]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
4bbd4c77 KS |
2 | #include <linux/kernel.h> |
3 | #include <linux/errno.h> | |
4 | #include <linux/err.h> | |
5 | #include <linux/spinlock.h> | |
6 | ||
4bbd4c77 | 7 | #include <linux/mm.h> |
3565fce3 | 8 | #include <linux/memremap.h> |
4bbd4c77 KS |
9 | #include <linux/pagemap.h> |
10 | #include <linux/rmap.h> | |
11 | #include <linux/swap.h> | |
12 | #include <linux/swapops.h> | |
13 | ||
174cd4b1 | 14 | #include <linux/sched/signal.h> |
2667f50e | 15 | #include <linux/rwsem.h> |
f30c59e9 | 16 | #include <linux/hugetlb.h> |
9a4e9f3b AK |
17 | #include <linux/migrate.h> |
18 | #include <linux/mm_inline.h> | |
19 | #include <linux/sched/mm.h> | |
1027e443 | 20 | |
33a709b2 | 21 | #include <asm/mmu_context.h> |
2667f50e | 22 | #include <asm/pgtable.h> |
1027e443 | 23 | #include <asm/tlbflush.h> |
2667f50e | 24 | |
4bbd4c77 KS |
25 | #include "internal.h" |
26 | ||
df06b37f KB |
27 | struct follow_page_context { |
28 | struct dev_pagemap *pgmap; | |
29 | unsigned int page_mask; | |
30 | }; | |
31 | ||
fc1d8e7c | 32 | /** |
2d15eb31 AM |
33 | * put_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages |
34 | * @pages: array of pages to be maybe marked dirty, and definitely released. | |
fc1d8e7c | 35 | * @npages: number of pages in the @pages array. |
2d15eb31 | 36 | * @make_dirty: whether to mark the pages dirty |
fc1d8e7c JH |
37 | * |
38 | * "gup-pinned page" refers to a page that has had one of the get_user_pages() | |
39 | * variants called on that page. | |
40 | * | |
41 | * For each page in the @pages array, make that page (or its head page, if a | |
2d15eb31 AM |
42 | * compound page) dirty, if @make_dirty is true, and if the page was previously |
43 | * listed as clean. In any case, releases all pages using put_user_page(), | |
44 | * possibly via put_user_pages(), for the non-dirty case. | |
fc1d8e7c JH |
45 | * |
46 | * Please see the put_user_page() documentation for details. | |
47 | * | |
2d15eb31 AM |
48 | * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is |
49 | * required, then the caller should a) verify that this is really correct, | |
50 | * because _lock() is usually required, and b) hand code it: | |
51 | * set_page_dirty_lock(), put_user_page(). | |
fc1d8e7c JH |
52 | * |
53 | */ | |
2d15eb31 AM |
54 | void put_user_pages_dirty_lock(struct page **pages, unsigned long npages, |
55 | bool make_dirty) | |
fc1d8e7c | 56 | { |
2d15eb31 | 57 | unsigned long index; |
fc1d8e7c | 58 | |
2d15eb31 AM |
59 | /* |
60 | * TODO: this can be optimized for huge pages: if a series of pages is | |
61 | * physically contiguous and part of the same compound page, then a | |
62 | * single operation to the head page should suffice. | |
63 | */ | |
64 | ||
65 | if (!make_dirty) { | |
66 | put_user_pages(pages, npages); | |
67 | return; | |
68 | } | |
69 | ||
70 | for (index = 0; index < npages; index++) { | |
71 | struct page *page = compound_head(pages[index]); | |
72 | /* | |
73 | * Checking PageDirty at this point may race with | |
74 | * clear_page_dirty_for_io(), but that's OK. Two key | |
75 | * cases: | |
76 | * | |
77 | * 1) This code sees the page as already dirty, so it | |
78 | * skips the call to set_page_dirty(). That could happen | |
79 | * because clear_page_dirty_for_io() called | |
80 | * page_mkclean(), followed by set_page_dirty(). | |
81 | * However, now the page is going to get written back, | |
82 | * which meets the original intention of setting it | |
83 | * dirty, so all is well: clear_page_dirty_for_io() goes | |
84 | * on to call TestClearPageDirty(), and write the page | |
85 | * back. | |
86 | * | |
87 | * 2) This code sees the page as clean, so it calls | |
88 | * set_page_dirty(). The page stays dirty, despite being | |
89 | * written back, so it gets written back again in the | |
90 | * next writeback cycle. This is harmless. | |
91 | */ | |
92 | if (!PageDirty(page)) | |
93 | set_page_dirty_lock(page); | |
94 | put_user_page(page); | |
95 | } | |
fc1d8e7c JH |
96 | } |
97 | EXPORT_SYMBOL(put_user_pages_dirty_lock); | |
98 | ||
99 | /** | |
100 | * put_user_pages() - release an array of gup-pinned pages. | |
101 | * @pages: array of pages to be marked dirty and released. | |
102 | * @npages: number of pages in the @pages array. | |
103 | * | |
104 | * For each page in the @pages array, release the page using put_user_page(). | |
105 | * | |
106 | * Please see the put_user_page() documentation for details. | |
107 | */ | |
108 | void put_user_pages(struct page **pages, unsigned long npages) | |
109 | { | |
110 | unsigned long index; | |
111 | ||
112 | /* | |
113 | * TODO: this can be optimized for huge pages: if a series of pages is | |
114 | * physically contiguous and part of the same compound page, then a | |
115 | * single operation to the head page should suffice. | |
116 | */ | |
117 | for (index = 0; index < npages; index++) | |
118 | put_user_page(pages[index]); | |
119 | } | |
120 | EXPORT_SYMBOL(put_user_pages); | |
121 | ||
050a9adc | 122 | #ifdef CONFIG_MMU |
69e68b4f KS |
123 | static struct page *no_page_table(struct vm_area_struct *vma, |
124 | unsigned int flags) | |
4bbd4c77 | 125 | { |
69e68b4f KS |
126 | /* |
127 | * When core dumping an enormous anonymous area that nobody | |
128 | * has touched so far, we don't want to allocate unnecessary pages or | |
129 | * page tables. Return error instead of NULL to skip handle_mm_fault, | |
130 | * then get_dump_page() will return NULL to leave a hole in the dump. | |
131 | * But we can only make this optimization where a hole would surely | |
132 | * be zero-filled if handle_mm_fault() actually did handle it. | |
133 | */ | |
134 | if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) | |
135 | return ERR_PTR(-EFAULT); | |
136 | return NULL; | |
137 | } | |
4bbd4c77 | 138 | |
1027e443 KS |
139 | static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, |
140 | pte_t *pte, unsigned int flags) | |
141 | { | |
142 | /* No page to get reference */ | |
143 | if (flags & FOLL_GET) | |
144 | return -EFAULT; | |
145 | ||
146 | if (flags & FOLL_TOUCH) { | |
147 | pte_t entry = *pte; | |
148 | ||
149 | if (flags & FOLL_WRITE) | |
150 | entry = pte_mkdirty(entry); | |
151 | entry = pte_mkyoung(entry); | |
152 | ||
153 | if (!pte_same(*pte, entry)) { | |
154 | set_pte_at(vma->vm_mm, address, pte, entry); | |
155 | update_mmu_cache(vma, address, pte); | |
156 | } | |
157 | } | |
158 | ||
159 | /* Proper page table entry exists, but no corresponding struct page */ | |
160 | return -EEXIST; | |
161 | } | |
162 | ||
19be0eaf LT |
163 | /* |
164 | * FOLL_FORCE can write to even unwritable pte's, but only | |
165 | * after we've gone through a COW cycle and they are dirty. | |
166 | */ | |
167 | static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) | |
168 | { | |
f6f37321 | 169 | return pte_write(pte) || |
19be0eaf LT |
170 | ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); |
171 | } | |
172 | ||
69e68b4f | 173 | static struct page *follow_page_pte(struct vm_area_struct *vma, |
df06b37f KB |
174 | unsigned long address, pmd_t *pmd, unsigned int flags, |
175 | struct dev_pagemap **pgmap) | |
69e68b4f KS |
176 | { |
177 | struct mm_struct *mm = vma->vm_mm; | |
178 | struct page *page; | |
179 | spinlock_t *ptl; | |
180 | pte_t *ptep, pte; | |
4bbd4c77 | 181 | |
69e68b4f | 182 | retry: |
4bbd4c77 | 183 | if (unlikely(pmd_bad(*pmd))) |
69e68b4f | 184 | return no_page_table(vma, flags); |
4bbd4c77 KS |
185 | |
186 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | |
4bbd4c77 KS |
187 | pte = *ptep; |
188 | if (!pte_present(pte)) { | |
189 | swp_entry_t entry; | |
190 | /* | |
191 | * KSM's break_ksm() relies upon recognizing a ksm page | |
192 | * even while it is being migrated, so for that case we | |
193 | * need migration_entry_wait(). | |
194 | */ | |
195 | if (likely(!(flags & FOLL_MIGRATION))) | |
196 | goto no_page; | |
0661a336 | 197 | if (pte_none(pte)) |
4bbd4c77 KS |
198 | goto no_page; |
199 | entry = pte_to_swp_entry(pte); | |
200 | if (!is_migration_entry(entry)) | |
201 | goto no_page; | |
202 | pte_unmap_unlock(ptep, ptl); | |
203 | migration_entry_wait(mm, pmd, address); | |
69e68b4f | 204 | goto retry; |
4bbd4c77 | 205 | } |
8a0516ed | 206 | if ((flags & FOLL_NUMA) && pte_protnone(pte)) |
4bbd4c77 | 207 | goto no_page; |
19be0eaf | 208 | if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { |
69e68b4f KS |
209 | pte_unmap_unlock(ptep, ptl); |
210 | return NULL; | |
211 | } | |
4bbd4c77 KS |
212 | |
213 | page = vm_normal_page(vma, address, pte); | |
3565fce3 DW |
214 | if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { |
215 | /* | |
216 | * Only return device mapping pages in the FOLL_GET case since | |
217 | * they are only valid while holding the pgmap reference. | |
218 | */ | |
df06b37f KB |
219 | *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); |
220 | if (*pgmap) | |
3565fce3 DW |
221 | page = pte_page(pte); |
222 | else | |
223 | goto no_page; | |
224 | } else if (unlikely(!page)) { | |
1027e443 KS |
225 | if (flags & FOLL_DUMP) { |
226 | /* Avoid special (like zero) pages in core dumps */ | |
227 | page = ERR_PTR(-EFAULT); | |
228 | goto out; | |
229 | } | |
230 | ||
231 | if (is_zero_pfn(pte_pfn(pte))) { | |
232 | page = pte_page(pte); | |
233 | } else { | |
234 | int ret; | |
235 | ||
236 | ret = follow_pfn_pte(vma, address, ptep, flags); | |
237 | page = ERR_PTR(ret); | |
238 | goto out; | |
239 | } | |
4bbd4c77 KS |
240 | } |
241 | ||
6742d293 KS |
242 | if (flags & FOLL_SPLIT && PageTransCompound(page)) { |
243 | int ret; | |
244 | get_page(page); | |
245 | pte_unmap_unlock(ptep, ptl); | |
246 | lock_page(page); | |
247 | ret = split_huge_page(page); | |
248 | unlock_page(page); | |
249 | put_page(page); | |
250 | if (ret) | |
251 | return ERR_PTR(ret); | |
252 | goto retry; | |
253 | } | |
254 | ||
8fde12ca LT |
255 | if (flags & FOLL_GET) { |
256 | if (unlikely(!try_get_page(page))) { | |
257 | page = ERR_PTR(-ENOMEM); | |
258 | goto out; | |
259 | } | |
260 | } | |
4bbd4c77 KS |
261 | if (flags & FOLL_TOUCH) { |
262 | if ((flags & FOLL_WRITE) && | |
263 | !pte_dirty(pte) && !PageDirty(page)) | |
264 | set_page_dirty(page); | |
265 | /* | |
266 | * pte_mkyoung() would be more correct here, but atomic care | |
267 | * is needed to avoid losing the dirty bit: it is easier to use | |
268 | * mark_page_accessed(). | |
269 | */ | |
270 | mark_page_accessed(page); | |
271 | } | |
de60f5f1 | 272 | if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { |
e90309c9 KS |
273 | /* Do not mlock pte-mapped THP */ |
274 | if (PageTransCompound(page)) | |
275 | goto out; | |
276 | ||
4bbd4c77 KS |
277 | /* |
278 | * The preliminary mapping check is mainly to avoid the | |
279 | * pointless overhead of lock_page on the ZERO_PAGE | |
280 | * which might bounce very badly if there is contention. | |
281 | * | |
282 | * If the page is already locked, we don't need to | |
283 | * handle it now - vmscan will handle it later if and | |
284 | * when it attempts to reclaim the page. | |
285 | */ | |
286 | if (page->mapping && trylock_page(page)) { | |
287 | lru_add_drain(); /* push cached pages to LRU */ | |
288 | /* | |
289 | * Because we lock page here, and migration is | |
290 | * blocked by the pte's page reference, and we | |
291 | * know the page is still mapped, we don't even | |
292 | * need to check for file-cache page truncation. | |
293 | */ | |
294 | mlock_vma_page(page); | |
295 | unlock_page(page); | |
296 | } | |
297 | } | |
1027e443 | 298 | out: |
4bbd4c77 | 299 | pte_unmap_unlock(ptep, ptl); |
4bbd4c77 | 300 | return page; |
4bbd4c77 KS |
301 | no_page: |
302 | pte_unmap_unlock(ptep, ptl); | |
303 | if (!pte_none(pte)) | |
69e68b4f KS |
304 | return NULL; |
305 | return no_page_table(vma, flags); | |
