]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
1da177e4 LT |
2 | /* |
3 | * linux/fs/buffer.c | |
4 | * | |
5 | * Copyright (C) 1991, 1992, 2002 Linus Torvalds | |
6 | */ | |
7 | ||
8 | /* | |
9 | * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 | |
10 | * | |
11 | * Removed a lot of unnecessary code and simplified things now that | |
12 | * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 | |
13 | * | |
14 | * Speed up hash, lru, and free list operations. Use gfp() for allocating | |
15 | * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM | |
16 | * | |
17 | * Added 32k buffer block sizes - these are required older ARM systems. - RMK | |
18 | * | |
19 | * async buffer flushing, 1999 Andrea Arcangeli <[email protected]> | |
20 | */ | |
21 | ||
1da177e4 | 22 | #include <linux/kernel.h> |
f361bf4a | 23 | #include <linux/sched/signal.h> |
1da177e4 LT |
24 | #include <linux/syscalls.h> |
25 | #include <linux/fs.h> | |
ae259a9c | 26 | #include <linux/iomap.h> |
1da177e4 LT |
27 | #include <linux/mm.h> |
28 | #include <linux/percpu.h> | |
29 | #include <linux/slab.h> | |
16f7e0fe | 30 | #include <linux/capability.h> |
1da177e4 LT |
31 | #include <linux/blkdev.h> |
32 | #include <linux/file.h> | |
33 | #include <linux/quotaops.h> | |
34 | #include <linux/highmem.h> | |
630d9c47 | 35 | #include <linux/export.h> |
bafc0dba | 36 | #include <linux/backing-dev.h> |
1da177e4 LT |
37 | #include <linux/writeback.h> |
38 | #include <linux/hash.h> | |
39 | #include <linux/suspend.h> | |
40 | #include <linux/buffer_head.h> | |
55e829af | 41 | #include <linux/task_io_accounting_ops.h> |
1da177e4 | 42 | #include <linux/bio.h> |
1da177e4 LT |
43 | #include <linux/cpu.h> |
44 | #include <linux/bitops.h> | |
45 | #include <linux/mpage.h> | |
fb1c8f93 | 46 | #include <linux/bit_spinlock.h> |
29f3ad7d | 47 | #include <linux/pagevec.h> |
f745c6f5 | 48 | #include <linux/sched/mm.h> |
5305cb83 | 49 | #include <trace/events/block.h> |
31fb992c | 50 | #include <linux/fscrypt.h> |
1da177e4 | 51 | |
2b211dc0 BD |
52 | #include "internal.h" |
53 | ||
1da177e4 | 54 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); |
2a222ca9 | 55 | static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, |
8e8f9298 | 56 | enum rw_hint hint, struct writeback_control *wbc); |
1da177e4 LT |
57 | |
58 | #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) | |
59 | ||
f0059afd TH |
60 | inline void touch_buffer(struct buffer_head *bh) |
61 | { | |
5305cb83 | 62 | trace_block_touch_buffer(bh); |
f0059afd TH |
63 | mark_page_accessed(bh->b_page); |
64 | } | |
65 | EXPORT_SYMBOL(touch_buffer); | |
66 | ||
fc9b52cd | 67 | void __lock_buffer(struct buffer_head *bh) |
1da177e4 | 68 | { |
74316201 | 69 | wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); |
1da177e4 LT |
70 | } |
71 | EXPORT_SYMBOL(__lock_buffer); | |
72 | ||
fc9b52cd | 73 | void unlock_buffer(struct buffer_head *bh) |
1da177e4 | 74 | { |
51b07fc3 | 75 | clear_bit_unlock(BH_Lock, &bh->b_state); |
4e857c58 | 76 | smp_mb__after_atomic(); |
1da177e4 LT |
77 | wake_up_bit(&bh->b_state, BH_Lock); |
78 | } | |
1fe72eaa | 79 | EXPORT_SYMBOL(unlock_buffer); |
1da177e4 | 80 | |
b4597226 MG |
81 | /* |
82 | * Returns if the page has dirty or writeback buffers. If all the buffers | |
83 | * are unlocked and clean then the PageDirty information is stale. If | |
84 | * any of the pages are locked, it is assumed they are locked for IO. | |
85 | */ | |
86 | void buffer_check_dirty_writeback(struct page *page, | |
87 | bool *dirty, bool *writeback) | |
88 | { | |
89 | struct buffer_head *head, *bh; | |
90 | *dirty = false; | |
91 | *writeback = false; | |
92 | ||
93 | BUG_ON(!PageLocked(page)); | |
94 | ||
95 | if (!page_has_buffers(page)) | |
96 | return; | |
97 | ||
98 | if (PageWriteback(page)) | |
99 | *writeback = true; | |
100 | ||
101 | head = page_buffers(page); | |
102 | bh = head; | |
103 | do { | |
104 | if (buffer_locked(bh)) | |
105 | *writeback = true; | |
106 | ||
107 | if (buffer_dirty(bh)) | |
108 | *dirty = true; | |
109 | ||
110 | bh = bh->b_this_page; | |
111 | } while (bh != head); | |
112 | } | |
113 | EXPORT_SYMBOL(buffer_check_dirty_writeback); | |
114 | ||
1da177e4 LT |
115 | /* |
116 | * Block until a buffer comes unlocked. This doesn't stop it | |
117 | * from becoming locked again - you have to lock it yourself | |
118 | * if you want to preserve its state. | |
119 | */ | |
120 | void __wait_on_buffer(struct buffer_head * bh) | |
121 | { | |
74316201 | 122 | wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); |
1da177e4 | 123 | } |
1fe72eaa | 124 | EXPORT_SYMBOL(__wait_on_buffer); |
1da177e4 LT |
125 | |
126 | static void | |
127 | __clear_page_buffers(struct page *page) | |
128 | { | |
129 | ClearPagePrivate(page); | |
4c21e2f2 | 130 | set_page_private(page, 0); |
09cbfeaf | 131 | put_page(page); |
1da177e4 LT |
132 | } |
133 | ||
b744c2ac | 134 | static void buffer_io_error(struct buffer_head *bh, char *msg) |
1da177e4 | 135 | { |
432f16e6 RE |
136 | if (!test_bit(BH_Quiet, &bh->b_state)) |
137 | printk_ratelimited(KERN_ERR | |
a1c6f057 DM |
138 | "Buffer I/O error on dev %pg, logical block %llu%s\n", |
139 | bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); | |
1da177e4 LT |
140 | } |
141 | ||
142 | /* | |
68671f35 DM |
143 | * End-of-IO handler helper function which does not touch the bh after |
144 | * unlocking it. | |
145 | * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but | |
146 | * a race there is benign: unlock_buffer() only use the bh's address for | |
147 | * hashing after unlocking the buffer, so it doesn't actually touch the bh | |
148 | * itself. | |
1da177e4 | 149 | */ |
68671f35 | 150 | static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) |
1da177e4 LT |
151 | { |
152 | if (uptodate) { | |
153 | set_buffer_uptodate(bh); | |
154 | } else { | |
70246286 | 155 | /* This happens, due to failed read-ahead attempts. */ |
1da177e4 LT |
156 | clear_buffer_uptodate(bh); |
157 | } | |
158 | unlock_buffer(bh); | |
68671f35 DM |
159 | } |
160 | ||
161 | /* | |
162 | * Default synchronous end-of-IO handler.. Just mark it up-to-date and | |
163 | * unlock the buffer. This is what ll_rw_block uses too. | |
164 | */ | |
165 | void end_buffer_read_sync(struct buffer_head *bh, int uptodate) | |
166 | { | |
167 | __end_buffer_read_notouch(bh, uptodate); | |
1da177e4 LT |
168 | put_bh(bh); |
169 | } | |
1fe72eaa | 170 | EXPORT_SYMBOL(end_buffer_read_sync); |
1da177e4 LT |
171 | |
172 | void end_buffer_write_sync(struct buffer_head *bh, int uptodate) | |
173 | { | |
1da177e4 LT |
174 | if (uptodate) { |
175 | set_buffer_uptodate(bh); | |
176 | } else { | |
432f16e6 | 177 | buffer_io_error(bh, ", lost sync page write"); |
87354e5d | 178 | mark_buffer_write_io_error(bh); |
1da177e4 LT |
179 | clear_buffer_uptodate(bh); |
180 | } | |
181 | unlock_buffer(bh); | |
182 | put_bh(bh); | |
183 | } | |
1fe72eaa | 184 | EXPORT_SYMBOL(end_buffer_write_sync); |
1da177e4 | 185 | |
1da177e4 LT |
186 | /* |
187 | * Various filesystems appear to want __find_get_block to be non-blocking. | |
188 | * But it's the page lock which protects the buffers. To get around this, | |
189 | * we get exclusion from try_to_free_buffers with the blockdev mapping's | |
190 | * private_lock. | |
191 | * | |
b93b0163 | 192 | * Hack idea: for the blockdev mapping, private_lock contention |
1da177e4 | 193 | * may be quite high. This code could TryLock the page, and if that |
b93b0163 | 194 | * succeeds, there is no need to take private_lock. |
1da177e4 LT |
195 | */ |
196 | static struct buffer_head * | |
385fd4c5 | 197 | __find_get_block_slow(struct block_device *bdev, sector_t block) |
1da177e4 LT |
198 | { |
199 | struct inode *bd_inode = bdev->bd_inode; | |
200 | struct address_space *bd_mapping = bd_inode->i_mapping; | |
201 | struct buffer_head *ret = NULL; | |
202 | pgoff_t index; | |
203 | struct buffer_head *bh; | |
204 | struct buffer_head *head; | |
205 | struct page *page; | |
206 | int all_mapped = 1; | |
43636c80 | 207 | static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); |
1da177e4 | 208 | |
09cbfeaf | 209 | index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); |
2457aec6 | 210 | page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); |
1da177e4 LT |
211 | if (!page) |
212 | goto out; | |
213 | ||
214 | spin_lock(&bd_mapping->private_lock); | |
215 | if (!page_has_buffers(page)) | |
216 | goto out_unlock; | |
217 | head = page_buffers(page); | |
218 | bh = head; | |
219 | do { | |
97f76d3d NK |
220 | if (!buffer_mapped(bh)) |
221 | all_mapped = 0; | |
222 | else if (bh->b_blocknr == block) { | |
1da177e4 LT |
223 | ret = bh; |
224 | get_bh(bh); | |
225 | goto out_unlock; | |
226 | } | |
1da177e4 LT |
227 | bh = bh->b_this_page; |
228 | } while (bh != head); | |
229 | ||
230 | /* we might be here because some of the buffers on this page are | |
231 | * not mapped. This is due to various races between | |
232 | * file io on the block device and getblk. It gets dealt with | |
233 | * elsewhere, don't buffer_error if we had some unmapped buffers | |
234 | */ | |
43636c80 TH |
235 | ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); |
236 | if (all_mapped && __ratelimit(&last_warned)) { | |
237 | printk("__find_get_block_slow() failed. block=%llu, " | |
238 | "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " | |
239 | "device %pg blocksize: %d\n", | |
240 | (unsigned long long)block, | |
241 | (unsigned long long)bh->b_blocknr, | |
242 | bh->b_state, bh->b_size, bdev, | |
243 | 1 << bd_inode->i_blkbits); | |
1da177e4 LT |
244 | } |
245 | out_unlock: | |
246 | spin_unlock(&bd_mapping->private_lock); | |
09cbfeaf | 247 | put_page(page); |
1da177e4 LT |
248 | out: |
249 | return ret; | |
250 | } | |
251 | ||
1da177e4 LT |
252 | static void end_buffer_async_read(struct buffer_head *bh, int uptodate) |
253 | { | |
1da177e4 | 254 | unsigned long flags; |
a3972203 | 255 | struct buffer_head *first; |
1da177e4 LT |
256 | struct buffer_head *tmp; |
257 | struct page *page; | |
258 | int page_uptodate = 1; | |
259 | ||
260 | BUG_ON(!buffer_async_read(bh)); | |
261 | ||
262 | page = bh->b_page; | |
263 | if (uptodate) { | |
264 | set_buffer_uptodate(bh); | |
265 | } else { | |
266 | clear_buffer_uptodate(bh); | |
432f16e6 | 267 | buffer_io_error(bh, ", async page read"); |
1da177e4 LT |
268 | SetPageError(page); |
269 | } | |
270 | ||
271 | /* | |
272 | * Be _very_ careful from here on. Bad things can happen if | |
273 | * two buffer heads end IO at almost the same time and both | |
274 | * decide that the page is now completely done. | |
275 | */ | |
a3972203 NP |
276 | first = page_buffers(page); |
277 | local_irq_save(flags); | |
278 | bit_spin_lock(BH_Uptodate_Lock, &first->b_state); | |
1da177e4 LT |
279 | clear_buffer_async_read(bh); |
280 | unlock_buffer(bh); | |
281 | tmp = bh; | |
282 | do { | |
283 | if (!buffer_uptodate(tmp)) | |
284 | page_uptodate = 0; | |
285 | if (buffer_async_read(tmp)) { | |
286 | BUG_ON(!buffer_locked(tmp)); | |
287 | goto still_busy; | |
288 | } | |
289 | tmp = tmp->b_this_page; | |
290 | } while (tmp != bh); | |
a3972203 NP |
291 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
292 | local_irq_restore(flags); | |
1da177e4 LT |
293 | |
294 | /* | |
295 | * If none of the buffers had errors and they are all | |
296 | * uptodate then we can set the page uptodate. | |
297 | */ | |
298 | if (page_uptodate && !PageError(page)) | |
299 | SetPageUptodate(page); | |
300 | unlock_page(page); | |
301 | return; | |
302 | ||
303 | still_busy: | |
a3972203 NP |
304 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
305 | local_irq_restore(flags); | |
1da177e4 LT |
306 | return; |
307 | } | |
308 | ||
31fb992c EB |
309 | struct decrypt_bh_ctx { |
310 | struct work_struct work; | |
311 | struct buffer_head *bh; | |
312 | }; | |
313 | ||
314 | static void decrypt_bh(struct work_struct *work) | |
315 | { | |
316 | struct decrypt_bh_ctx *ctx = | |
317 | container_of(work, struct decrypt_bh_ctx, work); | |
318 | struct buffer_head *bh = ctx->bh; | |
319 | int err; | |
320 | ||
321 | err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size, | |
322 | bh_offset(bh)); | |
323 | end_buffer_async_read(bh, err == 0); | |
324 | kfree(ctx); | |
325 | } | |
326 | ||
327 | /* | |
328 | * I/O completion handler for block_read_full_page() - pages | |
329 | * which come unlocked at the end of I/O. | |
330 | */ | |
331 | static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) | |
332 | { | |
333 | /* Decrypt if needed */ | |
334 | if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) && | |
335 | IS_ENCRYPTED(bh->b_page->mapping->host) && | |
336 | S_ISREG(bh->b_page->mapping->host->i_mode)) { | |
337 | struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); | |
338 | ||
339 | if (ctx) { | |
340 | INIT_WORK(&ctx->work, decrypt_bh); | |
341 | ctx->bh = bh; | |
342 | fscrypt_enqueue_decrypt_work(&ctx->work); | |
343 | return; | |
344 | } | |
345 | uptodate = 0; | |
346 | } | |
347 | end_buffer_async_read(bh, uptodate); | |
348 | } | |
349 | ||
1da177e4 LT |
350 | /* |
351 | * Completion handler for block_write_full_page() - pages which are unlocked | |
352 | * during I/O, and which have PageWriteback cleared upon I/O completion. | |
353 | */ | |
35c80d5f | 354 | void end_buffer_async_write(struct buffer_head *bh, int uptodate) |
1da177e4 | 355 | { |
1da177e4 | 356 | unsigned long flags; |
a3972203 | 357 | struct buffer_head *first; |
1da177e4 LT |
358 | struct buffer_head *tmp; |
359 | struct page *page; | |
360 | ||
361 | BUG_ON(!buffer_async_write(bh)); | |
362 | ||
363 | page = bh->b_page; | |
364 | if (uptodate) { | |
365 | set_buffer_uptodate(bh); | |
366 | } else { | |
432f16e6 | 367 | buffer_io_error(bh, ", lost async page write"); |
87354e5d | 368 | mark_buffer_write_io_error(bh); |
1da177e4 LT |
369 | clear_buffer_uptodate(bh); |
370 | SetPageError(page); | |
371 | } | |
372 | ||
a3972203 NP |
373 | first = page_buffers(page); |
374 | local_irq_save(flags); | |
375 | bit_spin_lock(BH_Uptodate_Lock, &first->b_state); | |
376 | ||
1da177e4 LT |
377 | clear_buffer_async_write(bh); |
378 | unlock_buffer(bh); | |
379 | tmp = bh->b_this_page; | |
380 | while (tmp != bh) { | |
381 | if (buffer_async_write(tmp)) { | |
382 | BUG_ON(!buffer_locked(tmp)); | |
383 | goto still_busy; | |
384 | } | |
385 | tmp = tmp->b_this_page; | |
386 | } | |
a3972203 NP |
387 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
388 | local_irq_restore(flags); | |
1da177e4 LT |
389 | end_page_writeback(page); |
390 | return; | |
391 | ||
392 | still_busy: | |
a3972203 NP |
393 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
394 | local_irq_restore(flags); | |
1da177e4 LT |
395 | return; |
396 | } | |
1fe72eaa | 397 | EXPORT_SYMBOL(end_buffer_async_write); |
1da177e4 LT |
398 | |
399 | /* | |
400 | * If a page's buffers are under async readin (end_buffer_async_read | |
401 | * completion) then there is a possibility that another thread of | |
402 | * control could lock one of the buffers after it has completed | |
403 | * but while some of the other buffers have not completed. This | |
404 | * locked buffer would confuse end_buffer_async_read() into not unlocking | |
405 | * the page. So the absence of BH_Async_Read tells end_buffer_async_read() | |
406 | * that this buffer is not under async I/O. | |
407 | * | |
408 | * The page comes unlocked when it has no locked buffer_async buffers | |
409 | * left. | |
410 | * | |
411 | * PageLocked prevents anyone starting new async I/O reads any of | |
412 | * the buffers. | |
413 | * | |
414 | * PageWriteback is used to prevent simultaneous writeout of the same | |
415 | * page. | |
416 | * | |
417 | * PageLocked prevents anyone from starting writeback of a page which is | |
418 | * under read I/O (PageWriteback is only ever set against a locked page). | |
419 | */ | |
420 | static void mark_buffer_async_read(struct buffer_head *bh) | |
421 | { | |
31fb992c | 422 | bh->b_end_io = end_buffer_async_read_io; |
1da177e4 LT |
423 | set_buffer_async_read(bh); |
424 | } | |
425 | ||
1fe72eaa HS |
426 | static void mark_buffer_async_write_endio(struct buffer_head *bh, |
427 | bh_end_io_t *handler) | |
1da177e4 | 428 | { |
35c80d5f | 429 | bh->b_end_io = handler; |
1da177e4 LT |
430 | set_buffer_async_write(bh); |
431 | } | |
35c80d5f CM |
432 | |
433 | void mark_buffer_async_write(struct buffer_head *bh) | |
434 | { | |
435 | mark_buffer_async_write_endio(bh, end_buffer_async_write); | |
436 | } | |
1da177e4 LT |
437 | EXPORT_SYMBOL(mark_buffer_async_write); |
438 | ||
439 | ||
440 | /* | |
441 | * fs/buffer.c contains helper functions for buffer-backed address space's | |
442 | * fsync functions. A common requirement for buffer-based filesystems is | |
443 | * that certain data from the backing blockdev needs to be written out for | |
444 | * a successful fsync(). For example, ext2 indirect blocks need to be | |
445 | * written back and waited upon before fsync() returns. | |
446 | * | |
