]> Git Repo - linux.git/blame - kernel/cgroup.c
cgroup: initialize cgrp_dfl_root_inhibit_ss_mask from !->dfl_files test
[linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
846c7bb0 60
60063497 61#include <linux/atomic.h>
ddbcc7e8 62
b1a21367
TH
63/*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69#define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
8d7e6fb0
TH
71#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
e25e2cbb
TH
74/*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
0e1d768f
TH
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
e25e2cbb 80 *
0e1d768f
TH
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
86DECLARE_RWSEM(css_set_rwsem);
87EXPORT_SYMBOL_GPL(cgroup_mutex);
88EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 91static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
92#endif
93
6fa4918d 94/*
15a4c835
TH
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
6fa4918d
TH
97 */
98static DEFINE_SPINLOCK(cgroup_idr_lock);
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 105
8353da1f 106#define cgroup_assert_mutex_or_rcu_locked() \
87fb54f1
TH
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
8353da1f 109 "cgroup_mutex or RCU read lock required");
780cd8b3 110
e5fca243
TH
111/*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117static struct workqueue_struct *cgroup_destroy_wq;
118
b1a21367
TH
119/*
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
122 */
123static struct workqueue_struct *cgroup_pidlist_destroy_wq;
124
3ed80a62 125/* generate an array of cgroup subsystem pointers */
073219e9 126#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 127static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
128#include <linux/cgroup_subsys.h>
129};
073219e9
TH
130#undef SUBSYS
131
132/* array of cgroup subsystem names */
133#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
135#include <linux/cgroup_subsys.h>
136};
073219e9 137#undef SUBSYS
ddbcc7e8 138
ddbcc7e8 139/*
3dd06ffa 140 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
ddbcc7e8 143 */
a2dd4247 144struct cgroup_root cgrp_dfl_root;
9871bf95 145
a2dd4247
TH
146/*
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
149 */
150static bool cgrp_dfl_root_visible;
ddbcc7e8 151
a8ddc821
TH
152/*
153 * Set by the boot param of the same name and makes subsystems with NULL
154 * ->dfl_files to use ->legacy_files on the default hierarchy.
155 */
156static bool cgroup_legacy_files_on_dfl;
157
5533e011 158/* some controllers are not supported in the default hierarchy */
5de4fa13 159static unsigned int cgrp_dfl_root_inhibit_ss_mask;
5533e011 160
ddbcc7e8
PM
161/* The list of hierarchy roots */
162
9871bf95
TH
163static LIST_HEAD(cgroup_roots);
164static int cgroup_root_count;
ddbcc7e8 165
3417ae1f 166/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 167static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 168
794611a1 169/*
0cb51d71
TH
170 * Assign a monotonically increasing serial number to csses. It guarantees
171 * cgroups with bigger numbers are newer than those with smaller numbers.
172 * Also, as csses are always appended to the parent's ->children list, it
173 * guarantees that sibling csses are always sorted in the ascending serial
174 * number order on the list. Protected by cgroup_mutex.
794611a1 175 */
0cb51d71 176static u64 css_serial_nr_next = 1;
794611a1 177
ddbcc7e8 178/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
179 * check for fork/exit handlers to call. This avoids us having to do
180 * extra work in the fork/exit path if none of the subsystems need to
181 * be called.
ddbcc7e8 182 */
8947f9d5 183static int need_forkexit_callback __read_mostly;
ddbcc7e8 184
a14c6874
TH
185static struct cftype cgroup_dfl_base_files[];
186static struct cftype cgroup_legacy_base_files[];
628f7cd4 187
59f5296b 188static void cgroup_put(struct cgroup *cgrp);
3dd06ffa 189static int rebind_subsystems(struct cgroup_root *dst_root,
69dfa00c 190 unsigned int ss_mask);
42809dd4 191static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
192static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
193 bool visible);
9d755d33 194static void css_release(struct percpu_ref *ref);
f8f22e53 195static void kill_css(struct cgroup_subsys_state *css);
2bb566cb
TH
196static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
197 bool is_add);
b1a21367 198static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 199
6fa4918d
TH
200/* IDR wrappers which synchronize using cgroup_idr_lock */
201static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
202 gfp_t gfp_mask)
203{
204 int ret;
205
206 idr_preload(gfp_mask);
54504e97 207 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 208 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
54504e97 209 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
210 idr_preload_end();
211 return ret;
212}
213
214static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
215{
216 void *ret;
217
54504e97 218 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 219 ret = idr_replace(idr, ptr, id);
54504e97 220 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
221 return ret;
222}
223
224static void cgroup_idr_remove(struct idr *idr, int id)
225{
54504e97 226 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 227 idr_remove(idr, id);
54504e97 228 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
229}
230
d51f39b0
TH
231static struct cgroup *cgroup_parent(struct cgroup *cgrp)
232{
233 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
234
235 if (parent_css)
236 return container_of(parent_css, struct cgroup, self);
237 return NULL;
238}
239
95109b62
TH
240/**
241 * cgroup_css - obtain a cgroup's css for the specified subsystem
242 * @cgrp: the cgroup of interest
9d800df1 243 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 244 *
ca8bdcaf
TH
245 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
246 * function must be called either under cgroup_mutex or rcu_read_lock() and
247 * the caller is responsible for pinning the returned css if it wants to
248 * keep accessing it outside the said locks. This function may return
249 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
250 */
251static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 252 struct cgroup_subsys *ss)
95109b62 253{
ca8bdcaf 254 if (ss)
aec25020 255 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 256 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 257 else
9d800df1 258 return &cgrp->self;
95109b62 259}
42809dd4 260
aec3dfcb
TH
261/**
262 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
263 * @cgrp: the cgroup of interest
9d800df1 264 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb
TH
265 *
266 * Similar to cgroup_css() but returns the effctive css, which is defined
267 * as the matching css of the nearest ancestor including self which has @ss
268 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
269 * function is guaranteed to return non-NULL css.
270 */
271static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
272 struct cgroup_subsys *ss)
273{
274 lockdep_assert_held(&cgroup_mutex);
275
276 if (!ss)
9d800df1 277 return &cgrp->self;
aec3dfcb
TH
278
279 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
280 return NULL;
281
d51f39b0
TH
282 while (cgroup_parent(cgrp) &&
283 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
284 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
285
286 return cgroup_css(cgrp, ss);
95109b62 287}
42809dd4 288
ddbcc7e8 289/* convenient tests for these bits */
54766d4a 290static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 291{
184faf32 292 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
293}
294
b4168640 295struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 296{
2bd59d48 297 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 298 struct cftype *cft = of_cft(of);
2bd59d48
TH
299
300 /*
301 * This is open and unprotected implementation of cgroup_css().
302 * seq_css() is only called from a kernfs file operation which has
303 * an active reference on the file. Because all the subsystem
304 * files are drained before a css is disassociated with a cgroup,
305 * the matching css from the cgroup's subsys table is guaranteed to
306 * be and stay valid until the enclosing operation is complete.
307 */
308 if (cft->ss)
309 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
310 else
9d800df1 311 return &cgrp->self;
59f5296b 312}
b4168640 313EXPORT_SYMBOL_GPL(of_css);
59f5296b 314
78574cf9
LZ
315/**
316 * cgroup_is_descendant - test ancestry
317 * @cgrp: the cgroup to be tested
318 * @ancestor: possible ancestor of @cgrp
319 *
320 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
321 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
322 * and @ancestor are accessible.
323 */
324bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
325{
326 while (cgrp) {
327 if (cgrp == ancestor)
328 return true;
d51f39b0 329 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
330 }
331 return false;
332}
ddbcc7e8 333
e9685a03 334static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
335{
336 const int bits =
bd89aabc
PM
337 (1 << CGRP_RELEASABLE) |
338 (1 << CGRP_NOTIFY_ON_RELEASE);
339 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
340}
341
e9685a03 342static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 343{
bd89aabc 344 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
345}
346
1c6727af
TH
347/**
348 * for_each_css - iterate all css's of a cgroup
349 * @css: the iteration cursor
350 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
351 * @cgrp: the target cgroup to iterate css's of
352 *
aec3dfcb 353 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
354 */
355#define for_each_css(css, ssid, cgrp) \
356 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
357 if (!((css) = rcu_dereference_check( \
358 (cgrp)->subsys[(ssid)], \
359 lockdep_is_held(&cgroup_mutex)))) { } \
360 else
361
aec3dfcb
TH
362/**
363 * for_each_e_css - iterate all effective css's of a cgroup
364 * @css: the iteration cursor
365 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
366 * @cgrp: the target cgroup to iterate css's of
367 *
368 * Should be called under cgroup_[tree_]mutex.
369 */
370#define for_each_e_css(css, ssid, cgrp) \
371 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
372 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
373 ; \
374 else
375
30159ec7 376/**
3ed80a62 377 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 378 * @ss: the iteration cursor
780cd8b3 379 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 380 */
780cd8b3 381#define for_each_subsys(ss, ssid) \
3ed80a62
TH
382 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
383 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 384
985ed670
TH
385/* iterate across the hierarchies */
386#define for_each_root(root) \
5549c497 387 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 388
f8f22e53
TH
389/* iterate over child cgrps, lock should be held throughout iteration */
390#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 391 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 392 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
393 cgroup_is_dead(child); })) \
394 ; \
395 else
7ae1bad9 396
81a6a5cd
PM
397/* the list of cgroups eligible for automatic release. Protected by
398 * release_list_lock */
399static LIST_HEAD(release_list);
cdcc136f 400static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
401static void cgroup_release_agent(struct work_struct *work);
402static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 403static void check_for_release(struct cgroup *cgrp);
81a6a5cd 404
69d0206c
TH
405/*
406 * A cgroup can be associated with multiple css_sets as different tasks may
407 * belong to different cgroups on different hierarchies. In the other
408 * direction, a css_set is naturally associated with multiple cgroups.
409 * This M:N relationship is represented by the following link structure
410 * which exists for each association and allows traversing the associations
411 * from both sides.
412 */
413struct cgrp_cset_link {
414 /* the cgroup and css_set this link associates */
415 struct cgroup *cgrp;
416 struct css_set *cset;
417
418 /* list of cgrp_cset_links anchored at cgrp->cset_links */
419 struct list_head cset_link;
420
421 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
422 struct list_head cgrp_link;
817929ec
PM
423};
424
172a2c06
TH
425/*
426 * The default css_set - used by init and its children prior to any
817929ec
PM
427 * hierarchies being mounted. It contains a pointer to the root state
428 * for each subsystem. Also used to anchor the list of css_sets. Not
429 * reference-counted, to improve performance when child cgroups
430 * haven't been created.
431 */
5024ae29 432struct css_set init_css_set = {
172a2c06
TH
433 .refcount = ATOMIC_INIT(1),
434 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
435 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
436 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
437 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
438 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
439};
817929ec 440
172a2c06 441static int css_set_count = 1; /* 1 for init_css_set */
817929ec 442
842b597e
TH
443/**
444 * cgroup_update_populated - updated populated count of a cgroup
445 * @cgrp: the target cgroup
446 * @populated: inc or dec populated count
447 *
448 * @cgrp is either getting the first task (css_set) or losing the last.
449 * Update @cgrp->populated_cnt accordingly. The count is propagated
450 * towards root so that a given cgroup's populated_cnt is zero iff the
451 * cgroup and all its descendants are empty.
452 *
453 * @cgrp's interface file "cgroup.populated" is zero if
454 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
455 * changes from or to zero, userland is notified that the content of the
456 * interface file has changed. This can be used to detect when @cgrp and
457 * its descendants become populated or empty.
458 */
459static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
460{
461 lockdep_assert_held(&css_set_rwsem);
462
463 do {
464 bool trigger;
465
466 if (populated)
467 trigger = !cgrp->populated_cnt++;
468 else
469 trigger = !--cgrp->populated_cnt;
470
471 if (!trigger)
472 break;
473
474 if (cgrp->populated_kn)
475 kernfs_notify(cgrp->populated_kn);
d51f39b0 476 cgrp = cgroup_parent(cgrp);
842b597e
TH
477 } while (cgrp);
478}
479
7717f7ba
PM
480/*
481 * hash table for cgroup groups. This improves the performance to find
482 * an existing css_set. This hash doesn't (currently) take into
483 * account cgroups in empty hierarchies.
484 */
472b1053 485#define CSS_SET_HASH_BITS 7
0ac801fe 486static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 487
0ac801fe 488static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 489{
0ac801fe 490 unsigned long key = 0UL;
30159ec7
TH
491 struct cgroup_subsys *ss;
492 int i;
472b1053 493
30159ec7 494 for_each_subsys(ss, i)
0ac801fe
LZ
495 key += (unsigned long)css[i];
496 key = (key >> 16) ^ key;
472b1053 497
0ac801fe 498 return key;
472b1053
LZ
499}
500
89c5509b 501static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 502{
69d0206c 503 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
504 struct cgroup_subsys *ss;
505 int ssid;
5abb8855 506
89c5509b
TH
507 lockdep_assert_held(&css_set_rwsem);
508
509 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 510 return;
81a6a5cd 511
2c6ab6d2 512 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
513 for_each_subsys(ss, ssid)
514 list_del(&cset->e_cset_node[ssid]);
5abb8855 515 hash_del(&cset->hlist);
2c6ab6d2
PM
516 css_set_count--;
517
69d0206c 518 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 519 struct cgroup *cgrp = link->cgrp;
5abb8855 520
69d0206c
TH
521 list_del(&link->cset_link);
522 list_del(&link->cgrp_link);
71b5707e 523
96d365e0 524 /* @cgrp can't go away while we're holding css_set_rwsem */
842b597e
TH
525 if (list_empty(&cgrp->cset_links)) {
526 cgroup_update_populated(cgrp, false);
527 if (notify_on_release(cgrp)) {
528 if (taskexit)
529 set_bit(CGRP_RELEASABLE, &cgrp->flags);
530 check_for_release(cgrp);
531 }
81a6a5cd 532 }
2c6ab6d2
PM
533
534 kfree(link);
81a6a5cd 535 }
2c6ab6d2 536
5abb8855 537 kfree_rcu(cset, rcu_head);
b4f48b63
PM
538}
539
89c5509b
TH
540static void put_css_set(struct css_set *cset, bool taskexit)
541{
542 /*
543 * Ensure that the refcount doesn't hit zero while any readers
544 * can see it. Similar to atomic_dec_and_lock(), but for an
545 * rwlock
546 */
547 if (atomic_add_unless(&cset->refcount, -1, 1))
548 return;
549
550 down_write(&css_set_rwsem);
551 put_css_set_locked(cset, taskexit);
552 up_write(&css_set_rwsem);
553}
554
817929ec
PM
555/*
556 * refcounted get/put for css_set objects
557 */
5abb8855 558static inline void get_css_set(struct css_set *cset)
817929ec 559{
5abb8855 560 atomic_inc(&cset->refcount);
817929ec
PM
561}
562
b326f9d0 563/**
7717f7ba 564 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
565 * @cset: candidate css_set being tested
566 * @old_cset: existing css_set for a task
7717f7ba
PM
567 * @new_cgrp: cgroup that's being entered by the task
568 * @template: desired set of css pointers in css_set (pre-calculated)
569 *
6f4b7e63 570 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
571 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
572 */
5abb8855
TH
573static bool compare_css_sets(struct css_set *cset,
574 struct css_set *old_cset,
7717f7ba
PM
575 struct cgroup *new_cgrp,
576 struct cgroup_subsys_state *template[])
577{
578 struct list_head *l1, *l2;
579
aec3dfcb
TH
580 /*
581 * On the default hierarchy, there can be csets which are
582 * associated with the same set of cgroups but different csses.
583 * Let's first ensure that csses match.
584 */
585 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 586 return false;
7717f7ba
PM
587
588 /*
589 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
590 * different cgroups in hierarchies. As different cgroups may
591 * share the same effective css, this comparison is always
592 * necessary.
7717f7ba 593 */
69d0206c
TH
594 l1 = &cset->cgrp_links;
595 l2 = &old_cset->cgrp_links;
7717f7ba 596 while (1) {
69d0206c 597 struct cgrp_cset_link *link1, *link2;
5abb8855 598 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
599
600 l1 = l1->next;
601 l2 = l2->next;
602 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
603 if (l1 == &cset->cgrp_links) {
604 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
605 break;
606 } else {
69d0206c 607 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
608 }
609 /* Locate the cgroups associated with these links. */
69d0206c
TH
610 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
611 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
612 cgrp1 = link1->cgrp;
613 cgrp2 = link2->cgrp;
7717f7ba 614 /* Hierarchies should be linked in the same order. */
5abb8855 615 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
616
617 /*
618 * If this hierarchy is the hierarchy of the cgroup
619 * that's changing, then we need to check that this
620 * css_set points to the new cgroup; if it's any other
621 * hierarchy, then this css_set should point to the
622 * same cgroup as the old css_set.
623 */
5abb8855
TH
624 if (cgrp1->root == new_cgrp->root) {
625 if (cgrp1 != new_cgrp)
7717f7ba
PM
626 return false;
627 } else {
5abb8855 628 if (cgrp1 != cgrp2)
7717f7ba
PM
629 return false;
630 }
631 }
632 return true;
633}
634
b326f9d0
TH
635/**
636 * find_existing_css_set - init css array and find the matching css_set
637 * @old_cset: the css_set that we're using before the cgroup transition
638 * @cgrp: the cgroup that we're moving into
639 * @template: out param for the new set of csses, should be clear on entry
817929ec 640 */
5abb8855
TH
641static struct css_set *find_existing_css_set(struct css_set *old_cset,
642 struct cgroup *cgrp,
643 struct cgroup_subsys_state *template[])
b4f48b63 644{
3dd06ffa 645 struct cgroup_root *root = cgrp->root;
30159ec7 646 struct cgroup_subsys *ss;
5abb8855 647 struct css_set *cset;
0ac801fe 648 unsigned long key;
b326f9d0 649 int i;
817929ec 650
aae8aab4
BB
651 /*
652 * Build the set of subsystem state objects that we want to see in the
653 * new css_set. while subsystems can change globally, the entries here
654 * won't change, so no need for locking.
655 */
30159ec7 656 for_each_subsys(ss, i) {
f392e51c 657 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
658 /*
659 * @ss is in this hierarchy, so we want the
660 * effective css from @cgrp.
661 */
662 template[i] = cgroup_e_css(cgrp, ss);
817929ec 663 } else {
aec3dfcb
TH
664 /*
665 * @ss is not in this hierarchy, so we don't want
666 * to change the css.
667 */
5abb8855 668 template[i] = old_cset->subsys[i];
817929ec
PM
669 }
670 }
671
0ac801fe 672 key = css_set_hash(template);
5abb8855
TH
673 hash_for_each_possible(css_set_table, cset, hlist, key) {
674 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
675 continue;
676
677 /* This css_set matches what we need */
5abb8855 678 return cset;
472b1053 679 }
817929ec
PM
680
681 /* No existing cgroup group matched */
682 return NULL;
683}
684
69d0206c 685static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 686{
69d0206c 687 struct cgrp_cset_link *link, *tmp_link;
36553434 688
69d0206c
TH
689 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
690 list_del(&link->cset_link);
36553434
LZ
691 kfree(link);
692 }
693}
694
69d0206c
TH
695/**
696 * allocate_cgrp_cset_links - allocate cgrp_cset_links
697 * @count: the number of links to allocate
698 * @tmp_links: list_head the allocated links are put on
699 *
700 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
701 * through ->cset_link. Returns 0 on success or -errno.
817929ec 702 */
69d0206c 703static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 704{
69d0206c 705 struct cgrp_cset_link *link;
817929ec 706 int i;
69d0206c
TH
707
708 INIT_LIST_HEAD(tmp_links);
709
817929ec 710 for (i = 0; i < count; i++) {
f4f4be2b 711 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 712 if (!link) {
69d0206c 713 free_cgrp_cset_links(tmp_links);
817929ec
PM
714 return -ENOMEM;
715 }
69d0206c 716 list_add(&link->cset_link, tmp_links);
817929ec
PM
717 }
718 return 0;
719}
720
c12f65d4
LZ
721/**
722 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 723 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 724 * @cset: the css_set to be linked
c12f65d4
LZ
725 * @cgrp: the destination cgroup
726 */
69d0206c
TH
727static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
728 struct cgroup *cgrp)
c12f65d4 729{
69d0206c 730 struct cgrp_cset_link *link;
c12f65d4 731
69d0206c 732 BUG_ON(list_empty(tmp_links));
6803c006
TH
733
734 if (cgroup_on_dfl(cgrp))
735 cset->dfl_cgrp = cgrp;
736
69d0206c
TH
737 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
738 link->cset = cset;
7717f7ba 739 link->cgrp = cgrp;
842b597e
TH
740
741 if (list_empty(&cgrp->cset_links))
742 cgroup_update_populated(cgrp, true);
69d0206c 743 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 744
7717f7ba
PM
745 /*
746 * Always add links to the tail of the list so that the list
747 * is sorted by order of hierarchy creation
748 */
69d0206c 749 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
750}
751
b326f9d0
TH
752/**
753 * find_css_set - return a new css_set with one cgroup updated
754 * @old_cset: the baseline css_set
755 * @cgrp: the cgroup to be updated
756 *
757 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
758 * substituted into the appropriate hierarchy.
