]>
Commit | Line | Data |
---|---|---|
df320f89 SG |
1 | // SPDX-License-Identifier: GPL-2.0 |
2 | /* | |
3 | * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved | |
4 | */ | |
5 | ||
6 | #include <linux/cpu.h> | |
7 | #include <linux/cpufreq.h> | |
8 | #include <linux/delay.h> | |
9 | #include <linux/dma-mapping.h> | |
10 | #include <linux/module.h> | |
11 | #include <linux/of.h> | |
12 | #include <linux/of_platform.h> | |
13 | #include <linux/platform_device.h> | |
14 | #include <linux/slab.h> | |
15 | ||
16 | #include <asm/smp_plat.h> | |
17 | ||
18 | #include <soc/tegra/bpmp.h> | |
19 | #include <soc/tegra/bpmp-abi.h> | |
20 | ||
21 | #define KHZ 1000 | |
22 | #define REF_CLK_MHZ 408 /* 408 MHz */ | |
23 | #define US_DELAY 500 | |
df320f89 SG |
24 | #define CPUFREQ_TBL_STEP_HZ (50 * KHZ * KHZ) |
25 | #define MAX_CNT ~0U | |
26 | ||
27 | /* cpufreq transisition latency */ | |
28 | #define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */ | |
29 | ||
30 | enum cluster { | |
31 | CLUSTER0, | |
32 | CLUSTER1, | |
33 | CLUSTER2, | |
34 | CLUSTER3, | |
35 | MAX_CLUSTERS, | |
36 | }; | |
37 | ||
38 | struct tegra194_cpufreq_data { | |
39 | void __iomem *regs; | |
40 | size_t num_clusters; | |
41 | struct cpufreq_frequency_table **tables; | |
42 | }; | |
43 | ||
44 | struct tegra_cpu_ctr { | |
45 | u32 cpu; | |
df320f89 SG |
46 | u32 coreclk_cnt, last_coreclk_cnt; |
47 | u32 refclk_cnt, last_refclk_cnt; | |
48 | }; | |
49 | ||
50 | struct read_counters_work { | |
51 | struct work_struct work; | |
52 | struct tegra_cpu_ctr c; | |
53 | }; | |
54 | ||
55 | static struct workqueue_struct *read_counters_wq; | |
56 | ||
93d0c1ab | 57 | static void get_cpu_cluster(void *cluster) |
df320f89 | 58 | { |
93d0c1ab SG |
59 | u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; |
60 | ||
61 | *((uint32_t *)cluster) = MPIDR_AFFINITY_LEVEL(mpidr, 1); | |
df320f89 SG |
62 | } |
63 | ||
64 | /* | |
65 | * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1. | |
66 | * The register provides frequency feedback information to | |
67 | * determine the average actual frequency a core has run at over | |
68 | * a period of time. | |
69 | * [31:0] PLLP counter: Counts at fixed frequency (408 MHz) | |
70 | * [63:32] Core clock counter: counts on every core clock cycle | |
71 | * where the core is architecturally clocking | |
72 | */ | |
73 | static u64 read_freq_feedback(void) | |
74 | { | |
75 | u64 val = 0; | |
76 | ||
77 | asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : ); | |
78 | ||
79 | return val; | |
80 | } | |
81 | ||
82 | static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response | |
83 | *nltbl, u16 ndiv) | |
84 | { | |
85 | return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv); | |
86 | } | |
87 | ||
88 | static void tegra_read_counters(struct work_struct *work) | |
89 | { | |
90 | struct read_counters_work *read_counters_work; | |
91 | struct tegra_cpu_ctr *c; | |
92 | u64 val; | |
93 | ||
94 | /* | |
95 | * ref_clk_counter(32 bit counter) runs on constant clk, | |
96 | * pll_p(408MHz). | |
97 | * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter | |
98 | * = 10526880 usec = 10.527 sec to overflow | |
99 | * | |
100 | * Like wise core_clk_counter(32 bit counter) runs on core clock. | |
101 | * It's synchronized to crab_clk (cpu_crab_clk) which runs at | |
102 | * freq of cluster. Assuming max cluster clock ~2000MHz, | |
103 | * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter | |
104 | * = ~2.147 sec to overflow | |
105 | */ | |
106 | read_counters_work = container_of(work, struct read_counters_work, | |
107 | work); | |
108 | c = &read_counters_work->c; | |
109 | ||
110 | val = read_freq_feedback(); | |
111 | c->last_refclk_cnt = lower_32_bits(val); | |
112 | c->last_coreclk_cnt = upper_32_bits(val); | |
93549516 | 113 | udelay(US_DELAY); |