447 | * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), | |
448 | * inode_has_buffers() and invalidate_inode_buffers() are provided for the | |
449 | * management of a list of dependent buffers at ->i_mapping->private_list. | |
450 | * | |
451 | * Locking is a little subtle: try_to_free_buffers() will remove buffers | |
452 | * from their controlling inode's queue when they are being freed. But | |
453 | * try_to_free_buffers() will be operating against the *blockdev* mapping | |
454 | * at the time, not against the S_ISREG file which depends on those buffers. | |
455 | * So the locking for private_list is via the private_lock in the address_space | |
456 | * which backs the buffers. Which is different from the address_space | |
457 | * against which the buffers are listed. So for a particular address_space, | |
458 | * mapping->private_lock does *not* protect mapping->private_list! In fact, | |
459 | * mapping->private_list will always be protected by the backing blockdev's | |
460 | * ->private_lock. | |
461 | * | |
462 | * Which introduces a requirement: all buffers on an address_space's | |
463 | * ->private_list must be from the same address_space: the blockdev's. | |
464 | * | |
465 | * address_spaces which do not place buffers at ->private_list via these | |
466 | * utility functions are free to use private_lock and private_list for | |
467 | * whatever they want. The only requirement is that list_empty(private_list) | |
468 | * be true at clear_inode() time. | |
469 | * | |
470 | * FIXME: clear_inode should not call invalidate_inode_buffers(). The | |
471 | * filesystems should do that. invalidate_inode_buffers() should just go | |
472 | * BUG_ON(!list_empty). | |
473 | * | |
474 | * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should | |
475 | * take an address_space, not an inode. And it should be called | |
476 | * mark_buffer_dirty_fsync() to clearly define why those buffers are being | |
477 | * queued up. | |
478 | * | |
479 | * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the | |
480 | * list if it is already on a list. Because if the buffer is on a list, | |
481 | * it *must* already be on the right one. If not, the filesystem is being | |
482 | * silly. This will save a ton of locking. But first we have to ensure | |
483 | * that buffers are taken *off* the old inode's list when they are freed | |
484 | * (presumably in truncate). That requires careful auditing of all | |
485 | * filesystems (do it inside bforget()). It could also be done by bringing | |
486 | * b_inode back. | |
487 | */ | |
488 | ||
489 | /* | |
490 | * The buffer's backing address_space's private_lock must be held | |
491 | */ | |
dbacefc9 | 492 | static void __remove_assoc_queue(struct buffer_head *bh) |
1da177e4 LT |
493 | { |
494 | list_del_init(&bh->b_assoc_buffers); | |
58ff407b | 495 | WARN_ON(!bh->b_assoc_map); |
58ff407b | 496 | bh->b_assoc_map = NULL; |
1da177e4 LT |
497 | } |
498 | ||
499 | int inode_has_buffers(struct inode *inode) | |
500 | { | |
501 | return !list_empty(&inode->i_data.private_list); | |
502 | } | |
503 | ||
504 | /* | |
505 | * osync is designed to support O_SYNC io. It waits synchronously for | |
506 | * all already-submitted IO to complete, but does not queue any new | |
507 | * writes to the disk. | |
508 | * | |
509 | * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as | |
510 | * you dirty the buffers, and then use osync_inode_buffers to wait for | |
511 | * completion. Any other dirty buffers which are not yet queued for | |
512 | * write will not be flushed to disk by the osync. | |
513 | */ | |
514 | static int osync_buffers_list(spinlock_t *lock, struct list_head *list) | |
515 | { | |
516 | struct buffer_head *bh; | |
517 | struct list_head *p; | |
518 | int err = 0; | |
519 | ||
520 | spin_lock(lock); | |
521 | repeat: | |
522 | list_for_each_prev(p, list) { | |
523 | bh = BH_ENTRY(p); | |
524 | if (buffer_locked(bh)) { | |
525 | get_bh(bh); | |
526 | spin_unlock(lock); | |
527 | wait_on_buffer(bh); | |
528 | if (!buffer_uptodate(bh)) | |
529 | err = -EIO; | |
530 | brelse(bh); | |
531 | spin_lock(lock); | |
532 | goto repeat; | |
533 | } | |
534 | } | |
535 | spin_unlock(lock); | |
536 | return err; | |
537 | } | |
538 | ||
08fdc8a0 | 539 | void emergency_thaw_bdev(struct super_block *sb) |
c2d75438 | 540 | { |
01a05b33 | 541 | while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) |
a1c6f057 | 542 | printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); |
01a05b33 | 543 | } |
c2d75438 | 544 | |
1da177e4 | 545 | /** |
78a4a50a | 546 | * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers |
67be2dd1 | 547 | * @mapping: the mapping which wants those buffers written |
1da177e4 LT |
548 | * |
549 | * Starts I/O against the buffers at mapping->private_list, and waits upon | |
550 | * that I/O. | |
551 | * | |
67be2dd1 MW |
552 | * Basically, this is a convenience function for fsync(). |
553 | * @mapping is a file or directory which needs those buffers to be written for | |
554 | * a successful fsync(). | |
1da177e4 LT |
555 | */ |
556 | int sync_mapping_buffers(struct address_space *mapping) | |
557 | { | |
252aa6f5 | 558 | struct address_space *buffer_mapping = mapping->private_data; |
1da177e4 LT |
559 | |
560 | if (buffer_mapping == NULL || list_empty(&mapping->private_list)) | |
561 | return 0; | |
562 | ||
563 | return fsync_buffers_list(&buffer_mapping->private_lock, | |
564 | &mapping->private_list); | |
565 | } | |
566 | EXPORT_SYMBOL(sync_mapping_buffers); | |
567 | ||
568 | /* | |
569 | * Called when we've recently written block `bblock', and it is known that | |
570 | * `bblock' was for a buffer_boundary() buffer. This means that the block at | |
571 | * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's | |
572 | * dirty, schedule it for IO. So that indirects merge nicely with their data. | |
573 | */ | |
574 | void write_boundary_block(struct block_device *bdev, | |
575 | sector_t bblock, unsigned blocksize) | |
576 | { | |
577 | struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); | |
578 | if (bh) { | |
579 | if (buffer_dirty(bh)) | |
dfec8a14 | 580 | ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); |
1da177e4 LT |
581 | put_bh(bh); |
582 | } | |
583 | } | |
584 | ||
585 | void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) | |
586 | { | |
587 | struct address_space *mapping = inode->i_mapping; | |
588 | struct address_space *buffer_mapping = bh->b_page->mapping; | |
589 | ||
590 | mark_buffer_dirty(bh); | |
252aa6f5 RA |
591 | if (!mapping->private_data) { |
592 | mapping->private_data = buffer_mapping; | |
1da177e4 | 593 | } else { |
252aa6f5 | 594 | BUG_ON(mapping->private_data != buffer_mapping); |
1da177e4 | 595 | } |
535ee2fb | 596 | if (!bh->b_assoc_map) { |
1da177e4 LT |
597 | spin_lock(&buffer_mapping->private_lock); |
598 | list_move_tail(&bh->b_assoc_buffers, | |
599 | &mapping->private_list); | |
58ff407b | 600 | bh->b_assoc_map = mapping; |
1da177e4 LT |
601 | spin_unlock(&buffer_mapping->private_lock); |
602 | } | |
603 | } | |
604 | EXPORT_SYMBOL(mark_buffer_dirty_inode); | |
605 | ||
787d2214 | 606 | /* |
ec82e1c1 | 607 | * Mark the page dirty, and set it dirty in the page cache, and mark the inode |
787d2214 NP |
608 | * dirty. |
609 | * | |
610 | * If warn is true, then emit a warning if the page is not uptodate and has | |
611 | * not been truncated. | |
c4843a75 | 612 | * |
81f8c3a4 | 613 | * The caller must hold lock_page_memcg(). |
787d2214 | 614 | */ |
f82b3764 | 615 | void __set_page_dirty(struct page *page, struct address_space *mapping, |
62cccb8c | 616 | int warn) |
787d2214 | 617 | { |
227d53b3 KM |
618 | unsigned long flags; |
619 | ||
b93b0163 | 620 | xa_lock_irqsave(&mapping->i_pages, flags); |
787d2214 NP |
621 | if (page->mapping) { /* Race with truncate? */ |
622 | WARN_ON_ONCE(warn && !PageUptodate(page)); | |
62cccb8c | 623 | account_page_dirtied(page, mapping); |
ec82e1c1 MW |
624 | __xa_set_mark(&mapping->i_pages, page_index(page), |
625 | PAGECACHE_TAG_DIRTY); | |
787d2214 | 626 | } |
b93b0163 | 627 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
787d2214 | 628 | } |
f82b3764 | 629 | EXPORT_SYMBOL_GPL(__set_page_dirty); |
787d2214 | 630 | |
1da177e4 LT |
631 | /* |
632 | * Add a page to the dirty page list. | |
633 | * | |
634 | * It is a sad fact of life that this function is called from several places | |
635 | * deeply under spinlocking. It may not sleep. | |
636 | * | |
637 | * If the page has buffers, the uptodate buffers are set dirty, to preserve | |
638 | * dirty-state coherency between the page and the buffers. It the page does | |
639 | * not have buffers then when they are later attached they will all be set | |
640 | * dirty. | |
641 | * | |
642 | * The buffers are dirtied before the page is dirtied. There's a small race | |
643 | * window in which a writepage caller may see the page cleanness but not the | |
644 | * buffer dirtiness. That's fine. If this code were to set the page dirty | |
645 | * before the buffers, a concurrent writepage caller could clear the page dirty | |
646 | * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean | |
647 | * page on the dirty page list. | |
648 | * | |
649 | * We use private_lock to lock against try_to_free_buffers while using the | |
650 | * page's buffer list. Also use this to protect against clean buffers being | |
651 | * added to the page after it was set dirty. | |
652 | * | |
653 | * FIXME: may need to call ->reservepage here as well. That's rather up to the | |
654 | * address_space though. | |
655 | */ | |
656 | int __set_page_dirty_buffers(struct page *page) | |
657 | { | |
a8e7d49a | 658 | int newly_dirty; |
787d2214 | 659 | struct address_space *mapping = page_mapping(page); |
ebf7a227 NP |
660 | |
661 | if (unlikely(!mapping)) | |
662 | return !TestSetPageDirty(page); | |
1da177e4 LT |
663 | |
664 | spin_lock(&mapping->private_lock); | |
665 | if (page_has_buffers(page)) { | |
666 | struct buffer_head *head = page_buffers(page); | |
667 | struct buffer_head *bh = head; | |
668 | ||
669 | do { | |
670 | set_buffer_dirty(bh); | |
671 | bh = bh->b_this_page; | |
672 | } while (bh != head); | |
673 | } | |
c4843a75 | 674 | /* |
81f8c3a4 JW |
675 | * Lock out page->mem_cgroup migration to keep PageDirty |
676 | * synchronized with per-memcg dirty page counters. | |
c4843a75 | 677 | */ |
62cccb8c | 678 | lock_page_memcg(page); |
a8e7d49a | 679 | newly_dirty = !TestSetPageDirty(page); |
1da177e4 LT |
680 | spin_unlock(&mapping->private_lock); |
681 | ||
a8e7d49a | 682 | if (newly_dirty) |
62cccb8c | 683 | __set_page_dirty(page, mapping, 1); |
c4843a75 | 684 | |
62cccb8c | 685 | unlock_page_memcg(page); |
c4843a75 GT |
686 | |
687 | if (newly_dirty) | |
688 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | |
689 | ||
a8e7d49a | 690 | return newly_dirty; |
1da177e4 LT |
691 | } |
692 | EXPORT_SYMBOL(__set_page_dirty_buffers); | |
693 | ||
694 | /* | |
695 | * Write out and wait upon a list of buffers. | |
696 | * | |
697 | * We have conflicting pressures: we want to make sure that all | |
698 | * initially dirty buffers get waited on, but that any subsequently | |
699 | * dirtied buffers don't. After all, we don't want fsync to last | |
700 | * forever if somebody is actively writing to the file. | |
701 | * | |
702 | * Do this in two main stages: first we copy dirty buffers to a | |
703 | * temporary inode list, queueing the writes as we go. Then we clean | |
704 | * up, waiting for those writes to complete. | |
705 | * | |
706 | * During this second stage, any subsequent updates to the file may end | |
707 | * up refiling the buffer on the original inode's dirty list again, so | |
708 | * there is a chance we will end up with a buffer queued for write but | |
709 | * not yet completed on that list. So, as a final cleanup we go through | |
710 | * the osync code to catch these locked, dirty buffers without requeuing | |
711 | * any newly dirty buffers for write. | |
712 | */ | |
713 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) | |
714 | { | |
715 | struct buffer_head *bh; | |
716 | struct list_head tmp; | |
7eaceacc | 717 | struct address_space *mapping; |
1da177e4 | 718 | int err = 0, err2; |
4ee2491e | 719 | struct blk_plug plug; |
1da177e4 LT |
720 | |
721 | INIT_LIST_HEAD(&tmp); | |
4ee2491e | 722 | blk_start_plug(&plug); |
1da177e4 LT |
723 | |
724 | spin_lock(lock); | |
725 | while (!list_empty(list)) { | |
726 | bh = BH_ENTRY(list->next); | |
535ee2fb | 727 | mapping = bh->b_assoc_map; |
58ff407b | 728 | __remove_assoc_queue(bh); |
535ee2fb JK |
729 | /* Avoid race with mark_buffer_dirty_inode() which does |
730 | * a lockless check and we rely on seeing the dirty bit */ | |
731 | smp_mb(); | |
1da177e4 LT |
732 | if (buffer_dirty(bh) || buffer_locked(bh)) { |
733 | list_add(&bh->b_assoc_buffers, &tmp); | |
535ee2fb | 734 | bh->b_assoc_map = mapping; |
1da177e4 LT |
735 | if (buffer_dirty(bh)) { |
736 | get_bh(bh); | |
737 | spin_unlock(lock); | |
738 | /* | |
739 | * Ensure any pending I/O completes so that | |
9cb569d6 CH |
740 | * write_dirty_buffer() actually writes the |
741 | * current contents - it is a noop if I/O is | |
742 | * still in flight on potentially older | |
743 | * contents. | |
1da177e4 | 744 | */ |
70fd7614 | 745 | write_dirty_buffer(bh, REQ_SYNC); |
9cf6b720 JA |
746 | |
747 | /* | |
748 | * Kick off IO for the previous mapping. Note | |
749 | * that we will not run the very last mapping, | |
750 | * wait_on_buffer() will do that for us | |
751 | * through sync_buffer(). | |
752 | */ | |
1da177e4 LT |
753 | brelse(bh); |
754 | spin_lock(lock); | |
755 | } | |
756 | } | |
757 | } | |
758 | ||
4ee2491e JA |
759 | spin_unlock(lock); |
760 | blk_finish_plug(&plug); | |
761 | spin_lock(lock); | |
762 | ||
1da177e4 LT |
763 | while (!list_empty(&tmp)) { |
764 | bh = BH_ENTRY(tmp.prev); | |
1da177e4 | 765 | get_bh(bh); |
535ee2fb JK |
766 | mapping = bh->b_assoc_map; |
767 | __remove_assoc_queue(bh); | |
768 | /* Avoid race with mark_buffer_dirty_inode() which does | |
769 | * a lockless check and we rely on seeing the dirty bit */ | |
770 | smp_mb(); | |
771 | if (buffer_dirty(bh)) { | |
772 | list_add(&bh->b_assoc_buffers, | |
e3892296 | 773 | &mapping->private_list); |
535ee2fb JK |
774 | bh->b_assoc_map = mapping; |
775 | } | |
1da177e4 LT |
776 | spin_unlock(lock); |
777 | wait_on_buffer(bh); | |
778 | if (!buffer_uptodate(bh)) | |
779 | err = -EIO; | |
780 | brelse(bh); | |
781 | spin_lock(lock); | |
782 | } | |
783 | ||
784 | spin_unlock(lock); | |
785 | err2 = osync_buffers_list(lock, list); | |
786 | if (err) | |
787 | return err; | |
788 | else | |
789 | return err2; | |
790 | } | |
791 | ||
792 | /* | |
793 | * Invalidate any and all dirty buffers on a given inode. We are | |
794 | * probably unmounting the fs, but that doesn't mean we have already | |
795 | * done a sync(). Just drop the buffers from the inode list. | |
796 | * | |
797 | * NOTE: we take the inode's blockdev's mapping's private_lock. Which | |
798 | * assumes that all the buffers are against the blockdev. Not true | |
799 | * for reiserfs. | |
800 | */ | |
801 | void invalidate_inode_buffers(struct inode *inode) | |
802 | { | |
803 | if (inode_has_buffers(inode)) { | |
804 | struct address_space *mapping = &inode->i_data; | |
805 | struct list_head *list = &mapping->private_list; | |
252aa6f5 | 806 | struct address_space *buffer_mapping = mapping->private_data; |
1da177e4 LT |
807 | |
808 | spin_lock(&buffer_mapping->private_lock); | |
809 | while (!list_empty(list)) | |
810 | __remove_assoc_queue(BH_ENTRY(list->next)); | |
811 | spin_unlock(&buffer_mapping->private_lock); | |
812 | } | |
813 | } | |
52b19ac9 | 814 | EXPORT_SYMBOL(invalidate_inode_buffers); |
1da177e4 LT |
815 | |
816 | /* | |
817 | * Remove any clean buffers from the inode's buffer list. This is called | |
818 | * when we're trying to free the inode itself. Those buffers can pin it. | |
819 | * | |
820 | * Returns true if all buffers were removed. | |
821 | */ | |
822 | int remove_inode_buffers(struct inode *inode) | |
823 | { | |
824 | int ret = 1; | |
825 | ||
826 | if (inode_has_buffers(inode)) { | |
827 | struct address_space *mapping = &inode->i_data; | |
828 | struct list_head *list = &mapping->private_list; | |
252aa6f5 | 829 | struct address_space *buffer_mapping = mapping->private_data; |
1da177e4 LT |
830 | |
831 | spin_lock(&buffer_mapping->private_lock); | |
832 | while (!list_empty(list)) { | |
833 | struct buffer_head *bh = BH_ENTRY(list->next); | |
834 | if (buffer_dirty(bh)) { | |
835 | ret = 0; | |
836 | break; | |
837 | } | |
838 | __remove_assoc_queue(bh); | |
839 | } | |
840 | spin_unlock(&buffer_mapping->private_lock); | |
841 | } | |
842 | return ret; | |
843 | } | |
844 | ||
845 | /* | |
846 | * Create the appropriate buffers when given a page for data area and | |
847 | * the size of each buffer.. Use the bh->b_this_page linked list to | |
848 | * follow the buffers created. Return NULL if unable to create more | |