817929ec 759 */
5abb8855
TH
760static struct css_set *find_css_set(struct css_set *old_cset,
761 struct cgroup *cgrp)
817929ec 762{
b326f9d0 763 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 764 struct css_set *cset;
69d0206c
TH
765 struct list_head tmp_links;
766 struct cgrp_cset_link *link;
2d8f243a 767 struct cgroup_subsys *ss;
0ac801fe 768 unsigned long key;
2d8f243a 769 int ssid;
472b1053 770
b326f9d0
TH
771 lockdep_assert_held(&cgroup_mutex);
772
817929ec
PM
773 /* First see if we already have a cgroup group that matches
774 * the desired set */
96d365e0 775 down_read(&css_set_rwsem);
5abb8855
TH
776 cset = find_existing_css_set(old_cset, cgrp, template);
777 if (cset)
778 get_css_set(cset);
96d365e0 779 up_read(&css_set_rwsem);
817929ec 780
5abb8855
TH
781 if (cset)
782 return cset;
817929ec 783
f4f4be2b 784 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 785 if (!cset)
817929ec
PM
786 return NULL;
787
69d0206c 788 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 789 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 790 kfree(cset);
817929ec
PM
791 return NULL;
792 }
793
5abb8855 794 atomic_set(&cset->refcount, 1);
69d0206c 795 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 796 INIT_LIST_HEAD(&cset->tasks);
c7561128 797 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 798 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 799 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 800 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
801
802 /* Copy the set of subsystem state objects generated in
803 * find_existing_css_set() */
5abb8855 804 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 805
96d365e0 806 down_write(&css_set_rwsem);
817929ec 807 /* Add reference counts and links from the new css_set. */
69d0206c 808 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 809 struct cgroup *c = link->cgrp;
69d0206c 810
7717f7ba
PM
811 if (c->root == cgrp->root)
812 c = cgrp;
69d0206c 813 link_css_set(&tmp_links, cset, c);
7717f7ba 814 }
817929ec 815
69d0206c 816 BUG_ON(!list_empty(&tmp_links));
817929ec 817
817929ec 818 css_set_count++;
472b1053 819
2d8f243a 820 /* Add @cset to the hash table */
5abb8855
TH
821 key = css_set_hash(cset->subsys);
822 hash_add(css_set_table, &cset->hlist, key);
472b1053 823
2d8f243a
TH
824 for_each_subsys(ss, ssid)
825 list_add_tail(&cset->e_cset_node[ssid],
826 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
827
96d365e0 828 up_write(&css_set_rwsem);
817929ec 829
5abb8855 830 return cset;
b4f48b63
PM
831}
832
3dd06ffa 833static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 834{
3dd06ffa 835 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 836
3dd06ffa 837 return root_cgrp->root;
2bd59d48
TH
838}
839
3dd06ffa 840static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
841{
842 int id;
843
844 lockdep_assert_held(&cgroup_mutex);
845
985ed670 846 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
847 if (id < 0)
848 return id;
849
850 root->hierarchy_id = id;
851 return 0;
852}
853
3dd06ffa 854static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
855{
856 lockdep_assert_held(&cgroup_mutex);
857
858 if (root->hierarchy_id) {
859 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
860 root->hierarchy_id = 0;
861 }
862}
863
3dd06ffa 864static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
865{
866 if (root) {
867 /* hierarhcy ID shoulid already have been released */
868 WARN_ON_ONCE(root->hierarchy_id);
869
870 idr_destroy(&root->cgroup_idr);
871 kfree(root);
872 }
873}
874
3dd06ffa 875static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 876{
3dd06ffa 877 struct cgroup *cgrp = &root->cgrp;
f2e85d57 878 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 879
2bd59d48 880 mutex_lock(&cgroup_mutex);
f2e85d57 881
776f02fa 882 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 883 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 884
f2e85d57 885 /* Rebind all subsystems back to the default hierarchy */
f392e51c 886 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 887
7717f7ba 888 /*
f2e85d57
TH
889 * Release all the links from cset_links to this hierarchy's
890 * root cgroup
7717f7ba 891 */
96d365e0 892 down_write(&css_set_rwsem);
f2e85d57
TH
893
894 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
895 list_del(&link->cset_link);
896 list_del(&link->cgrp_link);
897 kfree(link);
898 }
96d365e0 899 up_write(&css_set_rwsem);
f2e85d57
TH
900
901 if (!list_empty(&root->root_list)) {
902 list_del(&root->root_list);
903 cgroup_root_count--;
904 }
905
906 cgroup_exit_root_id(root);
907
908 mutex_unlock(&cgroup_mutex);
f2e85d57 909
2bd59d48 910 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
911 cgroup_free_root(root);
912}
913
ceb6a081
TH
914/* look up cgroup associated with given css_set on the specified hierarchy */
915static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 916 struct cgroup_root *root)
7717f7ba 917{
7717f7ba
PM
918 struct cgroup *res = NULL;
919
96d365e0
TH
920 lockdep_assert_held(&cgroup_mutex);
921 lockdep_assert_held(&css_set_rwsem);
922
5abb8855 923 if (cset == &init_css_set) {
3dd06ffa 924 res = &root->cgrp;
7717f7ba 925 } else {
69d0206c
TH
926 struct cgrp_cset_link *link;
927
928 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 929 struct cgroup *c = link->cgrp;
69d0206c 930
7717f7ba
PM
931 if (c->root == root) {
932 res = c;
933 break;
934 }
935 }
936 }
96d365e0 937
7717f7ba
PM
938 BUG_ON(!res);
939 return res;
940}
941
ddbcc7e8 942/*
ceb6a081
TH
943 * Return the cgroup for "task" from the given hierarchy. Must be
944 * called with cgroup_mutex and css_set_rwsem held.
945 */
946static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 947 struct cgroup_root *root)
ceb6a081
TH
948{
949 /*
950 * No need to lock the task - since we hold cgroup_mutex the
951 * task can't change groups, so the only thing that can happen
952 * is that it exits and its css is set back to init_css_set.
953 */
954 return cset_cgroup_from_root(task_css_set(task), root);
955}
956
ddbcc7e8 957/*
ddbcc7e8
PM
958 * A task must hold cgroup_mutex to modify cgroups.
959 *
960 * Any task can increment and decrement the count field without lock.
961 * So in general, code holding cgroup_mutex can't rely on the count
962 * field not changing. However, if the count goes to zero, then only
956db3ca 963 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
964 * means that no tasks are currently attached, therefore there is no
965 * way a task attached to that cgroup can fork (the other way to
966 * increment the count). So code holding cgroup_mutex can safely
967 * assume that if the count is zero, it will stay zero. Similarly, if
968 * a task holds cgroup_mutex on a cgroup with zero count, it
969 * knows that the cgroup won't be removed, as cgroup_rmdir()
970 * needs that mutex.
971 *
ddbcc7e8
PM
972 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
973 * (usually) take cgroup_mutex. These are the two most performance
974 * critical pieces of code here. The exception occurs on cgroup_exit(),
975 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
976 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
977 * to the release agent with the name of the cgroup (path relative to
978 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
979 *
980 * A cgroup can only be deleted if both its 'count' of using tasks
981 * is zero, and its list of 'children' cgroups is empty. Since all
982 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 983 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 984 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 985 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
986 *
987 * P.S. One more locking exception. RCU is used to guard the
956db3ca 988 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
989 */
990
69dfa00c 991static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
2bd59d48 992static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 993static const struct file_operations proc_cgroupstats_operations;
a424316c 994
8d7e6fb0
TH
995static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
996 char *buf)
ddbcc7e8 997{
8d7e6fb0
TH
998 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
999 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1000 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1001 cft->ss->name, cft->name);
1002 else
1003 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1004 return buf;
ddbcc7e8
PM
1005}
1006
f2e85d57
TH
1007/**
1008 * cgroup_file_mode - deduce file mode of a control file
1009 * @cft: the control file in question
1010 *
1011 * returns cft->mode if ->mode is not 0
1012 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1013 * returns S_IRUGO if it has only a read handler
1014 * returns S_IWUSR if it has only a write hander
1015 */
1016static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1017{
f2e85d57 1018 umode_t mode = 0;
65dff759 1019
f2e85d57
TH
1020 if (cft->mode)
1021 return cft->mode;
1022
1023 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1024 mode |= S_IRUGO;
1025
6770c64e 1026 if (cft->write_u64 || cft->write_s64 || cft->write)
f2e85d57
TH
1027 mode |= S_IWUSR;
1028
1029 return mode;
65dff759
LZ
1030}
1031
59f5296b 1032static void cgroup_get(struct cgroup *cgrp)
be445626 1033{
2bd59d48 1034 WARN_ON_ONCE(cgroup_is_dead(cgrp));
9d755d33 1035 css_get(&cgrp->self);
be445626
LZ
1036}
1037
59f5296b 1038static void cgroup_put(struct cgroup *cgrp)
be445626 1039{
9d755d33 1040 css_put(&cgrp->self);
be445626
LZ
1041}
1042
af0ba678
TH
1043/**
1044 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1045 * @cgrp: the target cgroup
1046 *
1047 * On the default hierarchy, a subsystem may request other subsystems to be
1048 * enabled together through its ->depends_on mask. In such cases, more
1049 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1050 *
1051 * This function determines which subsystems need to be enabled given the
1052 * current @cgrp->subtree_control and records it in
1053 * @cgrp->child_subsys_mask. The resulting mask is always a superset of
1054 * @cgrp->subtree_control and follows the usual hierarchy rules.
1055 */
667c2491
TH
1056static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1057{
af0ba678
TH
1058 struct cgroup *parent = cgroup_parent(cgrp);
1059 unsigned int cur_ss_mask = cgrp->subtree_control;
1060 struct cgroup_subsys *ss;
1061 int ssid;
1062
1063 lockdep_assert_held(&cgroup_mutex);
1064
1065 if (!cgroup_on_dfl(cgrp)) {
1066 cgrp->child_subsys_mask = cur_ss_mask;
1067 return;
1068 }
1069
1070 while (true) {
1071 unsigned int new_ss_mask = cur_ss_mask;
1072
1073 for_each_subsys(ss, ssid)
1074 if (cur_ss_mask & (1 << ssid))
1075 new_ss_mask |= ss->depends_on;
1076
1077 /*
1078 * Mask out subsystems which aren't available. This can
1079 * happen only if some depended-upon subsystems were bound
1080 * to non-default hierarchies.
1081 */
1082 if (parent)
1083 new_ss_mask &= parent->child_subsys_mask;
1084 else
1085 new_ss_mask &= cgrp->root->subsys_mask;
1086
1087 if (new_ss_mask == cur_ss_mask)
1088 break;
1089 cur_ss_mask = new_ss_mask;
1090 }
1091
1092 cgrp->child_subsys_mask = cur_ss_mask;
667c2491
TH
1093}
1094
a9746d8d
TH
1095/**
1096 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1097 * @kn: the kernfs_node being serviced
1098 *
1099 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1100 * the method finishes if locking succeeded. Note that once this function
1101 * returns the cgroup returned by cgroup_kn_lock_live() may become
1102 * inaccessible any time. If the caller intends to continue to access the
1103 * cgroup, it should pin it before invoking this function.
1104 */
1105static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1106{
a9746d8d
TH
1107 struct cgroup *cgrp;
1108
1109 if (kernfs_type(kn) == KERNFS_DIR)
1110 cgrp = kn->priv;
1111 else
1112 cgrp = kn->parent->priv;
1113
1114 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1115
1116 kernfs_unbreak_active_protection(kn);
1117 cgroup_put(cgrp);
ddbcc7e8
PM
1118}
1119
a9746d8d
TH
1120/**
1121 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1122 * @kn: the kernfs_node being serviced
1123 *
1124 * This helper is to be used by a cgroup kernfs method currently servicing
1125 * @kn. It breaks the active protection, performs cgroup locking and
1126 * verifies that the associated cgroup is alive. Returns the cgroup if
1127 * alive; otherwise, %NULL. A successful return should be undone by a
1128 * matching cgroup_kn_unlock() invocation.
1129 *
1130 * Any cgroup kernfs method implementation which requires locking the
1131 * associated cgroup should use this helper. It avoids nesting cgroup
1132 * locking under kernfs active protection and allows all kernfs operations
1133 * including self-removal.
1134 */
1135static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1136{
a9746d8d
TH
1137 struct cgroup *cgrp;
1138
1139 if (kernfs_type(kn) == KERNFS_DIR)
1140 cgrp = kn->priv;
1141 else
1142 cgrp = kn->parent->priv;
05ef1d7c 1143
2739d3cc 1144 /*
01f6474c 1145 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1146 * active_ref. cgroup liveliness check alone provides enough
1147 * protection against removal. Ensure @cgrp stays accessible and
1148 * break the active_ref protection.
2739d3cc 1149 */
a9746d8d
TH
1150 cgroup_get(cgrp);
1151 kernfs_break_active_protection(kn);
1152
2bd59d48 1153 mutex_lock(&cgroup_mutex);
05ef1d7c 1154
a9746d8d
TH
1155 if (!cgroup_is_dead(cgrp))
1156 return cgrp;
1157
1158 cgroup_kn_unlock(kn);
1159 return NULL;
ddbcc7e8 1160}
05ef1d7c 1161
2739d3cc 1162static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1163{
2bd59d48 1164 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1165
01f6474c 1166 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1167 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1168}
1169
13af07df 1170/**
628f7cd4 1171 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1172 * @cgrp: target cgroup
13af07df
AR
1173 * @subsys_mask: mask of the subsystem ids whose files should be removed
1174 */
69dfa00c 1175static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
05ef1d7c 1176{
13af07df 1177 struct cgroup_subsys *ss;
b420ba7d 1178 int i;
05ef1d7c 1179
b420ba7d 1180 for_each_subsys(ss, i) {
0adb0704 1181 struct cftype *cfts;
b420ba7d 1182
69dfa00c 1183 if (!(subsys_mask & (1 << i)))
13af07df 1184 continue;
0adb0704
TH
1185 list_for_each_entry(cfts, &ss->cfts, node)
1186 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1187 }
ddbcc7e8
PM
1188}
1189
69dfa00c 1190static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
ddbcc7e8 1191{
30159ec7 1192 struct cgroup_subsys *ss;
5533e011 1193 unsigned int tmp_ss_mask;
2d8f243a 1194 int ssid, i, ret;
ddbcc7e8 1195
ace2bee8 1196 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1197
5df36032
TH
1198 for_each_subsys(ss, ssid) {
1199 if (!(ss_mask & (1 << ssid)))
1200 continue;
aae8aab4 1201
7fd8c565
TH
1202 /* if @ss has non-root csses attached to it, can't move */
1203 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1204 return -EBUSY;
1d5be6b2 1205
5df36032 1206 /* can't move between two non-dummy roots either */
7fd8c565 1207 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1208 return -EBUSY;
ddbcc7e8
PM
1209 }
1210
5533e011
TH
1211 /* skip creating root files on dfl_root for inhibited subsystems */
1212 tmp_ss_mask = ss_mask;
1213 if (dst_root == &cgrp_dfl_root)
1214 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1215
1216 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
a2dd4247
TH
1217 if (ret) {
1218 if (dst_root != &cgrp_dfl_root)
5df36032 1219 return ret;
ddbcc7e8 1220
a2dd4247
TH
1221 /*
1222 * Rebinding back to the default root is not allowed to
1223 * fail. Using both default and non-default roots should
1224 * be rare. Moving subsystems back and forth even more so.
1225 * Just warn about it and continue.
1226 */
1227 if (cgrp_dfl_root_visible) {
69dfa00c 1228 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
a2a1f9ea 1229 ret, ss_mask);
ed3d261b 1230 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
a2dd4247 1231 }
5df36032 1232 }
3126121f
TH
1233
1234 /*
1235 * Nothing can fail from this point on. Remove files for the
1236 * removed subsystems and rebind each subsystem.
1237 */
5df36032 1238 for_each_subsys(ss, ssid)
a2dd4247 1239 if (ss_mask & (1 << ssid))
3dd06ffa 1240 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
a8a648c4 1241
5df36032 1242 for_each_subsys(ss, ssid) {
3dd06ffa 1243 struct cgroup_root *src_root;
5df36032 1244 struct cgroup_subsys_state *css;
2d8f243a 1245 struct css_set *cset;
a8a648c4 1246
5df36032
TH
1247 if (!(ss_mask & (1 << ssid)))
1248 continue;
a8a648c4 1249
5df36032 1250 src_root = ss->root;
3dd06ffa 1251 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1252
3dd06ffa 1253 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
73e80ed8 1254
3dd06ffa
TH
1255 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1256 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1257 ss->root = dst_root;
3dd06ffa 1258 css->cgroup = &dst_root->cgrp;
73e80ed8 1259
2d8f243a
TH
1260 down_write(&css_set_rwsem);
1261 hash_for_each(css_set_table, i, cset, hlist)
1262 list_move_tail(&cset->e_cset_node[ss->id],
1263 &dst_root->cgrp.e_csets[ss->id]);
1264 up_write(&css_set_rwsem);
1265
f392e51c 1266 src_root->subsys_mask &= ~(1 << ssid);
667c2491
TH
1267 src_root->cgrp.subtree_control &= ~(1 << ssid);
1268 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
f392e51c 1269
bd53d617 1270 /* default hierarchy doesn't enable controllers by default */
f392e51c 1271 dst_root->subsys_mask |= 1 << ssid;
667c2491
TH
1272 if (dst_root != &cgrp_dfl_root) {
1273 dst_root->cgrp.subtree_control |= 1 << ssid;
1274 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1275 }
a8a648c4 1276
5df36032
TH
1277 if (ss->bind)
1278 ss->bind(css);
ddbcc7e8 1279 }
ddbcc7e8 1280
a2dd4247 1281 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1282 return 0;
1283}
1284
2bd59d48
TH
1285static int cgroup_show_options(struct seq_file *seq,
1286 struct kernfs_root *kf_root)
ddbcc7e8 1287{
3dd06ffa 1288 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1289 struct cgroup_subsys *ss;
b85d2040 1290 int ssid;
ddbcc7e8 1291
b85d2040 1292 for_each_subsys(ss, ssid)
f392e51c 1293 if (root->subsys_mask & (1 << ssid))
b85d2040 1294 seq_printf(seq, ",%s", ss->name);
93438629 1295 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1296 seq_puts(seq, ",noprefix");
93438629 1297 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1298 seq_puts(seq, ",xattr");
69e943b7
TH
1299
1300 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1301 if (strlen(root->release_agent_path))
1302 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1303 spin_unlock(&release_agent_path_lock);
1304
3dd06ffa 1305 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1306 seq_puts(seq, ",clone_children");
c6d57f33
PM
1307 if (strlen(root->name))
1308 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1309 return 0;
1310}
1311
1312struct cgroup_sb_opts {
69dfa00c
TH
1313 unsigned int subsys_mask;
1314 unsigned int flags;
81a6a5cd 1315 char *release_agent;
2260e7fc 1316 bool cpuset_clone_children;
c6d57f33 1317 char *name;
2c6ab6d2
PM
1318 /* User explicitly requested empty subsystem */
1319 bool none;
ddbcc7e8
PM
1320};
1321
cf5d5941 1322static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1323{
32a8cf23
DL
1324 char *token, *o = data;
1325 bool all_ss = false, one_ss = false;
69dfa00c 1326 unsigned int mask = -1U;
30159ec7 1327 struct cgroup_subsys *ss;
7b9a6ba5 1328 int nr_opts = 0;
30159ec7 1329 int i;
f9ab5b5b
LZ
1330
1331#ifdef CONFIG_CPUSETS
69dfa00c 1332 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1333#endif
ddbcc7e8 1334
c6d57f33 1335 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1336
1337 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1338 nr_opts++;
1339
ddbcc7e8
PM
1340 if (!*token)
1341 return -EINVAL;
32a8cf23 1342 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1343 /* Explicitly have no subsystems */
1344 opts->none = true;
32a8cf23
DL
1345 continue;
1346 }
1347 if (!strcmp(token, "all")) {
1348 /* Mutually exclusive option 'all' + subsystem name */
1349 if (one_ss)
1350 return -EINVAL;
1351 all_ss = true;
1352 continue;
1353 }
873fe09e
TH
1354 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1355 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1356 continue;
1357 }
32a8cf23 1358 if (!strcmp(token, "noprefix")) {
93438629 1359 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1360 continue;
1361 }
1362 if (!strcmp(token, "clone_children")) {
2260e7fc 1363 opts->cpuset_clone_children = true;
32a8cf23
DL
1364 continue;
1365 }
03b1cde6 1366 if (!strcmp(token, "xattr")) {
93438629 1367 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1368 continue;
1369 }
32a8cf23 1370 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1371 /* Specifying two release agents is forbidden */
1372 if (opts->release_agent)
1373 return -EINVAL;
c6d57f33 1374 opts->release_agent =
e400c285 1375 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1376 if (!opts->release_agent)
1377 return -ENOMEM;
32a8cf23
DL
1378 continue;
1379 }
1380 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1381 const char *name = token + 5;
1382 /* Can't specify an empty name */
1383 if (!strlen(name))
1384 return -EINVAL;
1385 /* Must match [\w.-]+ */
1386 for (i = 0; i < strlen(name); i++) {
1387 char c = name[i];
1388 if (isalnum(c))
1389 continue;
1390 if ((c == '.') || (c == '-') || (c == '_'))
1391 continue;
1392 return -EINVAL;
1393 }
1394 /* Specifying two names is forbidden */
1395 if (opts->name)
1396 return -EINVAL;
1397 opts->name = kstrndup(name,
e400c285 1398 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1399 GFP_KERNEL);
1400 if (!opts->name)
1401 return -ENOMEM;
32a8cf23
DL
1402
1403 continue;
1404 }
1405
30159ec7 1406 for_each_subsys(ss, i) {
32a8cf23
DL
1407 if (strcmp(token, ss->name))
1408 continue;
1409 if (ss->disabled)
1410 continue;
1411
1412 /* Mutually exclusive option 'all' + subsystem name */
1413 if (all_ss)
1414 return -EINVAL;
69dfa00c 1415 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1416 one_ss = true;
1417
1418 break;
1419 }
1420 if (i == CGROUP_SUBSYS_COUNT)
1421 return -ENOENT;
1422 }
1423
873fe09e 1424 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1425 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1426 if (nr_opts != 1) {
1427 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1428 return -EINVAL;
1429 }
7b9a6ba5 1430 return 0;
873fe09e
TH
1431 }
1432
7b9a6ba5
TH
1433 /*
1434 * If the 'all' option was specified select all the subsystems,
1435 * otherwise if 'none', 'name=' and a subsystem name options were
1436 * not specified, let's default to 'all'
1437 */
1438 if (all_ss || (!one_ss && !opts->none && !opts->name))
1439 for_each_subsys(ss, i)
1440 if (!ss->disabled)
1441 opts->subsys_mask |= (1 << i);
1442
1443 /*
1444 * We either have to specify by name or by subsystems. (So all
1445 * empty hierarchies must have a name).
1446 */
1447 if (!opts->subsys_mask && !opts->name)
1448 return -EINVAL;
1449
f9ab5b5b
LZ
1450 /*
1451 * Option noprefix was introduced just for backward compatibility
1452 * with the old cpuset, so we allow noprefix only if mounting just
1453 * the cpuset subsystem.
1454 */
93438629 1455 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1456 return -EINVAL;
1457
2c6ab6d2 1458 /* Can't specify "none" and some subsystems */
a1a71b45 1459 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1460 return -EINVAL;
1461
ddbcc7e8
PM
1462 return 0;
1463}
1464
2bd59d48 1465static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1466{
1467 int ret = 0;
3dd06ffa 1468 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1469 struct cgroup_sb_opts opts;
69dfa00c 1470 unsigned int added_mask, removed_mask;
ddbcc7e8 1471
aa6ec29b
TH
1472 if (root == &cgrp_dfl_root) {
1473 pr_err("remount is not allowed\n");
873fe09e
TH
1474 return -EINVAL;
1475 }
1476
ddbcc7e8
PM
1477 mutex_lock(&cgroup_mutex);
1478
1479 /* See what subsystems are wanted */
1480 ret = parse_cgroupfs_options(data, &opts);
1481 if (ret)
1482 goto out_unlock;
1483
f392e51c 1484 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1485 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1486 task_tgid_nr(current), current->comm);
8b5a5a9d 1487
f392e51c
TH
1488 added_mask = opts.subsys_mask & ~root->subsys_mask;
1489 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1490
cf5d5941 1491 /* Don't allow flags or name to change at remount */
7450e90b 1492 if ((opts.flags ^ root->flags) ||
cf5d5941 1493 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1494 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1495 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1496 ret = -EINVAL;
1497 goto out_unlock;
1498 }
1499
f172e67c 1500 /* remounting is not allowed for populated hierarchies */
d5c419b6 1501 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1502 ret = -EBUSY;
0670e08b 1503 goto out_unlock;
cf5d5941 1504 }
ddbcc7e8 1505
5df36032 1506 ret = rebind_subsystems(root, added_mask);
3126121f 1507 if (ret)
0670e08b 1508 goto out_unlock;
ddbcc7e8 1509
3dd06ffa 1510 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1511
69e943b7
TH
1512 if (opts.release_agent) {
1513 spin_lock(&release_agent_path_lock);
81a6a5cd 1514 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1515 spin_unlock(&release_agent_path_lock);
1516 }
ddbcc7e8 1517 out_unlock:
66bdc9cf 1518 kfree(opts.release_agent);
c6d57f33 1519 kfree(opts.name);
ddbcc7e8 1520 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1521 return ret;
1522}
1523
afeb0f9f
TH
1524/*
1525 * To reduce the fork() overhead for systems that are not actually using
1526 * their cgroups capability, we don't maintain the lists running through
1527 * each css_set to its tasks until we see the list actually used - in other
1528 * words after the first mount.
