]> Git Repo - linux.git/blame - fs/fs-writeback.c
writeback: Avoid skipping inode writeback
[linux.git] / fs / fs-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
e1f8e874 12 * 10Apr2002 Andrew Morton
1da177e4
LT
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17#include <linux/kernel.h>
630d9c47 18#include <linux/export.h>
1da177e4 19#include <linux/spinlock.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/sched.h>
22#include <linux/fs.h>
23#include <linux/mm.h>
bc31b86a 24#include <linux/pagemap.h>
03ba3782 25#include <linux/kthread.h>
1da177e4
LT
26#include <linux/writeback.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
455b2864 29#include <linux/tracepoint.h>
719ea2fb 30#include <linux/device.h>
21c6321f 31#include <linux/memcontrol.h>
07f3f05c 32#include "internal.h"
1da177e4 33
bc31b86a
WF
34/*
35 * 4MB minimal write chunk size
36 */
09cbfeaf 37#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
bc31b86a 38
c4a77a6c
JA
39/*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
83ba7b07 42struct wb_writeback_work {
c4a77a6c
JA
43 long nr_pages;
44 struct super_block *sb;
0dc83bd3 45 unsigned long *older_than_this;
c4a77a6c 46 enum writeback_sync_modes sync_mode;
6e6938b6 47 unsigned int tagged_writepages:1;
52957fe1
HS
48 unsigned int for_kupdate:1;
49 unsigned int range_cyclic:1;
50 unsigned int for_background:1;
7747bd4b 51 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 52 unsigned int auto_free:1; /* free on completion */
0e175a18 53 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 54
8010c3b6 55 struct list_head list; /* pending work list */
cc395d7f 56 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
57};
58
a2f48706
TT
59/*
60 * If an inode is constantly having its pages dirtied, but then the
61 * updates stop dirtytime_expire_interval seconds in the past, it's
62 * possible for the worst case time between when an inode has its
63 * timestamps updated and when they finally get written out to be two
64 * dirtytime_expire_intervals. We set the default to 12 hours (in
65 * seconds), which means most of the time inodes will have their
66 * timestamps written to disk after 12 hours, but in the worst case a
67 * few inodes might not their timestamps updated for 24 hours.
68 */
69unsigned int dirtytime_expire_interval = 12 * 60 * 60;
70
7ccf19a8
NP
71static inline struct inode *wb_inode(struct list_head *head)
72{
c7f54084 73 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
74}
75
15eb77a0
WF
76/*
77 * Include the creation of the trace points after defining the
78 * wb_writeback_work structure and inline functions so that the definition
79 * remains local to this file.
80 */
81#define CREATE_TRACE_POINTS
82#include <trace/events/writeback.h>
83
774016b2
SW
84EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
85
d6c10f1f
TH
86static bool wb_io_lists_populated(struct bdi_writeback *wb)
87{
88 if (wb_has_dirty_io(wb)) {
89 return false;
90 } else {
91 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 92 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
93 atomic_long_add(wb->avg_write_bandwidth,
94 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
95 return true;
96 }
97}
98
99static void wb_io_lists_depopulated(struct bdi_writeback *wb)
100{
101 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 102 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 103 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
104 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
105 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 106 }
d6c10f1f
TH
107}
108
109/**
c7f54084 110 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
111 * @inode: inode to be moved
112 * @wb: target bdi_writeback
bbbc3c1c 113 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
d6c10f1f 114 *
c7f54084 115 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
116 * Returns %true if @inode is the first occupant of the !dirty_time IO
117 * lists; otherwise, %false.
118 */
c7f54084 119static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
120 struct bdi_writeback *wb,
121 struct list_head *head)
122{
123 assert_spin_locked(&wb->list_lock);
124
c7f54084 125 list_move(&inode->i_io_list, head);
d6c10f1f
TH
126
127 /* dirty_time doesn't count as dirty_io until expiration */
128 if (head != &wb->b_dirty_time)
129 return wb_io_lists_populated(wb);
130
131 wb_io_lists_depopulated(wb);
132 return false;
133}
134
135/**
c7f54084 136 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
d6c10f1f
TH
137 * @inode: inode to be removed
138 * @wb: bdi_writeback @inode is being removed from
139 *
140 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
141 * clear %WB_has_dirty_io if all are empty afterwards.
142 */
c7f54084 143static void inode_io_list_del_locked(struct inode *inode,
d6c10f1f
TH
144 struct bdi_writeback *wb)
145{
146 assert_spin_locked(&wb->list_lock);
b35250c0 147 assert_spin_locked(&inode->i_lock);
d6c10f1f 148
5afced3b 149 inode->i_state &= ~I_SYNC_QUEUED;
c7f54084 150 list_del_init(&inode->i_io_list);
d6c10f1f
TH
151 wb_io_lists_depopulated(wb);
152}
153
f0054bb1 154static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 155{
f0054bb1
TH
156 spin_lock_bh(&wb->work_lock);
157 if (test_bit(WB_registered, &wb->state))
158 mod_delayed_work(bdi_wq, &wb->dwork, 0);
159 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
160}
161
4a3a485b
TE
162static void finish_writeback_work(struct bdi_writeback *wb,
163 struct wb_writeback_work *work)
164{
165 struct wb_completion *done = work->done;
166
167 if (work->auto_free)
168 kfree(work);
8e00c4e9
TH
169 if (done) {
170 wait_queue_head_t *waitq = done->waitq;
171
172 /* @done can't be accessed after the following dec */
173 if (atomic_dec_and_test(&done->cnt))
174 wake_up_all(waitq);
175 }
4a3a485b
TE
176}
177
f0054bb1
TH
178static void wb_queue_work(struct bdi_writeback *wb,
179 struct wb_writeback_work *work)
6585027a 180{
5634cc2a 181 trace_writeback_queue(wb, work);
6585027a 182
cc395d7f
TH
183 if (work->done)
184 atomic_inc(&work->done->cnt);
4a3a485b
TE
185
186 spin_lock_bh(&wb->work_lock);
187
188 if (test_bit(WB_registered, &wb->state)) {
189 list_add_tail(&work->list, &wb->work_list);
190 mod_delayed_work(bdi_wq, &wb->dwork, 0);
191 } else
192 finish_writeback_work(wb, work);
193
f0054bb1 194 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
195}
196
cc395d7f
TH
197/**
198 * wb_wait_for_completion - wait for completion of bdi_writeback_works
cc395d7f
TH
199 * @done: target wb_completion
200 *
201 * Wait for one or more work items issued to @bdi with their ->done field
5b9cce4c
TH
202 * set to @done, which should have been initialized with
203 * DEFINE_WB_COMPLETION(). This function returns after all such work items
204 * are completed. Work items which are waited upon aren't freed
cc395d7f
TH
205 * automatically on completion.
206 */
5b9cce4c 207void wb_wait_for_completion(struct wb_completion *done)
cc395d7f
TH
208{
209 atomic_dec(&done->cnt); /* put down the initial count */
5b9cce4c 210 wait_event(*done->waitq, !atomic_read(&done->cnt));
cc395d7f
TH
211}
212
703c2708
TH
213#ifdef CONFIG_CGROUP_WRITEBACK
214
55a694df
TH
215/*
216 * Parameters for foreign inode detection, see wbc_detach_inode() to see
217 * how they're used.
218 *
219 * These paramters are inherently heuristical as the detection target
220 * itself is fuzzy. All we want to do is detaching an inode from the
221 * current owner if it's being written to by some other cgroups too much.
222 *
223 * The current cgroup writeback is built on the assumption that multiple
224 * cgroups writing to the same inode concurrently is very rare and a mode
225 * of operation which isn't well supported. As such, the goal is not
226 * taking too long when a different cgroup takes over an inode while
227 * avoiding too aggressive flip-flops from occasional foreign writes.
228 *
229 * We record, very roughly, 2s worth of IO time history and if more than
230 * half of that is foreign, trigger the switch. The recording is quantized
231 * to 16 slots. To avoid tiny writes from swinging the decision too much,
232 * writes smaller than 1/8 of avg size are ignored.
233 */
2a814908
TH
234#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
235#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
55a694df 236#define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
2a814908
TH
237#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
238
239#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
240#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
241 /* each slot's duration is 2s / 16 */
242#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
243 /* if foreign slots >= 8, switch */
244#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
245 /* one round can affect upto 5 slots */
6444f47e 246#define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
2a814908 247
a1a0e23e
TH
248static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
249static struct workqueue_struct *isw_wq;
250
21c6321f
TH
251void __inode_attach_wb(struct inode *inode, struct page *page)
252{
253 struct backing_dev_info *bdi = inode_to_bdi(inode);
254 struct bdi_writeback *wb = NULL;
255
256 if (inode_cgwb_enabled(inode)) {
257 struct cgroup_subsys_state *memcg_css;
258
259 if (page) {
260 memcg_css = mem_cgroup_css_from_page(page);
261 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
262 } else {
263 /* must pin memcg_css, see wb_get_create() */
264 memcg_css = task_get_css(current, memory_cgrp_id);
265 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
266 css_put(memcg_css);
267 }
268 }
269
270 if (!wb)
271 wb = &bdi->wb;
272
273 /*
274 * There may be multiple instances of this function racing to
275 * update the same inode. Use cmpxchg() to tell the winner.
276 */
277 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
278 wb_put(wb);
279}
9b0eb69b 280EXPORT_SYMBOL_GPL(__inode_attach_wb);
21c6321f 281
87e1d789
TH
282/**
283 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
284 * @inode: inode of interest with i_lock held
285 *
286 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
287 * held on entry and is released on return. The returned wb is guaranteed
288 * to stay @inode's associated wb until its list_lock is released.
289 */
290static struct bdi_writeback *
291locked_inode_to_wb_and_lock_list(struct inode *inode)
292 __releases(&inode->i_lock)
293 __acquires(&wb->list_lock)
294{
295 while (true) {
296 struct bdi_writeback *wb = inode_to_wb(inode);
297
298 /*
299 * inode_to_wb() association is protected by both
300 * @inode->i_lock and @wb->list_lock but list_lock nests
301 * outside i_lock. Drop i_lock and verify that the
302 * association hasn't changed after acquiring list_lock.
303 */
304 wb_get(wb);
305 spin_unlock(&inode->i_lock);
306 spin_lock(&wb->list_lock);
87e1d789 307
aaa2cacf 308 /* i_wb may have changed inbetween, can't use inode_to_wb() */
614a4e37
TH
309 if (likely(wb == inode->i_wb)) {
310 wb_put(wb); /* @inode already has ref */
311 return wb;
312 }
87e1d789
TH
313
314 spin_unlock(&wb->list_lock);
614a4e37 315 wb_put(wb);
87e1d789
TH
316 cpu_relax();
317 spin_lock(&inode->i_lock);
318 }
319}
320
321/**
322 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
323 * @inode: inode of interest
324 *
325 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
326 * on entry.
327 */
328static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
329 __acquires(&wb->list_lock)
330{
331 spin_lock(&inode->i_lock);
332 return locked_inode_to_wb_and_lock_list(inode);
333}
334
682aa8e1
TH
335struct inode_switch_wbs_context {
336 struct inode *inode;
337 struct bdi_writeback *new_wb;
338
339 struct rcu_head rcu_head;
340 struct work_struct work;
341};
342
7fc5854f
TH
343static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
344{
345 down_write(&bdi->wb_switch_rwsem);
346}
347
348static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
349{
350 up_write(&bdi->wb_switch_rwsem);
351}
352
682aa8e1
TH
353static void inode_switch_wbs_work_fn(struct work_struct *work)
354{
355 struct inode_switch_wbs_context *isw =
356 container_of(work, struct inode_switch_wbs_context, work);
357 struct inode *inode = isw->inode;
7fc5854f 358 struct backing_dev_info *bdi = inode_to_bdi(inode);
d10c8095
TH
359 struct address_space *mapping = inode->i_mapping;
360 struct bdi_writeback *old_wb = inode->i_wb;
682aa8e1 361 struct bdi_writeback *new_wb = isw->new_wb;
04edf02c
MW
362 XA_STATE(xas, &mapping->i_pages, 0);
363 struct page *page;
d10c8095 364 bool switched = false;
682aa8e1 365
7fc5854f
TH
366 /*
367 * If @inode switches cgwb membership while sync_inodes_sb() is
368 * being issued, sync_inodes_sb() might miss it. Synchronize.
