]>
Commit | Line | Data |
---|---|---|
0b61f8a4 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 | 2 | /* |
7b718769 NS |
3 | * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. |
4 | * All Rights Reserved. | |
1da177e4 | 5 | */ |
1da177e4 | 6 | #include "xfs.h" |
a844f451 | 7 | #include "xfs_fs.h" |
4fb6e8ad | 8 | #include "xfs_format.h" |
239880ef DC |
9 | #include "xfs_log_format.h" |
10 | #include "xfs_trans_resv.h" | |
dc42375d | 11 | #include "xfs_bit.h" |
5467b34b | 12 | #include "xfs_shared.h" |
1da177e4 | 13 | #include "xfs_mount.h" |
81f40041 | 14 | #include "xfs_defer.h" |
239880ef | 15 | #include "xfs_trans.h" |
1da177e4 LT |
16 | #include "xfs_trans_priv.h" |
17 | #include "xfs_extfree_item.h" | |
1234351c | 18 | #include "xfs_log.h" |
340785cc DW |
19 | #include "xfs_btree.h" |
20 | #include "xfs_rmap.h" | |
81f40041 CH |
21 | #include "xfs_alloc.h" |
22 | #include "xfs_bmap.h" | |
23 | #include "xfs_trace.h" | |
1da177e4 LT |
24 | |
25 | ||
26 | kmem_zone_t *xfs_efi_zone; | |
27 | kmem_zone_t *xfs_efd_zone; | |
28 | ||
7bfa31d8 CH |
29 | static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) |
30 | { | |
31 | return container_of(lip, struct xfs_efi_log_item, efi_item); | |
32 | } | |
1da177e4 | 33 | |
7d795ca3 | 34 | void |
7bfa31d8 CH |
35 | xfs_efi_item_free( |
36 | struct xfs_efi_log_item *efip) | |
7d795ca3 | 37 | { |
b1c5ebb2 | 38 | kmem_free(efip->efi_item.li_lv_shadow); |
7bfa31d8 | 39 | if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) |
f0e2d93c | 40 | kmem_free(efip); |
7bfa31d8 | 41 | else |
7d795ca3 | 42 | kmem_zone_free(xfs_efi_zone, efip); |
7d795ca3 | 43 | } |
1da177e4 | 44 | |
0612d116 DC |
45 | /* |
46 | * Freeing the efi requires that we remove it from the AIL if it has already | |
47 | * been placed there. However, the EFI may not yet have been placed in the AIL | |
48 | * when called by xfs_efi_release() from EFD processing due to the ordering of | |
49 | * committed vs unpin operations in bulk insert operations. Hence the reference | |
50 | * count to ensure only the last caller frees the EFI. | |
51 | */ | |
52 | void | |
53 | xfs_efi_release( | |
54 | struct xfs_efi_log_item *efip) | |
55 | { | |
56 | ASSERT(atomic_read(&efip->efi_refcount) > 0); | |
57 | if (atomic_dec_and_test(&efip->efi_refcount)) { | |
58 | xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR); | |
59 | xfs_efi_item_free(efip); | |
60 | } | |
61 | } | |
62 | ||
1da177e4 LT |
63 | /* |
64 | * This returns the number of iovecs needed to log the given efi item. | |
65 | * We only need 1 iovec for an efi item. It just logs the efi_log_format | |
66 | * structure. | |
67 | */ | |
166d1368 DC |
68 | static inline int |
69 | xfs_efi_item_sizeof( | |
70 | struct xfs_efi_log_item *efip) | |
71 | { | |
72 | return sizeof(struct xfs_efi_log_format) + | |
73 | (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); | |
74 | } | |
75 | ||
76 | STATIC void | |
7bfa31d8 | 77 | xfs_efi_item_size( |
166d1368 DC |
78 | struct xfs_log_item *lip, |
79 | int *nvecs, | |
80 | int *nbytes) | |
1da177e4 | 81 | { |
166d1368 DC |
82 | *nvecs += 1; |
83 | *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip)); | |
1da177e4 LT |
84 | } |
85 | ||
86 | /* | |
87 | * This is called to fill in the vector of log iovecs for the | |
88 | * given efi log item. We use only 1 iovec, and we point that | |
89 | * at the efi_log_format structure embedded in the efi item. | |
90 | * It is at this point that we assert that all of the extent | |
91 | * slots in the efi item have been filled. | |
92 | */ | |
93 | STATIC void | |
7bfa31d8 CH |