1529 */
1530static bool use_task_css_set_links __read_mostly;
1531
1532static void cgroup_enable_task_cg_lists(void)
1533{
1534 struct task_struct *p, *g;
1535
96d365e0 1536 down_write(&css_set_rwsem);
afeb0f9f
TH
1537
1538 if (use_task_css_set_links)
1539 goto out_unlock;
1540
1541 use_task_css_set_links = true;
1542
1543 /*
1544 * We need tasklist_lock because RCU is not safe against
1545 * while_each_thread(). Besides, a forking task that has passed
1546 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1547 * is not guaranteed to have its child immediately visible in the
1548 * tasklist if we walk through it with RCU.
1549 */
1550 read_lock(&tasklist_lock);
1551 do_each_thread(g, p) {
afeb0f9f
TH
1552 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1553 task_css_set(p) != &init_css_set);
1554
1555 /*
1556 * We should check if the process is exiting, otherwise
1557 * it will race with cgroup_exit() in that the list
1558 * entry won't be deleted though the process has exited.
f153ad11
TH
1559 * Do it while holding siglock so that we don't end up
1560 * racing against cgroup_exit().
afeb0f9f 1561 */
f153ad11 1562 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1563 if (!(p->flags & PF_EXITING)) {
1564 struct css_set *cset = task_css_set(p);
1565
1566 list_add(&p->cg_list, &cset->tasks);
1567 get_css_set(cset);
1568 }
f153ad11 1569 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1570 } while_each_thread(g, p);
1571 read_unlock(&tasklist_lock);
1572out_unlock:
96d365e0 1573 up_write(&css_set_rwsem);
afeb0f9f 1574}
ddbcc7e8 1575
cc31edce
PM
1576static void init_cgroup_housekeeping(struct cgroup *cgrp)
1577{
2d8f243a
TH
1578 struct cgroup_subsys *ss;
1579 int ssid;
1580
d5c419b6
TH
1581 INIT_LIST_HEAD(&cgrp->self.sibling);
1582 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1583 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1584 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1585 INIT_LIST_HEAD(&cgrp->pidlists);
1586 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1587 cgrp->self.cgroup = cgrp;
184faf32 1588 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1589
1590 for_each_subsys(ss, ssid)
1591 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1592
1593 init_waitqueue_head(&cgrp->offline_waitq);
cc31edce 1594}
c6d57f33 1595
3dd06ffa 1596static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1597 struct cgroup_sb_opts *opts)
ddbcc7e8 1598{
3dd06ffa 1599 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1600
ddbcc7e8 1601 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1602 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1603 cgrp->root = root;
cc31edce 1604 init_cgroup_housekeeping(cgrp);
4e96ee8e 1605 idr_init(&root->cgroup_idr);
c6d57f33 1606
c6d57f33
PM
1607 root->flags = opts->flags;
1608 if (opts->release_agent)
1609 strcpy(root->release_agent_path, opts->release_agent);
1610 if (opts->name)
1611 strcpy(root->name, opts->name);
2260e7fc 1612 if (opts->cpuset_clone_children)
3dd06ffa 1613 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1614}
1615
69dfa00c 1616static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
2c6ab6d2 1617{
d427dfeb 1618 LIST_HEAD(tmp_links);
3dd06ffa 1619 struct cgroup *root_cgrp = &root->cgrp;
a14c6874 1620 struct cftype *base_files;
d427dfeb 1621 struct css_set *cset;
d427dfeb 1622 int i, ret;
2c6ab6d2 1623
d427dfeb 1624 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1625
6fa4918d 1626 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
d427dfeb 1627 if (ret < 0)
2bd59d48 1628 goto out;
d427dfeb 1629 root_cgrp->id = ret;
c6d57f33 1630
9d755d33
TH
1631 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release);
1632 if (ret)
1633 goto out;
1634
d427dfeb 1635 /*
96d365e0 1636 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1637 * but that's OK - it can only be increased by someone holding
1638 * cgroup_lock, and that's us. The worst that can happen is that we
1639 * have some link structures left over
1640 */
1641 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1642 if (ret)
9d755d33 1643 goto cancel_ref;
ddbcc7e8 1644
985ed670 1645 ret = cgroup_init_root_id(root);
ddbcc7e8 1646 if (ret)
9d755d33 1647 goto cancel_ref;
ddbcc7e8 1648
2bd59d48
TH
1649 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1650 KERNFS_ROOT_CREATE_DEACTIVATED,
1651 root_cgrp);
1652 if (IS_ERR(root->kf_root)) {
1653 ret = PTR_ERR(root->kf_root);
1654 goto exit_root_id;
1655 }
1656 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1657
a14c6874
TH
1658 if (root == &cgrp_dfl_root)
1659 base_files = cgroup_dfl_base_files;
1660 else
1661 base_files = cgroup_legacy_base_files;
1662
1663 ret = cgroup_addrm_files(root_cgrp, base_files, true);
d427dfeb 1664 if (ret)
2bd59d48 1665 goto destroy_root;
ddbcc7e8 1666
5df36032 1667 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1668 if (ret)
2bd59d48 1669 goto destroy_root;
ddbcc7e8 1670
d427dfeb
TH
1671 /*
1672 * There must be no failure case after here, since rebinding takes
1673 * care of subsystems' refcounts, which are explicitly dropped in
1674 * the failure exit path.
1675 */
1676 list_add(&root->root_list, &cgroup_roots);
1677 cgroup_root_count++;
0df6a63f 1678
d427dfeb 1679 /*
3dd06ffa 1680 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1681 * objects.
1682 */
96d365e0 1683 down_write(&css_set_rwsem);
d427dfeb
TH
1684 hash_for_each(css_set_table, i, cset, hlist)
1685 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1686 up_write(&css_set_rwsem);
ddbcc7e8 1687
d5c419b6 1688 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1689 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1690
2bd59d48 1691 kernfs_activate(root_cgrp->kn);
d427dfeb 1692 ret = 0;
2bd59d48 1693 goto out;
d427dfeb 1694
2bd59d48
TH
1695destroy_root:
1696 kernfs_destroy_root(root->kf_root);
1697 root->kf_root = NULL;
1698exit_root_id:
d427dfeb 1699 cgroup_exit_root_id(root);
9d755d33
TH
1700cancel_ref:
1701 percpu_ref_cancel_init(&root_cgrp->self.refcnt);
2bd59d48 1702out:
d427dfeb
TH
1703 free_cgrp_cset_links(&tmp_links);
1704 return ret;
ddbcc7e8
PM
1705}
1706
f7e83571 1707static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1708 int flags, const char *unused_dev_name,
f7e83571 1709 void *data)
ddbcc7e8 1710{
3dd06ffa 1711 struct cgroup_root *root;
ddbcc7e8 1712 struct cgroup_sb_opts opts;
2bd59d48 1713 struct dentry *dentry;
8e30e2b8 1714 int ret;
c6b3d5bc 1715 bool new_sb;
ddbcc7e8 1716
56fde9e0
TH
1717 /*
1718 * The first time anyone tries to mount a cgroup, enable the list
1719 * linking each css_set to its tasks and fix up all existing tasks.
1720 */
1721 if (!use_task_css_set_links)
1722 cgroup_enable_task_cg_lists();
e37a06f1 1723
aae8aab4 1724 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1725
1726 /* First find the desired set of subsystems */
ddbcc7e8 1727 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1728 if (ret)
8e30e2b8 1729 goto out_unlock;
a015edd2 1730
2bd59d48 1731 /* look for a matching existing root */
7b9a6ba5 1732 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
1733 cgrp_dfl_root_visible = true;
1734 root = &cgrp_dfl_root;
1735 cgroup_get(&root->cgrp);
1736 ret = 0;
1737 goto out_unlock;
ddbcc7e8
PM
1738 }
1739
985ed670 1740 for_each_root(root) {
2bd59d48 1741 bool name_match = false;
3126121f 1742
3dd06ffa 1743 if (root == &cgrp_dfl_root)
985ed670 1744 continue;
3126121f 1745
cf5d5941 1746 /*
2bd59d48
TH
1747 * If we asked for a name then it must match. Also, if
1748 * name matches but sybsys_mask doesn't, we should fail.
1749 * Remember whether name matched.
cf5d5941 1750 */
2bd59d48
TH
1751 if (opts.name) {
1752 if (strcmp(opts.name, root->name))
1753 continue;
1754 name_match = true;
1755 }
ddbcc7e8 1756
c6d57f33 1757 /*
2bd59d48
TH
1758 * If we asked for subsystems (or explicitly for no
1759 * subsystems) then they must match.
c6d57f33 1760 */
2bd59d48 1761 if ((opts.subsys_mask || opts.none) &&
f392e51c 1762 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1763 if (!name_match)
1764 continue;
1765 ret = -EBUSY;
1766 goto out_unlock;
1767 }
873fe09e 1768
7b9a6ba5
TH
1769 if (root->flags ^ opts.flags)
1770 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 1771
776f02fa 1772 /*
9d755d33
TH
1773 * A root's lifetime is governed by its root cgroup.
1774 * tryget_live failure indicate that the root is being
1775 * destroyed. Wait for destruction to complete so that the
1776 * subsystems are free. We can use wait_queue for the wait
1777 * but this path is super cold. Let's just sleep for a bit
1778 * and retry.
776f02fa 1779 */
9d755d33 1780 if (!percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 1781 mutex_unlock(&cgroup_mutex);
776f02fa 1782 msleep(10);
a015edd2
TH
1783 ret = restart_syscall();
1784 goto out_free;
776f02fa 1785 }
ddbcc7e8 1786
776f02fa 1787 ret = 0;
2bd59d48 1788 goto out_unlock;
ddbcc7e8 1789 }
ddbcc7e8 1790
817929ec 1791 /*
172a2c06
TH
1792 * No such thing, create a new one. name= matching without subsys
1793 * specification is allowed for already existing hierarchies but we
1794 * can't create new one without subsys specification.
817929ec 1795 */
172a2c06
TH
1796 if (!opts.subsys_mask && !opts.none) {
1797 ret = -EINVAL;
1798 goto out_unlock;
817929ec 1799 }
817929ec 1800
172a2c06
TH
1801 root = kzalloc(sizeof(*root), GFP_KERNEL);
1802 if (!root) {
1803 ret = -ENOMEM;
2bd59d48 1804 goto out_unlock;
839ec545 1805 }
e5f6a860 1806
172a2c06
TH
1807 init_cgroup_root(root, &opts);
1808
35585573 1809 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1810 if (ret)
1811 cgroup_free_root(root);
fa3ca07e 1812
8e30e2b8 1813out_unlock:
ddbcc7e8 1814 mutex_unlock(&cgroup_mutex);
a015edd2 1815out_free:
c6d57f33
PM
1816 kfree(opts.release_agent);
1817 kfree(opts.name);
03b1cde6 1818
2bd59d48 1819 if (ret)
8e30e2b8 1820 return ERR_PTR(ret);
2bd59d48 1821
c9482a5b
JZ
1822 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1823 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 1824 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 1825 cgroup_put(&root->cgrp);
2bd59d48
TH
1826 return dentry;
1827}
1828
1829static void cgroup_kill_sb(struct super_block *sb)
1830{
1831 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1832 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1833
9d755d33
TH
1834 /*
1835 * If @root doesn't have any mounts or children, start killing it.
1836 * This prevents new mounts by disabling percpu_ref_tryget_live().
1837 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
1838 *
1839 * And don't kill the default root.
9d755d33 1840 */
1f779fb2
LZ
1841 if (css_has_online_children(&root->cgrp.self) ||
1842 root == &cgrp_dfl_root)
9d755d33
TH
1843 cgroup_put(&root->cgrp);
1844 else
1845 percpu_ref_kill(&root->cgrp.self.refcnt);
1846
2bd59d48 1847 kernfs_kill_sb(sb);
ddbcc7e8
PM
1848}
1849
1850static struct file_system_type cgroup_fs_type = {
1851 .name = "cgroup",
f7e83571 1852 .mount = cgroup_mount,
ddbcc7e8
PM
1853 .kill_sb = cgroup_kill_sb,
1854};
1855
676db4af
GKH
1856static struct kobject *cgroup_kobj;
1857
857a2beb 1858/**
913ffdb5 1859 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1860 * @task: target task
857a2beb
TH
1861 * @buf: the buffer to write the path into
1862 * @buflen: the length of the buffer
1863 *
913ffdb5
TH
1864 * Determine @task's cgroup on the first (the one with the lowest non-zero
1865 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1866 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1867 * cgroup controller callbacks.
1868 *
e61734c5 1869 * Return value is the same as kernfs_path().
857a2beb 1870 */
e61734c5 1871char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1872{
3dd06ffa 1873 struct cgroup_root *root;
913ffdb5 1874 struct cgroup *cgrp;
e61734c5
TH
1875 int hierarchy_id = 1;
1876 char *path = NULL;
857a2beb
TH
1877
1878 mutex_lock(&cgroup_mutex);
96d365e0 1879 down_read(&css_set_rwsem);
857a2beb 1880
913ffdb5
TH
1881 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1882
857a2beb
TH
1883 if (root) {
1884 cgrp = task_cgroup_from_root(task, root);
e61734c5 1885 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1886 } else {
1887 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1888 if (strlcpy(buf, "/", buflen) < buflen)
1889 path = buf;
857a2beb
TH
1890 }
1891
96d365e0 1892 up_read(&css_set_rwsem);
857a2beb 1893 mutex_unlock(&cgroup_mutex);
e61734c5 1894 return path;
857a2beb 1895}
913ffdb5 1896EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1897
b3dc094e 1898/* used to track tasks and other necessary states during migration */
2f7ee569 1899struct cgroup_taskset {
b3dc094e
TH
1900 /* the src and dst cset list running through cset->mg_node */
1901 struct list_head src_csets;
1902 struct list_head dst_csets;
1903
1904 /*
1905 * Fields for cgroup_taskset_*() iteration.
1906 *
1907 * Before migration is committed, the target migration tasks are on
1908 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1909 * the csets on ->dst_csets. ->csets point to either ->src_csets
1910 * or ->dst_csets depending on whether migration is committed.
1911 *
1912 * ->cur_csets and ->cur_task point to the current task position
1913 * during iteration.
1914 */
1915 struct list_head *csets;
1916 struct css_set *cur_cset;
1917 struct task_struct *cur_task;
2f7ee569
TH
1918};
1919
1920/**
1921 * cgroup_taskset_first - reset taskset and return the first task
1922 * @tset: taskset of interest
1923 *
1924 * @tset iteration is initialized and the first task is returned.
1925 */
1926struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1927{
b3dc094e
TH
1928 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1929 tset->cur_task = NULL;
1930
1931 return cgroup_taskset_next(tset);
2f7ee569 1932}
2f7ee569
TH
1933
1934/**
1935 * cgroup_taskset_next - iterate to the next task in taskset
1936 * @tset: taskset of interest
1937 *
1938 * Return the next task in @tset. Iteration must have been initialized
1939 * with cgroup_taskset_first().
1940 */
1941struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1942{
b3dc094e
TH
1943 struct css_set *cset = tset->cur_cset;
1944 struct task_struct *task = tset->cur_task;
2f7ee569 1945
b3dc094e
TH
1946 while (&cset->mg_node != tset->csets) {
1947 if (!task)
1948 task = list_first_entry(&cset->mg_tasks,
1949 struct task_struct, cg_list);
1950 else
1951 task = list_next_entry(task, cg_list);
2f7ee569 1952
b3dc094e
TH
1953 if (&task->cg_list != &cset->mg_tasks) {
1954 tset->cur_cset = cset;
1955 tset->cur_task = task;
1956 return task;
1957 }
2f7ee569 1958
b3dc094e
TH
1959 cset = list_next_entry(cset, mg_node);
1960 task = NULL;
1961 }
2f7ee569 1962
b3dc094e 1963 return NULL;
2f7ee569 1964}
2f7ee569 1965
cb0f1fe9 1966/**
74a1166d 1967 * cgroup_task_migrate - move a task from one cgroup to another.
60106946 1968 * @old_cgrp: the cgroup @tsk is being migrated from
cb0f1fe9
TH
1969 * @tsk: the task being migrated
1970 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1971 *
cb0f1fe9 1972 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1973 */
5abb8855
TH
1974static void cgroup_task_migrate(struct cgroup *old_cgrp,
1975 struct task_struct *tsk,
1976 struct css_set *new_cset)
74a1166d 1977{
5abb8855 1978 struct css_set *old_cset;
74a1166d 1979
cb0f1fe9
TH
1980 lockdep_assert_held(&cgroup_mutex);
1981 lockdep_assert_held(&css_set_rwsem);
1982
74a1166d 1983 /*
026085ef
MSB
1984 * We are synchronized through threadgroup_lock() against PF_EXITING
1985 * setting such that we can't race against cgroup_exit() changing the
1986 * css_set to init_css_set and dropping the old one.
74a1166d 1987 */
c84cdf75 1988 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1989 old_cset = task_css_set(tsk);
74a1166d 1990
b3dc094e 1991 get_css_set(new_cset);
5abb8855 1992 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 1993
1b9aba49
TH
1994 /*
1995 * Use move_tail so that cgroup_taskset_first() still returns the
1996 * leader after migration. This works because cgroup_migrate()
1997 * ensures that the dst_cset of the leader is the first on the
1998 * tset's dst_csets list.
1999 */
2000 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
2001
2002 /*
5abb8855
TH
2003 * We just gained a reference on old_cset by taking it from the
2004 * task. As trading it for new_cset is protected by cgroup_mutex,
2005 * we're safe to drop it here; it will be freed under RCU.
74a1166d 2006 */
5abb8855 2007 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 2008 put_css_set_locked(old_cset, false);
74a1166d
BB
2009}
2010
a043e3b2 2011/**
1958d2d5
TH
2012 * cgroup_migrate_finish - cleanup after attach
2013 * @preloaded_csets: list of preloaded css_sets
74a1166d 2014 *
1958d2d5
TH
2015 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2016 * those functions for details.
74a1166d 2017 */
1958d2d5 2018static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2019{
1958d2d5 2020 struct css_set *cset, *tmp_cset;
74a1166d 2021
1958d2d5
TH
2022 lockdep_assert_held(&cgroup_mutex);
2023
2024 down_write(&css_set_rwsem);
2025 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2026 cset->mg_src_cgrp = NULL;
2027 cset->mg_dst_cset = NULL;
2028 list_del_init(&cset->mg_preload_node);
2029 put_css_set_locked(cset, false);
2030 }
2031 up_write(&css_set_rwsem);
2032}
2033
2034/**
2035 * cgroup_migrate_add_src - add a migration source css_set
2036 * @src_cset: the source css_set to add
2037 * @dst_cgrp: the destination cgroup
2038 * @preloaded_csets: list of preloaded css_sets
2039 *
2040 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2041 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2042 * up by cgroup_migrate_finish().
2043 *
2044 * This function may be called without holding threadgroup_lock even if the
2045 * target is a process. Threads may be created and destroyed but as long
2046 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2047 * the preloaded css_sets are guaranteed to cover all migrations.
2048 */
2049static void cgroup_migrate_add_src(struct css_set *src_cset,
2050 struct cgroup *dst_cgrp,
2051 struct list_head *preloaded_csets)
2052{
2053 struct cgroup *src_cgrp;
2054
2055 lockdep_assert_held(&cgroup_mutex);
2056 lockdep_assert_held(&css_set_rwsem);
2057
2058 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2059
1958d2d5
TH
2060 if (!list_empty(&src_cset->mg_preload_node))
2061 return;
2062
2063 WARN_ON(src_cset->mg_src_cgrp);
2064 WARN_ON(!list_empty(&src_cset->mg_tasks));
2065 WARN_ON(!list_empty(&src_cset->mg_node));
2066
2067 src_cset->mg_src_cgrp = src_cgrp;
2068 get_css_set(src_cset);
2069 list_add(&src_cset->mg_preload_node, preloaded_csets);
2070}
2071
2072/**
2073 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2074 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2075 * @preloaded_csets: list of preloaded source css_sets
2076 *
2077 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2078 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2079 * pins all destination css_sets, links each to its source, and append them
2080 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2081 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2082 *
2083 * This function must be called after cgroup_migrate_add_src() has been
2084 * called on each migration source css_set. After migration is performed
2085 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2086 * @preloaded_csets.
2087 */
2088static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2089 struct list_head *preloaded_csets)
2090{
2091 LIST_HEAD(csets);
f817de98 2092 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2093
2094 lockdep_assert_held(&cgroup_mutex);
2095
f8f22e53
TH
2096 /*
2097 * Except for the root, child_subsys_mask must be zero for a cgroup
2098 * with tasks so that child cgroups don't compete against tasks.
2099 */
d51f39b0 2100 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2101 dst_cgrp->child_subsys_mask)
2102 return -EBUSY;
2103
1958d2d5 2104 /* look up the dst cset for each src cset and link it to src */
f817de98 2105 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2106 struct css_set *dst_cset;
2107
f817de98
TH
2108 dst_cset = find_css_set(src_cset,
2109 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2110 if (!dst_cset)
2111 goto err;
2112
2113 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2114
2115 /*
2116 * If src cset equals dst, it's noop. Drop the src.
2117 * cgroup_migrate() will skip the cset too. Note that we
2118 * can't handle src == dst as some nodes are used by both.
2119 */
2120 if (src_cset == dst_cset) {
2121 src_cset->mg_src_cgrp = NULL;
2122 list_del_init(&src_cset->mg_preload_node);
2123 put_css_set(src_cset, false);
2124 put_css_set(dst_cset, false);
2125 continue;
2126 }
2127
1958d2d5
TH
2128 src_cset->mg_dst_cset = dst_cset;
2129
2130 if (list_empty(&dst_cset->mg_preload_node))
2131 list_add(&dst_cset->mg_preload_node, &csets);
2132 else
2133 put_css_set(dst_cset, false);
2134 }
2135
f817de98 2136 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2137 return 0;
2138err:
2139 cgroup_migrate_finish(&csets);
2140 return -ENOMEM;
2141}
2142
2143/**
2144 * cgroup_migrate - migrate a process or task to a cgroup
2145 * @cgrp: the destination cgroup
2146 * @leader: the leader of the process or the task to migrate
2147 * @threadgroup: whether @leader points to the whole process or a single task
2148 *
2149 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2150 * process, the caller must be holding threadgroup_lock of @leader. The
2151 * caller is also responsible for invoking cgroup_migrate_add_src() and
2152 * cgroup_migrate_prepare_dst() on the targets before invoking this
2153 * function and following up with cgroup_migrate_finish().