df320f89 SG |
114 | val = read_freq_feedback(); |
115 | c->refclk_cnt = lower_32_bits(val); | |
116 | c->coreclk_cnt = upper_32_bits(val); | |
117 | } | |
118 | ||
119 | /* | |
120 | * Return instantaneous cpu speed | |
121 | * Instantaneous freq is calculated as - | |
122 | * -Takes sample on every query of getting the freq. | |
123 | * - Read core and ref clock counters; | |
124 | * - Delay for X us | |
125 | * - Read above cycle counters again | |
126 | * - Calculates freq by subtracting current and previous counters | |
127 | * divided by the delay time or eqv. of ref_clk_counter in delta time | |
128 | * - Return Kcycles/second, freq in KHz | |
129 | * | |
130 | * delta time period = x sec | |
131 | * = delta ref_clk_counter / (408 * 10^6) sec | |
132 | * freq in Hz = cycles/sec | |
133 | * = (delta cycles / x sec | |
134 | * = (delta cycles * 408 * 10^6) / delta ref_clk_counter | |
135 | * in KHz = (delta cycles * 408 * 10^3) / delta ref_clk_counter | |
136 | * | |
137 | * @cpu - logical cpu whose freq to be updated | |
138 | * Returns freq in KHz on success, 0 if cpu is offline | |
139 | */ | |
f45f89a7 | 140 | static unsigned int tegra194_calculate_speed(u32 cpu) |
df320f89 SG |
141 | { |
142 | struct read_counters_work read_counters_work; | |
143 | struct tegra_cpu_ctr c; | |
144 | u32 delta_refcnt; | |
145 | u32 delta_ccnt; | |
146 | u32 rate_mhz; | |
147 | ||
148 | /* | |
149 | * udelay() is required to reconstruct cpu frequency over an | |
150 | * observation window. Using workqueue to call udelay() with | |
151 | * interrupts enabled. | |
152 | */ | |
153 | read_counters_work.c.cpu = cpu; | |
df320f89 SG |
154 | INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters); |
155 | queue_work_on(cpu, read_counters_wq, &read_counters_work.work); | |
156 | flush_work(&read_counters_work.work); | |
157 | c = read_counters_work.c; | |
158 | ||
159 | if (c.coreclk_cnt < c.last_coreclk_cnt) | |
160 | delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt); | |
161 | else | |
162 | delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt; | |
163 | if (!delta_ccnt) | |
164 | return 0; | |
165 | ||
166 | /* ref clock is 32 bits */ | |
167 | if (c.refclk_cnt < c.last_refclk_cnt) | |
168 | delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt); | |
169 | else | |
170 | delta_refcnt = c.refclk_cnt - c.last_refclk_cnt; | |
171 | if (!delta_refcnt) { | |
172 | pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu); | |
173 | return 0; | |
174 | } | |
175 | rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt; | |
176 | ||
177 | return (rate_mhz * KHZ); /* in KHz */ | |
178 | } | |
179 | ||
68b9cd72 SG |
180 | static void get_cpu_ndiv(void *ndiv) |
181 | { | |
182 | u64 ndiv_val; | |
183 | ||
184 | asm volatile("mrs %0, s3_0_c15_c0_4" : "=r" (ndiv_val) : ); | |
185 | ||
186 | *(u64 *)ndiv = ndiv_val; | |
187 | } | |
188 | ||
189 | static void set_cpu_ndiv(void *data) | |
190 | { | |
191 | struct cpufreq_frequency_table *tbl = data; | |
192 | u64 ndiv_val = (u64)tbl->driver_data; | |
193 | ||
194 | asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val)); | |
195 | } | |
196 | ||
df320f89 SG |
197 | static unsigned int tegra194_get_speed(u32 cpu) |
198 | { | |
68b9cd72 SG |
199 | struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); |
200 | struct cpufreq_frequency_table *pos; | |
201 | unsigned int rate; | |
202 | u64 ndiv; | |
203 | int ret; | |
204 | u32 cl; | |
205 | ||
206 | smp_call_function_single(cpu, get_cpu_cluster, &cl, true); | |
207 | ||
208 | /* reconstruct actual cpu freq using counters */ | |
f45f89a7 | 209 | rate = tegra194_calculate_speed(cpu); |
68b9cd72 SG |
210 | |
211 | /* get last written ndiv value */ | |
212 | ret = smp_call_function_single(cpu, get_cpu_ndiv, &ndiv, true); | |
213 | if (WARN_ON_ONCE(ret)) | |
214 | return rate; | |