306 | } | |
307 | ||
080dbb61 AK |
308 | static struct page *follow_pmd_mask(struct vm_area_struct *vma, |
309 | unsigned long address, pud_t *pudp, | |
df06b37f KB |
310 | unsigned int flags, |
311 | struct follow_page_context *ctx) | |
69e68b4f | 312 | { |
68827280 | 313 | pmd_t *pmd, pmdval; |
69e68b4f KS |
314 | spinlock_t *ptl; |
315 | struct page *page; | |
316 | struct mm_struct *mm = vma->vm_mm; | |
317 | ||
080dbb61 | 318 | pmd = pmd_offset(pudp, address); |
68827280 YH |
319 | /* |
320 | * The READ_ONCE() will stabilize the pmdval in a register or | |
321 | * on the stack so that it will stop changing under the code. | |
322 | */ | |
323 | pmdval = READ_ONCE(*pmd); | |
324 | if (pmd_none(pmdval)) | |
69e68b4f | 325 | return no_page_table(vma, flags); |
68827280 | 326 | if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) { |
e66f17ff NH |
327 | page = follow_huge_pmd(mm, address, pmd, flags); |
328 | if (page) | |
329 | return page; | |
330 | return no_page_table(vma, flags); | |
69e68b4f | 331 | } |
68827280 | 332 | if (is_hugepd(__hugepd(pmd_val(pmdval)))) { |
4dc71451 | 333 | page = follow_huge_pd(vma, address, |
68827280 | 334 | __hugepd(pmd_val(pmdval)), flags, |
4dc71451 AK |
335 | PMD_SHIFT); |
336 | if (page) | |
337 | return page; | |
338 | return no_page_table(vma, flags); | |
339 | } | |
84c3fc4e | 340 | retry: |
68827280 | 341 | if (!pmd_present(pmdval)) { |
84c3fc4e ZY |
342 | if (likely(!(flags & FOLL_MIGRATION))) |
343 | return no_page_table(vma, flags); | |
344 | VM_BUG_ON(thp_migration_supported() && | |
68827280 YH |
345 | !is_pmd_migration_entry(pmdval)); |
346 | if (is_pmd_migration_entry(pmdval)) | |
84c3fc4e | 347 | pmd_migration_entry_wait(mm, pmd); |
68827280 YH |
348 | pmdval = READ_ONCE(*pmd); |
349 | /* | |
350 | * MADV_DONTNEED may convert the pmd to null because | |
351 | * mmap_sem is held in read mode | |
352 | */ | |
353 | if (pmd_none(pmdval)) | |
354 | return no_page_table(vma, flags); | |
84c3fc4e ZY |
355 | goto retry; |
356 | } | |
68827280 | 357 | if (pmd_devmap(pmdval)) { |
3565fce3 | 358 | ptl = pmd_lock(mm, pmd); |
df06b37f | 359 | page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); |
3565fce3 DW |
360 | spin_unlock(ptl); |
361 | if (page) | |
362 | return page; | |
363 | } | |
68827280 | 364 | if (likely(!pmd_trans_huge(pmdval))) |
df06b37f | 365 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 366 | |
68827280 | 367 | if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) |
db08f203 AK |
368 | return no_page_table(vma, flags); |
369 | ||
84c3fc4e | 370 | retry_locked: |
6742d293 | 371 | ptl = pmd_lock(mm, pmd); |
68827280 YH |
372 | if (unlikely(pmd_none(*pmd))) { |
373 | spin_unlock(ptl); | |
374 | return no_page_table(vma, flags); | |
375 | } | |
84c3fc4e ZY |
376 | if (unlikely(!pmd_present(*pmd))) { |
377 | spin_unlock(ptl); | |
378 | if (likely(!(flags & FOLL_MIGRATION))) | |
379 | return no_page_table(vma, flags); | |
380 | pmd_migration_entry_wait(mm, pmd); | |
381 | goto retry_locked; | |
382 | } | |
6742d293 KS |
383 | if (unlikely(!pmd_trans_huge(*pmd))) { |
384 | spin_unlock(ptl); | |
df06b37f | 385 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 386 | } |
bfe7b00d | 387 | if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) { |
6742d293 KS |
388 | int ret; |
389 | page = pmd_page(*pmd); | |
390 | if (is_huge_zero_page(page)) { | |
391 | spin_unlock(ptl); | |
392 | ret = 0; | |
78ddc534 | 393 | split_huge_pmd(vma, pmd, address); |
337d9abf NH |
394 | if (pmd_trans_unstable(pmd)) |
395 | ret = -EBUSY; | |
bfe7b00d | 396 | } else if (flags & FOLL_SPLIT) { |
8fde12ca LT |
397 | if (unlikely(!try_get_page(page))) { |
398 | spin_unlock(ptl); | |
399 | return ERR_PTR(-ENOMEM); | |
400 | } | |
69e68b4f | 401 | spin_unlock(ptl); |
6742d293 KS |
402 | lock_page(page); |
403 | ret = split_huge_page(page); | |
404 | unlock_page(page); | |
405 | put_page(page); | |
baa355fd KS |
406 | if (pmd_none(*pmd)) |
407 | return no_page_table(vma, flags); | |
bfe7b00d SL |
408 | } else { /* flags & FOLL_SPLIT_PMD */ |
409 | spin_unlock(ptl); | |
410 | split_huge_pmd(vma, pmd, address); | |
411 | ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; | |
6742d293 KS |
412 | } |
413 | ||
414 | return ret ? ERR_PTR(ret) : | |
df06b37f | 415 | follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
69e68b4f | 416 | } |
6742d293 KS |
417 | page = follow_trans_huge_pmd(vma, address, pmd, flags); |
418 | spin_unlock(ptl); | |
df06b37f | 419 | ctx->page_mask = HPAGE_PMD_NR - 1; |
6742d293 | 420 | return page; |
4bbd4c77 KS |
421 | } |
422 | ||
080dbb61 AK |
423 | static struct page *follow_pud_mask(struct vm_area_struct *vma, |
424 | unsigned long address, p4d_t *p4dp, | |
df06b37f KB |
425 | unsigned int flags, |
426 | struct follow_page_context *ctx) | |
080dbb61 AK |
427 | { |
428 | pud_t *pud; | |
429 | spinlock_t *ptl; | |
430 | struct page *page; | |
431 | struct mm_struct *mm = vma->vm_mm; | |
432 | ||
433 | pud = pud_offset(p4dp, address); | |
434 | if (pud_none(*pud)) | |
435 | return no_page_table(vma, flags); | |
436 | if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { | |
437 | page = follow_huge_pud(mm, address, pud, flags); | |
438 | if (page) | |
439 | return page; | |
440 | return no_page_table(vma, flags); | |
441 | } | |
4dc71451 AK |
442 | if (is_hugepd(__hugepd(pud_val(*pud)))) { |
443 | page = follow_huge_pd(vma, address, | |
444 | __hugepd(pud_val(*pud)), flags, | |
445 | PUD_SHIFT); | |
446 | if (page) | |
447 | return page; | |
448 | return no_page_table(vma, flags); | |
449 | } | |
080dbb61 AK |
450 | if (pud_devmap(*pud)) { |
451 | ptl = pud_lock(mm, pud); | |
df06b37f | 452 | page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); |
080dbb61 AK |
453 | spin_unlock(ptl); |
454 | if (page) | |
455 | return page; | |
456 | } | |
457 | if (unlikely(pud_bad(*pud))) | |
458 | return no_page_table(vma, flags); | |
459 | ||
df06b37f | 460 | return follow_pmd_mask(vma, address, pud, flags, ctx); |
080dbb61 AK |
461 | } |
462 | ||
080dbb61 AK |
463 | static struct page *follow_p4d_mask(struct vm_area_struct *vma, |
464 | unsigned long address, pgd_t *pgdp, | |
df06b37f KB |
465 | unsigned int flags, |
466 | struct follow_page_context *ctx) | |
080dbb61 AK |
467 | { |
468 | p4d_t *p4d; | |
4dc71451 | 469 | struct page *page; |
080dbb61 AK |
470 | |
471 | p4d = p4d_offset(pgdp, address); | |
472 | if (p4d_none(*p4d)) | |
473 | return no_page_table(vma, flags); | |
474 | BUILD_BUG_ON(p4d_huge(*p4d)); | |
475 | if (unlikely(p4d_bad(*p4d))) | |
476 | return no_page_table(vma, flags); | |
477 | ||
4dc71451 AK |
478 | if (is_hugepd(__hugepd(p4d_val(*p4d)))) { |
479 | page = follow_huge_pd(vma, address, | |
480 | __hugepd(p4d_val(*p4d)), flags, | |
481 | P4D_SHIFT); | |
482 | if (page) | |
483 | return page; | |
484 | return no_page_table(vma, flags); | |
485 | } | |
df06b37f | 486 | return follow_pud_mask(vma, address, p4d, flags, ctx); |
080dbb61 AK |
487 | } |
488 | ||
489 | /** | |
490 | * follow_page_mask - look up a page descriptor from a user-virtual address | |
491 | * @vma: vm_area_struct mapping @address | |
492 | * @address: virtual address to look up | |
493 | * @flags: flags modifying lookup behaviour | |
78179556 MR |
494 | * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a |
495 | * pointer to output page_mask | |
080dbb61 AK |
496 | * |
497 | * @flags can have FOLL_ flags set, defined in <linux/mm.h> | |
498 | * | |
78179556 MR |
499 | * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches |
500 | * the device's dev_pagemap metadata to avoid repeating expensive lookups. | |
501 | * | |
502 | * On output, the @ctx->page_mask is set according to the size of the page. | |
503 | * | |
504 | * Return: the mapped (struct page *), %NULL if no mapping exists, or | |
080dbb61 AK |
505 | * an error pointer if there is a mapping to something not represented |
506 | * by a page descriptor (see also vm_normal_page()). | |
507 | */ | |
a7030aea | 508 | static struct page *follow_page_mask(struct vm_area_struct *vma, |
080dbb61 | 509 | unsigned long address, unsigned int flags, |
df06b37f | 510 | struct follow_page_context *ctx) |
080dbb61 AK |
511 | { |
512 | pgd_t *pgd; | |
513 | struct page *page; | |
514 | struct mm_struct *mm = vma->vm_mm; | |
515 | ||
df06b37f | 516 | ctx->page_mask = 0; |
080dbb61 AK |
517 | |
518 | /* make this handle hugepd */ | |
519 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); | |
520 | if (!IS_ERR(page)) { | |
521 | BUG_ON(flags & FOLL_GET); | |
522 | return page; | |
523 | } | |
524 | ||
525 | pgd = pgd_offset(mm, address); | |
526 | ||
527 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
528 | return no_page_table(vma, flags); | |
529 | ||
faaa5b62 AK |
530 | if (pgd_huge(*pgd)) { |
531 | page = follow_huge_pgd(mm, address, pgd, flags); | |
532 | if (page) | |
533 | return page; | |
534 | return no_page_table(vma, flags); | |
535 | } | |
4dc71451 AK |
536 | if (is_hugepd(__hugepd(pgd_val(*pgd)))) { |
537 | page = follow_huge_pd(vma, address, | |
538 | __hugepd(pgd_val(*pgd)), flags, | |
539 | PGDIR_SHIFT); | |
540 | if (page) | |
541 | return page; | |
542 | return no_page_table(vma, flags); | |
543 | } | |
faaa5b62 | 544 | |
df06b37f KB |
545 | return follow_p4d_mask(vma, address, pgd, flags, ctx); |
546 | } | |
547 | ||
548 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | |
549 | unsigned int foll_flags) | |
550 | { | |
551 | struct follow_page_context ctx = { NULL }; | |
552 | struct page *page; | |
553 | ||
554 | page = follow_page_mask(vma, address, foll_flags, &ctx); | |
555 | if (ctx.pgmap) | |
556 | put_dev_pagemap(ctx.pgmap); | |
557 | return page; | |
080dbb61 AK |
558 | } |
559 | ||
f2b495ca KS |
560 | static int get_gate_page(struct mm_struct *mm, unsigned long address, |
561 | unsigned int gup_flags, struct vm_area_struct **vma, | |
562 | struct page **page) | |
563 | { | |
564 | pgd_t *pgd; | |
c2febafc | 565 | p4d_t *p4d; |
f2b495ca KS |
566 | pud_t *pud; |
567 | pmd_t *pmd; | |
568 | pte_t *pte; | |
569 | int ret = -EFAULT; | |
570 | ||
571 | /* user gate pages are read-only */ | |
572 | if (gup_flags & FOLL_WRITE) | |
573 | return -EFAULT; | |
574 | if (address > TASK_SIZE) | |
575 | pgd = pgd_offset_k(address); | |
576 | else | |
577 | pgd = pgd_offset_gate(mm, address); | |
b5d1c39f AL |
578 | if (pgd_none(*pgd)) |
579 | return -EFAULT; | |
c2febafc | 580 | p4d = p4d_offset(pgd, address); |
b5d1c39f AL |
581 | if (p4d_none(*p4d)) |
582 | return -EFAULT; | |
c2febafc | 583 | pud = pud_offset(p4d, address); |
b5d1c39f AL |
584 | if (pud_none(*pud)) |
585 | return -EFAULT; | |
f2b495ca | 586 | pmd = pmd_offset(pud, address); |
84c3fc4e | 587 | if (!pmd_present(*pmd)) |
f2b495ca KS |
588 | return -EFAULT; |
589 | VM_BUG_ON(pmd_trans_huge(*pmd)); | |
590 | pte = pte_offset_map(pmd, address); | |
591 | if (pte_none(*pte)) | |
592 | goto unmap; | |
593 | *vma = get_gate_vma(mm); | |
594 | if (!page) | |
595 | goto out; | |
596 | *page = vm_normal_page(*vma, address, *pte); | |
597 | if (!*page) { | |
598 | if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) | |
599 | goto unmap; | |
600 | *page = pte_page(*pte); | |
601 | } | |
8fde12ca LT |
602 | if (unlikely(!try_get_page(*page))) { |
603 | ret = -ENOMEM; | |
604 | goto unmap; | |
605 | } | |
f2b495ca KS |
606 | out: |
607 | ret = 0; | |
608 | unmap: | |
609 | pte_unmap(pte); | |
610 | return ret; | |
611 | } | |
612 | ||
9a95f3cf PC |
613 | /* |
614 | * mmap_sem must be held on entry. If @nonblocking != NULL and | |
615 | * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. | |
616 | * If it is, *@nonblocking will be set to 0 and -EBUSY returned. | |
617 | */ | |
16744483 KS |
618 | static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, |
619 | unsigned long address, unsigned int *flags, int *nonblocking) | |
