]>
Commit | Line | Data |
---|---|---|
8e75f744 AG |
1 | /* Low-level parallel port routines for built-in port on SGI IP32 |
2 | * | |
3 | * Author: Arnaud Giersch <[email protected]> | |
4 | * | |
5 | * Based on parport_pc.c by | |
6 | * Phil Blundell, Tim Waugh, Jose Renau, David Campbell, | |
7 | * Andrea Arcangeli, et al. | |
8 | * | |
9 | * Thanks to Ilya A. Volynets-Evenbakh for his help. | |
10 | * | |
11 | * Copyright (C) 2005, 2006 Arnaud Giersch. | |
12 | * | |
13 | * This program is free software; you can redistribute it and/or modify it | |
14 | * under the terms of the GNU General Public License as published by the Free | |
15 | * Software Foundation; either version 2 of the License, or (at your option) | |
16 | * any later version. | |
17 | * | |
18 | * This program is distributed in the hope that it will be useful, but WITHOUT | |
19 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
20 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
21 | * more details. | |
22 | * | |
23 | * You should have received a copy of the GNU General Public License along | |
24 | * with this program; if not, write to the Free Software Foundation, Inc., 59 | |
25 | * Temple Place - Suite 330, Boston, MA 02111-1307, USA. | |
26 | */ | |
27 | ||
28 | /* Current status: | |
29 | * | |
30 | * Basic SPP and PS2 modes are supported. | |
31 | * Support for parallel port IRQ is present. | |
32 | * Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are | |
33 | * supported. | |
34 | * SPP/ECP FIFO can be driven in PIO or DMA mode. PIO mode can work with | |
35 | * or without interrupt support. | |
36 | * | |
37 | * Hardware ECP mode is not fully implemented (ecp_read_data and | |
38 | * ecp_write_addr are actually missing). | |
39 | * | |
40 | * To do: | |
41 | * | |
42 | * Fully implement ECP mode. | |
43 | * EPP and ECP mode need to be tested. I currently do not own any | |
44 | * peripheral supporting these extended mode, and cannot test them. | |
45 | * If DMA mode works well, decide if support for PIO FIFO modes should be | |
46 | * dropped. | |
47 | * Use the io{read,write} family functions when they become available in | |
48 | * the linux-mips.org tree. Note: the MIPS specific functions readsb() | |
49 | * and writesb() are to be translated by ioread8_rep() and iowrite8_rep() | |
50 | * respectively. | |
51 | */ | |
52 | ||
53 | /* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an | |
54 | * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1]. | |
55 | * This chip supports SPP, bidirectional, EPP and ECP modes. It has a 16 byte | |
56 | * FIFO buffer and supports DMA transfers. | |
57 | * | |
58 | * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html | |
59 | * | |
60 | * Theoretically, we could simply use the parport_pc module. It is however | |
61 | * not so simple. The parport_pc code assumes that the parallel port | |
62 | * registers are port-mapped. On the O2, they are memory-mapped. | |
63 | * Furthermore, each register is replicated on 256 consecutive addresses (as | |
64 | * it is for the built-in serial ports on the same chip). | |
65 | */ | |
66 | ||
67 | /*--- Some configuration defines ---------------------------------------*/ | |
68 | ||
69 | /* DEBUG_PARPORT_IP32 | |
70 | * 0 disable debug | |
71 | * 1 standard level: pr_debug1 is enabled | |
72 | * 2 parport_ip32_dump_state is enabled | |
73 | * >=3 verbose level: pr_debug is enabled | |
74 | */ | |
75 | #if !defined(DEBUG_PARPORT_IP32) | |
76 | # define DEBUG_PARPORT_IP32 0 /* 0 (disabled) for production */ | |
77 | #endif | |
78 | ||
79 | /*----------------------------------------------------------------------*/ | |
80 | ||
81 | /* Setup DEBUG macros. This is done before any includes, just in case we | |
82 | * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3. | |
83 | */ | |
84 | #if DEBUG_PARPORT_IP32 == 1 | |
85 | # warning DEBUG_PARPORT_IP32 == 1 | |
86 | #elif DEBUG_PARPORT_IP32 == 2 | |
87 | # warning DEBUG_PARPORT_IP32 == 2 | |
88 | #elif DEBUG_PARPORT_IP32 >= 3 | |
89 | # warning DEBUG_PARPORT_IP32 >= 3 | |
90 | # if !defined(DEBUG) | |
91 | # define DEBUG /* enable pr_debug() in kernel.h */ | |
92 | # endif | |
93 | #endif | |
94 | ||
95 | #include <linux/completion.h> | |
96 | #include <linux/delay.h> | |
97 | #include <linux/dma-mapping.h> | |
98 | #include <linux/err.h> | |
99 | #include <linux/init.h> | |
100 | #include <linux/interrupt.h> | |
101 | #include <linux/jiffies.h> | |
102 | #include <linux/kernel.h> | |
103 | #include <linux/module.h> | |
104 | #include <linux/parport.h> | |
105 | #include <linux/sched.h> | |
5a0e3ad6 | 106 | #include <linux/slab.h> |
8e75f744 AG |
107 | #include <linux/spinlock.h> |
108 | #include <linux/stddef.h> | |
109 | #include <linux/types.h> | |
110 | #include <asm/io.h> | |
111 | #include <asm/ip32/ip32_ints.h> | |
112 | #include <asm/ip32/mace.h> | |
113 | ||
114 | /*--- Global variables -------------------------------------------------*/ | |
115 | ||
116 | /* Verbose probing on by default for debugging. */ | |
117 | #if DEBUG_PARPORT_IP32 >= 1 | |
118 | # define DEFAULT_VERBOSE_PROBING 1 | |
119 | #else | |
120 | # define DEFAULT_VERBOSE_PROBING 0 | |
121 | #endif | |
122 | ||
123 | /* Default prefix for printk */ | |
124 | #define PPIP32 "parport_ip32: " | |
125 | ||
126 | /* | |
127 | * These are the module parameters: | |
128 | * @features: bit mask of features to enable/disable | |
129 | * (all enabled by default) | |
130 | * @verbose_probing: log chit-chat during initialization | |
131 | */ | |
132 | #define PARPORT_IP32_ENABLE_IRQ (1U << 0) | |
133 | #define PARPORT_IP32_ENABLE_DMA (1U << 1) | |
134 | #define PARPORT_IP32_ENABLE_SPP (1U << 2) | |
135 | #define PARPORT_IP32_ENABLE_EPP (1U << 3) | |
136 | #define PARPORT_IP32_ENABLE_ECP (1U << 4) | |
137 | static unsigned int features = ~0U; | |
138 | static int verbose_probing = DEFAULT_VERBOSE_PROBING; | |
139 | ||
140 | /* We do not support more than one port. */ | |
141 | static struct parport *this_port = NULL; | |
142 | ||
143 | /* Timing constants for FIFO modes. */ | |
144 | #define FIFO_NFAULT_TIMEOUT 100 /* milliseconds */ | |
145 | #define FIFO_POLLING_INTERVAL 50 /* microseconds */ | |
146 | ||
147 | /*--- I/O register definitions -----------------------------------------*/ | |
148 | ||
149 | /** | |
150 | * struct parport_ip32_regs - virtual addresses of parallel port registers | |
151 | * @data: Data Register | |
152 | * @dsr: Device Status Register | |
153 | * @dcr: Device Control Register | |
154 | * @eppAddr: EPP Address Register | |
155 | * @eppData0: EPP Data Register 0 | |
156 | * @eppData1: EPP Data Register 1 | |
157 | * @eppData2: EPP Data Register 2 | |
158 | * @eppData3: EPP Data Register 3 | |
159 | * @ecpAFifo: ECP Address FIFO | |
160 | * @fifo: General FIFO register. The same address is used for: | |
161 | * - cFifo, the Parallel Port DATA FIFO | |
162 | * - ecpDFifo, the ECP Data FIFO | |
163 | * - tFifo, the ECP Test FIFO | |
164 | * @cnfgA: Configuration Register A | |
165 | * @cnfgB: Configuration Register B | |
166 | * @ecr: Extended Control Register | |
167 | */ | |
168 | struct parport_ip32_regs { | |
169 | void __iomem *data; | |
170 | void __iomem *dsr; | |
171 | void __iomem *dcr; | |
172 | void __iomem *eppAddr; | |
173 | void __iomem *eppData0; | |
174 | void __iomem *eppData1; | |
175 | void __iomem *eppData2; | |
176 | void __iomem *eppData3; | |
177 | void __iomem *ecpAFifo; | |
178 | void __iomem *fifo; | |
179 | void __iomem *cnfgA; | |
180 | void __iomem *cnfgB; | |
181 | void __iomem *ecr; | |
182 | }; | |
183 | ||
184 | /* Device Status Register */ | |
185 | #define DSR_nBUSY (1U << 7) /* PARPORT_STATUS_BUSY */ | |
186 | #define DSR_nACK (1U << 6) /* PARPORT_STATUS_ACK */ | |
187 | #define DSR_PERROR (1U << 5) /* PARPORT_STATUS_PAPEROUT */ | |
188 | #define DSR_SELECT (1U << 4) /* PARPORT_STATUS_SELECT */ | |
189 | #define DSR_nFAULT (1U << 3) /* PARPORT_STATUS_ERROR */ | |
190 | #define DSR_nPRINT (1U << 2) /* specific to TL16PIR552 */ | |
191 | /* #define DSR_reserved (1U << 1) */ | |
192 | #define DSR_TIMEOUT (1U << 0) /* EPP timeout */ | |
193 | ||
194 | /* Device Control Register */ | |
195 | /* #define DCR_reserved (1U << 7) | (1U << 6) */ | |
196 | #define DCR_DIR (1U << 5) /* direction */ | |
197 | #define DCR_IRQ (1U << 4) /* interrupt on nAck */ | |
198 | #define DCR_SELECT (1U << 3) /* PARPORT_CONTROL_SELECT */ | |
199 | #define DCR_nINIT (1U << 2) /* PARPORT_CONTROL_INIT */ | |
200 | #define DCR_AUTOFD (1U << 1) /* PARPORT_CONTROL_AUTOFD */ | |
201 | #define DCR_STROBE (1U << 0) /* PARPORT_CONTROL_STROBE */ | |
202 | ||
203 | /* ECP Configuration Register A */ | |
204 | #define CNFGA_IRQ (1U << 7) | |
205 | #define CNFGA_ID_MASK ((1U << 6) | (1U << 5) | (1U << 4)) | |
206 | #define CNFGA_ID_SHIFT 4 | |
207 | #define CNFGA_ID_16 (00U << CNFGA_ID_SHIFT) | |
208 | #define CNFGA_ID_8 (01U << CNFGA_ID_SHIFT) | |
209 | #define CNFGA_ID_32 (02U << CNFGA_ID_SHIFT) | |
210 | /* #define CNFGA_reserved (1U << 3) */ | |
211 | #define CNFGA_nBYTEINTRANS (1U << 2) | |
212 | #define CNFGA_PWORDLEFT ((1U << 1) | (1U << 0)) | |
213 | ||
214 | /* ECP Configuration Register B */ | |
215 | #define CNFGB_COMPRESS (1U << 7) | |
216 | #define CNFGB_INTRVAL (1U << 6) | |
217 | #define CNFGB_IRQ_MASK ((1U << 5) | (1U << 4) | (1U << 3)) | |
218 | #define CNFGB_IRQ_SHIFT 3 | |
219 | #define CNFGB_DMA_MASK ((1U << 2) | (1U << 1) | (1U << 0)) | |
220 | #define CNFGB_DMA_SHIFT 0 | |
221 | ||
222 | /* Extended Control Register */ | |
223 | #define ECR_MODE_MASK ((1U << 7) | (1U << 6) | (1U << 5)) | |
224 | #define ECR_MODE_SHIFT 5 | |
225 | #define ECR_MODE_SPP (00U << ECR_MODE_SHIFT) | |
226 | #define ECR_MODE_PS2 (01U << ECR_MODE_SHIFT) | |
227 | #define ECR_MODE_PPF (02U << ECR_MODE_SHIFT) | |
228 | #define ECR_MODE_ECP (03U << ECR_MODE_SHIFT) | |
229 | #define ECR_MODE_EPP (04U << ECR_MODE_SHIFT) | |
230 | /* #define ECR_MODE_reserved (05U << ECR_MODE_SHIFT) */ | |
231 | #define ECR_MODE_TST (06U << ECR_MODE_SHIFT) | |
232 | #define ECR_MODE_CFG (07U << ECR_MODE_SHIFT) | |
233 | #define ECR_nERRINTR (1U << 4) | |
234 | #define ECR_DMAEN (1U << 3) | |
235 | #define ECR_SERVINTR (1U << 2) | |
236 | #define ECR_F_FULL (1U << 1) | |
237 | #define ECR_F_EMPTY (1U << 0) | |
238 | ||
239 | /*--- Private data -----------------------------------------------------*/ | |
240 | ||
241 | /** | |
242 | * enum parport_ip32_irq_mode - operation mode of interrupt handler | |
243 | * @PARPORT_IP32_IRQ_FWD: forward interrupt to the upper parport layer | |
244 | * @PARPORT_IP32_IRQ_HERE: interrupt is handled locally | |
245 | */ | |
246 | enum parport_ip32_irq_mode { PARPORT_IP32_IRQ_FWD, PARPORT_IP32_IRQ_HERE }; | |
247 | ||
248 | /** | |
249 | * struct parport_ip32_private - private stuff for &struct parport | |
250 | * @regs: register addresses | |
251 | * @dcr_cache: cached contents of DCR | |
252 | * @dcr_writable: bit mask of writable DCR bits | |
253 | * @pword: number of bytes per PWord | |
254 | * @fifo_depth: number of PWords that FIFO will hold | |
255 | * @readIntrThreshold: minimum number of PWords we can read | |
