||
426 | /** | |
427 | * ks8851_rx_pkts - receive packets from the host | |
428 | * @ks: The device information. | |
429 | * | |
430 | * This is called from the IRQ work queue when the system detects that there | |
431 | * are packets in the receive queue. Find out how many packets there are and | |
432 | * read them from the FIFO. | |
433 | */ | |
434 | static void ks8851_rx_pkts(struct ks8851_net *ks) | |
435 | { | |
436 | struct sk_buff *skb; | |
437 | unsigned rxfc; | |
438 | unsigned rxlen; | |
439 | unsigned rxstat; | |
440 | u32 rxh; | |
441 | u8 *rxpkt; | |
442 | ||
443 | rxfc = ks8851_rdreg8(ks, KS_RXFC); | |
444 | ||
445 | if (netif_msg_rx_status(ks)) | |
446 | ks_dbg(ks, "%s: %d packets\n", __func__, rxfc); | |
447 | ||
448 | /* Currently we're issuing a read per packet, but we could possibly | |
449 | * improve the code by issuing a single read, getting the receive | |
450 | * header, allocating the packet and then reading the packet data | |
451 | * out in one go. | |
452 | * | |
453 | * This form of operation would require us to hold the SPI bus' | |
454 | * chipselect low during the entie transaction to avoid any | |
455 | * reset to the data stream comming from the chip. | |
456 | */ | |
457 | ||
458 | for (; rxfc != 0; rxfc--) { | |
459 | rxh = ks8851_rdreg32(ks, KS_RXFHSR); | |
460 | rxstat = rxh & 0xffff; | |
461 | rxlen = rxh >> 16; | |
462 | ||
463 | if (netif_msg_rx_status(ks)) | |
464 | ks_dbg(ks, "rx: stat 0x%04x, len 0x%04x\n", | |
465 | rxstat, rxlen); | |
466 | ||
467 | /* the length of the packet includes the 32bit CRC */ | |
468 | ||
469 | /* set dma read address */ | |
470 | ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00); | |
471 | ||
472 | /* start the packet dma process, and set auto-dequeue rx */ | |
473 | ks8851_wrreg16(ks, KS_RXQCR, | |
474 | ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE); | |
475 | ||
476 | if (rxlen > 0) { | |
477 | skb = netdev_alloc_skb(ks->netdev, rxlen + 2 + 8); | |
478 | if (!skb) { | |
479 | /* todo - dump frame and move on */ | |
480 | } | |
481 | ||
482 | /* two bytes to ensure ip is aligned, and four bytes | |
483 | * for the status header and 4 bytes of garbage */ | |
484 | skb_reserve(skb, 2 + 4 + 4); | |
485 | ||
486 | rxpkt = skb_put(skb, rxlen - 4) - 8; | |
487 | ||
488 | /* align the packet length to 4 bytes, and add 4 bytes | |
489 | * as we're getting the rx status header as well */ | |
490 | ks8851_rdfifo(ks, rxpkt, ALIGN(rxlen, 4) + 8); | |
491 | ||
492 | if (netif_msg_pktdata(ks)) | |
493 | ks8851_dbg_dumpkkt(ks, rxpkt); | |
494 | ||
495 | skb->protocol = eth_type_trans(skb, ks->netdev); | |
496 | netif_rx(skb); | |
497 | ||
498 | ks->netdev->stats.rx_packets++; | |
499 | ks->netdev->stats.rx_bytes += rxlen - 4; | |
500 | } | |
501 | ||
502 | ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr); | |
503 | } | |
504 | } | |
505 | ||
506 | /** | |
507 | * ks8851_irq_work - work queue handler for dealing with interrupt requests | |
508 | * @work: The work structure that was scheduled by schedule_work() | |
509 | * | |
510 | * This is the handler invoked when the ks8851_irq() is called to find out | |
511 | * what happened, as we cannot allow ourselves to sleep whilst waiting for | |
512 | * anything other process has the chip's lock. | |
513 | * | |
514 | * Read the interrupt status, work out what needs to be done and then clear | |
515 | * any of the interrupts that are not needed. | |
516 | */ | |
517 | static void ks8851_irq_work(struct work_struct *work) | |
518 | { | |
519 | struct ks8851_net *ks = container_of(work, struct ks8851_net, irq_work); | |
520 | unsigned status; | |
521 | unsigned handled = 0; | |
522 | ||
523 | mutex_lock(&ks->lock); | |
524 | ||
525 | status = ks8851_rdreg16(ks, KS_ISR); | |
526 | ||
527 | if (netif_msg_intr(ks)) | |
528 | dev_dbg(&ks->spidev->dev, "%s: status 0x%04x\n", | |
529 | __func__, status); | |
530 | ||
