]>
Commit | Line | Data |
---|---|---|
c1d7c514 | 1 | // SPDX-License-Identifier: GPL-2.0 |
53b381b3 DW |
2 | /* |
3 | * Copyright (C) 2012 Fusion-io All rights reserved. | |
4 | * Copyright (C) 2012 Intel Corp. All rights reserved. | |
53b381b3 | 5 | */ |
c1d7c514 | 6 | |
53b381b3 | 7 | #include <linux/sched.h> |
53b381b3 DW |
8 | #include <linux/bio.h> |
9 | #include <linux/slab.h> | |
53b381b3 | 10 | #include <linux/blkdev.h> |
53b381b3 DW |
11 | #include <linux/raid/pq.h> |
12 | #include <linux/hash.h> | |
13 | #include <linux/list_sort.h> | |
14 | #include <linux/raid/xor.h> | |
818e010b | 15 | #include <linux/mm.h> |
53b381b3 | 16 | #include "ctree.h" |
53b381b3 | 17 | #include "disk-io.h" |
53b381b3 DW |
18 | #include "volumes.h" |
19 | #include "raid56.h" | |
20 | #include "async-thread.h" | |
53b381b3 DW |
21 | |
22 | /* set when additional merges to this rbio are not allowed */ | |
23 | #define RBIO_RMW_LOCKED_BIT 1 | |
24 | ||
4ae10b3a CM |
25 | /* |
26 | * set when this rbio is sitting in the hash, but it is just a cache | |
27 | * of past RMW | |
28 | */ | |
29 | #define RBIO_CACHE_BIT 2 | |
30 | ||
31 | /* | |
32 | * set when it is safe to trust the stripe_pages for caching | |
33 | */ | |
34 | #define RBIO_CACHE_READY_BIT 3 | |
35 | ||
4ae10b3a CM |
36 | #define RBIO_CACHE_SIZE 1024 |
37 | ||
8a953348 DS |
38 | #define BTRFS_STRIPE_HASH_TABLE_BITS 11 |
39 | ||
40 | /* Used by the raid56 code to lock stripes for read/modify/write */ | |
41 | struct btrfs_stripe_hash { | |
42 | struct list_head hash_list; | |
43 | spinlock_t lock; | |
44 | }; | |
45 | ||
46 | /* Used by the raid56 code to lock stripes for read/modify/write */ | |
47 | struct btrfs_stripe_hash_table { | |
48 | struct list_head stripe_cache; | |
49 | spinlock_t cache_lock; | |
50 | int cache_size; | |
51 | struct btrfs_stripe_hash table[]; | |
52 | }; | |
53 | ||
1b94b556 | 54 | enum btrfs_rbio_ops { |
b4ee1782 OS |
55 | BTRFS_RBIO_WRITE, |
56 | BTRFS_RBIO_READ_REBUILD, | |
57 | BTRFS_RBIO_PARITY_SCRUB, | |
58 | BTRFS_RBIO_REBUILD_MISSING, | |
1b94b556 MX |
59 | }; |
60 | ||
53b381b3 DW |
61 | struct btrfs_raid_bio { |
62 | struct btrfs_fs_info *fs_info; | |
63 | struct btrfs_bio *bbio; | |
64 | ||
53b381b3 DW |
65 | /* while we're doing rmw on a stripe |
66 | * we put it into a hash table so we can | |
67 | * lock the stripe and merge more rbios | |
68 | * into it. | |
69 | */ | |
70 | struct list_head hash_list; | |
71 | ||
4ae10b3a CM |
72 | /* |
73 | * LRU list for the stripe cache | |
74 | */ | |
75 | struct list_head stripe_cache; | |
76 | ||
53b381b3 DW |
77 | /* |
78 | * for scheduling work in the helper threads | |
79 | */ | |
80 | struct btrfs_work work; | |
81 | ||
82 | /* | |
83 | * bio list and bio_list_lock are used | |
84 | * to add more bios into the stripe | |
85 | * in hopes of avoiding the full rmw | |
86 | */ | |
87 | struct bio_list bio_list; | |
88 | spinlock_t bio_list_lock; | |
89 | ||
6ac0f488 CM |
90 | /* also protected by the bio_list_lock, the |
91 | * plug list is used by the plugging code | |
92 | * to collect partial bios while plugged. The | |
93 | * stripe locking code also uses it to hand off | |
53b381b3 DW |
94 | * the stripe lock to the next pending IO |
95 | */ | |
96 | struct list_head plug_list; | |
97 | ||
98 | /* | |
99 | * flags that tell us if it is safe to | |
100 | * merge with this bio | |
101 | */ | |
102 | unsigned long flags; | |
103 | ||
104 | /* size of each individual stripe on disk */ | |
105 | int stripe_len; | |
106 | ||
107 | /* number of data stripes (no p/q) */ | |
108 | int nr_data; | |
109 | ||
2c8cdd6e MX |
110 | int real_stripes; |
111 | ||
5a6ac9ea | 112 | int stripe_npages; |
53b381b3 DW |
113 | /* |
114 | * set if we're doing a parity rebuild | |
115 | * for a read from higher up, which is handled | |
116 | * differently from a parity rebuild as part of | |
117 | * rmw | |
118 | */ | |
1b94b556 | 119 | enum btrfs_rbio_ops operation; |
53b381b3 DW |
120 | |
121 | /* first bad stripe */ | |
122 | int faila; | |
123 | ||
124 | /* second bad stripe (for raid6 use) */ | |
125 | int failb; | |
126 | ||
5a6ac9ea | 127 | int scrubp; |
53b381b3 DW |
128 | /* |
129 | * number of pages needed to represent the full | |
130 | * stripe | |
131 | */ | |
132 | int nr_pages; | |
133 | ||
134 | /* | |
135 | * size of all the bios in the bio_list. This | |
136 | * helps us decide if the rbio maps to a full | |
137 | * stripe or not | |
138 | */ | |
139 | int bio_list_bytes; | |
140 | ||
4245215d MX |
141 | int generic_bio_cnt; |
142 | ||
dec95574 | 143 | refcount_t refs; |
53b381b3 | 144 | |
b89e1b01 MX |
145 | atomic_t stripes_pending; |
146 | ||
147 | atomic_t error; | |
53b381b3 DW |
148 | /* |
149 | * these are two arrays of pointers. We allocate the | |
150 | * rbio big enough to hold them both and setup their | |
151 | * locations when the rbio is allocated | |
152 | */ | |
153 | ||
154 | /* pointers to pages that we allocated for | |
155 | * reading/writing stripes directly from the disk (including P/Q) | |
156 | */ | |
157 | struct page **stripe_pages; | |
158 | ||
159 | /* | |
160 | * pointers to the pages in the bio_list. Stored | |
161 | * here for faster lookup | |
162 | */ | |
163 | struct page **bio_pages; | |
5a6ac9ea MX |
164 | |
165 | /* | |
166 | * bitmap to record which horizontal stripe has data | |
167 | */ | |
168 | unsigned long *dbitmap; | |
1389053e KC |
169 | |
170 | /* allocated with real_stripes-many pointers for finish_*() calls */ | |
171 | void **finish_pointers; | |
172 | ||
173 | /* allocated with stripe_npages-many bits for finish_*() calls */ | |
174 | unsigned long *finish_pbitmap; | |
53b381b3 DW |
175 | }; |
176 | ||
177 | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); | |
178 | static noinline void finish_rmw(struct btrfs_raid_bio *rbio); | |
179 | static void rmw_work(struct btrfs_work *work); | |
180 | static void read_rebuild_work(struct btrfs_work *work); | |
53b381b3 DW |
181 | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); |
182 | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); | |
183 | static void __free_raid_bio(struct btrfs_raid_bio *rbio); | |
184 | static void index_rbio_pages(struct btrfs_raid_bio *rbio); | |
185 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); | |
186 | ||
5a6ac9ea MX |
187 | static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, |
188 | int need_check); | |
a81b747d | 189 | static void scrub_parity_work(struct btrfs_work *work); |
5a6ac9ea | 190 | |
ac638859 DS |
191 | static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func) |
192 | { | |
a0cac0ec | 193 | btrfs_init_work(&rbio->work, work_func, NULL, NULL); |
ac638859 DS |
194 | btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); |
195 | } | |
196 | ||
53b381b3 DW |
197 | /* |
198 | * the stripe hash table is used for locking, and to collect | |
199 | * bios in hopes of making a full stripe | |
200 | */ | |
201 | int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) | |
202 | { | |
203 | struct btrfs_stripe_hash_table *table; | |
204 | struct btrfs_stripe_hash_table *x; | |
205 | struct btrfs_stripe_hash *cur; | |
206 | struct btrfs_stripe_hash *h; | |
207 | int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; | |
208 | int i; | |
209 | ||
210 | if (info->stripe_hash_table) | |
211 | return 0; | |
212 | ||
83c8266a DS |
213 | /* |
214 | * The table is large, starting with order 4 and can go as high as | |
215 | * order 7 in case lock debugging is turned on. | |
216 | * | |
217 | * Try harder to allocate and fallback to vmalloc to lower the chance | |
218 | * of a failing mount. | |
219 | */ | |
ee787f95 | 220 | table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL); |
818e010b DS |
221 | if (!table) |
222 | return -ENOMEM; | |
53b381b3 | 223 | |
4ae10b3a CM |
224 | spin_lock_init(&table->cache_lock); |
225 | INIT_LIST_HEAD(&table->stripe_cache); | |
226 | ||
53b381b3 DW |
227 | h = table->table; |
228 | ||
229 | for (i = 0; i < num_entries; i++) { | |
230 | cur = h + i; | |
231 | INIT_LIST_HEAD(&cur->hash_list); | |
232 | spin_lock_init(&cur->lock); | |
53b381b3 DW |
233 | } |
234 | ||
235 | x = cmpxchg(&info->stripe_hash_table, NULL, table); | |
f749303b WS |
236 | if (x) |
237 | kvfree(x); | |
53b381b3 DW |
238 | return 0; |
239 | } | |
240 | ||
4ae10b3a CM |
241 | /* |
242 | * caching an rbio means to copy anything from the | |
243 | * bio_pages array into the stripe_pages array. We | |
244 | * use the page uptodate bit in the stripe cache array | |
245 | * to indicate if it has valid data | |
246 | * | |
247 | * once the caching is done, we set the cache ready | |
248 | * bit. | |
249 | */ | |
250 | static void cache_rbio_pages(struct btrfs_raid_bio *rbio) | |
251 | { | |
252 | int i; | |
253 | char *s; | |
254 | char *d; | |
255 | int ret; | |
256 | ||
257 | ret = alloc_rbio_pages(rbio); | |
258 | if (ret) | |
259 | return; | |
260 | ||
261 | for (i = 0; i < rbio->nr_pages; i++) { | |
262 | if (!rbio->bio_pages[i]) | |
263 | continue; | |
264 | ||
265 | s = kmap(rbio->bio_pages[i]); | |
266 | d = kmap(rbio->stripe_pages[i]); | |
267 | ||
69d24804 | 268 | copy_page(d, s); |
4ae10b3a CM |
269 | |
270 | kunmap(rbio->bio_pages[i]); | |
271 | kunmap(rbio->stripe_pages[i]); | |
272 | SetPageUptodate(rbio->stripe_pages[i]); | |
273 | } | |
274 | set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | |
275 | } | |
276 | ||
53b381b3 DW |
277 | /* |
278 | * we hash on the first logical address of the stripe | |
279 | */ | |
280 | static int rbio_bucket(struct btrfs_raid_bio *rbio) | |
281 | { | |
8e5cfb55 | 282 | u64 num = rbio->bbio->raid_map[0]; |
53b381b3 DW |
283 | |
284 | /* | |
285 | * we shift down quite a bit. We're using byte | |
286 | * addressing, and most of the lower bits are zeros. | |
287 | * This tends to upset hash_64, and it consistently | |
288 | * returns just one or two different values. | |
289 | * | |
290 | * shifting off the lower bits fixes things. | |
291 | */ | |
292 | return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); | |
293 | } | |
294 | ||
4ae10b3a CM |
295 | /* |
296 | * stealing an rbio means taking all the uptodate pages from the stripe | |
297 | * array in the source rbio and putting them into the destination rbio | |
298 | */ | |
299 | static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) | |
300 | { | |
301 | int i; | |
302 | struct page *s; | |
303 | struct page *d; | |
304 | ||
305 | if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) | |
306 | return; | |
307 | ||
308 | for (i = 0; i < dest->nr_pages; i++) { | |
309 | s = src->stripe_pages[i]; | |
310 | if (!s || !PageUptodate(s)) { | |
311 | continue; | |
312 | } | |
313 | ||
314 | d = dest->stripe_pages[i]; | |
315 | if (d) | |
316 | __free_page(d); | |
317 | ||
318 | dest->stripe_pages[i] = s; | |
319 | src->stripe_pages[i] = NULL; | |
320 | } | |
321 | } | |
322 | ||
53b381b3 DW |
323 | /* |
324 | * merging means we take the bio_list from the victim and | |
325 | * splice it into the destination. The victim should | |
326 | * be discarded afterwards. | |
327 | * | |
328 | * must be called with dest->rbio_list_lock held | |
329 | */ | |
330 | static void merge_rbio(struct btrfs_raid_bio *dest, | |
331 | struct btrfs_raid_bio *victim) | |
332 | { | |
333 | bio_list_merge(&dest->bio_list, &victim->bio_list); | |
334 | dest->bio_list_bytes += victim->bio_list_bytes; | |
4245215d | 335 | dest->generic_bio_cnt += victim->generic_bio_cnt; |
53b381b3 DW |
336 | bio_list_init(&victim->bio_list); |
337 | } | |
338 | ||
339 | /* | |
4ae10b3a CM |
340 | * used to prune items that are in the cache. The caller |
341 | * must hold the hash table lock. | |
342 | */ | |
343 | static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | |
344 | { | |
345 | int bucket = rbio_bucket(rbio); | |
346 | struct btrfs_stripe_hash_table *table; | |
347 | struct btrfs_stripe_hash *h; | |
348 | int freeit = 0; | |
349 | ||
350 | /* | |
351 | * check the bit again under the hash table lock. | |
352 | */ | |
353 | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | |
354 | return; | |
355 | ||
356 | table = rbio->fs_info->stripe_hash_table; | |
357 | h = table->table + bucket; | |
358 | ||
359 | /* hold the lock for the bucket because we may be | |
360 | * removing it from the hash table | |
361 | */ | |
362 | spin_lock(&h->lock); | |
363 | ||
364 | /* | |
