]>
Commit | Line | Data |
---|---|---|
7414a03f AJ |
1 | /* |
2 | * Copyright (C) 2011 STRATO. All rights reserved. | |
3 | * | |
4 | * This program is free software; you can redistribute it and/or | |
5 | * modify it under the terms of the GNU General Public | |
6 | * License v2 as published by the Free Software Foundation. | |
7 | * | |
8 | * This program is distributed in the hope that it will be useful, | |
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
11 | * General Public License for more details. | |
12 | * | |
13 | * You should have received a copy of the GNU General Public | |
14 | * License along with this program; if not, write to the | |
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
16 | * Boston, MA 021110-1307, USA. | |
17 | */ | |
18 | ||
19 | #include <linux/sched.h> | |
20 | #include <linux/pagemap.h> | |
21 | #include <linux/writeback.h> | |
22 | #include <linux/blkdev.h> | |
23 | #include <linux/rbtree.h> | |
24 | #include <linux/slab.h> | |
25 | #include <linux/workqueue.h> | |
26 | #include "ctree.h" | |
27 | #include "volumes.h" | |
28 | #include "disk-io.h" | |
29 | #include "transaction.h" | |
30 | ||
31 | #undef DEBUG | |
32 | ||
33 | /* | |
34 | * This is the implementation for the generic read ahead framework. | |
35 | * | |
36 | * To trigger a readahead, btrfs_reada_add must be called. It will start | |
37 | * a read ahead for the given range [start, end) on tree root. The returned | |
38 | * handle can either be used to wait on the readahead to finish | |
39 | * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach). | |
40 | * | |
41 | * The read ahead works as follows: | |
42 | * On btrfs_reada_add, the root of the tree is inserted into a radix_tree. | |
43 | * reada_start_machine will then search for extents to prefetch and trigger | |
44 | * some reads. When a read finishes for a node, all contained node/leaf | |
45 | * pointers that lie in the given range will also be enqueued. The reads will | |
46 | * be triggered in sequential order, thus giving a big win over a naive | |
47 | * enumeration. It will also make use of multi-device layouts. Each disk | |
48 | * will have its on read pointer and all disks will by utilized in parallel. | |
49 | * Also will no two disks read both sides of a mirror simultaneously, as this | |
50 | * would waste seeking capacity. Instead both disks will read different parts | |
51 | * of the filesystem. | |
52 | * Any number of readaheads can be started in parallel. The read order will be | |
53 | * determined globally, i.e. 2 parallel readaheads will normally finish faster | |
54 | * than the 2 started one after another. | |
55 | */ | |
56 | ||
7414a03f AJ |
57 | #define MAX_IN_FLIGHT 6 |
58 | ||
59 | struct reada_extctl { | |
60 | struct list_head list; | |
61 | struct reada_control *rc; | |
62 | u64 generation; | |
63 | }; | |
64 | ||
65 | struct reada_extent { | |
66 | u64 logical; | |
67 | struct btrfs_key top; | |
68 | u32 blocksize; | |
69 | int err; | |
70 | struct list_head extctl; | |
71 | struct kref refcnt; | |
72 | spinlock_t lock; | |
94598ba8 | 73 | struct reada_zone *zones[BTRFS_MAX_MIRRORS]; |
7414a03f AJ |
74 | int nzones; |
75 | struct btrfs_device *scheduled_for; | |
76 | }; | |
77 | ||
78 | struct reada_zone { | |
79 | u64 start; | |
80 | u64 end; | |
81 | u64 elems; | |
82 | struct list_head list; | |
83 | spinlock_t lock; | |
84 | int locked; | |
85 | struct btrfs_device *device; | |
94598ba8 SB |
86 | struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl |
87 | * self */ | |
7414a03f AJ |
88 | int ndevs; |
89 | struct kref refcnt; | |
90 | }; | |
91 | ||
92 | struct reada_machine_work { | |
93 | struct btrfs_work work; | |
94 | struct btrfs_fs_info *fs_info; | |
95 | }; | |
96 | ||
97 | static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *); | |
98 | static void reada_control_release(struct kref *kref); | |
99 | static void reada_zone_release(struct kref *kref); | |
100 | static void reada_start_machine(struct btrfs_fs_info *fs_info); | |