620 | { | |
16744483 | 621 | unsigned int fault_flags = 0; |
2b740303 | 622 | vm_fault_t ret; |
16744483 | 623 | |
de60f5f1 EM |
624 | /* mlock all present pages, but do not fault in new pages */ |
625 | if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) | |
626 | return -ENOENT; | |
16744483 KS |
627 | if (*flags & FOLL_WRITE) |
628 | fault_flags |= FAULT_FLAG_WRITE; | |
1b2ee126 DH |
629 | if (*flags & FOLL_REMOTE) |
630 | fault_flags |= FAULT_FLAG_REMOTE; | |
16744483 KS |
631 | if (nonblocking) |
632 | fault_flags |= FAULT_FLAG_ALLOW_RETRY; | |
633 | if (*flags & FOLL_NOWAIT) | |
634 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; | |
234b239b ALC |
635 | if (*flags & FOLL_TRIED) { |
636 | VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); | |
637 | fault_flags |= FAULT_FLAG_TRIED; | |
638 | } | |
16744483 | 639 | |
dcddffd4 | 640 | ret = handle_mm_fault(vma, address, fault_flags); |
16744483 | 641 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
642 | int err = vm_fault_to_errno(ret, *flags); |
643 | ||
644 | if (err) | |
645 | return err; | |
16744483 KS |
646 | BUG(); |
647 | } | |
648 | ||
649 | if (tsk) { | |
650 | if (ret & VM_FAULT_MAJOR) | |
651 | tsk->maj_flt++; | |
652 | else | |
653 | tsk->min_flt++; | |
654 | } | |
655 | ||
656 | if (ret & VM_FAULT_RETRY) { | |
96312e61 | 657 | if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) |
16744483 KS |
658 | *nonblocking = 0; |
659 | return -EBUSY; | |
660 | } | |
661 | ||
662 | /* | |
663 | * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when | |
664 | * necessary, even if maybe_mkwrite decided not to set pte_write. We | |
665 | * can thus safely do subsequent page lookups as if they were reads. | |
666 | * But only do so when looping for pte_write is futile: in some cases | |
667 | * userspace may also be wanting to write to the gotten user page, | |
668 | * which a read fault here might prevent (a readonly page might get | |
669 | * reCOWed by userspace write). | |
670 | */ | |
671 | if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) | |
2923117b | 672 | *flags |= FOLL_COW; |
16744483 KS |
673 | return 0; |
674 | } | |
675 | ||
fa5bb209 KS |
676 | static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) |
677 | { | |
678 | vm_flags_t vm_flags = vma->vm_flags; | |
1b2ee126 DH |
679 | int write = (gup_flags & FOLL_WRITE); |
680 | int foreign = (gup_flags & FOLL_REMOTE); | |
fa5bb209 KS |
681 | |
682 | if (vm_flags & (VM_IO | VM_PFNMAP)) | |
683 | return -EFAULT; | |
684 | ||
7f7ccc2c WT |
685 | if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) |
686 | return -EFAULT; | |
687 | ||
1b2ee126 | 688 | if (write) { |
fa5bb209 KS |
689 | if (!(vm_flags & VM_WRITE)) { |
690 | if (!(gup_flags & FOLL_FORCE)) | |
691 | return -EFAULT; | |
692 | /* | |
693 | * We used to let the write,force case do COW in a | |
694 | * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could | |
695 | * set a breakpoint in a read-only mapping of an | |
696 | * executable, without corrupting the file (yet only | |
697 | * when that file had been opened for writing!). | |
698 | * Anon pages in shared mappings are surprising: now | |
699 | * just reject it. | |
700 | */ | |
46435364 | 701 | if (!is_cow_mapping(vm_flags)) |
fa5bb209 | 702 | return -EFAULT; |
fa5bb209 KS |
703 | } |
704 | } else if (!(vm_flags & VM_READ)) { | |
705 | if (!(gup_flags & FOLL_FORCE)) | |
706 | return -EFAULT; | |
707 | /* | |
708 | * Is there actually any vma we can reach here which does not | |
709 | * have VM_MAYREAD set? | |
710 | */ | |
711 | if (!(vm_flags & VM_MAYREAD)) | |
712 | return -EFAULT; | |
713 | } | |
d61172b4 DH |
714 | /* |
715 | * gups are always data accesses, not instruction | |
716 | * fetches, so execute=false here | |
717 | */ | |
718 | if (!arch_vma_access_permitted(vma, write, false, foreign)) | |
33a709b2 | 719 | return -EFAULT; |
fa5bb209 KS |
720 | return 0; |
721 | } | |
722 | ||
4bbd4c77 KS |
723 | /** |
724 | * __get_user_pages() - pin user pages in memory | |
725 | * @tsk: task_struct of target task | |
726 | * @mm: mm_struct of target mm | |
727 | * @start: starting user address | |
728 | * @nr_pages: number of pages from start to pin | |
729 | * @gup_flags: flags modifying pin behaviour | |
730 | * @pages: array that receives pointers to the pages pinned. | |
731 | * Should be at least nr_pages long. Or NULL, if caller | |
732 | * only intends to ensure the pages are faulted in. | |
733 | * @vmas: array of pointers to vmas corresponding to each page. | |
734 | * Or NULL if the caller does not require them. | |
735 | * @nonblocking: whether waiting for disk IO or mmap_sem contention | |
736 | * | |
737 | * Returns number of pages pinned. This may be fewer than the number | |
738 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
739 | * were pinned, returns -errno. Each page returned must be released | |
740 | * with a put_page() call when it is finished with. vmas will only | |
741 | * remain valid while mmap_sem is held. | |
742 | * | |
9a95f3cf | 743 | * Must be called with mmap_sem held. It may be released. See below. |
4bbd4c77 KS |
744 | * |
745 | * __get_user_pages walks a process's page tables and takes a reference to | |
746 | * each struct page that each user address corresponds to at a given | |
747 | * instant. That is, it takes the page that would be accessed if a user | |
748 | * thread accesses the given user virtual address at that instant. | |
749 | * | |
750 | * This does not guarantee that the page exists in the user mappings when | |
751 | * __get_user_pages returns, and there may even be a completely different | |
752 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
753 | * and subsequently re faulted). However it does guarantee that the page | |
754 | * won't be freed completely. And mostly callers simply care that the page | |
755 | * contains data that was valid *at some point in time*. Typically, an IO | |
756 | * or similar operation cannot guarantee anything stronger anyway because | |
757 | * locks can't be held over the syscall boundary. | |
758 | * | |
759 | * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If | |
760 | * the page is written to, set_page_dirty (or set_page_dirty_lock, as | |
761 | * appropriate) must be called after the page is finished with, and | |
762 | * before put_page is called. | |
763 | * | |
764 | * If @nonblocking != NULL, __get_user_pages will not wait for disk IO | |
765 | * or mmap_sem contention, and if waiting is needed to pin all pages, | |
9a95f3cf PC |
766 | * *@nonblocking will be set to 0. Further, if @gup_flags does not |
767 | * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in | |
768 | * this case. | |
769 | * | |
770 | * A caller using such a combination of @nonblocking and @gup_flags | |
771 | * must therefore hold the mmap_sem for reading only, and recognize | |
772 | * when it's been released. Otherwise, it must be held for either | |
773 | * reading or writing and will not be released. | |
4bbd4c77 KS |
774 | * |
775 | * In most cases, get_user_pages or get_user_pages_fast should be used | |
776 | * instead of __get_user_pages. __get_user_pages should be used only if | |
777 | * you need some special @gup_flags. | |
778 | */ | |
0d731759 | 779 | static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
4bbd4c77 KS |
780 | unsigned long start, unsigned long nr_pages, |
781 | unsigned int gup_flags, struct page **pages, | |
782 | struct vm_area_struct **vmas, int *nonblocking) | |
783 | { | |
df06b37f | 784 | long ret = 0, i = 0; |
fa5bb209 | 785 | struct vm_area_struct *vma = NULL; |
df06b37f | 786 | struct follow_page_context ctx = { NULL }; |
4bbd4c77 KS |
787 | |
788 | if (!nr_pages) | |
789 | return 0; | |
790 | ||
f9652594 AK |
791 | start = untagged_addr(start); |
792 | ||
4bbd4c77 KS |
793 | VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); |
794 | ||
795 | /* | |
796 | * If FOLL_FORCE is set then do not force a full fault as the hinting | |
797 | * fault information is unrelated to the reference behaviour of a task | |
798 | * using the address space | |
799 | */ | |
800 | if (!(gup_flags & FOLL_FORCE)) | |
801 | gup_flags |= FOLL_NUMA; | |
802 | ||
4bbd4c77 | 803 | do { |
fa5bb209 KS |
804 | struct page *page; |
805 | unsigned int foll_flags = gup_flags; | |
806 | unsigned int page_increm; | |
807 | ||
808 | /* first iteration or cross vma bound */ | |
809 | if (!vma || start >= vma->vm_end) { | |
810 | vma = find_extend_vma(mm, start); | |
811 | if (!vma && in_gate_area(mm, start)) { | |
fa5bb209 KS |
812 | ret = get_gate_page(mm, start & PAGE_MASK, |
813 | gup_flags, &vma, | |
814 | pages ? &pages[i] : NULL); | |
815 | if (ret) | |
08be37b7 | 816 | goto out; |
df06b37f | 817 | ctx.page_mask = 0; |
fa5bb209 KS |
818 | goto next_page; |
819 | } | |
4bbd4c77 | 820 | |
df06b37f KB |
821 | if (!vma || check_vma_flags(vma, gup_flags)) { |
822 | ret = -EFAULT; | |
823 | goto out; | |
824 | } | |
fa5bb209 KS |
825 | if (is_vm_hugetlb_page(vma)) { |
826 | i = follow_hugetlb_page(mm, vma, pages, vmas, | |
827 | &start, &nr_pages, i, | |
87ffc118 | 828 | gup_flags, nonblocking); |
fa5bb209 | 829 | continue; |
4bbd4c77 | 830 | } |
fa5bb209 KS |
831 | } |
832 | retry: | |
833 | /* | |
834 | * If we have a pending SIGKILL, don't keep faulting pages and | |
835 | * potentially allocating memory. | |
836 | */ | |
fa45f116 | 837 | if (fatal_signal_pending(current)) { |
df06b37f KB |
838 | ret = -ERESTARTSYS; |
839 | goto out; | |
840 | } | |
fa5bb209 | 841 | cond_resched(); |
df06b37f KB |
842 | |
843 | page = follow_page_mask(vma, start, foll_flags, &ctx); | |
fa5bb209 | 844 | if (!page) { |
fa5bb209 KS |
845 | ret = faultin_page(tsk, vma, start, &foll_flags, |
846 | nonblocking); | |
847 | switch (ret) { | |
848 | case 0: | |
849 | goto retry; | |
df06b37f KB |
850 | case -EBUSY: |
851 | ret = 0; | |
852 | /* FALLTHRU */ | |
fa5bb209 KS |
853 | case -EFAULT: |
854 | case -ENOMEM: | |
855 | case -EHWPOISON: | |
df06b37f | 856 | goto out; |
fa5bb209 KS |
857 | case -ENOENT: |
858 | goto next_page; | |
4bbd4c77 | 859 | } |
fa5bb209 | 860 | BUG(); |
1027e443 KS |
861 | } else if (PTR_ERR(page) == -EEXIST) { |
862 | /* | |
863 | * Proper page table entry exists, but no corresponding | |
864 | * struct page. | |
865 | */ | |
866 | goto next_page; | |
867 | } else if (IS_ERR(page)) { | |
df06b37f KB |
868 | ret = PTR_ERR(page); |
869 | goto out; | |
1027e443 | 870 | } |
fa5bb209 KS |
871 | if (pages) { |
872 | pages[i] = page; | |
873 | flush_anon_page(vma, page, start); | |
874 | flush_dcache_page(page); | |
df06b37f | 875 | ctx.page_mask = 0; |
4bbd4c77 | 876 | } |
4bbd4c77 | 877 | next_page: |
fa5bb209 KS |
878 | if (vmas) { |
879 | vmas[i] = vma; | |
df06b37f | 880 | ctx.page_mask = 0; |
fa5bb209 | 881 | } |
df06b37f | 882 | page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); |
fa5bb209 KS |
883 | if (page_increm > nr_pages) |
884 | page_increm = nr_pages; | |
885 | i += page_increm; | |
886 | start += page_increm * PAGE_SIZE; | |
887 | nr_pages -= page_increm; | |
4bbd4c77 | 888 | } while (nr_pages); |
df06b37f KB |
889 | out: |
890 | if (ctx.pgmap) | |
891 | put_dev_pagemap(ctx.pgmap); | |
892 | return i ? i : ret; | |
4bbd4c77 | 893 | } |
4bbd4c77 | 894 | |
771ab430 TK |
895 | static bool vma_permits_fault(struct vm_area_struct *vma, |
896 | unsigned int fault_flags) | |
d4925e00 | 897 | { |
1b2ee126 DH |
898 | bool write = !!(fault_flags & FAULT_FLAG_WRITE); |
899 | bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); | |
33a709b2 | 900 | vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; |
d4925e00 DH |
901 | |
902 | if (!(vm_flags & vma->vm_flags)) | |
903 | return false; | |
904 | ||
33a709b2 DH |
905 | /* |
906 | * The architecture might have a hardware protection | |