531 | if (status & IRQ_LCI) { | |
532 | /* should do something about checking link status */ | |
533 | handled |= IRQ_LCI; | |
534 | } | |
535 | ||
536 | if (status & IRQ_LDI) { | |
537 | u16 pmecr = ks8851_rdreg16(ks, KS_PMECR); | |
538 | pmecr &= ~PMECR_WKEVT_MASK; | |
539 | ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK); | |
540 | ||
541 | handled |= IRQ_LDI; | |
542 | } | |
543 | ||
544 | if (status & IRQ_RXPSI) | |
545 | handled |= IRQ_RXPSI; | |
546 | ||
547 | if (status & IRQ_TXI) { | |
548 | handled |= IRQ_TXI; | |
549 | ||
550 | /* no lock here, tx queue should have been stopped */ | |
551 | ||
552 | /* update our idea of how much tx space is available to the | |
553 | * system */ | |
554 | ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR); | |
555 | ||
556 | if (netif_msg_intr(ks)) | |
557 | ks_dbg(ks, "%s: txspace %d\n", __func__, ks->tx_space); | |
558 | } | |
559 | ||
560 | if (status & IRQ_RXI) | |
561 | handled |= IRQ_RXI; | |
562 | ||
563 | if (status & IRQ_SPIBEI) { | |
564 | dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__); | |
565 | handled |= IRQ_SPIBEI; | |
566 | } | |
567 | ||
568 | ks8851_wrreg16(ks, KS_ISR, handled); | |
569 | ||
570 | if (status & IRQ_RXI) { | |
571 | /* the datasheet says to disable the rx interrupt during | |
572 | * packet read-out, however we're masking the interrupt | |
573 | * from the device so do not bother masking just the RX | |
574 | * from the device. */ | |
575 | ||
576 | ks8851_rx_pkts(ks); | |
577 | } | |
578 | ||
579 | /* if something stopped the rx process, probably due to wanting | |
580 | * to change the rx settings, then do something about restarting | |
581 | * it. */ | |
582 | if (status & IRQ_RXPSI) { | |
583 | struct ks8851_rxctrl *rxc = &ks->rxctrl; | |
584 | ||
585 | /* update the multicast hash table */ | |
586 | ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]); | |
587 | ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]); | |
588 | ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]); | |
589 | ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]); | |
590 | ||
591 | ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2); | |
592 | ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1); | |
593 | } | |
594 | ||
595 | mutex_unlock(&ks->lock); | |
596 | ||
597 | if (status & IRQ_TXI) | |
598 | netif_wake_queue(ks->netdev); | |
599 | ||
600 | enable_irq(ks->netdev->irq); | |
601 | } | |
602 | ||
603 | /** | |
604 | * calc_txlen - calculate size of message to send packet | |
605 | * @len: Lenght of data | |
606 | * | |
607 | * Returns the size of the TXFIFO message needed to send | |
608 | * this packet. | |
609 | */ | |
610 | static inline unsigned calc_txlen(unsigned len) | |
611 | { | |
612 | return ALIGN(len + 4, 4); | |
613 | } | |
614 | ||
615 | /** | |
616 | * ks8851_wrpkt - write packet to TX FIFO | |
617 | * @ks: The device state. | |
618 | * @txp: The sk_buff to transmit. | |
619 | * @irq: IRQ on completion of the packet. | |
620 | * | |
621 | * Send the @txp to the chip. This means creating the relevant packet header | |
622 | * specifying the length of the packet and the other information the chip | |
623 | * needs, such as IRQ on completion. Send the header and the packet data to | |
624 | * the device. | |
625 | */ | |
626 | static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq) | |
627 | { | |
628 | struct spi_transfer *xfer = ks->spi_xfer2; | |
629 | struct spi_message *msg = &ks->spi_msg2; | |
630 | unsigned fid = 0; | |
631 | int ret; | |
632 | ||
633 | if (netif_msg_tx_queued(ks)) | |
634 | dev_dbg(&ks->spidev->dev, "%s: skb %p, %d@%p, irq %d\n", | |
635 | __func__, txp, txp->len, txp->data, irq); | |
636 | ||
637 | fid = ks->fid++; | |
638 | fid &= TXFR_TXFID_MASK; | |
639 | ||
640 | if (irq) | |
641 | fid |= TXFR_TXIC; /* irq on completion */ | |
642 | ||
643 | /* start header at txb[1] to align txw entries */ | |