101 | static void __reada_start_machine(struct btrfs_fs_info *fs_info); | |
102 | ||
103 | static int reada_add_block(struct reada_control *rc, u64 logical, | |
104 | struct btrfs_key *top, int level, u64 generation); | |
105 | ||
106 | /* recurses */ | |
107 | /* in case of err, eb might be NULL */ | |
108 | static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb, | |
109 | u64 start, int err) | |
110 | { | |
111 | int level = 0; | |
112 | int nritems; | |
113 | int i; | |
114 | u64 bytenr; | |
115 | u64 generation; | |
116 | struct reada_extent *re; | |
117 | struct btrfs_fs_info *fs_info = root->fs_info; | |
118 | struct list_head list; | |
119 | unsigned long index = start >> PAGE_CACHE_SHIFT; | |
120 | struct btrfs_device *for_dev; | |
121 | ||
122 | if (eb) | |
123 | level = btrfs_header_level(eb); | |
124 | ||
125 | /* find extent */ | |
126 | spin_lock(&fs_info->reada_lock); | |
127 | re = radix_tree_lookup(&fs_info->reada_tree, index); | |
128 | if (re) | |
129 | kref_get(&re->refcnt); | |
130 | spin_unlock(&fs_info->reada_lock); | |
131 | ||
132 | if (!re) | |
133 | return -1; | |
134 | ||
135 | spin_lock(&re->lock); | |
136 | /* | |
137 | * just take the full list from the extent. afterwards we | |
138 | * don't need the lock anymore | |
139 | */ | |
140 | list_replace_init(&re->extctl, &list); | |
141 | for_dev = re->scheduled_for; | |
142 | re->scheduled_for = NULL; | |
143 | spin_unlock(&re->lock); | |
144 | ||
145 | if (err == 0) { | |
146 | nritems = level ? btrfs_header_nritems(eb) : 0; | |
147 | generation = btrfs_header_generation(eb); | |
148 | /* | |
149 | * FIXME: currently we just set nritems to 0 if this is a leaf, | |
150 | * effectively ignoring the content. In a next step we could | |
151 | * trigger more readahead depending from the content, e.g. | |
152 | * fetch the checksums for the extents in the leaf. | |
153 | */ | |
154 | } else { | |
155 | /* | |
156 | * this is the error case, the extent buffer has not been | |
157 | * read correctly. We won't access anything from it and | |
158 | * just cleanup our data structures. Effectively this will | |
159 | * cut the branch below this node from read ahead. | |
160 | */ | |
161 | nritems = 0; | |
162 | generation = 0; | |
163 | } | |
164 | ||
165 | for (i = 0; i < nritems; i++) { | |
166 | struct reada_extctl *rec; | |
167 | u64 n_gen; | |
168 | struct btrfs_key key; | |
169 | struct btrfs_key next_key; | |
170 | ||
171 | btrfs_node_key_to_cpu(eb, &key, i); | |
172 | if (i + 1 < nritems) | |
173 | btrfs_node_key_to_cpu(eb, &next_key, i + 1); | |
174 | else | |
175 | next_key = re->top; | |
176 | bytenr = btrfs_node_blockptr(eb, i); | |
177 | n_gen = btrfs_node_ptr_generation(eb, i); | |
178 | ||
179 | list_for_each_entry(rec, &list, list) { | |
180 | struct reada_control *rc = rec->rc; | |
181 | ||
182 | /* | |
183 | * if the generation doesn't match, just ignore this | |
184 | * extctl. This will probably cut off a branch from | |
185 | * prefetch. Alternatively one could start a new (sub-) | |
186 | * prefetch for this branch, starting again from root. | |
187 | * FIXME: move the generation check out of this loop | |
188 | */ | |
189 | #ifdef DEBUG | |
190 | if (rec->generation != generation) { | |
191 | printk(KERN_DEBUG "generation mismatch for " | |
192 | "(%llu,%d,%llu) %llu != %llu\n", | |
193 | key.objectid, key.type, key.offset, | |
194 | rec->generation, generation); | |
195 | } | |
196 | #endif | |
197 | if (rec->generation == generation && | |
198 | btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 && | |
199 | btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0) | |
200 | reada_add_block(rc, bytenr, &next_key, | |
201 | level - 1, n_gen); | |
202 | } | |
203 | } | |
204 | /* | |
205 | * free extctl records | |
206 | */ | |
207 | while (!list_empty(&list)) { | |
208 | struct reada_control *rc; | |
209 | struct reada_extctl *rec; | |
210 | ||
211 | rec = list_first_entry(&list, struct reada_extctl, list); | |
212 | list_del(&rec->list); | |
213 | rc = rec->rc; | |