849 | * buffers. | |
850 | * | |
851 | * The retry flag is used to differentiate async IO (paging, swapping) | |
852 | * which may not fail from ordinary buffer allocations. | |
853 | */ | |
854 | struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, | |
640ab98f | 855 | bool retry) |
1da177e4 LT |
856 | { |
857 | struct buffer_head *bh, *head; | |
f745c6f5 | 858 | gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; |
1da177e4 | 859 | long offset; |
f745c6f5 | 860 | struct mem_cgroup *memcg; |
1da177e4 | 861 | |
640ab98f JA |
862 | if (retry) |
863 | gfp |= __GFP_NOFAIL; | |
864 | ||
f745c6f5 SB |
865 | memcg = get_mem_cgroup_from_page(page); |
866 | memalloc_use_memcg(memcg); | |
867 | ||
1da177e4 LT |
868 | head = NULL; |
869 | offset = PAGE_SIZE; | |
870 | while ((offset -= size) >= 0) { | |
640ab98f | 871 | bh = alloc_buffer_head(gfp); |
1da177e4 LT |
872 | if (!bh) |
873 | goto no_grow; | |
874 | ||
1da177e4 LT |
875 | bh->b_this_page = head; |
876 | bh->b_blocknr = -1; | |
877 | head = bh; | |
878 | ||
1da177e4 LT |
879 | bh->b_size = size; |
880 | ||
881 | /* Link the buffer to its page */ | |
882 | set_bh_page(bh, page, offset); | |
1da177e4 | 883 | } |
f745c6f5 SB |
884 | out: |
885 | memalloc_unuse_memcg(); | |
886 | mem_cgroup_put(memcg); | |
1da177e4 LT |
887 | return head; |
888 | /* | |
889 | * In case anything failed, we just free everything we got. | |
890 | */ | |
891 | no_grow: | |
892 | if (head) { | |
893 | do { | |
894 | bh = head; | |
895 | head = head->b_this_page; | |
896 | free_buffer_head(bh); | |
897 | } while (head); | |
898 | } | |
899 | ||
f745c6f5 | 900 | goto out; |
1da177e4 LT |
901 | } |
902 | EXPORT_SYMBOL_GPL(alloc_page_buffers); | |
903 | ||
904 | static inline void | |
905 | link_dev_buffers(struct page *page, struct buffer_head *head) | |
906 | { | |
907 | struct buffer_head *bh, *tail; | |
908 | ||
909 | bh = head; | |
910 | do { | |
911 | tail = bh; | |
912 | bh = bh->b_this_page; | |
913 | } while (bh); | |
914 | tail->b_this_page = head; | |
915 | attach_page_buffers(page, head); | |
916 | } | |
917 | ||
bbec0270 LT |
918 | static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) |
919 | { | |
920 | sector_t retval = ~((sector_t)0); | |
921 | loff_t sz = i_size_read(bdev->bd_inode); | |
922 | ||
923 | if (sz) { | |
924 | unsigned int sizebits = blksize_bits(size); | |
925 | retval = (sz >> sizebits); | |
926 | } | |
927 | return retval; | |
928 | } | |
929 | ||
1da177e4 LT |
930 | /* |
931 | * Initialise the state of a blockdev page's buffers. | |
932 | */ | |
676ce6d5 | 933 | static sector_t |
1da177e4 LT |
934 | init_page_buffers(struct page *page, struct block_device *bdev, |
935 | sector_t block, int size) | |
936 | { | |
937 | struct buffer_head *head = page_buffers(page); | |
938 | struct buffer_head *bh = head; | |
939 | int uptodate = PageUptodate(page); | |
bbec0270 | 940 | sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); |
1da177e4 LT |
941 | |
942 | do { | |
943 | if (!buffer_mapped(bh)) { | |
01950a34 EB |
944 | bh->b_end_io = NULL; |
945 | bh->b_private = NULL; | |
1da177e4 LT |
946 | bh->b_bdev = bdev; |
947 | bh->b_blocknr = block; | |
948 | if (uptodate) | |
949 | set_buffer_uptodate(bh); | |
080399aa JM |
950 | if (block < end_block) |
951 | set_buffer_mapped(bh); | |
1da177e4 LT |
952 | } |
953 | block++; | |
954 | bh = bh->b_this_page; | |
955 | } while (bh != head); | |
676ce6d5 HD |
956 | |
957 | /* | |
958 | * Caller needs to validate requested block against end of device. | |
959 | */ | |
960 | return end_block; | |
1da177e4 LT |
961 | } |
962 | ||
963 | /* | |
964 | * Create the page-cache page that contains the requested block. | |
965 | * | |
676ce6d5 | 966 | * This is used purely for blockdev mappings. |
1da177e4 | 967 | */ |
676ce6d5 | 968 | static int |
1da177e4 | 969 | grow_dev_page(struct block_device *bdev, sector_t block, |
3b5e6454 | 970 | pgoff_t index, int size, int sizebits, gfp_t gfp) |
1da177e4 LT |
971 | { |
972 | struct inode *inode = bdev->bd_inode; | |
973 | struct page *page; | |
974 | struct buffer_head *bh; | |
676ce6d5 HD |
975 | sector_t end_block; |
976 | int ret = 0; /* Will call free_more_memory() */ | |
84235de3 | 977 | gfp_t gfp_mask; |
1da177e4 | 978 | |
c62d2555 | 979 | gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; |
3b5e6454 | 980 | |
84235de3 JW |
981 | /* |
982 | * XXX: __getblk_slow() can not really deal with failure and | |
983 | * will endlessly loop on improvised global reclaim. Prefer | |
984 | * looping in the allocator rather than here, at least that | |
985 | * code knows what it's doing. | |
986 | */ | |
987 | gfp_mask |= __GFP_NOFAIL; | |
988 | ||
989 | page = find_or_create_page(inode->i_mapping, index, gfp_mask); | |
1da177e4 | 990 | |
e827f923 | 991 | BUG_ON(!PageLocked(page)); |
1da177e4 LT |
992 | |
993 | if (page_has_buffers(page)) { | |
994 | bh = page_buffers(page); | |
995 | if (bh->b_size == size) { | |
676ce6d5 | 996 | end_block = init_page_buffers(page, bdev, |
f2d5a944 AA |
997 | (sector_t)index << sizebits, |
998 | size); | |
676ce6d5 | 999 | goto done; |
1da177e4 LT |
1000 | } |
1001 | if (!try_to_free_buffers(page)) | |
1002 | goto failed; | |
1003 | } | |
1004 | ||
1005 | /* | |
1006 | * Allocate some buffers for this page | |
1007 | */ | |
94dc24c0 | 1008 | bh = alloc_page_buffers(page, size, true); |
1da177e4 LT |
1009 | |
1010 | /* | |
1011 | * Link the page to the buffers and initialise them. Take the | |
1012 | * lock to be atomic wrt __find_get_block(), which does not | |
1013 | * run under the page lock. | |
1014 | */ | |
1015 | spin_lock(&inode->i_mapping->private_lock); | |
1016 | link_dev_buffers(page, bh); | |
f2d5a944 AA |
1017 | end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, |
1018 | size); | |
1da177e4 | 1019 | spin_unlock(&inode->i_mapping->private_lock); |
676ce6d5 HD |
1020 | done: |
1021 | ret = (block < end_block) ? 1 : -ENXIO; | |
1da177e4 | 1022 | failed: |
1da177e4 | 1023 | unlock_page(page); |
09cbfeaf | 1024 | put_page(page); |
676ce6d5 | 1025 | return ret; |
1da177e4 LT |
1026 | } |
1027 | ||
1028 | /* | |
1029 | * Create buffers for the specified block device block's page. If | |
1030 | * that page was dirty, the buffers are set dirty also. | |
1da177e4 | 1031 | */ |
858119e1 | 1032 | static int |
3b5e6454 | 1033 | grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) |
1da177e4 | 1034 | { |
1da177e4 LT |
1035 | pgoff_t index; |
1036 | int sizebits; | |
1037 | ||
1038 | sizebits = -1; | |
1039 | do { | |
1040 | sizebits++; | |
1041 | } while ((size << sizebits) < PAGE_SIZE); | |
1042 | ||
1043 | index = block >> sizebits; | |
1da177e4 | 1044 | |
e5657933 AM |
1045 | /* |
1046 | * Check for a block which wants to lie outside our maximum possible | |
1047 | * pagecache index. (this comparison is done using sector_t types). | |
1048 | */ | |
1049 | if (unlikely(index != block >> sizebits)) { | |
e5657933 | 1050 | printk(KERN_ERR "%s: requested out-of-range block %llu for " |
a1c6f057 | 1051 | "device %pg\n", |
8e24eea7 | 1052 | __func__, (unsigned long long)block, |
a1c6f057 | 1053 | bdev); |
e5657933 AM |
1054 | return -EIO; |
1055 | } | |
676ce6d5 | 1056 | |
1da177e4 | 1057 | /* Create a page with the proper size buffers.. */ |
3b5e6454 | 1058 | return grow_dev_page(bdev, block, index, size, sizebits, gfp); |
1da177e4 LT |
1059 | } |
1060 | ||
0026ba40 | 1061 | static struct buffer_head * |
3b5e6454 GK |
1062 | __getblk_slow(struct block_device *bdev, sector_t block, |
1063 | unsigned size, gfp_t gfp) | |
1da177e4 LT |
1064 | { |
1065 | /* Size must be multiple of hard sectorsize */ | |
e1defc4f | 1066 | if (unlikely(size & (bdev_logical_block_size(bdev)-1) || |
1da177e4 LT |
1067 | (size < 512 || size > PAGE_SIZE))) { |
1068 | printk(KERN_ERR "getblk(): invalid block size %d requested\n", | |
1069 | size); | |
e1defc4f MP |
1070 | printk(KERN_ERR "logical block size: %d\n", |
1071 | bdev_logical_block_size(bdev)); | |
1da177e4 LT |
1072 | |
1073 | dump_stack(); | |
1074 | return NULL; | |
1075 | } | |
1076 | ||
676ce6d5 HD |
1077 | for (;;) { |
1078 | struct buffer_head *bh; | |
1079 | int ret; | |
1da177e4 LT |
1080 | |
1081 | bh = __find_get_block(bdev, block, size); | |
1082 | if (bh) | |
1083 | return bh; | |
676ce6d5 | 1084 | |
3b5e6454 | 1085 | ret = grow_buffers(bdev, block, size, gfp); |
676ce6d5 HD |
1086 | if (ret < 0) |
1087 | return NULL; | |
1da177e4 LT |
1088 | } |
1089 | } | |
1090 | ||
1091 | /* | |
1092 | * The relationship between dirty buffers and dirty pages: | |
1093 | * | |
1094 | * Whenever a page has any dirty buffers, the page's dirty bit is set, and | |
ec82e1c1 | 1095 | * the page is tagged dirty in the page cache. |
1da177e4 LT |
1096 | * |
1097 | * At all times, the dirtiness of the buffers represents the dirtiness of | |
1098 | * subsections of the page. If the page has buffers, the page dirty bit is | |
1099 | * merely a hint about the true dirty state. | |
1100 | * | |
1101 | * When a page is set dirty in its entirety, all its buffers are marked dirty | |
1102 | * (if the page has buffers). | |
1103 | * | |
1104 | * When a buffer is marked dirty, its page is dirtied, but the page's other | |
1105 | * buffers are not. | |
1106 | * | |
1107 | * Also. When blockdev buffers are explicitly read with bread(), they | |
1108 | * individually become uptodate. But their backing page remains not | |
1109 | * uptodate - even if all of its buffers are uptodate. A subsequent | |
1110 | * block_read_full_page() against that page will discover all the uptodate | |
1111 | * buffers, will set the page uptodate and will perform no I/O. | |
1112 | */ | |
1113 | ||
1114 | /** | |
1115 | * mark_buffer_dirty - mark a buffer_head as needing writeout | |
67be2dd1 | 1116 | * @bh: the buffer_head to mark dirty |
1da177e4 | 1117 | * |
ec82e1c1 MW |
1118 | * mark_buffer_dirty() will set the dirty bit against the buffer, then set |
1119 | * its backing page dirty, then tag the page as dirty in the page cache | |
1120 | * and then attach the address_space's inode to its superblock's dirty | |
1da177e4 LT |
1121 | * inode list. |
1122 | * | |
1123 | * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, | |
b93b0163 | 1124 | * i_pages lock and mapping->host->i_lock. |
1da177e4 | 1125 | */ |
fc9b52cd | 1126 | void mark_buffer_dirty(struct buffer_head *bh) |
1da177e4 | 1127 | { |
787d2214 | 1128 | WARN_ON_ONCE(!buffer_uptodate(bh)); |
1be62dc1 | 1129 | |
5305cb83 TH |
1130 | trace_block_dirty_buffer(bh); |
1131 | ||
1be62dc1 LT |
1132 | /* |
1133 | * Very *carefully* optimize the it-is-already-dirty case. | |
1134 | * | |
1135 | * Don't let the final "is it dirty" escape to before we | |
1136 | * perhaps modified the buffer. | |
1137 | */ | |
1138 | if (buffer_dirty(bh)) { | |
1139 | smp_mb(); | |
1140 | if (buffer_dirty(bh)) | |
1141 | return; | |
1142 | } | |
1143 | ||
a8e7d49a LT |
1144 | if (!test_set_buffer_dirty(bh)) { |
1145 | struct page *page = bh->b_page; | |
c4843a75 | 1146 | struct address_space *mapping = NULL; |
c4843a75 | 1147 | |
62cccb8c | 1148 | lock_page_memcg(page); |
8e9d78ed | 1149 | if (!TestSetPageDirty(page)) { |
c4843a75 | 1150 | mapping = page_mapping(page); |
8e9d78ed | 1151 | if (mapping) |
62cccb8c | 1152 | __set_page_dirty(page, mapping, 0); |
8e9d78ed | 1153 | } |
62cccb8c | 1154 | unlock_page_memcg(page); |
c4843a75 GT |
1155 | if (mapping) |
1156 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | |
a8e7d49a | 1157 | } |
1da177e4 | 1158 | } |
1fe72eaa | 1159 | EXPORT_SYMBOL(mark_buffer_dirty); |
1da177e4 | 1160 | |
87354e5d JL |
1161 | void mark_buffer_write_io_error(struct buffer_head *bh) |
1162 | { | |
1163 | set_buffer_write_io_error(bh); | |
1164 | /* FIXME: do we need to set this in both places? */ | |
1165 | if (bh->b_page && bh->b_page->mapping) | |
1166 | mapping_set_error(bh->b_page->mapping, -EIO); | |
1167 | if (bh->b_assoc_map) | |
1168 | mapping_set_error(bh->b_assoc_map, -EIO); | |
1169 | } | |
1170 | EXPORT_SYMBOL(mark_buffer_write_io_error); | |
1171 | ||
1da177e4 LT |
1172 | /* |
1173 | * Decrement a buffer_head's reference count. If all buffers against a page | |
1174 | * have zero reference count, are clean and unlocked, and if the page is clean | |
1175 | * and unlocked then try_to_free_buffers() may strip the buffers from the page | |
1176 | * in preparation for freeing it (sometimes, rarely, buffers are removed from | |
1177 | * a page but it ends up not being freed, and buffers may later be reattached). | |
1178 | */ | |
1179 | void __brelse(struct buffer_head * buf) | |
1180 | { | |
1181 | if (atomic_read(&buf->b_count)) { | |
1182 | put_bh(buf); | |
1183 | return; | |
1184 | } | |
5c752ad9 | 1185 | WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); |
1da177e4 | 1186 | } |
1fe72eaa | 1187 | EXPORT_SYMBOL(__brelse); |
1da177e4 LT |
1188 | |
1189 | /* | |
1190 | * bforget() is like brelse(), except it discards any | |
1191 | * potentially dirty data. | |
1192 | */ | |
1193 | void __bforget(struct buffer_head *bh) | |
1194 | { | |
1195 | clear_buffer_dirty(bh); | |
535ee2fb | 1196 | if (bh->b_assoc_map) { |
1da177e4 LT |
1197 | struct address_space *buffer_mapping = bh->b_page->mapping; |
1198 | ||
1199 | spin_lock(&buffer_mapping->private_lock); | |
1200 | list_del_init(&bh->b_assoc_buffers); | |
58ff407b | 1201 | bh->b_assoc_map = NULL; |
1da177e4 LT |
1202 | spin_unlock(&buffer_mapping->private_lock); |
1203 | } | |
1204 | __brelse(bh); | |
1205 | } | |
1fe72eaa | 1206 | EXPORT_SYMBOL(__bforget); |
1da177e4 LT |
1207 | |
1208 | static struct buffer_head *__bread_slow(struct buffer_head *bh) | |
1209 | { | |
1210 | lock_buffer(bh); | |
1211 | if (buffer_uptodate(bh)) { | |
1212 | unlock_buffer(bh); | |
1213 | return bh; | |
1214 | } else { | |
1215 | get_bh(bh); | |
1216 | bh->b_end_io = end_buffer_read_sync; | |
2a222ca9 | 1217 | submit_bh(REQ_OP_READ, 0, bh); |
1da177e4 LT |
1218 | wait_on_buffer(bh); |
1219 | if (buffer_uptodate(bh)) | |
1220 | return bh; | |
1221 | } | |
1222 | brelse(bh); | |
1223 | return NULL; | |
1224 | } | |
1225 | ||
1226 | /* | |
1227 | * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). | |
1228 | * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their | |
1229 | * refcount elevated by one when they're in an LRU. A buffer can only appear | |
1230 | * once in a particular CPU's LRU. A single buffer can be present in multiple | |
1231 | * CPU's LRUs at the same time. | |
1232 | * | |
1233 | * This is a transparent caching front-end to sb_bread(), sb_getblk() and | |
1234 | * sb_find_get_block(). | |
1235 | * | |
1236 | * The LRUs themselves only need locking against invalidate_bh_lrus. We use | |
1237 | * a local interrupt disable for that. | |
1238 | */ | |
1239 | ||
86cf78d7 | 1240 | #define BH_LRU_SIZE 16 |
1da177e4 LT |
1241 | |
1242 | struct bh_lru { | |
1243 | struct buffer_head *bhs[BH_LRU_SIZE]; | |
1244 | }; | |
1245 | ||
1246 | static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; | |
1247 | ||
1248 | #ifdef CONFIG_SMP | |
1249 | #define bh_lru_lock() local_irq_disable() | |
1250 | #define bh_lru_unlock() local_irq_enable() | |
1251 | #else | |
1252 | #define bh_lru_lock() preempt_disable() | |
1253 | #define bh_lru_unlock() preempt_enable() | |
1254 | #endif | |
1255 | ||
1256 | static inline void check_irqs_on(void) | |
1257 | { | |
1258 | #ifdef irqs_disabled | |
1259 | BUG_ON(irqs_disabled()); | |
1260 | #endif | |
1261 | } | |
1262 | ||
1263 | /* | |
241f01fb EB |
1264 | * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is |
1265 | * inserted at the front, and the buffer_head at the back if any is evicted. | |
1266 | * Or, if already in the LRU it is moved to the front. | |
1da177e4 LT |
1267 | */ |
1268 | static void bh_lru_install(struct buffer_head *bh) | |
1269 | { | |
241f01fb EB |
1270 | struct buffer_head *evictee = bh; |
1271 | struct bh_lru *b; | |
1272 | int i; | |
1da177e4 LT |
1273 | |
1274 | check_irqs_on(); | |
1275 | bh_lru_lock(); | |
1da177e4 | 1276 | |
241f01fb EB |
1277 | b = this_cpu_ptr(&bh_lrus); |
1278 | for (i = 0; i < BH_LRU_SIZE; i++) { | |
1279 | swap(evictee, b->bhs[i]); | |
1280 | if (evictee == bh) { | |
1281 | bh_lru_unlock(); | |
1282 | return; | |
1da177e4 | 1283 | } |
1da177e4 | 1284 | } |
1da177e4 | 1285 | |
241f01fb EB |
1286 | get_bh(bh); |
1287 | bh_lru_unlock(); | |
1288 | brelse(evictee); | |
1da177e4 LT |
1289 | } |
1290 | ||
1291 | /* | |
1292 | * Look up the bh in this cpu's LRU. If it's there, move it to the head. | |
1293 | */ | |
858119e1 | 1294 | static struct buffer_head * |
3991d3bd | 1295 | lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1296 | { |
1297 | struct buffer_head *ret = NULL; | |
3991d3bd | 1298 | unsigned int i; |
1da177e4 LT |
1299 | |
1300 | check_irqs_on(); | |
1301 | bh_lru_lock(); | |
1da177e4 | 1302 | for (i = 0; i < BH_LRU_SIZE; i++) { |
c7b92516 | 1303 | struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); |
1da177e4 | 1304 | |
9470dd5d ZB |
1305 | if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && |
1306 | bh->b_size == size) { | |
1da177e4 LT |
1307 | if (i) { |
1308 | while (i) { | |
c7b92516 CL |
1309 | __this_cpu_write(bh_lrus.bhs[i], |
1310 | __this_cpu_read(bh_lrus.bhs[i - 1])); | |
1da177e4 LT |
1311 | i--; |
1312 | } | |
c7b92516 | 1313 | __this_cpu_write(bh_lrus.bhs[0], bh); |
1da177e4 LT |
1314 | } |
1315 | get_bh(bh); | |
1316 | ret = bh; | |
1317 | break; | |
1318 | } | |
1319 | } | |
1320 | bh_lru_unlock(); | |
1321 | return ret; | |
1322 | } | |
1323 | ||
1324 | /* | |
1325 | * Perform a pagecache lookup for the matching buffer. If it's there, refresh | |
1326 | * it in the LRU and mark it as accessed. If it is not present then return | |
1327 | * NULL | |
1328 | */ | |
1329 | struct buffer_head * | |
3991d3bd | 1330 | __find_get_block(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1331 | { |
1332 | struct buffer_head *bh = lookup_bh_lru(bdev, block, size); | |
1333 | ||
1334 | if (bh == NULL) { | |
2457aec6 | 1335 | /* __find_get_block_slow will mark the page accessed */ |
385fd4c5 | 1336 | bh = __find_get_block_slow(bdev, block); |
1da177e4 LT |
1337 | if (bh) |
1338 | bh_lru_install(bh); | |
2457aec6 | 1339 | } else |
1da177e4 | 1340 | touch_buffer(bh); |
2457aec6 | 1341 | |
1da177e4 LT |
1342 | return bh; |
1343 | } | |
1344 | EXPORT_SYMBOL(__find_get_block); | |
1345 | ||
1346 | /* | |
3b5e6454 | 1347 | * __getblk_gfp() will locate (and, if necessary, create) the buffer_head |
1da177e4 LT |
1348 | * which corresponds to the passed block_device, block and size. The |
1349 | * returned buffer has its reference count incremented. | |
1350 | * | |
3b5e6454 GK |
1351 | * __getblk_gfp() will lock up the machine if grow_dev_page's |
1352 | * try_to_free_buffers() attempt is failing. FIXME, perhaps? | |
1da177e4 LT |
1353 | */ |
1354 | struct buffer_head * | |
3b5e6454 GK |
1355 | __getblk_gfp(struct block_device *bdev, sector_t block, |
1356 | unsigned size, gfp_t gfp) | |
1da177e4 LT |
1357 | { |
1358 | struct buffer_head *bh = __find_get_block(bdev, block, size); | |
1359 | ||
1360 | might_sleep(); | |
1361 | if (bh == NULL) | |
3b5e6454 | 1362 | bh = __getblk_slow(bdev, block, size, gfp); |
1da177e4 LT |
1363 | return bh; |
1364 | } | |
3b5e6454 | 1365 | EXPORT_SYMBOL(__getblk_gfp); |
1da177e4 LT |
1366 | |
1367 | /* | |
1368 | * Do async read-ahead on a buffer.. | |
1369 | */ | |
3991d3bd | 1370 | void __breadahead(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1371 | { |
1372 | struct buffer_head *bh = __getblk(bdev, block, size); | |
a3e713b5 | 1373 | if (likely(bh)) { |
70246286 | 1374 | ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); |
a3e713b5 AM |
1375 | brelse(bh); |
1376 | } | |
1da177e4 LT |
1377 | } |
1378 | EXPORT_SYMBOL(__breadahead); | |
1379 | ||
1380 | /** | |
3b5e6454 | 1381 | * __bread_gfp() - reads a specified block and returns the bh |
67be2dd1 | 1382 | * @bdev: the block_device to read from |
1da177e4 LT |
1383 | * @block: number of block |
1384 | * @size: size (in bytes) to read | |
3b5e6454 GK |
1385 | * @gfp: page allocation flag |
1386 | * | |
1da177e4 | 1387 | * Reads a specified block, and returns buffer head that contains it. |
3b5e6454 GK |
1388 | * The page cache can be allocated from non-movable area |
1389 | * not to prevent page migration if you set gfp to zero. | |
1da177e4 LT |
1390 | * It returns NULL if the block was unreadable. |
1391 | */ | |
1392 | struct buffer_head * | |
3b5e6454 GK |
1393 | __bread_gfp(struct block_device *bdev, sector_t block, |
1394 | unsigned size, gfp_t gfp) | |
1da177e4 | 1395 | { |
3b5e6454 | 1396 | struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); |
1da177e4 | 1397 | |
a3e713b5 | 1398 | if (likely(bh) && !buffer_uptodate(bh)) |
1da177e4 LT |
1399 | bh = __bread_slow(bh); |
1400 | return bh; | |
1401 | } | |
3b5e6454 | 1402 | EXPORT_SYMBOL(__bread_gfp); |
1da177e4 LT |
1403 | |
1404 | /* | |
1405 | * invalidate_bh_lrus() is called rarely - but not only at unmount. | |
1406 | * This doesn't race because it runs in each cpu either in irq | |
1407 | * or with preempt disabled. | |
1408 | */ | |
1409 | static void invalidate_bh_lru(void *arg) | |
1410 | { | |
1411 | struct bh_lru *b = &get_cpu_var(bh_lrus); | |
1412 | int i; | |
1413 | ||
1414 | for (i = 0; i < BH_LRU_SIZE; i++) { | |
1415 | brelse(b->bhs[i]); | |
1416 | b->bhs[i] = NULL; | |
1417 | } | |
1418 | put_cpu_var(bh_lrus); | |
1419 | } | |
42be35d0 GBY |
1420 | |
1421 | static bool has_bh_in_lru(int cpu, void *dummy) | |
1422 | { | |
1423 | struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); | |
1424 | int i; | |
1da177e4 | 1425 | |
42be35d0 GBY |
1426 | for (i = 0; i < BH_LRU_SIZE; i++) { |
1427 | if (b->bhs[i]) | |
1d706679 | 1428 | return true; |
42be35d0 GBY |
1429 | } |
1430 | ||
1d706679 | 1431 | return false; |
42be35d0 GBY |
1432 | } |
1433 | ||
f9a14399 | 1434 | void invalidate_bh_lrus(void) |
1da177e4 | 1435 | { |
42be35d0 | 1436 | on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); |
1da177e4 | 1437 | } |
9db5579b | 1438 | EXPORT_SYMBOL_GPL(invalidate_bh_lrus); |
1da177e4 LT |
1439 | |
1440 | void set_bh_page(struct buffer_head *bh, | |
1441 | struct page *page, unsigned long offset) | |
1442 | { | |
1443 | bh->b_page = page; | |
e827f923 | 1444 | BUG_ON(offset >= PAGE_SIZE); |
1da177e4 LT |
1445 | if (PageHighMem(page)) |
1446 | /* | |
1447 | * This catches illegal uses and preserves the offset: | |
1448 | */ | |
1449 | bh->b_data = (char *)(0 + offset); | |
1450 | else | |
1451 | bh->b_data = page_address(page) + offset; | |
1452 | } | |
1453 | EXPORT_SYMBOL(set_bh_page); | |
1454 | ||
1455 | /* | |
1456 | * Called when truncating a buffer on a page completely. | |
1457 | */ | |
e7470ee8 MG |
1458 | |
1459 | /* Bits that are cleared during an invalidate */ | |
1460 | #define BUFFER_FLAGS_DISCARD \ | |
1461 | (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ | |
1462 | 1 << BH_Delay | 1 << BH_Unwritten) | |
1463 | ||
858119e1 | 1464 | static void discard_buffer(struct buffer_head * bh) |
1da177e4 | 1465 | { |
e7470ee8 MG |
1466 | unsigned long b_state, b_state_old; |
1467 | ||
1da177e4 LT |
1468 | lock_buffer(bh); |
1469 | clear_buffer_dirty(bh); | |
1470 | bh->b_bdev = NULL; | |
e7470ee8 MG |
1471 | b_state = bh->b_state; |
1472 | for (;;) { | |
1473 | b_state_old = cmpxchg(&bh->b_state, b_state, | |
1474 | (b_state & ~BUFFER_FLAGS_DISCARD)); | |
1475 | if (b_state_old == b_state) | |
1476 | break; | |
1477 | b_state = b_state_old; | |
1478 | } | |
1da177e4 LT |
1479 | unlock_buffer(bh); |
1480 | } | |
1481 | ||
1da177e4 | 1482 | /** |
814e1d25 | 1483 | * block_invalidatepage - invalidate part or all of a buffer-backed page |
1da177e4 LT |
1484 | * |
1485 | * @page: the page which is affected | |
d47992f8 LC |
1486 | * @offset: start of the range to invalidate |
1487 | * @length: length of the range to invalidate | |
1da177e4 LT |
1488 | * |
1489 | * block_invalidatepage() is called when all or part of the page has become | |
814e1d25 | 1490 | * invalidated by a truncate operation. |
1da177e4 LT |
1491 | * |
1492 | * block_invalidatepage() does not have to release all buffers, but it must | |
1493 | * ensure that no dirty buffer is left outside @offset and that no I/O | |
1494 | * is underway against any of the blocks which are outside the truncation | |
1495 | * point. Because the caller is about to free (and possibly reuse) those | |
1496 | * blocks on-disk. | |
1497 | */ | |
d47992f8 LC |
1498 | void block_invalidatepage(struct page *page, unsigned int offset, |
1499 | unsigned int length) | |
1da177e4 LT |
1500 | { |
1501 | struct buffer_head *head, *bh, *next; | |
1502 | unsigned int curr_off = 0; | |
d47992f8 | 1503 | unsigned int stop = length + offset; |
1da177e4 LT |
1504 | |
1505 | BUG_ON(!PageLocked(page)); | |
1506 | if (!page_has_buffers(page)) | |
1507 | goto out; | |
1508 | ||
d47992f8 LC |
1509 | /* |
1510 | * Check for overflow | |
1511 | */ | |
09cbfeaf | 1512 | BUG_ON(stop > PAGE_SIZE || stop < length); |
d47992f8 | 1513 | |
1da177e4 LT |
1514 | head = page_buffers(page); |
1515 | bh = head; | |
1516 | do { | |
1517 | unsigned int next_off = curr_off + bh->b_size; | |
1518 | next = bh->b_this_page; | |
1519 | ||
d47992f8 LC |
1520 | /* |
1521 | * Are we still fully in range ? | |
1522 | */ | |
1523 | if (next_off > stop) | |
1524 | goto out; | |
1525 | ||
1da177e4 LT |
1526 | /* |
1527 | * is this block fully invalidated? | |
1528 | */ | |
1529 | if (offset <= curr_off) | |
1530 | discard_buffer(bh); | |
1531 | curr_off = next_off; | |
1532 | bh = next; | |
1533 | } while (bh != head); | |
1534 | ||
1535 | /* | |
1536 | * We release buffers only if the entire page is being invalidated. | |
1537 | * The get_block cached value has been unconditionally invalidated, | |
1538 | * so real IO is not possible anymore. | |
1539 | */ | |
3172485f | 1540 | if (length == PAGE_SIZE) |
2ff28e22 | 1541 | try_to_release_page(page, 0); |
1da177e4 | 1542 | out: |
2ff28e22 | 1543 | return; |
1da177e4 LT |
1544 | } |
1545 | EXPORT_SYMBOL(block_invalidatepage); | |
1546 | ||
d47992f8 | 1547 | |
1da177e4 LT |
1548 | /* |
1549 | * We attach and possibly dirty the buffers atomically wrt | |
1550 | * __set_page_dirty_buffers() via private_lock. try_to_free_buffers | |
1551 | * is already excluded via the page lock. | |
1552 | */ | |
1553 | void create_empty_buffers(struct page *page, | |
1554 | unsigned long blocksize, unsigned long b_state) | |
1555 | { | |
1556 | struct buffer_head *bh, *head, *tail; | |
1557 | ||
640ab98f | 1558 | head = alloc_page_buffers(page, blocksize, true); |
1da177e4 LT |
1559 | bh = head; |
1560 | do { | |
1561 | bh->b_state |= b_state; | |
1562 | tail = bh; | |
1563 | bh = bh->b_this_page; | |
1564 | } while (bh); | |
1565 | tail->b_this_page = head; | |
1566 | ||
1567 | spin_lock(&page->mapping->private_lock); | |
1568 | if (PageUptodate(page) || PageDirty(page)) { | |
1569 | bh = head; | |
1570 | do { | |
1571 | if (PageDirty(page)) | |
1572 | set_buffer_dirty(bh); | |
1573 | if (PageUptodate(page)) | |
1574 | set_buffer_uptodate(bh); | |
1575 | bh = bh->b_this_page; | |
1576 | } while (bh != head); | |
1577 | } | |
1578 | attach_page_buffers(page, head); | |
1579 | spin_unlock(&page->mapping->private_lock); | |
1580 | } | |
1581 | EXPORT_SYMBOL(create_empty_buffers); | |
1582 | ||
29f3ad7d JK |
1583 | /** |
1584 | * clean_bdev_aliases: clean a range of buffers in block device | |
1585 | * @bdev: Block device to clean buffers in | |
1586 | * @block: Start of a range of blocks to clean | |
1587 | * @len: Number of blocks to clean | |
1da177e4 | 1588 | * |
29f3ad7d JK |
1589 | * We are taking a range of blocks for data and we don't want writeback of any |
1590 | * buffer-cache aliases starting from return from this function and until the | |
1591 | * moment when something will explicitly mark the buffer dirty (hopefully that | |
1592 | * will not happen until we will free that block ;-) We don't even need to mark | |
1593 | * it not-uptodate - nobody can expect anything from a newly allocated buffer | |
1594 | * anyway. We used to use unmap_buffer() for such invalidation, but that was | |
1595 | * wrong. We definitely don't want to mark the alias unmapped, for example - it | |
1596 | * would confuse anyone who might pick it with bread() afterwards... | |
1597 | * | |
1598 | * Also.. Note that bforget() doesn't lock the buffer. So there can be | |
1599 | * writeout I/O going on against recently-freed buffers. We don't wait on that | |
1600 | * I/O in bforget() - it's more efficient to wait on the I/O only if we really | |
1601 | * need to. That happens here. | |
1da177e4 | 1602 | */ |
29f3ad7d | 1603 | void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) |
1da177e4 | 1604 | { |
29f3ad7d JK |
1605 | struct inode *bd_inode = bdev->bd_inode; |
1606 | struct address_space *bd_mapping = bd_inode->i_mapping; | |
1607 | struct pagevec pvec; | |
1608 | pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); | |
1609 | pgoff_t end; | |
c10f778d | 1610 | int i, count; |
29f3ad7d JK |
1611 | struct buffer_head *bh; |
1612 | struct buffer_head *head; | |
1da177e4 | 1613 | |
29f3ad7d | 1614 | end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); |
86679820 | 1615 | pagevec_init(&pvec); |
397162ff | 1616 | while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) { |
c10f778d JK |
1617 | count = pagevec_count(&pvec); |
1618 | for (i = 0; i < count; i++) { | |
29f3ad7d | 1619 | struct page *page = pvec.pages[i]; |
1da177e4 | 1620 | |
29f3ad7d JK |
1621 | if (!page_has_buffers(page)) |
1622 | continue; | |
1623 | /* | |
1624 | * We use page lock instead of bd_mapping->private_lock | |
1625 | * to pin buffers here since we can afford to sleep and | |
1626 | * it scales better than a global spinlock lock. | |
1627 | */ | |
1628 | lock_page(page); | |
1629 | /* Recheck when the page is locked which pins bhs */ | |
1630 | if (!page_has_buffers(page)) | |
1631 | goto unlock_page; | |
1632 | head = page_buffers(page); | |
1633 | bh = head; | |
1634 | do { | |
6c006a9d | 1635 | if (!buffer_mapped(bh) || (bh->b_blocknr < block)) |
29f3ad7d JK |
1636 | goto next; |
1637 | if (bh->b_blocknr >= block + len) | |
1638 | break; | |
1639 | clear_buffer_dirty(bh); | |
1640 | wait_on_buffer(bh); | |
1641 | clear_buffer_req(bh); | |
1642 | next: | |
1643 | bh = bh->b_this_page; | |
1644 | } while (bh != head); | |
1645 | unlock_page: | |
1646 | unlock_page(page); | |
1647 | } | |
1648 | pagevec_release(&pvec); | |
1649 | cond_resched(); | |
c10f778d JK |
1650 | /* End of range already reached? */ |
1651 | if (index > end || !index) | |
1652 | break; | |
1da177e4 LT |
1653 | } |
1654 | } | |
29f3ad7d | 1655 | EXPORT_SYMBOL(clean_bdev_aliases); |
1da177e4 | 1656 | |
45bce8f3 LT |
1657 | /* |
1658 | * Size is a power-of-two in the range 512..PAGE_SIZE, | |
1659 | * and the case we care about most is PAGE_SIZE. | |
1660 | * | |
1661 | * So this *could* possibly be written with those | |
1662 | * constraints in mind (relevant mostly if some | |
1663 | * architecture has a slow bit-scan instruction) | |
1664 | */ | |
1665 | static inline int block_size_bits(unsigned int blocksize) | |
1666 | { | |
1667 | return ilog2(blocksize); | |
1668 | } | |
1669 | ||
1670 | static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) | |
1671 | { | |
1672 | BUG_ON(!PageLocked(page)); | |
1673 | ||
1674 | if (!page_has_buffers(page)) | |
6aa7de05 MR |
1675 | create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), |
1676 | b_state); | |
45bce8f3 LT |
1677 | return page_buffers(page); |
1678 | } | |
1679 | ||
1da177e4 LT |
1680 | /* |
1681 | * NOTE! All mapped/uptodate combinations are valid: | |
1682 | * | |
1683 | * Mapped Uptodate Meaning | |
1684 | * | |
1685 | * No No "unknown" - must do get_block() | |
1686 | * No Yes "hole" - zero-filled | |
1687 | * Yes No "allocated" - allocated on disk, not read in | |
1688 | * Yes Yes "valid" - allocated and up-to-date in memory. | |
1689 | * | |
1690 | * "Dirty" is valid only with the last case (mapped+uptodate). | |
1691 | */ | |
1692 | ||
1693 | /* | |
1694 | * While block_write_full_page is writing back the dirty buffers under | |
1695 | * the page lock, whoever dirtied the buffers may decide to clean them | |
1696 | * again at any time. We handle that by only looking at the buffer | |
1697 | * state inside lock_buffer(). | |
1698 | * | |
1699 | * If block_write_full_page() is called for regular writeback | |
1700 | * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a | |
1701 | * locked buffer. This only can happen if someone has written the buffer | |
1702 | * directly, with submit_bh(). At the address_space level PageWriteback | |
1703 | * prevents this contention from occurring. | |
6e34eedd TT |
1704 | * |
1705 | * If block_write_full_page() is called with wbc->sync_mode == | |
70fd7614 | 1706 | * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this |
721a9602 | 1707 | * causes the writes to be flagged as synchronous writes. |
1da177e4 | 1708 | */ |
b4bba389 | 1709 | int __block_write_full_page(struct inode *inode, struct page *page, |
35c80d5f CM |
1710 | get_block_t *get_block, struct writeback_control *wbc, |
1711 | bh_end_io_t *handler) | |
1da177e4 LT |
1712 | { |
1713 | int err; | |
1714 | sector_t block; | |
1715 | sector_t last_block; | |
f0fbd5fc | 1716 | struct buffer_head *bh, *head; |
45bce8f3 | 1717 | unsigned int blocksize, bbits; |
1da177e4 | 1718 | int nr_underway = 0; |
7637241e | 1719 | int write_flags = wbc_to_write_flags(wbc); |
1da177e4 | 1720 | |
45bce8f3 | 1721 | head = create_page_buffers(page, inode, |
1da177e4 | 1722 | (1 << BH_Dirty)|(1 << BH_Uptodate)); |
1da177e4 LT |
1723 | |
1724 | /* | |
1725 | * Be very careful. We have no exclusion from __set_page_dirty_buffers | |
1726 | * here, and the (potentially unmapped) buffers may become dirty at | |
1727 | * any time. If a buffer becomes dirty here after we've inspected it | |
1728 | * then we just miss that fact, and the page stays dirty. | |
1729 | * | |
1730 | * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; | |
