]>
Commit | Line | Data |
---|---|---|
0b61f8a4 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 | 2 | /* |
7b718769 NS |
3 | * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
4 | * All Rights Reserved. | |
1da177e4 | 5 | */ |
1da177e4 | 6 | #include "xfs.h" |
dda35b8f | 7 | #include "xfs_fs.h" |
70a9883c | 8 | #include "xfs_shared.h" |
a4fbe6ab | 9 | #include "xfs_format.h" |
239880ef DC |
10 | #include "xfs_log_format.h" |
11 | #include "xfs_trans_resv.h" | |
1da177e4 | 12 | #include "xfs_mount.h" |
1da177e4 | 13 | #include "xfs_inode.h" |
239880ef | 14 | #include "xfs_trans.h" |
fd3200be | 15 | #include "xfs_inode_item.h" |
dda35b8f | 16 | #include "xfs_bmap.h" |
c24b5dfa | 17 | #include "xfs_bmap_util.h" |
2b9ab5ab | 18 | #include "xfs_dir2.h" |
c24b5dfa | 19 | #include "xfs_dir2_priv.h" |
ddcd856d | 20 | #include "xfs_ioctl.h" |
dda35b8f | 21 | #include "xfs_trace.h" |
239880ef | 22 | #include "xfs_log.h" |
dc06f398 | 23 | #include "xfs_icache.h" |
781355c6 | 24 | #include "xfs_pnfs.h" |
68a9f5e7 | 25 | #include "xfs_iomap.h" |
0613f16c | 26 | #include "xfs_reflink.h" |
1da177e4 | 27 | |
2fe17c10 | 28 | #include <linux/falloc.h> |
66114cad | 29 | #include <linux/backing-dev.h> |
a39e596b | 30 | #include <linux/mman.h> |
40144e49 | 31 | #include <linux/fadvise.h> |
1da177e4 | 32 | |
f0f37e2f | 33 | static const struct vm_operations_struct xfs_file_vm_ops; |
1da177e4 | 34 | |
25219dbf DW |
35 | /* |
36 | * Decide if the given file range is aligned to the size of the fundamental | |
37 | * allocation unit for the file. | |
38 | */ | |
39 | static bool | |
40 | xfs_is_falloc_aligned( | |
41 | struct xfs_inode *ip, | |
42 | loff_t pos, | |
43 | long long int len) | |
44 | { | |
45 | struct xfs_mount *mp = ip->i_mount; | |
46 | uint64_t mask; | |
47 | ||
48 | if (XFS_IS_REALTIME_INODE(ip)) { | |
49 | if (!is_power_of_2(mp->m_sb.sb_rextsize)) { | |
50 | u64 rextbytes; | |
51 | u32 mod; | |
52 | ||
53 | rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize); | |
54 | div_u64_rem(pos, rextbytes, &mod); | |
55 | if (mod) | |
56 | return false; | |
57 | div_u64_rem(len, rextbytes, &mod); | |
58 | return mod == 0; | |
59 | } | |
60 | mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1; | |
61 | } else { | |
62 | mask = mp->m_sb.sb_blocksize - 1; | |
63 | } | |
64 | ||
65 | return !((pos | len) & mask); | |
66 | } | |
67 | ||
8add71ca CH |
68 | int |
69 | xfs_update_prealloc_flags( | |
70 | struct xfs_inode *ip, | |
71 | enum xfs_prealloc_flags flags) | |
72 | { | |
73 | struct xfs_trans *tp; | |
74 | int error; | |
75 | ||
253f4911 CH |
76 | error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, |
77 | 0, 0, 0, &tp); | |
78 | if (error) | |
8add71ca | 79 | return error; |
8add71ca CH |
80 | |
81 | xfs_ilock(ip, XFS_ILOCK_EXCL); | |
82 | xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); | |
83 | ||
84 | if (!(flags & XFS_PREALLOC_INVISIBLE)) { | |
c19b3b05 DC |
85 | VFS_I(ip)->i_mode &= ~S_ISUID; |
86 | if (VFS_I(ip)->i_mode & S_IXGRP) | |
87 | VFS_I(ip)->i_mode &= ~S_ISGID; | |
8add71ca CH |
88 | xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
89 | } | |
90 | ||
91 | if (flags & XFS_PREALLOC_SET) | |
92 | ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; | |
93 | if (flags & XFS_PREALLOC_CLEAR) | |
94 | ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; | |
95 | ||
96 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | |
97 | if (flags & XFS_PREALLOC_SYNC) | |
98 | xfs_trans_set_sync(tp); | |
70393313 | 99 | return xfs_trans_commit(tp); |
8add71ca CH |
100 | } |
101 | ||
1da2f2db CH |
102 | /* |
103 | * Fsync operations on directories are much simpler than on regular files, | |
104 | * as there is no file data to flush, and thus also no need for explicit | |
105 | * cache flush operations, and there are no non-transaction metadata updates | |
106 | * on directories either. | |
107 | */ | |
108 | STATIC int | |
109 | xfs_dir_fsync( | |
110 | struct file *file, | |
111 | loff_t start, | |
112 | loff_t end, | |
113 | int datasync) | |
114 | { | |
115 | struct xfs_inode *ip = XFS_I(file->f_mapping->host); | |
1da2f2db CH |
116 | |
117 | trace_xfs_dir_fsync(ip); | |
54fbdd10 | 118 | return xfs_log_force_inode(ip); |
1da2f2db CH |
119 | } |
120 | ||
fd3200be CH |
121 | STATIC int |
122 | xfs_file_fsync( | |
123 | struct file *file, | |
02c24a82 JB |
124 | loff_t start, |
125 | loff_t end, | |
fd3200be CH |
126 | int datasync) |
127 | { | |
7ea80859 CH |
128 | struct inode *inode = file->f_mapping->host; |
129 | struct xfs_inode *ip = XFS_I(inode); | |
1319ebef | 130 | struct xfs_inode_log_item *iip = ip->i_itemp; |
a27a263b | 131 | struct xfs_mount *mp = ip->i_mount; |
fd3200be CH |
132 | int error = 0; |
133 | int log_flushed = 0; | |
b1037058 | 134 | xfs_lsn_t lsn = 0; |
fd3200be | 135 | |
cca28fb8 | 136 | trace_xfs_file_fsync(ip); |
fd3200be | 137 | |
1b180274 | 138 | error = file_write_and_wait_range(file, start, end); |
02c24a82 JB |
139 | if (error) |
140 | return error; | |
141 | ||
a27a263b | 142 | if (XFS_FORCED_SHUTDOWN(mp)) |
b474c7ae | 143 | return -EIO; |
fd3200be CH |
144 | |
145 | xfs_iflags_clear(ip, XFS_ITRUNCATED); | |
146 | ||
2291dab2 DC |
147 | /* |
148 | * If we have an RT and/or log subvolume we need to make sure to flush | |
149 | * the write cache the device used for file data first. This is to | |
150 | * ensure newly written file data make it to disk before logging the new | |
151 | * inode size in case of an extending write. | |
152 | */ | |
153 | if (XFS_IS_REALTIME_INODE(ip)) | |
154 | xfs_blkdev_issue_flush(mp->m_rtdev_targp); | |
155 | else if (mp->m_logdev_targp != mp->m_ddev_targp) | |
156 | xfs_blkdev_issue_flush(mp->m_ddev_targp); | |
a27a263b | 157 | |
fd3200be | 158 | /* |
fc0561ce DC |
159 | * All metadata updates are logged, which means that we just have to |
160 | * flush the log up to the latest LSN that touched the inode. If we have | |
161 | * concurrent fsync/fdatasync() calls, we need them to all block on the | |
162 | * log force before we clear the ili_fsync_fields field. This ensures | |
163 | * that we don't get a racing sync operation that does not wait for the | |
164 | * metadata to hit the journal before returning. If we race with | |
165 | * clearing the ili_fsync_fields, then all that will happen is the log | |
166 | * force will do nothing as the lsn will already be on disk. We can't | |
167 | * race with setting ili_fsync_fields because that is done under | |
168 | * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared | |
169 | * until after the ili_fsync_fields is cleared. | |
fd3200be CH |
170 | */ |
171 | xfs_ilock(ip, XFS_ILOCK_SHARED); | |
8f639dde CH |
172 | if (xfs_ipincount(ip)) { |
173 | if (!datasync || | |
1319ebef DC |
174 | (iip->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) |
175 | lsn = iip->ili_last_lsn; | |
8f639dde | 176 | } |
fd3200be | 177 | |