214 | kfree(rec); | |
215 | ||
216 | kref_get(&rc->refcnt); | |
217 | if (atomic_dec_and_test(&rc->elems)) { | |
218 | kref_put(&rc->refcnt, reada_control_release); | |
219 | wake_up(&rc->wait); | |
220 | } | |
221 | kref_put(&rc->refcnt, reada_control_release); | |
222 | ||
223 | reada_extent_put(fs_info, re); /* one ref for each entry */ | |
224 | } | |
225 | reada_extent_put(fs_info, re); /* our ref */ | |
226 | if (for_dev) | |
227 | atomic_dec(&for_dev->reada_in_flight); | |
228 | ||
229 | return 0; | |
230 | } | |
231 | ||
232 | /* | |
233 | * start is passed separately in case eb in NULL, which may be the case with | |
234 | * failed I/O | |
235 | */ | |
236 | int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb, | |
237 | u64 start, int err) | |
238 | { | |
239 | int ret; | |
240 | ||
241 | ret = __readahead_hook(root, eb, start, err); | |
242 | ||
243 | reada_start_machine(root->fs_info); | |
244 | ||
245 | return ret; | |
246 | } | |
247 | ||
248 | static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info, | |
249 | struct btrfs_device *dev, u64 logical, | |
21ca543e | 250 | struct btrfs_bio *bbio) |
7414a03f AJ |
251 | { |
252 | int ret; | |
7414a03f AJ |
253 | struct reada_zone *zone; |
254 | struct btrfs_block_group_cache *cache = NULL; | |
255 | u64 start; | |
256 | u64 end; | |
257 | int i; | |
258 | ||
7414a03f AJ |
259 | zone = NULL; |
260 | spin_lock(&fs_info->reada_lock); | |
261 | ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone, | |
262 | logical >> PAGE_CACHE_SHIFT, 1); | |
263 | if (ret == 1) | |
264 | kref_get(&zone->refcnt); | |
265 | spin_unlock(&fs_info->reada_lock); | |
266 | ||
267 | if (ret == 1) { | |
268 | if (logical >= zone->start && logical < zone->end) | |
269 | return zone; | |
270 | spin_lock(&fs_info->reada_lock); | |
271 | kref_put(&zone->refcnt, reada_zone_release); | |
272 | spin_unlock(&fs_info->reada_lock); | |
273 | } | |
274 | ||
7414a03f AJ |
275 | cache = btrfs_lookup_block_group(fs_info, logical); |
276 | if (!cache) | |
277 | return NULL; | |
278 | ||
279 | start = cache->key.objectid; | |
280 | end = start + cache->key.offset - 1; | |
281 | btrfs_put_block_group(cache); | |
282 | ||
283 | zone = kzalloc(sizeof(*zone), GFP_NOFS); | |
284 | if (!zone) | |
285 | return NULL; | |
286 | ||
287 | zone->start = start; | |
288 | zone->end = end; | |
289 | INIT_LIST_HEAD(&zone->list); | |
290 | spin_lock_init(&zone->lock); | |
291 | zone->locked = 0; | |
292 | kref_init(&zone->refcnt); | |
293 | zone->elems = 0; | |
294 | zone->device = dev; /* our device always sits at index 0 */ | |
21ca543e | 295 | for (i = 0; i < bbio->num_stripes; ++i) { |
7414a03f | 296 | /* bounds have already been checked */ |
21ca543e | 297 | zone->devs[i] = bbio->stripes[i].dev; |
7414a03f | 298 | } |
21ca543e | 299 | zone->ndevs = bbio->num_stripes; |
7414a03f AJ |
300 | |
301 | spin_lock(&fs_info->reada_lock); | |
302 | ret = radix_tree_insert(&dev->reada_zones, | |
a175423c | 303 | (unsigned long)(zone->end >> PAGE_CACHE_SHIFT), |
7414a03f | 304 | zone); |
7414a03f | 305 | |
8c9c2bf7 | 306 | if (ret == -EEXIST) { |
7414a03f | 307 | kfree(zone); |
8c9c2bf7 AJ |
308 | ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone, |
309 | logical >> PAGE_CACHE_SHIFT, 1); | |
310 | if (ret == 1) | |
311 | kref_get(&zone->refcnt); | |
7414a03f | 312 | } |
8c9c2bf7 | 313 | spin_unlock(&fs_info->reada_lock); |
7414a03f AJ |
314 | |
315 | return zone; | |
316 | } | |
317 | ||
318 | static struct reada_extent *reada_find_extent(struct btrfs_root *root, | |
319 | u64 logical, | |
320 | struct btrfs_key *top, int level) | |
321 | { | |
322 | int ret; | |
7414a03f | 323 | struct reada_extent *re = NULL; |
8c9c2bf7 | 324 | struct reada_extent *re_exist = NULL; |
7414a03f AJ |
325 | struct btrfs_fs_info *fs_info = root->fs_info; |
326 | struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; | |
21ca543e | 327 | struct btrfs_bio *bbio = NULL; |
7414a03f | 328 | struct btrfs_device *dev; |
207a232c | 329 | struct btrfs_device *prev_dev; |
7414a03f AJ |