256 | * if we get an interrupt | |
257 | * @writeIntrThreshold: minimum number of PWords we can write | |
258 | * if we get an interrupt | |
259 | * @irq_mode: operation mode of interrupt handler for this port | |
260 | * @irq_complete: mutex used to wait for an interrupt to occur | |
261 | */ | |
262 | struct parport_ip32_private { | |
263 | struct parport_ip32_regs regs; | |
264 | unsigned int dcr_cache; | |
265 | unsigned int dcr_writable; | |
266 | unsigned int pword; | |
267 | unsigned int fifo_depth; | |
268 | unsigned int readIntrThreshold; | |
269 | unsigned int writeIntrThreshold; | |
270 | enum parport_ip32_irq_mode irq_mode; | |
271 | struct completion irq_complete; | |
272 | }; | |
273 | ||
274 | /*--- Debug code -------------------------------------------------------*/ | |
275 | ||
276 | /* | |
277 | * pr_debug1 - print debug messages | |
278 | * | |
279 | * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1 | |
280 | */ | |
281 | #if DEBUG_PARPORT_IP32 >= 1 | |
282 | # define pr_debug1(...) printk(KERN_DEBUG __VA_ARGS__) | |
283 | #else /* DEBUG_PARPORT_IP32 < 1 */ | |
284 | # define pr_debug1(...) do { } while (0) | |
285 | #endif | |
286 | ||
287 | /* | |
288 | * pr_trace, pr_trace1 - trace function calls | |
289 | * @p: pointer to &struct parport | |
290 | * @fmt: printk format string | |
291 | * @...: parameters for format string | |
292 | * | |
293 | * Macros used to trace function calls. The given string is formatted after | |
294 | * function name. pr_trace() uses pr_debug(), and pr_trace1() uses | |
295 | * pr_debug1(). __pr_trace() is the low-level macro and is not to be used | |
296 | * directly. | |
297 | */ | |
298 | #define __pr_trace(pr, p, fmt, ...) \ | |
299 | pr("%s: %s" fmt "\n", \ | |
300 | ({ const struct parport *__p = (p); \ | |
301 | __p ? __p->name : "parport_ip32"; }), \ | |
302 | __func__ , ##__VA_ARGS__) | |
303 | #define pr_trace(p, fmt, ...) __pr_trace(pr_debug, p, fmt , ##__VA_ARGS__) | |
304 | #define pr_trace1(p, fmt, ...) __pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__) | |
305 | ||
306 | /* | |
307 | * __pr_probe, pr_probe - print message if @verbose_probing is true | |
308 | * @p: pointer to &struct parport | |
309 | * @fmt: printk format string | |
310 | * @...: parameters for format string | |
311 | * | |
312 | * For new lines, use pr_probe(). Use __pr_probe() for continued lines. | |
313 | */ | |
314 | #define __pr_probe(...) \ | |
315 | do { if (verbose_probing) printk(__VA_ARGS__); } while (0) | |
316 | #define pr_probe(p, fmt, ...) \ | |
317 | __pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__) | |
318 | ||
319 | /* | |
320 | * parport_ip32_dump_state - print register status of parport | |
321 | * @p: pointer to &struct parport | |
322 | * @str: string to add in message | |
323 | * @show_ecp_config: shall we dump ECP configuration registers too? | |
324 | * | |
325 | * This function is only here for debugging purpose, and should be used with | |
326 | * care. Reading the parallel port registers may have undesired side effects. | |
327 | * Especially if @show_ecp_config is true, the parallel port is resetted. | |
328 | * This function is only defined if %DEBUG_PARPORT_IP32 >= 2. | |
329 | */ | |
330 | #if DEBUG_PARPORT_IP32 >= 2 | |
331 | static void parport_ip32_dump_state(struct parport *p, char *str, | |
332 | unsigned int show_ecp_config) | |
333 | { | |
334 | struct parport_ip32_private * const priv = p->physport->private_data; | |
335 | unsigned int i; | |
336 | ||
337 | printk(KERN_DEBUG PPIP32 "%s: state (%s):\n", p->name, str); | |
338 | { | |
339 | static const char ecr_modes[8][4] = {"SPP", "PS2", "PPF", | |
340 | "ECP", "EPP", "???", | |
341 | "TST", "CFG"}; | |
342 | unsigned int ecr = readb(priv->regs.ecr); | |
343 | printk(KERN_DEBUG PPIP32 " ecr=0x%02x", ecr); | |
344 | printk(" %s", | |
345 | ecr_modes[(ecr & ECR_MODE_MASK) >> ECR_MODE_SHIFT]); | |
346 | if (ecr & ECR_nERRINTR) | |
347 | printk(",nErrIntrEn"); | |
348 | if (ecr & ECR_DMAEN) | |
349 | printk(",dmaEn"); | |
350 | if (ecr & ECR_SERVINTR) | |
351 | printk(",serviceIntr"); | |
352 | if (ecr & ECR_F_FULL) | |
353 | printk(",f_full"); | |
354 | if (ecr & ECR_F_EMPTY) | |
355 | printk(",f_empty"); | |
356 | printk("\n"); | |
357 | } | |
358 | if (show_ecp_config) { | |
359 | unsigned int oecr, cnfgA, cnfgB; | |
360 | oecr = readb(priv->regs.ecr); | |
361 | writeb(ECR_MODE_PS2, priv->regs.ecr); | |
362 | writeb(ECR_MODE_CFG, priv->regs.ecr); | |
363 | cnfgA = readb(priv->regs.cnfgA); | |
364 | cnfgB = readb(priv->regs.cnfgB); | |
365 | writeb(ECR_MODE_PS2, priv->regs.ecr); | |
366 | writeb(oecr, priv->regs.ecr); | |
367 | printk(KERN_DEBUG PPIP32 " cnfgA=0x%02x", cnfgA); | |
368 | printk(" ISA-%s", (cnfgA & CNFGA_IRQ) ? "Level" : "Pulses"); | |
369 | switch (cnfgA & CNFGA_ID_MASK) { | |
370 | case CNFGA_ID_8: | |
371 | printk(",8 bits"); | |
372 | break; | |
373 | case CNFGA_ID_16: | |
374 | printk(",16 bits"); | |
375 | break; | |
376 | case CNFGA_ID_32: | |
377 | printk(",32 bits"); | |
378 | break; | |
379 | default: | |
380 | printk(",unknown ID"); | |
381 | break; | |
382 | } | |
383 | if (!(cnfgA & CNFGA_nBYTEINTRANS)) | |
384 | printk(",ByteInTrans"); | |
385 | if ((cnfgA & CNFGA_ID_MASK) != CNFGA_ID_8) | |
386 | printk(",%d byte%s left", cnfgA & CNFGA_PWORDLEFT, | |
387 | ((cnfgA & CNFGA_PWORDLEFT) > 1) ? "s" : ""); | |
388 | printk("\n"); | |
389 | printk(KERN_DEBUG PPIP32 " cnfgB=0x%02x", cnfgB); | |
390 | printk(" irq=%u,dma=%u", | |
391 | (cnfgB & CNFGB_IRQ_MASK) >> CNFGB_IRQ_SHIFT, | |
392 | (cnfgB & CNFGB_DMA_MASK) >> CNFGB_DMA_SHIFT); | |
393 | printk(",intrValue=%d", !!(cnfgB & CNFGB_INTRVAL)); | |
394 | if (cnfgB & CNFGB_COMPRESS) | |
395 | printk(",compress"); | |
396 | printk("\n"); | |
397 | } | |
398 | for (i = 0; i < 2; i++) { | |
399 | unsigned int dcr = i ? priv->dcr_cache : readb(priv->regs.dcr); | |
400 | printk(KERN_DEBUG PPIP32 " dcr(%s)=0x%02x", | |
401 | i ? "soft" : "hard", dcr); | |
402 | printk(" %s", (dcr & DCR_DIR) ? "rev" : "fwd"); | |
403 | if (dcr & DCR_IRQ) | |
404 | printk(",ackIntEn"); | |
405 | if (!(dcr & DCR_SELECT)) | |
406 | printk(",nSelectIn"); | |
407 | if (dcr & DCR_nINIT) | |
408 | printk(",nInit"); | |
409 | if (!(dcr & DCR_AUTOFD)) | |
410 | printk(",nAutoFD"); | |
411 | if (!(dcr & DCR_STROBE)) | |
412 | printk(",nStrobe"); | |
413 | printk("\n"); | |
414 | } | |
415 | #define sep (f++ ? ',' : ' ') | |
416 | { | |
417 | unsigned int f = 0; | |
418 | unsigned int dsr = readb(priv->regs.dsr); | |
419 | printk(KERN_DEBUG PPIP32 " dsr=0x%02x", dsr); | |
420 | if (!(dsr & DSR_nBUSY)) | |
421 | printk("%cBusy", sep); | |
422 | if (dsr & DSR_nACK) | |
423 | printk("%cnAck", sep); | |
424 | if (dsr & DSR_PERROR) | |
425 | printk("%cPError", sep); | |
426 | if (dsr & DSR_SELECT) | |
427 | printk("%cSelect", sep); | |
428 | if (dsr & DSR_nFAULT) | |
429 | printk("%cnFault", sep); | |
430 | if (!(dsr & DSR_nPRINT)) | |
431 | printk("%c(Print)", sep); | |
432 | if (dsr & DSR_TIMEOUT) | |
433 | printk("%cTimeout", sep); | |
434 | printk("\n"); | |
435 | } | |
436 | #undef sep | |
437 | } | |
438 | #else /* DEBUG_PARPORT_IP32 < 2 */ | |
439 | #define parport_ip32_dump_state(...) do { } while (0) | |
440 | #endif | |
441 | ||
442 | /* | |
443 | * CHECK_EXTRA_BITS - track and log extra bits | |
444 | * @p: pointer to &struct parport | |
445 | * @b: byte to inspect | |
446 | * @m: bit mask of authorized bits | |
447 | * | |
448 | * This is used to track and log extra bits that should not be there in | |
449 | * parport_ip32_write_control() and parport_ip32_frob_control(). It is only | |
450 | * defined if %DEBUG_PARPORT_IP32 >= 1. | |
451 | */ | |
452 | #if DEBUG_PARPORT_IP32 >= 1 | |
453 | #define CHECK_EXTRA_BITS(p, b, m) \ | |
454 | do { \ | |
455 | unsigned int __b = (b), __m = (m); \ | |
456 | if (__b & ~__m) \ | |
457 | pr_debug1(PPIP32 "%s: extra bits in %s(%s): " \ | |
458 | "0x%02x/0x%02x\n", \ | |
459 | (p)->name, __func__, #b, __b, __m); \ | |
460 | } while (0) | |
461 | #else /* DEBUG_PARPORT_IP32 < 1 */ | |
462 | #define CHECK_EXTRA_BITS(...) do { } while (0) | |
463 | #endif | |
464 | ||
465 | /*--- IP32 parallel port DMA operations --------------------------------*/ | |
466 | ||
467 | /** | |
468 | * struct parport_ip32_dma_data - private data needed for DMA operation | |
469 | * @dir: DMA direction (from or to device) | |
470 | * @buf: buffer physical address | |
471 | * @len: buffer length | |
472 | * @next: address of next bytes to DMA transfer | |
473 | * @left: number of bytes remaining | |
474 | * @ctx: next context to write (0: context_a; 1: context_b) | |
475 | * @irq_on: are the DMA IRQs currently enabled? | |
476 | * @lock: spinlock to protect access to the structure | |
477 | */ | |
478 | struct parport_ip32_dma_data { | |
479 | enum dma_data_direction dir; | |
480 | dma_addr_t buf; | |
481 | dma_addr_t next; | |
482 | size_t len; | |
483 | size_t left; | |
484 | unsigned int ctx; | |
485 | unsigned int irq_on; | |
486 | spinlock_t lock; | |
487 | }; | |
488 | static struct parport_ip32_dma_data parport_ip32_dma; | |
489 | ||
490 | /** | |
491 | * parport_ip32_dma_setup_context - setup next DMA context | |
492 | * @limit: maximum data size for the context | |
493 | * | |
494 | * The alignment constraints must be verified in caller function, and the | |
495 | * parameter @limit must be set accordingly. | |
496 | */ | |
497 | static void parport_ip32_dma_setup_context(unsigned int limit) | |
498 | { | |
499 | unsigned long flags; | |
500 | ||
501 | spin_lock_irqsave(&parport_ip32_dma.lock, flags); | |
502 | if (parport_ip32_dma.left > 0) { | |
503 | /* Note: ctxreg is "volatile" here only because | |
504 | * mace->perif.ctrl.parport.context_a and context_b are | |
505 | * "volatile". */ | |
506 | volatile u64 __iomem *ctxreg = (parport_ip32_dma.ctx == 0) ? | |
507 | &mace->perif.ctrl.parport.context_a : | |
508 | &mace->perif.ctrl.parport.context_b; | |
509 | u64 count; | |
510 | u64 ctxval; | |
511 | if (parport_ip32_dma.left <= limit) { | |
512 | count = parport_ip32_dma.left; | |
513 | ctxval = MACEPAR_CONTEXT_LASTFLAG; | |
514 | } else { | |
515 | count = limit; | |
516 | ctxval = 0; | |
517 | } | |
518 | ||
519 | pr_trace(NULL, | |
520 | "(%u): 0x%04x:0x%04x, %u -> %u%s", | |
521 | limit, | |
522 | (unsigned int)parport_ip32_dma.buf, | |
523 | (unsigned int)parport_ip32_dma.next, | |
524 | (unsigned int)count, | |
525 | parport_ip32_dma.ctx, ctxval ? "*" : ""); | |
526 | ||
527 | ctxval |= parport_ip32_dma.next & | |
528 | MACEPAR_CONTEXT_BASEADDR_MASK; | |
529 | ctxval |= ((count - 1) << MACEPAR_CONTEXT_DATALEN_SHIFT) & | |
530 | MACEPAR_CONTEXT_DATALEN_MASK; | |
531 | writeq(ctxval, ctxreg); | |
532 | parport_ip32_dma.next += count; | |
533 | parport_ip32_dma.left -= count; | |
534 | parport_ip32_dma.ctx ^= 1U; | |
535 | } | |
536 | /* If there is nothing more to send, disable IRQs to avoid to | |
537 | * face an IRQ storm which can lock the machine. Disable them | |
538 | * only once. */ | |
539 | if (parport_ip32_dma.left == 0 && parport_ip32_dma.irq_on) { | |