215 | ||
216 | /* | |
217 | * If the reconstructed frequency has acceptable delta from | |
218 | * the last written value, then return freq corresponding | |
219 | * to the last written ndiv value from freq_table. This is | |
220 | * done to return consistent value. | |
221 | */ | |
222 | cpufreq_for_each_valid_entry(pos, data->tables[cl]) { | |
223 | if (pos->driver_data != ndiv) | |
224 | continue; | |
225 | ||
226 | if (abs(pos->frequency - rate) > 115200) { | |
227 | pr_warn("cpufreq: cpu%d,cur:%u,set:%u,set ndiv:%llu\n", | |
228 | cpu, rate, pos->frequency, ndiv); | |
229 | } else { | |
230 | rate = pos->frequency; | |
231 | } | |
232 | break; | |
233 | } | |
234 | return rate; | |
df320f89 SG |
235 | } |
236 | ||
237 | static int tegra194_cpufreq_init(struct cpufreq_policy *policy) | |
238 | { | |
239 | struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); | |
df320f89 | 240 | u32 cpu; |
93d0c1ab SG |
241 | u32 cl; |
242 | ||
243 | smp_call_function_single(policy->cpu, get_cpu_cluster, &cl, true); | |
df320f89 SG |
244 | |
245 | if (cl >= data->num_clusters) | |
246 | return -EINVAL; | |
247 | ||
df320f89 SG |
248 | /* set same policy for all cpus in a cluster */ |
249 | for (cpu = (cl * 2); cpu < ((cl + 1) * 2); cpu++) | |
250 | cpumask_set_cpu(cpu, policy->cpus); | |
251 | ||
252 | policy->freq_table = data->tables[cl]; | |
253 | policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY; | |
254 | ||
255 | return 0; | |
256 | } | |
257 | ||
df320f89 SG |
258 | static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy, |
259 | unsigned int index) | |
260 | { | |
261 | struct cpufreq_frequency_table *tbl = policy->freq_table + index; | |
262 | ||
263 | /* | |
264 | * Each core writes frequency in per core register. Then both cores | |
265 | * in a cluster run at same frequency which is the maximum frequency | |
266 | * request out of the values requested by both cores in that cluster. | |
267 | */ | |
268 | on_each_cpu_mask(policy->cpus, set_cpu_ndiv, tbl, true); | |
269 | ||
270 | return 0; | |
271 | } | |
272 | ||
273 | static struct cpufreq_driver tegra194_cpufreq_driver = { | |
274 | .name = "tegra194", | |
5ae4a4b4 | 275 | .flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_INITIAL_FREQ_CHECK, |
df320f89 SG |
276 | .verify = cpufreq_generic_frequency_table_verify, |
277 | .target_index = tegra194_cpufreq_set_target, | |
278 | .get = tegra194_get_speed, | |
279 | .init = tegra194_cpufreq_init, | |
280 | .attr = cpufreq_generic_attr, | |
281 | }; | |
282 | ||
283 | static void tegra194_cpufreq_free_resources(void) | |
284 | { | |
285 | destroy_workqueue(read_counters_wq); | |
286 | } | |
287 | ||
288 | static struct cpufreq_frequency_table * | |
289 | init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp, | |
290 | unsigned int cluster_id) | |
291 | { | |
292 | struct cpufreq_frequency_table *freq_table; | |
293 | struct mrq_cpu_ndiv_limits_response resp; | |
294 | unsigned int num_freqs, ndiv, delta_ndiv; | |
295 | struct mrq_cpu_ndiv_limits_request req; | |
296 | struct tegra_bpmp_message msg; | |
297 | u16 freq_table_step_size; | |
298 | int err, index; | |
299 | ||
300 | memset(&req, 0, sizeof(req)); | |
301 | req.cluster_id = cluster_id; | |
302 | ||
303 | memset(&msg, 0, sizeof(msg)); | |
304 | msg.mrq = MRQ_CPU_NDIV_LIMITS; | |
305 | msg.tx.data = &req; | |
306 | msg.tx.size = sizeof(req); | |
307 | msg.rx.data = &resp; | |
308 | msg.rx.size = sizeof(resp); | |
309 | ||
310 | err = tegra_bpmp_transfer(bpmp, &msg); | |
311 | if (err) | |
312 | return ERR_PTR(err); | |
313 | ||
314 | /* | |
315 | * Make sure frequency table step is a multiple of mdiv to match | |
316 | * vhint table granularity. | |
317 | */ | |
318 | freq_table_step_size = resp.mdiv * | |
319 | DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz); | |
320 | ||
