]> Git Repo - linux.git/blame - fs/aio.c
Merge tag 'for-v6.8-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux...
[linux.git] / fs / aio.c
CommitLineData
1da177e4
LT
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <[email protected]>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
bfe4037e 8 * Copyright 2018 Christoph Hellwig.
1da177e4
LT
9 *
10 * See ../COPYING for licensing terms.
11 */
caf4167a
KO
12#define pr_fmt(fmt) "%s: " fmt, __func__
13
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/init.h>
16#include <linux/errno.h>
17#include <linux/time.h>
18#include <linux/aio_abi.h>
630d9c47 19#include <linux/export.h>
1da177e4 20#include <linux/syscalls.h>
b9d128f1 21#include <linux/backing-dev.h>
9018ccc4 22#include <linux/refcount.h>
027445c3 23#include <linux/uio.h>
1da177e4 24
174cd4b1 25#include <linux/sched/signal.h>
1da177e4
LT
26#include <linux/fs.h>
27#include <linux/file.h>
28#include <linux/mm.h>
29#include <linux/mman.h>
e1bdd5f2 30#include <linux/percpu.h>
1da177e4
LT
31#include <linux/slab.h>
32#include <linux/timer.h>
33#include <linux/aio.h>
34#include <linux/highmem.h>
35#include <linux/workqueue.h>
36#include <linux/security.h>
9c3060be 37#include <linux/eventfd.h>
cfb1e33e 38#include <linux/blkdev.h>
9d85cba7 39#include <linux/compat.h>
36bc08cc
GZ
40#include <linux/migrate.h>
41#include <linux/ramfs.h>
723be6e3 42#include <linux/percpu-refcount.h>
71ad7490 43#include <linux/mount.h>
52db59df 44#include <linux/pseudo_fs.h>
1da177e4 45
7c0f6ba6 46#include <linux/uaccess.h>
a538e3ff 47#include <linux/nospec.h>
1da177e4 48
68d70d03
AV
49#include "internal.h"
50
f3a2752a
CH
51#define KIOCB_KEY 0
52
4e179bca
KO
53#define AIO_RING_MAGIC 0xa10a10a1
54#define AIO_RING_COMPAT_FEATURES 1
55#define AIO_RING_INCOMPAT_FEATURES 0
56struct aio_ring {
57 unsigned id; /* kernel internal index number */
58 unsigned nr; /* number of io_events */
fa8a53c3
BL
59 unsigned head; /* Written to by userland or under ring_lock
60 * mutex by aio_read_events_ring(). */
4e179bca
KO
61 unsigned tail;
62
63 unsigned magic;
64 unsigned compat_features;
65 unsigned incompat_features;
66 unsigned header_length; /* size of aio_ring */
67
68
241cb28e 69 struct io_event io_events[];
4e179bca
KO
70}; /* 128 bytes + ring size */
71
a79d40e9
JA
72/*
73 * Plugging is meant to work with larger batches of IOs. If we don't
74 * have more than the below, then don't bother setting up a plug.
75 */
76#define AIO_PLUG_THRESHOLD 2
77
4e179bca 78#define AIO_RING_PAGES 8
4e179bca 79
db446a08 80struct kioctx_table {
d0264c01
TH
81 struct rcu_head rcu;
82 unsigned nr;
db7fcc88 83 struct kioctx __rcu *table[] __counted_by(nr);
db446a08
BL
84};
85
e1bdd5f2
KO
86struct kioctx_cpu {
87 unsigned reqs_available;
88};
89
dc48e56d
JA
90struct ctx_rq_wait {
91 struct completion comp;
92 atomic_t count;
93};
94
4e179bca 95struct kioctx {
723be6e3 96 struct percpu_ref users;
36f55889 97 atomic_t dead;
4e179bca 98
e34ecee2
KO
99 struct percpu_ref reqs;
100
4e179bca 101 unsigned long user_id;
4e179bca 102
e1bdd5f2
KO
103 struct __percpu kioctx_cpu *cpu;
104
105 /*
106 * For percpu reqs_available, number of slots we move to/from global
107 * counter at a time:
108 */
109 unsigned req_batch;
3e845ce0
KO
110 /*
111 * This is what userspace passed to io_setup(), it's not used for
112 * anything but counting against the global max_reqs quota.
113 *
58c85dc2 114 * The real limit is nr_events - 1, which will be larger (see
3e845ce0
KO
115 * aio_setup_ring())
116 */
4e179bca
KO
117 unsigned max_reqs;
118
58c85dc2
KO
119 /* Size of ringbuffer, in units of struct io_event */
120 unsigned nr_events;
4e179bca 121
58c85dc2
KO
122 unsigned long mmap_base;
123 unsigned long mmap_size;
124
125 struct page **ring_pages;
126 long nr_pages;
127
f729863a 128 struct rcu_work free_rwork; /* see free_ioctx() */
4e23bcae 129
e02ba72a
AP
130 /*
131 * signals when all in-flight requests are done
132 */
dc48e56d 133 struct ctx_rq_wait *rq_wait;
e02ba72a 134
4e23bcae 135 struct {
34e83fc6
KO
136 /*
137 * This counts the number of available slots in the ringbuffer,
138 * so we avoid overflowing it: it's decremented (if positive)
139 * when allocating a kiocb and incremented when the resulting
140 * io_event is pulled off the ringbuffer.
e1bdd5f2
KO
141 *
142 * We batch accesses to it with a percpu version.