540 | pr_debug(PPIP32 "IRQ off (ctx)\n"); | |
541 | disable_irq_nosync(MACEISA_PAR_CTXA_IRQ); | |
542 | disable_irq_nosync(MACEISA_PAR_CTXB_IRQ); | |
543 | parport_ip32_dma.irq_on = 0; | |
544 | } | |
545 | spin_unlock_irqrestore(&parport_ip32_dma.lock, flags); | |
546 | } | |
547 | ||
548 | /** | |
549 | * parport_ip32_dma_interrupt - DMA interrupt handler | |
550 | * @irq: interrupt number | |
551 | * @dev_id: unused | |
8e75f744 | 552 | */ |
7d12e780 | 553 | static irqreturn_t parport_ip32_dma_interrupt(int irq, void *dev_id) |
8e75f744 AG |
554 | { |
555 | if (parport_ip32_dma.left) | |
556 | pr_trace(NULL, "(%d): ctx=%d", irq, parport_ip32_dma.ctx); | |
557 | parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND); | |
558 | return IRQ_HANDLED; | |
559 | } | |
560 | ||
561 | #if DEBUG_PARPORT_IP32 | |
7d12e780 | 562 | static irqreturn_t parport_ip32_merr_interrupt(int irq, void *dev_id) |
8e75f744 AG |
563 | { |
564 | pr_trace1(NULL, "(%d)", irq); | |
565 | return IRQ_HANDLED; | |
566 | } | |
567 | #endif | |
568 | ||
569 | /** | |
570 | * parport_ip32_dma_start - begins a DMA transfer | |
571 | * @dir: DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE | |
572 | * @addr: pointer to data buffer | |
573 | * @count: buffer size | |
574 | * | |
575 | * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be | |
576 | * correctly balanced. | |
577 | */ | |
578 | static int parport_ip32_dma_start(enum dma_data_direction dir, | |
579 | void *addr, size_t count) | |
580 | { | |
581 | unsigned int limit; | |
582 | u64 ctrl; | |
583 | ||
584 | pr_trace(NULL, "(%d, %lu)", dir, (unsigned long)count); | |
585 | ||
586 | /* FIXME - add support for DMA_FROM_DEVICE. In this case, buffer must | |
587 | * be 64 bytes aligned. */ | |
588 | BUG_ON(dir != DMA_TO_DEVICE); | |
589 | ||
590 | /* Reset DMA controller */ | |
591 | ctrl = MACEPAR_CTLSTAT_RESET; | |
592 | writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); | |
593 | ||
594 | /* DMA IRQs should normally be enabled */ | |
595 | if (!parport_ip32_dma.irq_on) { | |
596 | WARN_ON(1); | |
597 | enable_irq(MACEISA_PAR_CTXA_IRQ); | |
598 | enable_irq(MACEISA_PAR_CTXB_IRQ); | |
599 | parport_ip32_dma.irq_on = 1; | |
600 | } | |
601 | ||
602 | /* Prepare DMA pointers */ | |
603 | parport_ip32_dma.dir = dir; | |
604 | parport_ip32_dma.buf = dma_map_single(NULL, addr, count, dir); | |
605 | parport_ip32_dma.len = count; | |
606 | parport_ip32_dma.next = parport_ip32_dma.buf; | |
607 | parport_ip32_dma.left = parport_ip32_dma.len; | |
608 | parport_ip32_dma.ctx = 0; | |
609 | ||
610 | /* Setup DMA direction and first two contexts */ | |
611 | ctrl = (dir == DMA_TO_DEVICE) ? 0 : MACEPAR_CTLSTAT_DIRECTION; | |
612 | writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); | |
613 | /* Single transfer should not cross a 4K page boundary */ | |
614 | limit = MACEPAR_CONTEXT_DATA_BOUND - | |
615 | (parport_ip32_dma.next & (MACEPAR_CONTEXT_DATA_BOUND - 1)); | |
616 | parport_ip32_dma_setup_context(limit); | |
617 | parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND); | |
618 | ||
619 | /* Real start of DMA transfer */ | |
620 | ctrl |= MACEPAR_CTLSTAT_ENABLE; | |
621 | writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); | |
622 | ||
623 | return 0; | |
624 | } | |
625 | ||
626 | /** | |
627 | * parport_ip32_dma_stop - ends a running DMA transfer | |
628 | * | |
629 | * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be | |
630 | * correctly balanced. | |
631 | */ | |
632 | static void parport_ip32_dma_stop(void) | |
633 | { | |
634 | u64 ctx_a; | |
635 | u64 ctx_b; | |
636 | u64 ctrl; | |
637 | u64 diag; | |
638 | size_t res[2]; /* {[0] = res_a, [1] = res_b} */ | |
639 | ||
640 | pr_trace(NULL, "()"); | |
641 | ||
642 | /* Disable IRQs */ | |
643 | spin_lock_irq(&parport_ip32_dma.lock); | |
644 | if (parport_ip32_dma.irq_on) { | |
645 | pr_debug(PPIP32 "IRQ off (stop)\n"); | |
646 | disable_irq_nosync(MACEISA_PAR_CTXA_IRQ); | |
647 | disable_irq_nosync(MACEISA_PAR_CTXB_IRQ); | |
648 | parport_ip32_dma.irq_on = 0; | |
649 | } | |
650 | spin_unlock_irq(&parport_ip32_dma.lock); | |
651 | /* Force IRQ synchronization, even if the IRQs were disabled | |
652 | * elsewhere. */ | |
653 | synchronize_irq(MACEISA_PAR_CTXA_IRQ); | |
654 | synchronize_irq(MACEISA_PAR_CTXB_IRQ); | |
655 | ||
656 | /* Stop DMA transfer */ | |
657 | ctrl = readq(&mace->perif.ctrl.parport.cntlstat); | |
658 | ctrl &= ~MACEPAR_CTLSTAT_ENABLE; | |
659 | writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); | |
660 | ||
661 | /* Adjust residue (parport_ip32_dma.left) */ | |
662 | ctx_a = readq(&mace->perif.ctrl.parport.context_a); | |
663 | ctx_b = readq(&mace->perif.ctrl.parport.context_b); | |
664 | ctrl = readq(&mace->perif.ctrl.parport.cntlstat); | |
665 | diag = readq(&mace->perif.ctrl.parport.diagnostic); | |
666 | res[0] = (ctrl & MACEPAR_CTLSTAT_CTXA_VALID) ? | |
667 | 1 + ((ctx_a & MACEPAR_CONTEXT_DATALEN_MASK) >> | |
668 | MACEPAR_CONTEXT_DATALEN_SHIFT) : | |
669 | 0; | |
670 | res[1] = (ctrl & MACEPAR_CTLSTAT_CTXB_VALID) ? | |
671 | 1 + ((ctx_b & MACEPAR_CONTEXT_DATALEN_MASK) >> | |
672 | MACEPAR_CONTEXT_DATALEN_SHIFT) : | |
673 | 0; | |
674 | if (diag & MACEPAR_DIAG_DMACTIVE) | |
675 | res[(diag & MACEPAR_DIAG_CTXINUSE) != 0] = | |
676 | 1 + ((diag & MACEPAR_DIAG_CTRMASK) >> | |
677 | MACEPAR_DIAG_CTRSHIFT); | |
678 | parport_ip32_dma.left += res[0] + res[1]; | |
679 | ||
680 | /* Reset DMA controller, and re-enable IRQs */ | |
681 | ctrl = MACEPAR_CTLSTAT_RESET; | |
682 | writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); | |
683 | pr_debug(PPIP32 "IRQ on (stop)\n"); | |
684 | enable_irq(MACEISA_PAR_CTXA_IRQ); | |
685 | enable_irq(MACEISA_PAR_CTXB_IRQ); | |
686 | parport_ip32_dma.irq_on = 1; | |
687 | ||
688 | dma_unmap_single(NULL, parport_ip32_dma.buf, parport_ip32_dma.len, | |
689 | parport_ip32_dma.dir); | |
690 | } | |
691 | ||
692 | /** | |
693 | * parport_ip32_dma_get_residue - get residue from last DMA transfer | |
694 | * | |
695 | * Returns the number of bytes remaining from last DMA transfer. | |
696 | */ | |
697 | static inline size_t parport_ip32_dma_get_residue(void) | |
698 | { | |
699 | return parport_ip32_dma.left; | |
700 | } | |
701 | ||
702 | /** | |
703 | * parport_ip32_dma_register - initialize DMA engine | |
704 | * | |
705 | * Returns zero for success. | |
706 | */ | |
707 | static int parport_ip32_dma_register(void) | |
708 | { | |
709 | int err; | |
710 | ||
711 | spin_lock_init(&parport_ip32_dma.lock); | |
712 | parport_ip32_dma.irq_on = 1; | |
713 | ||
714 | /* Reset DMA controller */ | |
715 | writeq(MACEPAR_CTLSTAT_RESET, &mace->perif.ctrl.parport.cntlstat); | |
716 | ||
717 | /* Request IRQs */ | |
718 | err = request_irq(MACEISA_PAR_CTXA_IRQ, parport_ip32_dma_interrupt, | |
719 | 0, "parport_ip32", NULL); | |
720 | if (err) | |
721 | goto fail_a; | |
722 | err = request_irq(MACEISA_PAR_CTXB_IRQ, parport_ip32_dma_interrupt, | |
723 | 0, "parport_ip32", NULL); | |
724 | if (err) | |
725 | goto fail_b; | |
726 | #if DEBUG_PARPORT_IP32 | |
727 | /* FIXME - what is this IRQ for? */ | |
728 | err = request_irq(MACEISA_PAR_MERR_IRQ, parport_ip32_merr_interrupt, | |
729 | 0, "parport_ip32", NULL); | |
730 | if (err) | |
731 | goto fail_merr; | |
732 | #endif | |
733 | return 0; | |
734 | ||
735 | #if DEBUG_PARPORT_IP32 | |
736 | fail_merr: | |
737 | free_irq(MACEISA_PAR_CTXB_IRQ, NULL); | |
738 | #endif | |
739 | fail_b: | |
740 | free_irq(MACEISA_PAR_CTXA_IRQ, NULL); | |
741 | fail_a: | |
742 | return err; | |
743 | } | |
744 | ||
745 | /** | |
746 | * parport_ip32_dma_unregister - release and free resources for DMA engine | |
747 | */ | |
748 | static void parport_ip32_dma_unregister(void) | |
749 | { | |
750 | #if DEBUG_PARPORT_IP32 | |
751 | free_irq(MACEISA_PAR_MERR_IRQ, NULL); | |
752 | #endif | |
753 | free_irq(MACEISA_PAR_CTXB_IRQ, NULL); | |
754 | free_irq(MACEISA_PAR_CTXA_IRQ, NULL); | |
755 | } | |
756 | ||
757 | /*--- Interrupt handlers and associates --------------------------------*/ | |
758 | ||
759 | /** | |
760 | * parport_ip32_wakeup - wakes up code waiting for an interrupt | |
761 | * @p: pointer to &struct parport | |
762 | */ | |
763 | static inline void parport_ip32_wakeup(struct parport *p) | |
764 | { | |
765 | struct parport_ip32_private * const priv = p->physport->private_data; | |
766 | complete(&priv->irq_complete); | |
767 | } | |
768 | ||
769 | /** | |
770 | * parport_ip32_interrupt - interrupt handler | |
771 | * @irq: interrupt number | |
772 | * @dev_id: pointer to &struct parport | |
8e75f744 AG |
773 | * |
774 | * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is | |
775 | * %PARPORT_IP32_IRQ_FWD. | |
776 | */ | |
7d12e780 | 777 | static irqreturn_t parport_ip32_interrupt(int irq, void *dev_id) |
8e75f744 AG |
778 | { |
779 | struct parport * const p = dev_id; | |
780 | struct parport_ip32_private * const priv = p->physport->private_data; | |
781 | enum parport_ip32_irq_mode irq_mode = priv->irq_mode; | |
3f2e40df | 782 | |
8e75f744 AG |
783 | switch (irq_mode) { |
784 | case PARPORT_IP32_IRQ_FWD: | |
3f2e40df JG |
785 | return parport_irq_handler(irq, dev_id); |
786 | ||
8e75f744 AG |
787 | case PARPORT_IP32_IRQ_HERE: |
788 | parport_ip32_wakeup(p); | |
789 | break; | |
790 | } | |
3f2e40df | 791 | |
8e75f744 AG |
792 | return IRQ_HANDLED; |
793 | } | |
794 | ||
795 | /*--- Some utility function to manipulate ECR register -----------------*/ | |
796 | ||
797 | /** | |
798 | * parport_ip32_read_econtrol - read contents of the ECR register | |
799 | * @p: pointer to &struct parport | |
800 | */ | |
801 | static inline unsigned int parport_ip32_read_econtrol(struct parport *p) | |
802 | { | |
803 | struct parport_ip32_private * const priv = p->physport->private_data; | |
804 | return readb(priv->regs.ecr); | |
805 | } | |
806 | ||
807 | /** | |
808 | * parport_ip32_write_econtrol - write new contents to the ECR register | |
809 | * @p: pointer to &struct parport | |
810 | * @c: new value to write | |
811 | */ | |
812 | static inline void parport_ip32_write_econtrol(struct parport *p, | |
813 | unsigned int c) | |
814 | { | |
815 | struct parport_ip32_private * const priv = p->physport->private_data; | |
816 | writeb(c, priv->regs.ecr); | |
817 | } | |
818 | ||
819 | /** | |
820 | * parport_ip32_frob_econtrol - change bits from the ECR register | |
821 | * @p: pointer to &struct parport | |
822 | * @mask: bit mask of bits to change | |
823 | * @val: new value for changed bits | |
824 | * | |
825 | * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits | |
826 | * in @val, and write the result to the ECR. | |
827 | */ | |
828 | static inline void parport_ip32_frob_econtrol(struct parport *p, | |
829 | unsigned int mask, | |
830 | unsigned int val) | |
831 | { | |
832 | unsigned int c; | |
833 | c = (parport_ip32_read_econtrol(p) & ~mask) ^ val; | |
834 | parport_ip32_write_econtrol(p, c); | |
835 | } | |
836 | ||
837 | /** | |
838 | * parport_ip32_set_mode - change mode of ECP port | |
839 | * @p: pointer to &struct parport | |
840 | * @mode: new mode to write in ECR | |
841 | * | |