fc0561ce | 178 | if (lsn) { |
656de4ff | 179 | error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); |
1319ebef DC |
180 | spin_lock(&iip->ili_lock); |
181 | iip->ili_fsync_fields = 0; | |
182 | spin_unlock(&iip->ili_lock); | |
fc0561ce DC |
183 | } |
184 | xfs_iunlock(ip, XFS_ILOCK_SHARED); | |
b1037058 | 185 | |
a27a263b CH |
186 | /* |
187 | * If we only have a single device, and the log force about was | |
188 | * a no-op we might have to flush the data device cache here. | |
189 | * This can only happen for fdatasync/O_DSYNC if we were overwriting | |
190 | * an already allocated file and thus do not have any metadata to | |
191 | * commit. | |
192 | */ | |
2291dab2 DC |
193 | if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && |
194 | mp->m_logdev_targp == mp->m_ddev_targp) | |
a27a263b | 195 | xfs_blkdev_issue_flush(mp->m_ddev_targp); |
fd3200be | 196 | |
2451337d | 197 | return error; |
fd3200be CH |
198 | } |
199 | ||
00258e36 | 200 | STATIC ssize_t |
bbc5a740 | 201 | xfs_file_dio_aio_read( |
dda35b8f | 202 | struct kiocb *iocb, |
b4f5d2c6 | 203 | struct iov_iter *to) |
dda35b8f | 204 | { |
acdda3aa | 205 | struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); |
bbc5a740 | 206 | size_t count = iov_iter_count(to); |
acdda3aa | 207 | ssize_t ret; |
dda35b8f | 208 | |
bbc5a740 | 209 | trace_xfs_file_direct_read(ip, count, iocb->ki_pos); |
dda35b8f | 210 | |
f1285ff0 CH |
211 | if (!count) |
212 | return 0; /* skip atime */ | |
dda35b8f | 213 | |
a447d7cd CH |
214 | file_accessed(iocb->ki_filp); |
215 | ||
7b53b868 CH |
216 | if (iocb->ki_flags & IOCB_NOWAIT) { |
217 | if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) | |
218 | return -EAGAIN; | |
219 | } else { | |
220 | xfs_ilock(ip, XFS_IOLOCK_SHARED); | |
221 | } | |
690c2a38 CH |
222 | ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, |
223 | is_sync_kiocb(iocb)); | |
65523218 | 224 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
acdda3aa | 225 | |
16d4d435 CH |
226 | return ret; |
227 | } | |
228 | ||
f021bd07 | 229 | static noinline ssize_t |
16d4d435 CH |
230 | xfs_file_dax_read( |
231 | struct kiocb *iocb, | |
232 | struct iov_iter *to) | |
233 | { | |
6c31f495 | 234 | struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); |
16d4d435 CH |
235 | size_t count = iov_iter_count(to); |
236 | ssize_t ret = 0; | |
237 | ||
238 | trace_xfs_file_dax_read(ip, count, iocb->ki_pos); | |
239 | ||
240 | if (!count) | |
241 | return 0; /* skip atime */ | |
242 | ||
942491c9 CH |
243 | if (iocb->ki_flags & IOCB_NOWAIT) { |
244 | if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) | |
29a5d29e | 245 | return -EAGAIN; |
942491c9 | 246 | } else { |
29a5d29e GR |
247 | xfs_ilock(ip, XFS_IOLOCK_SHARED); |
248 | } | |
942491c9 | 249 | |
690c2a38 | 250 | ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops); |
65523218 | 251 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
bbc5a740 | 252 | |
f1285ff0 | 253 | file_accessed(iocb->ki_filp); |
bbc5a740 CH |
254 | return ret; |
255 | } | |
256 | ||
257 | STATIC ssize_t | |
258 | xfs_file_buffered_aio_read( | |
259 | struct kiocb *iocb, | |
260 | struct iov_iter *to) | |
261 | { | |
262 | struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); | |
263 | ssize_t ret; | |
264 | ||
265 | trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); | |
dda35b8f | 266 | |
942491c9 CH |
267 | if (iocb->ki_flags & IOCB_NOWAIT) { |
268 | if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) | |
91f9943e | 269 | return -EAGAIN; |
942491c9 | 270 | } else { |
91f9943e CH |
271 | xfs_ilock(ip, XFS_IOLOCK_SHARED); |
272 | } | |
b4f5d2c6 | 273 | ret = generic_file_read_iter(iocb, to); |
65523218 | 274 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
bbc5a740 CH |
275 | |
276 | return ret; | |
277 | } | |
278 | ||
279 | STATIC ssize_t | |
280 | xfs_file_read_iter( | |
281 | struct kiocb *iocb, | |
282 | struct iov_iter *to) | |
283 | { | |
16d4d435 CH |
284 | struct inode *inode = file_inode(iocb->ki_filp); |
285 | struct xfs_mount *mp = XFS_I(inode)->i_mount; | |
bbc5a740 CH |
286 | ssize_t ret = 0; |
287 | ||
288 | XFS_STATS_INC(mp, xs_read_calls); | |
289 | ||
290 | if (XFS_FORCED_SHUTDOWN(mp)) | |
291 | return -EIO; | |
292 | ||
16d4d435 CH |
293 | if (IS_DAX(inode)) |
294 | ret = xfs_file_dax_read(iocb, to); | |
295 | else if (iocb->ki_flags & IOCB_DIRECT) | |
bbc5a740 | 296 | ret = xfs_file_dio_aio_read(iocb, to); |
3176c3e0 | 297 | else |
bbc5a740 | 298 | ret = xfs_file_buffered_aio_read(iocb, to); |
dda35b8f | 299 | |
dda35b8f | 300 | if (ret > 0) |
ff6d6af2 | 301 | XFS_STATS_ADD(mp, xs_read_bytes, ret); |
dda35b8f CH |
302 | return ret; |
303 | } | |
304 | ||
4d8d1581 DC |
305 | /* |
306 | * Common pre-write limit and setup checks. | |
307 | * | |
5bf1f262 CH |
308 | * Called with the iolocked held either shared and exclusive according to |
309 | * @iolock, and returns with it held. Might upgrade the iolock to exclusive | |
310 | * if called for a direct write beyond i_size. | |
4d8d1581 DC |
311 | */ |
312 | STATIC ssize_t | |
313 | xfs_file_aio_write_checks( | |
99733fa3 AV |
314 | struct kiocb *iocb, |
315 | struct iov_iter *from, | |
4d8d1581 DC |
316 | int *iolock) |
317 | { | |
99733fa3 | 318 | struct file *file = iocb->ki_filp; |
4d8d1581 DC |
319 | struct inode *inode = file->f_mapping->host; |
320 | struct xfs_inode *ip = XFS_I(inode); | |
3309dd04 | 321 | ssize_t error = 0; |
99733fa3 | 322 | size_t count = iov_iter_count(from); |
3136e8bb | 323 | bool drained_dio = false; |
f5c54717 | 324 | loff_t isize; |
4d8d1581 | 325 | |
7271d243 | 326 | restart: |
3309dd04 AV |
327 | error = generic_write_checks(iocb, from); |
328 | if (error <= 0) | |
4d8d1581 | 329 | return error; |
4d8d1581 | 330 | |
69eb5fa1 | 331 | error = xfs_break_layouts(inode, iolock, BREAK_WRITE); |
781355c6 CH |
332 | if (error) |
333 | return error; | |
334 | ||
65523218 CH |
335 | /* |
336 | * For changing security info in file_remove_privs() we need i_rwsem | |
337 | * exclusively. | |
338 | */ | |
a6de82ca | 339 | if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { |
65523218 | 340 | xfs_iunlock(ip, *iolock); |
a6de82ca | 341 | *iolock = XFS_IOLOCK_EXCL; |
65523218 | 342 | xfs_ilock(ip, *iolock); |
a6de82ca JK |
343 | goto restart; |
344 | } | |
4d8d1581 DC |
345 | /* |
346 | * If the offset is beyond the size of the file, we need to zero any | |
347 | * blocks that fall between the existing EOF and the start of this | |
2813d682 | 348 | * write. If zeroing is needed and we are currently holding the |
467f7899 CH |
349 | * iolock shared, we need to update it to exclusive which implies |
350 | * having to redo all checks before. | |
b9d59846 DC |
351 | * |
352 | * We need to serialise against EOF updates that occur in IO | |
353 | * completions here. We want to make sure that nobody is changing the | |