2154 *
2155 * As long as a controller's ->can_attach() doesn't fail, this function is
2156 * guaranteed to succeed. This means that, excluding ->can_attach()
2157 * failure, when migrating multiple targets, the success or failure can be
2158 * decided for all targets by invoking group_migrate_prepare_dst() before
2159 * actually starting migrating.
2160 */
2161static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2162 bool threadgroup)
74a1166d 2163{
b3dc094e
TH
2164 struct cgroup_taskset tset = {
2165 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2166 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2167 .csets = &tset.src_csets,
2168 };
1c6727af 2169 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
2170 struct css_set *cset, *tmp_cset;
2171 struct task_struct *task, *tmp_task;
2172 int i, ret;
74a1166d 2173
fb5d2b4c
MSB
2174 /*
2175 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2176 * already PF_EXITING could be freed from underneath us unless we
2177 * take an rcu_read_lock.
2178 */
b3dc094e 2179 down_write(&css_set_rwsem);
fb5d2b4c 2180 rcu_read_lock();
9db8de37 2181 task = leader;
74a1166d 2182 do {
9db8de37
TH
2183 /* @task either already exited or can't exit until the end */
2184 if (task->flags & PF_EXITING)
ea84753c 2185 goto next;
134d3373 2186
eaf797ab
TH
2187 /* leave @task alone if post_fork() hasn't linked it yet */
2188 if (list_empty(&task->cg_list))
ea84753c 2189 goto next;
cd3d0952 2190
b3dc094e 2191 cset = task_css_set(task);
1958d2d5 2192 if (!cset->mg_src_cgrp)
ea84753c 2193 goto next;
b3dc094e 2194
61d1d219 2195 /*
1b9aba49
TH
2196 * cgroup_taskset_first() must always return the leader.
2197 * Take care to avoid disturbing the ordering.
61d1d219 2198 */
1b9aba49
TH
2199 list_move_tail(&task->cg_list, &cset->mg_tasks);
2200 if (list_empty(&cset->mg_node))
2201 list_add_tail(&cset->mg_node, &tset.src_csets);
2202 if (list_empty(&cset->mg_dst_cset->mg_node))
2203 list_move_tail(&cset->mg_dst_cset->mg_node,
2204 &tset.dst_csets);
ea84753c 2205 next:
081aa458
LZ
2206 if (!threadgroup)
2207 break;
9db8de37 2208 } while_each_thread(leader, task);
fb5d2b4c 2209 rcu_read_unlock();
b3dc094e 2210 up_write(&css_set_rwsem);
74a1166d 2211
134d3373 2212 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2213 if (list_empty(&tset.src_csets))
2214 return 0;
134d3373 2215
1958d2d5 2216 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2217 for_each_e_css(css, i, cgrp) {
1c6727af 2218 if (css->ss->can_attach) {
9db8de37
TH
2219 ret = css->ss->can_attach(css, &tset);
2220 if (ret) {
1c6727af 2221 failed_css = css;
74a1166d
BB
2222 goto out_cancel_attach;
2223 }
2224 }
74a1166d
BB
2225 }
2226
2227 /*
1958d2d5
TH
2228 * Now that we're guaranteed success, proceed to move all tasks to
2229 * the new cgroup. There are no failure cases after here, so this
2230 * is the commit point.
74a1166d 2231 */
cb0f1fe9 2232 down_write(&css_set_rwsem);
b3dc094e
TH
2233 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2234 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2235 cgroup_task_migrate(cset->mg_src_cgrp, task,
2236 cset->mg_dst_cset);
74a1166d 2237 }
cb0f1fe9 2238 up_write(&css_set_rwsem);
74a1166d
BB
2239
2240 /*
1958d2d5
TH
2241 * Migration is committed, all target tasks are now on dst_csets.
2242 * Nothing is sensitive to fork() after this point. Notify
2243 * controllers that migration is complete.
74a1166d 2244 */
1958d2d5 2245 tset.csets = &tset.dst_csets;
74a1166d 2246
aec3dfcb 2247 for_each_e_css(css, i, cgrp)
1c6727af
TH
2248 if (css->ss->attach)
2249 css->ss->attach(css, &tset);
74a1166d 2250
9db8de37 2251 ret = 0;
b3dc094e
TH
2252 goto out_release_tset;
2253
74a1166d 2254out_cancel_attach:
aec3dfcb 2255 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2256 if (css == failed_css)
2257 break;
2258 if (css->ss->cancel_attach)
2259 css->ss->cancel_attach(css, &tset);
74a1166d 2260 }
b3dc094e
TH
2261out_release_tset:
2262 down_write(&css_set_rwsem);
2263 list_splice_init(&tset.dst_csets, &tset.src_csets);
2264 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2265 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2266 list_del_init(&cset->mg_node);
b3dc094e
TH
2267 }
2268 up_write(&css_set_rwsem);
9db8de37 2269 return ret;
74a1166d
BB
2270}
2271
1958d2d5
TH
2272/**
2273 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2274 * @dst_cgrp: the cgroup to attach to
2275 * @leader: the task or the leader of the threadgroup to be attached
2276 * @threadgroup: attach the whole threadgroup?
2277 *
0e1d768f 2278 * Call holding cgroup_mutex and threadgroup_lock of @leader.
1958d2d5
TH
2279 */
2280static int cgroup_attach_task(struct cgroup *dst_cgrp,
2281 struct task_struct *leader, bool threadgroup)
2282{
2283 LIST_HEAD(preloaded_csets);
2284 struct task_struct *task;
2285 int ret;
2286
2287 /* look up all src csets */
2288 down_read(&css_set_rwsem);
2289 rcu_read_lock();
2290 task = leader;
2291 do {
2292 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2293 &preloaded_csets);
2294 if (!threadgroup)
2295 break;
2296 } while_each_thread(leader, task);
2297 rcu_read_unlock();
2298 up_read(&css_set_rwsem);
2299
2300 /* prepare dst csets and commit */
2301 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2302 if (!ret)
2303 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2304
2305 cgroup_migrate_finish(&preloaded_csets);
2306 return ret;
74a1166d
BB
2307}
2308
2309/*
2310 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2311 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2312 * cgroup_mutex and threadgroup.
bbcb81d0 2313 */
acbef755
TH
2314static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2315 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2316{
bbcb81d0 2317 struct task_struct *tsk;
c69e8d9c 2318 const struct cred *cred = current_cred(), *tcred;
e76ecaee 2319 struct cgroup *cgrp;
acbef755 2320 pid_t pid;
bbcb81d0
PM
2321 int ret;
2322
acbef755
TH
2323 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2324 return -EINVAL;
2325
e76ecaee
TH
2326 cgrp = cgroup_kn_lock_live(of->kn);
2327 if (!cgrp)
74a1166d
BB
2328 return -ENODEV;
2329
b78949eb
MSB
2330retry_find_task:
2331 rcu_read_lock();
bbcb81d0 2332 if (pid) {
73507f33 2333 tsk = find_task_by_vpid(pid);
74a1166d
BB
2334 if (!tsk) {
2335 rcu_read_unlock();
dd4b0a46 2336 ret = -ESRCH;
b78949eb 2337 goto out_unlock_cgroup;
bbcb81d0 2338 }
74a1166d
BB
2339 /*
2340 * even if we're attaching all tasks in the thread group, we
2341 * only need to check permissions on one of them.
2342 */
c69e8d9c 2343 tcred = __task_cred(tsk);
14a590c3
EB
2344 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2345 !uid_eq(cred->euid, tcred->uid) &&
2346 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2347 rcu_read_unlock();
b78949eb
MSB
2348 ret = -EACCES;
2349 goto out_unlock_cgroup;
bbcb81d0 2350 }
b78949eb
MSB
2351 } else
2352 tsk = current;
cd3d0952
TH
2353
2354 if (threadgroup)
b78949eb 2355 tsk = tsk->group_leader;
c4c27fbd
MG
2356
2357 /*
14a40ffc 2358 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2359 * trapped in a cpuset, or RT worker may be born in a cgroup
2360 * with no rt_runtime allocated. Just say no.
2361 */
14a40ffc 2362 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2363 ret = -EINVAL;
2364 rcu_read_unlock();
2365 goto out_unlock_cgroup;
2366 }
2367
b78949eb
MSB
2368 get_task_struct(tsk);
2369 rcu_read_unlock();
2370
2371 threadgroup_lock(tsk);
2372 if (threadgroup) {
2373 if (!thread_group_leader(tsk)) {
2374 /*
2375 * a race with de_thread from another thread's exec()
2376 * may strip us of our leadership, if this happens,
2377 * there is no choice but to throw this task away and
2378 * try again; this is
2379 * "double-double-toil-and-trouble-check locking".
2380 */
2381 threadgroup_unlock(tsk);
2382 put_task_struct(tsk);
2383 goto retry_find_task;
2384 }
081aa458
LZ
2385 }
2386
2387 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2388
cd3d0952
TH
2389 threadgroup_unlock(tsk);
2390
bbcb81d0 2391 put_task_struct(tsk);
b78949eb 2392out_unlock_cgroup:
e76ecaee 2393 cgroup_kn_unlock(of->kn);
acbef755 2394 return ret ?: nbytes;
bbcb81d0
PM
2395}
2396
7ae1bad9
TH
2397/**
2398 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2399 * @from: attach to all cgroups of a given task
2400 * @tsk: the task to be attached
2401 */
2402int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2403{
3dd06ffa 2404 struct cgroup_root *root;
7ae1bad9
TH
2405 int retval = 0;
2406
47cfcd09 2407 mutex_lock(&cgroup_mutex);
985ed670 2408 for_each_root(root) {
96d365e0
TH
2409 struct cgroup *from_cgrp;
2410
3dd06ffa 2411 if (root == &cgrp_dfl_root)
985ed670
TH
2412 continue;
2413
96d365e0
TH
2414 down_read(&css_set_rwsem);
2415 from_cgrp = task_cgroup_from_root(from, root);
2416 up_read(&css_set_rwsem);
7ae1bad9 2417
6f4b7e63 2418 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2419 if (retval)
2420 break;
2421 }
47cfcd09 2422 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2423
2424 return retval;
2425}
2426EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2427
acbef755
TH
2428static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2429 char *buf, size_t nbytes, loff_t off)
74a1166d 2430{
acbef755 2431 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2432}
2433
acbef755
TH
2434static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2435 char *buf, size_t nbytes, loff_t off)
af351026 2436{
acbef755 2437 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2438}
2439
451af504
TH
2440static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2441 char *buf, size_t nbytes, loff_t off)
e788e066 2442{
e76ecaee 2443 struct cgroup *cgrp;
5f469907 2444
e76ecaee 2445 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2446
e76ecaee
TH
2447 cgrp = cgroup_kn_lock_live(of->kn);
2448 if (!cgrp)
e788e066 2449 return -ENODEV;
69e943b7 2450 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2451 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2452 sizeof(cgrp->root->release_agent_path));
69e943b7 2453 spin_unlock(&release_agent_path_lock);
e76ecaee 2454 cgroup_kn_unlock(of->kn);
451af504 2455 return nbytes;
e788e066
PM
2456}
2457
2da8ca82 2458static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2459{
2da8ca82 2460 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2461
46cfeb04 2462 spin_lock(&release_agent_path_lock);
e788e066 2463 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2464 spin_unlock(&release_agent_path_lock);
e788e066 2465 seq_putc(seq, '\n');
e788e066
PM
2466 return 0;
2467}
2468
2da8ca82 2469static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2470{
c1d5d42e 2471 seq_puts(seq, "0\n");
e788e066
PM
2472 return 0;
2473}
2474
f8f22e53 2475static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
355e0c48 2476{
f8f22e53
TH
2477 struct cgroup_subsys *ss;
2478 bool printed = false;
2479 int ssid;
a742c59d 2480
f8f22e53
TH
2481 for_each_subsys(ss, ssid) {
2482 if (ss_mask & (1 << ssid)) {
2483 if (printed)
2484 seq_putc(seq, ' ');
2485 seq_printf(seq, "%s", ss->name);
2486 printed = true;
2487 }
e73d2c61 2488 }
f8f22e53
TH
2489 if (printed)
2490 seq_putc(seq, '\n');
355e0c48
PM
2491}
2492
f8f22e53
TH
2493/* show controllers which are currently attached to the default hierarchy */
2494static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2495{
f8f22e53
TH
2496 struct cgroup *cgrp = seq_css(seq)->cgroup;
2497
5533e011
TH
2498 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2499 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2500 return 0;
db3b1497
PM
2501}
2502
f8f22e53
TH
2503/* show controllers which are enabled from the parent */
2504static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2505{
f8f22e53
TH
2506 struct cgroup *cgrp = seq_css(seq)->cgroup;
2507
667c2491 2508 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2509 return 0;
ddbcc7e8
PM
2510}
2511
f8f22e53
TH
2512/* show controllers which are enabled for a given cgroup's children */
2513static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2514{
f8f22e53
TH
2515 struct cgroup *cgrp = seq_css(seq)->cgroup;
2516
667c2491 2517 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2518 return 0;
2519}
2520
2521/**
2522 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2523 * @cgrp: root of the subtree to update csses for
2524 *
2525 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2526 * css associations need to be updated accordingly. This function looks up
2527 * all css_sets which are attached to the subtree, creates the matching
2528 * updated css_sets and migrates the tasks to the new ones.
2529 */
2530static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2531{
2532 LIST_HEAD(preloaded_csets);
2533 struct cgroup_subsys_state *css;
2534 struct css_set *src_cset;
2535 int ret;
2536
f8f22e53
TH
2537 lockdep_assert_held(&cgroup_mutex);
2538
2539 /* look up all csses currently attached to @cgrp's subtree */
2540 down_read(&css_set_rwsem);
2541 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2542 struct cgrp_cset_link *link;
2543
2544 /* self is not affected by child_subsys_mask change */
2545 if (css->cgroup == cgrp)
2546 continue;
2547
2548 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2549 cgroup_migrate_add_src(link->cset, cgrp,
2550 &preloaded_csets);
2551 }
2552 up_read(&css_set_rwsem);
2553
2554 /* NULL dst indicates self on default hierarchy */
2555 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2556 if (ret)
2557 goto out_finish;
2558
2559 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2560 struct task_struct *last_task = NULL, *task;
2561
2562 /* src_csets precede dst_csets, break on the first dst_cset */
2563 if (!src_cset->mg_src_cgrp)
2564 break;
2565
2566 /*
2567 * All tasks in src_cset need to be migrated to the
2568 * matching dst_cset. Empty it process by process. We
2569 * walk tasks but migrate processes. The leader might even
2570 * belong to a different cset but such src_cset would also
2571 * be among the target src_csets because the default
2572 * hierarchy enforces per-process membership.
2573 */
2574 while (true) {
2575 down_read(&css_set_rwsem);
2576 task = list_first_entry_or_null(&src_cset->tasks,
2577 struct task_struct, cg_list);
2578 if (task) {
2579 task = task->group_leader;
2580 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2581 get_task_struct(task);
2582 }
2583 up_read(&css_set_rwsem);
2584
2585 if (!task)
2586 break;
2587
2588 /* guard against possible infinite loop */
2589 if (WARN(last_task == task,
2590 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2591 goto out_finish;
2592 last_task = task;
2593
2594 threadgroup_lock(task);
2595 /* raced against de_thread() from another thread? */
2596 if (!thread_group_leader(task)) {
2597 threadgroup_unlock(task);
2598 put_task_struct(task);
2599 continue;
2600 }
2601
2602 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2603
2604 threadgroup_unlock(task);
2605 put_task_struct(task);
2606
2607 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2608 goto out_finish;
2609 }
2610 }
2611
2612out_finish:
2613 cgroup_migrate_finish(&preloaded_csets);
2614 return ret;
2615}
2616
2617/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2618static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2619 char *buf, size_t nbytes,
2620 loff_t off)
f8f22e53 2621{
7d331fa9 2622 unsigned int enable = 0, disable = 0;
f63070d3 2623 unsigned int css_enable, css_disable, old_ctrl, new_ctrl;
a9746d8d 2624 struct cgroup *cgrp, *child;
f8f22e53 2625 struct cgroup_subsys *ss;
451af504 2626 char *tok;
f8f22e53
TH
2627 int ssid, ret;
2628
2629 /*
d37167ab
TH
2630 * Parse input - space separated list of subsystem names prefixed
2631 * with either + or -.
f8f22e53 2632 */
451af504
TH
2633 buf = strstrip(buf);
2634 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
2635 if (tok[0] == '\0')
2636 continue;
f8f22e53 2637 for_each_subsys(ss, ssid) {
5533e011
TH
2638 if (ss->disabled || strcmp(tok + 1, ss->name) ||
2639 ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
f8f22e53
TH
2640 continue;
2641
2642 if (*tok == '+') {
7d331fa9
TH
2643 enable |= 1 << ssid;
2644 disable &= ~(1 << ssid);
f8f22e53 2645 } else if (*tok == '-') {
7d331fa9
TH
2646 disable |= 1 << ssid;
2647 enable &= ~(1 << ssid);
f8f22e53
TH
2648 } else {
2649 return -EINVAL;
2650 }
2651 break;
2652 }
2653 if (ssid == CGROUP_SUBSYS_COUNT)
2654 return -EINVAL;
2655 }
2656
a9746d8d
TH
2657 cgrp = cgroup_kn_lock_live(of->kn);
2658 if (!cgrp)
2659 return -ENODEV;
f8f22e53
TH
2660
2661 for_each_subsys(ss, ssid) {
2662 if (enable & (1 << ssid)) {
667c2491 2663 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2664 enable &= ~(1 << ssid);
2665 continue;
2666 }
2667
c29adf24
TH
2668 /* unavailable or not enabled on the parent? */
2669 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2670 (cgroup_parent(cgrp) &&
667c2491 2671 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2672 ret = -ENOENT;
2673 goto out_unlock;
2674 }
2675
f63070d3
TH
2676 /*
2677 * @ss is already enabled through dependency and
2678 * we'll just make it visible. Skip draining.
2679 */
2680 if (cgrp->child_subsys_mask & (1 << ssid))
2681 continue;
2682
f8f22e53
TH
2683 /*
2684 * Because css offlining is asynchronous, userland
2685 * might try to re-enable the same controller while
2686 * the previous instance is still around. In such
2687 * cases, wait till it's gone using offline_waitq.
2688 */
2689 cgroup_for_each_live_child(child, cgrp) {
0cee8b77 2690 DEFINE_WAIT(wait);
f8f22e53
TH
2691
2692 if (!cgroup_css(child, ss))
2693 continue;
2694
0cee8b77 2695 cgroup_get(child);
f8f22e53
TH
2696 prepare_to_wait(&child->offline_waitq, &wait,
2697 TASK_UNINTERRUPTIBLE);
a9746d8d 2698 cgroup_kn_unlock(of->kn);
f8f22e53
TH
2699 schedule();
2700 finish_wait(&child->offline_waitq, &wait);
0cee8b77 2701 cgroup_put(child);
7d331fa9 2702
a9746d8d 2703 return restart_syscall();
f8f22e53 2704 }
f8f22e53 2705 } else if (disable & (1 << ssid)) {
667c2491 2706 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2707 disable &= ~(1 << ssid);
2708 continue;
2709 }
2710
2711 /* a child has it enabled? */
2712 cgroup_for_each_live_child(child, cgrp) {
667c2491 2713 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2714 ret = -EBUSY;
ddab2b6e 2715 goto out_unlock;
f8f22e53
TH
2716 }
2717 }
2718 }
2719 }
2720
2721 if (!enable && !disable) {
2722 ret = 0;
ddab2b6e 2723 goto out_unlock;
f8f22e53
TH
2724 }
2725
2726 /*
667c2491 2727 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2728 * with tasks so that child cgroups don't compete against tasks.
2729 */
d51f39b0 2730 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2731 ret = -EBUSY;
2732 goto out_unlock;
2733 }
2734
f63070d3
TH
2735 /*
2736 * Update subsys masks and calculate what needs to be done. More
2737 * subsystems than specified may need to be enabled or disabled
2738 * depending on subsystem dependencies.
2739 */
667c2491
TH
2740 cgrp->subtree_control |= enable;
2741 cgrp->subtree_control &= ~disable;
f63070d3
TH
2742
2743 old_ctrl = cgrp->child_subsys_mask;
667c2491 2744 cgroup_refresh_child_subsys_mask(cgrp);
f63070d3
TH
2745 new_ctrl = cgrp->child_subsys_mask;
2746
2747 css_enable = ~old_ctrl & new_ctrl;
2748 css_disable = old_ctrl & ~new_ctrl;
2749 enable |= css_enable;
2750 disable |= css_disable;
c29adf24 2751
f63070d3
TH
2752 /*
2753 * Create new csses or make the existing ones visible. A css is
2754 * created invisible if it's being implicitly enabled through
2755 * dependency. An invisible css is made visible when the userland
2756 * explicitly enables it.
2757 */
f8f22e53
TH
2758 for_each_subsys(ss, ssid) {
2759 if (!(enable & (1 << ssid)))
2760 continue;
2761
2762 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
2763 if (css_enable & (1 << ssid))
2764 ret = create_css(child, ss,
2765 cgrp->subtree_control & (1 << ssid));
2766 else
2767 ret = cgroup_populate_dir(child, 1 << ssid);
f8f22e53
TH
2768 if (ret)
2769 goto err_undo_css;
2770 }
2771 }
2772
c29adf24
TH
2773 /*
2774 * At this point, cgroup_e_css() results reflect the new csses
2775 * making the following cgroup_update_dfl_csses() properly update
2776 * css associations of all tasks in the subtree.
2777 */
f8f22e53
TH
2778 ret = cgroup_update_dfl_csses(cgrp);
2779 if (ret)
2780 goto err_undo_css;
2781
f63070d3
TH
2782 /*
2783 * All tasks are migrated out of disabled csses. Kill or hide
2784 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
2785 * disabled while other subsystems are still depending on it. The
2786 * css must not actively control resources and be in the vanilla
2787 * state if it's made visible again later. Controllers which may
2788 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 2789 */
f8f22e53
TH
2790 for_each_subsys(ss, ssid) {
2791 if (!(disable & (1 << ssid)))
2792 continue;
2793
f63070d3 2794 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
2795 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2796
2797 if (css_disable & (1 << ssid)) {
2798 kill_css(css);
2799 } else {
f63070d3 2800 cgroup_clear_dir(child, 1 << ssid);
b4536f0c
TH
2801 if (ss->css_reset)
2802 ss->css_reset(css);
2803 }
f63070d3 2804 }
f8f22e53
TH
2805 }
2806
2807 kernfs_activate(cgrp->kn);
2808 ret = 0;
2809out_unlock:
a9746d8d 2810 cgroup_kn_unlock(of->kn);
451af504 2811 return ret ?: nbytes;
f8f22e53
TH
2812
2813err_undo_css:
667c2491
TH
2814 cgrp->subtree_control &= ~enable;
2815 cgrp->subtree_control |= disable;
2816 cgroup_refresh_child_subsys_mask(cgrp);
f8f22e53
TH
2817
2818 for_each_subsys(ss, ssid) {
2819 if (!(enable & (1 << ssid)))
2820 continue;
2821
2822 cgroup_for_each_live_child(child, cgrp) {
2823 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
2824
2825 if (!css)
2826 continue;
2827
2828 if (css_enable & (1 << ssid))
f8f22e53 2829 kill_css(css);
f63070d3
TH
2830 else
2831 cgroup_clear_dir(child, 1 << ssid);
f8f22e53
TH
2832 }
2833 }
2834 goto out_unlock;
2835}
2836
842b597e
TH
2837static int cgroup_populated_show(struct seq_file *seq, void *v)
2838{
2839 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2840 return 0;
2841}
2842
2bd59d48
TH
2843static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2844 size_t nbytes, loff_t off)
355e0c48 2845{
2bd59d48
TH
2846 struct cgroup *cgrp = of->kn->parent->priv;
2847 struct cftype *cft = of->kn->priv;
2848 struct cgroup_subsys_state *css;
a742c59d 2849 int ret;
355e0c48 2850
b4168640
TH
2851 if (cft->write)
2852 return cft->write(of, buf, nbytes, off);
2853
2bd59d48
TH
2854 /*
2855 * kernfs guarantees that a file isn't deleted with operations in
2856 * flight, which means that the matching css is and stays alive and
2857 * doesn't need to be pinned. The RCU locking is not necessary
2858 * either. It's just for the convenience of using cgroup_css().