842 | * ECR is reset in a sane state (interrupts and DMA disabled), and placed in | |
843 | * mode @mode. Go through PS2 mode if needed. | |
844 | */ | |
845 | static void parport_ip32_set_mode(struct parport *p, unsigned int mode) | |
846 | { | |
847 | unsigned int omode; | |
848 | ||
849 | mode &= ECR_MODE_MASK; | |
850 | omode = parport_ip32_read_econtrol(p) & ECR_MODE_MASK; | |
851 | ||
852 | if (!(mode == ECR_MODE_SPP || mode == ECR_MODE_PS2 | |
853 | || omode == ECR_MODE_SPP || omode == ECR_MODE_PS2)) { | |
854 | /* We have to go through PS2 mode */ | |
855 | unsigned int ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR; | |
856 | parport_ip32_write_econtrol(p, ecr); | |
857 | } | |
858 | parport_ip32_write_econtrol(p, mode | ECR_nERRINTR | ECR_SERVINTR); | |
859 | } | |
860 | ||
861 | /*--- Basic functions needed for parport -------------------------------*/ | |
862 | ||
863 | /** | |
864 | * parport_ip32_read_data - return current contents of the DATA register | |
865 | * @p: pointer to &struct parport | |
866 | */ | |
867 | static inline unsigned char parport_ip32_read_data(struct parport *p) | |
868 | { | |
869 | struct parport_ip32_private * const priv = p->physport->private_data; | |
870 | return readb(priv->regs.data); | |
871 | } | |
872 | ||
873 | /** | |
874 | * parport_ip32_write_data - set new contents for the DATA register | |
875 | * @p: pointer to &struct parport | |
876 | * @d: new value to write | |
877 | */ | |
878 | static inline void parport_ip32_write_data(struct parport *p, unsigned char d) | |
879 | { | |
880 | struct parport_ip32_private * const priv = p->physport->private_data; | |
881 | writeb(d, priv->regs.data); | |
882 | } | |
883 | ||
884 | /** | |
885 | * parport_ip32_read_status - return current contents of the DSR register | |
886 | * @p: pointer to &struct parport | |
887 | */ | |
888 | static inline unsigned char parport_ip32_read_status(struct parport *p) | |
889 | { | |
890 | struct parport_ip32_private * const priv = p->physport->private_data; | |
891 | return readb(priv->regs.dsr); | |
892 | } | |
893 | ||
894 | /** | |
895 | * __parport_ip32_read_control - return cached contents of the DCR register | |
896 | * @p: pointer to &struct parport | |
897 | */ | |
898 | static inline unsigned int __parport_ip32_read_control(struct parport *p) | |
899 | { | |
900 | struct parport_ip32_private * const priv = p->physport->private_data; | |
901 | return priv->dcr_cache; /* use soft copy */ | |
902 | } | |
903 | ||
904 | /** | |
905 | * __parport_ip32_write_control - set new contents for the DCR register | |
906 | * @p: pointer to &struct parport | |
907 | * @c: new value to write | |
908 | */ | |
909 | static inline void __parport_ip32_write_control(struct parport *p, | |
910 | unsigned int c) | |
911 | { | |
912 | struct parport_ip32_private * const priv = p->physport->private_data; | |
913 | CHECK_EXTRA_BITS(p, c, priv->dcr_writable); | |
914 | c &= priv->dcr_writable; /* only writable bits */ | |
915 | writeb(c, priv->regs.dcr); | |
916 | priv->dcr_cache = c; /* update soft copy */ | |
917 | } | |
918 | ||
919 | /** | |
920 | * __parport_ip32_frob_control - change bits from the DCR register | |
921 | * @p: pointer to &struct parport | |
922 | * @mask: bit mask of bits to change | |
923 | * @val: new value for changed bits | |
924 | * | |
925 | * This is equivalent to read from the DCR, mask out the bits in @mask, | |
926 | * exclusive-or with the bits in @val, and write the result to the DCR. | |
927 | * Actually, the cached contents of the DCR is used. | |
928 | */ | |
929 | static inline void __parport_ip32_frob_control(struct parport *p, | |
930 | unsigned int mask, | |
931 | unsigned int val) | |
932 | { | |
933 | unsigned int c; | |
934 | c = (__parport_ip32_read_control(p) & ~mask) ^ val; | |
935 | __parport_ip32_write_control(p, c); | |
936 | } | |
937 | ||
938 | /** | |
939 | * parport_ip32_read_control - return cached contents of the DCR register | |
940 | * @p: pointer to &struct parport | |
941 | * | |
942 | * The return value is masked so as to only return the value of %DCR_STROBE, | |
943 | * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT. | |
944 | */ | |
945 | static inline unsigned char parport_ip32_read_control(struct parport *p) | |
946 | { | |
947 | const unsigned int rm = | |
948 | DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT; | |
949 | return __parport_ip32_read_control(p) & rm; | |
950 | } | |
951 | ||
952 | /** | |
953 | * parport_ip32_write_control - set new contents for the DCR register | |
954 | * @p: pointer to &struct parport | |
955 | * @c: new value to write | |
956 | * | |
957 | * The value is masked so as to only change the value of %DCR_STROBE, | |
958 | * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT. | |
959 | */ | |
960 | static inline void parport_ip32_write_control(struct parport *p, | |
961 | unsigned char c) | |
962 | { | |
963 | const unsigned int wm = | |
964 | DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT; | |
965 | CHECK_EXTRA_BITS(p, c, wm); | |
966 | __parport_ip32_frob_control(p, wm, c & wm); | |
967 | } | |
968 | ||
969 | /** | |
970 | * parport_ip32_frob_control - change bits from the DCR register | |
971 | * @p: pointer to &struct parport | |
972 | * @mask: bit mask of bits to change | |
973 | * @val: new value for changed bits | |
974 | * | |
975 | * This differs from __parport_ip32_frob_control() in that it only allows to | |
976 | * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT. | |
977 | */ | |
978 | static inline unsigned char parport_ip32_frob_control(struct parport *p, | |
979 | unsigned char mask, | |
980 | unsigned char val) | |
981 | { | |
982 | const unsigned int wm = | |
983 | DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT; | |
984 | CHECK_EXTRA_BITS(p, mask, wm); | |
985 | CHECK_EXTRA_BITS(p, val, wm); | |
986 | __parport_ip32_frob_control(p, mask & wm, val & wm); | |
987 | return parport_ip32_read_control(p); | |
988 | } | |
989 | ||
990 | /** | |
991 | * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK | |
992 | * @p: pointer to &struct parport | |
993 | */ | |
994 | static inline void parport_ip32_disable_irq(struct parport *p) | |
995 | { | |
996 | __parport_ip32_frob_control(p, DCR_IRQ, 0); | |
997 | } | |
998 | ||
999 | /** | |
1000 | * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK | |
1001 | * @p: pointer to &struct parport | |
1002 | */ | |
1003 | static inline void parport_ip32_enable_irq(struct parport *p) | |
1004 | { | |
1005 | __parport_ip32_frob_control(p, DCR_IRQ, DCR_IRQ); | |
1006 | } | |
1007 | ||
1008 | /** | |
1009 | * parport_ip32_data_forward - enable host-to-peripheral communications | |
1010 | * @p: pointer to &struct parport | |
1011 | * | |
1012 | * Enable the data line drivers, for 8-bit host-to-peripheral communications. | |
1013 | */ | |
1014 | static inline void parport_ip32_data_forward(struct parport *p) | |
1015 | { | |
1016 | __parport_ip32_frob_control(p, DCR_DIR, 0); | |
1017 | } | |
1018 | ||
1019 | /** | |
1020 | * parport_ip32_data_reverse - enable peripheral-to-host communications | |
1021 | * @p: pointer to &struct parport | |
1022 | * | |
1023 | * Place the data bus in a high impedance state, if @p->modes has the | |
1024 | * PARPORT_MODE_TRISTATE bit set. | |
1025 | */ | |
1026 | static inline void parport_ip32_data_reverse(struct parport *p) | |
1027 | { | |
1028 | __parport_ip32_frob_control(p, DCR_DIR, DCR_DIR); | |
1029 | } | |
1030 | ||
1031 | /** | |
1032 | * parport_ip32_init_state - for core parport code | |
1033 | * @dev: pointer to &struct pardevice | |
1034 | * @s: pointer to &struct parport_state to initialize | |
1035 | */ | |
1036 | static void parport_ip32_init_state(struct pardevice *dev, | |
1037 | struct parport_state *s) | |
1038 | { | |
1039 | s->u.ip32.dcr = DCR_SELECT | DCR_nINIT; | |
1040 | s->u.ip32.ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR; | |
1041 | } | |
1042 | ||
1043 | /** | |
1044 | * parport_ip32_save_state - for core parport code | |
1045 | * @p: pointer to &struct parport | |
1046 | * @s: pointer to &struct parport_state to save state to | |
1047 | */ | |
1048 | static void parport_ip32_save_state(struct parport *p, | |
1049 | struct parport_state *s) | |
1050 | { | |
1051 | s->u.ip32.dcr = __parport_ip32_read_control(p); | |
1052 | s->u.ip32.ecr = parport_ip32_read_econtrol(p); | |
1053 | } | |
1054 | ||
1055 | /** | |
1056 | * parport_ip32_restore_state - for core parport code | |
1057 | * @p: pointer to &struct parport | |
1058 | * @s: pointer to &struct parport_state to restore state from | |
1059 | */ | |
1060 | static void parport_ip32_restore_state(struct parport *p, | |
1061 | struct parport_state *s) | |
1062 | { | |
1063 | parport_ip32_set_mode(p, s->u.ip32.ecr & ECR_MODE_MASK); | |
1064 | parport_ip32_write_econtrol(p, s->u.ip32.ecr); | |
1065 | __parport_ip32_write_control(p, s->u.ip32.dcr); | |
1066 | } | |
1067 | ||
1068 | /*--- EPP mode functions -----------------------------------------------*/ | |
1069 | ||
1070 | /** | |
1071 | * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode | |
1072 | * @p: pointer to &struct parport | |
1073 | * | |
1074 | * Returns 1 if the Timeout bit is clear, and 0 otherwise. | |
1075 | */ | |
1076 | static unsigned int parport_ip32_clear_epp_timeout(struct parport *p) | |
1077 | { | |
1078 | struct parport_ip32_private * const priv = p->physport->private_data; | |
1079 | unsigned int cleared; | |
1080 | ||
1081 | if (!(parport_ip32_read_status(p) & DSR_TIMEOUT)) | |
1082 | cleared = 1; | |
1083 | else { | |
1084 | unsigned int r; | |
1085 | /* To clear timeout some chips require double read */ | |
1086 | parport_ip32_read_status(p); | |
1087 | r = parport_ip32_read_status(p); | |
1088 | /* Some reset by writing 1 */ | |
1089 | writeb(r | DSR_TIMEOUT, priv->regs.dsr); | |
1090 | /* Others by writing 0 */ | |
1091 | writeb(r & ~DSR_TIMEOUT, priv->regs.dsr); | |
1092 | ||
1093 | r = parport_ip32_read_status(p); | |
1094 | cleared = !(r & DSR_TIMEOUT); | |
1095 | } | |
1096 | ||
1097 | pr_trace(p, "(): %s", cleared ? "cleared" : "failed"); | |
1098 | return cleared; | |
1099 | } | |
1100 | ||
1101 | /** | |
1102 | * parport_ip32_epp_read - generic EPP read function | |
1103 | * @eppreg: I/O register to read from | |
1104 | * @p: pointer to &struct parport | |
1105 | * @buf: buffer to store read data | |
1106 | * @len: length of buffer @buf | |
1107 | * @flags: may be PARPORT_EPP_FAST | |
1108 | */ | |
1109 | static size_t parport_ip32_epp_read(void __iomem *eppreg, | |
1110 | struct parport *p, void *buf, | |
1111 | size_t len, int flags) | |
1112 | { | |
1113 | struct parport_ip32_private * const priv = p->physport->private_data; | |
1114 | size_t got; | |
1115 | parport_ip32_set_mode(p, ECR_MODE_EPP); | |
1116 | parport_ip32_data_reverse(p); | |
1117 | parport_ip32_write_control(p, DCR_nINIT); | |
1118 | if ((flags & PARPORT_EPP_FAST) && (len > 1)) { | |
1119 | readsb(eppreg, buf, len); | |
1120 | if (readb(priv->regs.dsr) & DSR_TIMEOUT) { | |
1121 | parport_ip32_clear_epp_timeout(p); | |
1122 | return -EIO; | |