354 | * size while we do this check until we have placed an IO barrier (i.e. | |
355 | * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. | |
356 | * The spinlock effectively forms a memory barrier once we have the | |
357 | * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value | |
358 | * and hence be able to correctly determine if we need to run zeroing. | |
4d8d1581 | 359 | */ |
b9d59846 | 360 | spin_lock(&ip->i_flags_lock); |
f5c54717 CH |
361 | isize = i_size_read(inode); |
362 | if (iocb->ki_pos > isize) { | |
b9d59846 | 363 | spin_unlock(&ip->i_flags_lock); |
3136e8bb BF |
364 | if (!drained_dio) { |
365 | if (*iolock == XFS_IOLOCK_SHARED) { | |
65523218 | 366 | xfs_iunlock(ip, *iolock); |
3136e8bb | 367 | *iolock = XFS_IOLOCK_EXCL; |
65523218 | 368 | xfs_ilock(ip, *iolock); |
3136e8bb BF |
369 | iov_iter_reexpand(from, count); |
370 | } | |
40c63fbc DC |
371 | /* |
372 | * We now have an IO submission barrier in place, but | |
373 | * AIO can do EOF updates during IO completion and hence | |
374 | * we now need to wait for all of them to drain. Non-AIO | |
375 | * DIO will have drained before we are given the | |
376 | * XFS_IOLOCK_EXCL, and so for most cases this wait is a | |
377 | * no-op. | |
378 | */ | |
379 | inode_dio_wait(inode); | |
3136e8bb | 380 | drained_dio = true; |
7271d243 DC |
381 | goto restart; |
382 | } | |
f5c54717 CH |
383 | |
384 | trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); | |
385 | error = iomap_zero_range(inode, isize, iocb->ki_pos - isize, | |
f150b423 | 386 | NULL, &xfs_buffered_write_iomap_ops); |
467f7899 CH |
387 | if (error) |
388 | return error; | |
b9d59846 DC |
389 | } else |
390 | spin_unlock(&ip->i_flags_lock); | |
4d8d1581 | 391 | |
8a9c9980 CH |
392 | /* |
393 | * Updating the timestamps will grab the ilock again from | |
394 | * xfs_fs_dirty_inode, so we have to call it after dropping the | |
395 | * lock above. Eventually we should look into a way to avoid | |
396 | * the pointless lock roundtrip. | |
397 | */ | |
8c3f406c | 398 | return file_modified(file); |
4d8d1581 DC |
399 | } |
400 | ||
acdda3aa CH |
401 | static int |
402 | xfs_dio_write_end_io( | |
403 | struct kiocb *iocb, | |
404 | ssize_t size, | |
6fe7b990 | 405 | int error, |
acdda3aa CH |
406 | unsigned flags) |
407 | { | |
408 | struct inode *inode = file_inode(iocb->ki_filp); | |
409 | struct xfs_inode *ip = XFS_I(inode); | |
410 | loff_t offset = iocb->ki_pos; | |
73d30d48 | 411 | unsigned int nofs_flag; |
acdda3aa CH |
412 | |
413 | trace_xfs_end_io_direct_write(ip, offset, size); | |
414 | ||
415 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | |
416 | return -EIO; | |
417 | ||
6fe7b990 MB |
418 | if (error) |
419 | return error; | |
420 | if (!size) | |
421 | return 0; | |
acdda3aa | 422 | |
ed5c3e66 DC |
423 | /* |
424 | * Capture amount written on completion as we can't reliably account | |
425 | * for it on submission. | |
426 | */ | |
427 | XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); | |
428 | ||
73d30d48 CH |
429 | /* |
430 | * We can allocate memory here while doing writeback on behalf of | |
431 | * memory reclaim. To avoid memory allocation deadlocks set the | |
432 | * task-wide nofs context for the following operations. | |
433 | */ | |
434 | nofs_flag = memalloc_nofs_save(); | |
435 | ||
ee70daab EG |
436 | if (flags & IOMAP_DIO_COW) { |
437 | error = xfs_reflink_end_cow(ip, offset, size); | |
438 | if (error) | |
73d30d48 | 439 | goto out; |
ee70daab EG |
440 | } |
441 | ||
442 | /* | |
443 | * Unwritten conversion updates the in-core isize after extent | |
444 | * conversion but before updating the on-disk size. Updating isize any | |
445 | * earlier allows a racing dio read to find unwritten extents before | |
446 | * they are converted. | |
447 | */ | |
73d30d48 CH |
448 | if (flags & IOMAP_DIO_UNWRITTEN) { |
449 | error = xfs_iomap_write_unwritten(ip, offset, size, true); | |
450 | goto out; | |
451 | } | |
ee70daab | 452 | |
acdda3aa CH |
453 | /* |
454 | * We need to update the in-core inode size here so that we don't end up | |
455 | * with the on-disk inode size being outside the in-core inode size. We | |
456 | * have no other method of updating EOF for AIO, so always do it here | |
457 | * if necessary. | |
458 | * | |
459 | * We need to lock the test/set EOF update as we can be racing with | |
460 | * other IO completions here to update the EOF. Failing to serialise | |
461 | * here can result in EOF moving backwards and Bad Things Happen when | |
462 | * that occurs. | |
463 | */ | |
464 | spin_lock(&ip->i_flags_lock); | |
465 | if (offset + size > i_size_read(inode)) { | |
466 | i_size_write(inode, offset + size); | |
ee70daab | 467 | spin_unlock(&ip->i_flags_lock); |
acdda3aa | 468 | error = xfs_setfilesize(ip, offset, size); |
ee70daab EG |
469 | } else { |
470 | spin_unlock(&ip->i_flags_lock); | |
471 | } | |
acdda3aa | 472 | |
73d30d48 CH |
473 | out: |
474 | memalloc_nofs_restore(nofs_flag); | |
acdda3aa CH |
475 | return error; |
476 | } | |
477 | ||
838c4f3d CH |
478 | static const struct iomap_dio_ops xfs_dio_write_ops = { |
479 | .end_io = xfs_dio_write_end_io, | |
480 | }; | |
481 | ||
f0d26e86 DC |
482 | /* |
483 | * xfs_file_dio_aio_write - handle direct IO writes | |
484 | * | |
485 | * Lock the inode appropriately to prepare for and issue a direct IO write. | |
eda77982 | 486 | * By separating it from the buffered write path we remove all the tricky to |
f0d26e86 DC |
487 | * follow locking changes and looping. |
488 | * | |
eda77982 DC |
489 | * If there are cached pages or we're extending the file, we need IOLOCK_EXCL |
490 | * until we're sure the bytes at the new EOF have been zeroed and/or the cached | |
491 | * pages are flushed out. | |
492 | * | |
493 | * In most cases the direct IO writes will be done holding IOLOCK_SHARED | |
494 | * allowing them to be done in parallel with reads and other direct IO writes. | |
495 | * However, if the IO is not aligned to filesystem blocks, the direct IO layer | |
496 | * needs to do sub-block zeroing and that requires serialisation against other | |
497 | * direct IOs to the same block. In this case we need to serialise the | |
498 | * submission of the unaligned IOs so that we don't get racing block zeroing in | |
499 | * the dio layer. To avoid the problem with aio, we also need to wait for | |
500 | * outstanding IOs to complete so that unwritten extent conversion is completed | |
501 | * before we try to map the overlapping block. This is currently implemented by | |
4a06fd26 | 502 | * hitting it with a big hammer (i.e. inode_dio_wait()). |
eda77982 | 503 | * |
f0d26e86 DC |
504 | * Returns with locks held indicated by @iolock and errors indicated by |
505 | * negative return values. | |
506 | */ | |
507 | STATIC ssize_t | |
508 | xfs_file_dio_aio_write( | |
509 | struct kiocb *iocb, | |
b3188919 | 510 | struct iov_iter *from) |
f0d26e86 DC |
511 | { |