94 | xfs_efi_item_format( |
95 | struct xfs_log_item *lip, | |
bde7cff6 | 96 | struct xfs_log_vec *lv) |
1da177e4 | 97 | { |
7bfa31d8 | 98 | struct xfs_efi_log_item *efip = EFI_ITEM(lip); |
bde7cff6 | 99 | struct xfs_log_iovec *vecp = NULL; |
1da177e4 | 100 | |
b199c8a4 DC |
101 | ASSERT(atomic_read(&efip->efi_next_extent) == |
102 | efip->efi_format.efi_nextents); | |
1da177e4 LT |
103 | |
104 | efip->efi_format.efi_type = XFS_LI_EFI; | |
1da177e4 LT |
105 | efip->efi_format.efi_size = 1; |
106 | ||
bde7cff6 | 107 | xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, |
1234351c CH |
108 | &efip->efi_format, |
109 | xfs_efi_item_sizeof(efip)); | |
1da177e4 LT |
110 | } |
111 | ||
112 | ||
1da177e4 | 113 | /* |
8d99fe92 BF |
114 | * The unpin operation is the last place an EFI is manipulated in the log. It is |
115 | * either inserted in the AIL or aborted in the event of a log I/O error. In | |
116 | * either case, the EFI transaction has been successfully committed to make it | |
117 | * this far. Therefore, we expect whoever committed the EFI to either construct | |
118 | * and commit the EFD or drop the EFD's reference in the event of error. Simply | |
119 | * drop the log's EFI reference now that the log is done with it. | |
1da177e4 | 120 | */ |
1da177e4 | 121 | STATIC void |
7bfa31d8 CH |
122 | xfs_efi_item_unpin( |
123 | struct xfs_log_item *lip, | |
124 | int remove) | |
1da177e4 | 125 | { |
7bfa31d8 | 126 | struct xfs_efi_log_item *efip = EFI_ITEM(lip); |
5e4b5386 | 127 | xfs_efi_release(efip); |
1da177e4 LT |
128 | } |
129 | ||
8d99fe92 BF |
130 | /* |
131 | * The EFI has been either committed or aborted if the transaction has been | |
132 | * cancelled. If the transaction was cancelled, an EFD isn't going to be | |
133 | * constructed and thus we free the EFI here directly. | |
134 | */ | |
1da177e4 | 135 | STATIC void |
ddf92053 | 136 | xfs_efi_item_release( |
7bfa31d8 | 137 | struct xfs_log_item *lip) |
1da177e4 | 138 | { |
ddf92053 | 139 | xfs_efi_release(EFI_ITEM(lip)); |
1da177e4 LT |
140 | } |
141 | ||
272e42b2 | 142 | static const struct xfs_item_ops xfs_efi_item_ops = { |
7bfa31d8 CH |
143 | .iop_size = xfs_efi_item_size, |
144 | .iop_format = xfs_efi_item_format, | |
7bfa31d8 | 145 | .iop_unpin = xfs_efi_item_unpin, |
ddf92053 | 146 | .iop_release = xfs_efi_item_release, |
1da177e4 LT |
147 | }; |
148 | ||
149 | ||
150 | /* | |
151 | * Allocate and initialize an efi item with the given number of extents. | |
152 | */ | |
7bfa31d8 CH |
153 | struct xfs_efi_log_item * |
154 | xfs_efi_init( | |
155 | struct xfs_mount *mp, | |
156 | uint nextents) | |
1da177e4 LT |
157 | |
158 | { | |
7bfa31d8 | 159 | struct xfs_efi_log_item *efip; |
1da177e4 LT |
160 | uint size; |
161 | ||
162 | ASSERT(nextents > 0); | |
163 | if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { | |
164 | size = (uint)(sizeof(xfs_efi_log_item_t) + | |
165 | ((nextents - 1) * sizeof(xfs_extent_t))); | |
7bfa31d8 | 166 | efip = kmem_zalloc(size, KM_SLEEP); |
1da177e4 | 167 | } else { |
7bfa31d8 | 168 | efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP); |
1da177e4 LT |
169 | } |
170 | ||
43f5efc5 | 171 | xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); |
1da177e4 | 172 | efip->efi_format.efi_nextents = nextents; |
db9d67d6 | 173 | efip->efi_format.efi_id = (uintptr_t)(void *)efip; |
b199c8a4 | 174 | atomic_set(&efip->efi_next_extent, 0); |
666d644c | 175 | atomic_set(&efip->efi_refcount, 2); |
1da177e4 | 176 | |
7bfa31d8 | 177 | return efip; |
1da177e4 LT |
178 | } |
179 | ||
6d192a9b TS |
180 | /* |
181 | * Copy an EFI format buffer from the given buf, and into the destination | |