369 */
370 down_read(&bdi->wb_switch_rwsem);
371
682aa8e1
TH
372 /*
373 * By the time control reaches here, RCU grace period has passed
374 * since I_WB_SWITCH assertion and all wb stat update transactions
375 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
b93b0163 376 * synchronizing against the i_pages lock.
d10c8095 377 *
b93b0163 378 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
d10c8095
TH
379 * gives us exclusion against all wb related operations on @inode
380 * including IO list manipulations and stat updates.
682aa8e1 381 */
d10c8095
TH
382 if (old_wb < new_wb) {
383 spin_lock(&old_wb->list_lock);
384 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
385 } else {
386 spin_lock(&new_wb->list_lock);
387 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
388 }
682aa8e1 389 spin_lock(&inode->i_lock);
b93b0163 390 xa_lock_irq(&mapping->i_pages);
d10c8095
TH
391
392 /*
393 * Once I_FREEING is visible under i_lock, the eviction path owns
c7f54084 394 * the inode and we shouldn't modify ->i_io_list.
d10c8095
TH
395 */
396 if (unlikely(inode->i_state & I_FREEING))
397 goto skip_switch;
398
3a8e9ac8
TH
399 trace_inode_switch_wbs(inode, old_wb, new_wb);
400
d10c8095
TH
401 /*
402 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
403 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
b93b0163 404 * pages actually under writeback.
d10c8095 405 */
04edf02c
MW
406 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
407 if (PageDirty(page)) {
3e8f399d
NB
408 dec_wb_stat(old_wb, WB_RECLAIMABLE);
409 inc_wb_stat(new_wb, WB_RECLAIMABLE);
d10c8095
TH
410 }
411 }
412
04edf02c
MW
413 xas_set(&xas, 0);
414 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
415 WARN_ON_ONCE(!PageWriteback(page));
416 dec_wb_stat(old_wb, WB_WRITEBACK);
417 inc_wb_stat(new_wb, WB_WRITEBACK);
d10c8095
TH
418 }
419
420 wb_get(new_wb);
421
422 /*
423 * Transfer to @new_wb's IO list if necessary. The specific list
424 * @inode was on is ignored and the inode is put on ->b_dirty which
425 * is always correct including from ->b_dirty_time. The transfer
426 * preserves @inode->dirtied_when ordering.
427 */
c7f54084 428 if (!list_empty(&inode->i_io_list)) {
d10c8095
TH
429 struct inode *pos;
430
c7f54084 431 inode_io_list_del_locked(inode, old_wb);
d10c8095 432 inode->i_wb = new_wb;
c7f54084 433 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
d10c8095
TH
434 if (time_after_eq(inode->dirtied_when,
435 pos->dirtied_when))
436 break;
c7f54084 437 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
d10c8095
TH
438 } else {
439 inode->i_wb = new_wb;
440 }
682aa8e1 441
d10c8095 442 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
443 inode->i_wb_frn_winner = 0;
444 inode->i_wb_frn_avg_time = 0;
445 inode->i_wb_frn_history = 0;
d10c8095
TH
446 switched = true;
447skip_switch:
682aa8e1
TH
448 /*
449 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
450 * ensures that the new wb is visible if they see !I_WB_SWITCH.
451 */
452 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
453
b93b0163 454 xa_unlock_irq(&mapping->i_pages);
682aa8e1 455 spin_unlock(&inode->i_lock);
d10c8095
TH
456 spin_unlock(&new_wb->list_lock);
457 spin_unlock(&old_wb->list_lock);
682aa8e1 458
7fc5854f
TH
459 up_read(&bdi->wb_switch_rwsem);
460
d10c8095
TH
461 if (switched) {
462 wb_wakeup(new_wb);
463 wb_put(old_wb);
464 }
682aa8e1 465 wb_put(new_wb);
d10c8095
TH
466
467 iput(inode);
682aa8e1 468 kfree(isw);
a1a0e23e
TH
469
470 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
471}
472
473static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
474{
475 struct inode_switch_wbs_context *isw = container_of(rcu_head,
476 struct inode_switch_wbs_context, rcu_head);
477
478 /* needs to grab bh-unsafe locks, bounce to work item */
479 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
a1a0e23e 480 queue_work(isw_wq, &isw->work);
682aa8e1
TH
481}
482
483/**
484 * inode_switch_wbs - change the wb association of an inode
485 * @inode: target inode
486 * @new_wb_id: ID of the new wb
487 *
488 * Switch @inode's wb association to the wb identified by @new_wb_id. The
489 * switching is performed asynchronously and may fail silently.
490 */
491static void inode_switch_wbs(struct inode *inode, int new_wb_id)
492{
493 struct backing_dev_info *bdi = inode_to_bdi(inode);
494 struct cgroup_subsys_state *memcg_css;
495 struct inode_switch_wbs_context *isw;
496
497 /* noop if seems to be already in progress */
498 if (inode->i_state & I_WB_SWITCH)
499 return;
500
6444f47e
TH
501 /* avoid queueing a new switch if too many are already in flight */
502 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
7fc5854f
TH
503 return;
504
682aa8e1
TH
505 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
506 if (!isw)
6444f47e 507 return;
682aa8e1
TH
508
509 /* find and pin the new wb */
510 rcu_read_lock();
511 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
512 if (memcg_css)
513 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
514 rcu_read_unlock();
515 if (!isw->new_wb)
516 goto out_free;
517
518 /* while holding I_WB_SWITCH, no one else can update the association */
519 spin_lock(&inode->i_lock);
1751e8a6 520 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
a1a0e23e
TH
521 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
522 inode_to_wb(inode) == isw->new_wb) {
523 spin_unlock(&inode->i_lock);
524 goto out_free;
525 }
682aa8e1 526 inode->i_state |= I_WB_SWITCH;
74524955 527 __iget(inode);
682aa8e1
TH
528 spin_unlock(&inode->i_lock);
529
682aa8e1
TH
530 isw->inode = inode;
531
532 /*
533 * In addition to synchronizing among switchers, I_WB_SWITCH tells
b93b0163
MW
534 * the RCU protected stat update paths to grab the i_page
535 * lock so that stat transfer can synchronize against them.
682aa8e1
TH
536 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
537 */
538 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
ec084de9
JX
539
540 atomic_inc(&isw_nr_in_flight);
6444f47e 541 return;
682aa8e1
TH
542
543out_free:
544 if (isw->new_wb)
545 wb_put(isw->new_wb);
546 kfree(isw);
547}
548
b16b1deb
TH
549/**
550 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
551 * @wbc: writeback_control of interest
552 * @inode: target inode
553 *
554 * @inode is locked and about to be written back under the control of @wbc.
555 * Record @inode's writeback context into @wbc and unlock the i_lock. On
556 * writeback completion, wbc_detach_inode() should be called. This is used
557 * to track the cgroup writeback context.
558 */
559void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
560 struct inode *inode)
561{
dd73e4b7
TH
562 if (!inode_cgwb_enabled(inode)) {
563 spin_unlock(&inode->i_lock);
564 return;
565 }
566
b16b1deb 567 wbc->wb = inode_to_wb(inode);
2a814908
TH
568 wbc->inode = inode;
569
570 wbc->wb_id = wbc->wb->memcg_css->id;
571 wbc->wb_lcand_id = inode->i_wb_frn_winner;
572 wbc->wb_tcand_id = 0;
573 wbc->wb_bytes = 0;
574 wbc->wb_lcand_bytes = 0;
575 wbc->wb_tcand_bytes = 0;
576
b16b1deb
TH
577 wb_get(wbc->wb);
578 spin_unlock(&inode->i_lock);
e8a7abf5
TH
579
580 /*
65de03e2
TH
581 * A dying wb indicates that either the blkcg associated with the
582 * memcg changed or the associated memcg is dying. In the first
583 * case, a replacement wb should already be available and we should
584 * refresh the wb immediately. In the second case, trying to
585 * refresh will keep failing.
e8a7abf5 586 */
65de03e2 587 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
e8a7abf5 588 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb 589}
9b0eb69b 590EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
b16b1deb
TH
591
592/**
2a814908
TH
593 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
594 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
595 *
596 * To be called after a writeback attempt of an inode finishes and undoes
597 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
598 *
599 * As concurrent write sharing of an inode is expected to be very rare and
600 * memcg only tracks page ownership on first-use basis severely confining
601 * the usefulness of such sharing, cgroup writeback tracks ownership
602 * per-inode. While the support for concurrent write sharing of an inode
603 * is deemed unnecessary, an inode being written to by different cgroups at
604 * different points in time is a lot more common, and, more importantly,
605 * charging only by first-use can too readily lead to grossly incorrect
606 * behaviors (single foreign page can lead to gigabytes of writeback to be
607 * incorrectly attributed).
608 *
609 * To resolve this issue, cgroup writeback detects the majority dirtier of
610 * an inode and transfers the ownership to it. To avoid unnnecessary
611 * oscillation, the detection mechanism keeps track of history and gives
612 * out the switch verdict only if the foreign usage pattern is stable over
613 * a certain amount of time and/or writeback attempts.
614 *
615 * On each writeback attempt, @wbc tries to detect the majority writer
616 * using Boyer-Moore majority vote algorithm. In addition to the byte
617 * count from the majority voting, it also counts the bytes written for the
618 * current wb and the last round's winner wb (max of last round's current
619 * wb, the winner from two rounds ago, and the last round's majority
620 * candidate). Keeping track of the historical winner helps the algorithm
621 * to semi-reliably detect the most active writer even when it's not the
622 * absolute majority.
623 *
624 * Once the winner of the round is determined, whether the winner is
625 * foreign or not and how much IO time the round consumed is recorded in
626 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
627 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
628 */
629void wbc_detach_inode(struct writeback_control *wbc)
630{
2a814908
TH
631 struct bdi_writeback *wb = wbc->wb;
632 struct inode *inode = wbc->inode;
dd73e4b7
TH
633 unsigned long avg_time, max_bytes, max_time;
634 u16 history;
2a814908
TH
635 int max_id;
636
dd73e4b7
TH
637 if (!wb)
638 return;
639
640 history = inode->i_wb_frn_history;
641 avg_time = inode->i_wb_frn_avg_time;
642
2a814908
TH
643 /* pick the winner of this round */
644 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
645 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
646 max_id = wbc->wb_id;
647 max_bytes = wbc->wb_bytes;
648 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
649 max_id = wbc->wb_lcand_id;
650 max_bytes = wbc->wb_lcand_bytes;
651 } else {
652 max_id = wbc->wb_tcand_id;
653 max_bytes = wbc->wb_tcand_bytes;
654 }
655
656 /*
657 * Calculate the amount of IO time the winner consumed and fold it
658 * into the running average kept per inode. If the consumed IO
659 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
660 * deciding whether to switch or not. This is to prevent one-off
661 * small dirtiers from skewing the verdict.
662 */
663 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
664 wb->avg_write_bandwidth);
665 if (avg_time)
666 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
667 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
668 else
669 avg_time = max_time; /* immediate catch up on first run */
670
671 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
672 int slots;
673
674 /*
675 * The switch verdict is reached if foreign wb's consume
676 * more than a certain proportion of IO time in a
677 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
678 * history mask where each bit represents one sixteenth of
679 * the period. Determine the number of slots to shift into
680 * history from @max_time.