1b2ee126 | 907 | * mechanism other than read/write that can deny access. |
d61172b4 DH |
908 | * |
909 | * gup always represents data access, not instruction | |
910 | * fetches, so execute=false here: | |
33a709b2 | 911 | */ |
d61172b4 | 912 | if (!arch_vma_access_permitted(vma, write, false, foreign)) |
33a709b2 DH |
913 | return false; |
914 | ||
d4925e00 DH |
915 | return true; |
916 | } | |
917 | ||
4bbd4c77 KS |
918 | /* |
919 | * fixup_user_fault() - manually resolve a user page fault | |
920 | * @tsk: the task_struct to use for page fault accounting, or | |
921 | * NULL if faults are not to be recorded. | |
922 | * @mm: mm_struct of target mm | |
923 | * @address: user address | |
924 | * @fault_flags:flags to pass down to handle_mm_fault() | |
4a9e1cda DD |
925 | * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller |
926 | * does not allow retry | |
4bbd4c77 KS |
927 | * |
928 | * This is meant to be called in the specific scenario where for locking reasons | |
929 | * we try to access user memory in atomic context (within a pagefault_disable() | |
930 | * section), this returns -EFAULT, and we want to resolve the user fault before | |
931 | * trying again. | |
932 | * | |
933 | * Typically this is meant to be used by the futex code. | |
934 | * | |
935 | * The main difference with get_user_pages() is that this function will | |
936 | * unconditionally call handle_mm_fault() which will in turn perform all the | |
937 | * necessary SW fixup of the dirty and young bits in the PTE, while | |
4a9e1cda | 938 | * get_user_pages() only guarantees to update these in the struct page. |
4bbd4c77 KS |
939 | * |
940 | * This is important for some architectures where those bits also gate the | |
941 | * access permission to the page because they are maintained in software. On | |
942 | * such architectures, gup() will not be enough to make a subsequent access | |
943 | * succeed. | |
944 | * | |
4a9e1cda DD |
945 | * This function will not return with an unlocked mmap_sem. So it has not the |
946 | * same semantics wrt the @mm->mmap_sem as does filemap_fault(). | |
4bbd4c77 KS |
947 | */ |
948 | int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, | |
4a9e1cda DD |
949 | unsigned long address, unsigned int fault_flags, |
950 | bool *unlocked) | |
4bbd4c77 KS |
951 | { |
952 | struct vm_area_struct *vma; | |
2b740303 | 953 | vm_fault_t ret, major = 0; |
4a9e1cda | 954 | |
f9652594 AK |
955 | address = untagged_addr(address); |
956 | ||
4a9e1cda DD |
957 | if (unlocked) |
958 | fault_flags |= FAULT_FLAG_ALLOW_RETRY; | |
4bbd4c77 | 959 | |
4a9e1cda | 960 | retry: |
4bbd4c77 KS |
961 | vma = find_extend_vma(mm, address); |
962 | if (!vma || address < vma->vm_start) | |
963 | return -EFAULT; | |
964 | ||
d4925e00 | 965 | if (!vma_permits_fault(vma, fault_flags)) |
4bbd4c77 KS |
966 | return -EFAULT; |
967 | ||
dcddffd4 | 968 | ret = handle_mm_fault(vma, address, fault_flags); |
4a9e1cda | 969 | major |= ret & VM_FAULT_MAJOR; |
4bbd4c77 | 970 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
971 | int err = vm_fault_to_errno(ret, 0); |
972 | ||
973 | if (err) | |
974 | return err; | |
4bbd4c77 KS |
975 | BUG(); |
976 | } | |
4a9e1cda DD |
977 | |
978 | if (ret & VM_FAULT_RETRY) { | |
979 | down_read(&mm->mmap_sem); | |
980 | if (!(fault_flags & FAULT_FLAG_TRIED)) { | |
981 | *unlocked = true; | |
982 | fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; | |
983 | fault_flags |= FAULT_FLAG_TRIED; | |
984 | goto retry; | |
985 | } | |
986 | } | |
987 | ||
4bbd4c77 | 988 | if (tsk) { |
4a9e1cda | 989 | if (major) |
4bbd4c77 KS |
990 | tsk->maj_flt++; |
991 | else | |
992 | tsk->min_flt++; | |
993 | } | |
994 | return 0; | |
995 | } | |
add6a0cd | 996 | EXPORT_SYMBOL_GPL(fixup_user_fault); |
4bbd4c77 | 997 | |
f0818f47 AA |
998 | static __always_inline long __get_user_pages_locked(struct task_struct *tsk, |
999 | struct mm_struct *mm, | |
1000 | unsigned long start, | |
1001 | unsigned long nr_pages, | |
f0818f47 AA |
1002 | struct page **pages, |
1003 | struct vm_area_struct **vmas, | |
e716712f | 1004 | int *locked, |
0fd71a56 | 1005 | unsigned int flags) |
f0818f47 | 1006 | { |
f0818f47 AA |
1007 | long ret, pages_done; |
1008 | bool lock_dropped; | |
1009 | ||
1010 | if (locked) { | |
1011 | /* if VM_FAULT_RETRY can be returned, vmas become invalid */ | |
1012 | BUG_ON(vmas); | |
1013 | /* check caller initialized locked */ | |
1014 | BUG_ON(*locked != 1); | |
1015 | } | |
1016 | ||
1017 | if (pages) | |
1018 | flags |= FOLL_GET; | |
f0818f47 AA |
1019 | |
1020 | pages_done = 0; | |
1021 | lock_dropped = false; | |
1022 | for (;;) { | |
1023 | ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, | |
1024 | vmas, locked); | |
1025 | if (!locked) | |
1026 | /* VM_FAULT_RETRY couldn't trigger, bypass */ | |
1027 | return ret; | |
1028 | ||
1029 | /* VM_FAULT_RETRY cannot return errors */ | |
1030 | if (!*locked) { | |
1031 | BUG_ON(ret < 0); | |
1032 | BUG_ON(ret >= nr_pages); | |
1033 | } | |
1034 | ||
f0818f47 AA |
1035 | if (ret > 0) { |
1036 | nr_pages -= ret; | |
1037 | pages_done += ret; | |
1038 | if (!nr_pages) | |
1039 | break; | |
1040 | } | |
1041 | if (*locked) { | |
96312e61 AA |
1042 | /* |
1043 | * VM_FAULT_RETRY didn't trigger or it was a | |
1044 | * FOLL_NOWAIT. | |
1045 | */ | |
f0818f47 AA |
1046 | if (!pages_done) |
1047 | pages_done = ret; | |
1048 | break; | |
1049 | } | |
df17277b MR |
1050 | /* |
1051 | * VM_FAULT_RETRY triggered, so seek to the faulting offset. | |
1052 | * For the prefault case (!pages) we only update counts. | |
1053 | */ | |
1054 | if (likely(pages)) | |
1055 | pages += ret; | |
f0818f47 AA |
1056 | start += ret << PAGE_SHIFT; |
1057 | ||
1058 | /* | |
1059 | * Repeat on the address that fired VM_FAULT_RETRY | |
1060 | * without FAULT_FLAG_ALLOW_RETRY but with | |
1061 | * FAULT_FLAG_TRIED. | |
1062 | */ | |
1063 | *locked = 1; | |
1064 | lock_dropped = true; | |
1065 | down_read(&mm->mmap_sem); | |
1066 | ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, | |
1067 | pages, NULL, NULL); | |
1068 | if (ret != 1) { | |
1069 | BUG_ON(ret > 1); | |
1070 | if (!pages_done) | |
1071 | pages_done = ret; | |
1072 | break; | |
1073 | } | |
1074 | nr_pages--; | |
1075 | pages_done++; | |
1076 | if (!nr_pages) | |
1077 | break; | |
df17277b MR |
1078 | if (likely(pages)) |
1079 | pages++; | |
f0818f47 AA |
1080 | start += PAGE_SIZE; |
1081 | } | |
e716712f | 1082 | if (lock_dropped && *locked) { |
f0818f47 AA |
1083 | /* |
1084 | * We must let the caller know we temporarily dropped the lock | |
1085 | * and so the critical section protected by it was lost. | |
1086 | */ | |
1087 | up_read(&mm->mmap_sem); | |
1088 | *locked = 0; | |
1089 | } | |
1090 | return pages_done; | |
1091 | } | |
1092 | ||
4bbd4c77 | 1093 | /* |
1e987790 | 1094 | * get_user_pages_remote() - pin user pages in memory |
4bbd4c77 KS |
1095 | * @tsk: the task_struct to use for page fault accounting, or |
1096 | * NULL if faults are not to be recorded. | |
1097 | * @mm: mm_struct of target mm | |
1098 | * @start: starting user address | |
1099 | * @nr_pages: number of pages from start to pin | |
9beae1ea | 1100 | * @gup_flags: flags modifying lookup behaviour |
4bbd4c77 KS |
1101 | * @pages: array that receives pointers to the pages pinned. |
1102 | * Should be at least nr_pages long. Or NULL, if caller | |
1103 | * only intends to ensure the pages are faulted in. | |
1104 | * @vmas: array of pointers to vmas corresponding to each page. | |
1105 | * Or NULL if the caller does not require them. | |
5b56d49f LS |
1106 | * @locked: pointer to lock flag indicating whether lock is held and |
1107 | * subsequently whether VM_FAULT_RETRY functionality can be | |
1108 | * utilised. Lock must initially be held. | |
4bbd4c77 KS |
1109 | * |
1110 | * Returns number of pages pinned. This may be fewer than the number | |
1111 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
1112 | * were pinned, returns -errno. Each page returned must be released | |
1113 | * with a put_page() call when it is finished with. vmas will only | |
1114 | * remain valid while mmap_sem is held. | |
1115 | * | |
1116 | * Must be called with mmap_sem held for read or write. | |
1117 | * | |
1118 | * get_user_pages walks a process's page tables and takes a reference to | |
1119 | * each struct page that each user address corresponds to at a given | |
1120 | * instant. That is, it takes the page that would be accessed if a user | |
1121 | * thread accesses the given user virtual address at that instant. | |
1122 | * | |
1123 | * This does not guarantee that the page exists in the user mappings when | |
1124 | * get_user_pages returns, and there may even be a completely different | |
1125 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
1126 | * and subsequently re faulted). However it does guarantee that the page | |
1127 | * won't be freed completely. And mostly callers simply care that the page | |
1128 | * contains data that was valid *at some point in time*. Typically, an IO | |
1129 | * or similar operation cannot guarantee anything stronger anyway because | |
1130 | * locks can't be held over the syscall boundary. | |
1131 | * | |
9beae1ea LS |
1132 | * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page |
1133 | * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must | |
1134 | * be called after the page is finished with, and before put_page is called. | |
4bbd4c77 KS |
1135 | * |
1136 | * get_user_pages is typically used for fewer-copy IO operations, to get a | |
1137 | * handle on the memory by some means other than accesses via the user virtual | |
1138 | * addresses. The pages may be submitted for DMA to devices or accessed via | |
1139 | * their kernel linear mapping (via the kmap APIs). Care should be taken to | |
1140 | * use the correct cache flushing APIs. | |
1141 | * | |
1142 | * See also get_user_pages_fast, for performance critical applications. | |
f0818f47 AA |
1143 | * |
1144 | * get_user_pages should be phased out in favor of | |
1145 | * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing | |
1146 | * should use get_user_pages because it cannot pass | |
1147 | * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. | |
4bbd4c77 | 1148 | */ |
1e987790 DH |
1149 | long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, |
1150 | unsigned long start, unsigned long nr_pages, | |
9beae1ea | 1151 | unsigned int gup_flags, struct page **pages, |
5b56d49f | 1152 | struct vm_area_struct **vmas, int *locked) |
4bbd4c77 | 1153 | { |
932f4a63 IW |
1154 | /* |
1155 | * FIXME: Current FOLL_LONGTERM behavior is incompatible with | |
1156 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
1157 | * vmas. As there are no users of this flag in this call we simply | |
1158 | * disallow this option for now. | |
1159 | */ | |
1160 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) | |
1161 | return -EINVAL; | |
1162 | ||
859110d7 | 1163 | return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, |
e716712f | 1164 | locked, |
9beae1ea | 1165 | gup_flags | FOLL_TOUCH | FOLL_REMOTE); |
1e987790 DH |
1166 | } |
1167 | EXPORT_SYMBOL(get_user_pages_remote); | |
1168 | ||
d3649f68 CH |
1169 | /** |
1170 | * populate_vma_page_range() - populate a range of pages in the vma. | |
1171 | * @vma: target vma | |
1172 | * @start: start address | |
1173 | * @end: end address | |
1174 | * @nonblocking: | |
1175 | * | |
1176 | * This takes care of mlocking the pages too if VM_LOCKED is set. | |
1177 | * | |
1178 | * return 0 on success, negative error code on error. | |
1179 | * | |
1180 | * vma->vm_mm->mmap_sem must be held. | |
1181 | * | |
1182 | * If @nonblocking is NULL, it may be held for read or write and will | |
1183 | * be unperturbed. | |
1184 | * | |