182 | * EFI format structure. | |
183 | * The given buffer can be in 32 bit or 64 bit form (which has different padding), | |
184 | * one of which will be the native format for this kernel. | |
185 | * It will handle the conversion of formats if necessary. | |
186 | */ | |
187 | int | |
188 | xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) | |
189 | { | |
4e0d5f92 | 190 | xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; |
6d192a9b TS |
191 | uint i; |
192 | uint len = sizeof(xfs_efi_log_format_t) + | |
193 | (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); | |
194 | uint len32 = sizeof(xfs_efi_log_format_32_t) + | |
195 | (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t); | |
196 | uint len64 = sizeof(xfs_efi_log_format_64_t) + | |
197 | (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t); | |
198 | ||
199 | if (buf->i_len == len) { | |
200 | memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); | |
201 | return 0; | |
202 | } else if (buf->i_len == len32) { | |
4e0d5f92 | 203 | xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; |
6d192a9b TS |
204 | |
205 | dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; | |
206 | dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; | |
207 | dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; | |
208 | dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; | |
209 | for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { | |
210 | dst_efi_fmt->efi_extents[i].ext_start = | |
211 | src_efi_fmt_32->efi_extents[i].ext_start; | |
212 | dst_efi_fmt->efi_extents[i].ext_len = | |
213 | src_efi_fmt_32->efi_extents[i].ext_len; | |
214 | } | |
215 | return 0; | |
216 | } else if (buf->i_len == len64) { | |
4e0d5f92 | 217 | xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; |
6d192a9b TS |
218 | |
219 | dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; | |
220 | dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; | |
221 | dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; | |
222 | dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; | |
223 | for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { | |
224 | dst_efi_fmt->efi_extents[i].ext_start = | |
225 | src_efi_fmt_64->efi_extents[i].ext_start; | |
226 | dst_efi_fmt->efi_extents[i].ext_len = | |
227 | src_efi_fmt_64->efi_extents[i].ext_len; | |
228 | } | |
229 | return 0; | |
230 | } | |
2451337d | 231 | return -EFSCORRUPTED; |
6d192a9b TS |
232 | } |
233 | ||
7bfa31d8 | 234 | static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) |
7d795ca3 | 235 | { |
7bfa31d8 CH |
236 | return container_of(lip, struct xfs_efd_log_item, efd_item); |
237 | } | |
1da177e4 | 238 | |
7bfa31d8 CH |
239 | STATIC void |
240 | xfs_efd_item_free(struct xfs_efd_log_item *efdp) | |
241 | { | |
b1c5ebb2 | 242 | kmem_free(efdp->efd_item.li_lv_shadow); |
7bfa31d8 | 243 | if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) |
f0e2d93c | 244 | kmem_free(efdp); |
7bfa31d8 | 245 | else |
7d795ca3 | 246 | kmem_zone_free(xfs_efd_zone, efdp); |
7d795ca3 | 247 | } |
1da177e4 LT |
248 | |
249 | /* | |
250 | * This returns the number of iovecs needed to log the given efd item. | |
251 | * We only need 1 iovec for an efd item. It just logs the efd_log_format | |
252 | * structure. | |
253 | */ | |
166d1368 DC |
254 | static inline int |
255 | xfs_efd_item_sizeof( | |
256 | struct xfs_efd_log_item *efdp) | |
257 | { | |
258 | return sizeof(xfs_efd_log_format_t) + | |
259 | (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); | |
260 | } | |
261 | ||
262 | STATIC void | |