34e83fc6
KO
143 */
144 atomic_t reqs_available;
4e23bcae
KO
145 } ____cacheline_aligned_in_smp;
146
147 struct {
148 spinlock_t ctx_lock;
149 struct list_head active_reqs; /* used for cancellation */
150 } ____cacheline_aligned_in_smp;
151
58c85dc2
KO
152 struct {
153 struct mutex ring_lock;
4e23bcae
KO
154 wait_queue_head_t wait;
155 } ____cacheline_aligned_in_smp;
58c85dc2
KO
156
157 struct {
158 unsigned tail;
d856f32a 159 unsigned completed_events;
58c85dc2 160 spinlock_t completion_lock;
4e23bcae 161 } ____cacheline_aligned_in_smp;
58c85dc2
KO
162
163 struct page *internal_pages[AIO_RING_PAGES];
36bc08cc 164 struct file *aio_ring_file;
db446a08
BL
165
166 unsigned id;
4e179bca
KO
167};
168
84c4e1f8
LT
169/*
170 * First field must be the file pointer in all the
171 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172 */
a3c0d439 173struct fsync_iocb {
a3c0d439 174 struct file *file;
84c4e1f8 175 struct work_struct work;
a3c0d439 176 bool datasync;
530f32fc 177 struct cred *creds;
a3c0d439
CH
178};
179
bfe4037e
CH
180struct poll_iocb {
181 struct file *file;
182 struct wait_queue_head *head;
183 __poll_t events;
bfe4037e 184 bool cancelled;
363bee27
EB
185 bool work_scheduled;
186 bool work_need_resched;
bfe4037e
CH
187 struct wait_queue_entry wait;
188 struct work_struct work;
189};
190
84c4e1f8
LT
191/*
192 * NOTE! Each of the iocb union members has the file pointer
193 * as the first entry in their struct definition. So you can
194 * access the file pointer through any of the sub-structs,
195 * or directly as just 'ki_filp' in this struct.
196 */
04b2fa9f 197struct aio_kiocb {
54843f87 198 union {
84c4e1f8 199 struct file *ki_filp;
54843f87 200 struct kiocb rw;
a3c0d439 201 struct fsync_iocb fsync;
bfe4037e 202 struct poll_iocb poll;
54843f87 203 };
04b2fa9f
CH
204
205 struct kioctx *ki_ctx;
206 kiocb_cancel_fn *ki_cancel;
207
a9339b78 208 struct io_event ki_res;
04b2fa9f
CH
209
210 struct list_head ki_list; /* the aio core uses this
211 * for cancellation */
9018ccc4 212 refcount_t ki_refcnt;
04b2fa9f
CH
213
214 /*
215 * If the aio_resfd field of the userspace iocb is not zero,
216 * this is the underlying eventfd context to deliver events to.
217 */
218 struct eventfd_ctx *ki_eventfd;
219};
220
1da177e4 221/*------ sysctl variables----*/
d55b5fda 222static DEFINE_SPINLOCK(aio_nr_lock);
86b12b6c
XN
223static unsigned long aio_nr; /* current system wide number of aio requests */
224static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
1da177e4 225/*----end sysctl variables---*/
86b12b6c
XN
226#ifdef CONFIG_SYSCTL
227static struct ctl_table aio_sysctls[] = {
228 {
229 .procname = "aio-nr",
230 .data = &aio_nr,
231 .maxlen = sizeof(aio_nr),
232 .mode = 0444,
233 .proc_handler = proc_doulongvec_minmax,
234 },
235 {
236 .procname = "aio-max-nr",
237 .data = &aio_max_nr,
238 .maxlen = sizeof(aio_max_nr),
239 .mode = 0644,
240 .proc_handler = proc_doulongvec_minmax,
241 },
86b12b6c
XN
242};
243
244static void __init aio_sysctl_init(void)
245{
246 register_sysctl_init("fs", aio_sysctls);
247}
248#else
249#define aio_sysctl_init() do { } while (0)
250#endif
1da177e4 251
e18b890b
CL
252static struct kmem_cache *kiocb_cachep;
253static struct kmem_cache *kioctx_cachep;
1da177e4 254
71ad7490
BL
255static struct vfsmount *aio_mnt;
256
257static const struct file_operations aio_ring_fops;
258static const struct address_space_operations aio_ctx_aops;
259
260static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
261{
71ad7490 262 struct file *file;
71ad7490 263 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
7f62656b
DC
264 if (IS_ERR(inode))
265 return ERR_CAST(inode);
71ad7490
BL
266
267 inode->i_mapping->a_ops = &aio_ctx_aops;
600f111e 268 inode->i_mapping->i_private_data = ctx;
71ad7490
BL
269 inode->i_size = PAGE_SIZE * nr_pages;
270
d93aa9d8
AV
271 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
272 O_RDWR, &aio_ring_fops);
c9c554f2 273 if (IS_ERR(file))
71ad7490 274 iput(inode);
71ad7490
BL
275 return file;
276}
277
52db59df 278static int aio_init_fs_context(struct fs_context *fc)
71ad7490 279{
52db59df
DH
280 if (!init_pseudo(fc, AIO_RING_MAGIC))
281 return -ENOMEM;
282 fc->s_iflags |= SB_I_NOEXEC;
283 return 0;
71ad7490
BL
284}
285
1da177e4
LT
286/* aio_setup
287 * Creates the slab caches used by the aio routines, panic on
288 * failure as this is done early during the boot sequence.