365 | * hold the lock for the bio list because we need | |
366 | * to make sure the bio list is empty | |
367 | */ | |
368 | spin_lock(&rbio->bio_list_lock); | |
369 | ||
370 | if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { | |
371 | list_del_init(&rbio->stripe_cache); | |
372 | table->cache_size -= 1; | |
373 | freeit = 1; | |
374 | ||
375 | /* if the bio list isn't empty, this rbio is | |
376 | * still involved in an IO. We take it out | |
377 | * of the cache list, and drop the ref that | |
378 | * was held for the list. | |
379 | * | |
380 | * If the bio_list was empty, we also remove | |
381 | * the rbio from the hash_table, and drop | |
382 | * the corresponding ref | |
383 | */ | |
384 | if (bio_list_empty(&rbio->bio_list)) { | |
385 | if (!list_empty(&rbio->hash_list)) { | |
386 | list_del_init(&rbio->hash_list); | |
dec95574 | 387 | refcount_dec(&rbio->refs); |
4ae10b3a CM |
388 | BUG_ON(!list_empty(&rbio->plug_list)); |
389 | } | |
390 | } | |
391 | } | |
392 | ||
393 | spin_unlock(&rbio->bio_list_lock); | |
394 | spin_unlock(&h->lock); | |
395 | ||
396 | if (freeit) | |
397 | __free_raid_bio(rbio); | |
398 | } | |
399 | ||
400 | /* | |
401 | * prune a given rbio from the cache | |
402 | */ | |
403 | static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | |
404 | { | |
405 | struct btrfs_stripe_hash_table *table; | |
406 | unsigned long flags; | |
407 | ||
408 | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | |
409 | return; | |
410 | ||
411 | table = rbio->fs_info->stripe_hash_table; | |
412 | ||
413 | spin_lock_irqsave(&table->cache_lock, flags); | |
414 | __remove_rbio_from_cache(rbio); | |
415 | spin_unlock_irqrestore(&table->cache_lock, flags); | |
416 | } | |
417 | ||
418 | /* | |
419 | * remove everything in the cache | |
420 | */ | |
48a3b636 | 421 | static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) |
4ae10b3a CM |
422 | { |
423 | struct btrfs_stripe_hash_table *table; | |
424 | unsigned long flags; | |
425 | struct btrfs_raid_bio *rbio; | |
426 | ||
427 | table = info->stripe_hash_table; | |
428 | ||
429 | spin_lock_irqsave(&table->cache_lock, flags); | |
430 | while (!list_empty(&table->stripe_cache)) { | |
431 | rbio = list_entry(table->stripe_cache.next, | |
432 | struct btrfs_raid_bio, | |
433 | stripe_cache); | |
434 | __remove_rbio_from_cache(rbio); | |
435 | } | |
436 | spin_unlock_irqrestore(&table->cache_lock, flags); | |
437 | } | |
438 | ||
439 | /* | |
440 | * remove all cached entries and free the hash table | |
441 | * used by unmount | |
53b381b3 DW |
442 | */ |
443 | void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) | |
444 | { | |
445 | if (!info->stripe_hash_table) | |
446 | return; | |
4ae10b3a | 447 | btrfs_clear_rbio_cache(info); |
f749303b | 448 | kvfree(info->stripe_hash_table); |
53b381b3 DW |
449 | info->stripe_hash_table = NULL; |
450 | } | |
451 | ||
4ae10b3a CM |
452 | /* |
453 | * insert an rbio into the stripe cache. It | |
454 | * must have already been prepared by calling | |
455 | * cache_rbio_pages | |
456 | * | |
457 | * If this rbio was already cached, it gets | |
458 | * moved to the front of the lru. | |
459 | * | |
460 | * If the size of the rbio cache is too big, we | |
461 | * prune an item. | |
462 | */ | |
463 | static void cache_rbio(struct btrfs_raid_bio *rbio) | |
464 | { | |
465 | struct btrfs_stripe_hash_table *table; | |
466 | unsigned long flags; | |
467 | ||
468 | if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) | |
469 | return; | |
470 | ||
471 | table = rbio->fs_info->stripe_hash_table; | |
472 | ||
473 | spin_lock_irqsave(&table->cache_lock, flags); | |
474 | spin_lock(&rbio->bio_list_lock); | |
475 | ||
476 | /* bump our ref if we were not in the list before */ | |
477 | if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) | |
dec95574 | 478 | refcount_inc(&rbio->refs); |
4ae10b3a CM |
479 | |
480 | if (!list_empty(&rbio->stripe_cache)){ | |
481 | list_move(&rbio->stripe_cache, &table->stripe_cache); | |
482 | } else { | |
483 | list_add(&rbio->stripe_cache, &table->stripe_cache); | |
484 | table->cache_size += 1; | |
485 | } | |
486 | ||
487 | spin_unlock(&rbio->bio_list_lock); | |
488 | ||
489 | if (table->cache_size > RBIO_CACHE_SIZE) { | |
490 | struct btrfs_raid_bio *found; | |
491 | ||
492 | found = list_entry(table->stripe_cache.prev, | |
493 | struct btrfs_raid_bio, | |
494 | stripe_cache); | |
495 | ||
496 | if (found != rbio) | |
497 | __remove_rbio_from_cache(found); | |
498 | } | |
499 | ||
500 | spin_unlock_irqrestore(&table->cache_lock, flags); | |
4ae10b3a CM |
501 | } |
502 | ||
53b381b3 DW |
503 | /* |
504 | * helper function to run the xor_blocks api. It is only | |
505 | * able to do MAX_XOR_BLOCKS at a time, so we need to | |
506 | * loop through. | |
507 | */ | |
508 | static void run_xor(void **pages, int src_cnt, ssize_t len) | |
509 | { | |
510 | int src_off = 0; | |
511 | int xor_src_cnt = 0; | |
512 | void *dest = pages[src_cnt]; | |
513 | ||
514 | while(src_cnt > 0) { | |
515 | xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); | |
516 | xor_blocks(xor_src_cnt, len, dest, pages + src_off); | |
517 | ||
518 | src_cnt -= xor_src_cnt; | |
519 | src_off += xor_src_cnt; | |
520 | } | |
521 | } | |
522 | ||
523 | /* | |
176571a1 DS |
524 | * Returns true if the bio list inside this rbio covers an entire stripe (no |
525 | * rmw required). | |
53b381b3 | 526 | */ |
176571a1 | 527 | static int rbio_is_full(struct btrfs_raid_bio *rbio) |
53b381b3 | 528 | { |
176571a1 | 529 | unsigned long flags; |
53b381b3 DW |
530 | unsigned long size = rbio->bio_list_bytes; |
531 | int ret = 1; | |
532 | ||
176571a1 | 533 | spin_lock_irqsave(&rbio->bio_list_lock, flags); |
53b381b3 DW |
534 | if (size != rbio->nr_data * rbio->stripe_len) |
535 | ret = 0; | |
53b381b3 | 536 | BUG_ON(size > rbio->nr_data * rbio->stripe_len); |
53b381b3 | 537 | spin_unlock_irqrestore(&rbio->bio_list_lock, flags); |
176571a1 | 538 | |
53b381b3 DW |
539 | return ret; |
540 | } | |
541 | ||
542 | /* | |
543 | * returns 1 if it is safe to merge two rbios together. | |
544 | * The merging is safe if the two rbios correspond to | |
545 | * the same stripe and if they are both going in the same | |
546 | * direction (read vs write), and if neither one is | |
547 | * locked for final IO | |
548 | * | |
549 | * The caller is responsible for locking such that | |
550 | * rmw_locked is safe to test | |
551 | */ | |
552 | static int rbio_can_merge(struct btrfs_raid_bio *last, | |
553 | struct btrfs_raid_bio *cur) | |
554 | { | |
555 | if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || | |
556 | test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) | |
557 | return 0; | |
558 | ||
4ae10b3a CM |
559 | /* |
560 | * we can't merge with cached rbios, since the | |
561 | * idea is that when we merge the destination | |
562 | * rbio is going to run our IO for us. We can | |
01327610 | 563 | * steal from cached rbios though, other functions |
4ae10b3a CM |
564 | * handle that. |
565 | */ | |
566 | if (test_bit(RBIO_CACHE_BIT, &last->flags) || | |
567 | test_bit(RBIO_CACHE_BIT, &cur->flags)) | |
568 | return 0; | |
569 | ||
8e5cfb55 ZL |
570 | if (last->bbio->raid_map[0] != |
571 | cur->bbio->raid_map[0]) | |
53b381b3 DW |
572 | return 0; |
573 | ||
5a6ac9ea MX |
574 | /* we can't merge with different operations */ |
575 | if (last->operation != cur->operation) | |
576 | return 0; | |
577 | /* | |
578 | * We've need read the full stripe from the drive. | |
579 | * check and repair the parity and write the new results. | |
580 | * | |
581 | * We're not allowed to add any new bios to the | |
582 | * bio list here, anyone else that wants to | |
583 | * change this stripe needs to do their own rmw. | |
584 | */ | |
db34be19 | 585 | if (last->operation == BTRFS_RBIO_PARITY_SCRUB) |
53b381b3 | 586 | return 0; |
53b381b3 | 587 | |
db34be19 | 588 | if (last->operation == BTRFS_RBIO_REBUILD_MISSING) |
b4ee1782 OS |
589 | return 0; |
590 | ||
cc54ff62 LB |
591 | if (last->operation == BTRFS_RBIO_READ_REBUILD) { |
592 | int fa = last->faila; | |
593 | int fb = last->failb; | |
594 | int cur_fa = cur->faila; | |
595 | int cur_fb = cur->failb; | |
596 | ||
597 | if (last->faila >= last->failb) { | |
598 | fa = last->failb; | |
599 | fb = last->faila; | |
600 | } | |
601 | ||
602 | if (cur->faila >= cur->failb) { | |
603 | cur_fa = cur->failb; | |
604 | cur_fb = cur->faila; | |
605 | } | |
606 | ||
607 | if (fa != cur_fa || fb != cur_fb) | |
608 | return 0; | |
609 | } | |
53b381b3 DW |
610 | return 1; |
611 | } | |
612 | ||
b7178a5f ZL |
613 | static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe, |
614 | int index) | |
615 | { | |
616 | return stripe * rbio->stripe_npages + index; | |
617 | } | |
618 | ||
619 | /* | |
620 | * these are just the pages from the rbio array, not from anything | |
621 | * the FS sent down to us | |
622 | */ | |
623 | static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, | |
624 | int index) | |
625 | { | |
626 | return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)]; | |
627 | } | |
628 | ||
53b381b3 DW |
629 | /* |
630 | * helper to index into the pstripe | |
631 | */ | |
632 | static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) | |
633 | { | |
b7178a5f | 634 | return rbio_stripe_page(rbio, rbio->nr_data, index); |
53b381b3 DW |
635 | } |
636 | ||
637 | /* | |
638 | * helper to index into the qstripe, returns null | |
639 | * if there is no qstripe | |
640 | */ | |
641 | static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) | |
642 | { | |
2c8cdd6e | 643 | if (rbio->nr_data + 1 == rbio->real_stripes) |
53b381b3 | 644 | return NULL; |
b7178a5f | 645 | return rbio_stripe_page(rbio, rbio->nr_data + 1, index); |
53b381b3 DW |
646 | } |
647 | ||
648 | /* | |
649 | * The first stripe in the table for a logical address | |
650 | * has the lock. rbios are added in one of three ways: | |
651 | * | |
652 | * 1) Nobody has the stripe locked yet. The rbio is given | |
653 | * the lock and 0 is returned. The caller must start the IO | |
654 | * themselves. | |
655 | * | |
656 | * 2) Someone has the stripe locked, but we're able to merge | |
657 | * with the lock owner. The rbio is freed and the IO will | |
658 | * start automatically along with the existing rbio. 1 is returned. | |
659 | * | |
660 | * 3) Someone has the stripe locked, but we're not able to merge. | |
661 | * The rbio is added to the lock owner's plug list, or merged into | |
662 | * an rbio already on the plug list. When the lock owner unlocks, | |
663 | * the next rbio on the list is run and the IO is started automatically. | |
664 | * 1 is returned | |
665 | * | |
666 | * If we return 0, the caller still owns the rbio and must continue with | |
667 | * IO submission. If we return 1, the caller must assume the rbio has | |
668 | * already been freed. | |
669 | */ | |
670 | static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) | |
671 | { | |
721860d5 | 672 | struct btrfs_stripe_hash *h; |
53b381b3 DW |
673 | struct btrfs_raid_bio *cur; |
674 | struct btrfs_raid_bio *pending; | |
675 | unsigned long flags; | |
53b381b3 | 676 | struct btrfs_raid_bio *freeit = NULL; |
4ae10b3a | 677 | struct btrfs_raid_bio *cache_drop = NULL; |
53b381b3 | 678 | int ret = 0; |
53b381b3 | 679 | |
721860d5 JT |
680 | h = rbio->fs_info->stripe_hash_table->table + rbio_bucket(rbio); |
681 | ||
53b381b3 DW |
682 | spin_lock_irqsave(&h->lock, flags); |
683 | list_for_each_entry(cur, &h->hash_list, hash_list) { | |
9d6cb1b0 JT |
684 | if (cur->bbio->raid_map[0] != rbio->bbio->raid_map[0]) |
685 | continue; | |
4ae10b3a | 686 | |
9d6cb1b0 | 687 | spin_lock(&cur->bio_list_lock); |
4ae10b3a | 688 | |
9d6cb1b0 JT |
689 | /* Can we steal this cached rbio's pages? */ |
690 | if (bio_list_empty(&cur->bio_list) && | |
691 | list_empty(&cur->plug_list) && | |
692 | test_bit(RBIO_CACHE_BIT, &cur->flags) && | |
693 | !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { | |
694 | list_del_init(&cur->hash_list); | |
695 | refcount_dec(&cur->refs); | |
53b381b3 | 696 | |
9d6cb1b0 JT |
697 | steal_rbio(cur, rbio); |
698 | cache_drop = cur; | |
699 | spin_unlock(&cur->bio_list_lock); | |
4ae10b3a | 700 | |
9d6cb1b0 JT |
701 | goto lockit; |
702 | } | |
53b381b3 | 703 | |
9d6cb1b0 JT |
704 | /* Can we merge into the lock owner? */ |
705 | if (rbio_can_merge(cur, rbio)) { | |