681 */
682 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
683 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
684 history <<= slots;
685 if (wbc->wb_id != max_id)
686 history |= (1U << slots) - 1;
687
3a8e9ac8
TH
688 if (history)
689 trace_inode_foreign_history(inode, wbc, history);
690
2a814908
TH
691 /*
692 * Switch if the current wb isn't the consistent winner.
693 * If there are multiple closely competing dirtiers, the
694 * inode may switch across them repeatedly over time, which
695 * is okay. The main goal is avoiding keeping an inode on
696 * the wrong wb for an extended period of time.
697 */
682aa8e1
TH
698 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
699 inode_switch_wbs(inode, max_id);
2a814908
TH
700 }
701
702 /*
703 * Multiple instances of this function may race to update the
704 * following fields but we don't mind occassional inaccuracies.
705 */
706 inode->i_wb_frn_winner = max_id;
707 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
708 inode->i_wb_frn_history = history;
709
b16b1deb
TH
710 wb_put(wbc->wb);
711 wbc->wb = NULL;
712}
9b0eb69b 713EXPORT_SYMBOL_GPL(wbc_detach_inode);
b16b1deb 714
2a814908 715/**
34e51a5e 716 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
2a814908
TH
717 * @wbc: writeback_control of the writeback in progress
718 * @page: page being written out
719 * @bytes: number of bytes being written out
720 *
721 * @bytes from @page are about to written out during the writeback
722 * controlled by @wbc. Keep the book for foreign inode detection. See
723 * wbc_detach_inode().
724 */
34e51a5e
TH
725void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
726 size_t bytes)
2a814908 727{
66311422 728 struct cgroup_subsys_state *css;
2a814908
TH
729 int id;
730
731 /*
732 * pageout() path doesn't attach @wbc to the inode being written
733 * out. This is intentional as we don't want the function to block
734 * behind a slow cgroup. Ultimately, we want pageout() to kick off
735 * regular writeback instead of writing things out itself.
736 */
27b36d8f 737 if (!wbc->wb || wbc->no_cgroup_owner)
2a814908
TH
738 return;
739
66311422
TH
740 css = mem_cgroup_css_from_page(page);
741 /* dead cgroups shouldn't contribute to inode ownership arbitration */
742 if (!(css->flags & CSS_ONLINE))
743 return;
744
745 id = css->id;
2a814908
TH
746
747 if (id == wbc->wb_id) {
748 wbc->wb_bytes += bytes;
749 return;
750 }
751
752 if (id == wbc->wb_lcand_id)
753 wbc->wb_lcand_bytes += bytes;
754
755 /* Boyer-Moore majority vote algorithm */
756 if (!wbc->wb_tcand_bytes)
757 wbc->wb_tcand_id = id;
758 if (id == wbc->wb_tcand_id)
759 wbc->wb_tcand_bytes += bytes;
760 else
761 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
762}
34e51a5e 763EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
2a814908 764
703c2708
TH
765/**
766 * inode_congested - test whether an inode is congested
60292bcc 767 * @inode: inode to test for congestion (may be NULL)
703c2708
TH
768 * @cong_bits: mask of WB_[a]sync_congested bits to test
769 *
770 * Tests whether @inode is congested. @cong_bits is the mask of congestion
771 * bits to test and the return value is the mask of set bits.
772 *
773 * If cgroup writeback is enabled for @inode, the congestion state is
774 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
775 * associated with @inode is congested; otherwise, the root wb's congestion
776 * state is used.
60292bcc
TH
777 *
778 * @inode is allowed to be NULL as this function is often called on
779 * mapping->host which is NULL for the swapper space.
703c2708
TH
780 */
781int inode_congested(struct inode *inode, int cong_bits)
782{
5cb8b824
TH
783 /*
784 * Once set, ->i_wb never becomes NULL while the inode is alive.
785 * Start transaction iff ->i_wb is visible.
786 */
aaa2cacf 787 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824 788 struct bdi_writeback *wb;
2e898e4c
GT
789 struct wb_lock_cookie lock_cookie = {};
790 bool congested;
5cb8b824 791
2e898e4c 792 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
5cb8b824 793 congested = wb_congested(wb, cong_bits);
2e898e4c 794 unlocked_inode_to_wb_end(inode, &lock_cookie);
5cb8b824 795 return congested;
703c2708
TH
796 }
797
798 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
799}
800EXPORT_SYMBOL_GPL(inode_congested);
801
f2b65121
TH
802/**
803 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
804 * @wb: target bdi_writeback to split @nr_pages to
805 * @nr_pages: number of pages to write for the whole bdi
806 *
807 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
808 * relation to the total write bandwidth of all wb's w/ dirty inodes on
809 * @wb->bdi.
810 */
811static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
812{
813 unsigned long this_bw = wb->avg_write_bandwidth;
814 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
815
816 if (nr_pages == LONG_MAX)
817 return LONG_MAX;
818
819 /*
820 * This may be called on clean wb's and proportional distribution
821 * may not make sense, just use the original @nr_pages in those
822 * cases. In general, we wanna err on the side of writing more.
823 */
824 if (!tot_bw || this_bw >= tot_bw)
825 return nr_pages;
826 else
827 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
828}
829
db125360
TH
830/**
831 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
832 * @bdi: target backing_dev_info
833 * @base_work: wb_writeback_work to issue
834 * @skip_if_busy: skip wb's which already have writeback in progress
835 *
836 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
837 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
838 * distributed to the busy wbs according to each wb's proportion in the
839 * total active write bandwidth of @bdi.
840 */
841static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
842 struct wb_writeback_work *base_work,
843 bool skip_if_busy)
844{
b817525a 845 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
846 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
847 struct bdi_writeback, bdi_node);
db125360
TH
848
849 might_sleep();
db125360
TH
850restart:
851 rcu_read_lock();
b817525a 852 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
5b9cce4c 853 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
8a1270cd
TH
854 struct wb_writeback_work fallback_work;
855 struct wb_writeback_work *work;
856 long nr_pages;
857
b817525a
TH
858 if (last_wb) {
859 wb_put(last_wb);
860 last_wb = NULL;
861 }
862
006a0973
TH
863 /* SYNC_ALL writes out I_DIRTY_TIME too */
864 if (!wb_has_dirty_io(wb) &&
865 (base_work->sync_mode == WB_SYNC_NONE ||
866 list_empty(&wb->b_dirty_time)))
867 continue;
868 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
869 continue;
870
8a1270cd
TH
871 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
872
873 work = kmalloc(sizeof(*work), GFP_ATOMIC);
874 if (work) {
875 *work = *base_work;
876 work->nr_pages = nr_pages;
877 work->auto_free = 1;
878 wb_queue_work(wb, work);
879 continue;
db125360 880 }
8a1270cd
TH
881
882 /* alloc failed, execute synchronously using on-stack fallback */
883 work = &fallback_work;
884 *work = *base_work;
885 work->nr_pages = nr_pages;
886 work->auto_free = 0;
887 work->done = &fallback_work_done;
888
889 wb_queue_work(wb, work);
890
b817525a
TH
891 /*
892 * Pin @wb so that it stays on @bdi->wb_list. This allows
893 * continuing iteration from @wb after dropping and
894 * regrabbing rcu read lock.
895 */
896 wb_get(wb);
897 last_wb = wb;
898
8a1270cd 899 rcu_read_unlock();
5b9cce4c 900 wb_wait_for_completion(&fallback_work_done);
8a1270cd 901 goto restart;
db125360
TH
902 }
903 rcu_read_unlock();
b817525a
TH
904
905 if (last_wb)
906 wb_put(last_wb);
db125360
TH
907}
908
d62241c7
TH
909/**
910 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
911 * @bdi_id: target bdi id
912 * @memcg_id: target memcg css id
b46ec1da 913 * @nr: number of pages to write, 0 for best-effort dirty flushing
d62241c7
TH
914 * @reason: reason why some writeback work initiated
915 * @done: target wb_completion
916 *
917 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
918 * with the specified parameters.
919 */
920int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
921 enum wb_reason reason, struct wb_completion *done)
922{
923 struct backing_dev_info *bdi;
924 struct cgroup_subsys_state *memcg_css;
925 struct bdi_writeback *wb;
926 struct wb_writeback_work *work;
927 int ret;
928
929 /* lookup bdi and memcg */
930 bdi = bdi_get_by_id(bdi_id);
931 if (!bdi)
932 return -ENOENT;
933
934 rcu_read_lock();
935 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
936 if (memcg_css && !css_tryget(memcg_css))
937 memcg_css = NULL;
938 rcu_read_unlock();
939 if (!memcg_css) {
940 ret = -ENOENT;
941 goto out_bdi_put;
942 }
943
944 /*
945 * And find the associated wb. If the wb isn't there already
946 * there's nothing to flush, don't create one.
947 */
948 wb = wb_get_lookup(bdi, memcg_css);
949 if (!wb) {
950 ret = -ENOENT;
951 goto out_css_put;
952 }
953
954 /*
955 * If @nr is zero, the caller is attempting to write out most of
956 * the currently dirty pages. Let's take the current dirty page
957 * count and inflate it by 25% which should be large enough to
958 * flush out most dirty pages while avoiding getting livelocked by
959 * concurrent dirtiers.
960 */
961 if (!nr) {
962 unsigned long filepages, headroom, dirty, writeback;
963
964 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
965 &writeback);
966 nr = dirty * 10 / 8;
967 }
968
969 /* issue the writeback work */
970 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
971 if (work) {
972 work->nr_pages = nr;
973 work->sync_mode = WB_SYNC_NONE;
974 work->range_cyclic = 1;
975 work->reason = reason;
976 work->done = done;
977 work->auto_free = 1;
978 wb_queue_work(wb, work);
979 ret = 0;
980 } else {
981 ret = -ENOMEM;
982 }
983
984 wb_put(wb);
985out_css_put:
986 css_put(memcg_css);
987out_bdi_put:
988 bdi_put(bdi);
989 return ret;
990}
991
a1a0e23e
TH
992/**
993 * cgroup_writeback_umount - flush inode wb switches for umount
994 *
995 * This function is called when a super_block is about to be destroyed and
996 * flushes in-flight inode wb switches. An inode wb switch goes through
997 * RCU and then workqueue, so the two need to be flushed in order to ensure
998 * that all previously scheduled switches are finished. As wb switches are
999 * rare occurrences and synchronize_rcu() can take a while, perform
1000 * flushing iff wb switches are in flight.
1001 */
1002void cgroup_writeback_umount(void)
1003{
1004 if (atomic_read(&isw_nr_in_flight)) {
ec084de9
JX
1005 /*
1006 * Use rcu_barrier() to wait for all pending callbacks to
1007 * ensure that all in-flight wb switches are in the workqueue.
1008 */
1009 rcu_barrier();
a1a0e23e
TH
1010 flush_workqueue(isw_wq);
1011 }
1012}
1013
1014static int __init cgroup_writeback_init(void)
1015{
1016 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1017 if (!isw_wq)
1018 return -ENOMEM;
1019 return 0;
1020}
1021fs_initcall(cgroup_writeback_init);
1022
f2b65121
TH
1023#else /* CONFIG_CGROUP_WRITEBACK */
1024
7fc5854f
TH
1025static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1026static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1027
87e1d789
TH
1028static struct bdi_writeback *
1029locked_inode_to_wb_and_lock_list(struct inode *inode)
1030 __releases(&inode->i_lock)
1031 __acquires(&wb->list_lock)
1032{
1033 struct bdi_writeback *wb = inode_to_wb(inode);
1034
1035 spin_unlock(&inode->i_lock);
1036 spin_lock(&wb->list_lock);
1037 return wb;
1038}
1039
1040static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1041 __acquires(&wb->list_lock)
1042{
1043 struct bdi_writeback *wb = inode_to_wb(inode);
1044
1045 spin_lock(&wb->list_lock);
1046 return wb;
1047}
1048
f2b65121
TH
1049static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1050{
1051 return nr_pages;
1052}
1053
db125360
TH
1054static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1055 struct wb_writeback_work *base_work,
1056 bool skip_if_busy)
1057{
1058 might_sleep();
1059
006a0973 1060 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 1061 base_work->auto_free = 0;
db125360
TH
1062 wb_queue_work(&bdi->wb, base_work);
1063 }
1064}
1065
703c2708
TH
1066#endif /* CONFIG_CGROUP_WRITEBACK */
1067
e8e8a0c6
JA
1068/*
1069 * Add in the number of potentially dirty inodes, because each inode
1070 * write can dirty pagecache in the underlying blockdev.