289 */
290static int __init aio_setup(void)
291{
71ad7490
BL
292 static struct file_system_type aio_fs = {
293 .name = "aio",
52db59df 294 .init_fs_context = aio_init_fs_context,
71ad7490
BL
295 .kill_sb = kill_anon_super,
296 };
297 aio_mnt = kern_mount(&aio_fs);
298 if (IS_ERR(aio_mnt))
299 panic("Failed to create aio fs mount.");
300
04b2fa9f 301 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
0a31bd5f 302 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
86b12b6c 303 aio_sysctl_init();
1da177e4
LT
304 return 0;
305}
385773e0 306__initcall(aio_setup);
1da177e4 307
5e9ae2e5
BL
308static void put_aio_ring_file(struct kioctx *ctx)
309{
310 struct file *aio_ring_file = ctx->aio_ring_file;
de04e769
RV
311 struct address_space *i_mapping;
312
5e9ae2e5 313 if (aio_ring_file) {
45063097 314 truncate_setsize(file_inode(aio_ring_file), 0);
5e9ae2e5
BL
315
316 /* Prevent further access to the kioctx from migratepages */
45063097 317 i_mapping = aio_ring_file->f_mapping;
600f111e
MWO
318 spin_lock(&i_mapping->i_private_lock);
319 i_mapping->i_private_data = NULL;
5e9ae2e5 320 ctx->aio_ring_file = NULL;
600f111e 321 spin_unlock(&i_mapping->i_private_lock);
5e9ae2e5
BL
322
323 fput(aio_ring_file);
324 }
325}
326
1da177e4
LT
327static void aio_free_ring(struct kioctx *ctx)
328{
36bc08cc 329 int i;
1da177e4 330
fa8a53c3
BL
331 /* Disconnect the kiotx from the ring file. This prevents future
332 * accesses to the kioctx from page migration.
333 */
334 put_aio_ring_file(ctx);
335
36bc08cc 336 for (i = 0; i < ctx->nr_pages; i++) {
8e321fef 337 struct page *page;
36bc08cc
GZ
338 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
339 page_count(ctx->ring_pages[i]));
8e321fef
BL
340 page = ctx->ring_pages[i];
341 if (!page)
342 continue;
343 ctx->ring_pages[i] = NULL;
344 put_page(page);
36bc08cc 345 }
1da177e4 346
ddb8c45b 347 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
58c85dc2 348 kfree(ctx->ring_pages);
ddb8c45b
SL
349 ctx->ring_pages = NULL;
350 }
36bc08cc
GZ
351}
352
14d07113 353static int aio_ring_mremap(struct vm_area_struct *vma)
e4a0d3e7 354{
5477e70a 355 struct file *file = vma->vm_file;
e4a0d3e7
PE
356 struct mm_struct *mm = vma->vm_mm;
357 struct kioctx_table *table;
b2edffdd 358 int i, res = -EINVAL;
e4a0d3e7
PE
359
360 spin_lock(&mm->ioctx_lock);
361 rcu_read_lock();
362 table = rcu_dereference(mm->ioctx_table);
81e9d6f8
SJ
363 if (!table)
364 goto out_unlock;
365
e4a0d3e7
PE
366 for (i = 0; i < table->nr; i++) {
367 struct kioctx *ctx;
368
d0264c01 369 ctx = rcu_dereference(table->table[i]);
e4a0d3e7 370 if (ctx && ctx->aio_ring_file == file) {
b2edffdd
AV
371 if (!atomic_read(&ctx->dead)) {
372 ctx->user_id = ctx->mmap_base = vma->vm_start;
373 res = 0;
374 }
e4a0d3e7
PE
375 break;
376 }
377 }
378
81e9d6f8 379out_unlock:
e4a0d3e7
PE
380 rcu_read_unlock();
381 spin_unlock(&mm->ioctx_lock);
b2edffdd 382 return res;
e4a0d3e7
PE
383}
384
5477e70a
ON
385static const struct vm_operations_struct aio_ring_vm_ops = {
386 .mremap = aio_ring_mremap,
387#if IS_ENABLED(CONFIG_MMU)
388 .fault = filemap_fault,
389 .map_pages = filemap_map_pages,
390 .page_mkwrite = filemap_page_mkwrite,
391#endif
392};
393
394static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
395{
1c71222e 396 vm_flags_set(vma, VM_DONTEXPAND);
5477e70a
ON
397 vma->vm_ops = &aio_ring_vm_ops;
398 return 0;
399}
400
36bc08cc
GZ
401static const struct file_operations aio_ring_fops = {
402 .mmap = aio_ring_mmap,
403};
404
0c45355f 405#if IS_ENABLED(CONFIG_MIGRATION)
3648951c
MWO
406static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
407 struct folio *src, enum migrate_mode mode)
36bc08cc 408{
5e9ae2e5 409 struct kioctx *ctx;
36bc08cc 410 unsigned long flags;
fa8a53c3 411 pgoff_t idx;
36bc08cc
GZ
412 int rc;
413
2916ecc0
JG
414 /*
415 * We cannot support the _NO_COPY case here, because copy needs to
416 * happen under the ctx->completion_lock. That does not work with the
417 * migration workflow of MIGRATE_SYNC_NO_COPY.
418 */
419 if (mode == MIGRATE_SYNC_NO_COPY)
420 return -EINVAL;
421
8e321fef
BL
422 rc = 0;
423
600f111e
MWO
424 /* mapping->i_private_lock here protects against the kioctx teardown. */
425 spin_lock(&mapping->i_private_lock);
426 ctx = mapping->i_private_data;
fa8a53c3
BL
427 if (!ctx) {
428 rc = -EINVAL;
429 goto out;
430 }
431
432 /* The ring_lock mutex. The prevents aio_read_events() from writing
433 * to the ring's head, and prevents page migration from mucking in
434 * a partially initialized kiotx.