7bfa31d8 | 263 | xfs_efd_item_size( |
166d1368 DC |
264 | struct xfs_log_item *lip, |
265 | int *nvecs, | |
266 | int *nbytes) | |
1da177e4 | 267 | { |
166d1368 DC |
268 | *nvecs += 1; |
269 | *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip)); | |
1da177e4 LT |
270 | } |
271 | ||
272 | /* | |
273 | * This is called to fill in the vector of log iovecs for the | |
274 | * given efd log item. We use only 1 iovec, and we point that | |
275 | * at the efd_log_format structure embedded in the efd item. | |
276 | * It is at this point that we assert that all of the extent | |
277 | * slots in the efd item have been filled. | |
278 | */ | |
279 | STATIC void | |
7bfa31d8 CH |
280 | xfs_efd_item_format( |
281 | struct xfs_log_item *lip, | |
bde7cff6 | 282 | struct xfs_log_vec *lv) |
1da177e4 | 283 | { |
7bfa31d8 | 284 | struct xfs_efd_log_item *efdp = EFD_ITEM(lip); |
bde7cff6 | 285 | struct xfs_log_iovec *vecp = NULL; |
1da177e4 LT |
286 | |
287 | ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); | |
288 | ||
289 | efdp->efd_format.efd_type = XFS_LI_EFD; | |
1da177e4 LT |
290 | efdp->efd_format.efd_size = 1; |
291 | ||
bde7cff6 | 292 | xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, |
1234351c CH |
293 | &efdp->efd_format, |
294 | xfs_efd_item_sizeof(efdp)); | |
1da177e4 LT |
295 | } |
296 | ||
8d99fe92 BF |
297 | /* |
298 | * The EFD is either committed or aborted if the transaction is cancelled. If | |
299 | * the transaction is cancelled, drop our reference to the EFI and free the EFD. | |
300 | */ | |
1da177e4 | 301 | STATIC void |
ddf92053 | 302 | xfs_efd_item_release( |
7bfa31d8 | 303 | struct xfs_log_item *lip) |
1da177e4 | 304 | { |
8d99fe92 BF |
305 | struct xfs_efd_log_item *efdp = EFD_ITEM(lip); |
306 | ||
ddf92053 CH |
307 | xfs_efi_release(efdp->efd_efip); |
308 | xfs_efd_item_free(efdp); | |
1da177e4 LT |
309 | } |
310 | ||
272e42b2 | 311 | static const struct xfs_item_ops xfs_efd_item_ops = { |
9ce632a2 | 312 | .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED, |
7bfa31d8 CH |
313 | .iop_size = xfs_efd_item_size, |
314 | .iop_format = xfs_efd_item_format, | |
ddf92053 | 315 | .iop_release = xfs_efd_item_release, |
1da177e4 LT |
316 | }; |
317 | ||
1da177e4 | 318 | /* |
9c5e7c2a CH |
319 | * Allocate an "extent free done" log item that will hold nextents worth of |
320 | * extents. The caller must use all nextents extents, because we are not | |
321 | * flexible about this at all. | |
1da177e4 | 322 | */ |
81f40041 | 323 | static struct xfs_efd_log_item * |
9c5e7c2a CH |
324 | xfs_trans_get_efd( |
325 | struct xfs_trans *tp, | |
326 | struct xfs_efi_log_item *efip, | |
327 | unsigned int nextents) | |
1da177e4 | 328 | { |
9c5e7c2a | 329 | struct xfs_efd_log_item *efdp; |
1da177e4 LT |
330 | |
331 | ASSERT(nextents > 0); | |
9c5e7c2a | 332 | |
1da177e4 | 333 | if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { |
9c5e7c2a CH |
334 | efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) + |
335 | (nextents - 1) * sizeof(struct xfs_extent), | |
336 | KM_SLEEP); | |
1da177e4 | 337 | } else { |
7bfa31d8 | 338 | efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP); |
1da177e4 LT |
339 | } |
340 | ||
9c5e7c2a CH |
341 | xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD, |
342 | &xfs_efd_item_ops); | |
1da177e4 LT |
343 | efdp->efd_efip = efip; |
344 | efdp->efd_format.efd_nextents = nextents; | |
345 | efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; | |
346 | ||
9c5e7c2a | 347 | xfs_trans_add_item(tp, &efdp->efd_item); |
7bfa31d8 | 348 | return efdp; |
1da177e4 | 349 | } |