512 | struct file *file = iocb->ki_filp; | |
513 | struct address_space *mapping = file->f_mapping; | |
514 | struct inode *inode = mapping->host; | |
515 | struct xfs_inode *ip = XFS_I(inode); | |
516 | struct xfs_mount *mp = ip->i_mount; | |
517 | ssize_t ret = 0; | |
eda77982 | 518 | int unaligned_io = 0; |
d0606464 | 519 | int iolock; |
b3188919 | 520 | size_t count = iov_iter_count(from); |
f9acc19c | 521 | struct xfs_buftarg *target = xfs_inode_buftarg(ip); |
f0d26e86 | 522 | |
7c71ee78 | 523 | /* DIO must be aligned to device logical sector size */ |
16d4d435 | 524 | if ((iocb->ki_pos | count) & target->bt_logical_sectormask) |
b474c7ae | 525 | return -EINVAL; |
f0d26e86 | 526 | |
7271d243 | 527 | /* |
0ee7a3f6 CH |
528 | * Don't take the exclusive iolock here unless the I/O is unaligned to |
529 | * the file system block size. We don't need to consider the EOF | |
530 | * extension case here because xfs_file_aio_write_checks() will relock | |
531 | * the inode as necessary for EOF zeroing cases and fill out the new | |
532 | * inode size as appropriate. | |
7271d243 | 533 | */ |
0ee7a3f6 CH |
534 | if ((iocb->ki_pos & mp->m_blockmask) || |
535 | ((iocb->ki_pos + count) & mp->m_blockmask)) { | |
536 | unaligned_io = 1; | |
54a4ef8a CH |
537 | |
538 | /* | |
539 | * We can't properly handle unaligned direct I/O to reflink | |
540 | * files yet, as we can't unshare a partial block. | |
541 | */ | |
66ae56a5 | 542 | if (xfs_is_cow_inode(ip)) { |
54a4ef8a | 543 | trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); |
80e543ae | 544 | return -ENOTBLK; |
54a4ef8a | 545 | } |
d0606464 | 546 | iolock = XFS_IOLOCK_EXCL; |
0ee7a3f6 | 547 | } else { |
d0606464 | 548 | iolock = XFS_IOLOCK_SHARED; |
c58cb165 | 549 | } |
f0d26e86 | 550 | |
942491c9 | 551 | if (iocb->ki_flags & IOCB_NOWAIT) { |
1fdeaea4 DW |
552 | /* unaligned dio always waits, bail */ |
553 | if (unaligned_io) | |
554 | return -EAGAIN; | |
942491c9 | 555 | if (!xfs_ilock_nowait(ip, iolock)) |
29a5d29e | 556 | return -EAGAIN; |
942491c9 | 557 | } else { |
29a5d29e GR |
558 | xfs_ilock(ip, iolock); |
559 | } | |
0ee7a3f6 | 560 | |
99733fa3 | 561 | ret = xfs_file_aio_write_checks(iocb, from, &iolock); |
4d8d1581 | 562 | if (ret) |
d0606464 | 563 | goto out; |
99733fa3 | 564 | count = iov_iter_count(from); |
f0d26e86 | 565 | |
eda77982 | 566 | /* |
2032a8a2 BF |
567 | * If we are doing unaligned IO, we can't allow any other overlapping IO |
568 | * in-flight at the same time or we risk data corruption. Wait for all | |
569 | * other IO to drain before we submit. If the IO is aligned, demote the | |
570 | * iolock if we had to take the exclusive lock in | |
571 | * xfs_file_aio_write_checks() for other reasons. | |
eda77982 | 572 | */ |
29a5d29e | 573 | if (unaligned_io) { |
2032a8a2 | 574 | inode_dio_wait(inode); |
29a5d29e | 575 | } else if (iolock == XFS_IOLOCK_EXCL) { |
65523218 | 576 | xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); |
d0606464 | 577 | iolock = XFS_IOLOCK_SHARED; |
f0d26e86 DC |
578 | } |
579 | ||
3176c3e0 | 580 | trace_xfs_file_direct_write(ip, count, iocb->ki_pos); |
2032a8a2 | 581 | /* |
906753be JK |
582 | * If unaligned, this is the only IO in-flight. Wait on it before we |
583 | * release the iolock to prevent subsequent overlapping IO. | |
2032a8a2 | 584 | */ |
f150b423 CH |
585 | ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, |
586 | &xfs_dio_write_ops, | |
906753be | 587 | is_sync_kiocb(iocb) || unaligned_io); |
d0606464 | 588 | out: |
65523218 | 589 | xfs_iunlock(ip, iolock); |
d0606464 | 590 | |
6b698ede | 591 | /* |
60263d58 CH |
592 | * No fallback to buffered IO after short writes for XFS, direct I/O |
593 | * will either complete fully or return an error. | |
6b698ede | 594 | */ |
16d4d435 CH |
595 | ASSERT(ret < 0 || ret == count); |
596 | return ret; | |
597 | } | |
598 | ||
f021bd07 | 599 | static noinline ssize_t |
16d4d435 CH |
600 | xfs_file_dax_write( |
601 | struct kiocb *iocb, | |
602 | struct iov_iter *from) | |
603 | { | |
6c31f495 | 604 | struct inode *inode = iocb->ki_filp->f_mapping->host; |
16d4d435 | 605 | struct xfs_inode *ip = XFS_I(inode); |
17879e8f | 606 | int iolock = XFS_IOLOCK_EXCL; |
6c31f495 CH |
607 | ssize_t ret, error = 0; |
608 | size_t count; | |
609 | loff_t pos; | |
16d4d435 | 610 | |
942491c9 CH |
611 | if (iocb->ki_flags & IOCB_NOWAIT) { |
612 | if (!xfs_ilock_nowait(ip, iolock)) | |
29a5d29e | 613 | return -EAGAIN; |
942491c9 | 614 | } else { |
29a5d29e GR |
615 | xfs_ilock(ip, iolock); |
616 | } | |
617 | ||
16d4d435 CH |
618 | ret = xfs_file_aio_write_checks(iocb, from, &iolock); |
619 | if (ret) | |
620 | goto out; | |
621 | ||
6c31f495 CH |
622 | pos = iocb->ki_pos; |
623 | count = iov_iter_count(from); | |
8b2180b3 | 624 | |
6c31f495 | 625 | trace_xfs_file_dax_write(ip, count, pos); |
f150b423 | 626 | ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops); |
6c31f495 CH |
627 | if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { |
628 | i_size_write(inode, iocb->ki_pos); | |
629 | error = xfs_setfilesize(ip, pos, ret); | |
16d4d435 | 630 | } |
16d4d435 | 631 | out: |
65523218 | 632 | xfs_iunlock(ip, iolock); |
ed5c3e66 DC |
633 | if (error) |
634 | return error; | |
635 | ||
636 | if (ret > 0) { | |
637 | XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); | |
638 | ||
639 | /* Handle various SYNC-type writes */ | |
640 | ret = generic_write_sync(iocb, ret); | |
641 | } | |
642 | return ret; | |
f0d26e86 DC |
643 | } |
644 | ||
00258e36 | 645 | STATIC ssize_t |
637bbc75 | 646 | xfs_file_buffered_aio_write( |
dda35b8f | 647 | struct kiocb *iocb, |
b3188919 | 648 | struct iov_iter *from) |
dda35b8f CH |
649 | { |
650 | struct file *file = iocb->ki_filp; | |
651 | struct address_space *mapping = file->f_mapping; | |
652 | struct inode *inode = mapping->host; | |
00258e36 | 653 | struct xfs_inode *ip = XFS_I(inode); |
637bbc75 DC |
654 | ssize_t ret; |
655 | int enospc = 0; | |
c3155097 | 656 | int iolock; |
dda35b8f | 657 | |
91f9943e CH |
658 | if (iocb->ki_flags & IOCB_NOWAIT) |
659 | return -EOPNOTSUPP; | |
660 | ||
c3155097 BF |
661 | write_retry: |
662 | iolock = XFS_IOLOCK_EXCL; | |
65523218 | 663 | xfs_ilock(ip, iolock); |
dda35b8f | 664 | |
99733fa3 | 665 | ret = xfs_file_aio_write_checks(iocb, from, &iolock); |
4d8d1581 | 666 | if (ret) |
d0606464 | 667 | goto out; |
dda35b8f CH |
668 | |
669 | /* We can write back this queue in page reclaim */ | |
de1414a6 | 670 | current->backing_dev_info = inode_to_bdi(inode); |
dda35b8f | 671 | |
3176c3e0 | 672 | trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); |
f150b423 CH |
673 | ret = iomap_file_buffered_write(iocb, from, |
674 | &xfs_buffered_write_iomap_ops); | |
0a64bc2c | 675 | if (likely(ret >= 0)) |
99733fa3 | 676 | iocb->ki_pos += ret; |
dc06f398 | 677 | |
637bbc75 | 678 | /* |
dc06f398 BF |
679 | * If we hit a space limit, try to free up some lingering preallocated |