435 */
436 if (!mutex_trylock(&ctx->ring_lock)) {
437 rc = -EAGAIN;
438 goto out;
439 }
440
3648951c 441 idx = src->index;
fa8a53c3 442 if (idx < (pgoff_t)ctx->nr_pages) {
3648951c
MWO
443 /* Make sure the old folio hasn't already been changed */
444 if (ctx->ring_pages[idx] != &src->page)
fa8a53c3 445 rc = -EAGAIN;
8e321fef
BL
446 } else
447 rc = -EINVAL;
8e321fef
BL
448
449 if (rc != 0)
fa8a53c3 450 goto out_unlock;
8e321fef 451
36bc08cc 452 /* Writeback must be complete */
3648951c
MWO
453 BUG_ON(folio_test_writeback(src));
454 folio_get(dst);
36bc08cc 455
3648951c 456 rc = folio_migrate_mapping(mapping, dst, src, 1);
36bc08cc 457 if (rc != MIGRATEPAGE_SUCCESS) {
3648951c 458 folio_put(dst);
fa8a53c3 459 goto out_unlock;
36bc08cc
GZ
460 }
461
fa8a53c3 462 /* Take completion_lock to prevent other writes to the ring buffer
3648951c 463 * while the old folio is copied to the new. This prevents new
fa8a53c3 464 * events from being lost.
5e9ae2e5 465 */
fa8a53c3 466 spin_lock_irqsave(&ctx->completion_lock, flags);
3648951c
MWO
467 folio_migrate_copy(dst, src);
468 BUG_ON(ctx->ring_pages[idx] != &src->page);
469 ctx->ring_pages[idx] = &dst->page;
fa8a53c3 470 spin_unlock_irqrestore(&ctx->completion_lock, flags);
36bc08cc 471
3648951c
MWO
472 /* The old folio is no longer accessible. */
473 folio_put(src);
8e321fef 474
fa8a53c3
BL
475out_unlock:
476 mutex_unlock(&ctx->ring_lock);
477out:
600f111e 478 spin_unlock(&mapping->i_private_lock);
36bc08cc 479 return rc;
1da177e4 480}
3648951c
MWO
481#else
482#define aio_migrate_folio NULL
0c45355f 483#endif
1da177e4 484
36bc08cc 485static const struct address_space_operations aio_ctx_aops = {
46de8b97 486 .dirty_folio = noop_dirty_folio,
3648951c 487 .migrate_folio = aio_migrate_folio,
36bc08cc
GZ
488};
489
2a8a9867 490static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
1da177e4
LT
491{
492 struct aio_ring *ring;
41003a7b 493 struct mm_struct *mm = current->mm;
3dc9acb6 494 unsigned long size, unused;
1da177e4 495 int nr_pages;
36bc08cc
GZ
496 int i;
497 struct file *file;
1da177e4
LT
498
499 /* Compensate for the ring buffer's head/tail overlap entry */
500 nr_events += 2; /* 1 is required, 2 for good luck */
501
502 size = sizeof(struct aio_ring);
503 size += sizeof(struct io_event) * nr_events;
1da177e4 504
36bc08cc 505 nr_pages = PFN_UP(size);
1da177e4
LT
506 if (nr_pages < 0)
507 return -EINVAL;
508
71ad7490 509 file = aio_private_file(ctx, nr_pages);
36bc08cc
GZ
510 if (IS_ERR(file)) {
511 ctx->aio_ring_file = NULL;
fa8a53c3 512 return -ENOMEM;
36bc08cc
GZ
513 }
514
3dc9acb6
LT
515 ctx->aio_ring_file = file;
516 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
517 / sizeof(struct io_event);
518
519 ctx->ring_pages = ctx->internal_pages;
520 if (nr_pages > AIO_RING_PAGES) {
521 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
522 GFP_KERNEL);
523 if (!ctx->ring_pages) {
524 put_aio_ring_file(ctx);
525 return -ENOMEM;
526 }
527 }
528
36bc08cc
GZ
529 for (i = 0; i < nr_pages; i++) {
530 struct page *page;
45063097 531 page = find_or_create_page(file->f_mapping,
5c075c5b 532 i, GFP_USER | __GFP_ZERO);
36bc08cc
GZ
533 if (!page)
534 break;
535 pr_debug("pid(%d) page[%d]->count=%d\n",
536 current->pid, i, page_count(page));
537 SetPageUptodate(page);
36bc08cc 538 unlock_page(page);
3dc9acb6
LT
539
540 ctx->ring_pages[i] = page;
36bc08cc 541 }
3dc9acb6 542 ctx->nr_pages = i;
1da177e4 543
3dc9acb6
LT
544 if (unlikely(i != nr_pages)) {
545 aio_free_ring(ctx);
fa8a53c3 546 return -ENOMEM;
1da177e4
LT
547 }
548
58c85dc2
KO
549 ctx->mmap_size = nr_pages * PAGE_SIZE;
550 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
36bc08cc 551
d8ed45c5 552 if (mmap_write_lock_killable(mm)) {
013373e8
MH
553 ctx->mmap_size = 0;
554 aio_free_ring(ctx);
555 return -EINTR;
556 }
557
45e55300
PC
558 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
559 PROT_READ | PROT_WRITE,
592b5fad 560 MAP_SHARED, 0, 0, &unused, NULL);
d8ed45c5 561 mmap_write_unlock(mm);
58c85dc2 562 if (IS_ERR((void *)ctx->mmap_base)) {
58c85dc2 563 ctx->mmap_size = 0;
1da177e4 564 aio_free_ring(ctx);
fa8a53c3 565 return -ENOMEM;
1da177e4
LT
566 }
567
58c85dc2 568 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
d6c355c7 569
58c85dc2
KO
570 ctx->user_id = ctx->mmap_base;
571 ctx->nr_events = nr_events; /* trusted copy */
1da177e4 572
5c075c5b 573 ring = page_address(ctx->ring_pages[0]);
1da177e4 574 ring->nr = nr_events; /* user copy */
db446a08 575 ring->id = ~0U;
1da177e4
LT
576 ring->head = ring->tail = 0;
577 ring->magic = AIO_RING_MAGIC;
578 ring->compat_features = AIO_RING_COMPAT_FEATURES;
579 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
580 ring->header_length = sizeof(struct aio_ring);
58c85dc2 581 flush_dcache_page(ctx->ring_pages[0]);
1da177e4
LT
582
583 return 0;
584}
585
1da177e4
LT
586#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
587#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
588#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
589
04b2fa9f 590void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
0460fef2 591{
54843f87 592 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
0460fef2
KO
593 struct kioctx *ctx = req->ki_ctx;
594 unsigned long flags;
595
b820de74
BVA
596 /*
597 * kiocb didn't come from aio or is neither a read nor a write, hence
598 * ignore it.