dc42375d | 350 | |
81f40041 CH |
351 | /* |
352 | * Free an extent and log it to the EFD. Note that the transaction is marked | |
353 | * dirty regardless of whether the extent free succeeds or fails to support the | |
354 | * EFI/EFD lifecycle rules. | |
355 | */ | |
356 | static int | |
357 | xfs_trans_free_extent( | |
358 | struct xfs_trans *tp, | |
359 | struct xfs_efd_log_item *efdp, | |
360 | xfs_fsblock_t start_block, | |
361 | xfs_extlen_t ext_len, | |
362 | const struct xfs_owner_info *oinfo, | |
363 | bool skip_discard) | |
364 | { | |
365 | struct xfs_mount *mp = tp->t_mountp; | |
366 | struct xfs_extent *extp; | |
367 | uint next_extent; | |
368 | xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, start_block); | |
369 | xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp, | |
370 | start_block); | |
371 | int error; | |
372 | ||
373 | trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len); | |
374 | ||
375 | error = __xfs_free_extent(tp, start_block, ext_len, | |
376 | oinfo, XFS_AG_RESV_NONE, skip_discard); | |
377 | /* | |
378 | * Mark the transaction dirty, even on error. This ensures the | |
379 | * transaction is aborted, which: | |
380 | * | |
381 | * 1.) releases the EFI and frees the EFD | |
382 | * 2.) shuts down the filesystem | |
383 | */ | |
384 | tp->t_flags |= XFS_TRANS_DIRTY; | |
385 | set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); | |
386 | ||
387 | next_extent = efdp->efd_next_extent; | |
388 | ASSERT(next_extent < efdp->efd_format.efd_nextents); | |
389 | extp = &(efdp->efd_format.efd_extents[next_extent]); | |
390 | extp->ext_start = start_block; | |
391 | extp->ext_len = ext_len; | |
392 | efdp->efd_next_extent++; | |
393 | ||
394 | return error; | |
395 | } | |
396 | ||
397 | /* Sort bmap items by AG. */ | |
398 | static int | |
399 | xfs_extent_free_diff_items( | |
400 | void *priv, | |
401 | struct list_head *a, | |
402 | struct list_head *b) | |
403 | { | |
404 | struct xfs_mount *mp = priv; | |
405 | struct xfs_extent_free_item *ra; | |
406 | struct xfs_extent_free_item *rb; | |
407 | ||
408 | ra = container_of(a, struct xfs_extent_free_item, xefi_list); | |
409 | rb = container_of(b, struct xfs_extent_free_item, xefi_list); | |
410 | return XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) - | |
411 | XFS_FSB_TO_AGNO(mp, rb->xefi_startblock); | |
412 | } | |
413 | ||
414 | /* Get an EFI. */ | |
415 | STATIC void * | |
416 | xfs_extent_free_create_intent( | |
417 | struct xfs_trans *tp, | |
418 | unsigned int count) | |
419 | { | |
420 | struct xfs_efi_log_item *efip; | |
421 | ||
422 | ASSERT(tp != NULL); | |
423 | ASSERT(count > 0); | |
424 | ||
425 | efip = xfs_efi_init(tp->t_mountp, count); | |
426 | ASSERT(efip != NULL); | |
427 | ||
428 | /* | |
429 | * Get a log_item_desc to point at the new item. | |
430 | */ | |
431 | xfs_trans_add_item(tp, &efip->efi_item); | |
432 | return efip; | |
433 | } | |
434 | ||
435 | /* Log a free extent to the intent item. */ | |
436 | STATIC void | |
437 | xfs_extent_free_log_item( | |
438 | struct xfs_trans *tp, | |
439 | void *intent, | |
440 | struct list_head *item) | |
441 | { | |
442 | struct xfs_efi_log_item *efip = intent; | |
443 | struct xfs_extent_free_item *free; | |
444 | uint next_extent; | |
445 | struct xfs_extent *extp; | |
446 | ||
447 | free = container_of(item, struct xfs_extent_free_item, xefi_list); | |
448 | ||
449 | tp->t_flags |= XFS_TRANS_DIRTY; | |
450 | set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); | |
451 | ||
452 | /* | |
453 | * atomic_inc_return gives us the value after the increment; | |