644 | ks->txh.txb[1] = KS_SPIOP_TXFIFO; | |
645 | ks->txh.txw[1] = cpu_to_le16(fid); | |
646 | ks->txh.txw[2] = cpu_to_le16(txp->len); | |
647 | ||
648 | xfer->tx_buf = &ks->txh.txb[1]; | |
649 | xfer->rx_buf = NULL; | |
650 | xfer->len = 5; | |
651 | ||
652 | xfer++; | |
653 | xfer->tx_buf = txp->data; | |
654 | xfer->rx_buf = NULL; | |
655 | xfer->len = ALIGN(txp->len, 4); | |
656 | ||
657 | ret = spi_sync(ks->spidev, msg); | |
658 | if (ret < 0) | |
659 | ks_err(ks, "%s: spi_sync() failed\n", __func__); | |
660 | } | |
661 | ||
662 | /** | |
663 | * ks8851_done_tx - update and then free skbuff after transmitting | |
664 | * @ks: The device state | |
665 | * @txb: The buffer transmitted | |
666 | */ | |
667 | static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb) | |
668 | { | |
669 | struct net_device *dev = ks->netdev; | |
670 | ||
671 | dev->stats.tx_bytes += txb->len; | |
672 | dev->stats.tx_packets++; | |
673 | ||
674 | dev_kfree_skb(txb); | |
675 | } | |
676 | ||
677 | /** | |
678 | * ks8851_tx_work - process tx packet(s) | |
679 | * @work: The work strucutre what was scheduled. | |
680 | * | |
681 | * This is called when a number of packets have been scheduled for | |
682 | * transmission and need to be sent to the device. | |
683 | */ | |
684 | static void ks8851_tx_work(struct work_struct *work) | |
685 | { | |
686 | struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work); | |
687 | struct sk_buff *txb; | |
688 | bool last = false; | |
689 | ||
690 | mutex_lock(&ks->lock); | |
691 | ||
692 | while (!last) { | |
693 | txb = skb_dequeue(&ks->txq); | |
694 | last = skb_queue_empty(&ks->txq); | |
695 | ||
696 | ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA); | |
697 | ks8851_wrpkt(ks, txb, last); | |
698 | ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr); | |
699 | ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE); | |
700 | ||
701 | ks8851_done_tx(ks, txb); | |
702 | } | |
703 | ||
704 | mutex_unlock(&ks->lock); | |
705 | } | |
706 | ||
707 | /** | |
708 | * ks8851_set_powermode - set power mode of the device | |
709 | * @ks: The device state | |
710 | * @pwrmode: The power mode value to write to KS_PMECR. | |
711 | * | |
712 | * Change the power mode of the chip. | |
713 | */ | |
714 | static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode) | |
715 | { | |
716 | unsigned pmecr; | |
717 | ||
718 | if (netif_msg_hw(ks)) | |
719 | ks_dbg(ks, "setting power mode %d\n", pwrmode); | |
720 | ||
721 | pmecr = ks8851_rdreg16(ks, KS_PMECR); | |
722 | pmecr &= ~PMECR_PM_MASK; | |
723 | pmecr |= pwrmode; | |
724 | ||
725 | ks8851_wrreg16(ks, KS_PMECR, pmecr); | |
726 | } | |
727 | ||
728 | /** | |
729 | * ks8851_net_open - open network device | |
730 | * @dev: The network device being opened. | |
731 | * | |
732 | * Called when the network device is marked active, such as a user executing | |
733 | * 'ifconfig up' on the device. | |
734 | */ | |
735 | static int ks8851_net_open(struct net_device *dev) | |
736 | { | |
737 | struct ks8851_net *ks = netdev_priv(dev); | |
738 | ||
739 | /* lock the card, even if we may not actually be doing anything | |
740 | * else at the moment */ | |
741 | mutex_lock(&ks->lock); | |
742 | ||
743 | if (netif_msg_ifup(ks)) | |
744 | ks_dbg(ks, "opening %s\n", dev->name); | |
745 | ||
746 | /* bring chip out of any power saving mode it was in */ | |
747 | ks8851_set_powermode(ks, PMECR_PM_NORMAL); | |
748 | ||
749 | /* issue a soft reset to the RX/TX QMU to put it into a known | |
750 | * state. */ | |
751 | ks8851_soft_reset(ks, GRR_QMU); | |
752 | ||
753 | /* setup transmission parameters */ | |
754 | ||
755 | ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */ | |
756 | TXCR_TXPE | /* pad to min length */ | |
757 | TXCR_TXCRC | /* add CRC */ | |
758 | TXCR_TXFCE)); /* enable flow control */ | |
759 | ||
760 | /* auto-increment tx data, reset tx pointer */ | |