330 | u32 blocksize; |
331 | u64 length; | |
332 | int nzones = 0; | |
333 | int i; | |
334 | unsigned long index = logical >> PAGE_CACHE_SHIFT; | |
335 | ||
7414a03f AJ |
336 | spin_lock(&fs_info->reada_lock); |
337 | re = radix_tree_lookup(&fs_info->reada_tree, index); | |
338 | if (re) | |
339 | kref_get(&re->refcnt); | |
340 | spin_unlock(&fs_info->reada_lock); | |
341 | ||
8c9c2bf7 | 342 | if (re) |
7414a03f AJ |
343 | return re; |
344 | ||
345 | re = kzalloc(sizeof(*re), GFP_NOFS); | |
346 | if (!re) | |
347 | return NULL; | |
348 | ||
349 | blocksize = btrfs_level_size(root, level); | |
350 | re->logical = logical; | |
351 | re->blocksize = blocksize; | |
352 | re->top = *top; | |
353 | INIT_LIST_HEAD(&re->extctl); | |
354 | spin_lock_init(&re->lock); | |
355 | kref_init(&re->refcnt); | |
356 | ||
357 | /* | |
358 | * map block | |
359 | */ | |
360 | length = blocksize; | |
21ca543e ID |
361 | ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length, &bbio, 0); |
362 | if (ret || !bbio || length < blocksize) | |
7414a03f AJ |
363 | goto error; |
364 | ||
94598ba8 | 365 | if (bbio->num_stripes > BTRFS_MAX_MIRRORS) { |
7414a03f | 366 | printk(KERN_ERR "btrfs readahead: more than %d copies not " |
94598ba8 | 367 | "supported", BTRFS_MAX_MIRRORS); |
7414a03f AJ |
368 | goto error; |
369 | } | |
370 | ||
21ca543e | 371 | for (nzones = 0; nzones < bbio->num_stripes; ++nzones) { |
7414a03f AJ |
372 | struct reada_zone *zone; |
373 | ||
21ca543e ID |
374 | dev = bbio->stripes[nzones].dev; |
375 | zone = reada_find_zone(fs_info, dev, logical, bbio); | |
7414a03f AJ |
376 | if (!zone) |
377 | break; | |
378 | ||
379 | re->zones[nzones] = zone; | |
380 | spin_lock(&zone->lock); | |
381 | if (!zone->elems) | |
382 | kref_get(&zone->refcnt); | |
383 | ++zone->elems; | |
384 | spin_unlock(&zone->lock); | |
385 | spin_lock(&fs_info->reada_lock); | |
386 | kref_put(&zone->refcnt, reada_zone_release); | |
387 | spin_unlock(&fs_info->reada_lock); | |
388 | } | |
389 | re->nzones = nzones; | |
390 | if (nzones == 0) { | |
391 | /* not a single zone found, error and out */ | |
392 | goto error; | |
393 | } | |
394 | ||
395 | /* insert extent in reada_tree + all per-device trees, all or nothing */ | |
396 | spin_lock(&fs_info->reada_lock); | |
397 | ret = radix_tree_insert(&fs_info->reada_tree, index, re); | |
8c9c2bf7 AJ |
398 | if (ret == -EEXIST) { |
399 | re_exist = radix_tree_lookup(&fs_info->reada_tree, index); | |
400 | BUG_ON(!re_exist); | |
401 | kref_get(&re_exist->refcnt); | |
402 | spin_unlock(&fs_info->reada_lock); | |
403 | goto error; | |
404 | } | |
7414a03f AJ |
405 | if (ret) { |
406 | spin_unlock(&fs_info->reada_lock); | |
7414a03f AJ |
407 | goto error; |
408 | } | |
207a232c | 409 | prev_dev = NULL; |
7414a03f | 410 | for (i = 0; i < nzones; ++i) { |
21ca543e | 411 | dev = bbio->stripes[i].dev; |
207a232c AJ |
412 | if (dev == prev_dev) { |
413 | /* | |
414 | * in case of DUP, just add the first zone. As both | |
415 | * are on the same device, there's nothing to gain | |
416 | * from adding both. | |
417 | * Also, it wouldn't work, as the tree is per device | |
418 | * and adding would fail with EEXIST | |
419 | */ | |
420 | continue; | |
421 | } | |
422 | prev_dev = dev; | |
7414a03f AJ |
423 | ret = radix_tree_insert(&dev->reada_extents, index, re); |
424 | if (ret) { | |
425 | while (--i >= 0) { | |
21ca543e | 426 | dev = bbio->stripes[i].dev; |
7414a03f AJ |
427 | BUG_ON(dev == NULL); |
428 | radix_tree_delete(&dev->reada_extents, index); | |
429 | } | |
430 | BUG_ON(fs_info == NULL); | |
431 | radix_tree_delete(&fs_info->reada_tree, index); | |
432 | spin_unlock(&fs_info->reada_lock); | |
433 | goto error; | |
434 | } | |
435 | } | |
436 | spin_unlock(&fs_info->reada_lock); | |
437 | ||
21ca543e | 438 | kfree(bbio); |
7414a03f AJ |
439 | return re; |
440 | ||
441 | error: | |
442 | while (nzones) { | |
443 | struct reada_zone *zone; | |
444 | ||
445 | --nzones; | |
446 | zone = re->zones[nzones]; | |
447 | kref_get(&zone->refcnt); | |