454 | * we want to use it as an array index so we need to subtract 1 from | |
455 | * it. | |
456 | */ | |
457 | next_extent = atomic_inc_return(&efip->efi_next_extent) - 1; | |
458 | ASSERT(next_extent < efip->efi_format.efi_nextents); | |
459 | extp = &efip->efi_format.efi_extents[next_extent]; | |
460 | extp->ext_start = free->xefi_startblock; | |
461 | extp->ext_len = free->xefi_blockcount; | |
462 | } | |
463 | ||
464 | /* Get an EFD so we can process all the free extents. */ | |
465 | STATIC void * | |
466 | xfs_extent_free_create_done( | |
467 | struct xfs_trans *tp, | |
468 | void *intent, | |
469 | unsigned int count) | |
470 | { | |
471 | return xfs_trans_get_efd(tp, intent, count); | |
472 | } | |
473 | ||
474 | /* Process a free extent. */ | |
475 | STATIC int | |
476 | xfs_extent_free_finish_item( | |
477 | struct xfs_trans *tp, | |
478 | struct list_head *item, | |
479 | void *done_item, | |
480 | void **state) | |
481 | { | |
482 | struct xfs_extent_free_item *free; | |
483 | int error; | |
484 | ||
485 | free = container_of(item, struct xfs_extent_free_item, xefi_list); | |
486 | error = xfs_trans_free_extent(tp, done_item, | |
487 | free->xefi_startblock, | |
488 | free->xefi_blockcount, | |
489 | &free->xefi_oinfo, free->xefi_skip_discard); | |
490 | kmem_free(free); | |
491 | return error; | |
492 | } | |
493 | ||
494 | /* Abort all pending EFIs. */ | |
495 | STATIC void | |
496 | xfs_extent_free_abort_intent( | |
497 | void *intent) | |
498 | { | |
499 | xfs_efi_release(intent); | |
500 | } | |
501 | ||
502 | /* Cancel a free extent. */ | |
503 | STATIC void | |
504 | xfs_extent_free_cancel_item( | |
505 | struct list_head *item) | |
506 | { | |
507 | struct xfs_extent_free_item *free; | |
508 | ||
509 | free = container_of(item, struct xfs_extent_free_item, xefi_list); | |
510 | kmem_free(free); | |
511 | } | |
512 | ||
513 | const struct xfs_defer_op_type xfs_extent_free_defer_type = { | |
514 | .max_items = XFS_EFI_MAX_FAST_EXTENTS, | |
515 | .diff_items = xfs_extent_free_diff_items, | |
516 | .create_intent = xfs_extent_free_create_intent, | |
517 | .abort_intent = xfs_extent_free_abort_intent, | |
518 | .log_item = xfs_extent_free_log_item, | |
519 | .create_done = xfs_extent_free_create_done, | |
520 | .finish_item = xfs_extent_free_finish_item, | |
521 | .cancel_item = xfs_extent_free_cancel_item, | |
522 | }; | |
523 | ||
524 | /* | |
525 | * AGFL blocks are accounted differently in the reserve pools and are not | |
526 | * inserted into the busy extent list. | |
527 | */ | |
528 | STATIC int | |
529 | xfs_agfl_free_finish_item( | |
530 | struct xfs_trans *tp, | |
531 | struct list_head *item, | |
532 | void *done_item, | |
533 | void **state) | |
534 | { | |
535 | struct xfs_mount *mp = tp->t_mountp; | |
536 | struct xfs_efd_log_item *efdp = done_item; | |
537 | struct xfs_extent_free_item *free; | |
538 | struct xfs_extent *extp; | |
539 | struct xfs_buf *agbp; | |
540 | int error; | |
541 | xfs_agnumber_t agno; | |
542 | xfs_agblock_t agbno; | |
543 | uint next_extent; | |
544 | ||
545 | free = container_of(item, struct xfs_extent_free_item, xefi_list); | |
546 | ASSERT(free->xefi_blockcount == 1); | |
547 | agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock); | |
548 | agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock); | |
549 | ||
550 | trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount); | |
551 | ||
552 | error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp); | |
553 | if (!error) | |
554 | error = xfs_free_agfl_block(tp, agno, agbno, agbp, | |
555 | &free->xefi_oinfo); | |
556 | ||