1071 */
1072static unsigned long get_nr_dirty_pages(void)
1073{
1074 return global_node_page_state(NR_FILE_DIRTY) +
e8e8a0c6
JA
1075 get_nr_dirty_inodes();
1076}
1077
1078static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
b6e51316 1079{
c00ddad3
TH
1080 if (!wb_has_dirty_io(wb))
1081 return;
1082
aac8d41c
JA
1083 /*
1084 * All callers of this function want to start writeback of all
1085 * dirty pages. Places like vmscan can call this at a very
1086 * high frequency, causing pointless allocations of tons of
1087 * work items and keeping the flusher threads busy retrieving
1088 * that work. Ensure that we only allow one of them pending and
85009b4f 1089 * inflight at the time.
aac8d41c 1090 */
85009b4f
JA
1091 if (test_bit(WB_start_all, &wb->state) ||
1092 test_and_set_bit(WB_start_all, &wb->state))
aac8d41c
JA
1093 return;
1094
85009b4f
JA
1095 wb->start_all_reason = reason;
1096 wb_wakeup(wb);
c5444198 1097}
d3ddec76 1098
c5444198 1099/**
9ecf4866
TH
1100 * wb_start_background_writeback - start background writeback
1101 * @wb: bdi_writback to write from
c5444198
CH
1102 *
1103 * Description:
6585027a 1104 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 1105 * this function returns, it is only guaranteed that for given wb
6585027a
JK
1106 * some IO is happening if we are over background dirty threshold.
1107 * Caller need not hold sb s_umount semaphore.
c5444198 1108 */
9ecf4866 1109void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 1110{
6585027a
JK
1111 /*
1112 * We just wake up the flusher thread. It will perform background
1113 * writeback as soon as there is no other work to do.
1114 */
5634cc2a 1115 trace_writeback_wake_background(wb);
9ecf4866 1116 wb_wakeup(wb);
1da177e4
LT
1117}
1118
a66979ab
DC
1119/*
1120 * Remove the inode from the writeback list it is on.
1121 */
c7f54084 1122void inode_io_list_del(struct inode *inode)
a66979ab 1123{
87e1d789 1124 struct bdi_writeback *wb;
f758eeab 1125
87e1d789 1126 wb = inode_to_wb_and_lock_list(inode);
b35250c0 1127 spin_lock(&inode->i_lock);
c7f54084 1128 inode_io_list_del_locked(inode, wb);
b35250c0 1129 spin_unlock(&inode->i_lock);
52ebea74 1130 spin_unlock(&wb->list_lock);
a66979ab 1131}
4301efa4 1132EXPORT_SYMBOL(inode_io_list_del);
a66979ab 1133
6c60d2b5
DC
1134/*
1135 * mark an inode as under writeback on the sb
1136 */
1137void sb_mark_inode_writeback(struct inode *inode)
1138{
1139 struct super_block *sb = inode->i_sb;
1140 unsigned long flags;
1141
1142 if (list_empty(&inode->i_wb_list)) {
1143 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f 1144 if (list_empty(&inode->i_wb_list)) {
6c60d2b5 1145 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
9a46b04f
BF
1146 trace_sb_mark_inode_writeback(inode);
1147 }
6c60d2b5
DC
1148 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1149 }
1150}
1151
1152/*
1153 * clear an inode as under writeback on the sb
1154 */
1155void sb_clear_inode_writeback(struct inode *inode)
1156{
1157 struct super_block *sb = inode->i_sb;
1158 unsigned long flags;
1159
1160 if (!list_empty(&inode->i_wb_list)) {
1161 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f
BF
1162 if (!list_empty(&inode->i_wb_list)) {
1163 list_del_init(&inode->i_wb_list);
1164 trace_sb_clear_inode_writeback(inode);
1165 }
6c60d2b5
DC
1166 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1167 }
1168}
1169
6610a0bc
AM
1170/*
1171 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1172 * furthest end of its superblock's dirty-inode list.
1173 *
1174 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 1175 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
1176 * the case then the inode must have been redirtied while it was being written
1177 * out and we don't reset its dirtied_when.
1178 */
b35250c0 1179static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 1180{
b35250c0
JK
1181 assert_spin_locked(&inode->i_lock);
1182
03ba3782 1183 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 1184 struct inode *tail;
6610a0bc 1185
7ccf19a8 1186 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 1187 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
1188 inode->dirtied_when = jiffies;
1189 }
c7f54084 1190 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
5afced3b 1191 inode->i_state &= ~I_SYNC_QUEUED;
6610a0bc
AM
1192}
1193
b35250c0
JK
1194static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1195{
1196 spin_lock(&inode->i_lock);
1197 redirty_tail_locked(inode, wb);
1198 spin_unlock(&inode->i_lock);
1199}
1200
c986d1e2 1201/*
66f3b8e2 1202 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 1203 */
f758eeab 1204static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 1205{
c7f54084 1206 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1207}
1208
1c0eeaf5
JE
1209static void inode_sync_complete(struct inode *inode)
1210{
365b94ae 1211 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1212 /* If inode is clean an unused, put it into LRU now... */
1213 inode_add_lru(inode);
365b94ae 1214 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1215 smp_mb();
1216 wake_up_bit(&inode->i_state, __I_SYNC);
1217}
1218
d2caa3c5
JL
1219static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1220{
1221 bool ret = time_after(inode->dirtied_when, t);
1222#ifndef CONFIG_64BIT
1223 /*
1224 * For inodes being constantly redirtied, dirtied_when can get stuck.
1225 * It _appears_ to be in the future, but is actually in distant past.
1226 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1227 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1228 */
1229 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1230#endif
1231 return ret;
1232}
1233
0ae45f63
TT
1234#define EXPIRE_DIRTY_ATIME 0x0001
1235
2c136579 1236/*
0e2f2b23 1237 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 1238 * @delaying_queue to @dispatch_queue.
2c136579 1239 */
e84d0a4f 1240static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1241 struct list_head *dispatch_queue,
0ae45f63 1242 int flags,
ad4e38dd 1243 struct wb_writeback_work *work)
2c136579 1244{
0ae45f63
TT
1245 unsigned long *older_than_this = NULL;
1246 unsigned long expire_time;
5c03449d
SL
1247 LIST_HEAD(tmp);
1248 struct list_head *pos, *node;
cf137307 1249 struct super_block *sb = NULL;
5c03449d 1250 struct inode *inode;
cf137307 1251 int do_sb_sort = 0;
e84d0a4f 1252 int moved = 0;
5c03449d 1253
0ae45f63
TT
1254 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1255 older_than_this = work->older_than_this;
a2f48706
TT
1256 else if (!work->for_sync) {
1257 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
1258 older_than_this = &expire_time;
1259 }
2c136579 1260 while (!list_empty(delaying_queue)) {
7ccf19a8 1261 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
1262 if (older_than_this &&
1263 inode_dirtied_after(inode, *older_than_this))
2c136579 1264 break;
c7f54084 1265 list_move(&inode->i_io_list, &tmp);
a8855990 1266 moved++;
5afced3b 1267 spin_lock(&inode->i_lock);
0ae45f63 1268 if (flags & EXPIRE_DIRTY_ATIME)
5afced3b
JK
1269 inode->i_state |= I_DIRTY_TIME_EXPIRED;
1270 inode->i_state |= I_SYNC_QUEUED;
1271 spin_unlock(&inode->i_lock);
a8855990
JK
1272 if (sb_is_blkdev_sb(inode->i_sb))
1273 continue;
cf137307
JA
1274 if (sb && sb != inode->i_sb)
1275 do_sb_sort = 1;
1276 sb = inode->i_sb;
5c03449d
SL
1277 }
1278
cf137307
JA
1279 /* just one sb in list, splice to dispatch_queue and we're done */
1280 if (!do_sb_sort) {
1281 list_splice(&tmp, dispatch_queue);
e84d0a4f 1282 goto out;
cf137307
JA
1283 }
1284
5c03449d
SL
1285 /* Move inodes from one superblock together */
1286 while (!list_empty(&tmp)) {
7ccf19a8 1287 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1288 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1289 inode = wb_inode(pos);
5c03449d 1290 if (inode->i_sb == sb)
c7f54084 1291 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1292 }
2c136579 1293 }
e84d0a4f
WF
1294out:
1295 return moved;
2c136579
FW
1296}
1297
1298/*
1299 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1300 * Before
1301 * newly dirtied b_dirty b_io b_more_io
1302 * =============> gf edc BA
1303 * After
1304 * newly dirtied b_dirty b_io b_more_io
1305 * =============> g fBAedc
1306 * |
1307 * +--> dequeue for IO
2c136579 1308 */
ad4e38dd 1309static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 1310{
e84d0a4f 1311 int moved;
0ae45f63 1312
f758eeab 1313 assert_spin_locked(&wb->list_lock);
4ea879b9 1314 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
1315 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1316 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1317 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
1318 if (moved)
1319 wb_io_lists_populated(wb);
ad4e38dd 1320 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
1321}
1322
a9185b41 1323static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1324{
9fb0a7da
TH
1325 int ret;
1326
1327 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1328 trace_writeback_write_inode_start(inode, wbc);
1329 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1330 trace_writeback_write_inode(inode, wbc);
1331 return ret;
1332 }
03ba3782 1333 return 0;
08d8e974 1334}
08d8e974 1335
1da177e4 1336/*
169ebd90
JK
1337 * Wait for writeback on an inode to complete. Called with i_lock held.
1338 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1339 */
169ebd90
JK
1340static void __inode_wait_for_writeback(struct inode *inode)
1341 __releases(inode->i_lock)
1342 __acquires(inode->i_lock)
01c03194
CH
1343{
1344 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1345 wait_queue_head_t *wqh;
1346
1347 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1348 while (inode->i_state & I_SYNC) {
1349 spin_unlock(&inode->i_lock);
74316201
N
1350 __wait_on_bit(wqh, &wq, bit_wait,
1351 TASK_UNINTERRUPTIBLE);
250df6ed 1352 spin_lock(&inode->i_lock);
58a9d3d8 1353 }
01c03194
CH
1354}
1355
169ebd90
JK
1356/*
1357 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1358 */
1359void inode_wait_for_writeback(struct inode *inode)
1360{
1361 spin_lock(&inode->i_lock);
1362 __inode_wait_for_writeback(inode);
1363 spin_unlock(&inode->i_lock);
1364}
1365
1366/*
1367 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1368 * held and drops it. It is aimed for callers not holding any inode reference
1369 * so once i_lock is dropped, inode can go away.
1370 */
1371static void inode_sleep_on_writeback(struct inode *inode)
1372 __releases(inode->i_lock)
1373{
1374 DEFINE_WAIT(wait);
1375 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1376 int sleep;
1377
1378 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1379 sleep = inode->i_state & I_SYNC;
1380 spin_unlock(&inode->i_lock);
1381 if (sleep)
1382 schedule();
1383 finish_wait(wqh, &wait);
1384}
1385
ccb26b5a
JK
1386/*
1387 * Find proper writeback list for the inode depending on its current state and
1388 * possibly also change of its state while we were doing writeback. Here we
1389 * handle things such as livelock prevention or fairness of writeback among
1390 * inodes. This function can be called only by flusher thread - noone else
1391 * processes all inodes in writeback lists and requeueing inodes behind flusher
1392 * thread's back can have unexpected consequences.