448 | spin_lock(&zone->lock); | |
449 | --zone->elems; | |
450 | if (zone->elems == 0) { | |
451 | /* | |
452 | * no fs_info->reada_lock needed, as this can't be | |
453 | * the last ref | |
454 | */ | |
455 | kref_put(&zone->refcnt, reada_zone_release); | |
456 | } | |
457 | spin_unlock(&zone->lock); | |
458 | ||
459 | spin_lock(&fs_info->reada_lock); | |
460 | kref_put(&zone->refcnt, reada_zone_release); | |
461 | spin_unlock(&fs_info->reada_lock); | |
462 | } | |
21ca543e | 463 | kfree(bbio); |
7414a03f | 464 | kfree(re); |
8c9c2bf7 | 465 | return re_exist; |
7414a03f AJ |
466 | } |
467 | ||
468 | static void reada_kref_dummy(struct kref *kr) | |
469 | { | |
470 | } | |
471 | ||
472 | static void reada_extent_put(struct btrfs_fs_info *fs_info, | |
473 | struct reada_extent *re) | |
474 | { | |
475 | int i; | |
476 | unsigned long index = re->logical >> PAGE_CACHE_SHIFT; | |
477 | ||
478 | spin_lock(&fs_info->reada_lock); | |
479 | if (!kref_put(&re->refcnt, reada_kref_dummy)) { | |
480 | spin_unlock(&fs_info->reada_lock); | |
481 | return; | |
482 | } | |
483 | ||
484 | radix_tree_delete(&fs_info->reada_tree, index); | |
485 | for (i = 0; i < re->nzones; ++i) { | |
486 | struct reada_zone *zone = re->zones[i]; | |
487 | ||
488 | radix_tree_delete(&zone->device->reada_extents, index); | |
489 | } | |
490 | ||
491 | spin_unlock(&fs_info->reada_lock); | |
492 | ||
493 | for (i = 0; i < re->nzones; ++i) { | |
494 | struct reada_zone *zone = re->zones[i]; | |
495 | ||
496 | kref_get(&zone->refcnt); | |
497 | spin_lock(&zone->lock); | |
498 | --zone->elems; | |
499 | if (zone->elems == 0) { | |
500 | /* no fs_info->reada_lock needed, as this can't be | |
501 | * the last ref */ | |
502 | kref_put(&zone->refcnt, reada_zone_release); | |
503 | } | |
504 | spin_unlock(&zone->lock); | |
505 | ||
506 | spin_lock(&fs_info->reada_lock); | |
507 | kref_put(&zone->refcnt, reada_zone_release); | |
508 | spin_unlock(&fs_info->reada_lock); | |
509 | } | |
510 | if (re->scheduled_for) | |
511 | atomic_dec(&re->scheduled_for->reada_in_flight); | |
512 | ||
513 | kfree(re); | |
514 | } | |
515 | ||
516 | static void reada_zone_release(struct kref *kref) | |
517 | { | |
518 | struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt); | |
519 | ||
520 | radix_tree_delete(&zone->device->reada_zones, | |
521 | zone->end >> PAGE_CACHE_SHIFT); | |
522 | ||
523 | kfree(zone); | |
524 | } | |
525 | ||
526 | static void reada_control_release(struct kref *kref) | |
527 | { | |
528 | struct reada_control *rc = container_of(kref, struct reada_control, | |
529 | refcnt); | |
530 | ||
531 | kfree(rc); | |
532 | } | |
533 | ||
534 | static int reada_add_block(struct reada_control *rc, u64 logical, | |
535 | struct btrfs_key *top, int level, u64 generation) | |
536 | { | |
537 | struct btrfs_root *root = rc->root; | |
538 | struct reada_extent *re; | |
539 | struct reada_extctl *rec; | |
540 | ||
541 | re = reada_find_extent(root, logical, top, level); /* takes one ref */ | |
542 | if (!re) | |
543 | return -1; | |
544 | ||
545 | rec = kzalloc(sizeof(*rec), GFP_NOFS); | |
546 | if (!rec) { | |
547 | reada_extent_put(root->fs_info, re); | |
548 | return -1; | |
549 | } | |
550 | ||
551 | rec->rc = rc; | |
552 | rec->generation = generation; | |
553 | atomic_inc(&rc->elems); | |
554 | ||
555 | spin_lock(&re->lock); | |
556 | list_add_tail(&rec->list, &re->extctl); | |
557 | spin_unlock(&re->lock); | |
558 | ||
559 | /* leave the ref on the extent */ | |
560 | ||
561 | return 0; | |
562 | } | |
563 | ||
564 | /* | |
565 | * called with fs_info->reada_lock held | |
566 | */ | |
567 | static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock) | |
568 | { | |
569 | int i; | |
570 | unsigned long index = zone->end >> PAGE_CACHE_SHIFT; | |
571 | ||
572 | for (i = 0; i < zone->ndevs; ++i) { | |
573 | struct reada_zone *peer; | |
574 | peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index); | |
575 | if (peer && peer->device != zone->device) | |
576 | peer->locked = lock; | |
577 | } | |
578 | } | |
579 | ||