1185 | * If @nonblocking is non-NULL, it must held for read only and may be | |
1186 | * released. If it's released, *@nonblocking will be set to 0. | |
1187 | */ | |
1188 | long populate_vma_page_range(struct vm_area_struct *vma, | |
1189 | unsigned long start, unsigned long end, int *nonblocking) | |
1190 | { | |
1191 | struct mm_struct *mm = vma->vm_mm; | |
1192 | unsigned long nr_pages = (end - start) / PAGE_SIZE; | |
1193 | int gup_flags; | |
1194 | ||
1195 | VM_BUG_ON(start & ~PAGE_MASK); | |
1196 | VM_BUG_ON(end & ~PAGE_MASK); | |
1197 | VM_BUG_ON_VMA(start < vma->vm_start, vma); | |
1198 | VM_BUG_ON_VMA(end > vma->vm_end, vma); | |
1199 | VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); | |
1200 | ||
1201 | gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; | |
1202 | if (vma->vm_flags & VM_LOCKONFAULT) | |
1203 | gup_flags &= ~FOLL_POPULATE; | |
1204 | /* | |
1205 | * We want to touch writable mappings with a write fault in order | |
1206 | * to break COW, except for shared mappings because these don't COW | |
1207 | * and we would not want to dirty them for nothing. | |
1208 | */ | |
1209 | if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) | |
1210 | gup_flags |= FOLL_WRITE; | |
1211 | ||
1212 | /* | |
1213 | * We want mlock to succeed for regions that have any permissions | |
1214 | * other than PROT_NONE. | |
1215 | */ | |
1216 | if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) | |
1217 | gup_flags |= FOLL_FORCE; | |
1218 | ||
1219 | /* | |
1220 | * We made sure addr is within a VMA, so the following will | |
1221 | * not result in a stack expansion that recurses back here. | |
1222 | */ | |
1223 | return __get_user_pages(current, mm, start, nr_pages, gup_flags, | |
1224 | NULL, NULL, nonblocking); | |
1225 | } | |
1226 | ||
1227 | /* | |
1228 | * __mm_populate - populate and/or mlock pages within a range of address space. | |
1229 | * | |
1230 | * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap | |
1231 | * flags. VMAs must be already marked with the desired vm_flags, and | |
1232 | * mmap_sem must not be held. | |
1233 | */ | |
1234 | int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) | |
1235 | { | |
1236 | struct mm_struct *mm = current->mm; | |
1237 | unsigned long end, nstart, nend; | |
1238 | struct vm_area_struct *vma = NULL; | |
1239 | int locked = 0; | |
1240 | long ret = 0; | |
1241 | ||
1242 | end = start + len; | |
1243 | ||
1244 | for (nstart = start; nstart < end; nstart = nend) { | |
1245 | /* | |
1246 | * We want to fault in pages for [nstart; end) address range. | |
1247 | * Find first corresponding VMA. | |
1248 | */ | |
1249 | if (!locked) { | |
1250 | locked = 1; | |
1251 | down_read(&mm->mmap_sem); | |
1252 | vma = find_vma(mm, nstart); | |
1253 | } else if (nstart >= vma->vm_end) | |
1254 | vma = vma->vm_next; | |
1255 | if (!vma || vma->vm_start >= end) | |
1256 | break; | |
1257 | /* | |
1258 | * Set [nstart; nend) to intersection of desired address | |
1259 | * range with the first VMA. Also, skip undesirable VMA types. | |
1260 | */ | |
1261 | nend = min(end, vma->vm_end); | |
1262 | if (vma->vm_flags & (VM_IO | VM_PFNMAP)) | |
1263 | continue; | |
1264 | if (nstart < vma->vm_start) | |
1265 | nstart = vma->vm_start; | |
1266 | /* | |
1267 | * Now fault in a range of pages. populate_vma_page_range() | |
1268 | * double checks the vma flags, so that it won't mlock pages | |
1269 | * if the vma was already munlocked. | |
1270 | */ | |
1271 | ret = populate_vma_page_range(vma, nstart, nend, &locked); | |
1272 | if (ret < 0) { | |
1273 | if (ignore_errors) { | |
1274 | ret = 0; | |
1275 | continue; /* continue at next VMA */ | |
1276 | } | |
1277 | break; | |
1278 | } | |
1279 | nend = nstart + ret * PAGE_SIZE; | |
1280 | ret = 0; | |
1281 | } | |
1282 | if (locked) | |
1283 | up_read(&mm->mmap_sem); | |
1284 | return ret; /* 0 or negative error code */ | |
1285 | } | |
1286 | ||
1287 | /** | |
1288 | * get_dump_page() - pin user page in memory while writing it to core dump | |
1289 | * @addr: user address | |
1290 | * | |
1291 | * Returns struct page pointer of user page pinned for dump, | |
1292 | * to be freed afterwards by put_page(). | |
1293 | * | |
1294 | * Returns NULL on any kind of failure - a hole must then be inserted into | |
1295 | * the corefile, to preserve alignment with its headers; and also returns | |
1296 | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - | |
1297 | * allowing a hole to be left in the corefile to save diskspace. | |
1298 | * | |
1299 | * Called without mmap_sem, but after all other threads have been killed. | |
1300 | */ | |
1301 | #ifdef CONFIG_ELF_CORE | |
1302 | struct page *get_dump_page(unsigned long addr) | |
1303 | { | |
1304 | struct vm_area_struct *vma; | |
1305 | struct page *page; | |
1306 | ||
1307 | if (__get_user_pages(current, current->mm, addr, 1, | |
1308 | FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, | |
1309 | NULL) < 1) | |
1310 | return NULL; | |
1311 | flush_cache_page(vma, addr, page_to_pfn(page)); | |
1312 | return page; | |
1313 | } | |
1314 | #endif /* CONFIG_ELF_CORE */ | |
050a9adc CH |
1315 | #else /* CONFIG_MMU */ |
1316 | static long __get_user_pages_locked(struct task_struct *tsk, | |
1317 | struct mm_struct *mm, unsigned long start, | |
1318 | unsigned long nr_pages, struct page **pages, | |
1319 | struct vm_area_struct **vmas, int *locked, | |
1320 | unsigned int foll_flags) | |
1321 | { | |
1322 | struct vm_area_struct *vma; | |
1323 | unsigned long vm_flags; | |
1324 | int i; | |
1325 | ||
1326 | /* calculate required read or write permissions. | |
1327 | * If FOLL_FORCE is set, we only require the "MAY" flags. | |
1328 | */ | |
1329 | vm_flags = (foll_flags & FOLL_WRITE) ? | |
1330 | (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | |
1331 | vm_flags &= (foll_flags & FOLL_FORCE) ? | |
1332 | (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | |
1333 | ||
1334 | for (i = 0; i < nr_pages; i++) { | |
1335 | vma = find_vma(mm, start); | |
1336 | if (!vma) | |
1337 | goto finish_or_fault; | |
1338 | ||
1339 | /* protect what we can, including chardevs */ | |
1340 | if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || | |
1341 | !(vm_flags & vma->vm_flags)) | |
1342 | goto finish_or_fault; | |
1343 | ||
1344 | if (pages) { | |
1345 | pages[i] = virt_to_page(start); | |
1346 | if (pages[i]) | |
1347 | get_page(pages[i]); | |
1348 | } | |
1349 | if (vmas) | |
1350 | vmas[i] = vma; | |
1351 | start = (start + PAGE_SIZE) & PAGE_MASK; | |
1352 | } | |
1353 | ||
1354 | return i; | |
1355 | ||
1356 | finish_or_fault: | |
1357 | return i ? : -EFAULT; | |
1358 | } | |
1359 | #endif /* !CONFIG_MMU */ | |
d3649f68 | 1360 | |
9a4e9f3b | 1361 | #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) |
9a4e9f3b AK |
1362 | static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) |
1363 | { | |
1364 | long i; | |
1365 | struct vm_area_struct *vma_prev = NULL; | |
1366 | ||
1367 | for (i = 0; i < nr_pages; i++) { | |
1368 | struct vm_area_struct *vma = vmas[i]; | |
1369 | ||
1370 | if (vma == vma_prev) | |
1371 | continue; | |
1372 | ||
1373 | vma_prev = vma; | |
1374 | ||
1375 | if (vma_is_fsdax(vma)) | |
1376 | return true; | |
1377 | } | |
1378 | return false; | |
1379 | } | |
9a4e9f3b AK |
1380 | |
1381 | #ifdef CONFIG_CMA | |
1382 | static struct page *new_non_cma_page(struct page *page, unsigned long private) | |
1383 | { | |
1384 | /* | |
1385 | * We want to make sure we allocate the new page from the same node | |
1386 | * as the source page. | |
1387 | */ | |
1388 | int nid = page_to_nid(page); | |
1389 | /* | |
1390 | * Trying to allocate a page for migration. Ignore allocation | |
1391 | * failure warnings. We don't force __GFP_THISNODE here because | |
1392 | * this node here is the node where we have CMA reservation and | |
1393 | * in some case these nodes will have really less non movable | |
1394 | * allocation memory. | |
1395 | */ | |
1396 | gfp_t gfp_mask = GFP_USER | __GFP_NOWARN; | |
1397 | ||
1398 | if (PageHighMem(page)) | |
1399 | gfp_mask |= __GFP_HIGHMEM; | |
1400 | ||
1401 | #ifdef CONFIG_HUGETLB_PAGE | |
1402 | if (PageHuge(page)) { | |
1403 | struct hstate *h = page_hstate(page); | |
1404 | /* | |
1405 | * We don't want to dequeue from the pool because pool pages will | |
1406 | * mostly be from the CMA region. | |
1407 | */ | |
1408 | return alloc_migrate_huge_page(h, gfp_mask, nid, NULL); | |
1409 | } | |
1410 | #endif | |
1411 | if (PageTransHuge(page)) { | |
1412 | struct page *thp; | |
1413 | /* | |
1414 | * ignore allocation failure warnings | |
1415 | */ | |
1416 | gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN; | |
1417 | ||
1418 | /* | |
1419 | * Remove the movable mask so that we don't allocate from | |
1420 | * CMA area again. | |
1421 | */ | |
1422 | thp_gfpmask &= ~__GFP_MOVABLE; | |
1423 | thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER); | |
1424 | if (!thp) | |
1425 | return NULL; | |
1426 | prep_transhuge_page(thp); | |
1427 | return thp; | |
1428 | } | |
1429 | ||
1430 | return __alloc_pages_node(nid, gfp_mask, 0); | |
1431 | } | |
1432 | ||
932f4a63 IW |
1433 | static long check_and_migrate_cma_pages(struct task_struct *tsk, |
1434 | struct mm_struct *mm, | |
1435 | unsigned long start, | |
1436 | unsigned long nr_pages, | |
9a4e9f3b | 1437 | struct page **pages, |
932f4a63 IW |
1438 | struct vm_area_struct **vmas, |
1439 | unsigned int gup_flags) | |
9a4e9f3b | 1440 | { |
aa712399 PL |
1441 | unsigned long i; |
1442 | unsigned long step; | |
9a4e9f3b AK |
1443 | bool drain_allow = true; |
1444 | bool migrate_allow = true; | |
1445 | LIST_HEAD(cma_page_list); | |
1446 | ||
1447 | check_again: | |
aa712399 PL |
1448 | for (i = 0; i < nr_pages;) { |
1449 | ||
1450 | struct page *head = compound_head(pages[i]); | |
1451 | ||
1452 | /* | |
1453 | * gup may start from a tail page. Advance step by the left | |
1454 | * part. | |
1455 | */ | |
d8c6546b | 1456 | step = compound_nr(head) - (pages[i] - head); |
9a4e9f3b AK |
1457 | /* |
1458 | * If we get a page from the CMA zone, since we are going to | |
1459 | * be pinning these entries, we might as well move them out | |
1460 | * of the CMA zone if possible. | |
1461 | */ | |
aa712399 PL |
1462 | if (is_migrate_cma_page(head)) { |
1463 | if (PageHuge(head)) | |
9a4e9f3b | 1464 | isolate_huge_page(head, &cma_page_list); |
aa712399 | 1465 | else { |
9a4e9f3b AK |
1466 | if (!PageLRU(head) && drain_allow) { |
1467 | lru_add_drain_all(); | |
1468 | drain_allow = false; | |
1469 | } | |
1470 | ||
1471 | if (!isolate_lru_page(head)) { | |
1472 | list_add_tail(&head->lru, &cma_page_list); | |
1473 | mod_node_page_state(page_pgdat(head), | |
1474 | NR_ISOLATED_ANON + | |
1475 | page_is_file_cache(head), | |
1476 | hpage_nr_pages(head)); | |
1477 | } | |
1478 | } | |
1479 | } | |
aa712399 PL |
1480 | |
1481 | i += step; | |
9a4e9f3b AK |
1482 | } |
1483 | ||
1484 | if (!list_empty(&cma_page_list)) { | |
1485 | /* | |
1486 | * drop the above get_user_pages reference. | |
1487 | */ | |
1488 | for (i = 0; i < nr_pages; i++) | |
1489 | put_page(pages[i]); | |
1490 | ||
1491 | if (migrate_pages(&cma_page_list, new_non_cma_page, | |
1492 | NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) { | |
1493 | /* | |
1494 | * some of the pages failed migration. Do get_user_pages | |
1495 | * without migration. | |
1496 | */ | |
1497 | migrate_allow = false; | |
1498 | ||
1499 | if (!list_empty(&cma_page_list)) | |
1500 | putback_movable_pages(&cma_page_list); | |
1501 | } | |
1502 | /* | |
932f4a63 IW |
1503 | * We did migrate all the pages, Try to get the page references |
1504 | * again migrating any new CMA pages which we failed to isolate | |
1505 | * earlier. | |
9a4e9f3b | 1506 | */ |
932f4a63 IW |
1507 | nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages, |