761 | ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI); | |
762 | ||
763 | /* setup receiver control */ | |
764 | ||
765 | ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */ | |
766 | RXCR1_RXFCE | /* enable flow control */ | |
767 | RXCR1_RXBE | /* broadcast enable */ | |
768 | RXCR1_RXUE | /* unicast enable */ | |
769 | RXCR1_RXE)); /* enable rx block */ | |
770 | ||
771 | /* transfer entire frames out in one go */ | |
772 | ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME); | |
773 | ||
774 | /* set receive counter timeouts */ | |
775 | ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */ | |
776 | ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */ | |
777 | ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */ | |
778 | ||
779 | ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */ | |
780 | RXQCR_RXDBCTE | /* IRQ on byte count exceeded */ | |
781 | RXQCR_RXDTTE); /* IRQ on time exceeded */ | |
782 | ||
783 | ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr); | |
784 | ||
785 | /* clear then enable interrupts */ | |
786 | ||
787 | #define STD_IRQ (IRQ_LCI | /* Link Change */ \ | |
788 | IRQ_TXI | /* TX done */ \ | |
789 | IRQ_RXI | /* RX done */ \ | |
790 | IRQ_SPIBEI | /* SPI bus error */ \ | |
791 | IRQ_TXPSI | /* TX process stop */ \ | |
792 | IRQ_RXPSI) /* RX process stop */ | |
793 | ||
794 | ks->rc_ier = STD_IRQ; | |
795 | ks8851_wrreg16(ks, KS_ISR, STD_IRQ); | |
796 | ks8851_wrreg16(ks, KS_IER, STD_IRQ); | |
797 | ||
798 | netif_start_queue(ks->netdev); | |
799 | ||
800 | if (netif_msg_ifup(ks)) | |
801 | ks_dbg(ks, "network device %s up\n", dev->name); | |
802 | ||
803 | mutex_unlock(&ks->lock); | |
804 | return 0; | |
805 | } | |
806 | ||
807 | /** | |
808 | * ks8851_net_stop - close network device | |
809 | * @dev: The device being closed. | |
810 | * | |
811 | * Called to close down a network device which has been active. Cancell any | |
812 | * work, shutdown the RX and TX process and then place the chip into a low | |
813 | * power state whilst it is not being used. | |
814 | */ | |
815 | static int ks8851_net_stop(struct net_device *dev) | |
816 | { | |
817 | struct ks8851_net *ks = netdev_priv(dev); | |
818 | ||
819 | if (netif_msg_ifdown(ks)) | |
820 | ks_info(ks, "%s: shutting down\n", dev->name); | |
821 | ||
822 | netif_stop_queue(dev); | |
823 | ||
824 | mutex_lock(&ks->lock); | |
825 | ||
826 | /* stop any outstanding work */ | |
827 | flush_work(&ks->irq_work); | |
828 | flush_work(&ks->tx_work); | |
829 | flush_work(&ks->rxctrl_work); | |
830 | ||
831 | /* turn off the IRQs and ack any outstanding */ | |
832 | ks8851_wrreg16(ks, KS_IER, 0x0000); | |
833 | ks8851_wrreg16(ks, KS_ISR, 0xffff); | |
834 | ||
835 | /* shutdown RX process */ | |
836 | ks8851_wrreg16(ks, KS_RXCR1, 0x0000); | |
837 | ||
838 | /* shutdown TX process */ | |
839 | ks8851_wrreg16(ks, KS_TXCR, 0x0000); | |
840 | ||
841 | /* set powermode to soft power down to save power */ | |
842 | ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN); | |
843 | ||
844 | /* ensure any queued tx buffers are dumped */ | |
845 | while (!skb_queue_empty(&ks->txq)) { | |
846 | struct sk_buff *txb = skb_dequeue(&ks->txq); | |
847 | ||
848 | if (netif_msg_ifdown(ks)) | |
849 | ks_dbg(ks, "%s: freeing txb %p\n", __func__, txb); | |
850 | ||
851 | dev_kfree_skb(txb); | |
852 | } | |
853 | ||
854 | mutex_unlock(&ks->lock); | |
855 | return 0; | |
856 | } | |
857 | ||
858 | /** | |
859 | * ks8851_start_xmit - transmit packet | |
860 | * @skb: The buffer to transmit | |
861 | * @dev: The device used to transmit the packet. | |
862 | * | |
863 | * Called by the network layer to transmit the @skb. Queue the packet for | |
864 | * the device and schedule the necessary work to transmit the packet when | |
865 | * it is free. | |
866 | * | |
867 | * We do this to firstly avoid sleeping with the network device locked, | |