706 | merge_rbio(cur, rbio); | |
53b381b3 | 707 | spin_unlock(&cur->bio_list_lock); |
9d6cb1b0 | 708 | freeit = rbio; |
53b381b3 DW |
709 | ret = 1; |
710 | goto out; | |
711 | } | |
9d6cb1b0 JT |
712 | |
713 | ||
714 | /* | |
715 | * We couldn't merge with the running rbio, see if we can merge | |
716 | * with the pending ones. We don't have to check for rmw_locked | |
717 | * because there is no way they are inside finish_rmw right now | |
718 | */ | |
719 | list_for_each_entry(pending, &cur->plug_list, plug_list) { | |
720 | if (rbio_can_merge(pending, rbio)) { | |
721 | merge_rbio(pending, rbio); | |
722 | spin_unlock(&cur->bio_list_lock); | |
723 | freeit = rbio; | |
724 | ret = 1; | |
725 | goto out; | |
726 | } | |
727 | } | |
728 | ||
729 | /* | |
730 | * No merging, put us on the tail of the plug list, our rbio | |
731 | * will be started with the currently running rbio unlocks | |
732 | */ | |
733 | list_add_tail(&rbio->plug_list, &cur->plug_list); | |
734 | spin_unlock(&cur->bio_list_lock); | |
735 | ret = 1; | |
736 | goto out; | |
53b381b3 | 737 | } |
4ae10b3a | 738 | lockit: |
dec95574 | 739 | refcount_inc(&rbio->refs); |
53b381b3 DW |
740 | list_add(&rbio->hash_list, &h->hash_list); |
741 | out: | |
742 | spin_unlock_irqrestore(&h->lock, flags); | |
4ae10b3a CM |
743 | if (cache_drop) |
744 | remove_rbio_from_cache(cache_drop); | |
53b381b3 DW |
745 | if (freeit) |
746 | __free_raid_bio(freeit); | |
747 | return ret; | |
748 | } | |
749 | ||
750 | /* | |
751 | * called as rmw or parity rebuild is completed. If the plug list has more | |
752 | * rbios waiting for this stripe, the next one on the list will be started | |
753 | */ | |
754 | static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) | |
755 | { | |
756 | int bucket; | |
757 | struct btrfs_stripe_hash *h; | |
758 | unsigned long flags; | |
4ae10b3a | 759 | int keep_cache = 0; |
53b381b3 DW |
760 | |
761 | bucket = rbio_bucket(rbio); | |
762 | h = rbio->fs_info->stripe_hash_table->table + bucket; | |
763 | ||
4ae10b3a CM |
764 | if (list_empty(&rbio->plug_list)) |
765 | cache_rbio(rbio); | |
766 | ||
53b381b3 DW |
767 | spin_lock_irqsave(&h->lock, flags); |
768 | spin_lock(&rbio->bio_list_lock); | |
769 | ||
770 | if (!list_empty(&rbio->hash_list)) { | |
4ae10b3a CM |
771 | /* |
772 | * if we're still cached and there is no other IO | |
773 | * to perform, just leave this rbio here for others | |
774 | * to steal from later | |
775 | */ | |
776 | if (list_empty(&rbio->plug_list) && | |
777 | test_bit(RBIO_CACHE_BIT, &rbio->flags)) { | |
778 | keep_cache = 1; | |
779 | clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | |
780 | BUG_ON(!bio_list_empty(&rbio->bio_list)); | |
781 | goto done; | |
782 | } | |
53b381b3 DW |
783 | |
784 | list_del_init(&rbio->hash_list); | |
dec95574 | 785 | refcount_dec(&rbio->refs); |
53b381b3 DW |
786 | |
787 | /* | |
788 | * we use the plug list to hold all the rbios | |
789 | * waiting for the chance to lock this stripe. | |
790 | * hand the lock over to one of them. | |
791 | */ | |
792 | if (!list_empty(&rbio->plug_list)) { | |
793 | struct btrfs_raid_bio *next; | |
794 | struct list_head *head = rbio->plug_list.next; | |
795 | ||
796 | next = list_entry(head, struct btrfs_raid_bio, | |
797 | plug_list); | |
798 | ||
799 | list_del_init(&rbio->plug_list); | |
800 | ||
801 | list_add(&next->hash_list, &h->hash_list); | |
dec95574 | 802 | refcount_inc(&next->refs); |
53b381b3 DW |
803 | spin_unlock(&rbio->bio_list_lock); |
804 | spin_unlock_irqrestore(&h->lock, flags); | |
805 | ||
1b94b556 | 806 | if (next->operation == BTRFS_RBIO_READ_REBUILD) |
e66d8d5a | 807 | start_async_work(next, read_rebuild_work); |
b4ee1782 OS |
808 | else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { |
809 | steal_rbio(rbio, next); | |
e66d8d5a | 810 | start_async_work(next, read_rebuild_work); |
b4ee1782 | 811 | } else if (next->operation == BTRFS_RBIO_WRITE) { |
4ae10b3a | 812 | steal_rbio(rbio, next); |
cf6a4a75 | 813 | start_async_work(next, rmw_work); |
5a6ac9ea MX |
814 | } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { |
815 | steal_rbio(rbio, next); | |
a81b747d | 816 | start_async_work(next, scrub_parity_work); |
4ae10b3a | 817 | } |
53b381b3 DW |
818 | |
819 | goto done_nolock; | |
53b381b3 DW |
820 | } |
821 | } | |
4ae10b3a | 822 | done: |
53b381b3 DW |
823 | spin_unlock(&rbio->bio_list_lock); |
824 | spin_unlock_irqrestore(&h->lock, flags); | |
825 | ||
826 | done_nolock: | |
4ae10b3a CM |
827 | if (!keep_cache) |
828 | remove_rbio_from_cache(rbio); | |
53b381b3 DW |
829 | } |
830 | ||
831 | static void __free_raid_bio(struct btrfs_raid_bio *rbio) | |
832 | { | |
833 | int i; | |
834 | ||
dec95574 | 835 | if (!refcount_dec_and_test(&rbio->refs)) |
53b381b3 DW |
836 | return; |
837 | ||
4ae10b3a | 838 | WARN_ON(!list_empty(&rbio->stripe_cache)); |
53b381b3 DW |
839 | WARN_ON(!list_empty(&rbio->hash_list)); |
840 | WARN_ON(!bio_list_empty(&rbio->bio_list)); | |
841 | ||
842 | for (i = 0; i < rbio->nr_pages; i++) { | |
843 | if (rbio->stripe_pages[i]) { | |
844 | __free_page(rbio->stripe_pages[i]); | |
845 | rbio->stripe_pages[i] = NULL; | |
846 | } | |
847 | } | |
af8e2d1d | 848 | |
6e9606d2 | 849 | btrfs_put_bbio(rbio->bbio); |
53b381b3 DW |
850 | kfree(rbio); |
851 | } | |
852 | ||
7583d8d0 | 853 | static void rbio_endio_bio_list(struct bio *cur, blk_status_t err) |
53b381b3 | 854 | { |
7583d8d0 LB |
855 | struct bio *next; |
856 | ||
857 | while (cur) { | |
858 | next = cur->bi_next; | |
859 | cur->bi_next = NULL; | |
860 | cur->bi_status = err; | |
861 | bio_endio(cur); | |
862 | cur = next; | |
863 | } | |
53b381b3 DW |
864 | } |
865 | ||
866 | /* | |
867 | * this frees the rbio and runs through all the bios in the | |
868 | * bio_list and calls end_io on them | |
869 | */ | |
4e4cbee9 | 870 | static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) |
53b381b3 DW |
871 | { |
872 | struct bio *cur = bio_list_get(&rbio->bio_list); | |
7583d8d0 | 873 | struct bio *extra; |
4245215d MX |
874 | |
875 | if (rbio->generic_bio_cnt) | |
876 | btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); | |
877 | ||
7583d8d0 LB |
878 | /* |
879 | * At this moment, rbio->bio_list is empty, however since rbio does not | |
880 | * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the | |
881 | * hash list, rbio may be merged with others so that rbio->bio_list | |
882 | * becomes non-empty. | |
883 | * Once unlock_stripe() is done, rbio->bio_list will not be updated any | |
884 | * more and we can call bio_endio() on all queued bios. | |
885 | */ | |
886 | unlock_stripe(rbio); | |
887 | extra = bio_list_get(&rbio->bio_list); | |
888 | __free_raid_bio(rbio); | |
53b381b3 | 889 | |
7583d8d0 LB |
890 | rbio_endio_bio_list(cur, err); |
891 | if (extra) | |
892 | rbio_endio_bio_list(extra, err); | |
53b381b3 DW |
893 | } |
894 | ||
895 | /* | |
896 | * end io function used by finish_rmw. When we finally | |
897 | * get here, we've written a full stripe | |
898 | */ | |
4246a0b6 | 899 | static void raid_write_end_io(struct bio *bio) |
53b381b3 DW |
900 | { |
901 | struct btrfs_raid_bio *rbio = bio->bi_private; | |
4e4cbee9 | 902 | blk_status_t err = bio->bi_status; |
a6111d11 | 903 | int max_errors; |
53b381b3 DW |
904 | |
905 | if (err) | |
906 | fail_bio_stripe(rbio, bio); | |
907 | ||
908 | bio_put(bio); | |
909 | ||
b89e1b01 | 910 | if (!atomic_dec_and_test(&rbio->stripes_pending)) |
53b381b3 DW |
911 | return; |
912 | ||
58efbc9f | 913 | err = BLK_STS_OK; |
53b381b3 DW |
914 | |
915 | /* OK, we have read all the stripes we need to. */ | |
a6111d11 ZL |
916 | max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ? |
917 | 0 : rbio->bbio->max_errors; | |
918 | if (atomic_read(&rbio->error) > max_errors) | |
4e4cbee9 | 919 | err = BLK_STS_IOERR; |
53b381b3 | 920 | |
4246a0b6 | 921 | rbio_orig_end_io(rbio, err); |
53b381b3 DW |
922 | } |
923 | ||
924 | /* | |
925 | * the read/modify/write code wants to use the original bio for | |
926 | * any pages it included, and then use the rbio for everything | |
927 | * else. This function decides if a given index (stripe number) | |
928 | * and page number in that stripe fall inside the original bio | |
929 | * or the rbio. | |
930 | * | |
931 | * if you set bio_list_only, you'll get a NULL back for any ranges | |
932 | * that are outside the bio_list | |
933 | * | |
934 | * This doesn't take any refs on anything, you get a bare page pointer | |
935 | * and the caller must bump refs as required. | |
936 | * | |
937 | * You must call index_rbio_pages once before you can trust | |
938 | * the answers from this function. | |
939 | */ | |
940 | static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, | |
941 | int index, int pagenr, int bio_list_only) | |
942 | { | |
943 | int chunk_page; | |
944 | struct page *p = NULL; | |
945 | ||
946 | chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; | |
947 | ||
948 | spin_lock_irq(&rbio->bio_list_lock); | |
949 | p = rbio->bio_pages[chunk_page]; | |
950 | spin_unlock_irq(&rbio->bio_list_lock); | |
951 | ||
952 | if (p || bio_list_only) | |
953 | return p; | |
954 | ||
955 | return rbio->stripe_pages[chunk_page]; | |
956 | } | |
957 | ||
958 | /* | |
959 | * number of pages we need for the entire stripe across all the | |
960 | * drives | |
961 | */ | |
962 | static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) | |
963 | { | |
09cbfeaf | 964 | return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes; |
53b381b3 DW |
965 | } |
966 | ||
967 | /* | |
968 | * allocation and initial setup for the btrfs_raid_bio. Not | |
969 | * this does not allocate any pages for rbio->pages. | |
970 | */ | |
2ff7e61e JM |
971 | static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, |
972 | struct btrfs_bio *bbio, | |
973 | u64 stripe_len) | |
53b381b3 DW |
974 | { |
975 | struct btrfs_raid_bio *rbio; | |
976 | int nr_data = 0; | |
2c8cdd6e MX |
977 | int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; |
978 | int num_pages = rbio_nr_pages(stripe_len, real_stripes); | |
5a6ac9ea | 979 | int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); |
53b381b3 DW |
980 | void *p; |
981 | ||
1389053e KC |
982 | rbio = kzalloc(sizeof(*rbio) + |
983 | sizeof(*rbio->stripe_pages) * num_pages + | |
984 | sizeof(*rbio->bio_pages) * num_pages + | |
985 | sizeof(*rbio->finish_pointers) * real_stripes + | |
986 | sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) + | |
987 | sizeof(*rbio->finish_pbitmap) * | |
988 | BITS_TO_LONGS(stripe_npages), | |
989 | GFP_NOFS); | |
af8e2d1d | 990 | if (!rbio) |
53b381b3 | 991 | return ERR_PTR(-ENOMEM); |
53b381b3 DW |
992 | |
993 | bio_list_init(&rbio->bio_list); | |
994 | INIT_LIST_HEAD(&rbio->plug_list); | |
995 | spin_lock_init(&rbio->bio_list_lock); | |
4ae10b3a | 996 | INIT_LIST_HEAD(&rbio->stripe_cache); |
53b381b3 DW |
997 | INIT_LIST_HEAD(&rbio->hash_list); |
998 | rbio->bbio = bbio; | |
2ff7e61e | 999 | rbio->fs_info = fs_info; |
53b381b3 DW |
1000 | rbio->stripe_len = stripe_len; |
1001 | rbio->nr_pages = num_pages; | |
2c8cdd6e | 1002 | rbio->real_stripes = real_stripes; |
5a6ac9ea | 1003 | rbio->stripe_npages = stripe_npages; |
53b381b3 DW |
1004 | rbio->faila = -1; |
1005 | rbio->failb = -1; | |
dec95574 | 1006 | refcount_set(&rbio->refs, 1); |
b89e1b01 MX |
1007 | atomic_set(&rbio->error, 0); |
1008 | atomic_set(&rbio->stripes_pending, 0); | |
53b381b3 DW |
1009 | |
1010 | /* | |
1389053e | 1011 | * the stripe_pages, bio_pages, etc arrays point to the extra |
53b381b3 DW |
1012 | * memory we allocated past the end of the rbio |
1013 | */ | |
1014 | p = rbio + 1; | |
1389053e KC |
1015 | #define CONSUME_ALLOC(ptr, count) do { \ |
1016 | ptr = p; \ | |
1017 | p = (unsigned char *)p + sizeof(*(ptr)) * (count); \ | |
1018 | } while (0) | |
1019 | CONSUME_ALLOC(rbio->stripe_pages, num_pages); | |
1020 | CONSUME_ALLOC(rbio->bio_pages, num_pages); | |
1021 | CONSUME_ALLOC(rbio->finish_pointers, real_stripes); | |
1022 | CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages)); | |
1023 | CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages)); | |
1024 | #undef CONSUME_ALLOC | |
53b381b3 | 1025 | |
10f11900 ZL |
1026 | if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) |
1027 | nr_data = real_stripes - 1; | |
1028 | else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) | |