1508 | pages, vmas, NULL, | |
1509 | gup_flags); | |
1510 | ||
9a4e9f3b AK |
1511 | if ((nr_pages > 0) && migrate_allow) { |
1512 | drain_allow = true; | |
1513 | goto check_again; | |
1514 | } | |
1515 | } | |
1516 | ||
1517 | return nr_pages; | |
1518 | } | |
1519 | #else | |
932f4a63 IW |
1520 | static long check_and_migrate_cma_pages(struct task_struct *tsk, |
1521 | struct mm_struct *mm, | |
1522 | unsigned long start, | |
1523 | unsigned long nr_pages, | |
1524 | struct page **pages, | |
1525 | struct vm_area_struct **vmas, | |
1526 | unsigned int gup_flags) | |
9a4e9f3b AK |
1527 | { |
1528 | return nr_pages; | |
1529 | } | |
050a9adc | 1530 | #endif /* CONFIG_CMA */ |
9a4e9f3b | 1531 | |
2bb6d283 | 1532 | /* |
932f4a63 IW |
1533 | * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which |
1534 | * allows us to process the FOLL_LONGTERM flag. | |
2bb6d283 | 1535 | */ |
932f4a63 IW |
1536 | static long __gup_longterm_locked(struct task_struct *tsk, |
1537 | struct mm_struct *mm, | |
1538 | unsigned long start, | |
1539 | unsigned long nr_pages, | |
1540 | struct page **pages, | |
1541 | struct vm_area_struct **vmas, | |
1542 | unsigned int gup_flags) | |
2bb6d283 | 1543 | { |
932f4a63 IW |
1544 | struct vm_area_struct **vmas_tmp = vmas; |
1545 | unsigned long flags = 0; | |
2bb6d283 DW |
1546 | long rc, i; |
1547 | ||
932f4a63 IW |
1548 | if (gup_flags & FOLL_LONGTERM) { |
1549 | if (!pages) | |
1550 | return -EINVAL; | |
1551 | ||
1552 | if (!vmas_tmp) { | |
1553 | vmas_tmp = kcalloc(nr_pages, | |
1554 | sizeof(struct vm_area_struct *), | |
1555 | GFP_KERNEL); | |
1556 | if (!vmas_tmp) | |
1557 | return -ENOMEM; | |
1558 | } | |
1559 | flags = memalloc_nocma_save(); | |
2bb6d283 DW |
1560 | } |
1561 | ||
932f4a63 IW |
1562 | rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, |
1563 | vmas_tmp, NULL, gup_flags); | |
2bb6d283 | 1564 | |
932f4a63 IW |
1565 | if (gup_flags & FOLL_LONGTERM) { |
1566 | memalloc_nocma_restore(flags); | |
1567 | if (rc < 0) | |
1568 | goto out; | |
1569 | ||
1570 | if (check_dax_vmas(vmas_tmp, rc)) { | |
1571 | for (i = 0; i < rc; i++) | |
1572 | put_page(pages[i]); | |
1573 | rc = -EOPNOTSUPP; | |
1574 | goto out; | |
1575 | } | |
1576 | ||
1577 | rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages, | |
1578 | vmas_tmp, gup_flags); | |
9a4e9f3b | 1579 | } |
2bb6d283 | 1580 | |
2bb6d283 | 1581 | out: |
932f4a63 IW |
1582 | if (vmas_tmp != vmas) |
1583 | kfree(vmas_tmp); | |
2bb6d283 DW |
1584 | return rc; |
1585 | } | |
932f4a63 IW |
1586 | #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ |
1587 | static __always_inline long __gup_longterm_locked(struct task_struct *tsk, | |
1588 | struct mm_struct *mm, | |
1589 | unsigned long start, | |
1590 | unsigned long nr_pages, | |
1591 | struct page **pages, | |
1592 | struct vm_area_struct **vmas, | |
1593 | unsigned int flags) | |
1594 | { | |
1595 | return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, | |
1596 | NULL, flags); | |
1597 | } | |
1598 | #endif /* CONFIG_FS_DAX || CONFIG_CMA */ | |
1599 | ||
1600 | /* | |
1601 | * This is the same as get_user_pages_remote(), just with a | |
1602 | * less-flexible calling convention where we assume that the task | |
1603 | * and mm being operated on are the current task's and don't allow | |
1604 | * passing of a locked parameter. We also obviously don't pass | |
1605 | * FOLL_REMOTE in here. | |
1606 | */ | |
1607 | long get_user_pages(unsigned long start, unsigned long nr_pages, | |
1608 | unsigned int gup_flags, struct page **pages, | |
1609 | struct vm_area_struct **vmas) | |
1610 | { | |
1611 | return __gup_longterm_locked(current, current->mm, start, nr_pages, | |
1612 | pages, vmas, gup_flags | FOLL_TOUCH); | |
1613 | } | |
1614 | EXPORT_SYMBOL(get_user_pages); | |
2bb6d283 | 1615 | |
d3649f68 CH |
1616 | /* |
1617 | * We can leverage the VM_FAULT_RETRY functionality in the page fault | |
1618 | * paths better by using either get_user_pages_locked() or | |
1619 | * get_user_pages_unlocked(). | |
acc3c8d1 | 1620 | * |
d3649f68 | 1621 | * get_user_pages_locked() is suitable to replace the form: |
acc3c8d1 | 1622 | * |
d3649f68 CH |
1623 | * down_read(&mm->mmap_sem); |
1624 | * do_something() | |
1625 | * get_user_pages(tsk, mm, ..., pages, NULL); | |
1626 | * up_read(&mm->mmap_sem); | |
acc3c8d1 | 1627 | * |
d3649f68 | 1628 | * to: |
acc3c8d1 | 1629 | * |
d3649f68 CH |
1630 | * int locked = 1; |
1631 | * down_read(&mm->mmap_sem); | |
1632 | * do_something() | |
1633 | * get_user_pages_locked(tsk, mm, ..., pages, &locked); | |
1634 | * if (locked) | |
1635 | * up_read(&mm->mmap_sem); | |
acc3c8d1 | 1636 | */ |
d3649f68 CH |
1637 | long get_user_pages_locked(unsigned long start, unsigned long nr_pages, |
1638 | unsigned int gup_flags, struct page **pages, | |
1639 | int *locked) | |
acc3c8d1 | 1640 | { |
acc3c8d1 | 1641 | /* |
d3649f68 CH |
1642 | * FIXME: Current FOLL_LONGTERM behavior is incompatible with |
1643 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
1644 | * vmas. As there are no users of this flag in this call we simply | |
1645 | * disallow this option for now. | |
acc3c8d1 | 1646 | */ |
d3649f68 CH |
1647 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) |
1648 | return -EINVAL; | |
acc3c8d1 | 1649 | |
d3649f68 CH |
1650 | return __get_user_pages_locked(current, current->mm, start, nr_pages, |
1651 | pages, NULL, locked, | |
1652 | gup_flags | FOLL_TOUCH); | |
acc3c8d1 | 1653 | } |
d3649f68 | 1654 | EXPORT_SYMBOL(get_user_pages_locked); |
acc3c8d1 KS |
1655 | |
1656 | /* | |
d3649f68 | 1657 | * get_user_pages_unlocked() is suitable to replace the form: |
acc3c8d1 | 1658 | * |
d3649f68 CH |
1659 | * down_read(&mm->mmap_sem); |
1660 | * get_user_pages(tsk, mm, ..., pages, NULL); | |
1661 | * up_read(&mm->mmap_sem); | |
1662 | * | |
1663 | * with: | |
1664 | * | |
1665 | * get_user_pages_unlocked(tsk, mm, ..., pages); | |
1666 | * | |
1667 | * It is functionally equivalent to get_user_pages_fast so | |
1668 | * get_user_pages_fast should be used instead if specific gup_flags | |
1669 | * (e.g. FOLL_FORCE) are not required. | |
acc3c8d1 | 1670 | */ |
d3649f68 CH |
1671 | long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
1672 | struct page **pages, unsigned int gup_flags) | |
acc3c8d1 KS |
1673 | { |
1674 | struct mm_struct *mm = current->mm; | |
d3649f68 CH |
1675 | int locked = 1; |
1676 | long ret; | |
acc3c8d1 | 1677 | |
d3649f68 CH |
1678 | /* |
1679 | * FIXME: Current FOLL_LONGTERM behavior is incompatible with | |
1680 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
1681 | * vmas. As there are no users of this flag in this call we simply | |
1682 | * disallow this option for now. | |
1683 | */ | |
1684 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) | |
1685 | return -EINVAL; | |
acc3c8d1 | 1686 | |
d3649f68 CH |
1687 | down_read(&mm->mmap_sem); |
1688 | ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, | |
1689 | &locked, gup_flags | FOLL_TOUCH); | |
acc3c8d1 KS |
1690 | if (locked) |
1691 | up_read(&mm->mmap_sem); | |
d3649f68 | 1692 | return ret; |
4bbd4c77 | 1693 | } |
d3649f68 | 1694 | EXPORT_SYMBOL(get_user_pages_unlocked); |
2667f50e SC |
1695 | |
1696 | /* | |
67a929e0 | 1697 | * Fast GUP |
2667f50e SC |
1698 | * |
1699 | * get_user_pages_fast attempts to pin user pages by walking the page | |
1700 | * tables directly and avoids taking locks. Thus the walker needs to be | |
1701 | * protected from page table pages being freed from under it, and should | |
1702 | * block any THP splits. | |
1703 | * | |
1704 | * One way to achieve this is to have the walker disable interrupts, and | |
1705 | * rely on IPIs from the TLB flushing code blocking before the page table | |
1706 | * pages are freed. This is unsuitable for architectures that do not need | |
1707 | * to broadcast an IPI when invalidating TLBs. | |
1708 | * | |
1709 | * Another way to achieve this is to batch up page table containing pages | |
1710 | * belonging to more than one mm_user, then rcu_sched a callback to free those | |
1711 | * pages. Disabling interrupts will allow the fast_gup walker to both block | |
1712 | * the rcu_sched callback, and an IPI that we broadcast for splitting THPs | |
1713 | * (which is a relatively rare event). The code below adopts this strategy. | |
1714 | * | |
1715 | * Before activating this code, please be aware that the following assumptions | |
1716 | * are currently made: | |
1717 | * | |
e585513b KS |
1718 | * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to |
1719 | * free pages containing page tables or TLB flushing requires IPI broadcast. | |
2667f50e | 1720 | * |
2667f50e SC |
1721 | * *) ptes can be read atomically by the architecture. |
1722 | * | |
1723 | * *) access_ok is sufficient to validate userspace address ranges. | |
1724 | * | |
1725 | * The last two assumptions can be relaxed by the addition of helper functions. | |
1726 | * | |
1727 | * This code is based heavily on the PowerPC implementation by Nick Piggin. | |
1728 | */ | |
67a929e0 | 1729 | #ifdef CONFIG_HAVE_FAST_GUP |
39656e83 CH |
1730 | #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH |
1731 | /* | |
1732 | * WARNING: only to be used in the get_user_pages_fast() implementation. | |
1733 | * | |
1734 | * With get_user_pages_fast(), we walk down the pagetables without taking any | |
1735 | * locks. For this we would like to load the pointers atomically, but sometimes | |
1736 | * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What | |
1737 | * we do have is the guarantee that a PTE will only either go from not present | |
1738 | * to present, or present to not present or both -- it will not switch to a | |
1739 | * completely different present page without a TLB flush in between; something | |
1740 | * that we are blocking by holding interrupts off. | |
1741 | * | |
1742 | * Setting ptes from not present to present goes: | |
1743 | * | |
1744 | * ptep->pte_high = h; | |
1745 | * smp_wmb(); | |
1746 | * ptep->pte_low = l; | |
1747 | * | |
1748 | * And present to not present goes: | |
1749 | * | |
1750 | * ptep->pte_low = 0; | |
1751 | * smp_wmb(); | |
1752 | * ptep->pte_high = 0; | |
1753 | * | |
1754 | * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. | |
1755 | * We load pte_high *after* loading pte_low, which ensures we don't see an older | |
1756 | * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't | |
1757 | * picked up a changed pte high. We might have gotten rubbish values from | |
1758 | * pte_low and pte_high, but we are guaranteed that pte_low will not have the | |
1759 | * present bit set *unless* it is 'l'. Because get_user_pages_fast() only | |
1760 | * operates on present ptes we're safe. | |
1761 | */ | |
1762 | static inline pte_t gup_get_pte(pte_t *ptep) | |
1763 | { | |
1764 | pte_t pte; | |
2667f50e | 1765 | |
39656e83 CH |
1766 | do { |
1767 | pte.pte_low = ptep->pte_low; | |
1768 | smp_rmb(); | |
1769 | pte.pte_high = ptep->pte_high; | |
1770 | smp_rmb(); | |
1771 | } while (unlikely(pte.pte_low != ptep->pte_low)); | |
1772 | ||
1773 | return pte; | |
1774 | } | |
1775 | #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ | |
0005d20b | 1776 | /* |
39656e83 | 1777 | * We require that the PTE can be read atomically. |
0005d20b KS |
1778 | */ |
1779 | static inline pte_t gup_get_pte(pte_t *ptep) | |
1780 | { | |
1781 | return READ_ONCE(*ptep); | |
1782 | } | |
39656e83 | 1783 | #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ |
0005d20b | 1784 | |
790c7369 GR |
1785 | static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, |
1786 | struct page **pages) | |
b59f65fa KS |
1787 | { |
1788 | while ((*nr) - nr_start) { | |
1789 | struct page *page = pages[--(*nr)]; | |
1790 | ||
1791 | ClearPageReferenced(page); | |
1792 | put_page(page); | |
1793 | } | |