868 | * and secondly so we can round up more than one packet to transmit which | |
869 | * means we can try and avoid generating too many transmit done interrupts. | |
870 | */ | |
871 | static int ks8851_start_xmit(struct sk_buff *skb, struct net_device *dev) | |
872 | { | |
873 | struct ks8851_net *ks = netdev_priv(dev); | |
874 | unsigned needed = calc_txlen(skb->len); | |
875 | int ret = NETDEV_TX_OK; | |
876 | ||
877 | if (netif_msg_tx_queued(ks)) | |
878 | ks_dbg(ks, "%s: skb %p, %d@%p\n", __func__, | |
879 | skb, skb->len, skb->data); | |
880 | ||
881 | spin_lock(&ks->statelock); | |
882 | ||
883 | if (needed > ks->tx_space) { | |
884 | netif_stop_queue(dev); | |
885 | ret = NETDEV_TX_BUSY; | |
886 | } else { | |
887 | ks->tx_space -= needed; | |
888 | skb_queue_tail(&ks->txq, skb); | |
889 | } | |
890 | ||
891 | spin_unlock(&ks->statelock); | |
892 | schedule_work(&ks->tx_work); | |
893 | ||
894 | return ret; | |
895 | } | |
896 | ||
897 | /** | |
898 | * ks8851_rxctrl_work - work handler to change rx mode | |
899 | * @work: The work structure this belongs to. | |
900 | * | |
901 | * Lock the device and issue the necessary changes to the receive mode from | |
902 | * the network device layer. This is done so that we can do this without | |
903 | * having to sleep whilst holding the network device lock. | |
904 | * | |
905 | * Since the recommendation from Micrel is that the RXQ is shutdown whilst the | |
906 | * receive parameters are programmed, we issue a write to disable the RXQ and | |
907 | * then wait for the interrupt handler to be triggered once the RXQ shutdown is | |
908 | * complete. The interrupt handler then writes the new values into the chip. | |
909 | */ | |
910 | static void ks8851_rxctrl_work(struct work_struct *work) | |
911 | { | |
912 | struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work); | |
913 | ||
914 | mutex_lock(&ks->lock); | |
915 | ||
916 | /* need to shutdown RXQ before modifying filter parameters */ | |
917 | ks8851_wrreg16(ks, KS_RXCR1, 0x00); | |
918 | ||
919 | mutex_unlock(&ks->lock); | |
920 | } | |
921 | ||
922 | static void ks8851_set_rx_mode(struct net_device *dev) | |
923 | { | |
924 | struct ks8851_net *ks = netdev_priv(dev); | |
925 | struct ks8851_rxctrl rxctrl; | |
926 | ||
927 | memset(&rxctrl, 0, sizeof(rxctrl)); | |
928 | ||
929 | if (dev->flags & IFF_PROMISC) { | |
930 | /* interface to receive everything */ | |
931 | ||
932 | rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF; | |
933 | } else if (dev->flags & IFF_ALLMULTI) { | |
934 | /* accept all multicast packets */ | |
935 | ||
936 | rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE | | |
937 | RXCR1_RXPAFMA | RXCR1_RXMAFMA); | |
938 | } else if (dev->flags & IFF_MULTICAST && dev->mc_count > 0) { | |
939 | struct dev_mc_list *mcptr = dev->mc_list; | |
940 | u32 crc; | |
941 | int i; | |
942 | ||
943 | /* accept some multicast */ | |
944 | ||
945 | for (i = dev->mc_count; i > 0; i--) { | |
946 | crc = ether_crc(ETH_ALEN, mcptr->dmi_addr); | |
947 | crc >>= (32 - 6); /* get top six bits */ | |
948 | ||
949 | rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf)); | |
950 | mcptr = mcptr->next; | |
951 | } | |
952 | ||
953 | rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXAE | RXCR1_RXPAFMA; | |
954 | } else { | |
955 | /* just accept broadcast / unicast */ | |
956 | rxctrl.rxcr1 = RXCR1_RXPAFMA; | |
957 | } | |
958 | ||
959 | rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */ | |
960 | RXCR1_RXBE | /* broadcast enable */ | |
961 | RXCR1_RXE | /* RX process enable */ | |
962 | RXCR1_RXFCE); /* enable flow control */ | |
963 | ||
964 | rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME; | |
965 | ||
966 | /* schedule work to do the actual set of the data if needed */ | |
967 | ||
968 | spin_lock(&ks->statelock); | |
969 | ||
970 | if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) { | |