599 */
600 if (!(iocb->ki_flags & IOCB_AIO_RW))
601 return;
602
75321b50
CH
603 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
604 return;
0460fef2 605
75321b50
CH
606 spin_lock_irqsave(&ctx->ctx_lock, flags);
607 list_add_tail(&req->ki_list, &ctx->active_reqs);
0460fef2 608 req->ki_cancel = cancel;
0460fef2
KO
609 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
610}
611EXPORT_SYMBOL(kiocb_set_cancel_fn);
612
a6d7cff4
TH
613/*
614 * free_ioctx() should be RCU delayed to synchronize against the RCU
615 * protected lookup_ioctx() and also needs process context to call
f729863a 616 * aio_free_ring(). Use rcu_work.
a6d7cff4 617 */
e34ecee2 618static void free_ioctx(struct work_struct *work)
36f55889 619{
f729863a
TH
620 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
621 free_rwork);
e34ecee2 622 pr_debug("freeing %p\n", ctx);
e1bdd5f2 623
e34ecee2 624 aio_free_ring(ctx);
e1bdd5f2 625 free_percpu(ctx->cpu);
9a1049da
TH
626 percpu_ref_exit(&ctx->reqs);
627 percpu_ref_exit(&ctx->users);
36f55889
KO
628 kmem_cache_free(kioctx_cachep, ctx);
629}
630
e34ecee2
KO
631static void free_ioctx_reqs(struct percpu_ref *ref)
632{
633 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
634
e02ba72a 635 /* At this point we know that there are no any in-flight requests */
dc48e56d
JA
636 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
637 complete(&ctx->rq_wait->comp);
e02ba72a 638
a6d7cff4 639 /* Synchronize against RCU protected table->table[] dereferences */
f729863a
TH
640 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
641 queue_rcu_work(system_wq, &ctx->free_rwork);
e34ecee2
KO
642}
643
36f55889
KO
644/*
645 * When this function runs, the kioctx has been removed from the "hash table"
646 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
647 * now it's safe to cancel any that need to be.
648 */
e34ecee2 649static void free_ioctx_users(struct percpu_ref *ref)
36f55889 650{
e34ecee2 651 struct kioctx *ctx = container_of(ref, struct kioctx, users);
04b2fa9f 652 struct aio_kiocb *req;
36f55889
KO
653
654 spin_lock_irq(&ctx->ctx_lock);
655
656 while (!list_empty(&ctx->active_reqs)) {
657 req = list_first_entry(&ctx->active_reqs,
04b2fa9f 658 struct aio_kiocb, ki_list);
888933f8 659 req->ki_cancel(&req->rw);
4faa9996 660 list_del_init(&req->ki_list);
36f55889
KO
661 }
662
663 spin_unlock_irq(&ctx->ctx_lock);
664
e34ecee2
KO
665 percpu_ref_kill(&ctx->reqs);
666 percpu_ref_put(&ctx->reqs);
36f55889
KO
667}
668
db446a08
BL
669static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
670{
671 unsigned i, new_nr;
672 struct kioctx_table *table, *old;
673 struct aio_ring *ring;
674
675 spin_lock(&mm->ioctx_lock);
855ef0de 676 table = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
677
678 while (1) {
679 if (table)
680 for (i = 0; i < table->nr; i++)
d0264c01 681 if (!rcu_access_pointer(table->table[i])) {
db446a08 682 ctx->id = i;
d0264c01 683 rcu_assign_pointer(table->table[i], ctx);
db446a08
BL
684 spin_unlock(&mm->ioctx_lock);
685
fa8a53c3
BL
686 /* While kioctx setup is in progress,
687 * we are protected from page migration
688 * changes ring_pages by ->ring_lock.
689 */
5c075c5b 690 ring = page_address(ctx->ring_pages[0]);
db446a08 691 ring->id = ctx->id;
db446a08
BL
692 return 0;
693 }
694
695 new_nr = (table ? table->nr : 1) * 4;
db446a08
BL
696 spin_unlock(&mm->ioctx_lock);
697
6446c4fb 698 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
db446a08
BL
699 if (!table)
700 return -ENOMEM;
701
702 table->nr = new_nr;
703
704 spin_lock(&mm->ioctx_lock);
855ef0de 705 old = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
706
707 if (!old) {
708 rcu_assign_pointer(mm->ioctx_table, table);
709 } else if (table->nr > old->nr) {
710 memcpy(table->table, old->table,
711 old->nr * sizeof(struct kioctx *));
712
713 rcu_assign_pointer(mm->ioctx_table, table);
714 kfree_rcu(old, rcu);
715 } else {
716 kfree(table);
717 table = old;
718 }
719 }
720}
721
e34ecee2
KO
722static void aio_nr_sub(unsigned nr)
723{
724 spin_lock(&aio_nr_lock);
725 if (WARN_ON(aio_nr - nr > aio_nr))
726 aio_nr = 0;
727 else
728 aio_nr -= nr;
729 spin_unlock(&aio_nr_lock);
730}
731
1da177e4
LT
732/* ioctx_alloc
733 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
734 */
735static struct kioctx *ioctx_alloc(unsigned nr_events)
736{
41003a7b 737 struct mm_struct *mm = current->mm;
1da177e4 738 struct kioctx *ctx;
e23754f8 739 int err = -ENOMEM;
1da177e4 740
2a8a9867
MFO
741 /*
742 * Store the original nr_events -- what userspace passed to io_setup(),
743 * for counting against the global limit -- before it changes.