1794 | } | |
1795 | ||
8fde12ca LT |
1796 | /* |
1797 | * Return the compund head page with ref appropriately incremented, | |
1798 | * or NULL if that failed. | |
1799 | */ | |
1800 | static inline struct page *try_get_compound_head(struct page *page, int refs) | |
1801 | { | |
1802 | struct page *head = compound_head(page); | |
1803 | if (WARN_ON_ONCE(page_ref_count(head) < 0)) | |
1804 | return NULL; | |
1805 | if (unlikely(!page_cache_add_speculative(head, refs))) | |
1806 | return NULL; | |
1807 | return head; | |
1808 | } | |
1809 | ||
3010a5ea | 1810 | #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL |
2667f50e | 1811 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, |
b798bec4 | 1812 | unsigned int flags, struct page **pages, int *nr) |
2667f50e | 1813 | { |
b59f65fa KS |
1814 | struct dev_pagemap *pgmap = NULL; |
1815 | int nr_start = *nr, ret = 0; | |
2667f50e | 1816 | pte_t *ptep, *ptem; |
2667f50e SC |
1817 | |
1818 | ptem = ptep = pte_offset_map(&pmd, addr); | |
1819 | do { | |
0005d20b | 1820 | pte_t pte = gup_get_pte(ptep); |
7aef4172 | 1821 | struct page *head, *page; |
2667f50e SC |
1822 | |
1823 | /* | |
1824 | * Similar to the PMD case below, NUMA hinting must take slow | |
8a0516ed | 1825 | * path using the pte_protnone check. |
2667f50e | 1826 | */ |
e7884f8e KS |
1827 | if (pte_protnone(pte)) |
1828 | goto pte_unmap; | |
1829 | ||
b798bec4 | 1830 | if (!pte_access_permitted(pte, flags & FOLL_WRITE)) |
e7884f8e KS |
1831 | goto pte_unmap; |
1832 | ||
b59f65fa | 1833 | if (pte_devmap(pte)) { |
7af75561 IW |
1834 | if (unlikely(flags & FOLL_LONGTERM)) |
1835 | goto pte_unmap; | |
1836 | ||
b59f65fa KS |
1837 | pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); |
1838 | if (unlikely(!pgmap)) { | |
1839 | undo_dev_pagemap(nr, nr_start, pages); | |
1840 | goto pte_unmap; | |
1841 | } | |
1842 | } else if (pte_special(pte)) | |
2667f50e SC |
1843 | goto pte_unmap; |
1844 | ||
1845 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
1846 | page = pte_page(pte); | |
1847 | ||
8fde12ca LT |
1848 | head = try_get_compound_head(page, 1); |
1849 | if (!head) | |
2667f50e SC |
1850 | goto pte_unmap; |
1851 | ||
1852 | if (unlikely(pte_val(pte) != pte_val(*ptep))) { | |
7aef4172 | 1853 | put_page(head); |
2667f50e SC |
1854 | goto pte_unmap; |
1855 | } | |
1856 | ||
7aef4172 | 1857 | VM_BUG_ON_PAGE(compound_head(page) != head, page); |
e9348053 KS |
1858 | |
1859 | SetPageReferenced(page); | |
2667f50e SC |
1860 | pages[*nr] = page; |
1861 | (*nr)++; | |
1862 | ||
1863 | } while (ptep++, addr += PAGE_SIZE, addr != end); | |
1864 | ||
1865 | ret = 1; | |
1866 | ||
1867 | pte_unmap: | |
832d7aa0 CH |
1868 | if (pgmap) |
1869 | put_dev_pagemap(pgmap); | |
2667f50e SC |
1870 | pte_unmap(ptem); |
1871 | return ret; | |
1872 | } | |
1873 | #else | |
1874 | ||
1875 | /* | |
1876 | * If we can't determine whether or not a pte is special, then fail immediately | |
1877 | * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not | |
1878 | * to be special. | |
1879 | * | |
1880 | * For a futex to be placed on a THP tail page, get_futex_key requires a | |
1881 | * __get_user_pages_fast implementation that can pin pages. Thus it's still | |
1882 | * useful to have gup_huge_pmd even if we can't operate on ptes. | |
1883 | */ | |
1884 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, | |
b798bec4 | 1885 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
1886 | { |
1887 | return 0; | |
1888 | } | |
3010a5ea | 1889 | #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ |
2667f50e | 1890 | |
17596731 | 1891 | #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) |
b59f65fa KS |
1892 | static int __gup_device_huge(unsigned long pfn, unsigned long addr, |
1893 | unsigned long end, struct page **pages, int *nr) | |
1894 | { | |
1895 | int nr_start = *nr; | |
1896 | struct dev_pagemap *pgmap = NULL; | |
1897 | ||
1898 | do { | |
1899 | struct page *page = pfn_to_page(pfn); | |
1900 | ||
1901 | pgmap = get_dev_pagemap(pfn, pgmap); | |
1902 | if (unlikely(!pgmap)) { | |
1903 | undo_dev_pagemap(nr, nr_start, pages); | |
1904 | return 0; | |
1905 | } | |
1906 | SetPageReferenced(page); | |
1907 | pages[*nr] = page; | |
1908 | get_page(page); | |
b59f65fa KS |
1909 | (*nr)++; |
1910 | pfn++; | |
1911 | } while (addr += PAGE_SIZE, addr != end); | |
832d7aa0 CH |
1912 | |
1913 | if (pgmap) | |
1914 | put_dev_pagemap(pgmap); | |
b59f65fa KS |
1915 | return 1; |
1916 | } | |
1917 | ||
a9b6de77 | 1918 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
b59f65fa KS |
1919 | unsigned long end, struct page **pages, int *nr) |
1920 | { | |
1921 | unsigned long fault_pfn; | |
a9b6de77 DW |
1922 | int nr_start = *nr; |
1923 | ||
1924 | fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | |
1925 | if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) | |
1926 | return 0; | |
b59f65fa | 1927 | |
a9b6de77 DW |
1928 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { |
1929 | undo_dev_pagemap(nr, nr_start, pages); | |
1930 | return 0; | |
1931 | } | |
1932 | return 1; | |
b59f65fa KS |
1933 | } |
1934 | ||
a9b6de77 | 1935 | static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, |
b59f65fa KS |
1936 | unsigned long end, struct page **pages, int *nr) |
1937 | { | |
1938 | unsigned long fault_pfn; | |
a9b6de77 DW |
1939 | int nr_start = *nr; |
1940 | ||
1941 | fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | |
1942 | if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) | |
1943 | return 0; | |
b59f65fa | 1944 | |
a9b6de77 DW |
1945 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { |
1946 | undo_dev_pagemap(nr, nr_start, pages); | |
1947 | return 0; | |
1948 | } | |
1949 | return 1; | |
b59f65fa KS |
1950 | } |
1951 | #else | |
a9b6de77 | 1952 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
b59f65fa KS |
1953 | unsigned long end, struct page **pages, int *nr) |
1954 | { | |
1955 | BUILD_BUG(); | |
1956 | return 0; | |
1957 | } | |
1958 | ||
a9b6de77 | 1959 | static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, |
b59f65fa KS |
1960 | unsigned long end, struct page **pages, int *nr) |
1961 | { | |
1962 | BUILD_BUG(); | |
1963 | return 0; | |
1964 | } | |
1965 | #endif | |
1966 | ||
cbd34da7 CH |
1967 | #ifdef CONFIG_ARCH_HAS_HUGEPD |
1968 | static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, | |
1969 | unsigned long sz) | |
1970 | { | |
1971 | unsigned long __boundary = (addr + sz) & ~(sz-1); | |
1972 | return (__boundary - 1 < end - 1) ? __boundary : end; | |
1973 | } | |
1974 | ||
1975 | static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, | |
1976 | unsigned long end, int write, struct page **pages, int *nr) | |
1977 | { | |
1978 | unsigned long pte_end; | |
1979 | struct page *head, *page; | |
1980 | pte_t pte; | |
1981 | int refs; | |
1982 | ||
1983 | pte_end = (addr + sz) & ~(sz-1); | |
1984 | if (pte_end < end) | |
1985 | end = pte_end; | |
1986 | ||
1987 | pte = READ_ONCE(*ptep); | |
1988 | ||
1989 | if (!pte_access_permitted(pte, write)) | |
1990 | return 0; | |
1991 | ||
1992 | /* hugepages are never "special" */ | |
1993 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
1994 | ||
1995 | refs = 0; | |
1996 | head = pte_page(pte); | |
1997 | ||
1998 | page = head + ((addr & (sz-1)) >> PAGE_SHIFT); | |
1999 | do { | |
2000 | VM_BUG_ON(compound_head(page) != head); | |
2001 | pages[*nr] = page; | |
2002 | (*nr)++; | |
2003 | page++; | |
2004 | refs++; | |
2005 | } while (addr += PAGE_SIZE, addr != end); | |
2006 | ||
01a36916 CH |
2007 | head = try_get_compound_head(head, refs); |
2008 | if (!head) { | |
cbd34da7 CH |
2009 | *nr -= refs; |
2010 | return 0; | |
2011 | } | |
2012 | ||
2013 | if (unlikely(pte_val(pte) != pte_val(*ptep))) { | |
2014 | /* Could be optimized better */ | |
2015 | *nr -= refs; | |
2016 | while (refs--) | |
2017 | put_page(head); | |
2018 | return 0; | |
2019 | } | |
2020 | ||
520b4a44 | 2021 | SetPageReferenced(head); |
cbd34da7 CH |
2022 | return 1; |
2023 | } | |
2024 | ||
2025 | static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, | |
2026 | unsigned int pdshift, unsigned long end, int write, | |
2027 | struct page **pages, int *nr) | |
2028 | { | |
2029 | pte_t *ptep; | |
2030 | unsigned long sz = 1UL << hugepd_shift(hugepd); | |
2031 | unsigned long next; | |
2032 | ||
2033 | ptep = hugepte_offset(hugepd, addr, pdshift); | |
2034 | do { | |
2035 | next = hugepte_addr_end(addr, end, sz); | |
2036 | if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) | |
2037 | return 0; | |
2038 | } while (ptep++, addr = next, addr != end); | |
2039 | ||
2040 | return 1; | |
2041 | } | |
2042 | #else | |
2043 | static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, | |
2044 | unsigned pdshift, unsigned long end, int write, | |
2045 | struct page **pages, int *nr) | |
2046 | { | |
2047 | return 0; | |
2048 | } | |
2049 | #endif /* CONFIG_ARCH_HAS_HUGEPD */ | |
2050 | ||
2667f50e | 2051 | static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
b798bec4 | 2052 | unsigned long end, unsigned int flags, struct page **pages, int *nr) |
2667f50e | 2053 | { |
ddc58f27 | 2054 | struct page *head, *page; |
2667f50e SC |
2055 | int refs; |
2056 | ||
b798bec4 | 2057 | if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) |
2667f50e SC |
2058 | return 0; |
2059 | ||
7af75561 IW |
2060 | if (pmd_devmap(orig)) { |
2061 | if (unlikely(flags & FOLL_LONGTERM)) | |
2062 | return 0; | |
a9b6de77 | 2063 | return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr); |
7af75561 | 2064 | } |
b59f65fa | 2065 | |
2667f50e | 2066 | refs = 0; |
d63206ee | 2067 | page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); |
2667f50e | 2068 | do { |
2667f50e SC |
2069 | pages[*nr] = page; |
2070 | (*nr)++; | |
2071 | page++; | |
2072 | refs++; | |
2073 | } while (addr += PAGE_SIZE, addr != end); | |
2074 | ||
8fde12ca LT |
2075 | head = try_get_compound_head(pmd_page(orig), refs); |
2076 | if (!head) { | |
2667f50e SC |
2077 | *nr -= refs; |
2078 | return 0; | |
2079 | } | |
2080 | ||
2081 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { | |
2082 | *nr -= refs; | |
2083 | while (refs--) | |
2084 | put_page(head); | |
2085 | return 0; | |
2086 | } | |
2087 | ||
e9348053 | 2088 | SetPageReferenced(head); |
2667f50e SC |
2089 | return 1; |
2090 | } | |
2091 | ||
2092 | static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, | |
b798bec4 | 2093 | unsigned long end, unsigned int flags, struct page **pages, int *nr) |
2667f50e | 2094 | { |
ddc58f27 | 2095 | struct page *head, *page; |
2667f50e SC |
2096 | int refs; |
2097 | ||
b798bec4 | 2098 | if (!pud_access_permitted(orig, flags & FOLL_WRITE)) |
2667f50e SC |
2099 | return 0; |
2100 | ||
7af75561 IW |
2101 | if (pud_devmap(orig)) { |
2102 | if (unlikely(flags & FOLL_LONGTERM)) | |
2103 | return 0; | |
a9b6de77 | 2104 | return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr); |
7af75561 | 2105 | } |
b59f65fa | 2106 | |
2667f50e | 2107 | refs = 0; |
d63206ee | 2108 | page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); |
2667f50e | 2109 | do { |
2667f50e SC |
2110 | pages[*nr] = page; |
2111 | (*nr)++; | |
2112 | page++; | |
2113 | refs++; | |
2114 | } while (addr += PAGE_SIZE, addr != end); | |
2115 | ||
8fde12ca LT |
2116 | head = try_get_compound_head(pud_page(orig), refs); |
2117 | if (!head) { | |
2667f50e SC |
2118 | *nr -= refs; |
2119 | return 0; | |
2120 | } | |
2121 | ||
2122 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { | |
2123 | *nr -= refs; | |
2124 | while (refs--) | |
2125 | put_page(head); | |
2126 | return 0; | |
2127 | } | |
2128 | ||
e9348053 | 2129 | SetPageReferenced(head); |
2667f50e SC |
2130 | return 1; |
2131 | } | |
2132 | ||
f30c59e9 | 2133 | static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, |