971 | memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl)); | |
972 | schedule_work(&ks->rxctrl_work); | |
973 | } | |
974 | ||
975 | spin_unlock(&ks->statelock); | |
976 | } | |
977 | ||
978 | static int ks8851_set_mac_address(struct net_device *dev, void *addr) | |
979 | { | |
980 | struct sockaddr *sa = addr; | |
981 | ||
982 | if (netif_running(dev)) | |
983 | return -EBUSY; | |
984 | ||
985 | if (!is_valid_ether_addr(sa->sa_data)) | |
986 | return -EADDRNOTAVAIL; | |
987 | ||
988 | memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN); | |
989 | return ks8851_write_mac_addr(dev); | |
990 | } | |
991 | ||
992 | static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd) | |
993 | { | |
994 | struct ks8851_net *ks = netdev_priv(dev); | |
995 | ||
996 | if (!netif_running(dev)) | |
997 | return -EINVAL; | |
998 | ||
999 | return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL); | |
1000 | } | |
1001 | ||
1002 | static const struct net_device_ops ks8851_netdev_ops = { | |
1003 | .ndo_open = ks8851_net_open, | |
1004 | .ndo_stop = ks8851_net_stop, | |
1005 | .ndo_do_ioctl = ks8851_net_ioctl, | |
1006 | .ndo_start_xmit = ks8851_start_xmit, | |
1007 | .ndo_set_mac_address = ks8851_set_mac_address, | |
1008 | .ndo_set_rx_mode = ks8851_set_rx_mode, | |
1009 | .ndo_change_mtu = eth_change_mtu, | |
1010 | .ndo_validate_addr = eth_validate_addr, | |
1011 | }; | |
1012 | ||
1013 | /* ethtool support */ | |
1014 | ||
1015 | static void ks8851_get_drvinfo(struct net_device *dev, | |
1016 | struct ethtool_drvinfo *di) | |
1017 | { | |
1018 | strlcpy(di->driver, "KS8851", sizeof(di->driver)); | |
1019 | strlcpy(di->version, "1.00", sizeof(di->version)); | |
1020 | strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info)); | |
1021 | } | |
1022 | ||
1023 | static u32 ks8851_get_msglevel(struct net_device *dev) | |
1024 | { | |
1025 | struct ks8851_net *ks = netdev_priv(dev); | |
1026 | return ks->msg_enable; | |
1027 | } | |
1028 | ||
1029 | static void ks8851_set_msglevel(struct net_device *dev, u32 to) | |
1030 | { | |
1031 | struct ks8851_net *ks = netdev_priv(dev); | |
1032 | ks->msg_enable = to; | |
1033 | } | |
1034 | ||
1035 | static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) | |
1036 | { | |
1037 | struct ks8851_net *ks = netdev_priv(dev); | |
1038 | return mii_ethtool_gset(&ks->mii, cmd); | |
1039 | } | |
1040 | ||
1041 | static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) | |
1042 | { | |
1043 | struct ks8851_net *ks = netdev_priv(dev); | |
1044 | return mii_ethtool_sset(&ks->mii, cmd); | |
1045 | } | |
1046 | ||
1047 | static u32 ks8851_get_link(struct net_device *dev) | |
1048 | { | |
1049 | struct ks8851_net *ks = netdev_priv(dev); | |
1050 | return mii_link_ok(&ks->mii); | |
1051 | } | |
1052 | ||
1053 | static int ks8851_nway_reset(struct net_device *dev) | |
1054 | { | |
1055 | struct ks8851_net *ks = netdev_priv(dev); | |
1056 | return mii_nway_restart(&ks->mii); | |
1057 | } | |
1058 | ||
1059 | static const struct ethtool_ops ks8851_ethtool_ops = { | |
1060 | .get_drvinfo = ks8851_get_drvinfo, | |
1061 | .get_msglevel = ks8851_get_msglevel, | |
1062 | .set_msglevel = ks8851_set_msglevel, | |
1063 | .get_settings = ks8851_get_settings, | |
1064 | .set_settings = ks8851_set_settings, | |
1065 | .get_link = ks8851_get_link, | |
1066 | .nway_reset = ks8851_nway_reset, | |
1067 | }; | |
1068 | ||
1069 | /* MII interface controls */ | |
1070 | ||
1071 | /** | |
1072 | * ks8851_phy_reg - convert MII register into a KS8851 register | |
1073 | * @reg: MII register number. | |
1074 | * | |
1075 | * Return the KS8851 register number for the corresponding MII PHY register | |
1076 | * if possible. Return zero if the MII register has no direct mapping to the | |
1077 | * KS8851 register set. | |
1078 | */ | |
1079 | static int ks8851_phy_reg(int reg) | |
1080 | { | |