321 | dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n", | |
322 | cluster_id, freq_table_step_size); | |
323 | ||
324 | delta_ndiv = resp.ndiv_max - resp.ndiv_min; | |
325 | ||
326 | if (unlikely(delta_ndiv == 0)) { | |
327 | num_freqs = 1; | |
328 | } else { | |
329 | /* We store both ndiv_min and ndiv_max hence the +1 */ | |
330 | num_freqs = delta_ndiv / freq_table_step_size + 1; | |
331 | } | |
332 | ||
333 | num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0; | |
334 | ||
335 | freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1, | |
336 | sizeof(*freq_table), GFP_KERNEL); | |
337 | if (!freq_table) | |
338 | return ERR_PTR(-ENOMEM); | |
339 | ||
340 | for (index = 0, ndiv = resp.ndiv_min; | |
341 | ndiv < resp.ndiv_max; | |
342 | index++, ndiv += freq_table_step_size) { | |
343 | freq_table[index].driver_data = ndiv; | |
344 | freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv); | |
345 | } | |
346 | ||
347 | freq_table[index].driver_data = resp.ndiv_max; | |
348 | freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max); | |
349 | freq_table[index].frequency = CPUFREQ_TABLE_END; | |
350 | ||
351 | return freq_table; | |
352 | } | |
353 | ||
354 | static int tegra194_cpufreq_probe(struct platform_device *pdev) | |
355 | { | |
356 | struct tegra194_cpufreq_data *data; | |
357 | struct tegra_bpmp *bpmp; | |
358 | int err, i; | |
359 | ||
360 | data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); | |
361 | if (!data) | |
362 | return -ENOMEM; | |
363 | ||
364 | data->num_clusters = MAX_CLUSTERS; | |
365 | data->tables = devm_kcalloc(&pdev->dev, data->num_clusters, | |
366 | sizeof(*data->tables), GFP_KERNEL); | |
367 | if (!data->tables) | |
368 | return -ENOMEM; | |
369 | ||
370 | platform_set_drvdata(pdev, data); | |
371 | ||
372 | bpmp = tegra_bpmp_get(&pdev->dev); | |
373 | if (IS_ERR(bpmp)) | |
374 | return PTR_ERR(bpmp); | |
375 | ||
376 | read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1); | |
377 | if (!read_counters_wq) { | |
378 | dev_err(&pdev->dev, "fail to create_workqueue\n"); | |
379 | err = -EINVAL; | |
380 | goto put_bpmp; | |
381 | } | |
382 | ||
383 | for (i = 0; i < data->num_clusters; i++) { | |
384 | data->tables[i] = init_freq_table(pdev, bpmp, i); | |
385 | if (IS_ERR(data->tables[i])) { | |
386 | err = PTR_ERR(data->tables[i]); | |
387 | goto err_free_res; | |
388 | } | |
389 | } | |
390 | ||
391 | tegra194_cpufreq_driver.driver_data = data; | |
392 | ||
393 | err = cpufreq_register_driver(&tegra194_cpufreq_driver); | |
394 | if (!err) | |
395 | goto put_bpmp; | |
396 | ||
397 | err_free_res: | |
398 | tegra194_cpufreq_free_resources(); | |
399 | put_bpmp: | |
400 | tegra_bpmp_put(bpmp); | |
401 | return err; | |
402 | } | |
403 | ||
404 | static int tegra194_cpufreq_remove(struct platform_device *pdev) | |
405 | { | |
406 | cpufreq_unregister_driver(&tegra194_cpufreq_driver); | |
407 | tegra194_cpufreq_free_resources(); | |
408 | ||
409 | return 0; | |
410 | } | |
411 | ||
412 | static const struct of_device_id tegra194_cpufreq_of_match[] = { | |
413 | { .compatible = "nvidia,tegra194-ccplex", }, | |
414 | { /* sentinel */ } | |
415 | }; | |
416 | MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match); | |
417 | ||
418 | static struct platform_driver tegra194_ccplex_driver = { | |
419 | .driver = { | |
420 | .name = "tegra194-cpufreq", | |
421 | .of_match_table = tegra194_cpufreq_of_match, | |
422 | }, | |
423 | .probe = tegra194_cpufreq_probe, | |
424 | .remove = tegra194_cpufreq_remove, | |
425 | }; | |
426 | module_platform_driver(tegra194_ccplex_driver); | |
427 | ||
428 | MODULE_AUTHOR("Mikko Perttunen <[email protected]>"); | |
429 | MODULE_AUTHOR("Sumit Gupta <[email protected]>"); | |
430 | MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver"); | |
431 | MODULE_LICENSE("GPL v2"); |