1123 | } | |
1124 | got = len; | |
1125 | } else { | |
1126 | u8 *bufp = buf; | |
1127 | for (got = 0; got < len; got++) { | |
1128 | *bufp++ = readb(eppreg); | |
1129 | if (readb(priv->regs.dsr) & DSR_TIMEOUT) { | |
1130 | parport_ip32_clear_epp_timeout(p); | |
1131 | break; | |
1132 | } | |
1133 | } | |
1134 | } | |
1135 | parport_ip32_data_forward(p); | |
1136 | parport_ip32_set_mode(p, ECR_MODE_PS2); | |
1137 | return got; | |
1138 | } | |
1139 | ||
1140 | /** | |
1141 | * parport_ip32_epp_write - generic EPP write function | |
1142 | * @eppreg: I/O register to write to | |
1143 | * @p: pointer to &struct parport | |
1144 | * @buf: buffer of data to write | |
1145 | * @len: length of buffer @buf | |
1146 | * @flags: may be PARPORT_EPP_FAST | |
1147 | */ | |
1148 | static size_t parport_ip32_epp_write(void __iomem *eppreg, | |
1149 | struct parport *p, const void *buf, | |
1150 | size_t len, int flags) | |
1151 | { | |
1152 | struct parport_ip32_private * const priv = p->physport->private_data; | |
1153 | size_t written; | |
1154 | parport_ip32_set_mode(p, ECR_MODE_EPP); | |
1155 | parport_ip32_data_forward(p); | |
1156 | parport_ip32_write_control(p, DCR_nINIT); | |
1157 | if ((flags & PARPORT_EPP_FAST) && (len > 1)) { | |
1158 | writesb(eppreg, buf, len); | |
1159 | if (readb(priv->regs.dsr) & DSR_TIMEOUT) { | |
1160 | parport_ip32_clear_epp_timeout(p); | |
1161 | return -EIO; | |
1162 | } | |
1163 | written = len; | |
1164 | } else { | |
1165 | const u8 *bufp = buf; | |
1166 | for (written = 0; written < len; written++) { | |
1167 | writeb(*bufp++, eppreg); | |
1168 | if (readb(priv->regs.dsr) & DSR_TIMEOUT) { | |
1169 | parport_ip32_clear_epp_timeout(p); | |
1170 | break; | |
1171 | } | |
1172 | } | |
1173 | } | |
1174 | parport_ip32_set_mode(p, ECR_MODE_PS2); | |
1175 | return written; | |
1176 | } | |
1177 | ||
1178 | /** | |
1179 | * parport_ip32_epp_read_data - read a block of data in EPP mode | |
1180 | * @p: pointer to &struct parport | |
1181 | * @buf: buffer to store read data | |
1182 | * @len: length of buffer @buf | |
1183 | * @flags: may be PARPORT_EPP_FAST | |
1184 | */ | |
1185 | static size_t parport_ip32_epp_read_data(struct parport *p, void *buf, | |
1186 | size_t len, int flags) | |
1187 | { | |
1188 | struct parport_ip32_private * const priv = p->physport->private_data; | |
1189 | return parport_ip32_epp_read(priv->regs.eppData0, p, buf, len, flags); | |
1190 | } | |
1191 | ||
1192 | /** | |
1193 | * parport_ip32_epp_write_data - write a block of data in EPP mode | |
1194 | * @p: pointer to &struct parport | |
1195 | * @buf: buffer of data to write | |
1196 | * @len: length of buffer @buf | |
1197 | * @flags: may be PARPORT_EPP_FAST | |
1198 | */ | |
1199 | static size_t parport_ip32_epp_write_data(struct parport *p, const void *buf, | |
1200 | size_t len, int flags) | |
1201 | { | |
1202 | struct parport_ip32_private * const priv = p->physport->private_data; | |
1203 | return parport_ip32_epp_write(priv->regs.eppData0, p, buf, len, flags); | |
1204 | } | |
1205 | ||
1206 | /** | |
1207 | * parport_ip32_epp_read_addr - read a block of addresses in EPP mode | |
1208 | * @p: pointer to &struct parport | |
1209 | * @buf: buffer to store read data | |
1210 | * @len: length of buffer @buf | |
1211 | * @flags: may be PARPORT_EPP_FAST | |
1212 | */ | |
1213 | static size_t parport_ip32_epp_read_addr(struct parport *p, void *buf, | |
1214 | size_t len, int flags) | |
1215 | { | |
1216 | struct parport_ip32_private * const priv = p->physport->private_data; | |
1217 | return parport_ip32_epp_read(priv->regs.eppAddr, p, buf, len, flags); | |
1218 | } | |
1219 | ||
1220 | /** | |
1221 | * parport_ip32_epp_write_addr - write a block of addresses in EPP mode | |
1222 | * @p: pointer to &struct parport | |
1223 | * @buf: buffer of data to write | |
1224 | * @len: length of buffer @buf | |
1225 | * @flags: may be PARPORT_EPP_FAST | |
1226 | */ | |
1227 | static size_t parport_ip32_epp_write_addr(struct parport *p, const void *buf, | |
1228 | size_t len, int flags) | |
1229 | { | |
1230 | struct parport_ip32_private * const priv = p->physport->private_data; | |
1231 | return parport_ip32_epp_write(priv->regs.eppAddr, p, buf, len, flags); | |
1232 | } | |
1233 | ||
1234 | /*--- ECP mode functions (FIFO) ----------------------------------------*/ | |
1235 | ||
1236 | /** | |
1237 | * parport_ip32_fifo_wait_break - check if the waiting function should return | |
1238 | * @p: pointer to &struct parport | |
1239 | * @expire: timeout expiring date, in jiffies | |
1240 | * | |
1241 | * parport_ip32_fifo_wait_break() checks if the waiting function should return | |
1242 | * immediately or not. The break conditions are: | |
1243 | * - expired timeout; | |
1244 | * - a pending signal; | |
1245 | * - nFault asserted low. | |
1246 | * This function also calls cond_resched(). | |
1247 | */ | |
1248 | static unsigned int parport_ip32_fifo_wait_break(struct parport *p, | |
1249 | unsigned long expire) | |
1250 | { | |
1251 | cond_resched(); | |
1252 | if (time_after(jiffies, expire)) { | |
1253 | pr_debug1(PPIP32 "%s: FIFO write timed out\n", p->name); | |
1254 | return 1; | |
1255 | } | |
1256 | if (signal_pending(current)) { | |
1257 | pr_debug1(PPIP32 "%s: Signal pending\n", p->name); | |
1258 | return 1; | |
1259 | } | |
1260 | if (!(parport_ip32_read_status(p) & DSR_nFAULT)) { | |
1261 | pr_debug1(PPIP32 "%s: nFault asserted low\n", p->name); | |
1262 | return 1; | |
1263 | } | |
1264 | return 0; | |
1265 | } | |
1266 | ||
1267 | /** | |
1268 | * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling) | |
1269 | * @p: pointer to &struct parport | |
1270 | * | |
1271 | * Returns the number of bytes that can safely be written in the FIFO. A | |
1272 | * return value of zero means that the calling function should terminate as | |
1273 | * fast as possible. | |
1274 | */ | |
1275 | static unsigned int parport_ip32_fwp_wait_polling(struct parport *p) | |
1276 | { | |
1277 | struct parport_ip32_private * const priv = p->physport->private_data; | |
1278 | struct parport * const physport = p->physport; | |
1279 | unsigned long expire; | |
1280 | unsigned int count; | |
1281 | unsigned int ecr; | |
1282 | ||
1283 | expire = jiffies + physport->cad->timeout; | |
1284 | count = 0; | |
1285 | while (1) { | |
1286 | if (parport_ip32_fifo_wait_break(p, expire)) | |
1287 | break; | |
1288 | ||
1289 | /* Check FIFO state. We do nothing when the FIFO is nor full, | |
1290 | * nor empty. It appears that the FIFO full bit is not always | |
1291 | * reliable, the FIFO state is sometimes wrongly reported, and | |
1292 | * the chip gets confused if we give it another byte. */ | |
1293 | ecr = parport_ip32_read_econtrol(p); | |
1294 | if (ecr & ECR_F_EMPTY) { | |
1295 | /* FIFO is empty, fill it up */ | |
1296 | count = priv->fifo_depth; | |
1297 | break; | |
1298 | } | |
1299 | ||
1300 | /* Wait a moment... */ | |
1301 | udelay(FIFO_POLLING_INTERVAL); | |
1302 | } /* while (1) */ | |
1303 | ||
1304 | return count; | |
1305 | } | |
1306 | ||
1307 | /** | |
1308 | * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven) | |
1309 | * @p: pointer to &struct parport | |
1310 | * | |
1311 | * Returns the number of bytes that can safely be written in the FIFO. A | |
1312 | * return value of zero means that the calling function should terminate as | |
1313 | * fast as possible. | |
1314 | */ | |
1315 | static unsigned int parport_ip32_fwp_wait_interrupt(struct parport *p) | |
1316 | { | |
1317 | static unsigned int lost_interrupt = 0; | |
1318 | struct parport_ip32_private * const priv = p->physport->private_data; | |
1319 | struct parport * const physport = p->physport; | |
1320 | unsigned long nfault_timeout; | |
1321 | unsigned long expire; | |
1322 | unsigned int count; | |
1323 | unsigned int ecr; | |
1324 | ||
1325 | nfault_timeout = min((unsigned long)physport->cad->timeout, | |
1326 | msecs_to_jiffies(FIFO_NFAULT_TIMEOUT)); | |
1327 | expire = jiffies + physport->cad->timeout; | |
1328 | count = 0; | |
1329 | while (1) { | |
1330 | if (parport_ip32_fifo_wait_break(p, expire)) | |
1331 | break; | |
1332 | ||
1333 | /* Initialize mutex used to take interrupts into account */ | |
1334 | INIT_COMPLETION(priv->irq_complete); | |
1335 | ||
1336 | /* Enable serviceIntr */ | |
1337 | parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0); | |
1338 | ||
1339 | /* Enabling serviceIntr while the FIFO is empty does not | |
1340 | * always generate an interrupt, so check for emptiness | |
1341 | * now. */ | |
1342 | ecr = parport_ip32_read_econtrol(p); | |
1343 | if (!(ecr & ECR_F_EMPTY)) { | |
1344 | /* FIFO is not empty: wait for an interrupt or a | |
1345 | * timeout to occur */ | |
1346 | wait_for_completion_interruptible_timeout( | |
1347 | &priv->irq_complete, nfault_timeout); | |
1348 | ecr = parport_ip32_read_econtrol(p); | |
1349 | if ((ecr & ECR_F_EMPTY) && !(ecr & ECR_SERVINTR) | |
1350 | && !lost_interrupt) { | |
1351 | printk(KERN_WARNING PPIP32 | |
1352 | "%s: lost interrupt in %s\n", | |
1353 | p->name, __func__); | |
1354 | lost_interrupt = 1; | |
1355 | } | |
1356 | } | |
1357 | ||
1358 | /* Disable serviceIntr */ | |
1359 | parport_ip32_frob_econtrol(p, ECR_SERVINTR, ECR_SERVINTR); | |
1360 | ||
1361 | /* Check FIFO state */ | |
1362 | if (ecr & ECR_F_EMPTY) { | |
1363 | /* FIFO is empty, fill it up */ | |
1364 | count = priv->fifo_depth; | |
1365 | break; | |
1366 | } else if (ecr & ECR_SERVINTR) { | |
1367 | /* FIFO is not empty, but we know that can safely push | |
1368 | * writeIntrThreshold bytes into it */ | |
1369 | count = priv->writeIntrThreshold; | |
1370 | break; | |
1371 | } | |
1372 | /* FIFO is not empty, and we did not get any interrupt. | |
1373 | * Either it's time to check for nFault, or a signal is | |
1374 | * pending. This is verified in | |
1375 | * parport_ip32_fifo_wait_break(), so we continue the loop. */ | |
1376 | } /* while (1) */ | |
1377 | ||
1378 | return count; | |
1379 | } | |
1380 | ||
1381 | /** | |
1382 | * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode) | |
1383 | * @p: pointer to &struct parport | |
1384 | * @buf: buffer of data to write | |
1385 | * @len: length of buffer @buf | |
1386 | * | |
1387 | * Uses PIO to write the contents of the buffer @buf into the parallel port | |
1388 | * FIFO. Returns the number of bytes that were actually written. It can work | |
1389 | * with or without the help of interrupts. The parallel port must be | |
1390 | * correctly initialized before calling parport_ip32_fifo_write_block_pio(). | |
1391 | */ | |
1392 | static size_t parport_ip32_fifo_write_block_pio(struct parport *p, | |
1393 | const void *buf, size_t len) | |
1394 | { | |
1395 | struct parport_ip32_private * const priv = p->physport->private_data; | |
1396 | const u8 *bufp = buf; | |
1397 | size_t left = len; | |
1398 | ||
1399 | priv->irq_mode = PARPORT_IP32_IRQ_HERE; | |
1400 | ||
1401 | while (left > 0) { | |
1402 | unsigned int count; | |
1403 | ||
1404 | count = (p->irq == PARPORT_IRQ_NONE) ? | |
1405 | parport_ip32_fwp_wait_polling(p) : | |
1406 | parport_ip32_fwp_wait_interrupt(p); | |