580 | /* | |
581 | * called with fs_info->reada_lock held | |
582 | */ | |
583 | static int reada_pick_zone(struct btrfs_device *dev) | |
584 | { | |
585 | struct reada_zone *top_zone = NULL; | |
586 | struct reada_zone *top_locked_zone = NULL; | |
587 | u64 top_elems = 0; | |
588 | u64 top_locked_elems = 0; | |
589 | unsigned long index = 0; | |
590 | int ret; | |
591 | ||
592 | if (dev->reada_curr_zone) { | |
593 | reada_peer_zones_set_lock(dev->reada_curr_zone, 0); | |
594 | kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release); | |
595 | dev->reada_curr_zone = NULL; | |
596 | } | |
597 | /* pick the zone with the most elements */ | |
598 | while (1) { | |
599 | struct reada_zone *zone; | |
600 | ||
601 | ret = radix_tree_gang_lookup(&dev->reada_zones, | |
602 | (void **)&zone, index, 1); | |
603 | if (ret == 0) | |
604 | break; | |
605 | index = (zone->end >> PAGE_CACHE_SHIFT) + 1; | |
606 | if (zone->locked) { | |
607 | if (zone->elems > top_locked_elems) { | |
608 | top_locked_elems = zone->elems; | |
609 | top_locked_zone = zone; | |
610 | } | |
611 | } else { | |
612 | if (zone->elems > top_elems) { | |
613 | top_elems = zone->elems; | |
614 | top_zone = zone; | |
615 | } | |
616 | } | |
617 | } | |
618 | if (top_zone) | |
619 | dev->reada_curr_zone = top_zone; | |
620 | else if (top_locked_zone) | |
621 | dev->reada_curr_zone = top_locked_zone; | |
622 | else | |
623 | return 0; | |
624 | ||
625 | dev->reada_next = dev->reada_curr_zone->start; | |
626 | kref_get(&dev->reada_curr_zone->refcnt); | |
627 | reada_peer_zones_set_lock(dev->reada_curr_zone, 1); | |
628 | ||
629 | return 1; | |
630 | } | |
631 | ||
632 | static int reada_start_machine_dev(struct btrfs_fs_info *fs_info, | |
633 | struct btrfs_device *dev) | |
634 | { | |
635 | struct reada_extent *re = NULL; | |
636 | int mirror_num = 0; | |
637 | struct extent_buffer *eb = NULL; | |
638 | u64 logical; | |
639 | u32 blocksize; | |
640 | int ret; | |
641 | int i; | |
642 | int need_kick = 0; | |
643 | ||
644 | spin_lock(&fs_info->reada_lock); | |
645 | if (dev->reada_curr_zone == NULL) { | |
646 | ret = reada_pick_zone(dev); | |
647 | if (!ret) { | |
648 | spin_unlock(&fs_info->reada_lock); | |
649 | return 0; | |
650 | } | |
651 | } | |
652 | /* | |
653 | * FIXME currently we issue the reads one extent at a time. If we have | |
654 | * a contiguous block of extents, we could also coagulate them or use | |
655 | * plugging to speed things up | |
656 | */ | |
657 | ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re, | |
658 | dev->reada_next >> PAGE_CACHE_SHIFT, 1); | |
659 | if (ret == 0 || re->logical >= dev->reada_curr_zone->end) { | |
660 | ret = reada_pick_zone(dev); | |
661 | if (!ret) { | |
662 | spin_unlock(&fs_info->reada_lock); | |
663 | return 0; | |
664 | } | |
665 | re = NULL; | |
666 | ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re, | |
667 | dev->reada_next >> PAGE_CACHE_SHIFT, 1); | |
668 | } | |
669 | if (ret == 0) { | |
670 | spin_unlock(&fs_info->reada_lock); | |
671 | return 0; | |
672 | } | |
673 | dev->reada_next = re->logical + re->blocksize; | |
674 | kref_get(&re->refcnt); | |
675 | ||
676 | spin_unlock(&fs_info->reada_lock); | |
677 | ||
678 | /* | |
679 | * find mirror num | |
680 | */ | |
681 | for (i = 0; i < re->nzones; ++i) { | |
682 | if (re->zones[i]->device == dev) { | |
683 | mirror_num = i + 1; | |
684 | break; | |
685 | } | |
686 | } | |
687 | logical = re->logical; | |
688 | blocksize = re->blocksize; | |
689 | ||
690 | spin_lock(&re->lock); | |
691 | if (re->scheduled_for == NULL) { | |
692 | re->scheduled_for = dev; | |
693 | need_kick = 1; | |
694 | } | |
695 | spin_unlock(&re->lock); | |
696 | ||
697 | reada_extent_put(fs_info, re); | |
698 | ||
699 | if (!need_kick) | |
700 | return 0; | |
701 | ||
702 | atomic_inc(&dev->reada_in_flight); | |
703 | ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize, | |
704 | mirror_num, &eb); | |
705 | if (ret) | |
706 | __readahead_hook(fs_info->extent_root, NULL, logical, ret); | |