557 | /* | |
558 | * Mark the transaction dirty, even on error. This ensures the | |
559 | * transaction is aborted, which: | |
560 | * | |
561 | * 1.) releases the EFI and frees the EFD | |
562 | * 2.) shuts down the filesystem | |
563 | */ | |
564 | tp->t_flags |= XFS_TRANS_DIRTY; | |
565 | set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); | |
566 | ||
567 | next_extent = efdp->efd_next_extent; | |
568 | ASSERT(next_extent < efdp->efd_format.efd_nextents); | |
569 | extp = &(efdp->efd_format.efd_extents[next_extent]); | |
570 | extp->ext_start = free->xefi_startblock; | |
571 | extp->ext_len = free->xefi_blockcount; | |
572 | efdp->efd_next_extent++; | |
573 | ||
574 | kmem_free(free); | |
575 | return error; | |
576 | } | |
577 | ||
578 | /* sub-type with special handling for AGFL deferred frees */ | |
579 | const struct xfs_defer_op_type xfs_agfl_free_defer_type = { | |
580 | .max_items = XFS_EFI_MAX_FAST_EXTENTS, | |
581 | .diff_items = xfs_extent_free_diff_items, | |
582 | .create_intent = xfs_extent_free_create_intent, | |
583 | .abort_intent = xfs_extent_free_abort_intent, | |
584 | .log_item = xfs_extent_free_log_item, | |
585 | .create_done = xfs_extent_free_create_done, | |
586 | .finish_item = xfs_agfl_free_finish_item, | |
587 | .cancel_item = xfs_extent_free_cancel_item, | |
588 | }; | |
589 | ||
dc42375d DW |
590 | /* |
591 | * Process an extent free intent item that was recovered from | |
592 | * the log. We need to free the extents that it describes. | |
593 | */ | |
594 | int | |
595 | xfs_efi_recover( | |
596 | struct xfs_mount *mp, | |
597 | struct xfs_efi_log_item *efip) | |
598 | { | |
599 | struct xfs_efd_log_item *efdp; | |
600 | struct xfs_trans *tp; | |
601 | int i; | |
602 | int error = 0; | |
603 | xfs_extent_t *extp; | |
604 | xfs_fsblock_t startblock_fsb; | |
605 | ||
606 | ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)); | |
607 | ||
608 | /* | |
609 | * First check the validity of the extents described by the | |
610 | * EFI. If any are bad, then assume that all are bad and | |
611 | * just toss the EFI. | |
612 | */ | |
613 | for (i = 0; i < efip->efi_format.efi_nextents; i++) { | |
e127fafd | 614 | extp = &efip->efi_format.efi_extents[i]; |
dc42375d DW |
615 | startblock_fsb = XFS_BB_TO_FSB(mp, |
616 | XFS_FSB_TO_DADDR(mp, extp->ext_start)); | |
e127fafd DW |
617 | if (startblock_fsb == 0 || |
618 | extp->ext_len == 0 || | |
619 | startblock_fsb >= mp->m_sb.sb_dblocks || | |
620 | extp->ext_len >= mp->m_sb.sb_agblocks) { | |
dc42375d DW |
621 | /* |
622 | * This will pull the EFI from the AIL and | |
623 | * free the memory associated with it. | |
624 | */ | |
625 | set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); | |
626 | xfs_efi_release(efip); | |
627 | return -EIO; | |
628 | } | |
629 | } | |
630 | ||
631 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); | |
632 | if (error) | |
633 | return error; | |
634 | efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); | |
635 | ||
636 | for (i = 0; i < efip->efi_format.efi_nextents; i++) { | |
e127fafd | 637 | extp = &efip->efi_format.efi_extents[i]; |
dc42375d | 638 | error = xfs_trans_free_extent(tp, efdp, extp->ext_start, |
7280feda DW |
639 | extp->ext_len, |
640 | &XFS_RMAP_OINFO_ANY_OWNER, false); | |
dc42375d DW |
641 | if (error) |
642 | goto abort_error; | |
643 | ||
644 | } | |
645 | ||
646 | set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); | |
647 | error = xfs_trans_commit(tp); | |
648 | return error; | |
649 | ||
650 | abort_error: | |
651 | xfs_trans_cancel(tp); | |
652 | return error; | |
653 | } |