680 | * space before returning an error. In the case of ENOSPC, first try to | |
681 | * write back all dirty inodes to free up some of the excess reserved | |
682 | * metadata space. This reduces the chances that the eofblocks scan | |
683 | * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this | |
684 | * also behaves as a filter to prevent too many eofblocks scans from | |
685 | * running at the same time. | |
637bbc75 | 686 | */ |
dc06f398 | 687 | if (ret == -EDQUOT && !enospc) { |
c3155097 | 688 | xfs_iunlock(ip, iolock); |
dc06f398 BF |
689 | enospc = xfs_inode_free_quota_eofblocks(ip); |
690 | if (enospc) | |
691 | goto write_retry; | |
83104d44 DW |
692 | enospc = xfs_inode_free_quota_cowblocks(ip); |
693 | if (enospc) | |
694 | goto write_retry; | |
c3155097 | 695 | iolock = 0; |
dc06f398 BF |
696 | } else if (ret == -ENOSPC && !enospc) { |
697 | struct xfs_eofblocks eofb = {0}; | |
698 | ||
637bbc75 | 699 | enospc = 1; |
9aa05000 | 700 | xfs_flush_inodes(ip->i_mount); |
c3155097 BF |
701 | |
702 | xfs_iunlock(ip, iolock); | |
dc06f398 BF |
703 | eofb.eof_flags = XFS_EOF_FLAGS_SYNC; |
704 | xfs_icache_free_eofblocks(ip->i_mount, &eofb); | |
cf2cb784 | 705 | xfs_icache_free_cowblocks(ip->i_mount, &eofb); |
9aa05000 | 706 | goto write_retry; |
dda35b8f | 707 | } |
d0606464 | 708 | |
dda35b8f | 709 | current->backing_dev_info = NULL; |
d0606464 | 710 | out: |
c3155097 BF |
711 | if (iolock) |
712 | xfs_iunlock(ip, iolock); | |
ed5c3e66 DC |
713 | |
714 | if (ret > 0) { | |
715 | XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); | |
716 | /* Handle various SYNC-type writes */ | |
717 | ret = generic_write_sync(iocb, ret); | |
718 | } | |
637bbc75 DC |
719 | return ret; |
720 | } | |
721 | ||
722 | STATIC ssize_t | |
bf97f3bc | 723 | xfs_file_write_iter( |
637bbc75 | 724 | struct kiocb *iocb, |
bf97f3bc | 725 | struct iov_iter *from) |
637bbc75 DC |
726 | { |
727 | struct file *file = iocb->ki_filp; | |
728 | struct address_space *mapping = file->f_mapping; | |
729 | struct inode *inode = mapping->host; | |
730 | struct xfs_inode *ip = XFS_I(inode); | |
731 | ssize_t ret; | |
bf97f3bc | 732 | size_t ocount = iov_iter_count(from); |
637bbc75 | 733 | |
ff6d6af2 | 734 | XFS_STATS_INC(ip->i_mount, xs_write_calls); |
637bbc75 | 735 | |
637bbc75 DC |
736 | if (ocount == 0) |
737 | return 0; | |
738 | ||
bf97f3bc AV |
739 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) |
740 | return -EIO; | |
637bbc75 | 741 | |
16d4d435 | 742 | if (IS_DAX(inode)) |
ed5c3e66 DC |
743 | return xfs_file_dax_write(iocb, from); |
744 | ||
745 | if (iocb->ki_flags & IOCB_DIRECT) { | |
0613f16c DW |
746 | /* |
747 | * Allow a directio write to fall back to a buffered | |
748 | * write *only* in the case that we're doing a reflink | |
749 | * CoW. In all other directio scenarios we do not | |
750 | * allow an operation to fall back to buffered mode. | |
751 | */ | |
bf97f3bc | 752 | ret = xfs_file_dio_aio_write(iocb, from); |
80e543ae | 753 | if (ret != -ENOTBLK) |
ed5c3e66 | 754 | return ret; |
0613f16c | 755 | } |
dda35b8f | 756 | |
ed5c3e66 | 757 | return xfs_file_buffered_aio_write(iocb, from); |
dda35b8f CH |
758 | } |
759 | ||
d6dc57e2 DW |
760 | static void |
761 | xfs_wait_dax_page( | |
e25ff835 | 762 | struct inode *inode) |
d6dc57e2 DW |
763 | { |
764 | struct xfs_inode *ip = XFS_I(inode); | |
765 | ||
d6dc57e2 DW |
766 | xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); |
767 | schedule(); | |
768 | xfs_ilock(ip, XFS_MMAPLOCK_EXCL); | |
769 | } | |
770 | ||
771 | static int | |
772 | xfs_break_dax_layouts( | |
773 | struct inode *inode, | |
e25ff835 | 774 | bool *retry) |
d6dc57e2 DW |
775 | { |
776 | struct page *page; | |
777 | ||
778 | ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL)); | |
779 | ||
780 | page = dax_layout_busy_page(inode->i_mapping); | |
781 | if (!page) | |
782 | return 0; | |
783 | ||
e25ff835 | 784 | *retry = true; |
d6dc57e2 DW |
785 | return ___wait_var_event(&page->_refcount, |
786 | atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, | |
e25ff835 | 787 | 0, 0, xfs_wait_dax_page(inode)); |
d6dc57e2 DW |
788 | } |
789 | ||
69eb5fa1 DW |
790 | int |
791 | xfs_break_layouts( | |
792 | struct inode *inode, | |
793 | uint *iolock, | |
794 | enum layout_break_reason reason) | |
795 | { | |
796 | bool retry; | |
d6dc57e2 | 797 | int error; |
69eb5fa1 DW |
798 | |
799 | ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)); | |
800 | ||
d6dc57e2 DW |
801 | do { |
802 | retry = false; | |
803 | switch (reason) { | |
804 | case BREAK_UNMAP: | |
a4722a64 | 805 | error = xfs_break_dax_layouts(inode, &retry); |
d6dc57e2 DW |
806 | if (error || retry) |
807 | break; | |
808 | /* fall through */ | |
809 | case BREAK_WRITE: | |
810 | error = xfs_break_leased_layouts(inode, iolock, &retry); | |
811 | break; | |
812 | default: | |
813 | WARN_ON_ONCE(1); | |
814 | error = -EINVAL; | |
815 | } | |
816 | } while (error == 0 && retry); | |
817 | ||
818 | return error; | |
69eb5fa1 DW |
819 | } |
820 | ||
a904b1ca NJ |
821 | #define XFS_FALLOC_FL_SUPPORTED \ |
822 | (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ | |
823 | FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ | |
98cc2db5 | 824 | FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) |
a904b1ca | 825 | |
2fe17c10 CH |
826 | STATIC long |
827 | xfs_file_fallocate( | |
83aee9e4 CH |
828 | struct file *file, |
829 | int mode, | |
830 | loff_t offset, | |
831 | loff_t len) | |
2fe17c10 | 832 | { |
83aee9e4 CH |
833 | struct inode *inode = file_inode(file); |
834 | struct xfs_inode *ip = XFS_I(inode); | |
83aee9e4 | 835 | long error; |
8add71ca | 836 | enum xfs_prealloc_flags flags = 0; |
c63a8eae | 837 | uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; |
83aee9e4 | 838 | loff_t new_size = 0; |
749f24f3 | 839 | bool do_file_insert = false; |
2fe17c10 | 840 | |
83aee9e4 CH |
841 | if (!S_ISREG(inode->i_mode)) |
842 | return -EINVAL; | |
a904b1ca | 843 | if (mode & ~XFS_FALLOC_FL_SUPPORTED) |
2fe17c10 CH |
844 | return -EOPNOTSUPP; |
845 | ||
781355c6 | 846 | xfs_ilock(ip, iolock); |
69eb5fa1 | 847 | error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); |
781355c6 CH |
848 | if (error) |
849 | goto out_unlock; | |
850 | ||
249bd908 DC |
851 | /* |
852 | * Must wait for all AIO to complete before we continue as AIO can | |
853 | * change the file size on completion without holding any locks we | |
854 | * currently hold. We must do this first because AIO can update both | |
855 | * the on disk and in memory inode sizes, and the operations that follow | |
856 | * require the in-memory size to be fully up-to-date. | |
857 | */ | |
858 | inode_dio_wait(inode); | |
859 | ||
860 | /* | |
861 | * Now AIO and DIO has drained we flush and (if necessary) invalidate | |
862 | * the cached range over the first operation we are about to run. | |