2c8cdd6e | 1029 | nr_data = real_stripes - 2; |
53b381b3 | 1030 | else |
10f11900 | 1031 | BUG(); |
53b381b3 DW |
1032 | |
1033 | rbio->nr_data = nr_data; | |
1034 | return rbio; | |
1035 | } | |
1036 | ||
1037 | /* allocate pages for all the stripes in the bio, including parity */ | |
1038 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) | |
1039 | { | |
1040 | int i; | |
1041 | struct page *page; | |
1042 | ||
1043 | for (i = 0; i < rbio->nr_pages; i++) { | |
1044 | if (rbio->stripe_pages[i]) | |
1045 | continue; | |
1046 | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | |
1047 | if (!page) | |
1048 | return -ENOMEM; | |
1049 | rbio->stripe_pages[i] = page; | |
53b381b3 DW |
1050 | } |
1051 | return 0; | |
1052 | } | |
1053 | ||
b7178a5f | 1054 | /* only allocate pages for p/q stripes */ |
53b381b3 DW |
1055 | static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) |
1056 | { | |
1057 | int i; | |
1058 | struct page *page; | |
1059 | ||
b7178a5f | 1060 | i = rbio_stripe_page_index(rbio, rbio->nr_data, 0); |
53b381b3 DW |
1061 | |
1062 | for (; i < rbio->nr_pages; i++) { | |
1063 | if (rbio->stripe_pages[i]) | |
1064 | continue; | |
1065 | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | |
1066 | if (!page) | |
1067 | return -ENOMEM; | |
1068 | rbio->stripe_pages[i] = page; | |
1069 | } | |
1070 | return 0; | |
1071 | } | |
1072 | ||
1073 | /* | |
1074 | * add a single page from a specific stripe into our list of bios for IO | |
1075 | * this will try to merge into existing bios if possible, and returns | |
1076 | * zero if all went well. | |
1077 | */ | |
48a3b636 ES |
1078 | static int rbio_add_io_page(struct btrfs_raid_bio *rbio, |
1079 | struct bio_list *bio_list, | |
1080 | struct page *page, | |
1081 | int stripe_nr, | |
1082 | unsigned long page_index, | |
1083 | unsigned long bio_max_len) | |
53b381b3 DW |
1084 | { |
1085 | struct bio *last = bio_list->tail; | |
53b381b3 DW |
1086 | int ret; |
1087 | struct bio *bio; | |
1088 | struct btrfs_bio_stripe *stripe; | |
1089 | u64 disk_start; | |
1090 | ||
1091 | stripe = &rbio->bbio->stripes[stripe_nr]; | |
09cbfeaf | 1092 | disk_start = stripe->physical + (page_index << PAGE_SHIFT); |
53b381b3 DW |
1093 | |
1094 | /* if the device is missing, just fail this stripe */ | |
1095 | if (!stripe->dev->bdev) | |
1096 | return fail_rbio_index(rbio, stripe_nr); | |
1097 | ||
1098 | /* see if we can add this page onto our existing bio */ | |
1099 | if (last) { | |
1201b58b | 1100 | u64 last_end = last->bi_iter.bi_sector << 9; |
4f024f37 | 1101 | last_end += last->bi_iter.bi_size; |
53b381b3 DW |
1102 | |
1103 | /* | |
1104 | * we can't merge these if they are from different | |
1105 | * devices or if they are not contiguous | |
1106 | */ | |
f90ae76a | 1107 | if (last_end == disk_start && !last->bi_status && |
74d46992 CH |
1108 | last->bi_disk == stripe->dev->bdev->bd_disk && |
1109 | last->bi_partno == stripe->dev->bdev->bd_partno) { | |
09cbfeaf KS |
1110 | ret = bio_add_page(last, page, PAGE_SIZE, 0); |
1111 | if (ret == PAGE_SIZE) | |
53b381b3 DW |
1112 | return 0; |
1113 | } | |
1114 | } | |
1115 | ||
1116 | /* put a new bio on the list */ | |
c5e4c3d7 | 1117 | bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1); |
c31efbdf | 1118 | btrfs_io_bio(bio)->device = stripe->dev; |
4f024f37 | 1119 | bio->bi_iter.bi_size = 0; |
74d46992 | 1120 | bio_set_dev(bio, stripe->dev->bdev); |
4f024f37 | 1121 | bio->bi_iter.bi_sector = disk_start >> 9; |
53b381b3 | 1122 | |
09cbfeaf | 1123 | bio_add_page(bio, page, PAGE_SIZE, 0); |
53b381b3 DW |
1124 | bio_list_add(bio_list, bio); |
1125 | return 0; | |
1126 | } | |
1127 | ||
1128 | /* | |
1129 | * while we're doing the read/modify/write cycle, we could | |
1130 | * have errors in reading pages off the disk. This checks | |
1131 | * for errors and if we're not able to read the page it'll | |
1132 | * trigger parity reconstruction. The rmw will be finished | |
1133 | * after we've reconstructed the failed stripes | |
1134 | */ | |
1135 | static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) | |
1136 | { | |
1137 | if (rbio->faila >= 0 || rbio->failb >= 0) { | |
2c8cdd6e | 1138 | BUG_ON(rbio->faila == rbio->real_stripes - 1); |
53b381b3 DW |
1139 | __raid56_parity_recover(rbio); |
1140 | } else { | |
1141 | finish_rmw(rbio); | |
1142 | } | |
1143 | } | |
1144 | ||
53b381b3 DW |
1145 | /* |
1146 | * helper function to walk our bio list and populate the bio_pages array with | |
1147 | * the result. This seems expensive, but it is faster than constantly | |
1148 | * searching through the bio list as we setup the IO in finish_rmw or stripe | |
1149 | * reconstruction. | |
1150 | * | |
1151 | * This must be called before you trust the answers from page_in_rbio | |
1152 | */ | |
1153 | static void index_rbio_pages(struct btrfs_raid_bio *rbio) | |
1154 | { | |
1155 | struct bio *bio; | |
1156 | u64 start; | |
1157 | unsigned long stripe_offset; | |
1158 | unsigned long page_index; | |
53b381b3 DW |
1159 | |
1160 | spin_lock_irq(&rbio->bio_list_lock); | |
1161 | bio_list_for_each(bio, &rbio->bio_list) { | |
6592e58c FM |
1162 | struct bio_vec bvec; |
1163 | struct bvec_iter iter; | |
1164 | int i = 0; | |
1165 | ||
1201b58b | 1166 | start = bio->bi_iter.bi_sector << 9; |
8e5cfb55 | 1167 | stripe_offset = start - rbio->bbio->raid_map[0]; |
09cbfeaf | 1168 | page_index = stripe_offset >> PAGE_SHIFT; |
53b381b3 | 1169 | |
6592e58c FM |
1170 | if (bio_flagged(bio, BIO_CLONED)) |
1171 | bio->bi_iter = btrfs_io_bio(bio)->iter; | |
1172 | ||
1173 | bio_for_each_segment(bvec, bio, iter) { | |
1174 | rbio->bio_pages[page_index + i] = bvec.bv_page; | |
1175 | i++; | |
1176 | } | |
53b381b3 DW |
1177 | } |
1178 | spin_unlock_irq(&rbio->bio_list_lock); | |
1179 | } | |
1180 | ||
1181 | /* | |
1182 | * this is called from one of two situations. We either | |
1183 | * have a full stripe from the higher layers, or we've read all | |
1184 | * the missing bits off disk. | |
1185 | * | |
1186 | * This will calculate the parity and then send down any | |
1187 | * changed blocks. | |
1188 | */ | |
1189 | static noinline void finish_rmw(struct btrfs_raid_bio *rbio) | |
1190 | { | |
1191 | struct btrfs_bio *bbio = rbio->bbio; | |
1389053e | 1192 | void **pointers = rbio->finish_pointers; |
53b381b3 DW |
1193 | int nr_data = rbio->nr_data; |
1194 | int stripe; | |
1195 | int pagenr; | |
c17af965 | 1196 | bool has_qstripe; |
53b381b3 DW |
1197 | struct bio_list bio_list; |
1198 | struct bio *bio; | |
53b381b3 DW |
1199 | int ret; |
1200 | ||
1201 | bio_list_init(&bio_list); | |
1202 | ||
c17af965 DS |
1203 | if (rbio->real_stripes - rbio->nr_data == 1) |
1204 | has_qstripe = false; | |
1205 | else if (rbio->real_stripes - rbio->nr_data == 2) | |
1206 | has_qstripe = true; | |
1207 | else | |
53b381b3 | 1208 | BUG(); |
53b381b3 DW |
1209 | |
1210 | /* at this point we either have a full stripe, | |
1211 | * or we've read the full stripe from the drive. | |
1212 | * recalculate the parity and write the new results. | |
1213 | * | |
1214 | * We're not allowed to add any new bios to the | |
1215 | * bio list here, anyone else that wants to | |
1216 | * change this stripe needs to do their own rmw. | |
1217 | */ | |
1218 | spin_lock_irq(&rbio->bio_list_lock); | |
1219 | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | |
1220 | spin_unlock_irq(&rbio->bio_list_lock); | |
1221 | ||
b89e1b01 | 1222 | atomic_set(&rbio->error, 0); |
53b381b3 DW |
1223 | |
1224 | /* | |
1225 | * now that we've set rmw_locked, run through the | |
1226 | * bio list one last time and map the page pointers | |
4ae10b3a CM |
1227 | * |
1228 | * We don't cache full rbios because we're assuming | |
1229 | * the higher layers are unlikely to use this area of | |
1230 | * the disk again soon. If they do use it again, | |
1231 | * hopefully they will send another full bio. | |
53b381b3 DW |
1232 | */ |
1233 | index_rbio_pages(rbio); | |
4ae10b3a CM |
1234 | if (!rbio_is_full(rbio)) |
1235 | cache_rbio_pages(rbio); | |
1236 | else | |
1237 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | |
53b381b3 | 1238 | |
915e2290 | 1239 | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
53b381b3 DW |
1240 | struct page *p; |
1241 | /* first collect one page from each data stripe */ | |
1242 | for (stripe = 0; stripe < nr_data; stripe++) { | |
1243 | p = page_in_rbio(rbio, stripe, pagenr, 0); | |
1244 | pointers[stripe] = kmap(p); | |
1245 | } | |
1246 | ||
1247 | /* then add the parity stripe */ | |
1248 | p = rbio_pstripe_page(rbio, pagenr); | |
1249 | SetPageUptodate(p); | |
1250 | pointers[stripe++] = kmap(p); | |
1251 | ||
c17af965 | 1252 | if (has_qstripe) { |
53b381b3 DW |
1253 | |
1254 | /* | |
1255 | * raid6, add the qstripe and call the | |
1256 | * library function to fill in our p/q | |
1257 | */ | |
1258 | p = rbio_qstripe_page(rbio, pagenr); | |
1259 | SetPageUptodate(p); | |
1260 | pointers[stripe++] = kmap(p); | |
1261 | ||
2c8cdd6e | 1262 | raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, |
53b381b3 DW |
1263 | pointers); |
1264 | } else { | |
1265 | /* raid5 */ | |
69d24804 | 1266 | copy_page(pointers[nr_data], pointers[0]); |
09cbfeaf | 1267 | run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); |
53b381b3 DW |
1268 | } |
1269 | ||
1270 | ||
2c8cdd6e | 1271 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) |
53b381b3 DW |
1272 | kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); |
1273 | } | |
1274 | ||
1275 | /* | |
1276 | * time to start writing. Make bios for everything from the | |
1277 | * higher layers (the bio_list in our rbio) and our p/q. Ignore | |
1278 | * everything else. | |
1279 | */ | |
2c8cdd6e | 1280 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
915e2290 | 1281 | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
53b381b3 DW |
1282 | struct page *page; |
1283 | if (stripe < rbio->nr_data) { | |
1284 | page = page_in_rbio(rbio, stripe, pagenr, 1); | |
1285 | if (!page) | |
1286 | continue; | |
1287 | } else { | |
1288 | page = rbio_stripe_page(rbio, stripe, pagenr); | |
1289 | } | |
1290 | ||
1291 | ret = rbio_add_io_page(rbio, &bio_list, | |
1292 | page, stripe, pagenr, rbio->stripe_len); | |
1293 | if (ret) | |
1294 | goto cleanup; | |
1295 | } | |
1296 | } | |
1297 | ||
2c8cdd6e MX |
1298 | if (likely(!bbio->num_tgtdevs)) |
1299 | goto write_data; | |
1300 | ||
1301 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { | |
1302 | if (!bbio->tgtdev_map[stripe]) | |
1303 | continue; | |
1304 | ||
915e2290 | 1305 | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
2c8cdd6e MX |
1306 | struct page *page; |
1307 | if (stripe < rbio->nr_data) { | |
1308 | page = page_in_rbio(rbio, stripe, pagenr, 1); | |
1309 | if (!page) | |
1310 | continue; | |
1311 | } else { | |
1312 | page = rbio_stripe_page(rbio, stripe, pagenr); | |
1313 | } | |
1314 | ||
1315 | ret = rbio_add_io_page(rbio, &bio_list, page, | |
1316 | rbio->bbio->tgtdev_map[stripe], | |
1317 | pagenr, rbio->stripe_len); | |
1318 | if (ret) | |
1319 | goto cleanup; | |
1320 | } | |
1321 | } | |
1322 | ||
1323 | write_data: | |
b89e1b01 MX |
1324 | atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); |
1325 | BUG_ON(atomic_read(&rbio->stripes_pending) == 0); | |
53b381b3 | 1326 | |
bf28a605 | 1327 | while ((bio = bio_list_pop(&bio_list))) { |
53b381b3 DW |
1328 | bio->bi_private = rbio; |
1329 | bio->bi_end_io = raid_write_end_io; | |
ebcc3263 | 1330 | bio->bi_opf = REQ_OP_WRITE; |
4e49ea4a MC |
1331 | |
1332 | submit_bio(bio); | |
53b381b3 DW |
1333 | } |
1334 | return; | |
1335 | ||
1336 | cleanup: | |
58efbc9f | 1337 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
785884fc LB |
1338 | |
1339 | while ((bio = bio_list_pop(&bio_list))) | |
1340 | bio_put(bio); | |
53b381b3 DW |
1341 | } |
1342 | ||
1343 | /* | |
1344 | * helper to find the stripe number for a given bio. Used to figure out which | |
1345 | * stripe has failed. This expects the bio to correspond to a physical disk, | |
1346 | * so it looks up based on physical sector numbers. | |
1347 | */ | |
1348 | static int find_bio_stripe(struct btrfs_raid_bio *rbio, | |
1349 | struct bio *bio) | |
1350 | { | |
4f024f37 | 1351 | u64 physical = bio->bi_iter.bi_sector; |
53b381b3 DW |
1352 | int i; |
1353 | struct btrfs_bio_stripe *stripe; | |
1354 | ||
1355 | physical <<= 9; | |
1356 | ||