1731 | * handle that here by just cleaning them. | |
1732 | */ | |
1733 | ||
1da177e4 | 1734 | bh = head; |
45bce8f3 LT |
1735 | blocksize = bh->b_size; |
1736 | bbits = block_size_bits(blocksize); | |
1737 | ||
09cbfeaf | 1738 | block = (sector_t)page->index << (PAGE_SHIFT - bbits); |
45bce8f3 | 1739 | last_block = (i_size_read(inode) - 1) >> bbits; |
1da177e4 LT |
1740 | |
1741 | /* | |
1742 | * Get all the dirty buffers mapped to disk addresses and | |
1743 | * handle any aliases from the underlying blockdev's mapping. | |
1744 | */ | |
1745 | do { | |
1746 | if (block > last_block) { | |
1747 | /* | |
1748 | * mapped buffers outside i_size will occur, because | |
1749 | * this page can be outside i_size when there is a | |
1750 | * truncate in progress. | |
1751 | */ | |
1752 | /* | |
1753 | * The buffer was zeroed by block_write_full_page() | |
1754 | */ | |
1755 | clear_buffer_dirty(bh); | |
1756 | set_buffer_uptodate(bh); | |
29a814d2 AT |
1757 | } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && |
1758 | buffer_dirty(bh)) { | |
b0cf2321 | 1759 | WARN_ON(bh->b_size != blocksize); |
1da177e4 LT |
1760 | err = get_block(inode, block, bh, 1); |
1761 | if (err) | |
1762 | goto recover; | |
29a814d2 | 1763 | clear_buffer_delay(bh); |
1da177e4 LT |
1764 | if (buffer_new(bh)) { |
1765 | /* blockdev mappings never come here */ | |
1766 | clear_buffer_new(bh); | |
e64855c6 | 1767 | clean_bdev_bh_alias(bh); |
1da177e4 LT |
1768 | } |
1769 | } | |
1770 | bh = bh->b_this_page; | |
1771 | block++; | |
1772 | } while (bh != head); | |
1773 | ||
1774 | do { | |
1da177e4 LT |
1775 | if (!buffer_mapped(bh)) |
1776 | continue; | |
1777 | /* | |
1778 | * If it's a fully non-blocking write attempt and we cannot | |
1779 | * lock the buffer then redirty the page. Note that this can | |
5b0830cb JA |
1780 | * potentially cause a busy-wait loop from writeback threads |
1781 | * and kswapd activity, but those code paths have their own | |
1782 | * higher-level throttling. | |
1da177e4 | 1783 | */ |
1b430bee | 1784 | if (wbc->sync_mode != WB_SYNC_NONE) { |
1da177e4 | 1785 | lock_buffer(bh); |
ca5de404 | 1786 | } else if (!trylock_buffer(bh)) { |
1da177e4 LT |
1787 | redirty_page_for_writepage(wbc, page); |
1788 | continue; | |
1789 | } | |
1790 | if (test_clear_buffer_dirty(bh)) { | |
35c80d5f | 1791 | mark_buffer_async_write_endio(bh, handler); |
1da177e4 LT |
1792 | } else { |
1793 | unlock_buffer(bh); | |
1794 | } | |
1795 | } while ((bh = bh->b_this_page) != head); | |
1796 | ||
1797 | /* | |
1798 | * The page and its buffers are protected by PageWriteback(), so we can | |
1799 | * drop the bh refcounts early. | |
1800 | */ | |
1801 | BUG_ON(PageWriteback(page)); | |
1802 | set_page_writeback(page); | |
1da177e4 LT |
1803 | |
1804 | do { | |
1805 | struct buffer_head *next = bh->b_this_page; | |
1806 | if (buffer_async_write(bh)) { | |
8e8f9298 JA |
1807 | submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, |
1808 | inode->i_write_hint, wbc); | |
1da177e4 LT |
1809 | nr_underway++; |
1810 | } | |
1da177e4 LT |
1811 | bh = next; |
1812 | } while (bh != head); | |
05937baa | 1813 | unlock_page(page); |
1da177e4 LT |
1814 | |
1815 | err = 0; | |
1816 | done: | |
1817 | if (nr_underway == 0) { | |
1818 | /* | |
1819 | * The page was marked dirty, but the buffers were | |
1820 | * clean. Someone wrote them back by hand with | |
1821 | * ll_rw_block/submit_bh. A rare case. | |
1822 | */ | |
1da177e4 | 1823 | end_page_writeback(page); |
3d67f2d7 | 1824 | |
1da177e4 LT |
1825 | /* |
1826 | * The page and buffer_heads can be released at any time from | |
1827 | * here on. | |
1828 | */ | |
1da177e4 LT |
1829 | } |
1830 | return err; | |
1831 | ||
1832 | recover: | |
1833 | /* | |
1834 | * ENOSPC, or some other error. We may already have added some | |
1835 | * blocks to the file, so we need to write these out to avoid | |
1836 | * exposing stale data. | |
1837 | * The page is currently locked and not marked for writeback | |
1838 | */ | |
1839 | bh = head; | |
1840 | /* Recovery: lock and submit the mapped buffers */ | |
1841 | do { | |
29a814d2 AT |
1842 | if (buffer_mapped(bh) && buffer_dirty(bh) && |
1843 | !buffer_delay(bh)) { | |
1da177e4 | 1844 | lock_buffer(bh); |
35c80d5f | 1845 | mark_buffer_async_write_endio(bh, handler); |
1da177e4 LT |
1846 | } else { |
1847 | /* | |
1848 | * The buffer may have been set dirty during | |
1849 | * attachment to a dirty page. | |
1850 | */ | |
1851 | clear_buffer_dirty(bh); | |
1852 | } | |
1853 | } while ((bh = bh->b_this_page) != head); | |
1854 | SetPageError(page); | |
1855 | BUG_ON(PageWriteback(page)); | |
7e4c3690 | 1856 | mapping_set_error(page->mapping, err); |
1da177e4 | 1857 | set_page_writeback(page); |
1da177e4 LT |
1858 | do { |
1859 | struct buffer_head *next = bh->b_this_page; | |
1860 | if (buffer_async_write(bh)) { | |
1861 | clear_buffer_dirty(bh); | |
8e8f9298 JA |
1862 | submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, |
1863 | inode->i_write_hint, wbc); | |
1da177e4 LT |
1864 | nr_underway++; |
1865 | } | |
1da177e4 LT |
1866 | bh = next; |
1867 | } while (bh != head); | |
ffda9d30 | 1868 | unlock_page(page); |
1da177e4 LT |
1869 | goto done; |
1870 | } | |
b4bba389 | 1871 | EXPORT_SYMBOL(__block_write_full_page); |
1da177e4 | 1872 | |
afddba49 NP |
1873 | /* |
1874 | * If a page has any new buffers, zero them out here, and mark them uptodate | |
1875 | * and dirty so they'll be written out (in order to prevent uninitialised | |
1876 | * block data from leaking). And clear the new bit. | |
1877 | */ | |
1878 | void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) | |
1879 | { | |
1880 | unsigned int block_start, block_end; | |
1881 | struct buffer_head *head, *bh; | |
1882 | ||
1883 | BUG_ON(!PageLocked(page)); | |
1884 | if (!page_has_buffers(page)) | |
1885 | return; | |
1886 | ||
1887 | bh = head = page_buffers(page); | |
1888 | block_start = 0; | |
1889 | do { | |
1890 | block_end = block_start + bh->b_size; | |
1891 | ||
1892 | if (buffer_new(bh)) { | |
1893 | if (block_end > from && block_start < to) { | |
1894 | if (!PageUptodate(page)) { | |
1895 | unsigned start, size; | |
1896 | ||
1897 | start = max(from, block_start); | |
1898 | size = min(to, block_end) - start; | |
1899 | ||
eebd2aa3 | 1900 | zero_user(page, start, size); |
afddba49 NP |
1901 | set_buffer_uptodate(bh); |
1902 | } | |
1903 | ||
1904 | clear_buffer_new(bh); | |
1905 | mark_buffer_dirty(bh); | |
1906 | } | |
1907 | } | |
1908 | ||
1909 | block_start = block_end; | |
1910 | bh = bh->b_this_page; | |
1911 | } while (bh != head); | |
1912 | } | |
1913 | EXPORT_SYMBOL(page_zero_new_buffers); | |
1914 | ||
ae259a9c CH |
1915 | static void |
1916 | iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, | |
1917 | struct iomap *iomap) | |
1918 | { | |
1919 | loff_t offset = block << inode->i_blkbits; | |
1920 | ||
1921 | bh->b_bdev = iomap->bdev; | |
1922 | ||
1923 | /* | |
1924 | * Block points to offset in file we need to map, iomap contains | |
1925 | * the offset at which the map starts. If the map ends before the | |
1926 | * current block, then do not map the buffer and let the caller | |
1927 | * handle it. | |
1928 | */ | |
1929 | BUG_ON(offset >= iomap->offset + iomap->length); | |
1930 | ||
1931 | switch (iomap->type) { | |
1932 | case IOMAP_HOLE: | |
1933 | /* | |
1934 | * If the buffer is not up to date or beyond the current EOF, | |
1935 | * we need to mark it as new to ensure sub-block zeroing is | |
1936 | * executed if necessary. | |
1937 | */ | |
1938 | if (!buffer_uptodate(bh) || | |
1939 | (offset >= i_size_read(inode))) | |
1940 | set_buffer_new(bh); | |
1941 | break; | |
1942 | case IOMAP_DELALLOC: | |
1943 | if (!buffer_uptodate(bh) || | |
1944 | (offset >= i_size_read(inode))) | |
1945 | set_buffer_new(bh); | |
1946 | set_buffer_uptodate(bh); | |
1947 | set_buffer_mapped(bh); | |
1948 | set_buffer_delay(bh); | |
1949 | break; | |
1950 | case IOMAP_UNWRITTEN: | |
1951 | /* | |
3d7b6b21 AG |
1952 | * For unwritten regions, we always need to ensure that regions |
1953 | * in the block we are not writing to are zeroed. Mark the | |
1954 | * buffer as new to ensure this. | |
ae259a9c CH |
1955 | */ |
1956 | set_buffer_new(bh); | |
1957 | set_buffer_unwritten(bh); | |
1958 | /* FALLTHRU */ | |
1959 | case IOMAP_MAPPED: | |
3d7b6b21 AG |
1960 | if ((iomap->flags & IOMAP_F_NEW) || |
1961 | offset >= i_size_read(inode)) | |
ae259a9c | 1962 | set_buffer_new(bh); |
19fe5f64 AG |
1963 | bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> |
1964 | inode->i_blkbits; | |
ae259a9c CH |
1965 | set_buffer_mapped(bh); |
1966 | break; | |
1967 | } | |
1968 | } | |
1969 | ||
1970 | int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, | |
1971 | get_block_t *get_block, struct iomap *iomap) | |
1da177e4 | 1972 | { |
09cbfeaf | 1973 | unsigned from = pos & (PAGE_SIZE - 1); |
ebdec241 | 1974 | unsigned to = from + len; |
6e1db88d | 1975 | struct inode *inode = page->mapping->host; |
1da177e4 LT |
1976 | unsigned block_start, block_end; |
1977 | sector_t block; | |
1978 | int err = 0; | |
1979 | unsigned blocksize, bbits; | |
1980 | struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; | |
1981 | ||
1982 | BUG_ON(!PageLocked(page)); | |
09cbfeaf KS |
1983 | BUG_ON(from > PAGE_SIZE); |
1984 | BUG_ON(to > PAGE_SIZE); | |
1da177e4 LT |
1985 | BUG_ON(from > to); |
1986 | ||
45bce8f3 LT |
1987 | head = create_page_buffers(page, inode, 0); |
1988 | blocksize = head->b_size; | |
1989 | bbits = block_size_bits(blocksize); | |
1da177e4 | 1990 | |
09cbfeaf | 1991 | block = (sector_t)page->index << (PAGE_SHIFT - bbits); |
1da177e4 LT |
1992 | |
1993 | for(bh = head, block_start = 0; bh != head || !block_start; | |
1994 | block++, block_start=block_end, bh = bh->b_this_page) { | |
1995 | block_end = block_start + blocksize; | |
1996 | if (block_end <= from || block_start >= to) { | |
1997 | if (PageUptodate(page)) { | |
1998 | if (!buffer_uptodate(bh)) | |
1999 | set_buffer_uptodate(bh); | |
2000 | } | |
2001 | continue; | |
2002 | } | |
2003 | if (buffer_new(bh)) | |
2004 | clear_buffer_new(bh); | |
2005 | if (!buffer_mapped(bh)) { | |
b0cf2321 | 2006 | WARN_ON(bh->b_size != blocksize); |
ae259a9c CH |
2007 | if (get_block) { |
2008 | err = get_block(inode, block, bh, 1); | |
2009 | if (err) | |
2010 | break; | |
2011 | } else { | |
2012 | iomap_to_bh(inode, block, bh, iomap); | |
2013 | } | |
2014 | ||
1da177e4 | 2015 | if (buffer_new(bh)) { |
e64855c6 | 2016 | clean_bdev_bh_alias(bh); |
1da177e4 | 2017 | if (PageUptodate(page)) { |
637aff46 | 2018 | clear_buffer_new(bh); |
1da177e4 | 2019 | set_buffer_uptodate(bh); |
637aff46 | 2020 | mark_buffer_dirty(bh); |
1da177e4 LT |
2021 | continue; |
2022 | } | |
eebd2aa3 CL |
2023 | if (block_end > to || block_start < from) |
2024 | zero_user_segments(page, | |
2025 | to, block_end, | |
2026 | block_start, from); | |
1da177e4 LT |
2027 | continue; |
2028 | } | |
2029 | } | |
2030 | if (PageUptodate(page)) { | |
2031 | if (!buffer_uptodate(bh)) | |
2032 | set_buffer_uptodate(bh); | |
2033 | continue; | |
2034 | } | |
2035 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && | |
33a266dd | 2036 | !buffer_unwritten(bh) && |
1da177e4 | 2037 | (block_start < from || block_end > to)) { |
dfec8a14 | 2038 | ll_rw_block(REQ_OP_READ, 0, 1, &bh); |
1da177e4 LT |
2039 | *wait_bh++=bh; |
2040 | } | |
2041 | } | |
2042 | /* | |
2043 | * If we issued read requests - let them complete. | |
2044 | */ | |
2045 | while(wait_bh > wait) { | |
2046 | wait_on_buffer(*--wait_bh); | |
2047 | if (!buffer_uptodate(*wait_bh)) | |
f3ddbdc6 | 2048 | err = -EIO; |
1da177e4 | 2049 | } |
f9f07b6c | 2050 | if (unlikely(err)) |
afddba49 | 2051 | page_zero_new_buffers(page, from, to); |
1da177e4 LT |
2052 | return err; |
2053 | } | |
ae259a9c CH |
2054 | |
2055 | int __block_write_begin(struct page *page, loff_t pos, unsigned len, | |
2056 | get_block_t *get_block) | |
2057 | { | |
2058 | return __block_write_begin_int(page, pos, len, get_block, NULL); | |
2059 | } | |
ebdec241 | 2060 | EXPORT_SYMBOL(__block_write_begin); |
1da177e4 LT |
2061 | |
2062 | static int __block_commit_write(struct inode *inode, struct page *page, | |
2063 | unsigned from, unsigned to) | |
2064 | { | |
2065 | unsigned block_start, block_end; | |
2066 | int partial = 0; | |
2067 | unsigned blocksize; | |
2068 | struct buffer_head *bh, *head; | |
2069 | ||
45bce8f3 LT |
2070 | bh = head = page_buffers(page); |
2071 | blocksize = bh->b_size; | |
1da177e4 | 2072 | |
45bce8f3 LT |
2073 | block_start = 0; |
2074 | do { | |
1da177e4 LT |
2075 | block_end = block_start + blocksize; |
2076 | if (block_end <= from || block_start >= to) { | |
2077 | if (!buffer_uptodate(bh)) | |
2078 | partial = 1; | |
2079 | } else { | |
2080 | set_buffer_uptodate(bh); | |
2081 | mark_buffer_dirty(bh); | |
2082 | } | |
afddba49 | 2083 | clear_buffer_new(bh); |
45bce8f3 LT |
2084 | |
2085 | block_start = block_end; | |
2086 | bh = bh->b_this_page; | |
2087 | } while (bh != head); | |
1da177e4 LT |
2088 | |
2089 | /* | |
2090 | * If this is a partial write which happened to make all buffers | |
2091 | * uptodate then we can optimize away a bogus readpage() for | |
2092 | * the next read(). Here we 'discover' whether the page went | |
2093 | * uptodate as a result of this (potentially partial) write. | |
2094 | */ | |
2095 | if (!partial) | |
2096 | SetPageUptodate(page); | |
2097 | return 0; | |
2098 | } | |
2099 | ||
afddba49 | 2100 | /* |
155130a4 CH |
2101 | * block_write_begin takes care of the basic task of block allocation and |
2102 | * bringing partial write blocks uptodate first. | |
2103 | * | |
7bb46a67 | 2104 | * The filesystem needs to handle block truncation upon failure. |
afddba49 | 2105 | */ |
155130a4 CH |
2106 | int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, |
2107 | unsigned flags, struct page **pagep, get_block_t *get_block) | |
afddba49 | 2108 | { |
09cbfeaf | 2109 | pgoff_t index = pos >> PAGE_SHIFT; |
afddba49 | 2110 | struct page *page; |
6e1db88d | 2111 | int status; |
afddba49 | 2112 | |
6e1db88d CH |
2113 | page = grab_cache_page_write_begin(mapping, index, flags); |
2114 | if (!page) | |
2115 | return -ENOMEM; | |
afddba49 | 2116 | |
6e1db88d | 2117 | status = __block_write_begin(page, pos, len, get_block); |
afddba49 | 2118 | if (unlikely(status)) { |
6e1db88d | 2119 | unlock_page(page); |
09cbfeaf | 2120 | put_page(page); |
6e1db88d | 2121 | page = NULL; |
afddba49 NP |
2122 | } |
2123 | ||
6e1db88d | 2124 | *pagep = page; |
afddba49 NP |
2125 | return status; |
2126 | } | |
2127 | EXPORT_SYMBOL(block_write_begin); | |
2128 | ||
2129 | int block_write_end(struct file *file, struct address_space *mapping, | |
2130 | loff_t pos, unsigned len, unsigned copied, | |
2131 | struct page *page, void *fsdata) | |
2132 | { | |
2133 | struct inode *inode = mapping->host; | |
2134 | unsigned start; | |
2135 | ||
09cbfeaf | 2136 | start = pos & (PAGE_SIZE - 1); |
afddba49 NP |
2137 | |
2138 | if (unlikely(copied < len)) { | |
2139 | /* | |
2140 | * The buffers that were written will now be uptodate, so we | |
2141 | * don't have to worry about a readpage reading them and | |
2142 | * overwriting a partial write. However if we have encountered | |
2143 | * a short write and only partially written into a buffer, it | |
2144 | * will not be marked uptodate, so a readpage might come in and | |
2145 | * destroy our partial write. | |
2146 | * | |
2147 | * Do the simplest thing, and just treat any short write to a | |
2148 | * non uptodate page as a zero-length write, and force the | |
2149 | * caller to redo the whole thing. | |
2150 | */ | |
2151 | if (!PageUptodate(page)) | |
2152 | copied = 0; | |
2153 | ||
2154 | page_zero_new_buffers(page, start+copied, start+len); | |
2155 | } | |
2156 | flush_dcache_page(page); | |
2157 | ||
2158 | /* This could be a short (even 0-length) commit */ | |
2159 | __block_commit_write(inode, page, start, start+copied); | |
2160 | ||
2161 | return copied; | |
2162 | } | |
2163 | EXPORT_SYMBOL(block_write_end); | |
2164 | ||
2165 | int generic_write_end(struct file *file, struct address_space *mapping, | |
2166 | loff_t pos, unsigned len, unsigned copied, | |
2167 | struct page *page, void *fsdata) | |
2168 | { | |
8af54f29 CH |
2169 | struct inode *inode = mapping->host; |
2170 | loff_t old_size = inode->i_size; | |
2171 | bool i_size_changed = false; | |
2172 | ||
afddba49 | 2173 | copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); |
8af54f29 CH |
2174 | |
2175 | /* | |
2176 | * No need to use i_size_read() here, the i_size cannot change under us | |
2177 | * because we hold i_rwsem. | |
2178 | * | |
2179 | * But it's important to update i_size while still holding page lock: | |
2180 | * page writeout could otherwise come in and zero beyond i_size. | |
2181 | */ | |
2182 | if (pos + copied > inode->i_size) { | |
2183 | i_size_write(inode, pos + copied); | |
2184 | i_size_changed = true; | |
2185 | } | |
2186 | ||