2859 */
2860 rcu_read_lock();
2861 css = cgroup_css(cgrp, cft->ss);
2862 rcu_read_unlock();
a742c59d 2863
451af504 2864 if (cft->write_u64) {
a742c59d
TH
2865 unsigned long long v;
2866 ret = kstrtoull(buf, 0, &v);
2867 if (!ret)
2868 ret = cft->write_u64(css, cft, v);
2869 } else if (cft->write_s64) {
2870 long long v;
2871 ret = kstrtoll(buf, 0, &v);
2872 if (!ret)
2873 ret = cft->write_s64(css, cft, v);
e73d2c61 2874 } else {
a742c59d 2875 ret = -EINVAL;
e73d2c61 2876 }
2bd59d48 2877
a742c59d 2878 return ret ?: nbytes;
355e0c48
PM
2879}
2880
6612f05b 2881static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2882{
2bd59d48 2883 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2884}
2885
6612f05b 2886static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2887{
2bd59d48 2888 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2889}
2890
6612f05b 2891static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2892{
2bd59d48 2893 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2894}
2895
91796569 2896static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2897{
7da11279
TH
2898 struct cftype *cft = seq_cft(m);
2899 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2900
2da8ca82
TH
2901 if (cft->seq_show)
2902 return cft->seq_show(m, arg);
e73d2c61 2903
f4c753b7 2904 if (cft->read_u64)
896f5199
TH
2905 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2906 else if (cft->read_s64)
2907 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2908 else
2909 return -EINVAL;
2910 return 0;
91796569
PM
2911}
2912
2bd59d48
TH
2913static struct kernfs_ops cgroup_kf_single_ops = {
2914 .atomic_write_len = PAGE_SIZE,
2915 .write = cgroup_file_write,
2916 .seq_show = cgroup_seqfile_show,
91796569
PM
2917};
2918
2bd59d48
TH
2919static struct kernfs_ops cgroup_kf_ops = {
2920 .atomic_write_len = PAGE_SIZE,
2921 .write = cgroup_file_write,
2922 .seq_start = cgroup_seqfile_start,
2923 .seq_next = cgroup_seqfile_next,
2924 .seq_stop = cgroup_seqfile_stop,
2925 .seq_show = cgroup_seqfile_show,
2926};
ddbcc7e8
PM
2927
2928/*
2929 * cgroup_rename - Only allow simple rename of directories in place.
2930 */
2bd59d48
TH
2931static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2932 const char *new_name_str)
ddbcc7e8 2933{
2bd59d48 2934 struct cgroup *cgrp = kn->priv;
65dff759 2935 int ret;
65dff759 2936
2bd59d48 2937 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2938 return -ENOTDIR;
2bd59d48 2939 if (kn->parent != new_parent)
ddbcc7e8 2940 return -EIO;
65dff759 2941
6db8e85c
TH
2942 /*
2943 * This isn't a proper migration and its usefulness is very
aa6ec29b 2944 * limited. Disallow on the default hierarchy.
6db8e85c 2945 */
aa6ec29b 2946 if (cgroup_on_dfl(cgrp))
6db8e85c 2947 return -EPERM;
099fca32 2948
e1b2dc17 2949 /*
8353da1f 2950 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 2951 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 2952 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
2953 */
2954 kernfs_break_active_protection(new_parent);
2955 kernfs_break_active_protection(kn);
099fca32 2956
2bd59d48 2957 mutex_lock(&cgroup_mutex);
099fca32 2958
2bd59d48 2959 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 2960
2bd59d48 2961 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
2962
2963 kernfs_unbreak_active_protection(kn);
2964 kernfs_unbreak_active_protection(new_parent);
2bd59d48 2965 return ret;
099fca32
LZ
2966}
2967
49957f8e
TH
2968/* set uid and gid of cgroup dirs and files to that of the creator */
2969static int cgroup_kn_set_ugid(struct kernfs_node *kn)
2970{
2971 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
2972 .ia_uid = current_fsuid(),
2973 .ia_gid = current_fsgid(), };
2974
2975 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
2976 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
2977 return 0;
2978
2979 return kernfs_setattr(kn, &iattr);
2980}
2981
2bb566cb 2982static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2983{
8d7e6fb0 2984 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2985 struct kernfs_node *kn;
2986 struct lock_class_key *key = NULL;
49957f8e 2987 int ret;
05ef1d7c 2988
2bd59d48
TH
2989#ifdef CONFIG_DEBUG_LOCK_ALLOC
2990 key = &cft->lockdep_key;
2991#endif
2992 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2993 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2994 NULL, false, key);
49957f8e
TH
2995 if (IS_ERR(kn))
2996 return PTR_ERR(kn);
2997
2998 ret = cgroup_kn_set_ugid(kn);
f8f22e53 2999 if (ret) {
49957f8e 3000 kernfs_remove(kn);
f8f22e53
TH
3001 return ret;
3002 }
3003
b7fc5ad2 3004 if (cft->seq_show == cgroup_populated_show)
842b597e 3005 cgrp->populated_kn = kn;
f8f22e53 3006 return 0;
ddbcc7e8
PM
3007}
3008
b1f28d31
TH
3009/**
3010 * cgroup_addrm_files - add or remove files to a cgroup directory
3011 * @cgrp: the target cgroup
b1f28d31
TH
3012 * @cfts: array of cftypes to be added
3013 * @is_add: whether to add or remove
3014 *
3015 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
3016 * For removals, this function never fails. If addition fails, this
3017 * function doesn't remove files already added. The caller is responsible
3018 * for cleaning up.
b1f28d31 3019 */
2bb566cb
TH
3020static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3021 bool is_add)
ddbcc7e8 3022{
03b1cde6 3023 struct cftype *cft;
b1f28d31
TH
3024 int ret;
3025
01f6474c 3026 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
3027
3028 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 3029 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3030 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3031 continue;
05ebb6e6 3032 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3033 continue;
d51f39b0 3034 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3035 continue;
d51f39b0 3036 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3037 continue;
3038
2739d3cc 3039 if (is_add) {
2bb566cb 3040 ret = cgroup_add_file(cgrp, cft);
b1f28d31 3041 if (ret) {
ed3d261b
JP
3042 pr_warn("%s: failed to add %s, err=%d\n",
3043 __func__, cft->name, ret);
b1f28d31
TH
3044 return ret;
3045 }
2739d3cc
LZ
3046 } else {
3047 cgroup_rm_file(cgrp, cft);
db0416b6 3048 }
ddbcc7e8 3049 }
b1f28d31 3050 return 0;
ddbcc7e8
PM
3051}
3052
21a2d343 3053static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3054{
3055 LIST_HEAD(pending);
2bb566cb 3056 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3057 struct cgroup *root = &ss->root->cgrp;
492eb21b 3058 struct cgroup_subsys_state *css;
9ccece80 3059 int ret = 0;
8e3f6541 3060
01f6474c 3061 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3062
e8c82d20 3063 /* add/rm files for all cgroups created before */
ca8bdcaf 3064 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3065 struct cgroup *cgrp = css->cgroup;
3066
e8c82d20
LZ
3067 if (cgroup_is_dead(cgrp))
3068 continue;
3069
21a2d343 3070 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
3071 if (ret)
3072 break;
8e3f6541 3073 }
21a2d343
TH
3074
3075 if (is_add && !ret)
3076 kernfs_activate(root->kn);
9ccece80 3077 return ret;
8e3f6541
TH
3078}
3079
2da440a2 3080static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3081{
2bb566cb 3082 struct cftype *cft;
8e3f6541 3083
2bd59d48
TH
3084 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3085 /* free copy for custom atomic_write_len, see init_cftypes() */
3086 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3087 kfree(cft->kf_ops);
3088 cft->kf_ops = NULL;
2da440a2 3089 cft->ss = NULL;
a8ddc821
TH
3090
3091 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3092 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3093 }
2da440a2
TH
3094}
3095
2bd59d48 3096static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3097{
3098 struct cftype *cft;
3099
2bd59d48
TH
3100 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3101 struct kernfs_ops *kf_ops;
3102
0adb0704
TH
3103 WARN_ON(cft->ss || cft->kf_ops);
3104
2bd59d48
TH
3105 if (cft->seq_start)
3106 kf_ops = &cgroup_kf_ops;
3107 else
3108 kf_ops = &cgroup_kf_single_ops;
3109
3110 /*
3111 * Ugh... if @cft wants a custom max_write_len, we need to
3112 * make a copy of kf_ops to set its atomic_write_len.
3113 */
3114 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3115 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3116 if (!kf_ops) {
3117 cgroup_exit_cftypes(cfts);
3118 return -ENOMEM;
3119 }
3120 kf_ops->atomic_write_len = cft->max_write_len;
3121 }
8e3f6541 3122
2bd59d48 3123 cft->kf_ops = kf_ops;
2bb566cb 3124 cft->ss = ss;
2bd59d48 3125 }
2bb566cb 3126
2bd59d48 3127 return 0;
2da440a2
TH
3128}
3129
21a2d343
TH
3130static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3131{
01f6474c 3132 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3133
3134 if (!cfts || !cfts[0].ss)
3135 return -ENOENT;
3136
3137 list_del(&cfts->node);
3138 cgroup_apply_cftypes(cfts, false);
3139 cgroup_exit_cftypes(cfts);
3140 return 0;
8e3f6541 3141}
8e3f6541 3142
79578621
TH
3143/**
3144 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3145 * @cfts: zero-length name terminated array of cftypes
3146 *
2bb566cb
TH
3147 * Unregister @cfts. Files described by @cfts are removed from all
3148 * existing cgroups and all future cgroups won't have them either. This
3149 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3150 *
3151 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3152 * registered.
79578621 3153 */
2bb566cb 3154int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3155{
21a2d343 3156 int ret;
79578621 3157
01f6474c 3158 mutex_lock(&cgroup_mutex);
21a2d343 3159 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3160 mutex_unlock(&cgroup_mutex);
21a2d343 3161 return ret;
80b13586
TH
3162}
3163
8e3f6541
TH
3164/**
3165 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3166 * @ss: target cgroup subsystem
3167 * @cfts: zero-length name terminated array of cftypes
3168 *
3169 * Register @cfts to @ss. Files described by @cfts are created for all
3170 * existing cgroups to which @ss is attached and all future cgroups will
3171 * have them too. This function can be called anytime whether @ss is
3172 * attached or not.
3173 *
3174 * Returns 0 on successful registration, -errno on failure. Note that this
3175 * function currently returns 0 as long as @cfts registration is successful
3176 * even if some file creation attempts on existing cgroups fail.
3177 */
2cf669a5 3178static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3179{
9ccece80 3180 int ret;
8e3f6541 3181
c731ae1d
LZ
3182 if (ss->disabled)
3183 return 0;
3184
dc5736ed
LZ
3185 if (!cfts || cfts[0].name[0] == '\0')
3186 return 0;
2bb566cb 3187
2bd59d48
TH
3188 ret = cgroup_init_cftypes(ss, cfts);
3189 if (ret)
3190 return ret;
79578621 3191
01f6474c 3192 mutex_lock(&cgroup_mutex);
21a2d343 3193
0adb0704 3194 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3195 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3196 if (ret)
21a2d343 3197 cgroup_rm_cftypes_locked(cfts);
79578621 3198
01f6474c 3199 mutex_unlock(&cgroup_mutex);
9ccece80 3200 return ret;
79578621
TH
3201}
3202
a8ddc821
TH
3203/**
3204 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3205 * @ss: target cgroup subsystem
3206 * @cfts: zero-length name terminated array of cftypes
3207 *
3208 * Similar to cgroup_add_cftypes() but the added files are only used for
3209 * the default hierarchy.
3210 */
3211int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3212{
3213 struct cftype *cft;
3214
3215 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3216 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3217 return cgroup_add_cftypes(ss, cfts);
3218}
3219
3220/**
3221 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3222 * @ss: target cgroup subsystem
3223 * @cfts: zero-length name terminated array of cftypes
3224 *
3225 * Similar to cgroup_add_cftypes() but the added files are only used for
3226 * the legacy hierarchies.
3227 */
2cf669a5
TH
3228int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3229{
a8ddc821
TH
3230 struct cftype *cft;
3231
3232 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3233 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3234 return cgroup_add_cftypes(ss, cfts);
3235}
3236
a043e3b2
LZ
3237/**
3238 * cgroup_task_count - count the number of tasks in a cgroup.
3239 * @cgrp: the cgroup in question
3240 *
3241 * Return the number of tasks in the cgroup.
3242 */
07bc356e 3243static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3244{
3245 int count = 0;
69d0206c 3246 struct cgrp_cset_link *link;
817929ec 3247
96d365e0 3248 down_read(&css_set_rwsem);
69d0206c
TH
3249 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3250 count += atomic_read(&link->cset->refcount);
96d365e0 3251 up_read(&css_set_rwsem);
bbcb81d0
PM
3252 return count;
3253}
3254
53fa5261 3255/**
492eb21b 3256 * css_next_child - find the next child of a given css
c2931b70
TH
3257 * @pos: the current position (%NULL to initiate traversal)
3258 * @parent: css whose children to walk
53fa5261 3259 *
c2931b70 3260 * This function returns the next child of @parent and should be called
87fb54f1 3261 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3262 * that @parent and @pos are accessible. The next sibling is guaranteed to
3263 * be returned regardless of their states.
3264 *
3265 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3266 * css which finished ->css_online() is guaranteed to be visible in the
3267 * future iterations and will stay visible until the last reference is put.
3268 * A css which hasn't finished ->css_online() or already finished
3269 * ->css_offline() may show up during traversal. It's each subsystem's
3270 * responsibility to synchronize against on/offlining.
53fa5261 3271 */
c2931b70
TH
3272struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3273 struct cgroup_subsys_state *parent)
53fa5261 3274{
c2931b70 3275 struct cgroup_subsys_state *next;
53fa5261 3276
8353da1f 3277 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3278
3279 /*
de3f0341
TH
3280 * @pos could already have been unlinked from the sibling list.
3281 * Once a cgroup is removed, its ->sibling.next is no longer
3282 * updated when its next sibling changes. CSS_RELEASED is set when
3283 * @pos is taken off list, at which time its next pointer is valid,
3284 * and, as releases are serialized, the one pointed to by the next
3285 * pointer is guaranteed to not have started release yet. This
3286 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3287 * critical section, the one pointed to by its next pointer is
3288 * guaranteed to not have finished its RCU grace period even if we
3289 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3290 *
de3f0341
TH
3291 * If @pos has CSS_RELEASED set, its next pointer can't be
3292 * dereferenced; however, as each css is given a monotonically
3293 * increasing unique serial number and always appended to the
3294 * sibling list, the next one can be found by walking the parent's
3295 * children until the first css with higher serial number than
3296 * @pos's. While this path can be slower, it happens iff iteration
3297 * races against release and the race window is very small.
53fa5261 3298 */
3b287a50 3299 if (!pos) {
c2931b70
TH
3300 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3301 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3302 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3303 } else {
c2931b70 3304 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3305 if (next->serial_nr > pos->serial_nr)
3306 break;
53fa5261
TH
3307 }
3308
3b281afb
TH
3309 /*
3310 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3311 * the next sibling.
3b281afb 3312 */
c2931b70
TH
3313 if (&next->sibling != &parent->children)
3314 return next;
3b281afb 3315 return NULL;
53fa5261 3316}
53fa5261 3317
574bd9f7 3318/**
492eb21b 3319 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3320 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3321 * @root: css whose descendants to walk
574bd9f7 3322 *
492eb21b 3323 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3324 * to visit for pre-order traversal of @root's descendants. @root is
3325 * included in the iteration and the first node to be visited.
75501a6d 3326 *
87fb54f1
TH
3327 * While this function requires cgroup_mutex or RCU read locking, it
3328 * doesn't require the whole traversal to be contained in a single critical
3329 * section. This function will return the correct next descendant as long
3330 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3331 *
3332 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3333 * css which finished ->css_online() is guaranteed to be visible in the
3334 * future iterations and will stay visible until the last reference is put.
3335 * A css which hasn't finished ->css_online() or already finished
3336 * ->css_offline() may show up during traversal. It's each subsystem's
3337 * responsibility to synchronize against on/offlining.
574bd9f7 3338 */
492eb21b
TH
3339struct cgroup_subsys_state *
3340css_next_descendant_pre(struct cgroup_subsys_state *pos,
3341 struct cgroup_subsys_state *root)
574bd9f7 3342{
492eb21b 3343 struct cgroup_subsys_state *next;
574bd9f7 3344
8353da1f 3345 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3346
bd8815a6 3347 /* if first iteration, visit @root */
7805d000 3348 if (!pos)
bd8815a6 3349 return root;
574bd9f7
TH
3350
3351 /* visit the first child if exists */
492eb21b 3352 next = css_next_child(NULL, pos);
574bd9f7
TH
3353 if (next)
3354 return next;
3355
3356 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3357 while (pos != root) {
5c9d535b 3358 next = css_next_child(pos, pos->parent);
75501a6d 3359 if (next)
574bd9f7 3360 return next;
5c9d535b 3361 pos = pos->parent;
7805d000 3362 }
574bd9f7
TH
3363
3364 return NULL;
3365}
574bd9f7 3366
12a9d2fe 3367/**
492eb21b
TH
3368 * css_rightmost_descendant - return the rightmost descendant of a css
3369 * @pos: css of interest
12a9d2fe 3370 *
492eb21b
TH
3371 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3372 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3373 * subtree of @pos.
75501a6d 3374 *
87fb54f1
TH
3375 * While this function requires cgroup_mutex or RCU read locking, it
3376 * doesn't require the whole traversal to be contained in a single critical
3377 * section. This function will return the correct rightmost descendant as
3378 * long as @pos is accessible.
12a9d2fe 3379 */
492eb21b
TH
3380struct cgroup_subsys_state *
3381css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3382{
492eb21b 3383 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3384
8353da1f 3385 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3386
3387 do {
3388 last = pos;
3389 /* ->prev isn't RCU safe, walk ->next till the end */
3390 pos = NULL;
492eb21b 3391 css_for_each_child(tmp, last)
12a9d2fe
TH
3392 pos = tmp;
3393 } while (pos);
3394
3395 return last;
3396}
12a9d2fe 3397
492eb21b
TH
3398static struct cgroup_subsys_state *
3399css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3400{
492eb21b 3401 struct cgroup_subsys_state *last;
574bd9f7
TH
3402
3403 do {
3404 last = pos;
492eb21b 3405 pos = css_next_child(NULL, pos);
574bd9f7
TH
3406 } while (pos);
3407
3408 return last;
3409}
3410
3411/**
492eb21b 3412 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3413 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3414 * @root: css whose descendants to walk
574bd9f7 3415 *
492eb21b 3416 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3417 * to visit for post-order traversal of @root's descendants. @root is
3418 * included in the iteration and the last node to be visited.
75501a6d 3419 *
87fb54f1
TH
3420 * While this function requires cgroup_mutex or RCU read locking, it
3421 * doesn't require the whole traversal to be contained in a single critical
3422 * section. This function will return the correct next descendant as long
3423 * as both @pos and @cgroup are accessible and @pos is a descendant of
3424 * @cgroup.
c2931b70
TH
3425 *
3426 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3427 * css which finished ->css_online() is guaranteed to be visible in the
3428 * future iterations and will stay visible until the last reference is put.
3429 * A css which hasn't finished ->css_online() or already finished
3430 * ->css_offline() may show up during traversal. It's each subsystem's
3431 * responsibility to synchronize against on/offlining.
574bd9f7 3432 */
492eb21b
TH
3433struct cgroup_subsys_state *
3434css_next_descendant_post(struct cgroup_subsys_state *pos,
3435 struct cgroup_subsys_state *root)
574bd9f7 3436{
492eb21b 3437 struct cgroup_subsys_state *next;
574bd9f7 3438
8353da1f 3439 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3440
58b79a91
TH
3441 /* if first iteration, visit leftmost descendant which may be @root */
3442 if (!pos)
3443 return css_leftmost_descendant(root);
574bd9f7 3444
bd8815a6
TH
3445 /* if we visited @root, we're done */
3446 if (pos == root)
3447 return NULL;
3448
574bd9f7 3449 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3450 next = css_next_child(pos, pos->parent);
75501a6d 3451 if (next)
492eb21b 3452 return css_leftmost_descendant(next);
574bd9f7
TH
3453
3454 /* no sibling left, visit parent */
5c9d535b 3455 return pos->parent;
574bd9f7 3456}
574bd9f7 3457
f3d46500
TH
3458/**
3459 * css_has_online_children - does a css have online children
3460 * @css: the target css
3461 *
3462 * Returns %true if @css has any online children; otherwise, %false. This
3463 * function can be called from any context but the caller is responsible
3464 * for synchronizing against on/offlining as necessary.
3465 */
3466bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3467{
f3d46500
TH
3468 struct cgroup_subsys_state *child;
3469 bool ret = false;
cbc125ef
TH
3470
3471 rcu_read_lock();
f3d46500
TH
3472 css_for_each_child(child, css) {
3473 if (css->flags & CSS_ONLINE) {
3474 ret = true;
3475 break;
cbc125ef
TH
3476 }
3477 }
3478 rcu_read_unlock();
f3d46500 3479 return ret;
574bd9f7 3480}
574bd9f7 3481
0942eeee 3482/**
72ec7029 3483 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3484 * @it: the iterator to advance
3485 *
3486 * Advance @it to the next css_set to walk.
d515876e 3487 */
72ec7029 3488static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3489{
0f0a2b4f 3490 struct list_head *l = it->cset_pos;
d515876e
TH
3491 struct cgrp_cset_link *link;
3492 struct css_set *cset;
3493
3494 /* Advance to the next non-empty css_set */
3495 do {
3496 l = l->next;
0f0a2b4f
TH
3497 if (l == it->cset_head) {
3498 it->cset_pos = NULL;
d515876e
TH
3499 return;
3500 }
3ebb2b6e
TH
3501
3502 if (it->ss) {
3503 cset = container_of(l, struct css_set,
3504 e_cset_node[it->ss->id]);
3505 } else {
3506 link = list_entry(l, struct cgrp_cset_link, cset_link);
3507 cset = link->cset;
3508 }
c7561128
TH
3509 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3510
0f0a2b4f 3511 it->cset_pos = l;
c7561128
TH
3512
3513 if (!list_empty(&cset->tasks))
0f0a2b4f 3514 it->task_pos = cset->tasks.next;
c7561128 3515 else
0f0a2b4f
TH
3516 it->task_pos = cset->mg_tasks.next;
3517
3518 it->tasks_head = &cset->tasks;
3519 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3520}
3521
0942eeee 3522/**
72ec7029
TH
3523 * css_task_iter_start - initiate task iteration
3524 * @css: the css to walk tasks of
0942eeee
TH
3525 * @it: the task iterator to use
3526 *
72ec7029
TH
3527 * Initiate iteration through the tasks of @css. The caller can call
3528 * css_task_iter_next() to walk through the tasks until the function
3529 * returns NULL. On completion of iteration, css_task_iter_end() must be
3530 * called.