1357 | for (i = 0; i < rbio->bbio->num_stripes; i++) { | |
1358 | stripe = &rbio->bbio->stripes[i]; | |
83025863 | 1359 | if (in_range(physical, stripe->physical, rbio->stripe_len) && |
047fdea6 | 1360 | stripe->dev->bdev && |
74d46992 CH |
1361 | bio->bi_disk == stripe->dev->bdev->bd_disk && |
1362 | bio->bi_partno == stripe->dev->bdev->bd_partno) { | |
53b381b3 DW |
1363 | return i; |
1364 | } | |
1365 | } | |
1366 | return -1; | |
1367 | } | |
1368 | ||
1369 | /* | |
1370 | * helper to find the stripe number for a given | |
1371 | * bio (before mapping). Used to figure out which stripe has | |
1372 | * failed. This looks up based on logical block numbers. | |
1373 | */ | |
1374 | static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, | |
1375 | struct bio *bio) | |
1376 | { | |
1201b58b | 1377 | u64 logical = bio->bi_iter.bi_sector << 9; |
53b381b3 DW |
1378 | int i; |
1379 | ||
53b381b3 | 1380 | for (i = 0; i < rbio->nr_data; i++) { |
83025863 NB |
1381 | u64 stripe_start = rbio->bbio->raid_map[i]; |
1382 | ||
1383 | if (in_range(logical, stripe_start, rbio->stripe_len)) | |
53b381b3 | 1384 | return i; |
53b381b3 DW |
1385 | } |
1386 | return -1; | |
1387 | } | |
1388 | ||
1389 | /* | |
1390 | * returns -EIO if we had too many failures | |
1391 | */ | |
1392 | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) | |
1393 | { | |
1394 | unsigned long flags; | |
1395 | int ret = 0; | |
1396 | ||
1397 | spin_lock_irqsave(&rbio->bio_list_lock, flags); | |
1398 | ||
1399 | /* we already know this stripe is bad, move on */ | |
1400 | if (rbio->faila == failed || rbio->failb == failed) | |
1401 | goto out; | |
1402 | ||
1403 | if (rbio->faila == -1) { | |
1404 | /* first failure on this rbio */ | |
1405 | rbio->faila = failed; | |
b89e1b01 | 1406 | atomic_inc(&rbio->error); |
53b381b3 DW |
1407 | } else if (rbio->failb == -1) { |
1408 | /* second failure on this rbio */ | |
1409 | rbio->failb = failed; | |
b89e1b01 | 1410 | atomic_inc(&rbio->error); |
53b381b3 DW |
1411 | } else { |
1412 | ret = -EIO; | |
1413 | } | |
1414 | out: | |
1415 | spin_unlock_irqrestore(&rbio->bio_list_lock, flags); | |
1416 | ||
1417 | return ret; | |
1418 | } | |
1419 | ||
1420 | /* | |
1421 | * helper to fail a stripe based on a physical disk | |
1422 | * bio. | |
1423 | */ | |
1424 | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, | |
1425 | struct bio *bio) | |
1426 | { | |
1427 | int failed = find_bio_stripe(rbio, bio); | |
1428 | ||
1429 | if (failed < 0) | |
1430 | return -EIO; | |
1431 | ||
1432 | return fail_rbio_index(rbio, failed); | |
1433 | } | |
1434 | ||
1435 | /* | |
1436 | * this sets each page in the bio uptodate. It should only be used on private | |
1437 | * rbio pages, nothing that comes in from the higher layers | |
1438 | */ | |
1439 | static void set_bio_pages_uptodate(struct bio *bio) | |
1440 | { | |
0198e5b7 | 1441 | struct bio_vec *bvec; |
6dc4f100 | 1442 | struct bvec_iter_all iter_all; |
6592e58c | 1443 | |
0198e5b7 | 1444 | ASSERT(!bio_flagged(bio, BIO_CLONED)); |
53b381b3 | 1445 | |
2b070cfe | 1446 | bio_for_each_segment_all(bvec, bio, iter_all) |
0198e5b7 | 1447 | SetPageUptodate(bvec->bv_page); |
53b381b3 DW |
1448 | } |
1449 | ||
1450 | /* | |
1451 | * end io for the read phase of the rmw cycle. All the bios here are physical | |
1452 | * stripe bios we've read from the disk so we can recalculate the parity of the | |
1453 | * stripe. | |
1454 | * | |
1455 | * This will usually kick off finish_rmw once all the bios are read in, but it | |
1456 | * may trigger parity reconstruction if we had any errors along the way | |
1457 | */ | |
4246a0b6 | 1458 | static void raid_rmw_end_io(struct bio *bio) |
53b381b3 DW |
1459 | { |
1460 | struct btrfs_raid_bio *rbio = bio->bi_private; | |
1461 | ||
4e4cbee9 | 1462 | if (bio->bi_status) |
53b381b3 DW |
1463 | fail_bio_stripe(rbio, bio); |
1464 | else | |
1465 | set_bio_pages_uptodate(bio); | |
1466 | ||
1467 | bio_put(bio); | |
1468 | ||
b89e1b01 | 1469 | if (!atomic_dec_and_test(&rbio->stripes_pending)) |
53b381b3 DW |
1470 | return; |
1471 | ||
b89e1b01 | 1472 | if (atomic_read(&rbio->error) > rbio->bbio->max_errors) |
53b381b3 DW |
1473 | goto cleanup; |
1474 | ||
1475 | /* | |
1476 | * this will normally call finish_rmw to start our write | |
1477 | * but if there are any failed stripes we'll reconstruct | |
1478 | * from parity first | |
1479 | */ | |
1480 | validate_rbio_for_rmw(rbio); | |
1481 | return; | |
1482 | ||
1483 | cleanup: | |
1484 | ||
58efbc9f | 1485 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
53b381b3 DW |
1486 | } |
1487 | ||
53b381b3 DW |
1488 | /* |
1489 | * the stripe must be locked by the caller. It will | |
1490 | * unlock after all the writes are done | |
1491 | */ | |
1492 | static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) | |
1493 | { | |
1494 | int bios_to_read = 0; | |
53b381b3 DW |
1495 | struct bio_list bio_list; |
1496 | int ret; | |
53b381b3 DW |
1497 | int pagenr; |
1498 | int stripe; | |
1499 | struct bio *bio; | |
1500 | ||
1501 | bio_list_init(&bio_list); | |
1502 | ||
1503 | ret = alloc_rbio_pages(rbio); | |
1504 | if (ret) | |
1505 | goto cleanup; | |
1506 | ||
1507 | index_rbio_pages(rbio); | |
1508 | ||
b89e1b01 | 1509 | atomic_set(&rbio->error, 0); |
53b381b3 DW |
1510 | /* |
1511 | * build a list of bios to read all the missing parts of this | |
1512 | * stripe | |
1513 | */ | |
1514 | for (stripe = 0; stripe < rbio->nr_data; stripe++) { | |
915e2290 | 1515 | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
53b381b3 DW |
1516 | struct page *page; |
1517 | /* | |
1518 | * we want to find all the pages missing from | |
1519 | * the rbio and read them from the disk. If | |
1520 | * page_in_rbio finds a page in the bio list | |
1521 | * we don't need to read it off the stripe. | |
1522 | */ | |
1523 | page = page_in_rbio(rbio, stripe, pagenr, 1); | |
1524 | if (page) | |
1525 | continue; | |
1526 | ||
1527 | page = rbio_stripe_page(rbio, stripe, pagenr); | |
4ae10b3a CM |
1528 | /* |
1529 | * the bio cache may have handed us an uptodate | |
1530 | * page. If so, be happy and use it | |
1531 | */ | |
1532 | if (PageUptodate(page)) | |
1533 | continue; | |
1534 | ||
53b381b3 DW |
1535 | ret = rbio_add_io_page(rbio, &bio_list, page, |
1536 | stripe, pagenr, rbio->stripe_len); | |
1537 | if (ret) | |
1538 | goto cleanup; | |
1539 | } | |
1540 | } | |
1541 | ||
1542 | bios_to_read = bio_list_size(&bio_list); | |
1543 | if (!bios_to_read) { | |
1544 | /* | |
1545 | * this can happen if others have merged with | |
1546 | * us, it means there is nothing left to read. | |
1547 | * But if there are missing devices it may not be | |
1548 | * safe to do the full stripe write yet. | |
1549 | */ | |
1550 | goto finish; | |
1551 | } | |
1552 | ||
1553 | /* | |
1554 | * the bbio may be freed once we submit the last bio. Make sure | |
1555 | * not to touch it after that | |
1556 | */ | |
b89e1b01 | 1557 | atomic_set(&rbio->stripes_pending, bios_to_read); |
bf28a605 | 1558 | while ((bio = bio_list_pop(&bio_list))) { |
53b381b3 DW |
1559 | bio->bi_private = rbio; |
1560 | bio->bi_end_io = raid_rmw_end_io; | |
ebcc3263 | 1561 | bio->bi_opf = REQ_OP_READ; |
53b381b3 | 1562 | |
0b246afa | 1563 | btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); |
53b381b3 | 1564 | |
4e49ea4a | 1565 | submit_bio(bio); |
53b381b3 DW |
1566 | } |
1567 | /* the actual write will happen once the reads are done */ | |
1568 | return 0; | |
1569 | ||
1570 | cleanup: | |
58efbc9f | 1571 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
785884fc LB |
1572 | |
1573 | while ((bio = bio_list_pop(&bio_list))) | |
1574 | bio_put(bio); | |
1575 | ||
53b381b3 DW |
1576 | return -EIO; |
1577 | ||
1578 | finish: | |
1579 | validate_rbio_for_rmw(rbio); | |
1580 | return 0; | |
1581 | } | |
1582 | ||
1583 | /* | |
1584 | * if the upper layers pass in a full stripe, we thank them by only allocating | |
1585 | * enough pages to hold the parity, and sending it all down quickly. | |
1586 | */ | |
1587 | static int full_stripe_write(struct btrfs_raid_bio *rbio) | |
1588 | { | |
1589 | int ret; | |
1590 | ||
1591 | ret = alloc_rbio_parity_pages(rbio); | |
3cd846d1 MX |
1592 | if (ret) { |
1593 | __free_raid_bio(rbio); | |
53b381b3 | 1594 | return ret; |
3cd846d1 | 1595 | } |
53b381b3 DW |
1596 | |
1597 | ret = lock_stripe_add(rbio); | |
1598 | if (ret == 0) | |
1599 | finish_rmw(rbio); | |
1600 | return 0; | |
1601 | } | |
1602 | ||
1603 | /* | |
1604 | * partial stripe writes get handed over to async helpers. | |
1605 | * We're really hoping to merge a few more writes into this | |
1606 | * rbio before calculating new parity | |
1607 | */ | |
1608 | static int partial_stripe_write(struct btrfs_raid_bio *rbio) | |
1609 | { | |
1610 | int ret; | |
1611 | ||
1612 | ret = lock_stripe_add(rbio); | |
1613 | if (ret == 0) | |
cf6a4a75 | 1614 | start_async_work(rbio, rmw_work); |
53b381b3 DW |
1615 | return 0; |
1616 | } | |
1617 | ||
1618 | /* | |
1619 | * sometimes while we were reading from the drive to | |
1620 | * recalculate parity, enough new bios come into create | |
1621 | * a full stripe. So we do a check here to see if we can | |
1622 | * go directly to finish_rmw | |
1623 | */ | |
1624 | static int __raid56_parity_write(struct btrfs_raid_bio *rbio) | |
1625 | { | |
1626 | /* head off into rmw land if we don't have a full stripe */ | |
1627 | if (!rbio_is_full(rbio)) | |
1628 | return partial_stripe_write(rbio); | |
1629 | return full_stripe_write(rbio); | |
1630 | } | |
1631 | ||
6ac0f488 CM |
1632 | /* |
1633 | * We use plugging call backs to collect full stripes. | |
1634 | * Any time we get a partial stripe write while plugged | |
1635 | * we collect it into a list. When the unplug comes down, | |
1636 | * we sort the list by logical block number and merge | |
1637 | * everything we can into the same rbios | |
1638 | */ | |
1639 | struct btrfs_plug_cb { | |
1640 | struct blk_plug_cb cb; | |
1641 | struct btrfs_fs_info *info; | |
1642 | struct list_head rbio_list; | |
1643 | struct btrfs_work work; | |
1644 | }; | |
1645 | ||
1646 | /* | |
1647 | * rbios on the plug list are sorted for easier merging. | |
1648 | */ | |
1649 | static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) | |
1650 | { | |
1651 | struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, | |
1652 | plug_list); | |
1653 | struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, | |
1654 | plug_list); | |
4f024f37 KO |
1655 | u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; |
1656 | u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; | |
6ac0f488 CM |
1657 | |
1658 | if (a_sector < b_sector) | |
1659 | return -1; | |
1660 | if (a_sector > b_sector) | |
1661 | return 1; | |
1662 | return 0; | |
1663 | } | |
1664 | ||
1665 | static void run_plug(struct btrfs_plug_cb *plug) | |
1666 | { | |
1667 | struct btrfs_raid_bio *cur; | |
1668 | struct btrfs_raid_bio *last = NULL; | |
1669 | ||
1670 | /* | |
1671 | * sort our plug list then try to merge | |
1672 | * everything we can in hopes of creating full | |
1673 | * stripes. | |
1674 | */ | |
1675 | list_sort(NULL, &plug->rbio_list, plug_cmp); | |
1676 | while (!list_empty(&plug->rbio_list)) { | |
1677 | cur = list_entry(plug->rbio_list.next, | |
1678 | struct btrfs_raid_bio, plug_list); | |
1679 | list_del_init(&cur->plug_list); | |
1680 | ||
1681 | if (rbio_is_full(cur)) { | |
c7b562c5 DS |
1682 | int ret; |
1683 | ||
6ac0f488 | 1684 | /* we have a full stripe, send it down */ |
c7b562c5 DS |
1685 | ret = full_stripe_write(cur); |
1686 | BUG_ON(ret); | |
6ac0f488 CM |
1687 | continue; |
1688 | } | |
1689 | if (last) { | |
1690 | if (rbio_can_merge(last, cur)) { | |
1691 | merge_rbio(last, cur); | |
1692 | __free_raid_bio(cur); | |
1693 | continue; | |
1694 | ||
1695 | } | |
1696 | __raid56_parity_write(last); | |
1697 | } | |
1698 | last = cur; | |
1699 | } | |
1700 | if (last) { | |
1701 | __raid56_parity_write(last); | |
1702 | } | |
1703 | kfree(plug); | |
1704 | } | |
1705 | ||
1706 | /* | |
1707 | * if the unplug comes from schedule, we have to push the | |
1708 | * work off to a helper thread | |
1709 | */ | |
1710 | static void unplug_work(struct btrfs_work *work) | |
1711 | { | |
1712 | struct btrfs_plug_cb *plug; | |
1713 | plug = container_of(work, struct btrfs_plug_cb, work); | |
1714 | run_plug(plug); | |
1715 | } | |
1716 | ||