863 | * | |
864 | * We care about zero and collapse here because they both run a hole | |
865 | * punch over the range first. Because that can zero data, and the range | |
866 | * of invalidation for the shift operations is much larger, we still do | |
867 | * the required flush for collapse in xfs_prepare_shift(). | |
868 | * | |
869 | * Insert has the same range requirements as collapse, and we extend the | |
870 | * file first which can zero data. Hence insert has the same | |
871 | * flush/invalidate requirements as collapse and so they are both | |
872 | * handled at the right time by xfs_prepare_shift(). | |
873 | */ | |
874 | if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE | | |
875 | FALLOC_FL_COLLAPSE_RANGE)) { | |
876 | error = xfs_flush_unmap_range(ip, offset, len); | |
877 | if (error) | |
878 | goto out_unlock; | |
879 | } | |
880 | ||
83aee9e4 CH |
881 | if (mode & FALLOC_FL_PUNCH_HOLE) { |
882 | error = xfs_free_file_space(ip, offset, len); | |
883 | if (error) | |
884 | goto out_unlock; | |
e1d8fb88 | 885 | } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { |
25219dbf | 886 | if (!xfs_is_falloc_aligned(ip, offset, len)) { |
2451337d | 887 | error = -EINVAL; |
e1d8fb88 NJ |
888 | goto out_unlock; |
889 | } | |
890 | ||
23fffa92 LC |
891 | /* |
892 | * There is no need to overlap collapse range with EOF, | |
893 | * in which case it is effectively a truncate operation | |
894 | */ | |
895 | if (offset + len >= i_size_read(inode)) { | |
2451337d | 896 | error = -EINVAL; |
23fffa92 LC |
897 | goto out_unlock; |
898 | } | |
899 | ||
e1d8fb88 NJ |
900 | new_size = i_size_read(inode) - len; |
901 | ||
902 | error = xfs_collapse_file_space(ip, offset, len); | |
903 | if (error) | |
904 | goto out_unlock; | |
a904b1ca | 905 | } else if (mode & FALLOC_FL_INSERT_RANGE) { |
7d83fb14 | 906 | loff_t isize = i_size_read(inode); |
a904b1ca | 907 | |
25219dbf | 908 | if (!xfs_is_falloc_aligned(ip, offset, len)) { |
a904b1ca NJ |
909 | error = -EINVAL; |
910 | goto out_unlock; | |
911 | } | |
912 | ||
7d83fb14 DW |
913 | /* |
914 | * New inode size must not exceed ->s_maxbytes, accounting for | |
915 | * possible signed overflow. | |
916 | */ | |
917 | if (inode->i_sb->s_maxbytes - isize < len) { | |
a904b1ca NJ |
918 | error = -EFBIG; |
919 | goto out_unlock; | |
920 | } | |
7d83fb14 | 921 | new_size = isize + len; |
a904b1ca NJ |
922 | |
923 | /* Offset should be less than i_size */ | |
7d83fb14 | 924 | if (offset >= isize) { |
a904b1ca NJ |
925 | error = -EINVAL; |
926 | goto out_unlock; | |
927 | } | |
749f24f3 | 928 | do_file_insert = true; |
83aee9e4 | 929 | } else { |
8add71ca CH |
930 | flags |= XFS_PREALLOC_SET; |
931 | ||
83aee9e4 CH |
932 | if (!(mode & FALLOC_FL_KEEP_SIZE) && |
933 | offset + len > i_size_read(inode)) { | |
934 | new_size = offset + len; | |
2451337d | 935 | error = inode_newsize_ok(inode, new_size); |
83aee9e4 CH |
936 | if (error) |
937 | goto out_unlock; | |
938 | } | |
2fe17c10 | 939 | |
66ae56a5 | 940 | if (mode & FALLOC_FL_ZERO_RANGE) { |
360c09c0 CH |
941 | /* |
942 | * Punch a hole and prealloc the range. We use a hole | |
943 | * punch rather than unwritten extent conversion for two | |
944 | * reasons: | |
945 | * | |
946 | * 1.) Hole punch handles partial block zeroing for us. | |
947 | * 2.) If prealloc returns ENOSPC, the file range is | |
948 | * still zero-valued by virtue of the hole punch. | |
949 | */ | |
950 | unsigned int blksize = i_blocksize(inode); | |
951 | ||
952 | trace_xfs_zero_file_space(ip); | |
953 | ||
954 | error = xfs_free_file_space(ip, offset, len); | |
955 | if (error) | |
956 | goto out_unlock; | |
957 | ||
958 | len = round_up(offset + len, blksize) - | |
959 | round_down(offset, blksize); | |
960 | offset = round_down(offset, blksize); | |
66ae56a5 CH |
961 | } else if (mode & FALLOC_FL_UNSHARE_RANGE) { |
962 | error = xfs_reflink_unshare(ip, offset, len); | |
963 | if (error) | |
964 | goto out_unlock; | |
66ae56a5 CH |
965 | } else { |
966 | /* | |
967 | * If always_cow mode we can't use preallocations and | |
968 | * thus should not create them. | |
969 | */ | |
970 | if (xfs_is_always_cow_inode(ip)) { | |
971 | error = -EOPNOTSUPP; | |
972 | goto out_unlock; | |
973 | } | |
360c09c0 | 974 | } |
66ae56a5 | 975 | |
360c09c0 | 976 | if (!xfs_is_always_cow_inode(ip)) { |
376ba313 LC |
977 | error = xfs_alloc_file_space(ip, offset, len, |
978 | XFS_BMAPI_PREALLOC); | |
360c09c0 CH |
979 | if (error) |
980 | goto out_unlock; | |
98cc2db5 | 981 | } |
2fe17c10 CH |
982 | } |
983 | ||
83aee9e4 | 984 | if (file->f_flags & O_DSYNC) |
8add71ca CH |
985 | flags |= XFS_PREALLOC_SYNC; |
986 | ||
987 | error = xfs_update_prealloc_flags(ip, flags); | |
2fe17c10 CH |
988 | if (error) |
989 | goto out_unlock; | |
990 | ||
991 | /* Change file size if needed */ | |
992 | if (new_size) { | |
993 | struct iattr iattr; | |
994 | ||
995 | iattr.ia_valid = ATTR_SIZE; | |
996 | iattr.ia_size = new_size; | |
69bca807 | 997 | error = xfs_vn_setattr_size(file_dentry(file), &iattr); |
a904b1ca NJ |
998 | if (error) |
999 | goto out_unlock; | |
2fe17c10 CH |
1000 | } |
1001 | ||
a904b1ca NJ |
1002 | /* |
1003 | * Perform hole insertion now that the file size has been | |
1004 | * updated so that if we crash during the operation we don't | |
1005 | * leave shifted extents past EOF and hence losing access to | |
1006 | * the data that is contained within them. | |
1007 | */ | |
1008 | if (do_file_insert) | |
1009 | error = xfs_insert_file_space(ip, offset, len); | |
1010 | ||
2fe17c10 | 1011 | out_unlock: |
781355c6 | 1012 | xfs_iunlock(ip, iolock); |
2451337d | 1013 | return error; |
2fe17c10 CH |
1014 | } |
1015 | ||
40144e49 JK |
1016 | STATIC int |
1017 | xfs_file_fadvise( | |
1018 | struct file *file, | |
1019 | loff_t start, | |
1020 | loff_t end, | |
1021 | int advice) | |
1022 | { | |
1023 | struct xfs_inode *ip = XFS_I(file_inode(file)); | |
1024 | int ret; | |
1025 | int lockflags = 0; | |
1026 | ||
1027 | /* | |
1028 | * Operations creating pages in page cache need protection from hole | |
1029 | * punching and similar ops | |
1030 | */ | |
1031 | if (advice == POSIX_FADV_WILLNEED) { | |
1032 | lockflags = XFS_IOLOCK_SHARED; | |
1033 | xfs_ilock(ip, lockflags); | |
1034 | } | |
1035 | ret = generic_fadvise(file, start, end, advice); | |
1036 | if (lockflags) | |
1037 | xfs_iunlock(ip, lockflags); | |
1038 | return ret; | |
1039 | } | |
3fc9f5e4 | 1040 | |
5ffce3cc DW |
1041 | /* Does this file, inode, or mount want synchronous writes? */ |
1042 | static inline bool xfs_file_sync_writes(struct file *filp) | |
1043 | { | |
1044 | struct xfs_inode *ip = XFS_I(file_inode(filp)); | |
1045 | ||
1046 | if (ip->i_mount->m_flags & XFS_MOUNT_WSYNC) | |
1047 | return true; | |
1048 | if (filp->f_flags & (__O_SYNC | O_DSYNC)) | |
1049 | return true; | |
1050 | if (IS_SYNC(file_inode(filp))) | |
1051 | return true; | |