1393 */
1394static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1395 struct writeback_control *wbc)
1396{
1397 if (inode->i_state & I_FREEING)
1398 return;
1399
1400 /*
1401 * Sync livelock prevention. Each inode is tagged and synced in one
1402 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1403 * the dirty time to prevent enqueue and sync it again.
1404 */
1405 if ((inode->i_state & I_DIRTY) &&
1406 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1407 inode->dirtied_when = jiffies;
1408
4f8ad655
JK
1409 if (wbc->pages_skipped) {
1410 /*
1411 * writeback is not making progress due to locked
1412 * buffers. Skip this inode for now.
1413 */
b35250c0 1414 redirty_tail_locked(inode, wb);
4f8ad655
JK
1415 return;
1416 }
1417
ccb26b5a
JK
1418 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1419 /*
1420 * We didn't write back all the pages. nfs_writepages()
1421 * sometimes bales out without doing anything.
1422 */
1423 if (wbc->nr_to_write <= 0) {
1424 /* Slice used up. Queue for next turn. */
1425 requeue_io(inode, wb);
1426 } else {
1427 /*
1428 * Writeback blocked by something other than
1429 * congestion. Delay the inode for some time to
1430 * avoid spinning on the CPU (100% iowait)
1431 * retrying writeback of the dirty page/inode
1432 * that cannot be performed immediately.
1433 */
b35250c0 1434 redirty_tail_locked(inode, wb);
ccb26b5a
JK
1435 }
1436 } else if (inode->i_state & I_DIRTY) {
1437 /*
1438 * Filesystems can dirty the inode during writeback operations,
1439 * such as delayed allocation during submission or metadata
1440 * updates after data IO completion.
1441 */
b35250c0 1442 redirty_tail_locked(inode, wb);
0ae45f63 1443 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1444 inode->dirtied_when = jiffies;
c7f54084 1445 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
5afced3b 1446 inode->i_state &= ~I_SYNC_QUEUED;
ccb26b5a
JK
1447 } else {
1448 /* The inode is clean. Remove from writeback lists. */
c7f54084 1449 inode_io_list_del_locked(inode, wb);
ccb26b5a
JK
1450 }
1451}
1452
01c03194 1453/*
4f8ad655
JK
1454 * Write out an inode and its dirty pages. Do not update the writeback list
1455 * linkage. That is left to the caller. The caller is also responsible for
1456 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
1457 */
1458static int
cd8ed2a4 1459__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1460{
1da177e4 1461 struct address_space *mapping = inode->i_mapping;
251d6a47 1462 long nr_to_write = wbc->nr_to_write;
01c03194 1463 unsigned dirty;
1da177e4
LT
1464 int ret;
1465
4f8ad655 1466 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1467
9fb0a7da
TH
1468 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1469
1da177e4
LT
1470 ret = do_writepages(mapping, wbc);
1471
26821ed4
CH
1472 /*
1473 * Make sure to wait on the data before writing out the metadata.
1474 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1475 * I/O completion. We don't do it for sync(2) writeback because it has a
1476 * separate, external IO completion path and ->sync_fs for guaranteeing
1477 * inode metadata is written back correctly.
26821ed4 1478 */
7747bd4b 1479 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1480 int err = filemap_fdatawait(mapping);
1da177e4
LT
1481 if (ret == 0)
1482 ret = err;
1483 }
1484
5547e8aa
DM
1485 /*
1486 * Some filesystems may redirty the inode during the writeback
1487 * due to delalloc, clear dirty metadata flags right before
1488 * write_inode()
1489 */
250df6ed 1490 spin_lock(&inode->i_lock);
9c6ac78e 1491
5547e8aa 1492 dirty = inode->i_state & I_DIRTY;
a2f48706 1493 if (inode->i_state & I_DIRTY_TIME) {
0e11f644 1494 if ((dirty & I_DIRTY_INODE) ||
dc5ff2b1 1495 wbc->sync_mode == WB_SYNC_ALL ||
a2f48706
TT
1496 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1497 unlikely(time_after(jiffies,
1498 (inode->dirtied_time_when +
1499 dirtytime_expire_interval * HZ)))) {
1500 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1501 trace_writeback_lazytime(inode);
1502 }
1503 } else
1504 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1505 inode->i_state &= ~dirty;
9c6ac78e
TH
1506
1507 /*
1508 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1509 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1510 * either they see the I_DIRTY bits cleared or we see the dirtied
1511 * inode.
1512 *
1513 * I_DIRTY_PAGES is always cleared together above even if @mapping
1514 * still has dirty pages. The flag is reinstated after smp_mb() if
1515 * necessary. This guarantees that either __mark_inode_dirty()
1516 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1517 */
1518 smp_mb();
1519
1520 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1521 inode->i_state |= I_DIRTY_PAGES;
1522
250df6ed 1523 spin_unlock(&inode->i_lock);
9c6ac78e 1524
0ae45f63
TT
1525 if (dirty & I_DIRTY_TIME)
1526 mark_inode_dirty_sync(inode);
26821ed4 1527 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1528 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1529 int err = write_inode(inode, wbc);
1da177e4
LT
1530 if (ret == 0)
1531 ret = err;
1532 }
4f8ad655
JK
1533 trace_writeback_single_inode(inode, wbc, nr_to_write);
1534 return ret;
1535}
1536
1537/*
1538 * Write out an inode's dirty pages. Either the caller has an active reference
1539 * on the inode or the inode has I_WILL_FREE set.
1540 *
1541 * This function is designed to be called for writing back one inode which
1542 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1543 * and does more profound writeback list handling in writeback_sb_inodes().
1544 */
aaf25593
TH
1545static int writeback_single_inode(struct inode *inode,
1546 struct writeback_control *wbc)
4f8ad655 1547{
aaf25593 1548 struct bdi_writeback *wb;
4f8ad655
JK
1549 int ret = 0;
1550
1551 spin_lock(&inode->i_lock);
1552 if (!atomic_read(&inode->i_count))
1553 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1554 else
1555 WARN_ON(inode->i_state & I_WILL_FREE);
1556
1557 if (inode->i_state & I_SYNC) {
1558 if (wbc->sync_mode != WB_SYNC_ALL)
1559 goto out;
1560 /*
169ebd90
JK
1561 * It's a data-integrity sync. We must wait. Since callers hold
1562 * inode reference or inode has I_WILL_FREE set, it cannot go
1563 * away under us.
4f8ad655 1564 */
169ebd90 1565 __inode_wait_for_writeback(inode);
4f8ad655
JK
1566 }
1567 WARN_ON(inode->i_state & I_SYNC);
1568 /*
f9b0e058
JK
1569 * Skip inode if it is clean and we have no outstanding writeback in
1570 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1571 * function since flusher thread may be doing for example sync in
1572 * parallel and if we move the inode, it could get skipped. So here we
1573 * make sure inode is on some writeback list and leave it there unless
1574 * we have completely cleaned the inode.
4f8ad655 1575 */
0ae45f63 1576 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1577 (wbc->sync_mode != WB_SYNC_ALL ||
1578 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1579 goto out;
1580 inode->i_state |= I_SYNC;
b16b1deb 1581 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1582
cd8ed2a4 1583 ret = __writeback_single_inode(inode, wbc);
1da177e4 1584
b16b1deb 1585 wbc_detach_inode(wbc);
aaf25593
TH
1586
1587 wb = inode_to_wb_and_lock_list(inode);
250df6ed 1588 spin_lock(&inode->i_lock);
4f8ad655
JK
1589 /*
1590 * If inode is clean, remove it from writeback lists. Otherwise don't
1591 * touch it. See comment above for explanation.
1592 */
0ae45f63 1593 if (!(inode->i_state & I_DIRTY_ALL))
c7f54084 1594 inode_io_list_del_locked(inode, wb);
4f8ad655 1595 spin_unlock(&wb->list_lock);
1c0eeaf5 1596 inode_sync_complete(inode);
4f8ad655
JK
1597out:
1598 spin_unlock(&inode->i_lock);
1da177e4
LT
1599 return ret;
1600}
1601
a88a341a 1602static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1603 struct wb_writeback_work *work)
d46db3d5
WF
1604{
1605 long pages;
1606
1607 /*
1608 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1609 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1610 * here avoids calling into writeback_inodes_wb() more than once.
1611 *
1612 * The intended call sequence for WB_SYNC_ALL writeback is:
1613 *
1614 * wb_writeback()
1615 * writeback_sb_inodes() <== called only once
1616 * write_cache_pages() <== called once for each inode
1617 * (quickly) tag currently dirty pages
1618 * (maybe slowly) sync all tagged pages
1619 */
1620 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1621 pages = LONG_MAX;
1a12d8bd 1622 else {
a88a341a 1623 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1624 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1625 pages = min(pages, work->nr_pages);
1626 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1627 MIN_WRITEBACK_PAGES);
1628 }
d46db3d5
WF
1629
1630 return pages;
1631}
1632
f11c9c5c
ES
1633/*
1634 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1635 *
d46db3d5 1636 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1637 *
1638 * NOTE! This is called with wb->list_lock held, and will
1639 * unlock and relock that for each inode it ends up doing
1640 * IO for.
f11c9c5c 1641 */
d46db3d5
WF
1642static long writeback_sb_inodes(struct super_block *sb,
1643 struct bdi_writeback *wb,
1644 struct wb_writeback_work *work)
1da177e4 1645{
d46db3d5
WF
1646 struct writeback_control wbc = {
1647 .sync_mode = work->sync_mode,
1648 .tagged_writepages = work->tagged_writepages,
1649 .for_kupdate = work->for_kupdate,
1650 .for_background = work->for_background,
7747bd4b 1651 .for_sync = work->for_sync,
d46db3d5
WF
1652 .range_cyclic = work->range_cyclic,
1653 .range_start = 0,
1654 .range_end = LLONG_MAX,
1655 };
1656 unsigned long start_time = jiffies;
1657 long write_chunk;
1658 long wrote = 0; /* count both pages and inodes */
1659
03ba3782 1660 while (!list_empty(&wb->b_io)) {
7ccf19a8 1661 struct inode *inode = wb_inode(wb->b_io.prev);
aaf25593 1662 struct bdi_writeback *tmp_wb;
edadfb10
CH
1663
1664 if (inode->i_sb != sb) {
d46db3d5 1665 if (work->sb) {
edadfb10
CH
1666 /*
1667 * We only want to write back data for this
1668 * superblock, move all inodes not belonging
1669 * to it back onto the dirty list.
1670 */
f758eeab 1671 redirty_tail(inode, wb);
edadfb10
CH
1672 continue;
1673 }
1674
1675 /*
1676 * The inode belongs to a different superblock.
1677 * Bounce back to the caller to unpin this and
1678 * pin the next superblock.
1679 */
d46db3d5 1680 break;
edadfb10
CH
1681 }
1682
9843b76a 1683 /*
331cbdee
WL
1684 * Don't bother with new inodes or inodes being freed, first
1685 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1686 * kind writeout is handled by the freer.
1687 */
250df6ed 1688 spin_lock(&inode->i_lock);
9843b76a 1689 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
b35250c0 1690 redirty_tail_locked(inode, wb);
250df6ed 1691 spin_unlock(&inode->i_lock);
7ef0d737
NP
1692 continue;
1693 }
cc1676d9
JK
1694 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1695 /*
1696 * If this inode is locked for writeback and we are not
1697 * doing writeback-for-data-integrity, move it to
1698 * b_more_io so that writeback can proceed with the
1699 * other inodes on s_io.