0942eeee
TH
3531 *
3532 * Note that this function acquires a lock which is released when the
3533 * iteration finishes. The caller can't sleep while iteration is in
3534 * progress.
3535 */
72ec7029
TH
3536void css_task_iter_start(struct cgroup_subsys_state *css,
3537 struct css_task_iter *it)
96d365e0 3538 __acquires(css_set_rwsem)
817929ec 3539{
56fde9e0
TH
3540 /* no one should try to iterate before mounting cgroups */
3541 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3542
96d365e0 3543 down_read(&css_set_rwsem);
c59cd3d8 3544
3ebb2b6e
TH
3545 it->ss = css->ss;
3546
3547 if (it->ss)
3548 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3549 else
3550 it->cset_pos = &css->cgroup->cset_links;
3551
0f0a2b4f 3552 it->cset_head = it->cset_pos;
c59cd3d8 3553
72ec7029 3554 css_advance_task_iter(it);
817929ec
PM
3555}
3556
0942eeee 3557/**
72ec7029 3558 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3559 * @it: the task iterator being iterated
3560 *
3561 * The "next" function for task iteration. @it should have been
72ec7029
TH
3562 * initialized via css_task_iter_start(). Returns NULL when the iteration
3563 * reaches the end.
0942eeee 3564 */
72ec7029 3565struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3566{
3567 struct task_struct *res;
0f0a2b4f 3568 struct list_head *l = it->task_pos;
817929ec
PM
3569
3570 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3571 if (!it->cset_pos)
817929ec
PM
3572 return NULL;
3573 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3574
3575 /*
3576 * Advance iterator to find next entry. cset->tasks is consumed
3577 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3578 * next cset.
3579 */
817929ec 3580 l = l->next;
c7561128 3581
0f0a2b4f
TH
3582 if (l == it->tasks_head)
3583 l = it->mg_tasks_head->next;
c7561128 3584
0f0a2b4f 3585 if (l == it->mg_tasks_head)
72ec7029 3586 css_advance_task_iter(it);
c7561128 3587 else
0f0a2b4f 3588 it->task_pos = l;
c7561128 3589
817929ec
PM
3590 return res;
3591}
3592
0942eeee 3593/**
72ec7029 3594 * css_task_iter_end - finish task iteration
0942eeee
TH
3595 * @it: the task iterator to finish
3596 *
72ec7029 3597 * Finish task iteration started by css_task_iter_start().
0942eeee 3598 */
72ec7029 3599void css_task_iter_end(struct css_task_iter *it)
96d365e0 3600 __releases(css_set_rwsem)
31a7df01 3601{
96d365e0 3602 up_read(&css_set_rwsem);
31a7df01
CW
3603}
3604
3605/**
8cc99345
TH
3606 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3607 * @to: cgroup to which the tasks will be moved
3608 * @from: cgroup in which the tasks currently reside
31a7df01 3609 *
eaf797ab
TH
3610 * Locking rules between cgroup_post_fork() and the migration path
3611 * guarantee that, if a task is forking while being migrated, the new child
3612 * is guaranteed to be either visible in the source cgroup after the
3613 * parent's migration is complete or put into the target cgroup. No task
3614 * can slip out of migration through forking.
31a7df01 3615 */
8cc99345 3616int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3617{
952aaa12
TH
3618 LIST_HEAD(preloaded_csets);
3619 struct cgrp_cset_link *link;
72ec7029 3620 struct css_task_iter it;
e406d1cf 3621 struct task_struct *task;
952aaa12 3622 int ret;
31a7df01 3623
952aaa12 3624 mutex_lock(&cgroup_mutex);
31a7df01 3625
952aaa12
TH
3626 /* all tasks in @from are being moved, all csets are source */
3627 down_read(&css_set_rwsem);
3628 list_for_each_entry(link, &from->cset_links, cset_link)
3629 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3630 up_read(&css_set_rwsem);
31a7df01 3631
952aaa12
TH
3632 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3633 if (ret)
3634 goto out_err;
8cc99345 3635
952aaa12
TH
3636 /*
3637 * Migrate tasks one-by-one until @form is empty. This fails iff
3638 * ->can_attach() fails.
3639 */
e406d1cf 3640 do {
9d800df1 3641 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3642 task = css_task_iter_next(&it);
3643 if (task)
3644 get_task_struct(task);
3645 css_task_iter_end(&it);
3646
3647 if (task) {
952aaa12 3648 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
3649 put_task_struct(task);
3650 }
3651 } while (task && !ret);
952aaa12
TH
3652out_err:
3653 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3654 mutex_unlock(&cgroup_mutex);
e406d1cf 3655 return ret;
8cc99345
TH
3656}
3657
bbcb81d0 3658/*
102a775e 3659 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3660 *
3661 * Reading this file can return large amounts of data if a cgroup has
3662 * *lots* of attached tasks. So it may need several calls to read(),
3663 * but we cannot guarantee that the information we produce is correct
3664 * unless we produce it entirely atomically.
3665 *
bbcb81d0 3666 */
bbcb81d0 3667
24528255
LZ
3668/* which pidlist file are we talking about? */
3669enum cgroup_filetype {
3670 CGROUP_FILE_PROCS,
3671 CGROUP_FILE_TASKS,
3672};
3673
3674/*
3675 * A pidlist is a list of pids that virtually represents the contents of one
3676 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3677 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3678 * to the cgroup.
3679 */
3680struct cgroup_pidlist {
3681 /*
3682 * used to find which pidlist is wanted. doesn't change as long as
3683 * this particular list stays in the list.
3684 */
3685 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3686 /* array of xids */
3687 pid_t *list;
3688 /* how many elements the above list has */
3689 int length;
24528255
LZ
3690 /* each of these stored in a list by its cgroup */
3691 struct list_head links;
3692 /* pointer to the cgroup we belong to, for list removal purposes */
3693 struct cgroup *owner;
b1a21367
TH
3694 /* for delayed destruction */
3695 struct delayed_work destroy_dwork;
24528255
LZ
3696};
3697
d1d9fd33
BB
3698/*
3699 * The following two functions "fix" the issue where there are more pids
3700 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3701 * TODO: replace with a kernel-wide solution to this problem
3702 */
3703#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3704static void *pidlist_allocate(int count)
3705{
3706 if (PIDLIST_TOO_LARGE(count))
3707 return vmalloc(count * sizeof(pid_t));
3708 else
3709 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3710}
b1a21367 3711
d1d9fd33
BB
3712static void pidlist_free(void *p)
3713{
3714 if (is_vmalloc_addr(p))
3715 vfree(p);
3716 else
3717 kfree(p);
3718}
d1d9fd33 3719
b1a21367
TH
3720/*
3721 * Used to destroy all pidlists lingering waiting for destroy timer. None
3722 * should be left afterwards.
3723 */
3724static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3725{
3726 struct cgroup_pidlist *l, *tmp_l;
3727
3728 mutex_lock(&cgrp->pidlist_mutex);
3729 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3730 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3731 mutex_unlock(&cgrp->pidlist_mutex);
3732
3733 flush_workqueue(cgroup_pidlist_destroy_wq);
3734 BUG_ON(!list_empty(&cgrp->pidlists));
3735}
3736
3737static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3738{
3739 struct delayed_work *dwork = to_delayed_work(work);
3740 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3741 destroy_dwork);
3742 struct cgroup_pidlist *tofree = NULL;
3743
3744 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3745
3746 /*
04502365
TH
3747 * Destroy iff we didn't get queued again. The state won't change
3748 * as destroy_dwork can only be queued while locked.
b1a21367 3749 */
04502365 3750 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3751 list_del(&l->links);
3752 pidlist_free(l->list);
3753 put_pid_ns(l->key.ns);
3754 tofree = l;
3755 }
3756
b1a21367
TH
3757 mutex_unlock(&l->owner->pidlist_mutex);
3758 kfree(tofree);
3759}
3760
bbcb81d0 3761/*
102a775e 3762 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3763 * Returns the number of unique elements.
bbcb81d0 3764 */
6ee211ad 3765static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3766{
102a775e 3767 int src, dest = 1;
102a775e
BB
3768
3769 /*
3770 * we presume the 0th element is unique, so i starts at 1. trivial
3771 * edge cases first; no work needs to be done for either
3772 */
3773 if (length == 0 || length == 1)
3774 return length;
3775 /* src and dest walk down the list; dest counts unique elements */
3776 for (src = 1; src < length; src++) {
3777 /* find next unique element */
3778 while (list[src] == list[src-1]) {
3779 src++;
3780 if (src == length)
3781 goto after;
3782 }
3783 /* dest always points to where the next unique element goes */
3784 list[dest] = list[src];
3785 dest++;
3786 }
3787after:
102a775e
BB
3788 return dest;
3789}
3790
afb2bc14
TH
3791/*
3792 * The two pid files - task and cgroup.procs - guaranteed that the result
3793 * is sorted, which forced this whole pidlist fiasco. As pid order is
3794 * different per namespace, each namespace needs differently sorted list,
3795 * making it impossible to use, for example, single rbtree of member tasks
3796 * sorted by task pointer. As pidlists can be fairly large, allocating one
3797 * per open file is dangerous, so cgroup had to implement shared pool of
3798 * pidlists keyed by cgroup and namespace.
3799 *
3800 * All this extra complexity was caused by the original implementation
3801 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
3802 * want to do away with it. Explicitly scramble sort order if on the
3803 * default hierarchy so that no such expectation exists in the new
3804 * interface.
afb2bc14
TH
3805 *
3806 * Scrambling is done by swapping every two consecutive bits, which is
3807 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3808 */
3809static pid_t pid_fry(pid_t pid)
3810{
3811 unsigned a = pid & 0x55555555;
3812 unsigned b = pid & 0xAAAAAAAA;
3813
3814 return (a << 1) | (b >> 1);
3815}
3816
3817static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3818{
aa6ec29b 3819 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
3820 return pid_fry(pid);
3821 else
3822 return pid;
3823}
3824
102a775e
BB
3825static int cmppid(const void *a, const void *b)
3826{
3827 return *(pid_t *)a - *(pid_t *)b;
3828}
3829
afb2bc14
TH
3830static int fried_cmppid(const void *a, const void *b)
3831{
3832 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3833}
3834
e6b81710
TH
3835static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3836 enum cgroup_filetype type)
3837{
3838 struct cgroup_pidlist *l;
3839 /* don't need task_nsproxy() if we're looking at ourself */
3840 struct pid_namespace *ns = task_active_pid_ns(current);
3841
3842 lockdep_assert_held(&cgrp->pidlist_mutex);
3843
3844 list_for_each_entry(l, &cgrp->pidlists, links)
3845 if (l->key.type == type && l->key.ns == ns)
3846 return l;
3847 return NULL;
3848}
3849
72a8cb30
BB
3850/*
3851 * find the appropriate pidlist for our purpose (given procs vs tasks)
3852 * returns with the lock on that pidlist already held, and takes care
3853 * of the use count, or returns NULL with no locks held if we're out of
3854 * memory.
3855 */
e6b81710
TH
3856static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3857 enum cgroup_filetype type)
72a8cb30
BB
3858{
3859 struct cgroup_pidlist *l;
b70cc5fd 3860
e6b81710
TH
3861 lockdep_assert_held(&cgrp->pidlist_mutex);
3862
3863 l = cgroup_pidlist_find(cgrp, type);
3864 if (l)
3865 return l;
3866
72a8cb30 3867 /* entry not found; create a new one */
f4f4be2b 3868 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3869 if (!l)
72a8cb30 3870 return l;
e6b81710 3871
b1a21367 3872 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3873 l->key.type = type;
e6b81710
TH
3874 /* don't need task_nsproxy() if we're looking at ourself */
3875 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3876 l->owner = cgrp;
3877 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3878 return l;
3879}
3880
102a775e
BB
3881/*
3882 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3883 */
72a8cb30
BB
3884static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3885 struct cgroup_pidlist **lp)
102a775e
BB
3886{
3887 pid_t *array;
3888 int length;
3889 int pid, n = 0; /* used for populating the array */
72ec7029 3890 struct css_task_iter it;
817929ec 3891 struct task_struct *tsk;
102a775e
BB
3892 struct cgroup_pidlist *l;
3893
4bac00d1
TH
3894 lockdep_assert_held(&cgrp->pidlist_mutex);
3895
102a775e
BB
3896 /*
3897 * If cgroup gets more users after we read count, we won't have
3898 * enough space - tough. This race is indistinguishable to the
3899 * caller from the case that the additional cgroup users didn't
3900 * show up until sometime later on.
3901 */
3902 length = cgroup_task_count(cgrp);
d1d9fd33 3903 array = pidlist_allocate(length);
102a775e
BB
3904 if (!array)
3905 return -ENOMEM;
3906 /* now, populate the array */
9d800df1 3907 css_task_iter_start(&cgrp->self, &it);
72ec7029 3908 while ((tsk = css_task_iter_next(&it))) {
102a775e 3909 if (unlikely(n == length))
817929ec 3910 break;
102a775e 3911 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3912 if (type == CGROUP_FILE_PROCS)
3913 pid = task_tgid_vnr(tsk);
3914 else
3915 pid = task_pid_vnr(tsk);
102a775e
BB
3916 if (pid > 0) /* make sure to only use valid results */
3917 array[n++] = pid;
817929ec 3918 }
72ec7029 3919 css_task_iter_end(&it);
102a775e
BB
3920 length = n;
3921 /* now sort & (if procs) strip out duplicates */
aa6ec29b 3922 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
3923 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3924 else
3925 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3926 if (type == CGROUP_FILE_PROCS)
6ee211ad 3927 length = pidlist_uniq(array, length);
e6b81710 3928
e6b81710 3929 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3930 if (!l) {
e6b81710 3931 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3932 pidlist_free(array);
72a8cb30 3933 return -ENOMEM;
102a775e 3934 }
e6b81710
TH
3935
3936 /* store array, freeing old if necessary */
d1d9fd33 3937 pidlist_free(l->list);
102a775e
BB
3938 l->list = array;
3939 l->length = length;
72a8cb30 3940 *lp = l;
102a775e 3941 return 0;
bbcb81d0
PM
3942}
3943
846c7bb0 3944/**
a043e3b2 3945 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3946 * @stats: cgroupstats to fill information into
3947 * @dentry: A dentry entry belonging to the cgroup for which stats have
3948 * been requested.
a043e3b2
LZ
3949 *
3950 * Build and fill cgroupstats so that taskstats can export it to user
3951 * space.
846c7bb0
BS
3952 */
3953int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3954{
2bd59d48 3955 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3956 struct cgroup *cgrp;
72ec7029 3957 struct css_task_iter it;
846c7bb0 3958 struct task_struct *tsk;
33d283be 3959
2bd59d48
TH
3960 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3961 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3962 kernfs_type(kn) != KERNFS_DIR)
3963 return -EINVAL;
3964
bad34660
LZ
3965 mutex_lock(&cgroup_mutex);
3966
846c7bb0 3967 /*
2bd59d48 3968 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 3969 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 3970 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3971 */
2bd59d48
TH
3972 rcu_read_lock();
3973 cgrp = rcu_dereference(kn->priv);
bad34660 3974 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3975 rcu_read_unlock();
bad34660 3976 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3977 return -ENOENT;
3978 }
bad34660 3979 rcu_read_unlock();
846c7bb0 3980
9d800df1 3981 css_task_iter_start(&cgrp->self, &it);
72ec7029 3982 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3983 switch (tsk->state) {
3984 case TASK_RUNNING:
3985 stats->nr_running++;
3986 break;
3987 case TASK_INTERRUPTIBLE:
3988 stats->nr_sleeping++;
3989 break;
3990 case TASK_UNINTERRUPTIBLE:
3991 stats->nr_uninterruptible++;
3992 break;
3993 case TASK_STOPPED:
3994 stats->nr_stopped++;
3995 break;
3996 default:
3997 if (delayacct_is_task_waiting_on_io(tsk))
3998 stats->nr_io_wait++;
3999 break;
4000 }
4001 }
72ec7029 4002 css_task_iter_end(&it);
846c7bb0 4003
bad34660 4004 mutex_unlock(&cgroup_mutex);
2bd59d48 4005 return 0;
846c7bb0
BS
4006}
4007
8f3ff208 4008
bbcb81d0 4009/*
102a775e 4010 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4011 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4012 * in the cgroup->l->list array.
bbcb81d0 4013 */
cc31edce 4014
102a775e 4015static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4016{
cc31edce
PM
4017 /*
4018 * Initially we receive a position value that corresponds to
4019 * one more than the last pid shown (or 0 on the first call or
4020 * after a seek to the start). Use a binary-search to find the
4021 * next pid to display, if any
4022 */
2bd59d48 4023 struct kernfs_open_file *of = s->private;
7da11279 4024 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4025 struct cgroup_pidlist *l;
7da11279 4026 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4027 int index = 0, pid = *pos;
4bac00d1
TH
4028 int *iter, ret;
4029
4030 mutex_lock(&cgrp->pidlist_mutex);
4031
4032 /*
5d22444f 4033 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4034 * after open. If the matching pidlist is around, we can use that.
5d22444f 4035 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4036 * could already have been destroyed.
4037 */
5d22444f
TH
4038 if (of->priv)
4039 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4040
4041 /*
4042 * Either this is the first start() after open or the matching
4043 * pidlist has been destroyed inbetween. Create a new one.
4044 */
5d22444f
TH
4045 if (!of->priv) {
4046 ret = pidlist_array_load(cgrp, type,
4047 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4048 if (ret)
4049 return ERR_PTR(ret);
4050 }
5d22444f 4051 l = of->priv;
cc31edce 4052
cc31edce 4053 if (pid) {
102a775e 4054 int end = l->length;
20777766 4055
cc31edce
PM
4056 while (index < end) {
4057 int mid = (index + end) / 2;
afb2bc14 4058 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4059 index = mid;
4060 break;
afb2bc14 4061 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4062 index = mid + 1;
4063 else
4064 end = mid;
4065 }
4066 }
4067 /* If we're off the end of the array, we're done */
102a775e 4068 if (index >= l->length)
cc31edce
PM
4069 return NULL;
4070 /* Update the abstract position to be the actual pid that we found */
102a775e 4071 iter = l->list + index;
afb2bc14 4072 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4073 return iter;
4074}
4075
102a775e 4076static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4077{
2bd59d48 4078 struct kernfs_open_file *of = s->private;
5d22444f 4079 struct cgroup_pidlist *l = of->priv;
62236858 4080
5d22444f
TH
4081 if (l)
4082 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4083 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4084 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4085}
4086
102a775e 4087static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4088{
2bd59d48 4089 struct kernfs_open_file *of = s->private;
5d22444f 4090 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4091 pid_t *p = v;
4092 pid_t *end = l->list + l->length;
cc31edce
PM
4093 /*
4094 * Advance to the next pid in the array. If this goes off the
4095 * end, we're done
4096 */
4097 p++;
4098 if (p >= end) {
4099 return NULL;
4100 } else {
7da11279 4101 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4102 return p;
4103 }
4104}
4105
102a775e 4106static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
4107{
4108 return seq_printf(s, "%d\n", *(int *)v);
4109}
bbcb81d0 4110
182446d0
TH
4111static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4112 struct cftype *cft)
81a6a5cd 4113{
182446d0 4114 return notify_on_release(css->cgroup);
81a6a5cd
PM
4115}
4116
182446d0
TH
4117static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4118 struct cftype *cft, u64 val)
6379c106 4119{
182446d0 4120 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 4121 if (val)
182446d0 4122 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4123 else
182446d0 4124 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4125 return 0;
4126}
4127
182446d0
TH
4128static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4129 struct cftype *cft)
97978e6d 4130{
182446d0 4131 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4132}
4133
182446d0
TH
4134static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4135 struct cftype *cft, u64 val)
97978e6d
DL
4136{
4137 if (val)
182446d0 4138 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4139 else
182446d0 4140 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4141 return 0;
4142}
4143
a14c6874
TH
4144/* cgroup core interface files for the default hierarchy */
4145static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4146 {
d5c56ced 4147 .name = "cgroup.procs",
6612f05b
TH
4148 .seq_start = cgroup_pidlist_start,
4149 .seq_next = cgroup_pidlist_next,
4150 .seq_stop = cgroup_pidlist_stop,
4151 .seq_show = cgroup_pidlist_show,
5d22444f 4152 .private = CGROUP_FILE_PROCS,
acbef755 4153 .write = cgroup_procs_write,
74a1166d 4154 .mode = S_IRUGO | S_IWUSR,
102a775e 4155 },
f8f22e53
TH
4156 {
4157 .name = "cgroup.controllers",
a14c6874 4158 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4159 .seq_show = cgroup_root_controllers_show,
4160 },
4161 {
4162 .name = "cgroup.controllers",
a14c6874 4163 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4164 .seq_show = cgroup_controllers_show,
4165 },
4166 {
4167 .name = "cgroup.subtree_control",
f8f22e53 4168 .seq_show = cgroup_subtree_control_show,
451af504 4169 .write = cgroup_subtree_control_write,
f8f22e53 4170 },
842b597e
TH
4171 {
4172 .name = "cgroup.populated",
a14c6874 4173 .flags = CFTYPE_NOT_ON_ROOT,
842b597e
TH
4174 .seq_show = cgroup_populated_show,
4175 },
a14c6874
TH
4176 { } /* terminate */
4177};
d5c56ced 4178
a14c6874
TH
4179/* cgroup core interface files for the legacy hierarchies */
4180static struct cftype cgroup_legacy_base_files[] = {
4181 {
4182 .name = "cgroup.procs",
4183 .seq_start = cgroup_pidlist_start,
4184 .seq_next = cgroup_pidlist_next,
4185 .seq_stop = cgroup_pidlist_stop,
4186 .seq_show = cgroup_pidlist_show,
4187 .private = CGROUP_FILE_PROCS,
4188 .write = cgroup_procs_write,
4189 .mode = S_IRUGO | S_IWUSR,
4190 },
4191 {
4192 .name = "cgroup.clone_children",
4193 .read_u64 = cgroup_clone_children_read,
4194 .write_u64 = cgroup_clone_children_write,
4195 },
4196 {
4197 .name = "cgroup.sane_behavior",
4198 .flags = CFTYPE_ONLY_ON_ROOT,
4199 .seq_show = cgroup_sane_behavior_show,
4200 },
d5c56ced
TH
4201 {
4202 .name = "tasks",
6612f05b
TH
4203 .seq_start = cgroup_pidlist_start,
4204 .seq_next = cgroup_pidlist_next,
4205 .seq_stop = cgroup_pidlist_stop,
4206 .seq_show = cgroup_pidlist_show,
5d22444f 4207 .private = CGROUP_FILE_TASKS,
acbef755 4208 .write = cgroup_tasks_write,
d5c56ced
TH
4209 .mode = S_IRUGO | S_IWUSR,
4210 },
4211 {
4212 .name = "notify_on_release",
d5c56ced
TH
4213 .read_u64 = cgroup_read_notify_on_release,
4214 .write_u64 = cgroup_write_notify_on_release,
4215 },
6e6ff25b
TH
4216 {
4217 .name = "release_agent",
a14c6874 4218 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4219 .seq_show = cgroup_release_agent_show,
451af504 4220 .write = cgroup_release_agent_write,
5f469907 4221 .max_write_len = PATH_MAX - 1,
6e6ff25b 4222 },
db0416b6 4223 { } /* terminate */
bbcb81d0
PM
4224};
4225
13af07df 4226/**
628f7cd4 4227 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4228 * @cgrp: target cgroup
13af07df 4229 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4230 *
4231 * On failure, no file is added.