2187 | unlock_page(page); | |
7a77dad7 | 2188 | put_page(page); |
8af54f29 CH |
2189 | |
2190 | if (old_size < pos) | |
2191 | pagecache_isize_extended(inode, old_size, pos); | |
2192 | /* | |
2193 | * Don't mark the inode dirty under page lock. First, it unnecessarily | |
2194 | * makes the holding time of page lock longer. Second, it forces lock | |
2195 | * ordering of page lock and transaction start for journaling | |
2196 | * filesystems. | |
2197 | */ | |
2198 | if (i_size_changed) | |
2199 | mark_inode_dirty(inode); | |
26ddb1f4 | 2200 | return copied; |
afddba49 NP |
2201 | } |
2202 | EXPORT_SYMBOL(generic_write_end); | |
2203 | ||
8ab22b9a HH |
2204 | /* |
2205 | * block_is_partially_uptodate checks whether buffers within a page are | |
2206 | * uptodate or not. | |
2207 | * | |
2208 | * Returns true if all buffers which correspond to a file portion | |
2209 | * we want to read are uptodate. | |
2210 | */ | |
c186afb4 AV |
2211 | int block_is_partially_uptodate(struct page *page, unsigned long from, |
2212 | unsigned long count) | |
8ab22b9a | 2213 | { |
8ab22b9a HH |
2214 | unsigned block_start, block_end, blocksize; |
2215 | unsigned to; | |
2216 | struct buffer_head *bh, *head; | |
2217 | int ret = 1; | |
2218 | ||
2219 | if (!page_has_buffers(page)) | |
2220 | return 0; | |
2221 | ||
45bce8f3 LT |
2222 | head = page_buffers(page); |
2223 | blocksize = head->b_size; | |
09cbfeaf | 2224 | to = min_t(unsigned, PAGE_SIZE - from, count); |
8ab22b9a | 2225 | to = from + to; |
09cbfeaf | 2226 | if (from < blocksize && to > PAGE_SIZE - blocksize) |
8ab22b9a HH |
2227 | return 0; |
2228 | ||
8ab22b9a HH |
2229 | bh = head; |
2230 | block_start = 0; | |
2231 | do { | |
2232 | block_end = block_start + blocksize; | |
2233 | if (block_end > from && block_start < to) { | |
2234 | if (!buffer_uptodate(bh)) { | |
2235 | ret = 0; | |
2236 | break; | |
2237 | } | |
2238 | if (block_end >= to) | |
2239 | break; | |
2240 | } | |
2241 | block_start = block_end; | |
2242 | bh = bh->b_this_page; | |
2243 | } while (bh != head); | |
2244 | ||
2245 | return ret; | |
2246 | } | |
2247 | EXPORT_SYMBOL(block_is_partially_uptodate); | |
2248 | ||
1da177e4 LT |
2249 | /* |
2250 | * Generic "read page" function for block devices that have the normal | |
2251 | * get_block functionality. This is most of the block device filesystems. | |
2252 | * Reads the page asynchronously --- the unlock_buffer() and | |
2253 | * set/clear_buffer_uptodate() functions propagate buffer state into the | |
2254 | * page struct once IO has completed. | |
2255 | */ | |
2256 | int block_read_full_page(struct page *page, get_block_t *get_block) | |
2257 | { | |
2258 | struct inode *inode = page->mapping->host; | |
2259 | sector_t iblock, lblock; | |
2260 | struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; | |
45bce8f3 | 2261 | unsigned int blocksize, bbits; |
1da177e4 LT |
2262 | int nr, i; |
2263 | int fully_mapped = 1; | |
2264 | ||
45bce8f3 LT |
2265 | head = create_page_buffers(page, inode, 0); |
2266 | blocksize = head->b_size; | |
2267 | bbits = block_size_bits(blocksize); | |
1da177e4 | 2268 | |
09cbfeaf | 2269 | iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); |
45bce8f3 | 2270 | lblock = (i_size_read(inode)+blocksize-1) >> bbits; |
1da177e4 LT |
2271 | bh = head; |
2272 | nr = 0; | |
2273 | i = 0; | |
2274 | ||
2275 | do { | |
2276 | if (buffer_uptodate(bh)) | |
2277 | continue; | |
2278 | ||
2279 | if (!buffer_mapped(bh)) { | |
c64610ba AM |
2280 | int err = 0; |
2281 | ||
1da177e4 LT |
2282 | fully_mapped = 0; |
2283 | if (iblock < lblock) { | |
b0cf2321 | 2284 | WARN_ON(bh->b_size != blocksize); |
c64610ba AM |
2285 | err = get_block(inode, iblock, bh, 0); |
2286 | if (err) | |
1da177e4 LT |
2287 | SetPageError(page); |
2288 | } | |
2289 | if (!buffer_mapped(bh)) { | |
eebd2aa3 | 2290 | zero_user(page, i * blocksize, blocksize); |
c64610ba AM |
2291 | if (!err) |
2292 | set_buffer_uptodate(bh); | |
1da177e4 LT |
2293 | continue; |
2294 | } | |
2295 | /* | |
2296 | * get_block() might have updated the buffer | |
2297 | * synchronously | |
2298 | */ | |
2299 | if (buffer_uptodate(bh)) | |
2300 | continue; | |
2301 | } | |
2302 | arr[nr++] = bh; | |
2303 | } while (i++, iblock++, (bh = bh->b_this_page) != head); | |
2304 | ||
2305 | if (fully_mapped) | |
2306 | SetPageMappedToDisk(page); | |
2307 | ||
2308 | if (!nr) { | |
2309 | /* | |
2310 | * All buffers are uptodate - we can set the page uptodate | |
2311 | * as well. But not if get_block() returned an error. | |
2312 | */ | |
2313 | if (!PageError(page)) | |
2314 | SetPageUptodate(page); | |
2315 | unlock_page(page); | |
2316 | return 0; | |
2317 | } | |
2318 | ||
2319 | /* Stage two: lock the buffers */ | |
2320 | for (i = 0; i < nr; i++) { | |
2321 | bh = arr[i]; | |
2322 | lock_buffer(bh); | |
2323 | mark_buffer_async_read(bh); | |
2324 | } | |
2325 | ||
2326 | /* | |
2327 | * Stage 3: start the IO. Check for uptodateness | |
2328 | * inside the buffer lock in case another process reading | |
2329 | * the underlying blockdev brought it uptodate (the sct fix). | |
2330 | */ | |
2331 | for (i = 0; i < nr; i++) { | |
2332 | bh = arr[i]; | |
2333 | if (buffer_uptodate(bh)) | |
2334 | end_buffer_async_read(bh, 1); | |
2335 | else | |
2a222ca9 | 2336 | submit_bh(REQ_OP_READ, 0, bh); |
1da177e4 LT |
2337 | } |
2338 | return 0; | |
2339 | } | |
1fe72eaa | 2340 | EXPORT_SYMBOL(block_read_full_page); |
1da177e4 LT |
2341 | |
2342 | /* utility function for filesystems that need to do work on expanding | |
89e10787 | 2343 | * truncates. Uses filesystem pagecache writes to allow the filesystem to |
1da177e4 LT |
2344 | * deal with the hole. |
2345 | */ | |
89e10787 | 2346 | int generic_cont_expand_simple(struct inode *inode, loff_t size) |
1da177e4 LT |
2347 | { |
2348 | struct address_space *mapping = inode->i_mapping; | |
2349 | struct page *page; | |
89e10787 | 2350 | void *fsdata; |
1da177e4 LT |
2351 | int err; |
2352 | ||
c08d3b0e NP |
2353 | err = inode_newsize_ok(inode, size); |
2354 | if (err) | |
1da177e4 LT |
2355 | goto out; |
2356 | ||
89e10787 | 2357 | err = pagecache_write_begin(NULL, mapping, size, 0, |
c718a975 | 2358 | AOP_FLAG_CONT_EXPAND, &page, &fsdata); |
89e10787 | 2359 | if (err) |
05eb0b51 | 2360 | goto out; |
05eb0b51 | 2361 | |
89e10787 NP |
2362 | err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); |
2363 | BUG_ON(err > 0); | |
05eb0b51 | 2364 | |
1da177e4 LT |
2365 | out: |
2366 | return err; | |
2367 | } | |
1fe72eaa | 2368 | EXPORT_SYMBOL(generic_cont_expand_simple); |
1da177e4 | 2369 | |
f1e3af72 AB |
2370 | static int cont_expand_zero(struct file *file, struct address_space *mapping, |
2371 | loff_t pos, loff_t *bytes) | |
1da177e4 | 2372 | { |
1da177e4 | 2373 | struct inode *inode = mapping->host; |
93407472 | 2374 | unsigned int blocksize = i_blocksize(inode); |
89e10787 NP |
2375 | struct page *page; |
2376 | void *fsdata; | |
2377 | pgoff_t index, curidx; | |
2378 | loff_t curpos; | |
2379 | unsigned zerofrom, offset, len; | |
2380 | int err = 0; | |
1da177e4 | 2381 | |
09cbfeaf KS |
2382 | index = pos >> PAGE_SHIFT; |
2383 | offset = pos & ~PAGE_MASK; | |
89e10787 | 2384 | |
09cbfeaf KS |
2385 | while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { |
2386 | zerofrom = curpos & ~PAGE_MASK; | |
1da177e4 LT |
2387 | if (zerofrom & (blocksize-1)) { |
2388 | *bytes |= (blocksize-1); | |
2389 | (*bytes)++; | |
2390 | } | |
09cbfeaf | 2391 | len = PAGE_SIZE - zerofrom; |
1da177e4 | 2392 | |
c718a975 TH |
2393 | err = pagecache_write_begin(file, mapping, curpos, len, 0, |
2394 | &page, &fsdata); | |
89e10787 NP |
2395 | if (err) |
2396 | goto out; | |
eebd2aa3 | 2397 | zero_user(page, zerofrom, len); |
89e10787 NP |
2398 | err = pagecache_write_end(file, mapping, curpos, len, len, |
2399 | page, fsdata); | |
2400 | if (err < 0) | |
2401 | goto out; | |
2402 | BUG_ON(err != len); | |
2403 | err = 0; | |
061e9746 OH |
2404 | |
2405 | balance_dirty_pages_ratelimited(mapping); | |
c2ca0fcd | 2406 | |
08d405c8 | 2407 | if (fatal_signal_pending(current)) { |
c2ca0fcd MP |
2408 | err = -EINTR; |
2409 | goto out; | |
2410 | } | |
89e10787 | 2411 | } |
1da177e4 | 2412 | |
89e10787 NP |
2413 | /* page covers the boundary, find the boundary offset */ |
2414 | if (index == curidx) { | |
09cbfeaf | 2415 | zerofrom = curpos & ~PAGE_MASK; |
1da177e4 | 2416 | /* if we will expand the thing last block will be filled */ |
89e10787 NP |
2417 | if (offset <= zerofrom) { |
2418 | goto out; | |
2419 | } | |
2420 | if (zerofrom & (blocksize-1)) { | |
1da177e4 LT |
2421 | *bytes |= (blocksize-1); |
2422 | (*bytes)++; | |
2423 | } | |
89e10787 | 2424 | len = offset - zerofrom; |
1da177e4 | 2425 | |
c718a975 TH |
2426 | err = pagecache_write_begin(file, mapping, curpos, len, 0, |
2427 | &page, &fsdata); | |
89e10787 NP |
2428 | if (err) |
2429 | goto out; | |
eebd2aa3 | 2430 | zero_user(page, zerofrom, len); |
89e10787 NP |
2431 | err = pagecache_write_end(file, mapping, curpos, len, len, |
2432 | page, fsdata); | |
2433 | if (err < 0) | |
2434 | goto out; | |
2435 | BUG_ON(err != len); | |
2436 | err = 0; | |
1da177e4 | 2437 | } |
89e10787 NP |
2438 | out: |
2439 | return err; | |
2440 | } | |
2441 | ||
2442 | /* | |
2443 | * For moronic filesystems that do not allow holes in file. | |
2444 | * We may have to extend the file. | |
2445 | */ | |
282dc178 | 2446 | int cont_write_begin(struct file *file, struct address_space *mapping, |
89e10787 NP |
2447 | loff_t pos, unsigned len, unsigned flags, |
2448 | struct page **pagep, void **fsdata, | |
2449 | get_block_t *get_block, loff_t *bytes) | |
2450 | { | |
2451 | struct inode *inode = mapping->host; | |
93407472 FF |
2452 | unsigned int blocksize = i_blocksize(inode); |
2453 | unsigned int zerofrom; | |
89e10787 NP |
2454 | int err; |
2455 | ||
2456 | err = cont_expand_zero(file, mapping, pos, bytes); | |
2457 | if (err) | |
155130a4 | 2458 | return err; |
89e10787 | 2459 | |
09cbfeaf | 2460 | zerofrom = *bytes & ~PAGE_MASK; |
89e10787 NP |
2461 | if (pos+len > *bytes && zerofrom & (blocksize-1)) { |
2462 | *bytes |= (blocksize-1); | |
2463 | (*bytes)++; | |
1da177e4 | 2464 | } |
1da177e4 | 2465 | |
155130a4 | 2466 | return block_write_begin(mapping, pos, len, flags, pagep, get_block); |
1da177e4 | 2467 | } |
1fe72eaa | 2468 | EXPORT_SYMBOL(cont_write_begin); |
1da177e4 | 2469 | |
1da177e4 LT |
2470 | int block_commit_write(struct page *page, unsigned from, unsigned to) |
2471 | { | |
2472 | struct inode *inode = page->mapping->host; | |
2473 | __block_commit_write(inode,page,from,to); | |
2474 | return 0; | |
2475 | } | |
1fe72eaa | 2476 | EXPORT_SYMBOL(block_commit_write); |
1da177e4 | 2477 | |
54171690 DC |
2478 | /* |
2479 | * block_page_mkwrite() is not allowed to change the file size as it gets | |
2480 | * called from a page fault handler when a page is first dirtied. Hence we must | |
2481 | * be careful to check for EOF conditions here. We set the page up correctly | |
2482 | * for a written page which means we get ENOSPC checking when writing into | |
2483 | * holes and correct delalloc and unwritten extent mapping on filesystems that | |
2484 | * support these features. | |
2485 | * | |
2486 | * We are not allowed to take the i_mutex here so we have to play games to | |
2487 | * protect against truncate races as the page could now be beyond EOF. Because | |
7bb46a67 | 2488 | * truncate writes the inode size before removing pages, once we have the |
54171690 DC |
2489 | * page lock we can determine safely if the page is beyond EOF. If it is not |
2490 | * beyond EOF, then the page is guaranteed safe against truncation until we | |
2491 | * unlock the page. | |
ea13a864 | 2492 | * |
14da9200 | 2493 | * Direct callers of this function should protect against filesystem freezing |
5c500029 | 2494 | * using sb_start_pagefault() - sb_end_pagefault() functions. |
54171690 | 2495 | */ |
5c500029 | 2496 | int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, |
24da4fab | 2497 | get_block_t get_block) |
54171690 | 2498 | { |
c2ec175c | 2499 | struct page *page = vmf->page; |
496ad9aa | 2500 | struct inode *inode = file_inode(vma->vm_file); |
54171690 DC |
2501 | unsigned long end; |
2502 | loff_t size; | |
24da4fab | 2503 | int ret; |
54171690 DC |
2504 | |
2505 | lock_page(page); | |
2506 | size = i_size_read(inode); | |
2507 | if ((page->mapping != inode->i_mapping) || | |
18336338 | 2508 | (page_offset(page) > size)) { |
24da4fab JK |
2509 | /* We overload EFAULT to mean page got truncated */ |
2510 | ret = -EFAULT; | |
2511 | goto out_unlock; | |
54171690 DC |
2512 | } |
2513 | ||
2514 | /* page is wholly or partially inside EOF */ | |
09cbfeaf KS |
2515 | if (((page->index + 1) << PAGE_SHIFT) > size) |
2516 | end = size & ~PAGE_MASK; | |
54171690 | 2517 | else |
09cbfeaf | 2518 | end = PAGE_SIZE; |
54171690 | 2519 | |
ebdec241 | 2520 | ret = __block_write_begin(page, 0, end, get_block); |
54171690 DC |
2521 | if (!ret) |
2522 | ret = block_commit_write(page, 0, end); | |
2523 | ||
24da4fab JK |
2524 | if (unlikely(ret < 0)) |
2525 | goto out_unlock; | |
ea13a864 | 2526 | set_page_dirty(page); |
1d1d1a76 | 2527 | wait_for_stable_page(page); |
24da4fab JK |
2528 | return 0; |
2529 | out_unlock: | |
2530 | unlock_page(page); | |
54171690 | 2531 | return ret; |
24da4fab | 2532 | } |
1fe72eaa | 2533 | EXPORT_SYMBOL(block_page_mkwrite); |
1da177e4 LT |
2534 | |
2535 | /* | |
03158cd7 | 2536 | * nobh_write_begin()'s prereads are special: the buffer_heads are freed |
1da177e4 LT |
2537 | * immediately, while under the page lock. So it needs a special end_io |
2538 | * handler which does not touch the bh after unlocking it. | |
1da177e4 LT |
2539 | */ |
2540 | static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) | |
2541 | { | |
68671f35 | 2542 | __end_buffer_read_notouch(bh, uptodate); |
1da177e4 LT |
2543 | } |
2544 | ||
03158cd7 NP |
2545 | /* |
2546 | * Attach the singly-linked list of buffers created by nobh_write_begin, to | |
2547 | * the page (converting it to circular linked list and taking care of page | |
2548 | * dirty races). | |
2549 | */ | |
2550 | static void attach_nobh_buffers(struct page *page, struct buffer_head *head) | |
2551 | { | |
2552 | struct buffer_head *bh; | |
2553 | ||
2554 | BUG_ON(!PageLocked(page)); | |
2555 | ||
2556 | spin_lock(&page->mapping->private_lock); | |
2557 | bh = head; | |
2558 | do { | |
2559 | if (PageDirty(page)) | |
2560 | set_buffer_dirty(bh); | |
2561 | if (!bh->b_this_page) | |
2562 | bh->b_this_page = head; | |
2563 | bh = bh->b_this_page; | |
2564 | } while (bh != head); | |
2565 | attach_page_buffers(page, head); | |
2566 | spin_unlock(&page->mapping->private_lock); | |
2567 | } | |
2568 | ||
1da177e4 | 2569 | /* |
ea0f04e5 CH |
2570 | * On entry, the page is fully not uptodate. |
2571 | * On exit the page is fully uptodate in the areas outside (from,to) | |
7bb46a67 | 2572 | * The filesystem needs to handle block truncation upon failure. |
1da177e4 | 2573 | */ |
ea0f04e5 | 2574 | int nobh_write_begin(struct address_space *mapping, |
03158cd7 NP |
2575 | loff_t pos, unsigned len, unsigned flags, |
2576 | struct page **pagep, void **fsdata, | |
1da177e4 LT |
2577 | get_block_t *get_block) |
2578 | { | |
03158cd7 | 2579 | struct inode *inode = mapping->host; |
1da177e4 LT |
2580 | const unsigned blkbits = inode->i_blkbits; |
2581 | const unsigned blocksize = 1 << blkbits; | |
a4b0672d | 2582 | struct buffer_head *head, *bh; |
03158cd7 NP |
2583 | struct page *page; |
2584 | pgoff_t index; | |
2585 | unsigned from, to; | |
1da177e4 | 2586 | unsigned block_in_page; |
a4b0672d | 2587 | unsigned block_start, block_end; |
1da177e4 | 2588 | sector_t block_in_file; |
1da177e4 | 2589 | int nr_reads = 0; |
1da177e4 LT |
2590 | int ret = 0; |
2591 | int is_mapped_to_disk = 1; | |
1da177e4 | 2592 | |
09cbfeaf KS |
2593 | index = pos >> PAGE_SHIFT; |
2594 | from = pos & (PAGE_SIZE - 1); | |
03158cd7 NP |
2595 | to = from + len; |
2596 | ||
54566b2c | 2597 | page = grab_cache_page_write_begin(mapping, index, flags); |
03158cd7 NP |
2598 | if (!page) |
2599 | return -ENOMEM; | |
2600 | *pagep = page; | |
2601 | *fsdata = NULL; | |
2602 | ||
2603 | if (page_has_buffers(page)) { | |
309f77ad NK |
2604 | ret = __block_write_begin(page, pos, len, get_block); |
2605 | if (unlikely(ret)) | |
2606 | goto out_release; | |
2607 | return ret; | |
03158cd7 | 2608 | } |
a4b0672d | 2609 | |
1da177e4 LT |
2610 | if (PageMappedToDisk(page)) |
2611 | return 0; | |
2612 | ||
a4b0672d NP |
2613 | /* |
2614 | * Allocate buffers so that we can keep track of state, and potentially | |
2615 | * attach them to the page if an error occurs. In the common case of | |
2616 | * no error, they will just be freed again without ever being attached | |
2617 | * to the page (which is all OK, because we're under the page lock). | |
2618 | * | |
2619 | * Be careful: the buffer linked list is a NULL terminated one, rather | |
2620 | * than the circular one we're used to. | |
2621 | */ | |