1407 | if (count == 0) | |
1408 | break; /* Transmission should be stopped */ | |
1409 | if (count > left) | |
1410 | count = left; | |
1411 | if (count == 1) { | |
1412 | writeb(*bufp, priv->regs.fifo); | |
1413 | bufp++, left--; | |
1414 | } else { | |
1415 | writesb(priv->regs.fifo, bufp, count); | |
1416 | bufp += count, left -= count; | |
1417 | } | |
1418 | } | |
1419 | ||
1420 | priv->irq_mode = PARPORT_IP32_IRQ_FWD; | |
1421 | ||
1422 | return len - left; | |
1423 | } | |
1424 | ||
1425 | /** | |
1426 | * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode) | |
1427 | * @p: pointer to &struct parport | |
1428 | * @buf: buffer of data to write | |
1429 | * @len: length of buffer @buf | |
1430 | * | |
1431 | * Uses DMA to write the contents of the buffer @buf into the parallel port | |
1432 | * FIFO. Returns the number of bytes that were actually written. The | |
1433 | * parallel port must be correctly initialized before calling | |
1434 | * parport_ip32_fifo_write_block_dma(). | |
1435 | */ | |
1436 | static size_t parport_ip32_fifo_write_block_dma(struct parport *p, | |
1437 | const void *buf, size_t len) | |
1438 | { | |
1439 | struct parport_ip32_private * const priv = p->physport->private_data; | |
1440 | struct parport * const physport = p->physport; | |
1441 | unsigned long nfault_timeout; | |
1442 | unsigned long expire; | |
1443 | size_t written; | |
1444 | unsigned int ecr; | |
1445 | ||
1446 | priv->irq_mode = PARPORT_IP32_IRQ_HERE; | |
1447 | ||
1448 | parport_ip32_dma_start(DMA_TO_DEVICE, (void *)buf, len); | |
1449 | INIT_COMPLETION(priv->irq_complete); | |
1450 | parport_ip32_frob_econtrol(p, ECR_DMAEN | ECR_SERVINTR, ECR_DMAEN); | |
1451 | ||
1452 | nfault_timeout = min((unsigned long)physport->cad->timeout, | |
1453 | msecs_to_jiffies(FIFO_NFAULT_TIMEOUT)); | |
1454 | expire = jiffies + physport->cad->timeout; | |
1455 | while (1) { | |
1456 | if (parport_ip32_fifo_wait_break(p, expire)) | |
1457 | break; | |
1458 | wait_for_completion_interruptible_timeout(&priv->irq_complete, | |
1459 | nfault_timeout); | |
1460 | ecr = parport_ip32_read_econtrol(p); | |
1461 | if (ecr & ECR_SERVINTR) | |
1462 | break; /* DMA transfer just finished */ | |
1463 | } | |
1464 | parport_ip32_dma_stop(); | |
1465 | written = len - parport_ip32_dma_get_residue(); | |
1466 | ||
1467 | priv->irq_mode = PARPORT_IP32_IRQ_FWD; | |
1468 | ||
1469 | return written; | |
1470 | } | |
1471 | ||
1472 | /** | |
1473 | * parport_ip32_fifo_write_block - write a block of data | |
1474 | * @p: pointer to &struct parport | |
1475 | * @buf: buffer of data to write | |
1476 | * @len: length of buffer @buf | |
1477 | * | |
1478 | * Uses PIO or DMA to write the contents of the buffer @buf into the parallel | |
1479 | * p FIFO. Returns the number of bytes that were actually written. | |
1480 | */ | |
1481 | static size_t parport_ip32_fifo_write_block(struct parport *p, | |
1482 | const void *buf, size_t len) | |
1483 | { | |
1484 | size_t written = 0; | |
1485 | if (len) | |
1486 | /* FIXME - Maybe some threshold value should be set for @len | |
1487 | * under which we revert to PIO mode? */ | |
1488 | written = (p->modes & PARPORT_MODE_DMA) ? | |
1489 | parport_ip32_fifo_write_block_dma(p, buf, len) : | |
1490 | parport_ip32_fifo_write_block_pio(p, buf, len); | |
1491 | return written; | |
1492 | } | |
1493 | ||
1494 | /** | |
1495 | * parport_ip32_drain_fifo - wait for FIFO to empty | |
1496 | * @p: pointer to &struct parport | |
1497 | * @timeout: timeout, in jiffies | |
1498 | * | |
1499 | * This function waits for FIFO to empty. It returns 1 when FIFO is empty, or | |
1500 | * 0 if the timeout @timeout is reached before, or if a signal is pending. | |
1501 | */ | |
1502 | static unsigned int parport_ip32_drain_fifo(struct parport *p, | |
1503 | unsigned long timeout) | |
1504 | { | |
1505 | unsigned long expire = jiffies + timeout; | |
1506 | unsigned int polling_interval; | |
1507 | unsigned int counter; | |
1508 | ||
1509 | /* Busy wait for approx. 200us */ | |
1510 | for (counter = 0; counter < 40; counter++) { | |
1511 | if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY) | |
1512 | break; | |
1513 | if (time_after(jiffies, expire)) | |
1514 | break; | |
1515 | if (signal_pending(current)) | |
1516 | break; | |
1517 | udelay(5); | |
1518 | } | |
1519 | /* Poll slowly. Polling interval starts with 1 millisecond, and is | |
1520 | * increased exponentially until 128. */ | |
1521 | polling_interval = 1; /* msecs */ | |
1522 | while (!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY)) { | |
1523 | if (time_after_eq(jiffies, expire)) | |
1524 | break; | |
1525 | msleep_interruptible(polling_interval); | |
1526 | if (signal_pending(current)) | |
1527 | break; | |
1528 | if (polling_interval < 128) | |
1529 | polling_interval *= 2; | |
1530 | } | |
1531 | ||
1532 | return !!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY); | |
1533 | } | |
1534 | ||
1535 | /** | |
1536 | * parport_ip32_get_fifo_residue - reset FIFO | |
1537 | * @p: pointer to &struct parport | |
1538 | * @mode: current operation mode (ECR_MODE_PPF or ECR_MODE_ECP) | |
1539 | * | |
1540 | * This function resets FIFO, and returns the number of bytes remaining in it. | |
1541 | */ | |
1542 | static unsigned int parport_ip32_get_fifo_residue(struct parport *p, | |
1543 | unsigned int mode) | |
1544 | { | |
1545 | struct parport_ip32_private * const priv = p->physport->private_data; | |
1546 | unsigned int residue; | |
1547 | unsigned int cnfga; | |
1548 | ||
1549 | /* FIXME - We are missing one byte if the printer is off-line. I | |
1550 | * don't know how to detect this. It looks that the full bit is not | |
1551 | * always reliable. For the moment, the problem is avoided in most | |
1552 | * cases by testing for BUSY in parport_ip32_compat_write_data(). | |
1553 | */ | |
1554 | if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY) | |
1555 | residue = 0; | |
1556 | else { | |
1557 | pr_debug1(PPIP32 "%s: FIFO is stuck\n", p->name); | |
1558 | ||
1559 | /* Stop all transfers. | |
1560 | * | |
1561 | * Microsoft's document instructs to drive DCR_STROBE to 0, | |
1562 | * but it doesn't work (at least in Compatibility mode, not | |
1563 | * tested in ECP mode). Switching directly to Test mode (as | |
1564 | * in parport_pc) is not an option: it does confuse the port, | |
1565 | * ECP service interrupts are no more working after that. A | |
1566 | * hard reset is then needed to revert to a sane state. | |
1567 | * | |
1568 | * Let's hope that the FIFO is really stuck and that the | |
1569 | * peripheral doesn't wake up now. | |
1570 | */ | |
1571 | parport_ip32_frob_control(p, DCR_STROBE, 0); | |
1572 | ||
1573 | /* Fill up FIFO */ | |
1574 | for (residue = priv->fifo_depth; residue > 0; residue--) { | |
1575 | if (parport_ip32_read_econtrol(p) & ECR_F_FULL) | |
1576 | break; | |
1577 | writeb(0x00, priv->regs.fifo); | |
1578 | } | |
1579 | } | |
1580 | if (residue) | |
1581 | pr_debug1(PPIP32 "%s: %d PWord%s left in FIFO\n", | |
1582 | p->name, residue, | |
1583 | (residue == 1) ? " was" : "s were"); | |
1584 | ||
1585 | /* Now reset the FIFO */ | |
1586 | parport_ip32_set_mode(p, ECR_MODE_PS2); | |
1587 | ||
1588 | /* Host recovery for ECP mode */ | |
1589 | if (mode == ECR_MODE_ECP) { | |
1590 | parport_ip32_data_reverse(p); | |
1591 | parport_ip32_frob_control(p, DCR_nINIT, 0); | |
1592 | if (parport_wait_peripheral(p, DSR_PERROR, 0)) | |
1593 | pr_debug1(PPIP32 "%s: PEerror timeout 1 in %s\n", | |
1594 | p->name, __func__); | |
1595 | parport_ip32_frob_control(p, DCR_STROBE, DCR_STROBE); | |
1596 | parport_ip32_frob_control(p, DCR_nINIT, DCR_nINIT); | |
1597 | if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) | |
1598 | pr_debug1(PPIP32 "%s: PEerror timeout 2 in %s\n", | |
1599 | p->name, __func__); | |
1600 | } | |
1601 | ||
1602 | /* Adjust residue if needed */ | |
1603 | parport_ip32_set_mode(p, ECR_MODE_CFG); | |
1604 | cnfga = readb(priv->regs.cnfgA); | |
1605 | if (!(cnfga & CNFGA_nBYTEINTRANS)) { | |
1606 | pr_debug1(PPIP32 "%s: cnfgA contains 0x%02x\n", | |
1607 | p->name, cnfga); | |
1608 | pr_debug1(PPIP32 "%s: Accounting for extra byte\n", | |
1609 | p->name); | |
1610 | residue++; | |
1611 | } | |
1612 | ||
1613 | /* Don't care about partial PWords since we do not support | |
1614 | * PWord != 1 byte. */ | |
1615 | ||
1616 | /* Back to forward PS2 mode. */ | |
1617 | parport_ip32_set_mode(p, ECR_MODE_PS2); | |
1618 | parport_ip32_data_forward(p); | |
1619 | ||
1620 | return residue; | |
1621 | } | |
1622 | ||
1623 | /** | |
1624 | * parport_ip32_compat_write_data - write a block of data in SPP mode | |
1625 | * @p: pointer to &struct parport | |
1626 | * @buf: buffer of data to write | |
1627 | * @len: length of buffer @buf | |
1628 | * @flags: ignored | |
1629 | */ | |
1630 | static size_t parport_ip32_compat_write_data(struct parport *p, | |
1631 | const void *buf, size_t len, | |
1632 | int flags) | |
1633 | { | |
1634 | static unsigned int ready_before = 1; | |
1635 | struct parport_ip32_private * const priv = p->physport->private_data; | |
1636 | struct parport * const physport = p->physport; | |
1637 | size_t written = 0; | |
1638 | ||
1639 | /* Special case: a timeout of zero means we cannot call schedule(). | |
1640 | * Also if O_NONBLOCK is set then use the default implementation. */ | |
1641 | if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK) | |
1642 | return parport_ieee1284_write_compat(p, buf, len, flags); | |
1643 | ||
1644 | /* Reset FIFO, go in forward mode, and disable ackIntEn */ | |
1645 | parport_ip32_set_mode(p, ECR_MODE_PS2); | |
1646 | parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); | |
1647 | parport_ip32_data_forward(p); | |
1648 | parport_ip32_disable_irq(p); | |
1649 | parport_ip32_set_mode(p, ECR_MODE_PPF); | |
1650 | physport->ieee1284.phase = IEEE1284_PH_FWD_DATA; | |
1651 | ||
1652 | /* Wait for peripheral to become ready */ | |
1653 | if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT, | |
1654 | DSR_nBUSY | DSR_nFAULT)) { | |
1655 | /* Avoid to flood the logs */ | |
1656 | if (ready_before) | |
1657 | printk(KERN_INFO PPIP32 "%s: not ready in %s\n", | |
1658 | p->name, __func__); | |
1659 | ready_before = 0; | |
1660 | goto stop; | |
1661 | } | |
1662 | ready_before = 1; | |
1663 | ||
1664 | written = parport_ip32_fifo_write_block(p, buf, len); | |
1665 | ||
1666 | /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */ | |
1667 | parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth); | |
1668 | ||
1669 | /* Check for a potential residue */ | |
1670 | written -= parport_ip32_get_fifo_residue(p, ECR_MODE_PPF); | |
1671 | ||
1672 | /* Then, wait for BUSY to get low. */ | |
1673 | if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY)) | |
1674 | printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n", | |
1675 | p->name, __func__); | |
1676 | ||
1677 | stop: | |
1678 | /* Reset FIFO */ | |
1679 | parport_ip32_set_mode(p, ECR_MODE_PS2); | |
1680 | physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE; | |
1681 | ||