1700 *
1701 * We'll have another go at writing back this inode
1702 * when we completed a full scan of b_io.
1703 */
1704 spin_unlock(&inode->i_lock);
1705 requeue_io(inode, wb);
1706 trace_writeback_sb_inodes_requeue(inode);
1707 continue;
1708 }
f0d07b7f
JK
1709 spin_unlock(&wb->list_lock);
1710
4f8ad655
JK
1711 /*
1712 * We already requeued the inode if it had I_SYNC set and we
1713 * are doing WB_SYNC_NONE writeback. So this catches only the
1714 * WB_SYNC_ALL case.
1715 */
169ebd90
JK
1716 if (inode->i_state & I_SYNC) {
1717 /* Wait for I_SYNC. This function drops i_lock... */
1718 inode_sleep_on_writeback(inode);
1719 /* Inode may be gone, start again */
ead188f9 1720 spin_lock(&wb->list_lock);
169ebd90
JK
1721 continue;
1722 }
4f8ad655 1723 inode->i_state |= I_SYNC;
b16b1deb 1724 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1725
a88a341a 1726 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1727 wbc.nr_to_write = write_chunk;
1728 wbc.pages_skipped = 0;
250df6ed 1729
169ebd90
JK
1730 /*
1731 * We use I_SYNC to pin the inode in memory. While it is set
1732 * evict_inode() will wait so the inode cannot be freed.
1733 */
cd8ed2a4 1734 __writeback_single_inode(inode, &wbc);
250df6ed 1735
b16b1deb 1736 wbc_detach_inode(&wbc);
d46db3d5
WF
1737 work->nr_pages -= write_chunk - wbc.nr_to_write;
1738 wrote += write_chunk - wbc.nr_to_write;
590dca3a
CM
1739
1740 if (need_resched()) {
1741 /*
1742 * We're trying to balance between building up a nice
1743 * long list of IOs to improve our merge rate, and
1744 * getting those IOs out quickly for anyone throttling
1745 * in balance_dirty_pages(). cond_resched() doesn't
1746 * unplug, so get our IOs out the door before we
1747 * give up the CPU.
1748 */
1749 blk_flush_plug(current);
1750 cond_resched();
1751 }
1752
aaf25593
TH
1753 /*
1754 * Requeue @inode if still dirty. Be careful as @inode may
1755 * have been switched to another wb in the meantime.
1756 */
1757 tmp_wb = inode_to_wb_and_lock_list(inode);
4f8ad655 1758 spin_lock(&inode->i_lock);
0ae45f63 1759 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1760 wrote++;
aaf25593 1761 requeue_inode(inode, tmp_wb, &wbc);
4f8ad655 1762 inode_sync_complete(inode);
0f1b1fd8 1763 spin_unlock(&inode->i_lock);
590dca3a 1764
aaf25593
TH
1765 if (unlikely(tmp_wb != wb)) {
1766 spin_unlock(&tmp_wb->list_lock);
1767 spin_lock(&wb->list_lock);
1768 }
1769
d46db3d5
WF
1770 /*
1771 * bail out to wb_writeback() often enough to check
1772 * background threshold and other termination conditions.
1773 */
1774 if (wrote) {
1775 if (time_is_before_jiffies(start_time + HZ / 10UL))
1776 break;
1777 if (work->nr_pages <= 0)
1778 break;
8bc3be27 1779 }
1da177e4 1780 }
d46db3d5 1781 return wrote;
f11c9c5c
ES
1782}
1783
d46db3d5
WF
1784static long __writeback_inodes_wb(struct bdi_writeback *wb,
1785 struct wb_writeback_work *work)
f11c9c5c 1786{
d46db3d5
WF
1787 unsigned long start_time = jiffies;
1788 long wrote = 0;
38f21977 1789
f11c9c5c 1790 while (!list_empty(&wb->b_io)) {
7ccf19a8 1791 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1792 struct super_block *sb = inode->i_sb;
9ecc2738 1793
eb6ef3df 1794 if (!trylock_super(sb)) {
0e995816 1795 /*
eb6ef3df 1796 * trylock_super() may fail consistently due to
0e995816
WF
1797 * s_umount being grabbed by someone else. Don't use
1798 * requeue_io() to avoid busy retrying the inode/sb.
1799 */
1800 redirty_tail(inode, wb);
edadfb10 1801 continue;
f11c9c5c 1802 }
d46db3d5 1803 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1804 up_read(&sb->s_umount);
f11c9c5c 1805
d46db3d5
WF
1806 /* refer to the same tests at the end of writeback_sb_inodes */
1807 if (wrote) {
1808 if (time_is_before_jiffies(start_time + HZ / 10UL))
1809 break;
1810 if (work->nr_pages <= 0)
1811 break;
1812 }
f11c9c5c 1813 }
66f3b8e2 1814 /* Leave any unwritten inodes on b_io */
d46db3d5 1815 return wrote;
66f3b8e2
JA
1816}
1817
7d9f073b 1818static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1819 enum wb_reason reason)
edadfb10 1820{
d46db3d5
WF
1821 struct wb_writeback_work work = {
1822 .nr_pages = nr_pages,
1823 .sync_mode = WB_SYNC_NONE,
1824 .range_cyclic = 1,
0e175a18 1825 .reason = reason,
d46db3d5 1826 };
505a666e 1827 struct blk_plug plug;
edadfb10 1828
505a666e 1829 blk_start_plug(&plug);
f758eeab 1830 spin_lock(&wb->list_lock);
424b351f 1831 if (list_empty(&wb->b_io))
ad4e38dd 1832 queue_io(wb, &work);
d46db3d5 1833 __writeback_inodes_wb(wb, &work);
f758eeab 1834 spin_unlock(&wb->list_lock);
505a666e 1835 blk_finish_plug(&plug);
edadfb10 1836
d46db3d5
WF
1837 return nr_pages - work.nr_pages;
1838}
03ba3782 1839
03ba3782
JA
1840/*
1841 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1842 *
03ba3782
JA
1843 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1844 * dirtying-time in the inode's address_space. So this periodic writeback code
1845 * just walks the superblock inode list, writing back any inodes which are
1846 * older than a specific point in time.
66f3b8e2 1847 *
03ba3782
JA
1848 * Try to run once per dirty_writeback_interval. But if a writeback event
1849 * takes longer than a dirty_writeback_interval interval, then leave a
1850 * one-second gap.
66f3b8e2 1851 *
03ba3782
JA
1852 * older_than_this takes precedence over nr_to_write. So we'll only write back
1853 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1854 */
c4a77a6c 1855static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1856 struct wb_writeback_work *work)
66f3b8e2 1857{
e98be2d5 1858 unsigned long wb_start = jiffies;
d46db3d5 1859 long nr_pages = work->nr_pages;
0dc83bd3 1860 unsigned long oldest_jif;
a5989bdc 1861 struct inode *inode;
d46db3d5 1862 long progress;
505a666e 1863 struct blk_plug plug;
66f3b8e2 1864
0dc83bd3
JK
1865 oldest_jif = jiffies;
1866 work->older_than_this = &oldest_jif;
38f21977 1867
505a666e 1868 blk_start_plug(&plug);
e8dfc305 1869 spin_lock(&wb->list_lock);
03ba3782
JA
1870 for (;;) {
1871 /*
d3ddec76 1872 * Stop writeback when nr_pages has been consumed
03ba3782 1873 */
83ba7b07 1874 if (work->nr_pages <= 0)
03ba3782 1875 break;
66f3b8e2 1876
aa373cf5
JK
1877 /*
1878 * Background writeout and kupdate-style writeback may
1879 * run forever. Stop them if there is other work to do
1880 * so that e.g. sync can proceed. They'll be restarted
1881 * after the other works are all done.
1882 */
1883 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1884 !list_empty(&wb->work_list))
aa373cf5
JK
1885 break;
1886
38f21977 1887 /*
d3ddec76
WF
1888 * For background writeout, stop when we are below the
1889 * background dirty threshold
38f21977 1890 */
aa661bbe 1891 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1892 break;
38f21977 1893
1bc36b64
JK
1894 /*
1895 * Kupdate and background works are special and we want to
1896 * include all inodes that need writing. Livelock avoidance is
1897 * handled by these works yielding to any other work so we are
1898 * safe.
1899 */
ba9aa839 1900 if (work->for_kupdate) {
0dc83bd3 1901 oldest_jif = jiffies -
ba9aa839 1902 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1903 } else if (work->for_background)
0dc83bd3 1904 oldest_jif = jiffies;
028c2dd1 1905
5634cc2a 1906 trace_writeback_start(wb, work);
e8dfc305 1907 if (list_empty(&wb->b_io))
ad4e38dd 1908 queue_io(wb, work);
83ba7b07 1909 if (work->sb)
d46db3d5 1910 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1911 else
d46db3d5 1912 progress = __writeback_inodes_wb(wb, work);
5634cc2a 1913 trace_writeback_written(wb, work);
028c2dd1 1914
e98be2d5 1915 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1916
1917 /*
e6fb6da2
WF
1918 * Did we write something? Try for more
1919 *
1920 * Dirty inodes are moved to b_io for writeback in batches.
1921 * The completion of the current batch does not necessarily
1922 * mean the overall work is done. So we keep looping as long
1923 * as made some progress on cleaning pages or inodes.
03ba3782 1924 */
d46db3d5 1925 if (progress)
71fd05a8
JA
1926 continue;
1927 /*
e6fb6da2 1928 * No more inodes for IO, bail
71fd05a8 1929 */
b7a2441f 1930 if (list_empty(&wb->b_more_io))
03ba3782 1931 break;
71fd05a8
JA
1932 /*
1933 * Nothing written. Wait for some inode to
1934 * become available for writeback. Otherwise
1935 * we'll just busyloop.