707 | else if (eb) | |
708 | __readahead_hook(fs_info->extent_root, eb, eb->start, ret); | |
709 | ||
710 | if (eb) | |
711 | free_extent_buffer(eb); | |
712 | ||
713 | return 1; | |
714 | ||
715 | } | |
716 | ||
717 | static void reada_start_machine_worker(struct btrfs_work *work) | |
718 | { | |
719 | struct reada_machine_work *rmw; | |
720 | struct btrfs_fs_info *fs_info; | |
721 | ||
722 | rmw = container_of(work, struct reada_machine_work, work); | |
723 | fs_info = rmw->fs_info; | |
724 | ||
725 | kfree(rmw); | |
726 | ||
727 | __reada_start_machine(fs_info); | |
728 | } | |
729 | ||
730 | static void __reada_start_machine(struct btrfs_fs_info *fs_info) | |
731 | { | |
732 | struct btrfs_device *device; | |
733 | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | |
734 | u64 enqueued; | |
735 | u64 total = 0; | |
736 | int i; | |
737 | ||
738 | do { | |
739 | enqueued = 0; | |
740 | list_for_each_entry(device, &fs_devices->devices, dev_list) { | |
741 | if (atomic_read(&device->reada_in_flight) < | |
742 | MAX_IN_FLIGHT) | |
743 | enqueued += reada_start_machine_dev(fs_info, | |
744 | device); | |
745 | } | |
746 | total += enqueued; | |
747 | } while (enqueued && total < 10000); | |
748 | ||
749 | if (enqueued == 0) | |
750 | return; | |
751 | ||
752 | /* | |
753 | * If everything is already in the cache, this is effectively single | |
754 | * threaded. To a) not hold the caller for too long and b) to utilize | |
755 | * more cores, we broke the loop above after 10000 iterations and now | |
756 | * enqueue to workers to finish it. This will distribute the load to | |
757 | * the cores. | |
758 | */ | |
759 | for (i = 0; i < 2; ++i) | |
760 | reada_start_machine(fs_info); | |
761 | } | |
762 | ||
763 | static void reada_start_machine(struct btrfs_fs_info *fs_info) | |
764 | { | |
765 | struct reada_machine_work *rmw; | |
766 | ||
767 | rmw = kzalloc(sizeof(*rmw), GFP_NOFS); | |
768 | if (!rmw) { | |
769 | /* FIXME we cannot handle this properly right now */ | |
770 | BUG(); | |
771 | } | |
772 | rmw->work.func = reada_start_machine_worker; | |
773 | rmw->fs_info = fs_info; | |
774 | ||
775 | btrfs_queue_worker(&fs_info->readahead_workers, &rmw->work); | |
776 | } | |
777 | ||
778 | #ifdef DEBUG | |
779 | static void dump_devs(struct btrfs_fs_info *fs_info, int all) | |
780 | { | |
781 | struct btrfs_device *device; | |
782 | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | |
783 | unsigned long index; | |
784 | int ret; | |
785 | int i; | |
786 | int j; | |
787 | int cnt; | |
788 | ||
789 | spin_lock(&fs_info->reada_lock); | |
790 | list_for_each_entry(device, &fs_devices->devices, dev_list) { | |
791 | printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid, | |
792 | atomic_read(&device->reada_in_flight)); | |
793 | index = 0; | |
794 | while (1) { | |
795 | struct reada_zone *zone; | |
796 | ret = radix_tree_gang_lookup(&device->reada_zones, | |
797 | (void **)&zone, index, 1); | |
798 | if (ret == 0) | |
799 | break; | |
800 | printk(KERN_DEBUG " zone %llu-%llu elems %llu locked " | |
801 | "%d devs", zone->start, zone->end, zone->elems, | |
802 | zone->locked); | |
803 | for (j = 0; j < zone->ndevs; ++j) { | |
804 | printk(KERN_CONT " %lld", | |
805 | zone->devs[j]->devid); | |
806 | } | |
807 | if (device->reada_curr_zone == zone) | |
808 | printk(KERN_CONT " curr off %llu", | |
809 | device->reada_next - zone->start); | |
810 | printk(KERN_CONT "\n"); | |
811 | index = (zone->end >> PAGE_CACHE_SHIFT) + 1; | |
812 | } | |
813 | cnt = 0; | |
814 | index = 0; | |
815 | while (all) { | |
816 | struct reada_extent *re = NULL; | |
817 | ||
818 | ret = radix_tree_gang_lookup(&device->reada_extents, | |
819 | (void **)&re, index, 1); | |
820 | if (ret == 0) | |
821 | break; | |
822 | printk(KERN_DEBUG | |
823 | " re: logical %llu size %u empty %d for %lld", | |
824 | re->logical, re->blocksize, | |
825 | list_empty(&re->extctl), re->scheduled_for ? | |
826 | re->scheduled_for->devid : -1); | |
827 | ||
828 | for (i = 0; i < re->nzones; ++i) { | |