b798bec4 | 2134 | unsigned long end, unsigned int flags, |
f30c59e9 AK |
2135 | struct page **pages, int *nr) |
2136 | { | |
2137 | int refs; | |
ddc58f27 | 2138 | struct page *head, *page; |
f30c59e9 | 2139 | |
b798bec4 | 2140 | if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) |
f30c59e9 AK |
2141 | return 0; |
2142 | ||
b59f65fa | 2143 | BUILD_BUG_ON(pgd_devmap(orig)); |
f30c59e9 | 2144 | refs = 0; |
d63206ee | 2145 | page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); |
f30c59e9 | 2146 | do { |
f30c59e9 AK |
2147 | pages[*nr] = page; |
2148 | (*nr)++; | |
2149 | page++; | |
2150 | refs++; | |
2151 | } while (addr += PAGE_SIZE, addr != end); | |
2152 | ||
8fde12ca LT |
2153 | head = try_get_compound_head(pgd_page(orig), refs); |
2154 | if (!head) { | |
f30c59e9 AK |
2155 | *nr -= refs; |
2156 | return 0; | |
2157 | } | |
2158 | ||
2159 | if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { | |
2160 | *nr -= refs; | |
2161 | while (refs--) | |
2162 | put_page(head); | |
2163 | return 0; | |
2164 | } | |
2165 | ||
e9348053 | 2166 | SetPageReferenced(head); |
f30c59e9 AK |
2167 | return 1; |
2168 | } | |
2169 | ||
2667f50e | 2170 | static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, |
b798bec4 | 2171 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
2172 | { |
2173 | unsigned long next; | |
2174 | pmd_t *pmdp; | |
2175 | ||
2176 | pmdp = pmd_offset(&pud, addr); | |
2177 | do { | |
38c5ce93 | 2178 | pmd_t pmd = READ_ONCE(*pmdp); |
2667f50e SC |
2179 | |
2180 | next = pmd_addr_end(addr, end); | |
84c3fc4e | 2181 | if (!pmd_present(pmd)) |
2667f50e SC |
2182 | return 0; |
2183 | ||
414fd080 YZ |
2184 | if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || |
2185 | pmd_devmap(pmd))) { | |
2667f50e SC |
2186 | /* |
2187 | * NUMA hinting faults need to be handled in the GUP | |
2188 | * slowpath for accounting purposes and so that they | |
2189 | * can be serialised against THP migration. | |
2190 | */ | |
8a0516ed | 2191 | if (pmd_protnone(pmd)) |
2667f50e SC |
2192 | return 0; |
2193 | ||
b798bec4 | 2194 | if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, |
2667f50e SC |
2195 | pages, nr)) |
2196 | return 0; | |
2197 | ||
f30c59e9 AK |
2198 | } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { |
2199 | /* | |
2200 | * architecture have different format for hugetlbfs | |
2201 | * pmd format and THP pmd format | |
2202 | */ | |
2203 | if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, | |
b798bec4 | 2204 | PMD_SHIFT, next, flags, pages, nr)) |
f30c59e9 | 2205 | return 0; |
b798bec4 | 2206 | } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) |
2923117b | 2207 | return 0; |
2667f50e SC |
2208 | } while (pmdp++, addr = next, addr != end); |
2209 | ||
2210 | return 1; | |
2211 | } | |
2212 | ||
c2febafc | 2213 | static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, |
b798bec4 | 2214 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
2215 | { |
2216 | unsigned long next; | |
2217 | pud_t *pudp; | |
2218 | ||
c2febafc | 2219 | pudp = pud_offset(&p4d, addr); |
2667f50e | 2220 | do { |
e37c6982 | 2221 | pud_t pud = READ_ONCE(*pudp); |
2667f50e SC |
2222 | |
2223 | next = pud_addr_end(addr, end); | |
2224 | if (pud_none(pud)) | |
2225 | return 0; | |
f30c59e9 | 2226 | if (unlikely(pud_huge(pud))) { |
b798bec4 | 2227 | if (!gup_huge_pud(pud, pudp, addr, next, flags, |
f30c59e9 AK |
2228 | pages, nr)) |
2229 | return 0; | |
2230 | } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { | |
2231 | if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, | |
b798bec4 | 2232 | PUD_SHIFT, next, flags, pages, nr)) |
2667f50e | 2233 | return 0; |
b798bec4 | 2234 | } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr)) |
2667f50e SC |
2235 | return 0; |
2236 | } while (pudp++, addr = next, addr != end); | |
2237 | ||
2238 | return 1; | |
2239 | } | |
2240 | ||
c2febafc | 2241 | static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, |
b798bec4 | 2242 | unsigned int flags, struct page **pages, int *nr) |
c2febafc KS |
2243 | { |
2244 | unsigned long next; | |
2245 | p4d_t *p4dp; | |
2246 | ||
2247 | p4dp = p4d_offset(&pgd, addr); | |
2248 | do { | |
2249 | p4d_t p4d = READ_ONCE(*p4dp); | |
2250 | ||
2251 | next = p4d_addr_end(addr, end); | |
2252 | if (p4d_none(p4d)) | |
2253 | return 0; | |
2254 | BUILD_BUG_ON(p4d_huge(p4d)); | |
2255 | if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { | |
2256 | if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, | |
b798bec4 | 2257 | P4D_SHIFT, next, flags, pages, nr)) |
c2febafc | 2258 | return 0; |
b798bec4 | 2259 | } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr)) |
c2febafc KS |
2260 | return 0; |
2261 | } while (p4dp++, addr = next, addr != end); | |
2262 | ||
2263 | return 1; | |
2264 | } | |
2265 | ||
5b65c467 | 2266 | static void gup_pgd_range(unsigned long addr, unsigned long end, |
b798bec4 | 2267 | unsigned int flags, struct page **pages, int *nr) |
5b65c467 KS |
2268 | { |
2269 | unsigned long next; | |
2270 | pgd_t *pgdp; | |
2271 | ||
2272 | pgdp = pgd_offset(current->mm, addr); | |
2273 | do { | |
2274 | pgd_t pgd = READ_ONCE(*pgdp); | |
2275 | ||
2276 | next = pgd_addr_end(addr, end); | |
2277 | if (pgd_none(pgd)) | |
2278 | return; | |
2279 | if (unlikely(pgd_huge(pgd))) { | |
b798bec4 | 2280 | if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, |
5b65c467 KS |
2281 | pages, nr)) |
2282 | return; | |
2283 | } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { | |
2284 | if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, | |
b798bec4 | 2285 | PGDIR_SHIFT, next, flags, pages, nr)) |
5b65c467 | 2286 | return; |
b798bec4 | 2287 | } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr)) |
5b65c467 KS |
2288 | return; |
2289 | } while (pgdp++, addr = next, addr != end); | |
2290 | } | |
050a9adc CH |
2291 | #else |
2292 | static inline void gup_pgd_range(unsigned long addr, unsigned long end, | |
2293 | unsigned int flags, struct page **pages, int *nr) | |
2294 | { | |
2295 | } | |
2296 | #endif /* CONFIG_HAVE_FAST_GUP */ | |
5b65c467 KS |
2297 | |
2298 | #ifndef gup_fast_permitted | |
2299 | /* | |
2300 | * Check if it's allowed to use __get_user_pages_fast() for the range, or | |
2301 | * we need to fall back to the slow version: | |
2302 | */ | |
26f4c328 | 2303 | static bool gup_fast_permitted(unsigned long start, unsigned long end) |
5b65c467 | 2304 | { |
26f4c328 | 2305 | return true; |
5b65c467 KS |
2306 | } |
2307 | #endif | |
2308 | ||
2667f50e SC |
2309 | /* |
2310 | * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to | |
d0811078 MT |
2311 | * the regular GUP. |
2312 | * Note a difference with get_user_pages_fast: this always returns the | |
2313 | * number of pages pinned, 0 if no pages were pinned. | |
050a9adc CH |
2314 | * |
2315 | * If the architecture does not support this function, simply return with no | |
2316 | * pages pinned. | |
2667f50e SC |
2317 | */ |
2318 | int __get_user_pages_fast(unsigned long start, int nr_pages, int write, | |
2319 | struct page **pages) | |
2320 | { | |
d4faa402 | 2321 | unsigned long len, end; |
5b65c467 | 2322 | unsigned long flags; |
2667f50e SC |
2323 | int nr = 0; |
2324 | ||
f455c854 | 2325 | start = untagged_addr(start) & PAGE_MASK; |
2667f50e SC |
2326 | len = (unsigned long) nr_pages << PAGE_SHIFT; |
2327 | end = start + len; | |
2328 | ||
26f4c328 CH |
2329 | if (end <= start) |
2330 | return 0; | |
96d4f267 | 2331 | if (unlikely(!access_ok((void __user *)start, len))) |
2667f50e SC |
2332 | return 0; |
2333 | ||
2334 | /* | |
2335 | * Disable interrupts. We use the nested form as we can already have | |
2336 | * interrupts disabled by get_futex_key. | |
2337 | * | |
2338 | * With interrupts disabled, we block page table pages from being | |
2ebe8228 FW |
2339 | * freed from under us. See struct mmu_table_batch comments in |
2340 | * include/asm-generic/tlb.h for more details. | |
2667f50e SC |
2341 | * |
2342 | * We do not adopt an rcu_read_lock(.) here as we also want to | |
2343 | * block IPIs that come from THPs splitting. | |
2344 | */ | |
2345 | ||
050a9adc CH |
2346 | if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && |
2347 | gup_fast_permitted(start, end)) { | |
5b65c467 | 2348 | local_irq_save(flags); |
b798bec4 | 2349 | gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr); |
5b65c467 KS |
2350 | local_irq_restore(flags); |
2351 | } | |
2667f50e SC |
2352 | |
2353 | return nr; | |
2354 | } | |
050a9adc | 2355 | EXPORT_SYMBOL_GPL(__get_user_pages_fast); |
2667f50e | 2356 | |
7af75561 IW |
2357 | static int __gup_longterm_unlocked(unsigned long start, int nr_pages, |
2358 | unsigned int gup_flags, struct page **pages) | |
2359 | { | |
2360 | int ret; | |
2361 | ||
2362 | /* | |
2363 | * FIXME: FOLL_LONGTERM does not work with | |
2364 | * get_user_pages_unlocked() (see comments in that function) | |
2365 | */ | |
2366 | if (gup_flags & FOLL_LONGTERM) { | |
2367 | down_read(¤t->mm->mmap_sem); | |
2368 | ret = __gup_longterm_locked(current, current->mm, | |
2369 | start, nr_pages, | |
2370 | pages, NULL, gup_flags); | |
2371 | up_read(¤t->mm->mmap_sem); | |
2372 | } else { | |
2373 | ret = get_user_pages_unlocked(start, nr_pages, | |
2374 | pages, gup_flags); | |
2375 | } | |
2376 | ||
2377 | return ret; | |
2378 | } | |
2379 | ||
2667f50e SC |
2380 | /** |
2381 | * get_user_pages_fast() - pin user pages in memory | |
2382 | * @start: starting user address | |
2383 | * @nr_pages: number of pages from start to pin | |
73b0140b | 2384 | * @gup_flags: flags modifying pin behaviour |
2667f50e SC |
2385 | * @pages: array that receives pointers to the pages pinned. |
2386 | * Should be at least nr_pages long. | |
2387 | * | |
2388 | * Attempt to pin user pages in memory without taking mm->mmap_sem. | |
2389 | * If not successful, it will fall back to taking the lock and | |
2390 | * calling get_user_pages(). | |
2391 | * | |
2392 | * Returns number of pages pinned. This may be fewer than the number | |
2393 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
2394 | * were pinned, returns -errno. | |
2395 | */ | |
73b0140b IW |
2396 | int get_user_pages_fast(unsigned long start, int nr_pages, |
2397 | unsigned int gup_flags, struct page **pages) | |
2667f50e | 2398 | { |
5b65c467 | 2399 | unsigned long addr, len, end; |
73e10a61 | 2400 | int nr = 0, ret = 0; |
2667f50e | 2401 | |
817be129 CH |
2402 | if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM))) |
2403 | return -EINVAL; | |
2404 | ||
f455c854 | 2405 | start = untagged_addr(start) & PAGE_MASK; |
5b65c467 KS |
2406 | addr = start; |
2407 | len = (unsigned long) nr_pages << PAGE_SHIFT; | |
2408 | end = start + len; | |
2409 | ||
26f4c328 | 2410 | if (end <= start) |
c61611f7 | 2411 | return 0; |
96d4f267 | 2412 | if (unlikely(!access_ok((void __user *)start, len))) |
c61611f7 | 2413 | return -EFAULT; |
73e10a61 | 2414 | |
050a9adc CH |
2415 | if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && |
2416 | gup_fast_permitted(start, end)) { | |
5b65c467 | 2417 | local_irq_disable(); |
73b0140b | 2418 | gup_pgd_range(addr, end, gup_flags, pages, &nr); |
5b65c467 | 2419 | local_irq_enable(); |
73e10a61 KS |
2420 | ret = nr; |
2421 | } | |
2667f50e SC |
2422 | |
2423 | if (nr < nr_pages) { | |
2424 | /* Try to get the remaining pages with get_user_pages */ | |
2425 | start += nr << PAGE_SHIFT; | |
2426 | pages += nr; | |
2427 | ||
7af75561 IW |
2428 | ret = __gup_longterm_unlocked(start, nr_pages - nr, |
2429 | gup_flags, pages); | |
2667f50e SC |
2430 | |
2431 | /* Have to be a bit careful with return values */ | |
2432 | if (nr > 0) { | |
2433 | if (ret < 0) | |
2434 | ret = nr; | |
2435 | else | |
2436 | ret += nr; | |
2437 | } | |
2438 | } | |
2439 | ||
2440 | return ret; | |
2441 | } | |
050a9adc | 2442 | EXPORT_SYMBOL_GPL(get_user_pages_fast); |