13af07df 4232 */
69dfa00c 4233static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
ddbcc7e8 4234{
ddbcc7e8 4235 struct cgroup_subsys *ss;
b420ba7d 4236 int i, ret = 0;
bbcb81d0 4237
8e3f6541 4238 /* process cftsets of each subsystem */
b420ba7d 4239 for_each_subsys(ss, i) {
0adb0704 4240 struct cftype *cfts;
b420ba7d 4241
69dfa00c 4242 if (!(subsys_mask & (1 << i)))
13af07df 4243 continue;
8e3f6541 4244
0adb0704
TH
4245 list_for_each_entry(cfts, &ss->cfts, node) {
4246 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
4247 if (ret < 0)
4248 goto err;
4249 }
ddbcc7e8 4250 }
ddbcc7e8 4251 return 0;
bee55099
TH
4252err:
4253 cgroup_clear_dir(cgrp, subsys_mask);
4254 return ret;
ddbcc7e8
PM
4255}
4256
0c21ead1
TH
4257/*
4258 * css destruction is four-stage process.
4259 *
4260 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4261 * Implemented in kill_css().
4262 *
4263 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4264 * and thus css_tryget_online() is guaranteed to fail, the css can be
4265 * offlined by invoking offline_css(). After offlining, the base ref is
4266 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4267 *
4268 * 3. When the percpu_ref reaches zero, the only possible remaining
4269 * accessors are inside RCU read sections. css_release() schedules the
4270 * RCU callback.
4271 *
4272 * 4. After the grace period, the css can be freed. Implemented in
4273 * css_free_work_fn().
4274 *
4275 * It is actually hairier because both step 2 and 4 require process context
4276 * and thus involve punting to css->destroy_work adding two additional
4277 * steps to the already complex sequence.
4278 */
35ef10da 4279static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4280{
4281 struct cgroup_subsys_state *css =
35ef10da 4282 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 4283 struct cgroup *cgrp = css->cgroup;
48ddbe19 4284
9d755d33
TH
4285 if (css->ss) {
4286 /* css free path */
4287 if (css->parent)
4288 css_put(css->parent);
0ae78e0b 4289
9d755d33
TH
4290 css->ss->css_free(css);
4291 cgroup_put(cgrp);
4292 } else {
4293 /* cgroup free path */
4294 atomic_dec(&cgrp->root->nr_cgrps);
4295 cgroup_pidlist_destroy_all(cgrp);
4296
d51f39b0 4297 if (cgroup_parent(cgrp)) {
9d755d33
TH
4298 /*
4299 * We get a ref to the parent, and put the ref when
4300 * this cgroup is being freed, so it's guaranteed
4301 * that the parent won't be destroyed before its
4302 * children.
4303 */
d51f39b0 4304 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4305 kernfs_put(cgrp->kn);
4306 kfree(cgrp);
4307 } else {
4308 /*
4309 * This is root cgroup's refcnt reaching zero,
4310 * which indicates that the root should be
4311 * released.
4312 */
4313 cgroup_destroy_root(cgrp->root);
4314 }
4315 }
48ddbe19
TH
4316}
4317
0c21ead1 4318static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4319{
4320 struct cgroup_subsys_state *css =
0c21ead1 4321 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4322
35ef10da 4323 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4324 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4325}
4326
25e15d83 4327static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4328{
4329 struct cgroup_subsys_state *css =
25e15d83 4330 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4331 struct cgroup_subsys *ss = css->ss;
9d755d33 4332 struct cgroup *cgrp = css->cgroup;
15a4c835 4333
1fed1b2e
TH
4334 mutex_lock(&cgroup_mutex);
4335
de3f0341 4336 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4337 list_del_rcu(&css->sibling);
4338
9d755d33
TH
4339 if (ss) {
4340 /* css release path */
4341 cgroup_idr_remove(&ss->css_idr, css->id);
4342 } else {
4343 /* cgroup release path */
9d755d33
TH
4344 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4345 cgrp->id = -1;
4346 }
d3daf28d 4347
1fed1b2e
TH
4348 mutex_unlock(&cgroup_mutex);
4349
0c21ead1 4350 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4351}
4352
d3daf28d
TH
4353static void css_release(struct percpu_ref *ref)
4354{
4355 struct cgroup_subsys_state *css =
4356 container_of(ref, struct cgroup_subsys_state, refcnt);
4357
25e15d83
TH
4358 INIT_WORK(&css->destroy_work, css_release_work_fn);
4359 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4360}
4361
ddfcadab
TH
4362static void init_and_link_css(struct cgroup_subsys_state *css,
4363 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4364{
0cb51d71
TH
4365 lockdep_assert_held(&cgroup_mutex);
4366
ddfcadab
TH
4367 cgroup_get(cgrp);
4368
d5c419b6 4369 memset(css, 0, sizeof(*css));
bd89aabc 4370 css->cgroup = cgrp;
72c97e54 4371 css->ss = ss;
d5c419b6
TH
4372 INIT_LIST_HEAD(&css->sibling);
4373 INIT_LIST_HEAD(&css->children);
0cb51d71 4374 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4375
d51f39b0
TH
4376 if (cgroup_parent(cgrp)) {
4377 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4378 css_get(css->parent);
ddfcadab 4379 }
48ddbe19 4380
ca8bdcaf 4381 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4382}
4383
2a4ac633 4384/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4385static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4386{
623f926b 4387 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4388 int ret = 0;
4389
a31f2d3f
TH
4390 lockdep_assert_held(&cgroup_mutex);
4391
92fb9748 4392 if (ss->css_online)
eb95419b 4393 ret = ss->css_online(css);
ae7f164a 4394 if (!ret) {
eb95419b 4395 css->flags |= CSS_ONLINE;
aec25020 4396 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4397 }
b1929db4 4398 return ret;
a31f2d3f
TH
4399}
4400
2a4ac633 4401/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4402static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4403{
623f926b 4404 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4405
4406 lockdep_assert_held(&cgroup_mutex);
4407
4408 if (!(css->flags & CSS_ONLINE))
4409 return;
4410
d7eeac19 4411 if (ss->css_offline)
eb95419b 4412 ss->css_offline(css);
a31f2d3f 4413
eb95419b 4414 css->flags &= ~CSS_ONLINE;
e3297803 4415 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4416
4417 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4418}
4419
c81c925a
TH
4420/**
4421 * create_css - create a cgroup_subsys_state
4422 * @cgrp: the cgroup new css will be associated with
4423 * @ss: the subsys of new css
f63070d3 4424 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4425 *
4426 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4427 * css is online and installed in @cgrp with all interface files created if
4428 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4429 */
f63070d3
TH
4430static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4431 bool visible)
c81c925a 4432{
d51f39b0 4433 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4434 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4435 struct cgroup_subsys_state *css;
4436 int err;
4437
c81c925a
TH
4438 lockdep_assert_held(&cgroup_mutex);
4439
1fed1b2e 4440 css = ss->css_alloc(parent_css);
c81c925a
TH
4441 if (IS_ERR(css))
4442 return PTR_ERR(css);
4443
ddfcadab 4444 init_and_link_css(css, ss, cgrp);
a2bed820 4445
c81c925a
TH
4446 err = percpu_ref_init(&css->refcnt, css_release);
4447 if (err)
3eb59ec6 4448 goto err_free_css;
c81c925a 4449
15a4c835
TH
4450 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4451 if (err < 0)
4452 goto err_free_percpu_ref;
4453 css->id = err;
c81c925a 4454
f63070d3
TH
4455 if (visible) {
4456 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4457 if (err)
4458 goto err_free_id;
4459 }
15a4c835
TH
4460
4461 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4462 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4463 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4464
4465 err = online_css(css);
4466 if (err)
1fed1b2e 4467 goto err_list_del;
94419627 4468
c81c925a 4469 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4470 cgroup_parent(parent)) {
ed3d261b 4471 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4472 current->comm, current->pid, ss->name);
c81c925a 4473 if (!strcmp(ss->name, "memory"))
ed3d261b 4474 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4475 ss->warned_broken_hierarchy = true;
4476 }
4477
4478 return 0;
4479
1fed1b2e
TH
4480err_list_del:
4481 list_del_rcu(&css->sibling);
32d01dc7 4482 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
15a4c835
TH
4483err_free_id:
4484 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4485err_free_percpu_ref:
c81c925a 4486 percpu_ref_cancel_init(&css->refcnt);
3eb59ec6 4487err_free_css:
a2bed820 4488 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4489 return err;
4490}
4491
b3bfd983
TH
4492static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4493 umode_t mode)
ddbcc7e8 4494{
a9746d8d
TH
4495 struct cgroup *parent, *cgrp;
4496 struct cgroup_root *root;
ddbcc7e8 4497 struct cgroup_subsys *ss;
2bd59d48 4498 struct kernfs_node *kn;
a14c6874 4499 struct cftype *base_files;
b3bfd983 4500 int ssid, ret;
ddbcc7e8 4501
a9746d8d
TH
4502 parent = cgroup_kn_lock_live(parent_kn);
4503 if (!parent)
4504 return -ENODEV;
4505 root = parent->root;
ddbcc7e8 4506
0a950f65 4507 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4508 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4509 if (!cgrp) {
4510 ret = -ENOMEM;
4511 goto out_unlock;
0ab02ca8
LZ
4512 }
4513
9d755d33
TH
4514 ret = percpu_ref_init(&cgrp->self.refcnt, css_release);
4515 if (ret)
4516 goto out_free_cgrp;
4517
0ab02ca8
LZ
4518 /*
4519 * Temporarily set the pointer to NULL, so idr_find() won't return
4520 * a half-baked cgroup.
4521 */
6fa4918d 4522 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
0ab02ca8 4523 if (cgrp->id < 0) {
ba0f4d76 4524 ret = -ENOMEM;
9d755d33 4525 goto out_cancel_ref;
976c06bc
TH
4526 }
4527
cc31edce 4528 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4529
9d800df1 4530 cgrp->self.parent = &parent->self;
ba0f4d76 4531 cgrp->root = root;
ddbcc7e8 4532
b6abdb0e
LZ
4533 if (notify_on_release(parent))
4534 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4535
2260e7fc
TH
4536 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4537 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4538
2bd59d48 4539 /* create the directory */
e61734c5 4540 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4541 if (IS_ERR(kn)) {
ba0f4d76
TH
4542 ret = PTR_ERR(kn);
4543 goto out_free_id;
2bd59d48
TH
4544 }
4545 cgrp->kn = kn;
ddbcc7e8 4546
4e139afc 4547 /*
6f30558f
TH
4548 * This extra ref will be put in cgroup_free_fn() and guarantees
4549 * that @cgrp->kn is always accessible.
4e139afc 4550 */
6f30558f 4551 kernfs_get(kn);
ddbcc7e8 4552
0cb51d71 4553 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4554
4e139afc 4555 /* allocation complete, commit to creation */
d5c419b6 4556 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4557 atomic_inc(&root->nr_cgrps);
59f5296b 4558 cgroup_get(parent);
415cf07a 4559
0d80255e
TH
4560 /*
4561 * @cgrp is now fully operational. If something fails after this
4562 * point, it'll be released via the normal destruction path.
4563 */
6fa4918d 4564 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4565
ba0f4d76
TH
4566 ret = cgroup_kn_set_ugid(kn);
4567 if (ret)
4568 goto out_destroy;
49957f8e 4569
a14c6874
TH
4570 if (cgroup_on_dfl(cgrp))
4571 base_files = cgroup_dfl_base_files;
4572 else
4573 base_files = cgroup_legacy_base_files;
4574
4575 ret = cgroup_addrm_files(cgrp, base_files, true);
ba0f4d76
TH
4576 if (ret)
4577 goto out_destroy;
628f7cd4 4578
9d403e99 4579 /* let's create and online css's */
b85d2040 4580 for_each_subsys(ss, ssid) {
f392e51c 4581 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4582 ret = create_css(cgrp, ss,
4583 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4584 if (ret)
4585 goto out_destroy;
b85d2040 4586 }
a8638030 4587 }
ddbcc7e8 4588
bd53d617
TH
4589 /*
4590 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4591 * subtree_control from the parent. Each is configured manually.
bd53d617 4592 */
667c2491
TH
4593 if (!cgroup_on_dfl(cgrp)) {
4594 cgrp->subtree_control = parent->subtree_control;
4595 cgroup_refresh_child_subsys_mask(cgrp);
4596 }
2bd59d48 4597
2bd59d48 4598 kernfs_activate(kn);
ddbcc7e8 4599
ba0f4d76
TH
4600 ret = 0;
4601 goto out_unlock;
ddbcc7e8 4602
ba0f4d76 4603out_free_id:
6fa4918d 4604 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33
TH
4605out_cancel_ref:
4606 percpu_ref_cancel_init(&cgrp->self.refcnt);
ba0f4d76 4607out_free_cgrp:
bd89aabc 4608 kfree(cgrp);
ba0f4d76 4609out_unlock:
a9746d8d 4610 cgroup_kn_unlock(parent_kn);
ba0f4d76 4611 return ret;
4b8b47eb 4612
ba0f4d76 4613out_destroy:
4b8b47eb 4614 cgroup_destroy_locked(cgrp);
ba0f4d76 4615 goto out_unlock;
ddbcc7e8
PM
4616}
4617
223dbc38
TH
4618/*
4619 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4620 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4621 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4622 */
4623static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4624{
223dbc38
TH
4625 struct cgroup_subsys_state *css =
4626 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4627
f20104de 4628 mutex_lock(&cgroup_mutex);
09a503ea 4629 offline_css(css);
f20104de 4630 mutex_unlock(&cgroup_mutex);
09a503ea 4631
09a503ea 4632 css_put(css);
d3daf28d
TH
4633}
4634
223dbc38
TH
4635/* css kill confirmation processing requires process context, bounce */
4636static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4637{
4638 struct cgroup_subsys_state *css =
4639 container_of(ref, struct cgroup_subsys_state, refcnt);
4640
223dbc38 4641 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4642 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4643}
4644
f392e51c
TH
4645/**
4646 * kill_css - destroy a css
4647 * @css: css to destroy
4648 *
4649 * This function initiates destruction of @css by removing cgroup interface
4650 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4651 * asynchronously once css_tryget_online() is guaranteed to fail and when
4652 * the reference count reaches zero, @css will be released.
f392e51c
TH
4653 */
4654static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4655{
01f6474c 4656 lockdep_assert_held(&cgroup_mutex);
94419627 4657
2bd59d48
TH
4658 /*
4659 * This must happen before css is disassociated with its cgroup.
4660 * See seq_css() for details.
4661 */
aec25020 4662 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 4663
edae0c33
TH
4664 /*
4665 * Killing would put the base ref, but we need to keep it alive
4666 * until after ->css_offline().
4667 */
4668 css_get(css);
4669
4670 /*
4671 * cgroup core guarantees that, by the time ->css_offline() is
4672 * invoked, no new css reference will be given out via
ec903c0c 4673 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4674 * proceed to offlining css's because percpu_ref_kill() doesn't
4675 * guarantee that the ref is seen as killed on all CPUs on return.
4676 *
4677 * Use percpu_ref_kill_and_confirm() to get notifications as each
4678 * css is confirmed to be seen as killed on all CPUs.
4679 */
4680 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4681}
4682
4683/**
4684 * cgroup_destroy_locked - the first stage of cgroup destruction
4685 * @cgrp: cgroup to be destroyed
4686 *
4687 * css's make use of percpu refcnts whose killing latency shouldn't be
4688 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4689 * guarantee that css_tryget_online() won't succeed by the time
4690 * ->css_offline() is invoked. To satisfy all the requirements,
4691 * destruction is implemented in the following two steps.
d3daf28d
TH
4692 *
4693 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4694 * userland visible parts and start killing the percpu refcnts of
4695 * css's. Set up so that the next stage will be kicked off once all
4696 * the percpu refcnts are confirmed to be killed.
4697 *
4698 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4699 * rest of destruction. Once all cgroup references are gone, the
4700 * cgroup is RCU-freed.
4701 *
4702 * This function implements s1. After this step, @cgrp is gone as far as
4703 * the userland is concerned and a new cgroup with the same name may be
4704 * created. As cgroup doesn't care about the names internally, this
4705 * doesn't cause any problem.
4706 */
42809dd4
TH
4707static int cgroup_destroy_locked(struct cgroup *cgrp)
4708 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4709{
2bd59d48 4710 struct cgroup_subsys_state *css;
ddd69148 4711 bool empty;
1c6727af 4712 int ssid;
ddbcc7e8 4713
42809dd4
TH
4714 lockdep_assert_held(&cgroup_mutex);
4715
ddd69148 4716 /*
96d365e0 4717 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4718 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4719 */
96d365e0 4720 down_read(&css_set_rwsem);
bb78a92f 4721 empty = list_empty(&cgrp->cset_links);
96d365e0 4722 up_read(&css_set_rwsem);
ddd69148 4723 if (!empty)
ddbcc7e8 4724 return -EBUSY;
a043e3b2 4725
bb78a92f 4726 /*
d5c419b6
TH
4727 * Make sure there's no live children. We can't test emptiness of
4728 * ->self.children as dead children linger on it while being
4729 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 4730 */
f3d46500 4731 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
4732 return -EBUSY;
4733
455050d2
TH
4734 /*
4735 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 4736 * creation by disabling cgroup_lock_live_group().
455050d2 4737 */
184faf32 4738 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 4739
249f3468 4740 /* initiate massacre of all css's */
1c6727af
TH
4741 for_each_css(css, ssid, cgrp)
4742 kill_css(css);
455050d2 4743
184faf32 4744 /* CSS_ONLINE is clear, remove from ->release_list for the last time */
455050d2
TH
4745 raw_spin_lock(&release_list_lock);
4746 if (!list_empty(&cgrp->release_list))
4747 list_del_init(&cgrp->release_list);
4748 raw_spin_unlock(&release_list_lock);
4749
4750 /*
01f6474c
TH
4751 * Remove @cgrp directory along with the base files. @cgrp has an
4752 * extra ref on its kn.
f20104de 4753 */
01f6474c 4754 kernfs_remove(cgrp->kn);
f20104de 4755
d51f39b0
TH
4756 set_bit(CGRP_RELEASABLE, &cgroup_parent(cgrp)->flags);
4757 check_for_release(cgroup_parent(cgrp));
2bd59d48 4758
249f3468 4759 /* put the base reference */
9d755d33 4760 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 4761
ea15f8cc
TH
4762 return 0;
4763};
4764
2bd59d48 4765static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4766{
a9746d8d 4767 struct cgroup *cgrp;
2bd59d48 4768 int ret = 0;
42809dd4 4769
a9746d8d
TH
4770 cgrp = cgroup_kn_lock_live(kn);
4771 if (!cgrp)
4772 return 0;
4773 cgroup_get(cgrp); /* for @kn->priv clearing */
42809dd4 4774
a9746d8d 4775 ret = cgroup_destroy_locked(cgrp);
2bb566cb 4776
a9746d8d 4777 cgroup_kn_unlock(kn);
8e3f6541
TH
4778
4779 /*
cfc79d5b
TH
4780 * There are two control paths which try to determine cgroup from
4781 * dentry without going through kernfs - cgroupstats_build() and
4782 * css_tryget_online_from_dir(). Those are supported by RCU
4783 * protecting clearing of cgrp->kn->priv backpointer, which should
4784 * happen after all files under it have been removed.
8e3f6541 4785 */
cfc79d5b
TH
4786 if (!ret)
4787 RCU_INIT_POINTER(*(void __rcu __force **)&kn->priv, NULL);
2bb566cb 4788
2bd59d48 4789 cgroup_put(cgrp);
42809dd4 4790 return ret;
8e3f6541
TH
4791}
4792
2bd59d48
TH
4793static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4794 .remount_fs = cgroup_remount,
4795 .show_options = cgroup_show_options,
4796 .mkdir = cgroup_mkdir,
4797 .rmdir = cgroup_rmdir,
4798 .rename = cgroup_rename,
4799};
4800
15a4c835 4801static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 4802{
ddbcc7e8 4803 struct cgroup_subsys_state *css;
cfe36bde
DC
4804
4805 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4806
648bb56d
TH
4807 mutex_lock(&cgroup_mutex);
4808
15a4c835 4809 idr_init(&ss->css_idr);
0adb0704 4810 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4811
3dd06ffa
TH
4812 /* Create the root cgroup state for this subsystem */
4813 ss->root = &cgrp_dfl_root;
4814 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4815 /* We don't handle early failures gracefully */
4816 BUG_ON(IS_ERR(css));
ddfcadab 4817 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
4818
4819 /*
4820 * Root csses are never destroyed and we can't initialize
4821 * percpu_ref during early init. Disable refcnting.