1717 | static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) | |
1718 | { | |
1719 | struct btrfs_plug_cb *plug; | |
1720 | plug = container_of(cb, struct btrfs_plug_cb, cb); | |
1721 | ||
1722 | if (from_schedule) { | |
a0cac0ec | 1723 | btrfs_init_work(&plug->work, unplug_work, NULL, NULL); |
d05a33ac QW |
1724 | btrfs_queue_work(plug->info->rmw_workers, |
1725 | &plug->work); | |
6ac0f488 CM |
1726 | return; |
1727 | } | |
1728 | run_plug(plug); | |
1729 | } | |
1730 | ||
53b381b3 DW |
1731 | /* |
1732 | * our main entry point for writes from the rest of the FS. | |
1733 | */ | |
2ff7e61e | 1734 | int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio, |
8e5cfb55 | 1735 | struct btrfs_bio *bbio, u64 stripe_len) |
53b381b3 DW |
1736 | { |
1737 | struct btrfs_raid_bio *rbio; | |
6ac0f488 CM |
1738 | struct btrfs_plug_cb *plug = NULL; |
1739 | struct blk_plug_cb *cb; | |
4245215d | 1740 | int ret; |
53b381b3 | 1741 | |
2ff7e61e | 1742 | rbio = alloc_rbio(fs_info, bbio, stripe_len); |
af8e2d1d | 1743 | if (IS_ERR(rbio)) { |
6e9606d2 | 1744 | btrfs_put_bbio(bbio); |
53b381b3 | 1745 | return PTR_ERR(rbio); |
af8e2d1d | 1746 | } |
53b381b3 | 1747 | bio_list_add(&rbio->bio_list, bio); |
4f024f37 | 1748 | rbio->bio_list_bytes = bio->bi_iter.bi_size; |
1b94b556 | 1749 | rbio->operation = BTRFS_RBIO_WRITE; |
6ac0f488 | 1750 | |
0b246afa | 1751 | btrfs_bio_counter_inc_noblocked(fs_info); |
4245215d MX |
1752 | rbio->generic_bio_cnt = 1; |
1753 | ||
6ac0f488 CM |
1754 | /* |
1755 | * don't plug on full rbios, just get them out the door | |
1756 | * as quickly as we can | |
1757 | */ | |
4245215d MX |
1758 | if (rbio_is_full(rbio)) { |
1759 | ret = full_stripe_write(rbio); | |
1760 | if (ret) | |
0b246afa | 1761 | btrfs_bio_counter_dec(fs_info); |
4245215d MX |
1762 | return ret; |
1763 | } | |
6ac0f488 | 1764 | |
0b246afa | 1765 | cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug)); |
6ac0f488 CM |
1766 | if (cb) { |
1767 | plug = container_of(cb, struct btrfs_plug_cb, cb); | |
1768 | if (!plug->info) { | |
0b246afa | 1769 | plug->info = fs_info; |
6ac0f488 CM |
1770 | INIT_LIST_HEAD(&plug->rbio_list); |
1771 | } | |
1772 | list_add_tail(&rbio->plug_list, &plug->rbio_list); | |
4245215d | 1773 | ret = 0; |
6ac0f488 | 1774 | } else { |
4245215d MX |
1775 | ret = __raid56_parity_write(rbio); |
1776 | if (ret) | |
0b246afa | 1777 | btrfs_bio_counter_dec(fs_info); |
6ac0f488 | 1778 | } |
4245215d | 1779 | return ret; |
53b381b3 DW |
1780 | } |
1781 | ||
1782 | /* | |
1783 | * all parity reconstruction happens here. We've read in everything | |
1784 | * we can find from the drives and this does the heavy lifting of | |
1785 | * sorting the good from the bad. | |
1786 | */ | |
1787 | static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) | |
1788 | { | |
1789 | int pagenr, stripe; | |
1790 | void **pointers; | |
1791 | int faila = -1, failb = -1; | |
53b381b3 | 1792 | struct page *page; |
58efbc9f | 1793 | blk_status_t err; |
53b381b3 DW |
1794 | int i; |
1795 | ||
31e818fe | 1796 | pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); |
53b381b3 | 1797 | if (!pointers) { |
58efbc9f | 1798 | err = BLK_STS_RESOURCE; |
53b381b3 DW |
1799 | goto cleanup_io; |
1800 | } | |
1801 | ||
1802 | faila = rbio->faila; | |
1803 | failb = rbio->failb; | |
1804 | ||
b4ee1782 OS |
1805 | if (rbio->operation == BTRFS_RBIO_READ_REBUILD || |
1806 | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { | |
53b381b3 DW |
1807 | spin_lock_irq(&rbio->bio_list_lock); |
1808 | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | |
1809 | spin_unlock_irq(&rbio->bio_list_lock); | |
1810 | } | |
1811 | ||
1812 | index_rbio_pages(rbio); | |
1813 | ||
915e2290 | 1814 | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
5a6ac9ea MX |
1815 | /* |
1816 | * Now we just use bitmap to mark the horizontal stripes in | |
1817 | * which we have data when doing parity scrub. | |
1818 | */ | |
1819 | if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && | |
1820 | !test_bit(pagenr, rbio->dbitmap)) | |
1821 | continue; | |
1822 | ||
53b381b3 DW |
1823 | /* setup our array of pointers with pages |
1824 | * from each stripe | |
1825 | */ | |
2c8cdd6e | 1826 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
53b381b3 DW |
1827 | /* |
1828 | * if we're rebuilding a read, we have to use | |
1829 | * pages from the bio list | |
1830 | */ | |
b4ee1782 OS |
1831 | if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || |
1832 | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && | |
53b381b3 DW |
1833 | (stripe == faila || stripe == failb)) { |
1834 | page = page_in_rbio(rbio, stripe, pagenr, 0); | |
1835 | } else { | |
1836 | page = rbio_stripe_page(rbio, stripe, pagenr); | |
1837 | } | |
1838 | pointers[stripe] = kmap(page); | |
1839 | } | |
1840 | ||
1841 | /* all raid6 handling here */ | |
10f11900 | 1842 | if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) { |
53b381b3 DW |
1843 | /* |
1844 | * single failure, rebuild from parity raid5 | |
1845 | * style | |
1846 | */ | |
1847 | if (failb < 0) { | |
1848 | if (faila == rbio->nr_data) { | |
1849 | /* | |
1850 | * Just the P stripe has failed, without | |
1851 | * a bad data or Q stripe. | |
1852 | * TODO, we should redo the xor here. | |
1853 | */ | |
58efbc9f | 1854 | err = BLK_STS_IOERR; |
53b381b3 DW |
1855 | goto cleanup; |
1856 | } | |
1857 | /* | |
1858 | * a single failure in raid6 is rebuilt | |
1859 | * in the pstripe code below | |
1860 | */ | |
1861 | goto pstripe; | |
1862 | } | |
1863 | ||
1864 | /* make sure our ps and qs are in order */ | |
b7d2083a NB |
1865 | if (faila > failb) |
1866 | swap(faila, failb); | |
53b381b3 DW |
1867 | |
1868 | /* if the q stripe is failed, do a pstripe reconstruction | |
1869 | * from the xors. | |
1870 | * If both the q stripe and the P stripe are failed, we're | |
1871 | * here due to a crc mismatch and we can't give them the | |
1872 | * data they want | |
1873 | */ | |
8e5cfb55 ZL |
1874 | if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) { |
1875 | if (rbio->bbio->raid_map[faila] == | |
1876 | RAID5_P_STRIPE) { | |
58efbc9f | 1877 | err = BLK_STS_IOERR; |
53b381b3 DW |
1878 | goto cleanup; |
1879 | } | |
1880 | /* | |
1881 | * otherwise we have one bad data stripe and | |
1882 | * a good P stripe. raid5! | |
1883 | */ | |
1884 | goto pstripe; | |
1885 | } | |
1886 | ||
8e5cfb55 | 1887 | if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) { |
2c8cdd6e | 1888 | raid6_datap_recov(rbio->real_stripes, |
53b381b3 DW |
1889 | PAGE_SIZE, faila, pointers); |
1890 | } else { | |
2c8cdd6e | 1891 | raid6_2data_recov(rbio->real_stripes, |
53b381b3 DW |
1892 | PAGE_SIZE, faila, failb, |
1893 | pointers); | |
1894 | } | |
1895 | } else { | |
1896 | void *p; | |
1897 | ||
1898 | /* rebuild from P stripe here (raid5 or raid6) */ | |
1899 | BUG_ON(failb != -1); | |
1900 | pstripe: | |
1901 | /* Copy parity block into failed block to start with */ | |
69d24804 | 1902 | copy_page(pointers[faila], pointers[rbio->nr_data]); |
53b381b3 DW |
1903 | |
1904 | /* rearrange the pointer array */ | |
1905 | p = pointers[faila]; | |
1906 | for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) | |
1907 | pointers[stripe] = pointers[stripe + 1]; | |
1908 | pointers[rbio->nr_data - 1] = p; | |
1909 | ||
1910 | /* xor in the rest */ | |
09cbfeaf | 1911 | run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE); |
53b381b3 DW |
1912 | } |
1913 | /* if we're doing this rebuild as part of an rmw, go through | |
1914 | * and set all of our private rbio pages in the | |
1915 | * failed stripes as uptodate. This way finish_rmw will | |
1916 | * know they can be trusted. If this was a read reconstruction, | |
1917 | * other endio functions will fiddle the uptodate bits | |
1918 | */ | |
1b94b556 | 1919 | if (rbio->operation == BTRFS_RBIO_WRITE) { |
915e2290 | 1920 | for (i = 0; i < rbio->stripe_npages; i++) { |
53b381b3 DW |
1921 | if (faila != -1) { |
1922 | page = rbio_stripe_page(rbio, faila, i); | |
1923 | SetPageUptodate(page); | |
1924 | } | |
1925 | if (failb != -1) { | |
1926 | page = rbio_stripe_page(rbio, failb, i); | |
1927 | SetPageUptodate(page); | |
1928 | } | |
1929 | } | |
1930 | } | |
2c8cdd6e | 1931 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
53b381b3 DW |
1932 | /* |
1933 | * if we're rebuilding a read, we have to use | |
1934 | * pages from the bio list | |
1935 | */ | |
b4ee1782 OS |
1936 | if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || |
1937 | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && | |
53b381b3 DW |
1938 | (stripe == faila || stripe == failb)) { |
1939 | page = page_in_rbio(rbio, stripe, pagenr, 0); | |
1940 | } else { | |
1941 | page = rbio_stripe_page(rbio, stripe, pagenr); | |
1942 | } | |
1943 | kunmap(page); | |
1944 | } | |
1945 | } | |
1946 | ||
58efbc9f | 1947 | err = BLK_STS_OK; |
53b381b3 DW |
1948 | cleanup: |
1949 | kfree(pointers); | |
1950 | ||
1951 | cleanup_io: | |
580c6efa LB |
1952 | /* |
1953 | * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a | |
1954 | * valid rbio which is consistent with ondisk content, thus such a | |
1955 | * valid rbio can be cached to avoid further disk reads. | |
1956 | */ | |
1957 | if (rbio->operation == BTRFS_RBIO_READ_REBUILD || | |
1958 | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { | |
44ac474d LB |
1959 | /* |
1960 | * - In case of two failures, where rbio->failb != -1: | |
1961 | * | |
1962 | * Do not cache this rbio since the above read reconstruction | |
1963 | * (raid6_datap_recov() or raid6_2data_recov()) may have | |
1964 | * changed some content of stripes which are not identical to | |
1965 | * on-disk content any more, otherwise, a later write/recover | |
1966 | * may steal stripe_pages from this rbio and end up with | |
1967 | * corruptions or rebuild failures. | |
1968 | * | |
1969 | * - In case of single failure, where rbio->failb == -1: | |
1970 | * | |
1971 | * Cache this rbio iff the above read reconstruction is | |
52042d8e | 1972 | * executed without problems. |
44ac474d LB |
1973 | */ |
1974 | if (err == BLK_STS_OK && rbio->failb < 0) | |
4ae10b3a CM |
1975 | cache_rbio_pages(rbio); |
1976 | else | |
1977 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | |
1978 | ||
4246a0b6 | 1979 | rbio_orig_end_io(rbio, err); |
58efbc9f | 1980 | } else if (err == BLK_STS_OK) { |
53b381b3 DW |
1981 | rbio->faila = -1; |
1982 | rbio->failb = -1; | |
5a6ac9ea MX |
1983 | |
1984 | if (rbio->operation == BTRFS_RBIO_WRITE) | |
1985 | finish_rmw(rbio); | |
1986 | else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) | |
1987 | finish_parity_scrub(rbio, 0); | |
1988 | else | |
1989 | BUG(); | |
53b381b3 | 1990 | } else { |
4246a0b6 | 1991 | rbio_orig_end_io(rbio, err); |
53b381b3 DW |
1992 | } |
1993 | } | |
1994 | ||
1995 | /* | |
1996 | * This is called only for stripes we've read from disk to | |
1997 | * reconstruct the parity. | |
1998 | */ | |
4246a0b6 | 1999 | static void raid_recover_end_io(struct bio *bio) |
53b381b3 DW |
2000 | { |
2001 | struct btrfs_raid_bio *rbio = bio->bi_private; | |
2002 | ||
2003 | /* | |
2004 | * we only read stripe pages off the disk, set them | |
2005 | * up to date if there were no errors | |
2006 | */ | |
4e4cbee9 | 2007 | if (bio->bi_status) |
53b381b3 DW |
2008 | fail_bio_stripe(rbio, bio); |
2009 | else | |
2010 | set_bio_pages_uptodate(bio); | |
2011 | bio_put(bio); | |
2012 | ||
b89e1b01 | 2013 | if (!atomic_dec_and_test(&rbio->stripes_pending)) |
53b381b3 DW |
2014 | return; |
2015 | ||
b89e1b01 | 2016 | if (atomic_read(&rbio->error) > rbio->bbio->max_errors) |
58efbc9f | 2017 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
53b381b3 DW |
2018 | else |
2019 | __raid_recover_end_io(rbio); | |
2020 | } | |
2021 | ||
2022 | /* | |
2023 | * reads everything we need off the disk to reconstruct | |
2024 | * the parity. endio handlers trigger final reconstruction | |
2025 | * when the IO is done. | |
2026 | * | |
2027 | * This is used both for reads from the higher layers and for | |
2028 | * parity construction required to finish a rmw cycle. | |
2029 | */ | |
2030 | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) | |
2031 | { | |
2032 | int bios_to_read = 0; | |
53b381b3 DW |
2033 | struct bio_list bio_list; |
2034 | int ret; | |
53b381b3 DW |
2035 | int pagenr; |
2036 | int stripe; | |
2037 | struct bio *bio; | |