640ab98f | 2622 | head = alloc_page_buffers(page, blocksize, false); |
03158cd7 NP |
2623 | if (!head) { |
2624 | ret = -ENOMEM; | |
2625 | goto out_release; | |
2626 | } | |
a4b0672d | 2627 | |
09cbfeaf | 2628 | block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); |
1da177e4 LT |
2629 | |
2630 | /* | |
2631 | * We loop across all blocks in the page, whether or not they are | |
2632 | * part of the affected region. This is so we can discover if the | |
2633 | * page is fully mapped-to-disk. | |
2634 | */ | |
a4b0672d | 2635 | for (block_start = 0, block_in_page = 0, bh = head; |
09cbfeaf | 2636 | block_start < PAGE_SIZE; |
a4b0672d | 2637 | block_in_page++, block_start += blocksize, bh = bh->b_this_page) { |
1da177e4 LT |
2638 | int create; |
2639 | ||
a4b0672d NP |
2640 | block_end = block_start + blocksize; |
2641 | bh->b_state = 0; | |
1da177e4 LT |
2642 | create = 1; |
2643 | if (block_start >= to) | |
2644 | create = 0; | |
2645 | ret = get_block(inode, block_in_file + block_in_page, | |
a4b0672d | 2646 | bh, create); |
1da177e4 LT |
2647 | if (ret) |
2648 | goto failed; | |
a4b0672d | 2649 | if (!buffer_mapped(bh)) |
1da177e4 | 2650 | is_mapped_to_disk = 0; |
a4b0672d | 2651 | if (buffer_new(bh)) |
e64855c6 | 2652 | clean_bdev_bh_alias(bh); |
a4b0672d NP |
2653 | if (PageUptodate(page)) { |
2654 | set_buffer_uptodate(bh); | |
1da177e4 | 2655 | continue; |
a4b0672d NP |
2656 | } |
2657 | if (buffer_new(bh) || !buffer_mapped(bh)) { | |
eebd2aa3 CL |
2658 | zero_user_segments(page, block_start, from, |
2659 | to, block_end); | |
1da177e4 LT |
2660 | continue; |
2661 | } | |
a4b0672d | 2662 | if (buffer_uptodate(bh)) |
1da177e4 LT |
2663 | continue; /* reiserfs does this */ |
2664 | if (block_start < from || block_end > to) { | |
a4b0672d NP |
2665 | lock_buffer(bh); |
2666 | bh->b_end_io = end_buffer_read_nobh; | |
2a222ca9 | 2667 | submit_bh(REQ_OP_READ, 0, bh); |
a4b0672d | 2668 | nr_reads++; |
1da177e4 LT |
2669 | } |
2670 | } | |
2671 | ||
2672 | if (nr_reads) { | |
1da177e4 LT |
2673 | /* |
2674 | * The page is locked, so these buffers are protected from | |
2675 | * any VM or truncate activity. Hence we don't need to care | |
2676 | * for the buffer_head refcounts. | |
2677 | */ | |
a4b0672d | 2678 | for (bh = head; bh; bh = bh->b_this_page) { |
1da177e4 LT |
2679 | wait_on_buffer(bh); |
2680 | if (!buffer_uptodate(bh)) | |
2681 | ret = -EIO; | |
1da177e4 LT |
2682 | } |
2683 | if (ret) | |
2684 | goto failed; | |
2685 | } | |
2686 | ||
2687 | if (is_mapped_to_disk) | |
2688 | SetPageMappedToDisk(page); | |
1da177e4 | 2689 | |
03158cd7 | 2690 | *fsdata = head; /* to be released by nobh_write_end */ |
a4b0672d | 2691 | |
1da177e4 LT |
2692 | return 0; |
2693 | ||
2694 | failed: | |
03158cd7 | 2695 | BUG_ON(!ret); |
1da177e4 | 2696 | /* |
a4b0672d NP |
2697 | * Error recovery is a bit difficult. We need to zero out blocks that |
2698 | * were newly allocated, and dirty them to ensure they get written out. | |
2699 | * Buffers need to be attached to the page at this point, otherwise | |
2700 | * the handling of potential IO errors during writeout would be hard | |
2701 | * (could try doing synchronous writeout, but what if that fails too?) | |
1da177e4 | 2702 | */ |
03158cd7 NP |
2703 | attach_nobh_buffers(page, head); |
2704 | page_zero_new_buffers(page, from, to); | |
a4b0672d | 2705 | |
03158cd7 NP |
2706 | out_release: |
2707 | unlock_page(page); | |
09cbfeaf | 2708 | put_page(page); |
03158cd7 | 2709 | *pagep = NULL; |
a4b0672d | 2710 | |
7bb46a67 NP |
2711 | return ret; |
2712 | } | |
03158cd7 | 2713 | EXPORT_SYMBOL(nobh_write_begin); |
1da177e4 | 2714 | |
03158cd7 NP |
2715 | int nobh_write_end(struct file *file, struct address_space *mapping, |
2716 | loff_t pos, unsigned len, unsigned copied, | |
2717 | struct page *page, void *fsdata) | |
1da177e4 LT |
2718 | { |
2719 | struct inode *inode = page->mapping->host; | |
efdc3131 | 2720 | struct buffer_head *head = fsdata; |
03158cd7 | 2721 | struct buffer_head *bh; |
5b41e74a | 2722 | BUG_ON(fsdata != NULL && page_has_buffers(page)); |
1da177e4 | 2723 | |
d4cf109f | 2724 | if (unlikely(copied < len) && head) |
5b41e74a DM |
2725 | attach_nobh_buffers(page, head); |
2726 | if (page_has_buffers(page)) | |
2727 | return generic_write_end(file, mapping, pos, len, | |
2728 | copied, page, fsdata); | |
a4b0672d | 2729 | |
22c8ca78 | 2730 | SetPageUptodate(page); |
1da177e4 | 2731 | set_page_dirty(page); |
03158cd7 NP |
2732 | if (pos+copied > inode->i_size) { |
2733 | i_size_write(inode, pos+copied); | |
1da177e4 LT |
2734 | mark_inode_dirty(inode); |
2735 | } | |
03158cd7 NP |
2736 | |
2737 | unlock_page(page); | |
09cbfeaf | 2738 | put_page(page); |
03158cd7 | 2739 | |
03158cd7 NP |
2740 | while (head) { |
2741 | bh = head; | |
2742 | head = head->b_this_page; | |
2743 | free_buffer_head(bh); | |
2744 | } | |
2745 | ||
2746 | return copied; | |
1da177e4 | 2747 | } |
03158cd7 | 2748 | EXPORT_SYMBOL(nobh_write_end); |
1da177e4 LT |
2749 | |
2750 | /* | |
2751 | * nobh_writepage() - based on block_full_write_page() except | |
2752 | * that it tries to operate without attaching bufferheads to | |
2753 | * the page. | |
2754 | */ | |
2755 | int nobh_writepage(struct page *page, get_block_t *get_block, | |
2756 | struct writeback_control *wbc) | |
2757 | { | |
2758 | struct inode * const inode = page->mapping->host; | |
2759 | loff_t i_size = i_size_read(inode); | |
09cbfeaf | 2760 | const pgoff_t end_index = i_size >> PAGE_SHIFT; |
1da177e4 | 2761 | unsigned offset; |
1da177e4 LT |
2762 | int ret; |
2763 | ||
2764 | /* Is the page fully inside i_size? */ | |
2765 | if (page->index < end_index) | |
2766 | goto out; | |
2767 | ||
2768 | /* Is the page fully outside i_size? (truncate in progress) */ | |
09cbfeaf | 2769 | offset = i_size & (PAGE_SIZE-1); |
1da177e4 LT |
2770 | if (page->index >= end_index+1 || !offset) { |
2771 | /* | |
2772 | * The page may have dirty, unmapped buffers. For example, | |
2773 | * they may have been added in ext3_writepage(). Make them | |
2774 | * freeable here, so the page does not leak. | |
2775 | */ | |
2776 | #if 0 | |
2777 | /* Not really sure about this - do we need this ? */ | |
2778 | if (page->mapping->a_ops->invalidatepage) | |
2779 | page->mapping->a_ops->invalidatepage(page, offset); | |
2780 | #endif | |
2781 | unlock_page(page); | |
2782 | return 0; /* don't care */ | |
2783 | } | |
2784 | ||
2785 | /* | |
2786 | * The page straddles i_size. It must be zeroed out on each and every | |
2787 | * writepage invocation because it may be mmapped. "A file is mapped | |
2788 | * in multiples of the page size. For a file that is not a multiple of | |
2789 | * the page size, the remaining memory is zeroed when mapped, and | |
2790 | * writes to that region are not written out to the file." | |
2791 | */ | |
09cbfeaf | 2792 | zero_user_segment(page, offset, PAGE_SIZE); |
1da177e4 LT |
2793 | out: |
2794 | ret = mpage_writepage(page, get_block, wbc); | |
2795 | if (ret == -EAGAIN) | |
35c80d5f CM |
2796 | ret = __block_write_full_page(inode, page, get_block, wbc, |
2797 | end_buffer_async_write); | |
1da177e4 LT |
2798 | return ret; |
2799 | } | |
2800 | EXPORT_SYMBOL(nobh_writepage); | |
2801 | ||
03158cd7 NP |
2802 | int nobh_truncate_page(struct address_space *mapping, |
2803 | loff_t from, get_block_t *get_block) | |
1da177e4 | 2804 | { |
09cbfeaf KS |
2805 | pgoff_t index = from >> PAGE_SHIFT; |
2806 | unsigned offset = from & (PAGE_SIZE-1); | |
03158cd7 NP |
2807 | unsigned blocksize; |
2808 | sector_t iblock; | |
2809 | unsigned length, pos; | |
2810 | struct inode *inode = mapping->host; | |
1da177e4 | 2811 | struct page *page; |
03158cd7 NP |
2812 | struct buffer_head map_bh; |
2813 | int err; | |
1da177e4 | 2814 | |
93407472 | 2815 | blocksize = i_blocksize(inode); |
03158cd7 NP |
2816 | length = offset & (blocksize - 1); |
2817 | ||
2818 | /* Block boundary? Nothing to do */ | |
2819 | if (!length) | |
2820 | return 0; | |
2821 | ||
2822 | length = blocksize - length; | |
09cbfeaf | 2823 | iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); |
1da177e4 | 2824 | |
1da177e4 | 2825 | page = grab_cache_page(mapping, index); |
03158cd7 | 2826 | err = -ENOMEM; |
1da177e4 LT |
2827 | if (!page) |
2828 | goto out; | |
2829 | ||
03158cd7 NP |
2830 | if (page_has_buffers(page)) { |
2831 | has_buffers: | |
2832 | unlock_page(page); | |
09cbfeaf | 2833 | put_page(page); |
03158cd7 NP |
2834 | return block_truncate_page(mapping, from, get_block); |
2835 | } | |
2836 | ||
2837 | /* Find the buffer that contains "offset" */ | |
2838 | pos = blocksize; | |
2839 | while (offset >= pos) { | |
2840 | iblock++; | |
2841 | pos += blocksize; | |
2842 | } | |
2843 | ||
460bcf57 TT |
2844 | map_bh.b_size = blocksize; |
2845 | map_bh.b_state = 0; | |
03158cd7 NP |
2846 | err = get_block(inode, iblock, &map_bh, 0); |
2847 | if (err) | |
2848 | goto unlock; | |
2849 | /* unmapped? It's a hole - nothing to do */ | |
2850 | if (!buffer_mapped(&map_bh)) | |
2851 | goto unlock; | |
2852 | ||
2853 | /* Ok, it's mapped. Make sure it's up-to-date */ | |
2854 | if (!PageUptodate(page)) { | |
2855 | err = mapping->a_ops->readpage(NULL, page); | |
2856 | if (err) { | |
09cbfeaf | 2857 | put_page(page); |
03158cd7 NP |
2858 | goto out; |
2859 | } | |
2860 | lock_page(page); | |
2861 | if (!PageUptodate(page)) { | |
2862 | err = -EIO; | |
2863 | goto unlock; | |
2864 | } | |
2865 | if (page_has_buffers(page)) | |
2866 | goto has_buffers; | |
1da177e4 | 2867 | } |
eebd2aa3 | 2868 | zero_user(page, offset, length); |
03158cd7 NP |
2869 | set_page_dirty(page); |
2870 | err = 0; | |
2871 | ||
2872 | unlock: | |
1da177e4 | 2873 | unlock_page(page); |
09cbfeaf | 2874 | put_page(page); |
1da177e4 | 2875 | out: |
03158cd7 | 2876 | return err; |
1da177e4 LT |
2877 | } |
2878 | EXPORT_SYMBOL(nobh_truncate_page); | |
2879 | ||
2880 | int block_truncate_page(struct address_space *mapping, | |
2881 | loff_t from, get_block_t *get_block) | |
2882 | { | |
09cbfeaf KS |
2883 | pgoff_t index = from >> PAGE_SHIFT; |
2884 | unsigned offset = from & (PAGE_SIZE-1); | |
1da177e4 | 2885 | unsigned blocksize; |
54b21a79 | 2886 | sector_t iblock; |
1da177e4 LT |
2887 | unsigned length, pos; |
2888 | struct inode *inode = mapping->host; | |
2889 | struct page *page; | |
2890 | struct buffer_head *bh; | |
1da177e4 LT |
2891 | int err; |
2892 | ||
93407472 | 2893 | blocksize = i_blocksize(inode); |
1da177e4 LT |
2894 | length = offset & (blocksize - 1); |
2895 | ||
2896 | /* Block boundary? Nothing to do */ | |
2897 | if (!length) | |
2898 | return 0; | |
2899 | ||
2900 | length = blocksize - length; | |
09cbfeaf | 2901 | iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); |
1da177e4 LT |
2902 | |
2903 | page = grab_cache_page(mapping, index); | |
2904 | err = -ENOMEM; | |
2905 | if (!page) | |
2906 | goto out; | |
2907 | ||
2908 | if (!page_has_buffers(page)) | |
2909 | create_empty_buffers(page, blocksize, 0); | |
2910 | ||
2911 | /* Find the buffer that contains "offset" */ | |
2912 | bh = page_buffers(page); | |
2913 | pos = blocksize; | |
2914 | while (offset >= pos) { | |
2915 | bh = bh->b_this_page; | |
2916 | iblock++; | |
2917 | pos += blocksize; | |
2918 | } | |
2919 | ||
2920 | err = 0; | |
2921 | if (!buffer_mapped(bh)) { | |
b0cf2321 | 2922 | WARN_ON(bh->b_size != blocksize); |
1da177e4 LT |
2923 | err = get_block(inode, iblock, bh, 0); |
2924 | if (err) | |
2925 | goto unlock; | |
2926 | /* unmapped? It's a hole - nothing to do */ | |
2927 | if (!buffer_mapped(bh)) | |
2928 | goto unlock; | |
2929 | } | |
2930 | ||
2931 | /* Ok, it's mapped. Make sure it's up-to-date */ | |
2932 | if (PageUptodate(page)) | |
2933 | set_buffer_uptodate(bh); | |
2934 | ||
33a266dd | 2935 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { |
1da177e4 | 2936 | err = -EIO; |
dfec8a14 | 2937 | ll_rw_block(REQ_OP_READ, 0, 1, &bh); |
1da177e4 LT |
2938 | wait_on_buffer(bh); |
2939 | /* Uhhuh. Read error. Complain and punt. */ | |
2940 | if (!buffer_uptodate(bh)) | |
2941 | goto unlock; | |
2942 | } | |
2943 | ||
eebd2aa3 | 2944 | zero_user(page, offset, length); |
1da177e4 LT |
2945 | mark_buffer_dirty(bh); |
2946 | err = 0; | |
2947 | ||
2948 | unlock: | |
2949 | unlock_page(page); | |
09cbfeaf | 2950 | put_page(page); |
1da177e4 LT |
2951 | out: |
2952 | return err; | |
2953 | } | |
1fe72eaa | 2954 | EXPORT_SYMBOL(block_truncate_page); |
1da177e4 LT |
2955 | |
2956 | /* | |
2957 | * The generic ->writepage function for buffer-backed address_spaces | |
2958 | */ | |
1b938c08 MW |
2959 | int block_write_full_page(struct page *page, get_block_t *get_block, |
2960 | struct writeback_control *wbc) | |
1da177e4 LT |
2961 | { |
2962 | struct inode * const inode = page->mapping->host; | |
2963 | loff_t i_size = i_size_read(inode); | |
09cbfeaf | 2964 | const pgoff_t end_index = i_size >> PAGE_SHIFT; |
1da177e4 | 2965 | unsigned offset; |
1da177e4 LT |
2966 | |
2967 | /* Is the page fully inside i_size? */ | |
2968 | if (page->index < end_index) | |
35c80d5f | 2969 | return __block_write_full_page(inode, page, get_block, wbc, |
1b938c08 | 2970 | end_buffer_async_write); |
1da177e4 LT |
2971 | |
2972 | /* Is the page fully outside i_size? (truncate in progress) */ | |
09cbfeaf | 2973 | offset = i_size & (PAGE_SIZE-1); |
1da177e4 LT |
2974 | if (page->index >= end_index+1 || !offset) { |
2975 | /* | |
2976 | * The page may have dirty, unmapped buffers. For example, | |
2977 | * they may have been added in ext3_writepage(). Make them | |
2978 | * freeable here, so the page does not leak. | |
2979 | */ | |
09cbfeaf | 2980 | do_invalidatepage(page, 0, PAGE_SIZE); |
1da177e4 LT |
2981 | unlock_page(page); |
2982 | return 0; /* don't care */ | |
2983 | } | |
2984 | ||
2985 | /* | |
2986 | * The page straddles i_size. It must be zeroed out on each and every | |
2a61aa40 | 2987 | * writepage invocation because it may be mmapped. "A file is mapped |
1da177e4 LT |
2988 | * in multiples of the page size. For a file that is not a multiple of |
2989 | * the page size, the remaining memory is zeroed when mapped, and | |
2990 | * writes to that region are not written out to the file." | |
2991 | */ | |
09cbfeaf | 2992 | zero_user_segment(page, offset, PAGE_SIZE); |
1b938c08 MW |
2993 | return __block_write_full_page(inode, page, get_block, wbc, |
2994 | end_buffer_async_write); | |
35c80d5f | 2995 | } |
1fe72eaa | 2996 | EXPORT_SYMBOL(block_write_full_page); |
35c80d5f | 2997 | |
1da177e4 LT |
2998 | sector_t generic_block_bmap(struct address_space *mapping, sector_t block, |
2999 | get_block_t *get_block) | |
3000 | { | |
1da177e4 | 3001 | struct inode *inode = mapping->host; |
2a527d68 AP |
3002 | struct buffer_head tmp = { |
3003 | .b_size = i_blocksize(inode), | |
3004 | }; | |
3005 | ||
1da177e4 LT |
3006 | get_block(inode, block, &tmp, 0); |
3007 | return tmp.b_blocknr; | |
3008 | } | |
1fe72eaa | 3009 | EXPORT_SYMBOL(generic_block_bmap); |
1da177e4 | 3010 | |
4246a0b6 | 3011 | static void end_bio_bh_io_sync(struct bio *bio) |
1da177e4 LT |
3012 | { |
3013 | struct buffer_head *bh = bio->bi_private; | |
3014 | ||
b7c44ed9 | 3015 | if (unlikely(bio_flagged(bio, BIO_QUIET))) |
08bafc03 KM |
3016 | set_bit(BH_Quiet, &bh->b_state); |
3017 | ||
4e4cbee9 | 3018 | bh->b_end_io(bh, !bio->bi_status); |
1da177e4 | 3019 | bio_put(bio); |
1da177e4 LT |
3020 | } |
3021 | ||
57302e0d LT |
3022 | /* |
3023 | * This allows us to do IO even on the odd last sectors | |
59d43914 | 3024 | * of a device, even if the block size is some multiple |
57302e0d LT |
3025 | * of the physical sector size. |
3026 | * | |
3027 | * We'll just truncate the bio to the size of the device, | |
3028 | * and clear the end of the buffer head manually. | |
3029 | * | |
3030 | * Truly out-of-range accesses will turn into actual IO | |
3031 | * errors, this only handles the "we need to be able to | |
3032 | * do IO at the final sector" case. | |
3033 | */ | |
2a222ca9 | 3034 | void guard_bio_eod(int op, struct bio *bio) |
57302e0d LT |
3035 | { |
3036 | sector_t maxsector; | |
c45a8f2d | 3037 | struct bio_vec *bvec = bio_last_bvec_all(bio); |
59d43914 | 3038 | unsigned truncated_bytes; |
67f2519f GE |
3039 | struct hd_struct *part; |
3040 | ||
3041 | rcu_read_lock(); | |
3042 | part = __disk_get_part(bio->bi_disk, bio->bi_partno); | |
3043 | if (part) | |
3044 | maxsector = part_nr_sects_read(part); | |
3045 | else | |
3046 | maxsector = get_capacity(bio->bi_disk); | |
3047 | rcu_read_unlock(); | |
57302e0d | 3048 | |
57302e0d LT |
3049 | if (!maxsector) |
3050 | return; | |
3051 | ||
3052 | /* | |
3053 | * If the *whole* IO is past the end of the device, | |
3054 | * let it through, and the IO layer will turn it into | |
3055 | * an EIO. | |
3056 | */ | |
4f024f37 | 3057 | if (unlikely(bio->bi_iter.bi_sector >= maxsector)) |
57302e0d LT |
3058 | return; |
3059 | ||
4f024f37 | 3060 | maxsector -= bio->bi_iter.bi_sector; |
59d43914 | 3061 | if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) |
57302e0d LT |
3062 | return; |
3063 | ||
59d43914 AM |