1682 | return written; | |
1683 | } | |
1684 | ||
1685 | /* | |
1686 | * FIXME - Insert here parport_ip32_ecp_read_data(). | |
1687 | */ | |
1688 | ||
1689 | /** | |
1690 | * parport_ip32_ecp_write_data - write a block of data in ECP mode | |
1691 | * @p: pointer to &struct parport | |
1692 | * @buf: buffer of data to write | |
1693 | * @len: length of buffer @buf | |
1694 | * @flags: ignored | |
1695 | */ | |
1696 | static size_t parport_ip32_ecp_write_data(struct parport *p, | |
1697 | const void *buf, size_t len, | |
1698 | int flags) | |
1699 | { | |
1700 | static unsigned int ready_before = 1; | |
1701 | struct parport_ip32_private * const priv = p->physport->private_data; | |
1702 | struct parport * const physport = p->physport; | |
1703 | size_t written = 0; | |
1704 | ||
1705 | /* Special case: a timeout of zero means we cannot call schedule(). | |
1706 | * Also if O_NONBLOCK is set then use the default implementation. */ | |
1707 | if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK) | |
1708 | return parport_ieee1284_ecp_write_data(p, buf, len, flags); | |
1709 | ||
1710 | /* Negotiate to forward mode if necessary. */ | |
1711 | if (physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) { | |
1712 | /* Event 47: Set nInit high. */ | |
1713 | parport_ip32_frob_control(p, DCR_nINIT | DCR_AUTOFD, | |
1714 | DCR_nINIT | DCR_AUTOFD); | |
1715 | ||
1716 | /* Event 49: PError goes high. */ | |
1717 | if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) { | |
1718 | printk(KERN_DEBUG PPIP32 "%s: PError timeout in %s", | |
1719 | p->name, __func__); | |
1720 | physport->ieee1284.phase = IEEE1284_PH_ECP_DIR_UNKNOWN; | |
1721 | return 0; | |
1722 | } | |
1723 | } | |
1724 | ||
1725 | /* Reset FIFO, go in forward mode, and disable ackIntEn */ | |
1726 | parport_ip32_set_mode(p, ECR_MODE_PS2); | |
1727 | parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); | |
1728 | parport_ip32_data_forward(p); | |
1729 | parport_ip32_disable_irq(p); | |
1730 | parport_ip32_set_mode(p, ECR_MODE_ECP); | |
1731 | physport->ieee1284.phase = IEEE1284_PH_FWD_DATA; | |
1732 | ||
1733 | /* Wait for peripheral to become ready */ | |
1734 | if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT, | |
1735 | DSR_nBUSY | DSR_nFAULT)) { | |
1736 | /* Avoid to flood the logs */ | |
1737 | if (ready_before) | |
1738 | printk(KERN_INFO PPIP32 "%s: not ready in %s\n", | |
1739 | p->name, __func__); | |
1740 | ready_before = 0; | |
1741 | goto stop; | |
1742 | } | |
1743 | ready_before = 1; | |
1744 | ||
1745 | written = parport_ip32_fifo_write_block(p, buf, len); | |
1746 | ||
1747 | /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */ | |
1748 | parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth); | |
1749 | ||
1750 | /* Check for a potential residue */ | |
1751 | written -= parport_ip32_get_fifo_residue(p, ECR_MODE_ECP); | |
1752 | ||
1753 | /* Then, wait for BUSY to get low. */ | |
1754 | if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY)) | |
1755 | printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n", | |
1756 | p->name, __func__); | |
1757 | ||
1758 | stop: | |
1759 | /* Reset FIFO */ | |
1760 | parport_ip32_set_mode(p, ECR_MODE_PS2); | |
1761 | physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE; | |
1762 | ||
1763 | return written; | |
1764 | } | |
1765 | ||
1766 | /* | |
1767 | * FIXME - Insert here parport_ip32_ecp_write_addr(). | |
1768 | */ | |
1769 | ||
1770 | /*--- Default parport operations ---------------------------------------*/ | |
1771 | ||
1772 | static __initdata struct parport_operations parport_ip32_ops = { | |
1773 | .write_data = parport_ip32_write_data, | |
1774 | .read_data = parport_ip32_read_data, | |
1775 | ||
1776 | .write_control = parport_ip32_write_control, | |
1777 | .read_control = parport_ip32_read_control, | |
1778 | .frob_control = parport_ip32_frob_control, | |
1779 | ||
1780 | .read_status = parport_ip32_read_status, | |
1781 | ||
1782 | .enable_irq = parport_ip32_enable_irq, | |
1783 | .disable_irq = parport_ip32_disable_irq, | |
1784 | ||
1785 | .data_forward = parport_ip32_data_forward, | |
1786 | .data_reverse = parport_ip32_data_reverse, | |
1787 | ||
1788 | .init_state = parport_ip32_init_state, | |
1789 | .save_state = parport_ip32_save_state, | |
1790 | .restore_state = parport_ip32_restore_state, | |
1791 | ||
1792 | .epp_write_data = parport_ieee1284_epp_write_data, | |
1793 | .epp_read_data = parport_ieee1284_epp_read_data, | |
1794 | .epp_write_addr = parport_ieee1284_epp_write_addr, | |
1795 | .epp_read_addr = parport_ieee1284_epp_read_addr, | |
1796 | ||
1797 | .ecp_write_data = parport_ieee1284_ecp_write_data, | |
1798 | .ecp_read_data = parport_ieee1284_ecp_read_data, | |
1799 | .ecp_write_addr = parport_ieee1284_ecp_write_addr, | |
1800 | ||
1801 | .compat_write_data = parport_ieee1284_write_compat, | |
1802 | .nibble_read_data = parport_ieee1284_read_nibble, | |
1803 | .byte_read_data = parport_ieee1284_read_byte, | |
1804 | ||
1805 | .owner = THIS_MODULE, | |
1806 | }; | |
1807 | ||
1808 | /*--- Device detection -------------------------------------------------*/ | |
1809 | ||
1810 | /** | |
1811 | * parport_ip32_ecp_supported - check for an ECP port | |
1812 | * @p: pointer to the &parport structure | |
1813 | * | |
1814 | * Returns 1 if an ECP port is found, and 0 otherwise. This function actually | |
1815 | * checks if an Extended Control Register seems to be present. On successful | |
1816 | * return, the port is placed in SPP mode. | |
1817 | */ | |
1818 | static __init unsigned int parport_ip32_ecp_supported(struct parport *p) | |
1819 | { | |
1820 | struct parport_ip32_private * const priv = p->physport->private_data; | |
1821 | unsigned int ecr; | |
1822 | ||
1823 | ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR; | |
1824 | writeb(ecr, priv->regs.ecr); | |
1825 | if (readb(priv->regs.ecr) != (ecr | ECR_F_EMPTY)) | |
1826 | goto fail; | |
1827 | ||
1828 | pr_probe(p, "Found working ECR register\n"); | |
1829 | parport_ip32_set_mode(p, ECR_MODE_SPP); | |
1830 | parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); | |
1831 | return 1; | |
1832 | ||
1833 | fail: | |
1834 | pr_probe(p, "ECR register not found\n"); | |
1835 | return 0; | |
1836 | } | |
1837 | ||
1838 | /** | |
1839 | * parport_ip32_fifo_supported - check for FIFO parameters | |
1840 | * @p: pointer to the &parport structure | |
1841 | * | |
1842 | * Check for FIFO parameters of an Extended Capabilities Port. Returns 1 on | |
1843 | * success, and 0 otherwise. Adjust FIFO parameters in the parport structure. | |
1844 | * On return, the port is placed in SPP mode. | |
1845 | */ | |
1846 | static __init unsigned int parport_ip32_fifo_supported(struct parport *p) | |
1847 | { | |
1848 | struct parport_ip32_private * const priv = p->physport->private_data; | |
1849 | unsigned int configa, configb; | |
1850 | unsigned int pword; | |
1851 | unsigned int i; | |
1852 | ||
1853 | /* Configuration mode */ | |
1854 | parport_ip32_set_mode(p, ECR_MODE_CFG); | |
1855 | configa = readb(priv->regs.cnfgA); | |
1856 | configb = readb(priv->regs.cnfgB); | |
1857 | ||
1858 | /* Find out PWord size */ | |
1859 | switch (configa & CNFGA_ID_MASK) { | |
1860 | case CNFGA_ID_8: | |
1861 | pword = 1; | |
1862 | break; | |
1863 | case CNFGA_ID_16: | |
1864 | pword = 2; | |
1865 | break; | |
1866 | case CNFGA_ID_32: | |
1867 | pword = 4; | |
1868 | break; | |
1869 | default: | |
1870 | pr_probe(p, "Unknown implementation ID: 0x%0x\n", | |
1871 | (configa & CNFGA_ID_MASK) >> CNFGA_ID_SHIFT); | |
1872 | goto fail; | |
1873 | break; | |
1874 | } | |
1875 | if (pword != 1) { | |
1876 | pr_probe(p, "Unsupported PWord size: %u\n", pword); | |
1877 | goto fail; | |
1878 | } | |
1879 | priv->pword = pword; | |
1880 | pr_probe(p, "PWord is %u bits\n", 8 * priv->pword); | |
1881 | ||
1882 | /* Check for compression support */ | |
1883 | writeb(configb | CNFGB_COMPRESS, priv->regs.cnfgB); | |
1884 | if (readb(priv->regs.cnfgB) & CNFGB_COMPRESS) | |
1885 | pr_probe(p, "Hardware compression detected (unsupported)\n"); | |
1886 | writeb(configb & ~CNFGB_COMPRESS, priv->regs.cnfgB); | |
1887 | ||
1888 | /* Reset FIFO and go in test mode (no interrupt, no DMA) */ | |
1889 | parport_ip32_set_mode(p, ECR_MODE_TST); | |
1890 | ||
1891 | /* FIFO must be empty now */ | |
1892 | if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) { | |
1893 | pr_probe(p, "FIFO not reset\n"); | |
1894 | goto fail; | |
1895 | } | |
1896 | ||
1897 | /* Find out FIFO depth. */ | |
1898 | priv->fifo_depth = 0; | |
1899 | for (i = 0; i < 1024; i++) { | |
1900 | if (readb(priv->regs.ecr) & ECR_F_FULL) { | |
1901 | /* FIFO full */ | |
1902 | priv->fifo_depth = i; | |
1903 | break; | |
1904 | } | |
1905 | writeb((u8)i, priv->regs.fifo); | |
1906 | } | |
1907 | if (i >= 1024) { | |
1908 | pr_probe(p, "Can't fill FIFO\n"); | |
1909 | goto fail; | |
1910 | } | |
1911 | if (!priv->fifo_depth) { | |
1912 | pr_probe(p, "Can't get FIFO depth\n"); | |
1913 | goto fail; | |
1914 | } | |
1915 | pr_probe(p, "FIFO is %u PWords deep\n", priv->fifo_depth); | |
1916 | ||
1917 | /* Enable interrupts */ | |
1918 | parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0); | |
1919 | ||
1920 | /* Find out writeIntrThreshold: number of PWords we know we can write | |
1921 | * if we get an interrupt. */ | |
1922 | priv->writeIntrThreshold = 0; | |
1923 | for (i = 0; i < priv->fifo_depth; i++) { | |
1924 | if (readb(priv->regs.fifo) != (u8)i) { | |
1925 | pr_probe(p, "Invalid data in FIFO\n"); | |
1926 | goto fail; | |
1927 | } | |
1928 | if (!priv->writeIntrThreshold | |
1929 | && readb(priv->regs.ecr) & ECR_SERVINTR) | |
1930 | /* writeIntrThreshold reached */ | |
1931 | priv->writeIntrThreshold = i + 1; | |
1932 | if (i + 1 < priv->fifo_depth | |
1933 | && readb(priv->regs.ecr) & ECR_F_EMPTY) { | |
1934 | /* FIFO empty before the last byte? */ | |
1935 | pr_probe(p, "Data lost in FIFO\n"); | |
1936 | goto fail; | |
1937 | } | |
1938 | } | |
1939 | if (!priv->writeIntrThreshold) { | |
1940 | pr_probe(p, "Can't get writeIntrThreshold\n"); | |
1941 | goto fail; | |
1942 | } | |
1943 | pr_probe(p, "writeIntrThreshold is %u\n", priv->writeIntrThreshold); | |
1944 | ||
1945 | /* FIFO must be empty now */ | |
1946 | if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) { | |
1947 | pr_probe(p, "Can't empty FIFO\n"); | |
1948 | goto fail; | |
1949 | } | |
1950 | ||
1951 | /* Reset FIFO */ | |
1952 | parport_ip32_set_mode(p, ECR_MODE_PS2); | |
1953 | /* Set reverse direction (must be in PS2 mode) */ | |
1954 | parport_ip32_data_reverse(p); | |
1955 | /* Test FIFO, no interrupt, no DMA */ | |
1956 | parport_ip32_set_mode(p, ECR_MODE_TST); | |
1957 | /* Enable interrupts */ | |
1958 | parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0); | |
1959 | ||
1960 | /* Find out readIntrThreshold: number of PWords we can read if we get | |
1961 | * an interrupt. */ | |
1962 | priv->readIntrThreshold = 0; | |
1963 | for (i = 0; i < priv->fifo_depth; i++) { | |
1964 | writeb(0xaa, priv->regs.fifo); | |
1965 | if (readb(priv->regs.ecr) & ECR_SERVINTR) { | |