1081 | switch (reg) { | |
1082 | case MII_BMCR: | |
1083 | return KS_P1MBCR; | |
1084 | case MII_BMSR: | |
1085 | return KS_P1MBSR; | |
1086 | case MII_PHYSID1: | |
1087 | return KS_PHY1ILR; | |
1088 | case MII_PHYSID2: | |
1089 | return KS_PHY1IHR; | |
1090 | case MII_ADVERTISE: | |
1091 | return KS_P1ANAR; | |
1092 | case MII_LPA: | |
1093 | return KS_P1ANLPR; | |
1094 | } | |
1095 | ||
1096 | return 0x0; | |
1097 | } | |
1098 | ||
1099 | /** | |
1100 | * ks8851_phy_read - MII interface PHY register read. | |
1101 | * @dev: The network device the PHY is on. | |
1102 | * @phy_addr: Address of PHY (ignored as we only have one) | |
1103 | * @reg: The register to read. | |
1104 | * | |
1105 | * This call reads data from the PHY register specified in @reg. Since the | |
1106 | * device does not support all the MII registers, the non-existant values | |
1107 | * are always returned as zero. | |
1108 | * | |
1109 | * We return zero for unsupported registers as the MII code does not check | |
1110 | * the value returned for any error status, and simply returns it to the | |
1111 | * caller. The mii-tool that the driver was tested with takes any -ve error | |
1112 | * as real PHY capabilities, thus displaying incorrect data to the user. | |
1113 | */ | |
1114 | static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg) | |
1115 | { | |
1116 | struct ks8851_net *ks = netdev_priv(dev); | |
1117 | int ksreg; | |
1118 | int result; | |
1119 | ||
1120 | ksreg = ks8851_phy_reg(reg); | |
1121 | if (!ksreg) | |
1122 | return 0x0; /* no error return allowed, so use zero */ | |
1123 | ||
1124 | mutex_lock(&ks->lock); | |
1125 | result = ks8851_rdreg16(ks, ksreg); | |
1126 | mutex_unlock(&ks->lock); | |
1127 | ||
1128 | return result; | |
1129 | } | |
1130 | ||
1131 | static void ks8851_phy_write(struct net_device *dev, | |
1132 | int phy, int reg, int value) | |
1133 | { | |
1134 | struct ks8851_net *ks = netdev_priv(dev); | |
1135 | int ksreg; | |
1136 | ||
1137 | ksreg = ks8851_phy_reg(reg); | |
1138 | if (ksreg) { | |
1139 | mutex_lock(&ks->lock); | |
1140 | ks8851_wrreg16(ks, ksreg, value); | |
1141 | mutex_unlock(&ks->lock); | |
1142 | } | |
1143 | } | |
1144 | ||
1145 | /** | |
1146 | * ks8851_read_selftest - read the selftest memory info. | |
1147 | * @ks: The device state | |
1148 | * | |
1149 | * Read and check the TX/RX memory selftest information. | |
1150 | */ | |
1151 | static int ks8851_read_selftest(struct ks8851_net *ks) | |
1152 | { | |
1153 | unsigned both_done = MBIR_TXMBF | MBIR_RXMBF; | |
1154 | int ret = 0; | |
1155 | unsigned rd; | |
1156 | ||
1157 | rd = ks8851_rdreg16(ks, KS_MBIR); | |
1158 | ||
1159 | if ((rd & both_done) != both_done) { | |
1160 | ks_warn(ks, "Memory selftest not finished\n"); | |
1161 | return 0; | |
1162 | } | |
1163 | ||
1164 | if (rd & MBIR_TXMBFA) { | |
1165 | ks_err(ks, "TX memory selftest fail\n"); | |
1166 | ret |= 1; | |
1167 | } | |
1168 | ||
1169 | if (rd & MBIR_RXMBFA) { | |
1170 | ks_err(ks, "RX memory selftest fail\n"); | |
1171 | ret |= 2; | |
1172 | } | |
1173 | ||
1174 | return 0; | |
1175 | } | |
1176 | ||
1177 | /* driver bus management functions */ | |
1178 | ||
1179 | static int __devinit ks8851_probe(struct spi_device *spi) | |
1180 | { | |
1181 | struct net_device *ndev; | |
1182 | struct ks8851_net *ks; | |
1183 | int ret; | |
1184 | ||
1185 | ndev = alloc_etherdev(sizeof(struct ks8851_net)); | |
1186 | if (!ndev) { | |
1187 | dev_err(&spi->dev, "failed to alloc ethernet device\n"); | |
1188 | return -ENOMEM; | |
1189 | } | |
1190 | ||
1191 | spi->bits_per_word = 8; | |
1192 | ||
1193 | ks = netdev_priv(ndev); | |
1194 | ||
1195 | ks->netdev = ndev; | |
1196 | ks->spidev = spi; | |
1197 | ks->tx_space = 6144; | |
1198 | ||
1199 | mutex_init(&ks->lock); | |
1200 | spin_lock_init(&ks->statelock); | |
1201 | ||
1202 | INIT_WORK(&ks->tx_work, ks8851_tx_work); | |
1203 | INIT_WORK(&ks->irq_work, ks8851_irq_work); | |