1936 */
bace9248
TE
1937 trace_writeback_wait(wb, work);
1938 inode = wb_inode(wb->b_more_io.prev);
1939 spin_lock(&inode->i_lock);
1940 spin_unlock(&wb->list_lock);
1941 /* This function drops i_lock... */
1942 inode_sleep_on_writeback(inode);
1943 spin_lock(&wb->list_lock);
03ba3782 1944 }
e8dfc305 1945 spin_unlock(&wb->list_lock);
505a666e 1946 blk_finish_plug(&plug);
03ba3782 1947
d46db3d5 1948 return nr_pages - work->nr_pages;
03ba3782
JA
1949}
1950
1951/*
83ba7b07 1952 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1953 */
f0054bb1 1954static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1955{
83ba7b07 1956 struct wb_writeback_work *work = NULL;
03ba3782 1957
f0054bb1
TH
1958 spin_lock_bh(&wb->work_lock);
1959 if (!list_empty(&wb->work_list)) {
1960 work = list_entry(wb->work_list.next,
83ba7b07
CH
1961 struct wb_writeback_work, list);
1962 list_del_init(&work->list);
03ba3782 1963 }
f0054bb1 1964 spin_unlock_bh(&wb->work_lock);
83ba7b07 1965 return work;
03ba3782
JA
1966}
1967
6585027a
JK
1968static long wb_check_background_flush(struct bdi_writeback *wb)
1969{
aa661bbe 1970 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1971
1972 struct wb_writeback_work work = {
1973 .nr_pages = LONG_MAX,
1974 .sync_mode = WB_SYNC_NONE,
1975 .for_background = 1,
1976 .range_cyclic = 1,
0e175a18 1977 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1978 };
1979
1980 return wb_writeback(wb, &work);
1981 }
1982
1983 return 0;
1984}
1985
03ba3782
JA
1986static long wb_check_old_data_flush(struct bdi_writeback *wb)
1987{
1988 unsigned long expired;
1989 long nr_pages;
1990
69b62d01
JA
1991 /*
1992 * When set to zero, disable periodic writeback
1993 */
1994 if (!dirty_writeback_interval)
1995 return 0;
1996
03ba3782
JA
1997 expired = wb->last_old_flush +
1998 msecs_to_jiffies(dirty_writeback_interval * 10);
1999 if (time_before(jiffies, expired))
2000 return 0;
2001
2002 wb->last_old_flush = jiffies;
cdf01dd5 2003 nr_pages = get_nr_dirty_pages();
03ba3782 2004
c4a77a6c 2005 if (nr_pages) {
83ba7b07 2006 struct wb_writeback_work work = {
c4a77a6c
JA
2007 .nr_pages = nr_pages,
2008 .sync_mode = WB_SYNC_NONE,
2009 .for_kupdate = 1,
2010 .range_cyclic = 1,
0e175a18 2011 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
2012 };
2013
83ba7b07 2014 return wb_writeback(wb, &work);
c4a77a6c 2015 }
03ba3782
JA
2016
2017 return 0;
2018}
2019
85009b4f
JA
2020static long wb_check_start_all(struct bdi_writeback *wb)
2021{
2022 long nr_pages;
2023
2024 if (!test_bit(WB_start_all, &wb->state))
2025 return 0;
2026
2027 nr_pages = get_nr_dirty_pages();
2028 if (nr_pages) {
2029 struct wb_writeback_work work = {
2030 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2031 .sync_mode = WB_SYNC_NONE,
2032 .range_cyclic = 1,
2033 .reason = wb->start_all_reason,
2034 };
2035
2036 nr_pages = wb_writeback(wb, &work);
2037 }
2038
2039 clear_bit(WB_start_all, &wb->state);
2040 return nr_pages;
2041}
2042
2043
03ba3782
JA
2044/*
2045 * Retrieve work items and do the writeback they describe
2046 */
25d130ba 2047static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 2048{
83ba7b07 2049 struct wb_writeback_work *work;
c4a77a6c 2050 long wrote = 0;
03ba3782 2051
4452226e 2052 set_bit(WB_writeback_running, &wb->state);
f0054bb1 2053 while ((work = get_next_work_item(wb)) != NULL) {
5634cc2a 2054 trace_writeback_exec(wb, work);
83ba7b07 2055 wrote += wb_writeback(wb, work);
4a3a485b 2056 finish_writeback_work(wb, work);
03ba3782
JA
2057 }
2058
85009b4f
JA
2059 /*
2060 * Check for a flush-everything request
2061 */
2062 wrote += wb_check_start_all(wb);
2063
03ba3782
JA
2064 /*
2065 * Check for periodic writeback, kupdated() style
2066 */
2067 wrote += wb_check_old_data_flush(wb);
6585027a 2068 wrote += wb_check_background_flush(wb);
4452226e 2069 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
2070
2071 return wrote;
2072}
2073
2074/*
2075 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 2076 * reschedules periodically and does kupdated style flushing.
03ba3782 2077 */
f0054bb1 2078void wb_workfn(struct work_struct *work)
03ba3782 2079{
839a8e86
TH
2080 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2081 struct bdi_writeback, dwork);
03ba3782
JA
2082 long pages_written;
2083
68f23b89 2084 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
766f9164 2085 current->flags |= PF_SWAPWRITE;
455b2864 2086
839a8e86 2087 if (likely(!current_is_workqueue_rescuer() ||
4452226e 2088 !test_bit(WB_registered, &wb->state))) {
6467716a 2089 /*
f0054bb1 2090 * The normal path. Keep writing back @wb until its
839a8e86 2091 * work_list is empty. Note that this path is also taken
f0054bb1 2092 * if @wb is shutting down even when we're running off the
839a8e86 2093 * rescuer as work_list needs to be drained.
6467716a 2094 */
839a8e86 2095 do {
25d130ba 2096 pages_written = wb_do_writeback(wb);
839a8e86 2097 trace_writeback_pages_written(pages_written);
f0054bb1 2098 } while (!list_empty(&wb->work_list));
839a8e86
TH
2099 } else {
2100 /*
2101 * bdi_wq can't get enough workers and we're running off
2102 * the emergency worker. Don't hog it. Hopefully, 1024 is
2103 * enough for efficient IO.
2104 */
f0054bb1 2105 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 2106 WB_REASON_FORKER_THREAD);
455b2864 2107 trace_writeback_pages_written(pages_written);
03ba3782
JA
2108 }
2109
f0054bb1 2110 if (!list_empty(&wb->work_list))
b8b78495 2111 wb_wakeup(wb);
6ca738d6 2112 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 2113 wb_wakeup_delayed(wb);
455b2864 2114
839a8e86 2115 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
2116}
2117
595043e5
JA
2118/*
2119 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2120 * write back the whole world.
2121 */
2122static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
e8e8a0c6 2123 enum wb_reason reason)
595043e5
JA
2124{
2125 struct bdi_writeback *wb;
2126
2127 if (!bdi_has_dirty_io(bdi))
2128 return;
2129
2130 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
e8e8a0c6 2131 wb_start_writeback(wb, reason);
595043e5
JA
2132}
2133
2134void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2135 enum wb_reason reason)
2136{
595043e5 2137 rcu_read_lock();
e8e8a0c6 2138 __wakeup_flusher_threads_bdi(bdi, reason);
595043e5
JA
2139 rcu_read_unlock();
2140}
2141
03ba3782 2142/*
9ba4b2df 2143 * Wakeup the flusher threads to start writeback of all currently dirty pages
03ba3782 2144 */
9ba4b2df 2145void wakeup_flusher_threads(enum wb_reason reason)
03ba3782 2146{
b8c2f347 2147 struct backing_dev_info *bdi;
03ba3782 2148
51350ea0
KK
2149 /*
2150 * If we are expecting writeback progress we must submit plugged IO.
2151 */
2152 if (blk_needs_flush_plug(current))
2153 blk_schedule_flush_plug(current);
2154
b8c2f347 2155 rcu_read_lock();
595043e5 2156 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
e8e8a0c6 2157 __wakeup_flusher_threads_bdi(bdi, reason);
cfc4ba53 2158 rcu_read_unlock();
1da177e4
LT
2159}
2160
a2f48706
TT
2161/*
2162 * Wake up bdi's periodically to make sure dirtytime inodes gets
2163 * written back periodically. We deliberately do *not* check the
2164 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2165 * kernel to be constantly waking up once there are any dirtytime
2166 * inodes on the system. So instead we define a separate delayed work
2167 * function which gets called much more rarely. (By default, only
2168 * once every 12 hours.)
2169 *
2170 * If there is any other write activity going on in the file system,
2171 * this function won't be necessary. But if the only thing that has
2172 * happened on the file system is a dirtytime inode caused by an atime
2173 * update, we need this infrastructure below to make sure that inode
2174 * eventually gets pushed out to disk.
2175 */
2176static void wakeup_dirtytime_writeback(struct work_struct *w);
2177static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2178
2179static void wakeup_dirtytime_writeback(struct work_struct *w)
2180{
2181 struct backing_dev_info *bdi;
2182
2183 rcu_read_lock();
2184 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 2185 struct bdi_writeback *wb;
001fe6f6 2186
b817525a 2187 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
2188 if (!list_empty(&wb->b_dirty_time))
2189 wb_wakeup(wb);
a2f48706
TT
2190 }
2191 rcu_read_unlock();
2192 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2193}
2194
2195static int __init start_dirtytime_writeback(void)
2196{
2197 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2198 return 0;
2199}
2200__initcall(start_dirtytime_writeback);
2201
1efff914
TT
2202int dirtytime_interval_handler(struct ctl_table *table, int write,
2203 void __user *buffer, size_t *lenp, loff_t *ppos)
2204{
2205 int ret;
2206
2207 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2208 if (ret == 0 && write)
2209 mod_delayed_work(system_wq, &dirtytime_work, 0);
2210 return ret;
2211}
2212
03ba3782
JA
2213static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2214{
2215 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2216 struct dentry *dentry;
2217 const char *name = "?";
2218
2219 dentry = d_find_alias(inode);
2220 if (dentry) {
2221 spin_lock(&dentry->d_lock);
2222 name = (const char *) dentry->d_name.name;
2223 }
2224 printk(KERN_DEBUG
2225 "%s(%d): dirtied inode %lu (%s) on %s\n",
2226 current->comm, task_pid_nr(current), inode->i_ino,
2227 name, inode->i_sb->s_id);
2228 if (dentry) {
2229 spin_unlock(&dentry->d_lock);
2230 dput(dentry);
2231 }
2232 }
2233}
2234
2235/**
0117d427
MCC
2236 * __mark_inode_dirty - internal function
2237 *
2238 * @inode: inode to mark
2239 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2240 *
2241 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2242 * mark_inode_dirty_sync.
1da177e4 2243 *
03ba3782
JA
2244 * Put the inode on the super block's dirty list.
2245 *
2246 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2247 * dirty list only if it is hashed or if it refers to a blockdev.
2248 * If it was not hashed, it will never be added to the dirty list
2249 * even if it is later hashed, as it will have been marked dirty already.
2250 *
2251 * In short, make sure you hash any inodes _before_ you start marking
2252 * them dirty.
1da177e4 2253 *
03ba3782
JA
2254 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2255 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2256 * the kernel-internal blockdev inode represents the dirtying time of the
2257 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2258 * page->mapping->host, so the page-dirtying time is recorded in the internal
2259 * blockdev inode.
1da177e4 2260 */
03ba3782 2261void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2262{
03ba3782 2263 struct super_block *sb = inode->i_sb;
0ae45f63
TT
2264 int dirtytime;
2265
2266 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2267
03ba3782
JA
2268 /*
2269 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2270 * dirty the inode itself
2271 */
0e11f644 2272 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
9fb0a7da
TH
2273 trace_writeback_dirty_inode_start(inode, flags);
2274
03ba3782 2275 if (sb->s_op->dirty_inode)
aa385729 2276 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
2277
2278 trace_writeback_dirty_inode(inode, flags);
03ba3782 2279 }
0ae45f63
TT
2280 if (flags & I_DIRTY_INODE)
2281 flags &= ~I_DIRTY_TIME;
2282 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
2283
2284 /*
9c6ac78e
TH
2285 * Paired with smp_mb() in __writeback_single_inode() for the
2286 * following lockless i_state test. See there for details.
03ba3782
JA
2287 */
2288 smp_mb();
2289
0ae45f63
TT
2290 if (((inode->i_state & flags) == flags) ||
2291 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
2292 return;
2293
2294 if (unlikely(block_dump))
2295 block_dump___mark_inode_dirty(inode);
2296
250df6ed 2297 spin_lock(&inode->i_lock);
0ae45f63
TT
2298 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2299 goto out_unlock_inode;
03ba3782
JA
2300 if ((inode->i_state & flags) != flags) {
2301 const int was_dirty = inode->i_state & I_DIRTY;
2302
52ebea74
TH
2303 inode_attach_wb(inode, NULL);
2304
0ae45f63
TT
2305 if (flags & I_DIRTY_INODE)
2306 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
2307 inode->i_state |= flags;
2308
2309 /*
5afced3b
JK
2310 * If the inode is queued for writeback by flush worker, just
2311 * update its dirty state. Once the flush worker is done with
2312 * the inode it will place it on the appropriate superblock
2313 * list, based upon its state.
03ba3782 2314 */
5afced3b 2315 if (inode->i_state & I_SYNC_QUEUED)
250df6ed 2316 goto out_unlock_inode;
03ba3782
JA
2317
2318 /*
2319 * Only add valid (hashed) inodes to the superblock's
2320 * dirty list. Add blockdev inodes as well.
2321 */
2322 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2323 if (inode_unhashed(inode))
250df6ed 2324 goto out_unlock_inode;
03ba3782 2325 }
a4ffdde6 2326 if (inode->i_state & I_FREEING)
250df6ed 2327 goto out_unlock_inode;
03ba3782
JA
2328
2329 /*
2330 * If the inode was already on b_dirty/b_io/b_more_io, don't
2331 * reposition it (that would break b_dirty time-ordering).