4822 */
4823 css->flags |= CSS_NO_REF;
4824
15a4c835 4825 if (early) {
9395a450 4826 /* allocation can't be done safely during early init */
15a4c835
TH
4827 css->id = 1;
4828 } else {
4829 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4830 BUG_ON(css->id < 0);
4831 }
ddbcc7e8 4832
e8d55fde 4833 /* Update the init_css_set to contain a subsys
817929ec 4834 * pointer to this state - since the subsystem is
e8d55fde 4835 * newly registered, all tasks and hence the
3dd06ffa 4836 * init_css_set is in the subsystem's root cgroup. */
aec25020 4837 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4838
4839 need_forkexit_callback |= ss->fork || ss->exit;
4840
e8d55fde
LZ
4841 /* At system boot, before all subsystems have been
4842 * registered, no tasks have been forked, so we don't
4843 * need to invoke fork callbacks here. */
4844 BUG_ON(!list_empty(&init_task.tasks));
4845
ae7f164a 4846 BUG_ON(online_css(css));
a8638030 4847
cf5d5941
BB
4848 mutex_unlock(&cgroup_mutex);
4849}
cf5d5941 4850
ddbcc7e8 4851/**
a043e3b2
LZ
4852 * cgroup_init_early - cgroup initialization at system boot
4853 *
4854 * Initialize cgroups at system boot, and initialize any
4855 * subsystems that request early init.
ddbcc7e8
PM
4856 */
4857int __init cgroup_init_early(void)
4858{
7b9a6ba5 4859 static struct cgroup_sb_opts __initdata opts;
30159ec7 4860 struct cgroup_subsys *ss;
ddbcc7e8 4861 int i;
30159ec7 4862
3dd06ffa 4863 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
4864 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4865
a4ea1cc9 4866 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4867
3ed80a62 4868 for_each_subsys(ss, i) {
aec25020 4869 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4870 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4871 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4872 ss->id, ss->name);
073219e9
TH
4873 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4874 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4875
aec25020 4876 ss->id = i;
073219e9 4877 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4878
4879 if (ss->early_init)
15a4c835 4880 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
4881 }
4882 return 0;
4883}
4884
4885/**
a043e3b2
LZ
4886 * cgroup_init - cgroup initialization
4887 *
4888 * Register cgroup filesystem and /proc file, and initialize
4889 * any subsystems that didn't request early init.
ddbcc7e8
PM
4890 */
4891int __init cgroup_init(void)
4892{
30159ec7 4893 struct cgroup_subsys *ss;
0ac801fe 4894 unsigned long key;
172a2c06 4895 int ssid, err;
ddbcc7e8 4896
a14c6874
TH
4897 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
4898 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 4899
54e7b4eb 4900 mutex_lock(&cgroup_mutex);
54e7b4eb 4901
82fe9b0d
TH
4902 /* Add init_css_set to the hash table */
4903 key = css_set_hash(init_css_set.subsys);
4904 hash_add(css_set_table, &init_css_set.hlist, key);
4905
3dd06ffa 4906 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 4907
54e7b4eb
TH
4908 mutex_unlock(&cgroup_mutex);
4909
172a2c06 4910 for_each_subsys(ss, ssid) {
15a4c835
TH
4911 if (ss->early_init) {
4912 struct cgroup_subsys_state *css =
4913 init_css_set.subsys[ss->id];
4914
4915 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4916 GFP_KERNEL);
4917 BUG_ON(css->id < 0);
4918 } else {
4919 cgroup_init_subsys(ss, false);
4920 }
172a2c06 4921
2d8f243a
TH
4922 list_add_tail(&init_css_set.e_cset_node[ssid],
4923 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
4924
4925 /*
c731ae1d
LZ
4926 * Setting dfl_root subsys_mask needs to consider the
4927 * disabled flag and cftype registration needs kmalloc,
4928 * both of which aren't available during early_init.
172a2c06 4929 */
a8ddc821
TH
4930 if (ss->disabled)
4931 continue;
4932
4933 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
4934
4935 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
4936 ss->dfl_cftypes = ss->legacy_cftypes;
4937
5de4fa13
TH
4938 if (!ss->dfl_cftypes)
4939 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
4940
a8ddc821
TH
4941 if (ss->dfl_cftypes == ss->legacy_cftypes) {
4942 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
4943 } else {
4944 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
4945 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 4946 }
676db4af
GKH
4947 }
4948
676db4af 4949 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4950 if (!cgroup_kobj)
4951 return -ENOMEM;
676db4af 4952
ddbcc7e8 4953 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4954 if (err < 0) {
4955 kobject_put(cgroup_kobj);
2bd59d48 4956 return err;
676db4af 4957 }
ddbcc7e8 4958
46ae220b 4959 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4960 return 0;
ddbcc7e8 4961}
b4f48b63 4962
e5fca243
TH
4963static int __init cgroup_wq_init(void)
4964{
4965 /*
4966 * There isn't much point in executing destruction path in
4967 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 4968 * Use 1 for @max_active.
e5fca243
TH
4969 *
4970 * We would prefer to do this in cgroup_init() above, but that
4971 * is called before init_workqueues(): so leave this until after.
4972 */
1a11533f 4973 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 4974 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4975
4976 /*
4977 * Used to destroy pidlists and separate to serve as flush domain.
4978 * Cap @max_active to 1 too.
4979 */
4980 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4981 0, 1);
4982 BUG_ON(!cgroup_pidlist_destroy_wq);
4983
e5fca243
TH
4984 return 0;
4985}
4986core_initcall(cgroup_wq_init);
4987
a424316c
PM
4988/*
4989 * proc_cgroup_show()
4990 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4991 * - Used for /proc/<pid>/cgroup.
a424316c
PM
4992 */
4993
4994/* TODO: Use a proper seq_file iterator */
8d8b97ba 4995int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4996{
4997 struct pid *pid;
4998 struct task_struct *tsk;
e61734c5 4999 char *buf, *path;
a424316c 5000 int retval;
3dd06ffa 5001 struct cgroup_root *root;
a424316c
PM
5002
5003 retval = -ENOMEM;
e61734c5 5004 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5005 if (!buf)
5006 goto out;
5007
5008 retval = -ESRCH;
5009 pid = m->private;
5010 tsk = get_pid_task(pid, PIDTYPE_PID);
5011 if (!tsk)
5012 goto out_free;
5013
5014 retval = 0;
5015
5016 mutex_lock(&cgroup_mutex);
96d365e0 5017 down_read(&css_set_rwsem);
a424316c 5018
985ed670 5019 for_each_root(root) {
a424316c 5020 struct cgroup_subsys *ss;
bd89aabc 5021 struct cgroup *cgrp;
b85d2040 5022 int ssid, count = 0;
a424316c 5023
a2dd4247 5024 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5025 continue;
5026
2c6ab6d2 5027 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 5028 for_each_subsys(ss, ssid)
f392e51c 5029 if (root->subsys_mask & (1 << ssid))
b85d2040 5030 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
5031 if (strlen(root->name))
5032 seq_printf(m, "%sname=%s", count ? "," : "",
5033 root->name);
a424316c 5034 seq_putc(m, ':');
7717f7ba 5035 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
5036 path = cgroup_path(cgrp, buf, PATH_MAX);
5037 if (!path) {
5038 retval = -ENAMETOOLONG;
a424316c 5039 goto out_unlock;
e61734c5
TH
5040 }
5041 seq_puts(m, path);
a424316c
PM
5042 seq_putc(m, '\n');
5043 }
5044
5045out_unlock:
96d365e0 5046 up_read(&css_set_rwsem);
a424316c
PM
5047 mutex_unlock(&cgroup_mutex);
5048 put_task_struct(tsk);
5049out_free:
5050 kfree(buf);
5051out:
5052 return retval;
5053}
5054
a424316c
PM
5055/* Display information about each subsystem and each hierarchy */
5056static int proc_cgroupstats_show(struct seq_file *m, void *v)
5057{
30159ec7 5058 struct cgroup_subsys *ss;
a424316c 5059 int i;
a424316c 5060
8bab8dde 5061 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5062 /*
5063 * ideally we don't want subsystems moving around while we do this.
5064 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5065 * subsys/hierarchy state.
5066 */
a424316c 5067 mutex_lock(&cgroup_mutex);
30159ec7
TH
5068
5069 for_each_subsys(ss, i)
2c6ab6d2
PM
5070 seq_printf(m, "%s\t%d\t%d\t%d\n",
5071 ss->name, ss->root->hierarchy_id,
3c9c825b 5072 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 5073
a424316c
PM
5074 mutex_unlock(&cgroup_mutex);
5075 return 0;
5076}
5077
5078static int cgroupstats_open(struct inode *inode, struct file *file)
5079{
9dce07f1 5080 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5081}
5082
828c0950 5083static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5084 .open = cgroupstats_open,
5085 .read = seq_read,
5086 .llseek = seq_lseek,
5087 .release = single_release,
5088};
5089
b4f48b63 5090/**
eaf797ab 5091 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5092 * @child: pointer to task_struct of forking parent process.
b4f48b63 5093 *
eaf797ab
TH
5094 * A task is associated with the init_css_set until cgroup_post_fork()
5095 * attaches it to the parent's css_set. Empty cg_list indicates that
5096 * @child isn't holding reference to its css_set.
b4f48b63
PM
5097 */
5098void cgroup_fork(struct task_struct *child)
5099{
eaf797ab 5100 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5101 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5102}
5103
817929ec 5104/**
a043e3b2
LZ
5105 * cgroup_post_fork - called on a new task after adding it to the task list
5106 * @child: the task in question
5107 *
5edee61e
TH
5108 * Adds the task to the list running through its css_set if necessary and
5109 * call the subsystem fork() callbacks. Has to be after the task is
5110 * visible on the task list in case we race with the first call to
0942eeee 5111 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5112 * list.
a043e3b2 5113 */
817929ec
PM
5114void cgroup_post_fork(struct task_struct *child)
5115{
30159ec7 5116 struct cgroup_subsys *ss;
5edee61e
TH
5117 int i;
5118
3ce3230a 5119 /*
eaf797ab
TH
5120 * This may race against cgroup_enable_task_cg_links(). As that
5121 * function sets use_task_css_set_links before grabbing
5122 * tasklist_lock and we just went through tasklist_lock to add
5123 * @child, it's guaranteed that either we see the set
5124 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5125 * @child during its iteration.
5126 *
5127 * If we won the race, @child is associated with %current's
5128 * css_set. Grabbing css_set_rwsem guarantees both that the
5129 * association is stable, and, on completion of the parent's
5130 * migration, @child is visible in the source of migration or
5131 * already in the destination cgroup. This guarantee is necessary
5132 * when implementing operations which need to migrate all tasks of
5133 * a cgroup to another.
5134 *
5135 * Note that if we lose to cgroup_enable_task_cg_links(), @child
5136 * will remain in init_css_set. This is safe because all tasks are
5137 * in the init_css_set before cg_links is enabled and there's no
5138 * operation which transfers all tasks out of init_css_set.
3ce3230a 5139 */
817929ec 5140 if (use_task_css_set_links) {
eaf797ab
TH
5141 struct css_set *cset;
5142
96d365e0 5143 down_write(&css_set_rwsem);
0e1d768f 5144 cset = task_css_set(current);
eaf797ab
TH
5145 if (list_empty(&child->cg_list)) {
5146 rcu_assign_pointer(child->cgroups, cset);
5147 list_add(&child->cg_list, &cset->tasks);
5148 get_css_set(cset);
5149 }
96d365e0 5150 up_write(&css_set_rwsem);
817929ec 5151 }
5edee61e
TH
5152
5153 /*
5154 * Call ss->fork(). This must happen after @child is linked on
5155 * css_set; otherwise, @child might change state between ->fork()
5156 * and addition to css_set.
5157 */
5158 if (need_forkexit_callback) {
3ed80a62 5159 for_each_subsys(ss, i)
5edee61e
TH
5160 if (ss->fork)
5161 ss->fork(child);
5edee61e 5162 }
817929ec 5163}
5edee61e 5164
b4f48b63
PM
5165/**
5166 * cgroup_exit - detach cgroup from exiting task
5167 * @tsk: pointer to task_struct of exiting process
5168 *
5169 * Description: Detach cgroup from @tsk and release it.
5170 *
5171 * Note that cgroups marked notify_on_release force every task in
5172 * them to take the global cgroup_mutex mutex when exiting.
5173 * This could impact scaling on very large systems. Be reluctant to
5174 * use notify_on_release cgroups where very high task exit scaling
5175 * is required on large systems.
5176 *
0e1d768f
TH
5177 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5178 * call cgroup_exit() while the task is still competent to handle
5179 * notify_on_release(), then leave the task attached to the root cgroup in
5180 * each hierarchy for the remainder of its exit. No need to bother with
5181 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5182 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5183 */
1ec41830 5184void cgroup_exit(struct task_struct *tsk)
b4f48b63 5185{
30159ec7 5186 struct cgroup_subsys *ss;
5abb8855 5187 struct css_set *cset;
eaf797ab 5188 bool put_cset = false;
d41d5a01 5189 int i;
817929ec
PM
5190
5191 /*
0e1d768f
TH
5192 * Unlink from @tsk from its css_set. As migration path can't race
5193 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
5194 */
5195 if (!list_empty(&tsk->cg_list)) {
96d365e0 5196 down_write(&css_set_rwsem);
0e1d768f 5197 list_del_init(&tsk->cg_list);
96d365e0 5198 up_write(&css_set_rwsem);
0e1d768f 5199 put_cset = true;
817929ec
PM
5200 }
5201
b4f48b63 5202 /* Reassign the task to the init_css_set. */
a8ad805c
TH
5203 cset = task_css_set(tsk);
5204 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5205
1ec41830 5206 if (need_forkexit_callback) {
3ed80a62
TH
5207 /* see cgroup_post_fork() for details */
5208 for_each_subsys(ss, i) {
d41d5a01 5209 if (ss->exit) {
eb95419b
TH
5210 struct cgroup_subsys_state *old_css = cset->subsys[i];
5211 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5212
eb95419b 5213 ss->exit(css, old_css, tsk);
d41d5a01
PZ
5214 }
5215 }
5216 }
d41d5a01 5217
eaf797ab
TH
5218 if (put_cset)
5219 put_css_set(cset, true);
b4f48b63 5220}
697f4161 5221
bd89aabc 5222static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5223{
f3d46500
TH
5224 if (cgroup_is_releasable(cgrp) && list_empty(&cgrp->cset_links) &&
5225 !css_has_online_children(&cgrp->self)) {
f50daa70
LZ
5226 /*
5227 * Control Group is currently removeable. If it's not
81a6a5cd 5228 * already queued for a userspace notification, queue
f50daa70
LZ
5229 * it now
5230 */
81a6a5cd 5231 int need_schedule_work = 0;
f50daa70 5232
cdcc136f 5233 raw_spin_lock(&release_list_lock);
54766d4a 5234 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5235 list_empty(&cgrp->release_list)) {
5236 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5237 need_schedule_work = 1;
5238 }
cdcc136f 5239 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5240 if (need_schedule_work)
5241 schedule_work(&release_agent_work);
5242 }
5243}
5244
81a6a5cd
PM
5245/*
5246 * Notify userspace when a cgroup is released, by running the
5247 * configured release agent with the name of the cgroup (path
5248 * relative to the root of cgroup file system) as the argument.
5249 *
5250 * Most likely, this user command will try to rmdir this cgroup.
5251 *
5252 * This races with the possibility that some other task will be
5253 * attached to this cgroup before it is removed, or that some other
5254 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5255 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5256 * unused, and this cgroup will be reprieved from its death sentence,
5257 * to continue to serve a useful existence. Next time it's released,
5258 * we will get notified again, if it still has 'notify_on_release' set.
5259 *
5260 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5261 * means only wait until the task is successfully execve()'d. The
5262 * separate release agent task is forked by call_usermodehelper(),
5263 * then control in this thread returns here, without waiting for the
5264 * release agent task. We don't bother to wait because the caller of
5265 * this routine has no use for the exit status of the release agent
5266 * task, so no sense holding our caller up for that.
81a6a5cd 5267 */
81a6a5cd
PM
5268static void cgroup_release_agent(struct work_struct *work)
5269{
5270 BUG_ON(work != &release_agent_work);
5271 mutex_lock(&cgroup_mutex);
cdcc136f 5272 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5273 while (!list_empty(&release_list)) {
5274 char *argv[3], *envp[3];
5275 int i;
e61734c5 5276 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 5277 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5278 struct cgroup,
5279 release_list);
bd89aabc 5280 list_del_init(&cgrp->release_list);
cdcc136f 5281 raw_spin_unlock(&release_list_lock);
e61734c5 5282 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
5283 if (!pathbuf)
5284 goto continue_free;
e61734c5
TH
5285 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5286 if (!path)
e788e066
PM
5287 goto continue_free;
5288 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5289 if (!agentbuf)
5290 goto continue_free;
81a6a5cd
PM
5291
5292 i = 0;
e788e066 5293 argv[i++] = agentbuf;
e61734c5 5294 argv[i++] = path;
81a6a5cd
PM
5295 argv[i] = NULL;
5296
5297 i = 0;
5298 /* minimal command environment */
5299 envp[i++] = "HOME=/";
5300 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5301 envp[i] = NULL;
5302
5303 /* Drop the lock while we invoke the usermode helper,
5304 * since the exec could involve hitting disk and hence
5305 * be a slow process */
5306 mutex_unlock(&cgroup_mutex);
5307 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5308 mutex_lock(&cgroup_mutex);
e788e066
PM
5309 continue_free:
5310 kfree(pathbuf);
5311 kfree(agentbuf);
cdcc136f 5312 raw_spin_lock(&release_list_lock);
81a6a5cd 5313 }
cdcc136f 5314 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5315 mutex_unlock(&cgroup_mutex);
5316}
8bab8dde
PM
5317
5318static int __init cgroup_disable(char *str)
5319{
30159ec7 5320 struct cgroup_subsys *ss;
8bab8dde 5321 char *token;
30159ec7 5322 int i;
8bab8dde
PM
5323
5324 while ((token = strsep(&str, ",")) != NULL) {
5325 if (!*token)
5326 continue;
be45c900 5327
3ed80a62 5328 for_each_subsys(ss, i) {
8bab8dde
PM
5329 if (!strcmp(token, ss->name)) {
5330 ss->disabled = 1;
5331 printk(KERN_INFO "Disabling %s control group"
5332 " subsystem\n", ss->name);
5333 break;
5334 }
5335 }
5336 }
5337 return 1;
5338}
5339__setup("cgroup_disable=", cgroup_disable);
38460b48 5340
a8ddc821
TH
5341static int __init cgroup_set_legacy_files_on_dfl(char *str)
5342{
5343 printk("cgroup: using legacy files on the default hierarchy\n");
5344 cgroup_legacy_files_on_dfl = true;
5345 return 0;
5346}
5347__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5348
b77d7b60 5349/**
ec903c0c 5350 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5351 * @dentry: directory dentry of interest
5352 * @ss: subsystem of interest
b77d7b60 5353 *
5a17f543
TH
5354 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5355 * to get the corresponding css and return it. If such css doesn't exist
5356 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5357 */
ec903c0c
TH
5358struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5359 struct cgroup_subsys *ss)
e5d1367f 5360{
2bd59d48
TH
5361 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5362 struct cgroup_subsys_state *css = NULL;
e5d1367f 5363 struct cgroup *cgrp;
e5d1367f 5364
35cf0836 5365 /* is @dentry a cgroup dir? */
2bd59d48
TH
5366 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5367 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5368 return ERR_PTR(-EBADF);
5369
5a17f543
TH
5370 rcu_read_lock();
5371
2bd59d48
TH
5372 /*
5373 * This path doesn't originate from kernfs and @kn could already
5374 * have been or be removed at any point. @kn->priv is RCU
cfc79d5b 5375 * protected for this access. See cgroup_rmdir() for details.
2bd59d48
TH
5376 */
5377 cgrp = rcu_dereference(kn->priv);
5378 if (cgrp)
5379 css = cgroup_css(cgrp, ss);
5a17f543 5380
ec903c0c 5381 if (!css || !css_tryget_online(css))
5a17f543
TH
5382 css = ERR_PTR(-ENOENT);
5383
5384 rcu_read_unlock();
5385 return css;
e5d1367f 5386}
e5d1367f 5387
1cb650b9
LZ
5388/**
5389 * css_from_id - lookup css by id
5390 * @id: the cgroup id
5391 * @ss: cgroup subsys to be looked into
5392 *
5393 * Returns the css if there's valid one with @id, otherwise returns NULL.
5394 * Should be called under rcu_read_lock().
5395 */
5396struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5397{
6fa4918d 5398 WARN_ON_ONCE(!rcu_read_lock_held());
15a4c835 5399 return idr_find(&ss->css_idr, id);
e5d1367f
SE
5400}
5401
fe693435 5402#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5403static struct cgroup_subsys_state *
5404debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5405{
5406 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5407
5408 if (!css)
5409 return ERR_PTR(-ENOMEM);
5410
5411 return css;
5412}
5413
eb95419b 5414static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5415{
eb95419b 5416 kfree(css);
fe693435
PM
5417}
5418
182446d0
TH
5419static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5420 struct cftype *cft)
fe693435 5421{
182446d0 5422 return cgroup_task_count(css->cgroup);
fe693435
PM
5423}
5424
182446d0
TH
5425static u64 current_css_set_read(struct cgroup_subsys_state *css,
5426 struct cftype *cft)
fe693435
PM
5427{
5428 return (u64)(unsigned long)current->cgroups;
5429}
5430
182446d0 5431static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5432 struct cftype *cft)
fe693435
PM
5433{
5434 u64 count;
5435
5436 rcu_read_lock();
a8ad805c 5437 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5438 rcu_read_unlock();
5439 return count;
5440}
5441
2da8ca82 5442static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5443{
69d0206c 5444 struct cgrp_cset_link *link;
5abb8855 5445 struct css_set *cset;
e61734c5
TH
5446 char *name_buf;
5447
5448 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5449 if (!name_buf)
5450 return -ENOMEM;
7717f7ba 5451
96d365e0 5452 down_read(&css_set_rwsem);
7717f7ba 5453 rcu_read_lock();
5abb8855 5454 cset = rcu_dereference(current->cgroups);
69d0206c 5455 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5456 struct cgroup *c = link->cgrp;
7717f7ba 5457
a2dd4247 5458 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5459 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5460 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5461 }
5462 rcu_read_unlock();
96d365e0 5463 up_read(&css_set_rwsem);
e61734c5 5464 kfree(name_buf);
7717f7ba
PM
5465 return 0;
5466}
5467
5468#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5469static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5470{
2da8ca82 5471 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5472 struct cgrp_cset_link *link;
7717f7ba 5473
96d365e0 5474 down_read(&css_set_rwsem);
182446d0 5475 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5476 struct css_set *cset = link->cset;
7717f7ba
PM
5477 struct task_struct *task;
5478 int count = 0;
c7561128 5479
5abb8855 5480 seq_printf(seq, "css_set %p\n", cset);
c7561128 5481
5abb8855 5482 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5483 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5484 goto overflow;
5485 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5486 }
5487
5488 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5489 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5490 goto overflow;
5491 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5492 }
c7561128
TH
5493 continue;
5494 overflow:
5495 seq_puts(seq, " ...\n");
7717f7ba 5496 }
96d365e0 5497 up_read(&css_set_rwsem);
7717f7ba
PM
5498 return 0;
5499}
5500
182446d0 5501static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5502{
182446d0 5503 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
5504}
5505
5506static struct cftype debug_files[] = {
fe693435
PM
5507 {
5508 .name = "taskcount",
5509 .read_u64 = debug_taskcount_read,
5510 },
5511
5512 {
5513 .name = "current_css_set",
5514 .read_u64 = current_css_set_read,
5515 },
5516
5517 {
5518 .name = "current_css_set_refcount",
5519 .read_u64 = current_css_set_refcount_read,
5520 },
5521
7717f7ba
PM
5522 {
5523 .name = "current_css_set_cg_links",
2da8ca82 5524 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5525 },
5526
5527 {
5528 .name = "cgroup_css_links",
2da8ca82 5529 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5530 },
5531
fe693435
PM
5532 {
5533 .name = "releasable",
5534 .read_u64 = releasable_read,
5535 },
fe693435 5536
4baf6e33
TH
5537 { } /* terminate */
5538};
fe693435 5539
073219e9 5540struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5541 .css_alloc = debug_css_alloc,
5542 .css_free = debug_css_free,
5577964e 5543 .legacy_cftypes = debug_files,
fe693435
PM
5544};
5545#endif /* CONFIG_CGROUP_DEBUG */
This page took 1.787967 seconds and 4 git commands to generate.