1052 | ||
1053 | return false; | |
1054 | } | |
1055 | ||
da034bcc | 1056 | STATIC loff_t |
2e5dfc99 | 1057 | xfs_file_remap_range( |
3fc9f5e4 DW |
1058 | struct file *file_in, |
1059 | loff_t pos_in, | |
1060 | struct file *file_out, | |
1061 | loff_t pos_out, | |
1062 | loff_t len, | |
1063 | unsigned int remap_flags) | |
9fe26045 | 1064 | { |
3fc9f5e4 DW |
1065 | struct inode *inode_in = file_inode(file_in); |
1066 | struct xfs_inode *src = XFS_I(inode_in); | |
1067 | struct inode *inode_out = file_inode(file_out); | |
1068 | struct xfs_inode *dest = XFS_I(inode_out); | |
1069 | struct xfs_mount *mp = src->i_mount; | |
1070 | loff_t remapped = 0; | |
1071 | xfs_extlen_t cowextsize; | |
1072 | int ret; | |
1073 | ||
2e5dfc99 DW |
1074 | if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) |
1075 | return -EINVAL; | |
cc714660 | 1076 | |
3fc9f5e4 DW |
1077 | if (!xfs_sb_version_hasreflink(&mp->m_sb)) |
1078 | return -EOPNOTSUPP; | |
1079 | ||
1080 | if (XFS_FORCED_SHUTDOWN(mp)) | |
1081 | return -EIO; | |
1082 | ||
1083 | /* Prepare and then clone file data. */ | |
1084 | ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, | |
1085 | &len, remap_flags); | |
451d34ee | 1086 | if (ret || len == 0) |
3fc9f5e4 DW |
1087 | return ret; |
1088 | ||
1089 | trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); | |
1090 | ||
1091 | ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len, | |
1092 | &remapped); | |
1093 | if (ret) | |
1094 | goto out_unlock; | |
1095 | ||
1096 | /* | |
1097 | * Carry the cowextsize hint from src to dest if we're sharing the | |
1098 | * entire source file to the entire destination file, the source file | |
1099 | * has a cowextsize hint, and the destination file does not. | |
1100 | */ | |
1101 | cowextsize = 0; | |
1102 | if (pos_in == 0 && len == i_size_read(inode_in) && | |
1103 | (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) && | |
1104 | pos_out == 0 && len >= i_size_read(inode_out) && | |
1105 | !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)) | |
1106 | cowextsize = src->i_d.di_cowextsize; | |
1107 | ||
1108 | ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, | |
1109 | remap_flags); | |
5833112d CH |
1110 | if (ret) |
1111 | goto out_unlock; | |
3fc9f5e4 | 1112 | |
5ffce3cc | 1113 | if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out)) |
5833112d | 1114 | xfs_log_force_inode(dest); |
3fc9f5e4 | 1115 | out_unlock: |
e2aaee9c | 1116 | xfs_iunlock2_io_mmap(src, dest); |
3fc9f5e4 DW |
1117 | if (ret) |
1118 | trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); | |
1119 | return remapped > 0 ? remapped : ret; | |
9fe26045 | 1120 | } |
2fe17c10 | 1121 | |
1da177e4 | 1122 | STATIC int |
3562fd45 | 1123 | xfs_file_open( |
1da177e4 | 1124 | struct inode *inode, |
f999a5bf | 1125 | struct file *file) |
1da177e4 | 1126 | { |
f999a5bf | 1127 | if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) |
1da177e4 | 1128 | return -EFBIG; |
f999a5bf CH |
1129 | if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) |
1130 | return -EIO; | |
f89fb730 | 1131 | file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; |
f999a5bf CH |
1132 | return 0; |
1133 | } | |
1134 | ||
1135 | STATIC int | |
1136 | xfs_dir_open( | |
1137 | struct inode *inode, | |
1138 | struct file *file) | |
1139 | { | |
1140 | struct xfs_inode *ip = XFS_I(inode); | |
1141 | int mode; | |
1142 | int error; | |
1143 | ||
1144 | error = xfs_file_open(inode, file); | |
1145 | if (error) | |
1146 | return error; | |
1147 | ||
1148 | /* | |
1149 | * If there are any blocks, read-ahead block 0 as we're almost | |
1150 | * certain to have the next operation be a read there. | |
1151 | */ | |
309ecac8 | 1152 | mode = xfs_ilock_data_map_shared(ip); |
daf83964 | 1153 | if (ip->i_df.if_nextents > 0) |
06566fda | 1154 | error = xfs_dir3_data_readahead(ip, 0, 0); |
f999a5bf | 1155 | xfs_iunlock(ip, mode); |
7a652bbe | 1156 | return error; |
1da177e4 LT |
1157 | } |
1158 | ||
1da177e4 | 1159 | STATIC int |
3562fd45 | 1160 | xfs_file_release( |
1da177e4 LT |
1161 | struct inode *inode, |
1162 | struct file *filp) | |
1163 | { | |
2451337d | 1164 | return xfs_release(XFS_I(inode)); |
1da177e4 LT |
1165 | } |
1166 | ||
1da177e4 | 1167 | STATIC int |
3562fd45 | 1168 | xfs_file_readdir( |
b8227554 AV |
1169 | struct file *file, |
1170 | struct dir_context *ctx) | |
1da177e4 | 1171 | { |
b8227554 | 1172 | struct inode *inode = file_inode(file); |
739bfb2a | 1173 | xfs_inode_t *ip = XFS_I(inode); |
051e7cd4 CH |
1174 | size_t bufsize; |
1175 | ||
1176 | /* | |
1177 | * The Linux API doesn't pass down the total size of the buffer | |
1178 | * we read into down to the filesystem. With the filldir concept | |
1179 | * it's not needed for correct information, but the XFS dir2 leaf | |
1180 | * code wants an estimate of the buffer size to calculate it's | |
1181 | * readahead window and size the buffers used for mapping to | |
1182 | * physical blocks. | |
1183 | * | |
1184 | * Try to give it an estimate that's good enough, maybe at some | |
1185 | * point we can change the ->readdir prototype to include the | |
a9cc799e | 1186 | * buffer size. For now we use the current glibc buffer size. |
051e7cd4 | 1187 | */ |
a5c46e5e | 1188 | bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size); |
051e7cd4 | 1189 | |
acb9553c | 1190 | return xfs_readdir(NULL, ip, ctx, bufsize); |
3fe3e6b1 JL |
1191 | } |
1192 | ||
1193 | STATIC loff_t | |
1194 | xfs_file_llseek( | |
1195 | struct file *file, | |
1196 | loff_t offset, | |
59f9c004 | 1197 | int whence) |
3fe3e6b1 | 1198 | { |
9b2970aa CH |
1199 | struct inode *inode = file->f_mapping->host; |
1200 | ||
1201 | if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) | |
1202 | return -EIO; | |
1203 | ||
59f9c004 | 1204 | switch (whence) { |
9b2970aa | 1205 | default: |
59f9c004 | 1206 | return generic_file_llseek(file, offset, whence); |
3fe3e6b1 | 1207 | case SEEK_HOLE: |
60271ab7 | 1208 | offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops); |
9b2970aa | 1209 | break; |
49c69591 | 1210 | case SEEK_DATA: |
60271ab7 | 1211 | offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops); |
9b2970aa | 1212 | break; |
3fe3e6b1 | 1213 | } |
9b2970aa CH |
1214 | |
1215 | if (offset < 0) | |
1216 | return offset; | |
1217 | return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); | |
3fe3e6b1 JL |
1218 | } |
1219 | ||
de0e8c20 DC |
1220 | /* |
1221 | * Locking for serialisation of IO during page faults. This results in a lock | |
1222 | * ordering of: | |
1223 | * | |
c1e8d7c6 | 1224 | * mmap_lock (MM) |
6b698ede | 1225 | * sb_start_pagefault(vfs, freeze) |
13ad4fe3 | 1226 | * i_mmaplock (XFS - truncate serialisation) |
6b698ede DC |
1227 | * page_lock (MM) |
1228 | * i_lock (XFS - extent map serialisation) | |
de0e8c20 | 1229 | */ |
05edd888 | 1230 | static vm_fault_t |
d522d569 CH |
1231 | __xfs_filemap_fault( |