744 */
745 unsigned int max_reqs = nr_events;
746
e1bdd5f2
KO
747 /*
748 * We keep track of the number of available ringbuffer slots, to prevent
749 * overflow (reqs_available), and we also use percpu counters for this.
750 *
751 * So since up to half the slots might be on other cpu's percpu counters
752 * and unavailable, double nr_events so userspace sees what they
753 * expected: additionally, we move req_batch slots to/from percpu
754 * counters at a time, so make sure that isn't 0:
755 */
756 nr_events = max(nr_events, num_possible_cpus() * 4);
757 nr_events *= 2;
758
1da177e4 759 /* Prevent overflows */
08397acd 760 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
1da177e4
LT
761 pr_debug("ENOMEM: nr_events too high\n");
762 return ERR_PTR(-EINVAL);
763 }
764
2a8a9867 765 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
1da177e4
LT
766 return ERR_PTR(-EAGAIN);
767
c3762229 768 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
1da177e4
LT
769 if (!ctx)
770 return ERR_PTR(-ENOMEM);
771
2a8a9867 772 ctx->max_reqs = max_reqs;
1da177e4 773
1da177e4 774 spin_lock_init(&ctx->ctx_lock);
0460fef2 775 spin_lock_init(&ctx->completion_lock);
58c85dc2 776 mutex_init(&ctx->ring_lock);
fa8a53c3
BL
777 /* Protect against page migration throughout kiotx setup by keeping
778 * the ring_lock mutex held until setup is complete. */
779 mutex_lock(&ctx->ring_lock);
1da177e4
LT
780 init_waitqueue_head(&ctx->wait);
781
782 INIT_LIST_HEAD(&ctx->active_reqs);
1da177e4 783
2aad2a86 784 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
fa8a53c3
BL
785 goto err;
786
2aad2a86 787 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
fa8a53c3
BL
788 goto err;
789
e1bdd5f2
KO
790 ctx->cpu = alloc_percpu(struct kioctx_cpu);
791 if (!ctx->cpu)
e34ecee2 792 goto err;
1da177e4 793
2a8a9867 794 err = aio_setup_ring(ctx, nr_events);
fa8a53c3 795 if (err < 0)
e34ecee2 796 goto err;
e1bdd5f2 797
34e83fc6 798 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
e1bdd5f2 799 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
6878ea72
BL
800 if (ctx->req_batch < 1)
801 ctx->req_batch = 1;
34e83fc6 802
1da177e4 803 /* limit the number of system wide aios */
9fa1cb39 804 spin_lock(&aio_nr_lock);
2a8a9867
MFO
805 if (aio_nr + ctx->max_reqs > aio_max_nr ||
806 aio_nr + ctx->max_reqs < aio_nr) {
9fa1cb39 807 spin_unlock(&aio_nr_lock);
e34ecee2 808 err = -EAGAIN;
d1b94327 809 goto err_ctx;
2dd542b7
AV
810 }
811 aio_nr += ctx->max_reqs;
9fa1cb39 812 spin_unlock(&aio_nr_lock);
1da177e4 813
1881686f
BL
814 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
815 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
723be6e3 816
da90382c
BL
817 err = ioctx_add_table(ctx, mm);
818 if (err)
e34ecee2 819 goto err_cleanup;
da90382c 820
fa8a53c3
BL
821 /* Release the ring_lock mutex now that all setup is complete. */
822 mutex_unlock(&ctx->ring_lock);
823
caf4167a 824 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
58c85dc2 825 ctx, ctx->user_id, mm, ctx->nr_events);
1da177e4
LT
826 return ctx;
827
e34ecee2
KO
828err_cleanup:
829 aio_nr_sub(ctx->max_reqs);
d1b94327 830err_ctx:
deeb8525
AV
831 atomic_set(&ctx->dead, 1);
832 if (ctx->mmap_size)
833 vm_munmap(ctx->mmap_base, ctx->mmap_size);
d1b94327 834 aio_free_ring(ctx);
e34ecee2 835err:
fa8a53c3 836 mutex_unlock(&ctx->ring_lock);
e1bdd5f2 837 free_percpu(ctx->cpu);
9a1049da
TH
838 percpu_ref_exit(&ctx->reqs);
839 percpu_ref_exit(&ctx->users);
1da177e4 840 kmem_cache_free(kioctx_cachep, ctx);
caf4167a 841 pr_debug("error allocating ioctx %d\n", err);
e23754f8 842 return ERR_PTR(err);
1da177e4
LT
843}
844
36f55889
KO
845/* kill_ioctx
846 * Cancels all outstanding aio requests on an aio context. Used
847 * when the processes owning a context have all exited to encourage
848 * the rapid destruction of the kioctx.