2038 | ||
2039 | bio_list_init(&bio_list); | |
2040 | ||
2041 | ret = alloc_rbio_pages(rbio); | |
2042 | if (ret) | |
2043 | goto cleanup; | |
2044 | ||
b89e1b01 | 2045 | atomic_set(&rbio->error, 0); |
53b381b3 DW |
2046 | |
2047 | /* | |
4ae10b3a CM |
2048 | * read everything that hasn't failed. Thanks to the |
2049 | * stripe cache, it is possible that some or all of these | |
2050 | * pages are going to be uptodate. | |
53b381b3 | 2051 | */ |
2c8cdd6e | 2052 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
5588383e | 2053 | if (rbio->faila == stripe || rbio->failb == stripe) { |
b89e1b01 | 2054 | atomic_inc(&rbio->error); |
53b381b3 | 2055 | continue; |
5588383e | 2056 | } |
53b381b3 | 2057 | |
915e2290 | 2058 | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
53b381b3 DW |
2059 | struct page *p; |
2060 | ||
2061 | /* | |
2062 | * the rmw code may have already read this | |
2063 | * page in | |
2064 | */ | |
2065 | p = rbio_stripe_page(rbio, stripe, pagenr); | |
2066 | if (PageUptodate(p)) | |
2067 | continue; | |
2068 | ||
2069 | ret = rbio_add_io_page(rbio, &bio_list, | |
2070 | rbio_stripe_page(rbio, stripe, pagenr), | |
2071 | stripe, pagenr, rbio->stripe_len); | |
2072 | if (ret < 0) | |
2073 | goto cleanup; | |
2074 | } | |
2075 | } | |
2076 | ||
2077 | bios_to_read = bio_list_size(&bio_list); | |
2078 | if (!bios_to_read) { | |
2079 | /* | |
2080 | * we might have no bios to read just because the pages | |
2081 | * were up to date, or we might have no bios to read because | |
2082 | * the devices were gone. | |
2083 | */ | |
b89e1b01 | 2084 | if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { |
53b381b3 | 2085 | __raid_recover_end_io(rbio); |
813f8a0e | 2086 | return 0; |
53b381b3 DW |
2087 | } else { |
2088 | goto cleanup; | |
2089 | } | |
2090 | } | |
2091 | ||
2092 | /* | |
2093 | * the bbio may be freed once we submit the last bio. Make sure | |
2094 | * not to touch it after that | |
2095 | */ | |
b89e1b01 | 2096 | atomic_set(&rbio->stripes_pending, bios_to_read); |
bf28a605 | 2097 | while ((bio = bio_list_pop(&bio_list))) { |
53b381b3 DW |
2098 | bio->bi_private = rbio; |
2099 | bio->bi_end_io = raid_recover_end_io; | |
ebcc3263 | 2100 | bio->bi_opf = REQ_OP_READ; |
53b381b3 | 2101 | |
0b246afa | 2102 | btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); |
53b381b3 | 2103 | |
4e49ea4a | 2104 | submit_bio(bio); |
53b381b3 | 2105 | } |
813f8a0e | 2106 | |
53b381b3 DW |
2107 | return 0; |
2108 | ||
2109 | cleanup: | |
b4ee1782 OS |
2110 | if (rbio->operation == BTRFS_RBIO_READ_REBUILD || |
2111 | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) | |
58efbc9f | 2112 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
785884fc LB |
2113 | |
2114 | while ((bio = bio_list_pop(&bio_list))) | |
2115 | bio_put(bio); | |
2116 | ||
53b381b3 DW |
2117 | return -EIO; |
2118 | } | |
2119 | ||
2120 | /* | |
2121 | * the main entry point for reads from the higher layers. This | |
2122 | * is really only called when the normal read path had a failure, | |
2123 | * so we assume the bio they send down corresponds to a failed part | |
2124 | * of the drive. | |
2125 | */ | |
2ff7e61e | 2126 | int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio, |
8e5cfb55 ZL |
2127 | struct btrfs_bio *bbio, u64 stripe_len, |
2128 | int mirror_num, int generic_io) | |
53b381b3 DW |
2129 | { |
2130 | struct btrfs_raid_bio *rbio; | |
2131 | int ret; | |
2132 | ||
abad60c6 LB |
2133 | if (generic_io) { |
2134 | ASSERT(bbio->mirror_num == mirror_num); | |
2135 | btrfs_io_bio(bio)->mirror_num = mirror_num; | |
2136 | } | |
2137 | ||
2ff7e61e | 2138 | rbio = alloc_rbio(fs_info, bbio, stripe_len); |
af8e2d1d | 2139 | if (IS_ERR(rbio)) { |
6e9606d2 ZL |
2140 | if (generic_io) |
2141 | btrfs_put_bbio(bbio); | |
53b381b3 | 2142 | return PTR_ERR(rbio); |
af8e2d1d | 2143 | } |
53b381b3 | 2144 | |
1b94b556 | 2145 | rbio->operation = BTRFS_RBIO_READ_REBUILD; |
53b381b3 | 2146 | bio_list_add(&rbio->bio_list, bio); |
4f024f37 | 2147 | rbio->bio_list_bytes = bio->bi_iter.bi_size; |
53b381b3 DW |
2148 | |
2149 | rbio->faila = find_logical_bio_stripe(rbio, bio); | |
2150 | if (rbio->faila == -1) { | |
0b246afa | 2151 | btrfs_warn(fs_info, |
e46a28ca | 2152 | "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)", |
1201b58b | 2153 | __func__, bio->bi_iter.bi_sector << 9, |
e46a28ca | 2154 | (u64)bio->bi_iter.bi_size, bbio->map_type); |
6e9606d2 ZL |
2155 | if (generic_io) |
2156 | btrfs_put_bbio(bbio); | |
53b381b3 DW |
2157 | kfree(rbio); |
2158 | return -EIO; | |
2159 | } | |
2160 | ||
4245215d | 2161 | if (generic_io) { |
0b246afa | 2162 | btrfs_bio_counter_inc_noblocked(fs_info); |
4245215d MX |
2163 | rbio->generic_bio_cnt = 1; |
2164 | } else { | |
6e9606d2 | 2165 | btrfs_get_bbio(bbio); |
4245215d MX |
2166 | } |
2167 | ||
53b381b3 | 2168 | /* |
8810f751 LB |
2169 | * Loop retry: |
2170 | * for 'mirror == 2', reconstruct from all other stripes. | |
2171 | * for 'mirror_num > 2', select a stripe to fail on every retry. | |
53b381b3 | 2172 | */ |
8810f751 LB |
2173 | if (mirror_num > 2) { |
2174 | /* | |
2175 | * 'mirror == 3' is to fail the p stripe and | |
2176 | * reconstruct from the q stripe. 'mirror > 3' is to | |
2177 | * fail a data stripe and reconstruct from p+q stripe. | |
2178 | */ | |
2179 | rbio->failb = rbio->real_stripes - (mirror_num - 1); | |
2180 | ASSERT(rbio->failb > 0); | |
2181 | if (rbio->failb <= rbio->faila) | |
2182 | rbio->failb--; | |
2183 | } | |
53b381b3 DW |
2184 | |
2185 | ret = lock_stripe_add(rbio); | |
2186 | ||
2187 | /* | |
2188 | * __raid56_parity_recover will end the bio with | |
2189 | * any errors it hits. We don't want to return | |
2190 | * its error value up the stack because our caller | |
2191 | * will end up calling bio_endio with any nonzero | |
2192 | * return | |
2193 | */ | |
2194 | if (ret == 0) | |
2195 | __raid56_parity_recover(rbio); | |
2196 | /* | |
2197 | * our rbio has been added to the list of | |
2198 | * rbios that will be handled after the | |
2199 | * currently lock owner is done | |
2200 | */ | |
2201 | return 0; | |
2202 | ||
2203 | } | |
2204 | ||
2205 | static void rmw_work(struct btrfs_work *work) | |
2206 | { | |
2207 | struct btrfs_raid_bio *rbio; | |
2208 | ||
2209 | rbio = container_of(work, struct btrfs_raid_bio, work); | |
2210 | raid56_rmw_stripe(rbio); | |
2211 | } | |
2212 | ||
2213 | static void read_rebuild_work(struct btrfs_work *work) | |
2214 | { | |
2215 | struct btrfs_raid_bio *rbio; | |
2216 | ||
2217 | rbio = container_of(work, struct btrfs_raid_bio, work); | |
2218 | __raid56_parity_recover(rbio); | |
2219 | } | |
5a6ac9ea MX |
2220 | |
2221 | /* | |
2222 | * The following code is used to scrub/replace the parity stripe | |
2223 | * | |
ae6529c3 QW |
2224 | * Caller must have already increased bio_counter for getting @bbio. |
2225 | * | |
5a6ac9ea MX |
2226 | * Note: We need make sure all the pages that add into the scrub/replace |
2227 | * raid bio are correct and not be changed during the scrub/replace. That | |
2228 | * is those pages just hold metadata or file data with checksum. | |
2229 | */ | |
2230 | ||
2231 | struct btrfs_raid_bio * | |
2ff7e61e | 2232 | raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, |
8e5cfb55 ZL |
2233 | struct btrfs_bio *bbio, u64 stripe_len, |
2234 | struct btrfs_device *scrub_dev, | |
5a6ac9ea MX |
2235 | unsigned long *dbitmap, int stripe_nsectors) |
2236 | { | |
2237 | struct btrfs_raid_bio *rbio; | |
2238 | int i; | |
2239 | ||
2ff7e61e | 2240 | rbio = alloc_rbio(fs_info, bbio, stripe_len); |
5a6ac9ea MX |
2241 | if (IS_ERR(rbio)) |
2242 | return NULL; | |
2243 | bio_list_add(&rbio->bio_list, bio); | |
2244 | /* | |
2245 | * This is a special bio which is used to hold the completion handler | |
2246 | * and make the scrub rbio is similar to the other types | |
2247 | */ | |
2248 | ASSERT(!bio->bi_iter.bi_size); | |
2249 | rbio->operation = BTRFS_RBIO_PARITY_SCRUB; | |
2250 | ||
9cd3a7eb LB |
2251 | /* |
2252 | * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted | |
2253 | * to the end position, so this search can start from the first parity | |
2254 | * stripe. | |
2255 | */ | |
2256 | for (i = rbio->nr_data; i < rbio->real_stripes; i++) { | |
5a6ac9ea MX |
2257 | if (bbio->stripes[i].dev == scrub_dev) { |
2258 | rbio->scrubp = i; | |
2259 | break; | |
2260 | } | |
2261 | } | |
9cd3a7eb | 2262 | ASSERT(i < rbio->real_stripes); |
5a6ac9ea MX |
2263 | |
2264 | /* Now we just support the sectorsize equals to page size */ | |
0b246afa | 2265 | ASSERT(fs_info->sectorsize == PAGE_SIZE); |
5a6ac9ea MX |
2266 | ASSERT(rbio->stripe_npages == stripe_nsectors); |
2267 | bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); | |
2268 | ||
ae6529c3 QW |
2269 | /* |
2270 | * We have already increased bio_counter when getting bbio, record it | |
2271 | * so we can free it at rbio_orig_end_io(). | |
2272 | */ | |
2273 | rbio->generic_bio_cnt = 1; | |
2274 | ||
5a6ac9ea MX |
2275 | return rbio; |
2276 | } | |
2277 | ||
b4ee1782 OS |
2278 | /* Used for both parity scrub and missing. */ |
2279 | void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, | |
2280 | u64 logical) | |
5a6ac9ea MX |
2281 | { |
2282 | int stripe_offset; | |
2283 | int index; | |
2284 | ||
8e5cfb55 ZL |
2285 | ASSERT(logical >= rbio->bbio->raid_map[0]); |
2286 | ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] + | |
5a6ac9ea | 2287 | rbio->stripe_len * rbio->nr_data); |
8e5cfb55 | 2288 | stripe_offset = (int)(logical - rbio->bbio->raid_map[0]); |
09cbfeaf | 2289 | index = stripe_offset >> PAGE_SHIFT; |
5a6ac9ea MX |
2290 | rbio->bio_pages[index] = page; |
2291 | } | |
2292 | ||
2293 | /* | |
2294 | * We just scrub the parity that we have correct data on the same horizontal, | |
2295 | * so we needn't allocate all pages for all the stripes. | |
2296 | */ | |
2297 | static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) | |
2298 | { | |
2299 | int i; | |
2300 | int bit; | |
2301 | int index; | |
2302 | struct page *page; | |
2303 | ||
2304 | for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { | |
2c8cdd6e | 2305 | for (i = 0; i < rbio->real_stripes; i++) { |
5a6ac9ea MX |
2306 | index = i * rbio->stripe_npages + bit; |
2307 | if (rbio->stripe_pages[index]) | |
2308 | continue; | |
2309 | ||
2310 | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | |
2311 | if (!page) | |
2312 | return -ENOMEM; | |
2313 | rbio->stripe_pages[index] = page; | |
5a6ac9ea MX |
2314 | } |
2315 | } | |
2316 | return 0; | |
2317 | } | |
2318 | ||
5a6ac9ea MX |
2319 | static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, |
2320 | int need_check) | |
2321 | { | |
76035976 | 2322 | struct btrfs_bio *bbio = rbio->bbio; |
1389053e KC |
2323 | void **pointers = rbio->finish_pointers; |
2324 | unsigned long *pbitmap = rbio->finish_pbitmap; | |
5a6ac9ea MX |
2325 | int nr_data = rbio->nr_data; |
2326 | int stripe; | |
2327 | int pagenr; | |
c17af965 | 2328 | bool has_qstripe; |
5a6ac9ea MX |
2329 | struct page *p_page = NULL; |
2330 | struct page *q_page = NULL; | |
2331 | struct bio_list bio_list; | |
2332 | struct bio *bio; | |
76035976 | 2333 | int is_replace = 0; |
5a6ac9ea MX |
2334 | int ret; |
2335 | ||
2336 | bio_list_init(&bio_list); | |
2337 | ||
c17af965 DS |
2338 | if (rbio->real_stripes - rbio->nr_data == 1) |
2339 | has_qstripe = false; | |
2340 | else if (rbio->real_stripes - rbio->nr_data == 2) | |
2341 | has_qstripe = true; | |
2342 | else | |
5a6ac9ea | 2343 | BUG(); |
5a6ac9ea | 2344 | |
76035976 MX |
2345 | if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { |
2346 | is_replace = 1; | |
2347 | bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); | |
2348 | } | |
2349 | ||
5a6ac9ea MX |
2350 | /* |
2351 | * Because the higher layers(scrubber) are unlikely to | |
2352 | * use this area of the disk again soon, so don't cache | |
2353 | * it. | |
2354 | */ | |
2355 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | |
2356 | ||
2357 | if (!need_check) | |
2358 | goto writeback; | |
2359 | ||
2360 | p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | |
2361 | if (!p_page) | |
2362 | goto cleanup; | |
2363 | SetPageUptodate(p_page); | |
2364 | ||
c17af965 | 2365 | if (has_qstripe) { |
5a6ac9ea MX |
2366 | q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); |
2367 | if (!q_page) { | |
2368 | __free_page(p_page); | |