1204 | INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work); | |
1205 | ||
1206 | /* initialise pre-made spi transfer messages */ | |
1207 | ||
1208 | spi_message_init(&ks->spi_msg1); | |
1209 | spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1); | |
1210 | ||
1211 | spi_message_init(&ks->spi_msg2); | |
1212 | spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2); | |
1213 | spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2); | |
1214 | ||
1215 | /* setup mii state */ | |
1216 | ks->mii.dev = ndev; | |
1217 | ks->mii.phy_id = 1, | |
1218 | ks->mii.phy_id_mask = 1; | |
1219 | ks->mii.reg_num_mask = 0xf; | |
1220 | ks->mii.mdio_read = ks8851_phy_read; | |
1221 | ks->mii.mdio_write = ks8851_phy_write; | |
1222 | ||
1223 | dev_info(&spi->dev, "message enable is %d\n", msg_enable); | |
1224 | ||
1225 | /* set the default message enable */ | |
1226 | ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV | | |
1227 | NETIF_MSG_PROBE | | |
1228 | NETIF_MSG_LINK)); | |
1229 | ||
1230 | skb_queue_head_init(&ks->txq); | |
1231 | ||
1232 | SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops); | |
1233 | SET_NETDEV_DEV(ndev, &spi->dev); | |
1234 | ||
1235 | dev_set_drvdata(&spi->dev, ks); | |
1236 | ||
1237 | ndev->if_port = IF_PORT_100BASET; | |
1238 | ndev->netdev_ops = &ks8851_netdev_ops; | |
1239 | ndev->irq = spi->irq; | |
1240 | ||
1241 | /* simple check for a valid chip being connected to the bus */ | |
1242 | ||
1243 | if ((ks8851_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) { | |
1244 | dev_err(&spi->dev, "failed to read device ID\n"); | |
1245 | ret = -ENODEV; | |
1246 | goto err_id; | |
1247 | } | |
1248 | ||
1249 | ks8851_read_selftest(ks); | |
1250 | ks8851_init_mac(ks); | |
1251 | ||
1252 | ret = request_irq(spi->irq, ks8851_irq, IRQF_TRIGGER_LOW, | |
1253 | ndev->name, ks); | |
1254 | if (ret < 0) { | |
1255 | dev_err(&spi->dev, "failed to get irq\n"); | |
1256 | goto err_irq; | |
1257 | } | |
1258 | ||
1259 | ret = register_netdev(ndev); | |
1260 | if (ret) { | |
1261 | dev_err(&spi->dev, "failed to register network device\n"); | |
1262 | goto err_netdev; | |
1263 | } | |
1264 | ||
1265 | dev_info(&spi->dev, "revision %d, MAC %pM, IRQ %d\n", | |
1266 | CIDER_REV_GET(ks8851_rdreg16(ks, KS_CIDER)), | |
1267 | ndev->dev_addr, ndev->irq); | |
1268 | ||
1269 | return 0; | |
1270 | ||
1271 | ||
1272 | err_netdev: | |
1273 | free_irq(ndev->irq, ndev); | |
1274 | ||
1275 | err_id: | |
1276 | err_irq: | |
1277 | free_netdev(ndev); | |
1278 | return ret; | |
1279 | } | |
1280 | ||
1281 | static int __devexit ks8851_remove(struct spi_device *spi) | |
1282 | { | |
1283 | struct ks8851_net *priv = dev_get_drvdata(&spi->dev); | |
1284 | ||
1285 | if (netif_msg_drv(priv)) | |
1286 | dev_info(&spi->dev, "remove"); | |
1287 | ||
1288 | unregister_netdev(priv->netdev); | |
1289 | free_irq(spi->irq, priv); | |
1290 | free_netdev(priv->netdev); | |
1291 | ||
1292 | return 0; | |
1293 | } | |
1294 | ||
1295 | static struct spi_driver ks8851_driver = { | |
1296 | .driver = { | |
1297 | .name = "ks8851", | |
1298 | .owner = THIS_MODULE, | |
1299 | }, | |
1300 | .probe = ks8851_probe, | |
1301 | .remove = __devexit_p(ks8851_remove), | |
1302 | }; | |
1303 | ||
1304 | static int __init ks8851_init(void) | |
1305 | { | |
1306 | return spi_register_driver(&ks8851_driver); | |
1307 | } | |
1308 | ||
1309 | static void __exit ks8851_exit(void) | |
1310 | { | |
1311 | spi_unregister_driver(&ks8851_driver); | |
1312 | } | |
1313 | ||
1314 | module_init(ks8851_init); | |
1315 | module_exit(ks8851_exit); | |
1316 | ||
1317 | MODULE_DESCRIPTION("KS8851 Network driver"); | |
1318 | MODULE_AUTHOR("Ben Dooks <[email protected]>"); | |
1319 | MODULE_LICENSE("GPL"); | |
1320 | ||
1321 | module_param_named(message, msg_enable, int, 0); | |
1322 | MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)"); |