3064 | /* Uhhuh. We've got a bio that straddles the device size! */ |
3065 | truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9); | |
57302e0d | 3066 | |
dce30ca9 CM |
3067 | /* |
3068 | * The bio contains more than one segment which spans EOD, just return | |
3069 | * and let IO layer turn it into an EIO | |
3070 | */ | |
3071 | if (truncated_bytes > bvec->bv_len) | |
3072 | return; | |
3073 | ||
57302e0d | 3074 | /* Truncate the bio.. */ |
59d43914 AM |
3075 | bio->bi_iter.bi_size -= truncated_bytes; |
3076 | bvec->bv_len -= truncated_bytes; | |
57302e0d LT |
3077 | |
3078 | /* ..and clear the end of the buffer for reads */ | |
2a222ca9 | 3079 | if (op == REQ_OP_READ) { |
f70f4464 ML |
3080 | struct bio_vec bv; |
3081 | ||
3082 | mp_bvec_last_segment(bvec, &bv); | |
3083 | zero_user(bv.bv_page, bv.bv_offset + bv.bv_len, | |
59d43914 | 3084 | truncated_bytes); |
57302e0d LT |
3085 | } |
3086 | } | |
3087 | ||
2a222ca9 | 3088 | static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, |
8e8f9298 | 3089 | enum rw_hint write_hint, struct writeback_control *wbc) |
1da177e4 LT |
3090 | { |
3091 | struct bio *bio; | |
1da177e4 LT |
3092 | |
3093 | BUG_ON(!buffer_locked(bh)); | |
3094 | BUG_ON(!buffer_mapped(bh)); | |
3095 | BUG_ON(!bh->b_end_io); | |
8fb0e342 AK |
3096 | BUG_ON(buffer_delay(bh)); |
3097 | BUG_ON(buffer_unwritten(bh)); | |
1da177e4 | 3098 | |
1da177e4 | 3099 | /* |
48fd4f93 | 3100 | * Only clear out a write error when rewriting |
1da177e4 | 3101 | */ |
2a222ca9 | 3102 | if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) |
1da177e4 LT |
3103 | clear_buffer_write_io_error(bh); |
3104 | ||
3105 | /* | |
3106 | * from here on down, it's all bio -- do the initial mapping, | |
3107 | * submit_bio -> generic_make_request may further map this bio around | |
3108 | */ | |
3109 | bio = bio_alloc(GFP_NOIO, 1); | |
3110 | ||
4f024f37 | 3111 | bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); |
74d46992 | 3112 | bio_set_dev(bio, bh->b_bdev); |
8e8f9298 | 3113 | bio->bi_write_hint = write_hint; |
1da177e4 | 3114 | |
6cf66b4c KO |
3115 | bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); |
3116 | BUG_ON(bio->bi_iter.bi_size != bh->b_size); | |
1da177e4 LT |
3117 | |
3118 | bio->bi_end_io = end_bio_bh_io_sync; | |
3119 | bio->bi_private = bh; | |
3120 | ||
57302e0d | 3121 | /* Take care of bh's that straddle the end of the device */ |
2a222ca9 | 3122 | guard_bio_eod(op, bio); |
57302e0d | 3123 | |
877f962c | 3124 | if (buffer_meta(bh)) |
2a222ca9 | 3125 | op_flags |= REQ_META; |
877f962c | 3126 | if (buffer_prio(bh)) |
2a222ca9 MC |
3127 | op_flags |= REQ_PRIO; |
3128 | bio_set_op_attrs(bio, op, op_flags); | |
877f962c | 3129 | |
fd42df30 DZ |
3130 | if (wbc) { |
3131 | wbc_init_bio(wbc, bio); | |
34e51a5e | 3132 | wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); |
fd42df30 DZ |
3133 | } |
3134 | ||
4e49ea4a | 3135 | submit_bio(bio); |
f6454b04 | 3136 | return 0; |
1da177e4 | 3137 | } |
bafc0dba | 3138 | |
020c2833 | 3139 | int submit_bh(int op, int op_flags, struct buffer_head *bh) |
bafc0dba | 3140 | { |
8e8f9298 | 3141 | return submit_bh_wbc(op, op_flags, bh, 0, NULL); |
71368511 | 3142 | } |
1fe72eaa | 3143 | EXPORT_SYMBOL(submit_bh); |
1da177e4 LT |
3144 | |
3145 | /** | |
3146 | * ll_rw_block: low-level access to block devices (DEPRECATED) | |
dfec8a14 | 3147 | * @op: whether to %READ or %WRITE |
ef295ecf | 3148 | * @op_flags: req_flag_bits |
1da177e4 LT |
3149 | * @nr: number of &struct buffer_heads in the array |
3150 | * @bhs: array of pointers to &struct buffer_head | |
3151 | * | |
a7662236 | 3152 | * ll_rw_block() takes an array of pointers to &struct buffer_heads, and |
70246286 CH |
3153 | * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. |
3154 | * @op_flags contains flags modifying the detailed I/O behavior, most notably | |
3155 | * %REQ_RAHEAD. | |
1da177e4 LT |
3156 | * |
3157 | * This function drops any buffer that it cannot get a lock on (with the | |
9cb569d6 CH |
3158 | * BH_Lock state bit), any buffer that appears to be clean when doing a write |
3159 | * request, and any buffer that appears to be up-to-date when doing read | |
3160 | * request. Further it marks as clean buffers that are processed for | |
3161 | * writing (the buffer cache won't assume that they are actually clean | |
3162 | * until the buffer gets unlocked). | |
1da177e4 LT |
3163 | * |
3164 | * ll_rw_block sets b_end_io to simple completion handler that marks | |
e227867f | 3165 | * the buffer up-to-date (if appropriate), unlocks the buffer and wakes |
1da177e4 LT |
3166 | * any waiters. |
3167 | * | |
3168 | * All of the buffers must be for the same device, and must also be a | |
3169 | * multiple of the current approved size for the device. | |
3170 | */ | |
dfec8a14 | 3171 | void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) |
1da177e4 LT |
3172 | { |
3173 | int i; | |
3174 | ||
3175 | for (i = 0; i < nr; i++) { | |
3176 | struct buffer_head *bh = bhs[i]; | |
3177 | ||
9cb569d6 | 3178 | if (!trylock_buffer(bh)) |
1da177e4 | 3179 | continue; |
dfec8a14 | 3180 | if (op == WRITE) { |
1da177e4 | 3181 | if (test_clear_buffer_dirty(bh)) { |
76c3073a | 3182 | bh->b_end_io = end_buffer_write_sync; |
e60e5c50 | 3183 | get_bh(bh); |
dfec8a14 | 3184 | submit_bh(op, op_flags, bh); |
1da177e4 LT |
3185 | continue; |
3186 | } | |
3187 | } else { | |
1da177e4 | 3188 | if (!buffer_uptodate(bh)) { |
76c3073a | 3189 | bh->b_end_io = end_buffer_read_sync; |
e60e5c50 | 3190 | get_bh(bh); |
dfec8a14 | 3191 | submit_bh(op, op_flags, bh); |
1da177e4 LT |
3192 | continue; |
3193 | } | |
3194 | } | |
3195 | unlock_buffer(bh); | |
1da177e4 LT |
3196 | } |
3197 | } | |
1fe72eaa | 3198 | EXPORT_SYMBOL(ll_rw_block); |
1da177e4 | 3199 | |
2a222ca9 | 3200 | void write_dirty_buffer(struct buffer_head *bh, int op_flags) |
9cb569d6 CH |
3201 | { |
3202 | lock_buffer(bh); | |
3203 | if (!test_clear_buffer_dirty(bh)) { | |
3204 | unlock_buffer(bh); | |
3205 | return; | |
3206 | } | |
3207 | bh->b_end_io = end_buffer_write_sync; | |
3208 | get_bh(bh); | |
2a222ca9 | 3209 | submit_bh(REQ_OP_WRITE, op_flags, bh); |
9cb569d6 CH |
3210 | } |
3211 | EXPORT_SYMBOL(write_dirty_buffer); | |
3212 | ||
1da177e4 LT |
3213 | /* |
3214 | * For a data-integrity writeout, we need to wait upon any in-progress I/O | |
3215 | * and then start new I/O and then wait upon it. The caller must have a ref on | |
3216 | * the buffer_head. | |
3217 | */ | |
2a222ca9 | 3218 | int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) |
1da177e4 LT |
3219 | { |
3220 | int ret = 0; | |
3221 | ||
3222 | WARN_ON(atomic_read(&bh->b_count) < 1); | |
3223 | lock_buffer(bh); | |
3224 | if (test_clear_buffer_dirty(bh)) { | |
3225 | get_bh(bh); | |
3226 | bh->b_end_io = end_buffer_write_sync; | |
2a222ca9 | 3227 | ret = submit_bh(REQ_OP_WRITE, op_flags, bh); |
1da177e4 | 3228 | wait_on_buffer(bh); |
1da177e4 LT |
3229 | if (!ret && !buffer_uptodate(bh)) |
3230 | ret = -EIO; | |
3231 | } else { | |
3232 | unlock_buffer(bh); | |
3233 | } | |
3234 | return ret; | |
3235 | } | |
87e99511 CH |
3236 | EXPORT_SYMBOL(__sync_dirty_buffer); |
3237 | ||
3238 | int sync_dirty_buffer(struct buffer_head *bh) | |
3239 | { | |
70fd7614 | 3240 | return __sync_dirty_buffer(bh, REQ_SYNC); |
87e99511 | 3241 | } |
1fe72eaa | 3242 | EXPORT_SYMBOL(sync_dirty_buffer); |
1da177e4 LT |
3243 | |
3244 | /* | |
3245 | * try_to_free_buffers() checks if all the buffers on this particular page | |
3246 | * are unused, and releases them if so. | |
3247 | * | |
3248 | * Exclusion against try_to_free_buffers may be obtained by either | |
3249 | * locking the page or by holding its mapping's private_lock. | |
3250 | * | |
3251 | * If the page is dirty but all the buffers are clean then we need to | |
3252 | * be sure to mark the page clean as well. This is because the page | |
3253 | * may be against a block device, and a later reattachment of buffers | |
3254 | * to a dirty page will set *all* buffers dirty. Which would corrupt | |
3255 | * filesystem data on the same device. | |
3256 | * | |
3257 | * The same applies to regular filesystem pages: if all the buffers are | |
3258 | * clean then we set the page clean and proceed. To do that, we require | |
3259 | * total exclusion from __set_page_dirty_buffers(). That is obtained with | |
3260 | * private_lock. | |
3261 | * | |
3262 | * try_to_free_buffers() is non-blocking. | |
3263 | */ | |
3264 | static inline int buffer_busy(struct buffer_head *bh) | |
3265 | { | |
3266 | return atomic_read(&bh->b_count) | | |
3267 | (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); | |
3268 | } | |
3269 | ||
3270 | static int | |
3271 | drop_buffers(struct page *page, struct buffer_head **buffers_to_free) | |
3272 | { | |
3273 | struct buffer_head *head = page_buffers(page); | |
3274 | struct buffer_head *bh; | |
3275 | ||
3276 | bh = head; | |
3277 | do { | |
1da177e4 LT |
3278 | if (buffer_busy(bh)) |
3279 | goto failed; | |
3280 | bh = bh->b_this_page; | |
3281 | } while (bh != head); | |
3282 | ||
3283 | do { | |
3284 | struct buffer_head *next = bh->b_this_page; | |
3285 | ||
535ee2fb | 3286 | if (bh->b_assoc_map) |
1da177e4 LT |
3287 | __remove_assoc_queue(bh); |
3288 | bh = next; | |
3289 | } while (bh != head); | |
3290 | *buffers_to_free = head; | |
3291 | __clear_page_buffers(page); | |
3292 | return 1; | |
3293 | failed: | |
3294 | return 0; | |
3295 | } | |
3296 | ||
3297 | int try_to_free_buffers(struct page *page) | |
3298 | { | |
3299 | struct address_space * const mapping = page->mapping; | |
3300 | struct buffer_head *buffers_to_free = NULL; | |
3301 | int ret = 0; | |
3302 | ||
3303 | BUG_ON(!PageLocked(page)); | |
ecdfc978 | 3304 | if (PageWriteback(page)) |
1da177e4 LT |
3305 | return 0; |
3306 | ||
3307 | if (mapping == NULL) { /* can this still happen? */ | |
3308 | ret = drop_buffers(page, &buffers_to_free); | |
3309 | goto out; | |
3310 | } | |
3311 | ||
3312 | spin_lock(&mapping->private_lock); | |
3313 | ret = drop_buffers(page, &buffers_to_free); | |
ecdfc978 LT |
3314 | |
3315 | /* | |
3316 | * If the filesystem writes its buffers by hand (eg ext3) | |
3317 | * then we can have clean buffers against a dirty page. We | |
3318 | * clean the page here; otherwise the VM will never notice | |
3319 | * that the filesystem did any IO at all. | |
3320 | * | |
3321 | * Also, during truncate, discard_buffer will have marked all | |
3322 | * the page's buffers clean. We discover that here and clean | |
3323 | * the page also. | |
87df7241 NP |
3324 | * |
3325 | * private_lock must be held over this entire operation in order | |
3326 | * to synchronise against __set_page_dirty_buffers and prevent the | |
3327 | * dirty bit from being lost. | |
ecdfc978 | 3328 | */ |
11f81bec TH |
3329 | if (ret) |
3330 | cancel_dirty_page(page); | |
87df7241 | 3331 | spin_unlock(&mapping->private_lock); |
1da177e4 LT |
3332 | out: |
3333 | if (buffers_to_free) { | |
3334 | struct buffer_head *bh = buffers_to_free; | |
3335 | ||
3336 | do { | |
3337 | struct buffer_head *next = bh->b_this_page; | |
3338 | free_buffer_head(bh); | |
3339 | bh = next; | |
3340 | } while (bh != buffers_to_free); | |
3341 | } | |
3342 | return ret; | |
3343 | } | |
3344 | EXPORT_SYMBOL(try_to_free_buffers); | |
3345 | ||
1da177e4 LT |
3346 | /* |
3347 | * There are no bdflush tunables left. But distributions are | |
3348 | * still running obsolete flush daemons, so we terminate them here. | |
3349 | * | |
3350 | * Use of bdflush() is deprecated and will be removed in a future kernel. | |
5b0830cb | 3351 | * The `flush-X' kernel threads fully replace bdflush daemons and this call. |
1da177e4 | 3352 | */ |
bdc480e3 | 3353 | SYSCALL_DEFINE2(bdflush, int, func, long, data) |
1da177e4 LT |
3354 | { |
3355 | static int msg_count; | |
3356 | ||
3357 | if (!capable(CAP_SYS_ADMIN)) | |
3358 | return -EPERM; | |
3359 | ||
3360 | if (msg_count < 5) { | |
3361 | msg_count++; | |
3362 | printk(KERN_INFO | |
3363 | "warning: process `%s' used the obsolete bdflush" | |
3364 | " system call\n", current->comm); | |
3365 | printk(KERN_INFO "Fix your initscripts?\n"); | |
3366 | } | |
3367 | ||
3368 | if (func == 1) | |
3369 | do_exit(0); | |
3370 | return 0; | |
3371 | } | |
3372 | ||
3373 | /* | |
3374 | * Buffer-head allocation | |
3375 | */ | |
a0a9b043 | 3376 | static struct kmem_cache *bh_cachep __read_mostly; |
1da177e4 LT |
3377 | |
3378 | /* | |
3379 | * Once the number of bh's in the machine exceeds this level, we start | |
3380 | * stripping them in writeback. | |
3381 | */ | |
43be594a | 3382 | static unsigned long max_buffer_heads; |
1da177e4 LT |
3383 | |
3384 | int buffer_heads_over_limit; | |
3385 | ||
3386 | struct bh_accounting { | |
3387 | int nr; /* Number of live bh's */ | |
3388 | int ratelimit; /* Limit cacheline bouncing */ | |
3389 | }; | |
3390 | ||
3391 | static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; | |
3392 | ||
3393 | static void recalc_bh_state(void) | |
3394 | { | |
3395 | int i; | |
3396 | int tot = 0; | |
3397 | ||
ee1be862 | 3398 | if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) |
1da177e4 | 3399 | return; |
c7b92516 | 3400 | __this_cpu_write(bh_accounting.ratelimit, 0); |
8a143426 | 3401 | for_each_online_cpu(i) |
1da177e4 LT |
3402 | tot += per_cpu(bh_accounting, i).nr; |
3403 | buffer_heads_over_limit = (tot > max_buffer_heads); | |
3404 | } | |
c7b92516 | 3405 | |
dd0fc66f | 3406 | struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) |
1da177e4 | 3407 | { |
019b4d12 | 3408 | struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); |
1da177e4 | 3409 | if (ret) { |
a35afb83 | 3410 | INIT_LIST_HEAD(&ret->b_assoc_buffers); |
c7b92516 CL |
3411 | preempt_disable(); |
3412 | __this_cpu_inc(bh_accounting.nr); | |
1da177e4 | 3413 | recalc_bh_state(); |
c7b92516 | 3414 | preempt_enable(); |
1da177e4 LT |
3415 | } |
3416 | return ret; | |
3417 | } | |
3418 | EXPORT_SYMBOL(alloc_buffer_head); | |
3419 | ||
3420 | void free_buffer_head(struct buffer_head *bh) | |
3421 | { | |
3422 | BUG_ON(!list_empty(&bh->b_assoc_buffers)); | |
3423 | kmem_cache_free(bh_cachep, bh); | |
c7b92516 CL |
3424 | preempt_disable(); |
3425 | __this_cpu_dec(bh_accounting.nr); | |
1da177e4 | 3426 | recalc_bh_state(); |
c7b92516 | 3427 | preempt_enable(); |
1da177e4 LT |
3428 | } |
3429 | EXPORT_SYMBOL(free_buffer_head); | |
3430 | ||
fc4d24c9 | 3431 | static int buffer_exit_cpu_dead(unsigned int cpu) |
1da177e4 LT |
3432 | { |
3433 | int i; | |
3434 | struct bh_lru *b = &per_cpu(bh_lrus, cpu); | |
3435 | ||
3436 | for (i = 0; i < BH_LRU_SIZE; i++) { | |
3437 | brelse(b->bhs[i]); | |
3438 | b->bhs[i] = NULL; | |
3439 | } | |
c7b92516 | 3440 | this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); |
8a143426 | 3441 | per_cpu(bh_accounting, cpu).nr = 0; |
fc4d24c9 | 3442 | return 0; |
1da177e4 | 3443 | } |
1da177e4 | 3444 | |
389d1b08 | 3445 | /** |
a6b91919 | 3446 | * bh_uptodate_or_lock - Test whether the buffer is uptodate |
389d1b08 AK |
3447 | * @bh: struct buffer_head |
3448 | * | |
3449 | * Return true if the buffer is up-to-date and false, | |
3450 | * with the buffer locked, if not. | |
3451 | */ | |
3452 | int bh_uptodate_or_lock(struct buffer_head *bh) | |
3453 | { | |
3454 | if (!buffer_uptodate(bh)) { | |
3455 | lock_buffer(bh); | |
3456 | if (!buffer_uptodate(bh)) | |
3457 | return 0; | |
3458 | unlock_buffer(bh); | |
3459 | } | |
3460 | return 1; | |
3461 | } | |
3462 | EXPORT_SYMBOL(bh_uptodate_or_lock); | |
3463 | ||
3464 | /** | |
a6b91919 | 3465 | * bh_submit_read - Submit a locked buffer for reading |
389d1b08 AK |
3466 | * @bh: struct buffer_head |
3467 | * | |
3468 | * Returns zero on success and -EIO on error. | |
3469 | */ | |
3470 | int bh_submit_read(struct buffer_head *bh) | |
3471 | { | |
3472 | BUG_ON(!buffer_locked(bh)); | |
3473 | ||
3474 | if (buffer_uptodate(bh)) { | |
3475 | unlock_buffer(bh); | |
3476 | return 0; | |
3477 | } | |
3478 | ||
3479 | get_bh(bh); | |
3480 | bh->b_end_io = end_buffer_read_sync; | |
2a222ca9 | 3481 | submit_bh(REQ_OP_READ, 0, bh); |
389d1b08 AK |
3482 | wait_on_buffer(bh); |
3483 | if (buffer_uptodate(bh)) | |
3484 | return 0; | |
3485 | return -EIO; | |
3486 | } | |
3487 | EXPORT_SYMBOL(bh_submit_read); | |
3488 | ||
1da177e4 LT |
3489 | void __init buffer_init(void) |
3490 | { | |
43be594a | 3491 | unsigned long nrpages; |
fc4d24c9 | 3492 | int ret; |
1da177e4 | 3493 | |
b98938c3 CL |
3494 | bh_cachep = kmem_cache_create("buffer_head", |
3495 | sizeof(struct buffer_head), 0, | |
3496 | (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| | |
3497 | SLAB_MEM_SPREAD), | |
019b4d12 | 3498 | NULL); |
1da177e4 LT |
3499 | |
3500 | /* | |
3501 | * Limit the bh occupancy to 10% of ZONE_NORMAL | |
3502 | */ | |
3503 | nrpages = (nr_free_buffer_pages() * 10) / 100; | |
3504 | max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); | |
fc4d24c9 SAS |
3505 | ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", |
3506 | NULL, buffer_exit_cpu_dead); | |
3507 | WARN_ON(ret < 0); | |
1da177e4 | 3508 | } |