2332 */
2333 if (!was_dirty) {
87e1d789 2334 struct bdi_writeback *wb;
d6c10f1f 2335 struct list_head *dirty_list;
a66979ab 2336 bool wakeup_bdi = false;
253c34e9 2337
87e1d789 2338 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2339
0747259d
TH
2340 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2341 !test_bit(WB_registered, &wb->state),
1cd925d5 2342 "bdi-%s not registered\n", bdi_dev_name(wb->bdi));
03ba3782
JA
2343
2344 inode->dirtied_when = jiffies;
a2f48706
TT
2345 if (dirtytime)
2346 inode->dirtied_time_when = jiffies;
d6c10f1f 2347
0e11f644 2348 if (inode->i_state & I_DIRTY)
0747259d 2349 dirty_list = &wb->b_dirty;
a2f48706 2350 else
0747259d 2351 dirty_list = &wb->b_dirty_time;
d6c10f1f 2352
c7f54084 2353 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2354 dirty_list);
2355
0747259d 2356 spin_unlock(&wb->list_lock);
0ae45f63 2357 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2358
d6c10f1f
TH
2359 /*
2360 * If this is the first dirty inode for this bdi,
2361 * we have to wake-up the corresponding bdi thread
2362 * to make sure background write-back happens
2363 * later.
2364 */
0747259d
TH
2365 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2366 wb_wakeup_delayed(wb);
a66979ab 2367 return;
1da177e4 2368 }
1da177e4 2369 }
250df6ed
DC
2370out_unlock_inode:
2371 spin_unlock(&inode->i_lock);
03ba3782
JA
2372}
2373EXPORT_SYMBOL(__mark_inode_dirty);
2374
e97fedb9
DC
2375/*
2376 * The @s_sync_lock is used to serialise concurrent sync operations
2377 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2378 * Concurrent callers will block on the s_sync_lock rather than doing contending
2379 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2380 * has been issued up to the time this function is enter is guaranteed to be
2381 * completed by the time we have gained the lock and waited for all IO that is
2382 * in progress regardless of the order callers are granted the lock.
2383 */
b6e51316 2384static void wait_sb_inodes(struct super_block *sb)
03ba3782 2385{
6c60d2b5 2386 LIST_HEAD(sync_list);
03ba3782
JA
2387
2388 /*
2389 * We need to be protected against the filesystem going from
2390 * r/o to r/w or vice versa.
2391 */
b6e51316 2392 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2393
e97fedb9 2394 mutex_lock(&sb->s_sync_lock);
03ba3782
JA
2395
2396 /*
6c60d2b5
DC
2397 * Splice the writeback list onto a temporary list to avoid waiting on
2398 * inodes that have started writeback after this point.
2399 *
2400 * Use rcu_read_lock() to keep the inodes around until we have a
2401 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2402 * the local list because inodes can be dropped from either by writeback
2403 * completion.
2404 */
2405 rcu_read_lock();
2406 spin_lock_irq(&sb->s_inode_wblist_lock);
2407 list_splice_init(&sb->s_inodes_wb, &sync_list);
2408
2409 /*
2410 * Data integrity sync. Must wait for all pages under writeback, because
2411 * there may have been pages dirtied before our sync call, but which had
2412 * writeout started before we write it out. In which case, the inode
2413 * may not be on the dirty list, but we still have to wait for that
2414 * writeout.
03ba3782 2415 */
6c60d2b5
DC
2416 while (!list_empty(&sync_list)) {
2417 struct inode *inode = list_first_entry(&sync_list, struct inode,
2418 i_wb_list);
250df6ed 2419 struct address_space *mapping = inode->i_mapping;
03ba3782 2420
6c60d2b5
DC
2421 /*
2422 * Move each inode back to the wb list before we drop the lock
2423 * to preserve consistency between i_wb_list and the mapping
2424 * writeback tag. Writeback completion is responsible to remove
2425 * the inode from either list once the writeback tag is cleared.
2426 */
2427 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2428
2429 /*
2430 * The mapping can appear untagged while still on-list since we
2431 * do not have the mapping lock. Skip it here, wb completion
2432 * will remove it.
2433 */
2434 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2435 continue;
2436
2437 spin_unlock_irq(&sb->s_inode_wblist_lock);
2438
250df6ed 2439 spin_lock(&inode->i_lock);
6c60d2b5 2440 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
250df6ed 2441 spin_unlock(&inode->i_lock);
6c60d2b5
DC
2442
2443 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2444 continue;
250df6ed 2445 }
03ba3782 2446 __iget(inode);
250df6ed 2447 spin_unlock(&inode->i_lock);
6c60d2b5 2448 rcu_read_unlock();
03ba3782 2449
aa750fd7
JN
2450 /*
2451 * We keep the error status of individual mapping so that
2452 * applications can catch the writeback error using fsync(2).
2453 * See filemap_fdatawait_keep_errors() for details.
2454 */
2455 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2456
2457 cond_resched();
2458
6c60d2b5
DC
2459 iput(inode);
2460
2461 rcu_read_lock();
2462 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2463 }
6c60d2b5
DC
2464 spin_unlock_irq(&sb->s_inode_wblist_lock);
2465 rcu_read_unlock();
e97fedb9 2466 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2467}
2468
f30a7d0c
TH
2469static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2470 enum wb_reason reason, bool skip_if_busy)
1da177e4 2471{
5b9cce4c
TH
2472 struct backing_dev_info *bdi = sb->s_bdi;
2473 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2474 struct wb_writeback_work work = {
6e6938b6
WF
2475 .sb = sb,
2476 .sync_mode = WB_SYNC_NONE,
2477 .tagged_writepages = 1,
2478 .done = &done,
2479 .nr_pages = nr,
0e175a18 2480 .reason = reason,
3c4d7165 2481 };
d8a8559c 2482
e7972912 2483 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2484 return;
cf37e972 2485 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2486
db125360 2487 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
5b9cce4c 2488 wb_wait_for_completion(&done);
e913fc82 2489}
f30a7d0c
TH
2490
2491/**
2492 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2493 * @sb: the superblock
2494 * @nr: the number of pages to write
2495 * @reason: reason why some writeback work initiated
2496 *
2497 * Start writeback on some inodes on this super_block. No guarantees are made
2498 * on how many (if any) will be written, and this function does not wait
2499 * for IO completion of submitted IO.
2500 */
2501void writeback_inodes_sb_nr(struct super_block *sb,
2502 unsigned long nr,
2503 enum wb_reason reason)
2504{
2505 __writeback_inodes_sb_nr(sb, nr, reason, false);
2506}
3259f8be
CM
2507EXPORT_SYMBOL(writeback_inodes_sb_nr);
2508
2509/**
2510 * writeback_inodes_sb - writeback dirty inodes from given super_block
2511 * @sb: the superblock
786228ab 2512 * @reason: reason why some writeback work was initiated
3259f8be
CM
2513 *
2514 * Start writeback on some inodes on this super_block. No guarantees are made
2515 * on how many (if any) will be written, and this function does not wait
2516 * for IO completion of submitted IO.
2517 */
0e175a18 2518void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2519{
0e175a18 2520 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2521}
0e3c9a22 2522EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2523
17bd55d0 2524/**
8264c321 2525 * try_to_writeback_inodes_sb - try to start writeback if none underway
17bd55d0 2526 * @sb: the superblock
8264c321 2527 * @reason: reason why some writeback work was initiated
17bd55d0 2528 *
8264c321 2529 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0 2530 */
8264c321 2531void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
17bd55d0 2532{
10ee27a0 2533 if (!down_read_trylock(&sb->s_umount))
8264c321 2534 return;
10ee27a0 2535
8264c321 2536 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
10ee27a0 2537 up_read(&sb->s_umount);
3259f8be 2538}
10ee27a0 2539EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2540
d8a8559c
JA
2541/**
2542 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2543 * @sb: the superblock
d8a8559c
JA
2544 *
2545 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2546 * super_block.
d8a8559c 2547 */
0dc83bd3 2548void sync_inodes_sb(struct super_block *sb)
d8a8559c 2549{
5b9cce4c
TH
2550 struct backing_dev_info *bdi = sb->s_bdi;
2551 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2552 struct wb_writeback_work work = {
3c4d7165
CH
2553 .sb = sb,
2554 .sync_mode = WB_SYNC_ALL,
2555 .nr_pages = LONG_MAX,
2556 .range_cyclic = 0,
83ba7b07 2557 .done = &done,
0e175a18 2558 .reason = WB_REASON_SYNC,
7747bd4b 2559 .for_sync = 1,
3c4d7165
CH
2560 };
2561
006a0973
TH
2562 /*
2563 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2564 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2565 * bdi_has_dirty() need to be written out too.
2566 */
2567 if (bdi == &noop_backing_dev_info)
6eedc701 2568 return;
cf37e972
CH
2569 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2570
7fc5854f
TH
2571 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2572 bdi_down_write_wb_switch_rwsem(bdi);
db125360 2573 bdi_split_work_to_wbs(bdi, &work, false);
5b9cce4c 2574 wb_wait_for_completion(&done);
7fc5854f 2575 bdi_up_write_wb_switch_rwsem(bdi);
83ba7b07 2576
b6e51316 2577 wait_sb_inodes(sb);
1da177e4 2578}
d8a8559c 2579EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2580
1da177e4 2581/**
7f04c26d
AA
2582 * write_inode_now - write an inode to disk
2583 * @inode: inode to write to disk
2584 * @sync: whether the write should be synchronous or not
2585 *
2586 * This function commits an inode to disk immediately if it is dirty. This is
2587 * primarily needed by knfsd.
1da177e4 2588 *
7f04c26d 2589 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2590 */
1da177e4
LT
2591int write_inode_now(struct inode *inode, int sync)
2592{
1da177e4
LT
2593 struct writeback_control wbc = {
2594 .nr_to_write = LONG_MAX,
18914b18 2595 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2596 .range_start = 0,
2597 .range_end = LLONG_MAX,
1da177e4
LT
2598 };
2599
2600 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2601 wbc.nr_to_write = 0;
1da177e4
LT
2602
2603 might_sleep();
aaf25593 2604 return writeback_single_inode(inode, &wbc);
1da177e4
LT
2605}
2606EXPORT_SYMBOL(write_inode_now);
2607
2608/**
2609 * sync_inode - write an inode and its pages to disk.
2610 * @inode: the inode to sync
2611 * @wbc: controls the writeback mode
2612 *
2613 * sync_inode() will write an inode and its pages to disk. It will also
2614 * correctly update the inode on its superblock's dirty inode lists and will
2615 * update inode->i_state.
2616 *
2617 * The caller must have a ref on the inode.
2618 */
2619int sync_inode(struct inode *inode, struct writeback_control *wbc)
2620{
aaf25593 2621 return writeback_single_inode(inode, wbc);
1da177e4
LT
2622}
2623EXPORT_SYMBOL(sync_inode);
c3765016
CH
2624
2625/**
c691b9d9 2626 * sync_inode_metadata - write an inode to disk
c3765016
CH
2627 * @inode: the inode to sync
2628 * @wait: wait for I/O to complete.
2629 *
c691b9d9 2630 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2631 *
2632 * Note: only writes the actual inode, no associated data or other metadata.
2633 */
2634int sync_inode_metadata(struct inode *inode, int wait)
2635{
2636 struct writeback_control wbc = {
2637 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2638 .nr_to_write = 0, /* metadata-only */
2639 };
2640
2641 return sync_inode(inode, &wbc);
2642}
2643EXPORT_SYMBOL(sync_inode_metadata);
This page took 1.472067 seconds and 4 git commands to generate.