2369 | goto cleanup; | |
2370 | } | |
2371 | SetPageUptodate(q_page); | |
2372 | } | |
2373 | ||
2374 | atomic_set(&rbio->error, 0); | |
2375 | ||
2376 | for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { | |
2377 | struct page *p; | |
2378 | void *parity; | |
2379 | /* first collect one page from each data stripe */ | |
2380 | for (stripe = 0; stripe < nr_data; stripe++) { | |
2381 | p = page_in_rbio(rbio, stripe, pagenr, 0); | |
2382 | pointers[stripe] = kmap(p); | |
2383 | } | |
2384 | ||
2385 | /* then add the parity stripe */ | |
2386 | pointers[stripe++] = kmap(p_page); | |
2387 | ||
c17af965 | 2388 | if (has_qstripe) { |
5a6ac9ea MX |
2389 | /* |
2390 | * raid6, add the qstripe and call the | |
2391 | * library function to fill in our p/q | |
2392 | */ | |
2393 | pointers[stripe++] = kmap(q_page); | |
2394 | ||
2c8cdd6e | 2395 | raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, |
5a6ac9ea MX |
2396 | pointers); |
2397 | } else { | |
2398 | /* raid5 */ | |
69d24804 | 2399 | copy_page(pointers[nr_data], pointers[0]); |
09cbfeaf | 2400 | run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); |
5a6ac9ea MX |
2401 | } |
2402 | ||
01327610 | 2403 | /* Check scrubbing parity and repair it */ |
5a6ac9ea MX |
2404 | p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); |
2405 | parity = kmap(p); | |
09cbfeaf | 2406 | if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE)) |
69d24804 | 2407 | copy_page(parity, pointers[rbio->scrubp]); |
5a6ac9ea MX |
2408 | else |
2409 | /* Parity is right, needn't writeback */ | |
2410 | bitmap_clear(rbio->dbitmap, pagenr, 1); | |
2411 | kunmap(p); | |
2412 | ||
3897b6f0 | 2413 | for (stripe = 0; stripe < nr_data; stripe++) |
5a6ac9ea | 2414 | kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); |
3897b6f0 | 2415 | kunmap(p_page); |
5a6ac9ea MX |
2416 | } |
2417 | ||
2418 | __free_page(p_page); | |
2419 | if (q_page) | |
2420 | __free_page(q_page); | |
2421 | ||
2422 | writeback: | |
2423 | /* | |
2424 | * time to start writing. Make bios for everything from the | |
2425 | * higher layers (the bio_list in our rbio) and our p/q. Ignore | |
2426 | * everything else. | |
2427 | */ | |
2428 | for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { | |
2429 | struct page *page; | |
2430 | ||
2431 | page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); | |
2432 | ret = rbio_add_io_page(rbio, &bio_list, | |
2433 | page, rbio->scrubp, pagenr, rbio->stripe_len); | |
2434 | if (ret) | |
2435 | goto cleanup; | |
2436 | } | |
2437 | ||
76035976 MX |
2438 | if (!is_replace) |
2439 | goto submit_write; | |
2440 | ||
2441 | for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { | |
2442 | struct page *page; | |
2443 | ||
2444 | page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); | |
2445 | ret = rbio_add_io_page(rbio, &bio_list, page, | |
2446 | bbio->tgtdev_map[rbio->scrubp], | |
2447 | pagenr, rbio->stripe_len); | |
2448 | if (ret) | |
2449 | goto cleanup; | |
2450 | } | |
2451 | ||
2452 | submit_write: | |
5a6ac9ea MX |
2453 | nr_data = bio_list_size(&bio_list); |
2454 | if (!nr_data) { | |
2455 | /* Every parity is right */ | |
58efbc9f | 2456 | rbio_orig_end_io(rbio, BLK_STS_OK); |
5a6ac9ea MX |
2457 | return; |
2458 | } | |
2459 | ||
2460 | atomic_set(&rbio->stripes_pending, nr_data); | |
2461 | ||
bf28a605 | 2462 | while ((bio = bio_list_pop(&bio_list))) { |
5a6ac9ea | 2463 | bio->bi_private = rbio; |
a6111d11 | 2464 | bio->bi_end_io = raid_write_end_io; |
ebcc3263 | 2465 | bio->bi_opf = REQ_OP_WRITE; |
4e49ea4a MC |
2466 | |
2467 | submit_bio(bio); | |
5a6ac9ea MX |
2468 | } |
2469 | return; | |
2470 | ||
2471 | cleanup: | |
58efbc9f | 2472 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
785884fc LB |
2473 | |
2474 | while ((bio = bio_list_pop(&bio_list))) | |
2475 | bio_put(bio); | |
5a6ac9ea MX |
2476 | } |
2477 | ||
2478 | static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) | |
2479 | { | |
2480 | if (stripe >= 0 && stripe < rbio->nr_data) | |
2481 | return 1; | |
2482 | return 0; | |
2483 | } | |
2484 | ||
2485 | /* | |
2486 | * While we're doing the parity check and repair, we could have errors | |
2487 | * in reading pages off the disk. This checks for errors and if we're | |
2488 | * not able to read the page it'll trigger parity reconstruction. The | |
2489 | * parity scrub will be finished after we've reconstructed the failed | |
2490 | * stripes | |
2491 | */ | |
2492 | static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) | |
2493 | { | |
2494 | if (atomic_read(&rbio->error) > rbio->bbio->max_errors) | |
2495 | goto cleanup; | |
2496 | ||
2497 | if (rbio->faila >= 0 || rbio->failb >= 0) { | |
2498 | int dfail = 0, failp = -1; | |
2499 | ||
2500 | if (is_data_stripe(rbio, rbio->faila)) | |
2501 | dfail++; | |
2502 | else if (is_parity_stripe(rbio->faila)) | |
2503 | failp = rbio->faila; | |
2504 | ||
2505 | if (is_data_stripe(rbio, rbio->failb)) | |
2506 | dfail++; | |
2507 | else if (is_parity_stripe(rbio->failb)) | |
2508 | failp = rbio->failb; | |
2509 | ||
2510 | /* | |
2511 | * Because we can not use a scrubbing parity to repair | |
2512 | * the data, so the capability of the repair is declined. | |
2513 | * (In the case of RAID5, we can not repair anything) | |
2514 | */ | |
2515 | if (dfail > rbio->bbio->max_errors - 1) | |
2516 | goto cleanup; | |
2517 | ||
2518 | /* | |
2519 | * If all data is good, only parity is correctly, just | |
2520 | * repair the parity. | |
2521 | */ | |
2522 | if (dfail == 0) { | |
2523 | finish_parity_scrub(rbio, 0); | |
2524 | return; | |
2525 | } | |
2526 | ||
2527 | /* | |
2528 | * Here means we got one corrupted data stripe and one | |
2529 | * corrupted parity on RAID6, if the corrupted parity | |
01327610 | 2530 | * is scrubbing parity, luckily, use the other one to repair |
5a6ac9ea MX |
2531 | * the data, or we can not repair the data stripe. |
2532 | */ | |
2533 | if (failp != rbio->scrubp) | |
2534 | goto cleanup; | |
2535 | ||
2536 | __raid_recover_end_io(rbio); | |
2537 | } else { | |
2538 | finish_parity_scrub(rbio, 1); | |
2539 | } | |
2540 | return; | |
2541 | ||
2542 | cleanup: | |
58efbc9f | 2543 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
5a6ac9ea MX |
2544 | } |
2545 | ||
2546 | /* | |
2547 | * end io for the read phase of the rmw cycle. All the bios here are physical | |
2548 | * stripe bios we've read from the disk so we can recalculate the parity of the | |
2549 | * stripe. | |
2550 | * | |
2551 | * This will usually kick off finish_rmw once all the bios are read in, but it | |
2552 | * may trigger parity reconstruction if we had any errors along the way | |
2553 | */ | |
4246a0b6 | 2554 | static void raid56_parity_scrub_end_io(struct bio *bio) |
5a6ac9ea MX |
2555 | { |
2556 | struct btrfs_raid_bio *rbio = bio->bi_private; | |
2557 | ||
4e4cbee9 | 2558 | if (bio->bi_status) |
5a6ac9ea MX |
2559 | fail_bio_stripe(rbio, bio); |
2560 | else | |
2561 | set_bio_pages_uptodate(bio); | |
2562 | ||
2563 | bio_put(bio); | |
2564 | ||
2565 | if (!atomic_dec_and_test(&rbio->stripes_pending)) | |
2566 | return; | |
2567 | ||
2568 | /* | |
2569 | * this will normally call finish_rmw to start our write | |
2570 | * but if there are any failed stripes we'll reconstruct | |
2571 | * from parity first | |
2572 | */ | |
2573 | validate_rbio_for_parity_scrub(rbio); | |
2574 | } | |
2575 | ||
2576 | static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) | |
2577 | { | |
2578 | int bios_to_read = 0; | |
5a6ac9ea MX |
2579 | struct bio_list bio_list; |
2580 | int ret; | |
2581 | int pagenr; | |
2582 | int stripe; | |
2583 | struct bio *bio; | |
2584 | ||
785884fc LB |
2585 | bio_list_init(&bio_list); |
2586 | ||
5a6ac9ea MX |
2587 | ret = alloc_rbio_essential_pages(rbio); |
2588 | if (ret) | |
2589 | goto cleanup; | |
2590 | ||
5a6ac9ea MX |
2591 | atomic_set(&rbio->error, 0); |
2592 | /* | |
2593 | * build a list of bios to read all the missing parts of this | |
2594 | * stripe | |
2595 | */ | |
2c8cdd6e | 2596 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
5a6ac9ea MX |
2597 | for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { |
2598 | struct page *page; | |
2599 | /* | |
2600 | * we want to find all the pages missing from | |
2601 | * the rbio and read them from the disk. If | |
2602 | * page_in_rbio finds a page in the bio list | |
2603 | * we don't need to read it off the stripe. | |
2604 | */ | |
2605 | page = page_in_rbio(rbio, stripe, pagenr, 1); | |
2606 | if (page) | |
2607 | continue; | |
2608 | ||
2609 | page = rbio_stripe_page(rbio, stripe, pagenr); | |
2610 | /* | |
2611 | * the bio cache may have handed us an uptodate | |
2612 | * page. If so, be happy and use it | |
2613 | */ | |
2614 | if (PageUptodate(page)) | |
2615 | continue; | |
2616 | ||
2617 | ret = rbio_add_io_page(rbio, &bio_list, page, | |
2618 | stripe, pagenr, rbio->stripe_len); | |
2619 | if (ret) | |
2620 | goto cleanup; | |
2621 | } | |
2622 | } | |
2623 | ||
2624 | bios_to_read = bio_list_size(&bio_list); | |
2625 | if (!bios_to_read) { | |
2626 | /* | |
2627 | * this can happen if others have merged with | |
2628 | * us, it means there is nothing left to read. | |
2629 | * But if there are missing devices it may not be | |
2630 | * safe to do the full stripe write yet. | |
2631 | */ | |
2632 | goto finish; | |
2633 | } | |
2634 | ||
2635 | /* | |
2636 | * the bbio may be freed once we submit the last bio. Make sure | |
2637 | * not to touch it after that | |
2638 | */ | |
2639 | atomic_set(&rbio->stripes_pending, bios_to_read); | |
bf28a605 | 2640 | while ((bio = bio_list_pop(&bio_list))) { |
5a6ac9ea MX |
2641 | bio->bi_private = rbio; |
2642 | bio->bi_end_io = raid56_parity_scrub_end_io; | |
ebcc3263 | 2643 | bio->bi_opf = REQ_OP_READ; |
5a6ac9ea | 2644 | |
0b246afa | 2645 | btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); |
5a6ac9ea | 2646 | |
4e49ea4a | 2647 | submit_bio(bio); |
5a6ac9ea MX |
2648 | } |
2649 | /* the actual write will happen once the reads are done */ | |
2650 | return; | |
2651 | ||
2652 | cleanup: | |
58efbc9f | 2653 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
785884fc LB |
2654 | |
2655 | while ((bio = bio_list_pop(&bio_list))) | |
2656 | bio_put(bio); | |
2657 | ||
5a6ac9ea MX |
2658 | return; |
2659 | ||
2660 | finish: | |
2661 | validate_rbio_for_parity_scrub(rbio); | |
2662 | } | |
2663 | ||
2664 | static void scrub_parity_work(struct btrfs_work *work) | |
2665 | { | |
2666 | struct btrfs_raid_bio *rbio; | |
2667 | ||
2668 | rbio = container_of(work, struct btrfs_raid_bio, work); | |
2669 | raid56_parity_scrub_stripe(rbio); | |
2670 | } | |
2671 | ||
5a6ac9ea MX |
2672 | void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) |
2673 | { | |
2674 | if (!lock_stripe_add(rbio)) | |
a81b747d | 2675 | start_async_work(rbio, scrub_parity_work); |
5a6ac9ea | 2676 | } |
b4ee1782 OS |
2677 | |
2678 | /* The following code is used for dev replace of a missing RAID 5/6 device. */ | |
2679 | ||
2680 | struct btrfs_raid_bio * | |
2ff7e61e | 2681 | raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, |
b4ee1782 OS |
2682 | struct btrfs_bio *bbio, u64 length) |
2683 | { | |
2684 | struct btrfs_raid_bio *rbio; | |
2685 | ||
2ff7e61e | 2686 | rbio = alloc_rbio(fs_info, bbio, length); |
b4ee1782 OS |
2687 | if (IS_ERR(rbio)) |
2688 | return NULL; | |
2689 | ||
2690 | rbio->operation = BTRFS_RBIO_REBUILD_MISSING; | |
2691 | bio_list_add(&rbio->bio_list, bio); | |
2692 | /* | |
2693 | * This is a special bio which is used to hold the completion handler | |
2694 | * and make the scrub rbio is similar to the other types | |
2695 | */ | |
2696 | ASSERT(!bio->bi_iter.bi_size); | |
2697 | ||
2698 | rbio->faila = find_logical_bio_stripe(rbio, bio); | |
2699 | if (rbio->faila == -1) { | |
2700 | BUG(); | |
2701 | kfree(rbio); | |
2702 | return NULL; | |
2703 | } | |
2704 | ||
ae6529c3 QW |
2705 | /* |
2706 | * When we get bbio, we have already increased bio_counter, record it | |
2707 | * so we can free it at rbio_orig_end_io() | |
2708 | */ | |
2709 | rbio->generic_bio_cnt = 1; | |
2710 | ||
b4ee1782 OS |
2711 | return rbio; |
2712 | } | |
2713 | ||
b4ee1782 OS |
2714 | void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) |
2715 | { | |
2716 | if (!lock_stripe_add(rbio)) | |
e66d8d5a | 2717 | start_async_work(rbio, read_rebuild_work); |
b4ee1782 | 2718 | } |