1966 | /* readIntrThreshold reached */ | |
1967 | priv->readIntrThreshold = i + 1; | |
1968 | break; | |
1969 | } | |
1970 | } | |
1971 | if (!priv->readIntrThreshold) { | |
1972 | pr_probe(p, "Can't get readIntrThreshold\n"); | |
1973 | goto fail; | |
1974 | } | |
1975 | pr_probe(p, "readIntrThreshold is %u\n", priv->readIntrThreshold); | |
1976 | ||
1977 | /* Reset ECR */ | |
1978 | parport_ip32_set_mode(p, ECR_MODE_PS2); | |
1979 | parport_ip32_data_forward(p); | |
1980 | parport_ip32_set_mode(p, ECR_MODE_SPP); | |
1981 | return 1; | |
1982 | ||
1983 | fail: | |
1984 | priv->fifo_depth = 0; | |
1985 | parport_ip32_set_mode(p, ECR_MODE_SPP); | |
1986 | return 0; | |
1987 | } | |
1988 | ||
1989 | /*--- Initialization code ----------------------------------------------*/ | |
1990 | ||
1991 | /** | |
1992 | * parport_ip32_make_isa_registers - compute (ISA) register addresses | |
1993 | * @regs: pointer to &struct parport_ip32_regs to fill | |
1994 | * @base: base address of standard and EPP registers | |
1995 | * @base_hi: base address of ECP registers | |
1996 | * @regshift: how much to shift register offset by | |
1997 | * | |
1998 | * Compute register addresses, according to the ISA standard. The addresses | |
1999 | * of the standard and EPP registers are computed from address @base. The | |
2000 | * addresses of the ECP registers are computed from address @base_hi. | |
2001 | */ | |
2002 | static void __init | |
2003 | parport_ip32_make_isa_registers(struct parport_ip32_regs *regs, | |
2004 | void __iomem *base, void __iomem *base_hi, | |
2005 | unsigned int regshift) | |
2006 | { | |
2007 | #define r_base(offset) ((u8 __iomem *)base + ((offset) << regshift)) | |
2008 | #define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift)) | |
2009 | *regs = (struct parport_ip32_regs){ | |
2010 | .data = r_base(0), | |
2011 | .dsr = r_base(1), | |
2012 | .dcr = r_base(2), | |
2013 | .eppAddr = r_base(3), | |
2014 | .eppData0 = r_base(4), | |
2015 | .eppData1 = r_base(5), | |
2016 | .eppData2 = r_base(6), | |
2017 | .eppData3 = r_base(7), | |
2018 | .ecpAFifo = r_base(0), | |
2019 | .fifo = r_base_hi(0), | |
2020 | .cnfgA = r_base_hi(0), | |
2021 | .cnfgB = r_base_hi(1), | |
2022 | .ecr = r_base_hi(2) | |
2023 | }; | |
2024 | #undef r_base_hi | |
2025 | #undef r_base | |
2026 | } | |
2027 | ||
2028 | /** | |
2029 | * parport_ip32_probe_port - probe and register IP32 built-in parallel port | |
2030 | * | |
2031 | * Returns the new allocated &parport structure. On error, an error code is | |
2032 | * encoded in return value with the ERR_PTR function. | |
2033 | */ | |
2034 | static __init struct parport *parport_ip32_probe_port(void) | |
2035 | { | |
2036 | struct parport_ip32_regs regs; | |
2037 | struct parport_ip32_private *priv = NULL; | |
2038 | struct parport_operations *ops = NULL; | |
2039 | struct parport *p = NULL; | |
2040 | int err; | |
2041 | ||
2042 | parport_ip32_make_isa_registers(®s, &mace->isa.parallel, | |
2043 | &mace->isa.ecp1284, 8 /* regshift */); | |
2044 | ||
2045 | ops = kmalloc(sizeof(struct parport_operations), GFP_KERNEL); | |
2046 | priv = kmalloc(sizeof(struct parport_ip32_private), GFP_KERNEL); | |
2047 | p = parport_register_port(0, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, ops); | |
2048 | if (ops == NULL || priv == NULL || p == NULL) { | |
2049 | err = -ENOMEM; | |
2050 | goto fail; | |
2051 | } | |
2052 | p->base = MACE_BASE + offsetof(struct sgi_mace, isa.parallel); | |
2053 | p->base_hi = MACE_BASE + offsetof(struct sgi_mace, isa.ecp1284); | |
2054 | p->private_data = priv; | |
2055 | ||
2056 | *ops = parport_ip32_ops; | |
2057 | *priv = (struct parport_ip32_private){ | |
2058 | .regs = regs, | |
2059 | .dcr_writable = DCR_DIR | DCR_SELECT | DCR_nINIT | | |
2060 | DCR_AUTOFD | DCR_STROBE, | |
2061 | .irq_mode = PARPORT_IP32_IRQ_FWD, | |
2062 | }; | |
2063 | init_completion(&priv->irq_complete); | |
2064 | ||
2065 | /* Probe port. */ | |
2066 | if (!parport_ip32_ecp_supported(p)) { | |
2067 | err = -ENODEV; | |
2068 | goto fail; | |
2069 | } | |
2070 | parport_ip32_dump_state(p, "begin init", 0); | |
2071 | ||
2072 | /* We found what looks like a working ECR register. Simply assume | |
2073 | * that all modes are correctly supported. Enable basic modes. */ | |
2074 | p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT; | |
2075 | p->modes |= PARPORT_MODE_TRISTATE; | |
2076 | ||
2077 | if (!parport_ip32_fifo_supported(p)) { | |
2078 | printk(KERN_WARNING PPIP32 | |
2079 | "%s: error: FIFO disabled\n", p->name); | |
2080 | /* Disable hardware modes depending on a working FIFO. */ | |
2081 | features &= ~PARPORT_IP32_ENABLE_SPP; | |
2082 | features &= ~PARPORT_IP32_ENABLE_ECP; | |
2083 | /* DMA is not needed if FIFO is not supported. */ | |
2084 | features &= ~PARPORT_IP32_ENABLE_DMA; | |
2085 | } | |
2086 | ||
2087 | /* Request IRQ */ | |
2088 | if (features & PARPORT_IP32_ENABLE_IRQ) { | |
2089 | int irq = MACEISA_PARALLEL_IRQ; | |
2090 | if (request_irq(irq, parport_ip32_interrupt, 0, p->name, p)) { | |
2091 | printk(KERN_WARNING PPIP32 | |
2092 | "%s: error: IRQ disabled\n", p->name); | |
2093 | /* DMA cannot work without interrupts. */ | |
2094 | features &= ~PARPORT_IP32_ENABLE_DMA; | |
2095 | } else { | |
2096 | pr_probe(p, "Interrupt support enabled\n"); | |
2097 | p->irq = irq; | |
2098 | priv->dcr_writable |= DCR_IRQ; | |
2099 | } | |
2100 | } | |
2101 | ||
2102 | /* Allocate DMA resources */ | |
2103 | if (features & PARPORT_IP32_ENABLE_DMA) { | |
2104 | if (parport_ip32_dma_register()) | |
2105 | printk(KERN_WARNING PPIP32 | |
2106 | "%s: error: DMA disabled\n", p->name); | |
2107 | else { | |
2108 | pr_probe(p, "DMA support enabled\n"); | |
2109 | p->dma = 0; /* arbitrary value != PARPORT_DMA_NONE */ | |
2110 | p->modes |= PARPORT_MODE_DMA; | |
2111 | } | |
2112 | } | |
2113 | ||
2114 | if (features & PARPORT_IP32_ENABLE_SPP) { | |
2115 | /* Enable compatibility FIFO mode */ | |
2116 | p->ops->compat_write_data = parport_ip32_compat_write_data; | |
2117 | p->modes |= PARPORT_MODE_COMPAT; | |
2118 | pr_probe(p, "Hardware support for SPP mode enabled\n"); | |
2119 | } | |
2120 | if (features & PARPORT_IP32_ENABLE_EPP) { | |
2121 | /* Set up access functions to use EPP hardware. */ | |
2122 | p->ops->epp_read_data = parport_ip32_epp_read_data; | |
2123 | p->ops->epp_write_data = parport_ip32_epp_write_data; | |
2124 | p->ops->epp_read_addr = parport_ip32_epp_read_addr; | |
2125 | p->ops->epp_write_addr = parport_ip32_epp_write_addr; | |
2126 | p->modes |= PARPORT_MODE_EPP; | |
2127 | pr_probe(p, "Hardware support for EPP mode enabled\n"); | |
2128 | } | |
2129 | if (features & PARPORT_IP32_ENABLE_ECP) { | |
2130 | /* Enable ECP FIFO mode */ | |
2131 | p->ops->ecp_write_data = parport_ip32_ecp_write_data; | |
2132 | /* FIXME - not implemented */ | |
2133 | /* p->ops->ecp_read_data = parport_ip32_ecp_read_data; */ | |
2134 | /* p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */ | |
2135 | p->modes |= PARPORT_MODE_ECP; | |
2136 | pr_probe(p, "Hardware support for ECP mode enabled\n"); | |
2137 | } | |
2138 | ||
2139 | /* Initialize the port with sensible values */ | |
2140 | parport_ip32_set_mode(p, ECR_MODE_PS2); | |
2141 | parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); | |
2142 | parport_ip32_data_forward(p); | |
2143 | parport_ip32_disable_irq(p); | |
2144 | parport_ip32_write_data(p, 0x00); | |
2145 | parport_ip32_dump_state(p, "end init", 0); | |
2146 | ||
2147 | /* Print out what we found */ | |
2148 | printk(KERN_INFO "%s: SGI IP32 at 0x%lx (0x%lx)", | |
2149 | p->name, p->base, p->base_hi); | |
2150 | if (p->irq != PARPORT_IRQ_NONE) | |
2151 | printk(", irq %d", p->irq); | |
2152 | printk(" ["); | |
2153 | #define printmode(x) if (p->modes & PARPORT_MODE_##x) \ | |
2154 | printk("%s%s", f++ ? "," : "", #x) | |
2155 | { | |
2156 | unsigned int f = 0; | |
2157 | printmode(PCSPP); | |
2158 | printmode(TRISTATE); | |
2159 | printmode(COMPAT); | |
2160 | printmode(EPP); | |
2161 | printmode(ECP); | |
2162 | printmode(DMA); | |
2163 | } | |
2164 | #undef printmode | |
2165 | printk("]\n"); | |
2166 | ||
2167 | parport_announce_port(p); | |
2168 | return p; | |
2169 | ||
2170 | fail: | |
2171 | if (p) | |
2172 | parport_put_port(p); | |
2173 | kfree(priv); | |
2174 | kfree(ops); | |
2175 | return ERR_PTR(err); | |
2176 | } | |
2177 | ||
2178 | /** | |
2179 | * parport_ip32_unregister_port - unregister a parallel port | |
2180 | * @p: pointer to the &struct parport | |
2181 | * | |
2182 | * Unregisters a parallel port and free previously allocated resources | |
2183 | * (memory, IRQ, ...). | |
2184 | */ | |
2185 | static __exit void parport_ip32_unregister_port(struct parport *p) | |
2186 | { | |
2187 | struct parport_ip32_private * const priv = p->physport->private_data; | |
2188 | struct parport_operations *ops = p->ops; | |
2189 | ||
2190 | parport_remove_port(p); | |
2191 | if (p->modes & PARPORT_MODE_DMA) | |
2192 | parport_ip32_dma_unregister(); | |
2193 | if (p->irq != PARPORT_IRQ_NONE) | |
2194 | free_irq(p->irq, p); | |
2195 | parport_put_port(p); | |
2196 | kfree(priv); | |
2197 | kfree(ops); | |
2198 | } | |
2199 | ||
2200 | /** | |
2201 | * parport_ip32_init - module initialization function | |
2202 | */ | |
2203 | static int __init parport_ip32_init(void) | |
2204 | { | |
2205 | pr_info(PPIP32 "SGI IP32 built-in parallel port driver v0.6\n"); | |
2206 | pr_debug1(PPIP32 "Compiled on %s, %s\n", __DATE__, __TIME__); | |
2207 | this_port = parport_ip32_probe_port(); | |
2208 | return IS_ERR(this_port) ? PTR_ERR(this_port) : 0; | |
2209 | } | |
2210 | ||
2211 | /** | |
2212 | * parport_ip32_exit - module termination function | |
2213 | */ | |
2214 | static void __exit parport_ip32_exit(void) | |
2215 | { | |
2216 | parport_ip32_unregister_port(this_port); | |
2217 | } | |
2218 | ||
2219 | /*--- Module stuff -----------------------------------------------------*/ | |
2220 | ||
2221 | MODULE_AUTHOR("Arnaud Giersch <[email protected]>"); | |
2222 | MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver"); | |
2223 | MODULE_LICENSE("GPL"); | |
2224 | MODULE_VERSION("0.6"); /* update in parport_ip32_init() too */ | |
2225 | ||
2226 | module_init(parport_ip32_init); | |
2227 | module_exit(parport_ip32_exit); | |
2228 | ||
2229 | module_param(verbose_probing, bool, S_IRUGO); | |
2230 | MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialization"); | |
2231 | ||
2232 | module_param(features, uint, S_IRUGO); | |
2233 | MODULE_PARM_DESC(features, | |
2234 | "Bit mask of features to enable" | |
2235 | ", bit 0: IRQ support" | |
2236 | ", bit 1: DMA support" | |
2237 | ", bit 2: hardware SPP mode" | |
2238 | ", bit 3: hardware EPP mode" | |
2239 | ", bit 4: hardware ECP mode"); | |
2240 | ||
2241 | /*--- Inform (X)Emacs about preferred coding style ---------------------*/ | |
2242 | /* | |
2243 | * Local Variables: | |
2244 | * mode: c | |
2245 | * c-file-style: "linux" | |
2246 | * indent-tabs-mode: t | |
2247 | * tab-width: 8 | |
2248 | * fill-column: 78 | |
2249 | * ispell-local-dictionary: "american" | |
2250 | * End: | |
2251 | */ |