829 | printk(KERN_CONT " zone %llu-%llu devs", | |
830 | re->zones[i]->start, | |
831 | re->zones[i]->end); | |
832 | for (j = 0; j < re->zones[i]->ndevs; ++j) { | |
833 | printk(KERN_CONT " %lld", | |
834 | re->zones[i]->devs[j]->devid); | |
835 | } | |
836 | } | |
837 | printk(KERN_CONT "\n"); | |
838 | index = (re->logical >> PAGE_CACHE_SHIFT) + 1; | |
839 | if (++cnt > 15) | |
840 | break; | |
841 | } | |
842 | } | |
843 | ||
844 | index = 0; | |
845 | cnt = 0; | |
846 | while (all) { | |
847 | struct reada_extent *re = NULL; | |
848 | ||
849 | ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re, | |
850 | index, 1); | |
851 | if (ret == 0) | |
852 | break; | |
853 | if (!re->scheduled_for) { | |
854 | index = (re->logical >> PAGE_CACHE_SHIFT) + 1; | |
855 | continue; | |
856 | } | |
857 | printk(KERN_DEBUG | |
858 | "re: logical %llu size %u list empty %d for %lld", | |
859 | re->logical, re->blocksize, list_empty(&re->extctl), | |
860 | re->scheduled_for ? re->scheduled_for->devid : -1); | |
861 | for (i = 0; i < re->nzones; ++i) { | |
862 | printk(KERN_CONT " zone %llu-%llu devs", | |
863 | re->zones[i]->start, | |
864 | re->zones[i]->end); | |
865 | for (i = 0; i < re->nzones; ++i) { | |
866 | printk(KERN_CONT " zone %llu-%llu devs", | |
867 | re->zones[i]->start, | |
868 | re->zones[i]->end); | |
869 | for (j = 0; j < re->zones[i]->ndevs; ++j) { | |
870 | printk(KERN_CONT " %lld", | |
871 | re->zones[i]->devs[j]->devid); | |
872 | } | |
873 | } | |
874 | } | |
875 | printk(KERN_CONT "\n"); | |
876 | index = (re->logical >> PAGE_CACHE_SHIFT) + 1; | |
877 | } | |
878 | spin_unlock(&fs_info->reada_lock); | |
879 | } | |
880 | #endif | |
881 | ||
882 | /* | |
883 | * interface | |
884 | */ | |
885 | struct reada_control *btrfs_reada_add(struct btrfs_root *root, | |
886 | struct btrfs_key *key_start, struct btrfs_key *key_end) | |
887 | { | |
888 | struct reada_control *rc; | |
889 | u64 start; | |
890 | u64 generation; | |
891 | int level; | |
892 | struct extent_buffer *node; | |
893 | static struct btrfs_key max_key = { | |
894 | .objectid = (u64)-1, | |
895 | .type = (u8)-1, | |
896 | .offset = (u64)-1 | |
897 | }; | |
898 | ||
899 | rc = kzalloc(sizeof(*rc), GFP_NOFS); | |
900 | if (!rc) | |
901 | return ERR_PTR(-ENOMEM); | |
902 | ||
903 | rc->root = root; | |
904 | rc->key_start = *key_start; | |
905 | rc->key_end = *key_end; | |
906 | atomic_set(&rc->elems, 0); | |
907 | init_waitqueue_head(&rc->wait); | |
908 | kref_init(&rc->refcnt); | |
909 | kref_get(&rc->refcnt); /* one ref for having elements */ | |
910 | ||
911 | node = btrfs_root_node(root); | |
912 | start = node->start; | |
913 | level = btrfs_header_level(node); | |
914 | generation = btrfs_header_generation(node); | |
915 | free_extent_buffer(node); | |
916 | ||
917 | reada_add_block(rc, start, &max_key, level, generation); | |
918 | ||
919 | reada_start_machine(root->fs_info); | |
920 | ||
921 | return rc; | |
922 | } | |
923 | ||
924 | #ifdef DEBUG | |
925 | int btrfs_reada_wait(void *handle) | |
926 | { | |
927 | struct reada_control *rc = handle; | |
928 | ||
929 | while (atomic_read(&rc->elems)) { | |
930 | wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0, | |
931 | 5 * HZ); | |
932 | dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0); | |
933 | } | |
934 | ||
935 | dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0); | |
936 | ||
937 | kref_put(&rc->refcnt, reada_control_release); | |
938 | ||
939 | return 0; | |
940 | } | |
941 | #else | |
942 | int btrfs_reada_wait(void *handle) | |
943 | { | |
944 | struct reada_control *rc = handle; | |
945 | ||
946 | while (atomic_read(&rc->elems)) { | |
947 | wait_event(rc->wait, atomic_read(&rc->elems) == 0); | |
948 | } | |
949 | ||
950 | kref_put(&rc->refcnt, reada_control_release); | |
951 | ||
952 | return 0; | |
953 | } | |
954 | #endif | |
955 | ||
956 | void btrfs_reada_detach(void *handle) | |
957 | { | |
958 | struct reada_control *rc = handle; | |
959 | ||
960 | kref_put(&rc->refcnt, reada_control_release); | |
961 | } |