849 */
fb2d4483 850static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
dc48e56d 851 struct ctx_rq_wait *wait)
36f55889 852{
fa88b6f8 853 struct kioctx_table *table;
db446a08 854
b2edffdd
AV
855 spin_lock(&mm->ioctx_lock);
856 if (atomic_xchg(&ctx->dead, 1)) {
857 spin_unlock(&mm->ioctx_lock);
fa88b6f8 858 return -EINVAL;
b2edffdd 859 }
db446a08 860
855ef0de 861 table = rcu_dereference_raw(mm->ioctx_table);
d0264c01
TH
862 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
863 RCU_INIT_POINTER(table->table[ctx->id], NULL);
fa88b6f8 864 spin_unlock(&mm->ioctx_lock);
4fcc712f 865
a6d7cff4 866 /* free_ioctx_reqs() will do the necessary RCU synchronization */
fa88b6f8 867 wake_up_all(&ctx->wait);
4fcc712f 868
fa88b6f8
BL
869 /*
870 * It'd be more correct to do this in free_ioctx(), after all
871 * the outstanding kiocbs have finished - but by then io_destroy
872 * has already returned, so io_setup() could potentially return
873 * -EAGAIN with no ioctxs actually in use (as far as userspace
874 * could tell).
875 */
876 aio_nr_sub(ctx->max_reqs);
4fcc712f 877
fa88b6f8
BL
878 if (ctx->mmap_size)
879 vm_munmap(ctx->mmap_base, ctx->mmap_size);
fb2d4483 880
dc48e56d 881 ctx->rq_wait = wait;
fa88b6f8
BL
882 percpu_ref_kill(&ctx->users);
883 return 0;
1da177e4
LT
884}
885
36f55889
KO
886/*
887 * exit_aio: called when the last user of mm goes away. At this point, there is
888 * no way for any new requests to be submited or any of the io_* syscalls to be
889 * called on the context.
890 *
891 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
892 * them.
1da177e4 893 */
fc9b52cd 894void exit_aio(struct mm_struct *mm)
1da177e4 895{
4b70ac5f 896 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
dc48e56d
JA
897 struct ctx_rq_wait wait;
898 int i, skipped;
db446a08 899
4b70ac5f
ON
900 if (!table)
901 return;
db446a08 902
dc48e56d
JA
903 atomic_set(&wait.count, table->nr);
904 init_completion(&wait.comp);
905
906 skipped = 0;
4b70ac5f 907 for (i = 0; i < table->nr; ++i) {
d0264c01
TH
908 struct kioctx *ctx =
909 rcu_dereference_protected(table->table[i], true);
abf137dd 910
dc48e56d
JA
911 if (!ctx) {
912 skipped++;
4b70ac5f 913 continue;
dc48e56d
JA
914 }
915
936af157 916 /*
4b70ac5f
ON
917 * We don't need to bother with munmap() here - exit_mmap(mm)
918 * is coming and it'll unmap everything. And we simply can't,
919 * this is not necessarily our ->mm.
920 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
921 * that it needs to unmap the area, just set it to 0.
936af157 922 */
58c85dc2 923 ctx->mmap_size = 0;
dc48e56d
JA
924 kill_ioctx(mm, ctx, &wait);
925 }
36f55889 926
dc48e56d 927 if (!atomic_sub_and_test(skipped, &wait.count)) {
6098b45b 928 /* Wait until all IO for the context are done. */
dc48e56d 929 wait_for_completion(&wait.comp);
1da177e4 930 }
4b70ac5f
ON
931
932 RCU_INIT_POINTER(mm->ioctx_table, NULL);
933 kfree(table);
1da177e4
LT
934}
935
e1bdd5f2
KO
936static void put_reqs_available(struct kioctx *ctx, unsigned nr)
937{
938 struct kioctx_cpu *kcpu;
263782c1 939 unsigned long flags;
e1bdd5f2 940
263782c1 941 local_irq_save(flags);
be6fb451 942 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 943 kcpu->reqs_available += nr;
263782c1 944
e1bdd5f2
KO
945 while (kcpu->reqs_available >= ctx->req_batch * 2) {
946 kcpu->reqs_available -= ctx->req_batch;
947 atomic_add(ctx->req_batch, &ctx->reqs_available);
948 }
949
263782c1 950 local_irq_restore(flags);
e1bdd5f2
KO
951}
952
432c7997 953static bool __get_reqs_available(struct kioctx *ctx)
e1bdd5f2
KO
954{
955 struct kioctx_cpu *kcpu;
956 bool ret = false;
263782c1 957 unsigned long flags;
e1bdd5f2 958
263782c1 959 local_irq_save(flags);
be6fb451 960 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 961 if (!kcpu->reqs_available) {
38ace0d5 962 int avail = atomic_read(&ctx->reqs_available);
e1bdd5f2
KO
963
964 do {
965 if (avail < ctx->req_batch)
966 goto out;
38ace0d5
UB
967 } while (!atomic_try_cmpxchg(&ctx->reqs_available,
968 &avail, avail - ctx->req_batch));
e1bdd5f2
KO
969
970 kcpu->reqs_available += ctx->req_batch;
971 }
972
973 ret = true;
974 kcpu->reqs_available--;
975out:
263782c1 976 local_irq_restore(flags);
e1bdd5f2
KO
977 return ret;
978}
979
d856f32a
BL
980/* refill_reqs_available
981 * Updates the reqs_available reference counts used for tracking the
982 * number of free slots in the completion ring. This can be called
983 * from aio_complete() (to optimistically update reqs_available) or
984 * from aio_get_req() (the we're out of events case). It must be
985 * called holding ctx->completion_lock.