1232 | struct vm_fault *vmf, | |
1233 | enum page_entry_size pe_size, | |
1234 | bool write_fault) | |
de0e8c20 | 1235 | { |
11bac800 | 1236 | struct inode *inode = file_inode(vmf->vma->vm_file); |
d522d569 | 1237 | struct xfs_inode *ip = XFS_I(inode); |
05edd888 | 1238 | vm_fault_t ret; |
de0e8c20 | 1239 | |
d522d569 | 1240 | trace_xfs_filemap_fault(ip, pe_size, write_fault); |
de0e8c20 | 1241 | |
d522d569 CH |
1242 | if (write_fault) { |
1243 | sb_start_pagefault(inode->i_sb); | |
1244 | file_update_time(vmf->vma->vm_file); | |
1245 | } | |
de0e8c20 | 1246 | |
d522d569 | 1247 | xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); |
6b698ede | 1248 | if (IS_DAX(inode)) { |
a39e596b CH |
1249 | pfn_t pfn; |
1250 | ||
690c2a38 CH |
1251 | ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, |
1252 | (write_fault && !vmf->cow_page) ? | |
f150b423 CH |
1253 | &xfs_direct_write_iomap_ops : |
1254 | &xfs_read_iomap_ops); | |
a39e596b CH |
1255 | if (ret & VM_FAULT_NEEDDSYNC) |
1256 | ret = dax_finish_sync_fault(vmf, pe_size, pfn); | |
6b698ede | 1257 | } else { |
d522d569 | 1258 | if (write_fault) |
f150b423 CH |
1259 | ret = iomap_page_mkwrite(vmf, |
1260 | &xfs_buffered_write_iomap_ops); | |
d522d569 CH |
1261 | else |
1262 | ret = filemap_fault(vmf); | |
6b698ede | 1263 | } |
6b698ede | 1264 | xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); |
6b698ede | 1265 | |
d522d569 CH |
1266 | if (write_fault) |
1267 | sb_end_pagefault(inode->i_sb); | |
6b698ede | 1268 | return ret; |
de0e8c20 DC |
1269 | } |
1270 | ||
b17164e2 MP |
1271 | static inline bool |
1272 | xfs_is_write_fault( | |
1273 | struct vm_fault *vmf) | |
1274 | { | |
1275 | return (vmf->flags & FAULT_FLAG_WRITE) && | |
1276 | (vmf->vma->vm_flags & VM_SHARED); | |
1277 | } | |
1278 | ||
05edd888 | 1279 | static vm_fault_t |
6b698ede | 1280 | xfs_filemap_fault( |
075a924d DC |
1281 | struct vm_fault *vmf) |
1282 | { | |
6b698ede | 1283 | /* DAX can shortcut the normal fault path on write faults! */ |
d522d569 CH |
1284 | return __xfs_filemap_fault(vmf, PE_SIZE_PTE, |
1285 | IS_DAX(file_inode(vmf->vma->vm_file)) && | |
b17164e2 | 1286 | xfs_is_write_fault(vmf)); |
6b698ede DC |
1287 | } |
1288 | ||
05edd888 | 1289 | static vm_fault_t |
a2d58167 | 1290 | xfs_filemap_huge_fault( |
c791ace1 DJ |
1291 | struct vm_fault *vmf, |
1292 | enum page_entry_size pe_size) | |
acd76e74 | 1293 | { |
d522d569 | 1294 | if (!IS_DAX(file_inode(vmf->vma->vm_file))) |
acd76e74 MW |
1295 | return VM_FAULT_FALLBACK; |
1296 | ||
d522d569 CH |
1297 | /* DAX can shortcut the normal fault path on write faults! */ |
1298 | return __xfs_filemap_fault(vmf, pe_size, | |
b17164e2 | 1299 | xfs_is_write_fault(vmf)); |
d522d569 | 1300 | } |
acd76e74 | 1301 | |
05edd888 | 1302 | static vm_fault_t |
d522d569 CH |
1303 | xfs_filemap_page_mkwrite( |
1304 | struct vm_fault *vmf) | |
1305 | { | |
1306 | return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); | |
acd76e74 MW |
1307 | } |
1308 | ||
3af49285 | 1309 | /* |
7b565c9f JK |
1310 | * pfn_mkwrite was originally intended to ensure we capture time stamp updates |
1311 | * on write faults. In reality, it needs to serialise against truncate and | |
1312 | * prepare memory for writing so handle is as standard write fault. | |
3af49285 | 1313 | */ |
05edd888 | 1314 | static vm_fault_t |
3af49285 | 1315 | xfs_filemap_pfn_mkwrite( |
3af49285 DC |
1316 | struct vm_fault *vmf) |
1317 | { | |
1318 | ||
7b565c9f | 1319 | return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); |
acd76e74 MW |
1320 | } |
1321 | ||
cd647d56 DC |
1322 | static void |
1323 | xfs_filemap_map_pages( | |
1324 | struct vm_fault *vmf, | |
1325 | pgoff_t start_pgoff, | |
1326 | pgoff_t end_pgoff) | |
1327 | { | |
1328 | struct inode *inode = file_inode(vmf->vma->vm_file); | |
1329 | ||
1330 | xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); | |
1331 | filemap_map_pages(vmf, start_pgoff, end_pgoff); | |
1332 | xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); | |
1333 | } | |
1334 | ||
6b698ede DC |
1335 | static const struct vm_operations_struct xfs_file_vm_ops = { |
1336 | .fault = xfs_filemap_fault, | |
a2d58167 | 1337 | .huge_fault = xfs_filemap_huge_fault, |
cd647d56 | 1338 | .map_pages = xfs_filemap_map_pages, |
6b698ede | 1339 | .page_mkwrite = xfs_filemap_page_mkwrite, |
3af49285 | 1340 | .pfn_mkwrite = xfs_filemap_pfn_mkwrite, |
6b698ede DC |
1341 | }; |
1342 | ||
1343 | STATIC int | |
1344 | xfs_file_mmap( | |
30fa529e CH |
1345 | struct file *file, |
1346 | struct vm_area_struct *vma) | |
6b698ede | 1347 | { |
30fa529e CH |
1348 | struct inode *inode = file_inode(file); |
1349 | struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode)); | |
b21fec41 | 1350 | |
a39e596b | 1351 | /* |
b21fec41 PG |
1352 | * We don't support synchronous mappings for non-DAX files and |
1353 | * for DAX files if underneath dax_device is not synchronous. | |
a39e596b | 1354 | */ |
30fa529e | 1355 | if (!daxdev_mapping_supported(vma, target->bt_daxdev)) |
a39e596b CH |
1356 | return -EOPNOTSUPP; |
1357 | ||
30fa529e | 1358 | file_accessed(file); |
6b698ede | 1359 | vma->vm_ops = &xfs_file_vm_ops; |
30fa529e | 1360 | if (IS_DAX(inode)) |
e1fb4a08 | 1361 | vma->vm_flags |= VM_HUGEPAGE; |
6b698ede | 1362 | return 0; |
075a924d DC |
1363 | } |
1364 | ||
4b6f5d20 | 1365 | const struct file_operations xfs_file_operations = { |
3fe3e6b1 | 1366 | .llseek = xfs_file_llseek, |
b4f5d2c6 | 1367 | .read_iter = xfs_file_read_iter, |
bf97f3bc | 1368 | .write_iter = xfs_file_write_iter, |
82c156f8 | 1369 | .splice_read = generic_file_splice_read, |
8d020765 | 1370 | .splice_write = iter_file_splice_write, |
81214bab | 1371 | .iopoll = iomap_dio_iopoll, |
3562fd45 | 1372 | .unlocked_ioctl = xfs_file_ioctl, |
1da177e4 | 1373 | #ifdef CONFIG_COMPAT |
3562fd45 | 1374 | .compat_ioctl = xfs_file_compat_ioctl, |
1da177e4 | 1375 | #endif |
3562fd45 | 1376 | .mmap = xfs_file_mmap, |
a39e596b | 1377 | .mmap_supported_flags = MAP_SYNC, |
3562fd45 NS |
1378 | .open = xfs_file_open, |
1379 | .release = xfs_file_release, | |
1380 | .fsync = xfs_file_fsync, | |
dbe6ec81 | 1381 | .get_unmapped_area = thp_get_unmapped_area, |
2fe17c10 | 1382 | .fallocate = xfs_file_fallocate, |
40144e49 | 1383 | .fadvise = xfs_file_fadvise, |
2e5dfc99 | 1384 | .remap_file_range = xfs_file_remap_range, |
1da177e4 LT |
1385 | }; |
1386 | ||
4b6f5d20 | 1387 | const struct file_operations xfs_dir_file_operations = { |
f999a5bf | 1388 | .open = xfs_dir_open, |
1da177e4 | 1389 | .read = generic_read_dir, |
3b0a3c1a | 1390 | .iterate_shared = xfs_file_readdir, |
59af1584 | 1391 | .llseek = generic_file_llseek, |
3562fd45 | 1392 | .unlocked_ioctl = xfs_file_ioctl, |
d3870398 | 1393 | #ifdef CONFIG_COMPAT |
3562fd45 | 1394 | .compat_ioctl = xfs_file_compat_ioctl, |
d3870398 | 1395 | #endif |
1da2f2db | 1396 | .fsync = xfs_dir_fsync, |
1da177e4 | 1397 | }; |