986 */
987static void refill_reqs_available(struct kioctx *ctx, unsigned head,
988 unsigned tail)
989{
990 unsigned events_in_ring, completed;
991
992 /* Clamp head since userland can write to it. */
993 head %= ctx->nr_events;
994 if (head <= tail)
995 events_in_ring = tail - head;
996 else
997 events_in_ring = ctx->nr_events - (head - tail);
998
999 completed = ctx->completed_events;
1000 if (events_in_ring < completed)
1001 completed -= events_in_ring;
1002 else
1003 completed = 0;
1004
1005 if (!completed)
1006 return;
1007
1008 ctx->completed_events -= completed;
1009 put_reqs_available(ctx, completed);
1010}
1011
1012/* user_refill_reqs_available
1013 * Called to refill reqs_available when aio_get_req() encounters an
1014 * out of space in the completion ring.
1015 */
1016static void user_refill_reqs_available(struct kioctx *ctx)
1017{
1018 spin_lock_irq(&ctx->completion_lock);
1019 if (ctx->completed_events) {
1020 struct aio_ring *ring;
1021 unsigned head;
1022
1023 /* Access of ring->head may race with aio_read_events_ring()
1024 * here, but that's okay since whether we read the old version
1025 * or the new version, and either will be valid. The important
1026 * part is that head cannot pass tail since we prevent
1027 * aio_complete() from updating tail by holding
1028 * ctx->completion_lock. Even if head is invalid, the check
1029 * against ctx->completed_events below will make sure we do the
1030 * safe/right thing.
1031 */
5c075c5b 1032 ring = page_address(ctx->ring_pages[0]);
d856f32a 1033 head = ring->head;
d856f32a
BL
1034
1035 refill_reqs_available(ctx, head, ctx->tail);
1036 }
1037
1038 spin_unlock_irq(&ctx->completion_lock);
1039}
1040
432c7997
CH
1041static bool get_reqs_available(struct kioctx *ctx)
1042{
1043 if (__get_reqs_available(ctx))
1044 return true;
1045 user_refill_reqs_available(ctx);
1046 return __get_reqs_available(ctx);
1047}
1048
1da177e4 1049/* aio_get_req
57282d8f
KO
1050 * Allocate a slot for an aio request.
1051 * Returns NULL if no requests are free.
b53119f1
LT
1052 *
1053 * The refcount is initialized to 2 - one for the async op completion,
1054 * one for the synchronous code that does this.
1da177e4 1055 */
04b2fa9f 1056static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1da177e4 1057{
04b2fa9f 1058 struct aio_kiocb *req;
a1c8eae7 1059
2bc4ca9b 1060 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1da177e4 1061 if (unlikely(!req))
432c7997 1062 return NULL;
1da177e4 1063
fa0ca2ae 1064 if (unlikely(!get_reqs_available(ctx))) {
6af1c849 1065 kmem_cache_free(kiocb_cachep, req);
fa0ca2ae
AV
1066 return NULL;
1067 }
1068
e34ecee2 1069 percpu_ref_get(&ctx->reqs);
2bc4ca9b 1070 req->ki_ctx = ctx;
75321b50 1071 INIT_LIST_HEAD(&req->ki_list);
b53119f1 1072 refcount_set(&req->ki_refcnt, 2);
2bc4ca9b 1073 req->ki_eventfd = NULL;
080d676d 1074 return req;
1da177e4
LT
1075}
1076
d5470b59 1077static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1da177e4 1078{
db446a08 1079 struct aio_ring __user *ring = (void __user *)ctx_id;
abf137dd 1080 struct mm_struct *mm = current->mm;
65c24491 1081 struct kioctx *ctx, *ret = NULL;
db446a08
BL
1082 struct kioctx_table *table;
1083 unsigned id;
1084
1085 if (get_user(id, &ring->id))
1086 return NULL;
1da177e4 1087
abf137dd 1088 rcu_read_lock();
db446a08 1089 table = rcu_dereference(mm->ioctx_table);
abf137dd 1090
db446a08
BL
1091 if (!table || id >= table->nr)
1092 goto out;
1da177e4 1093
a538e3ff 1094 id = array_index_nospec(id, table->nr);
d0264c01 1095 ctx = rcu_dereference(table->table[id]);
f30d704f 1096 if (ctx && ctx->user_id == ctx_id) {
baf10564
AV
1097 if (percpu_ref_tryget_live(&ctx->users))
1098 ret = ctx;
db446a08
BL
1099 }
1100out:
abf137dd 1101 rcu_read_unlock();
65c24491 1102 return ret;
1da177e4
LT
1103}
1104
b53119f1
LT
1105static inline void iocb_destroy(struct aio_kiocb *iocb)
1106{
74259703
AV
1107 if (iocb->ki_eventfd)
1108 eventfd_ctx_put(iocb->ki_eventfd);
b53119f1
LT
1109 if (iocb->ki_filp)
1110 fput(iocb->ki_filp);
1111 percpu_ref_put(&iocb->ki_ctx->reqs);
1112 kmem_cache_free(kiocb_cachep, iocb);
1113}
1114
71eb6b6b
KO
1115struct aio_waiter {
1116 struct wait_queue_entry w;
1117 size_t min_nr;
1118};
1119
1da177e4
LT
1120/* aio_complete
1121 * Called when the io request on the given iocb is complete.
1da177e4 1122 */
2bb874c0 1123static void aio_complete(struct aio_kiocb *iocb)
1da177e4
LT
1124{
1125 struct kioctx *ctx = iocb->ki_ctx;
1da177e4 1126 struct aio_ring *ring;
21b40200 1127 struct io_event *ev_page, *event;
71eb6b6b 1128 unsigned tail, pos, head, avail;
1da177e4 1129 unsigned long flags;
1da177e4 1130
0460fef2
KO
1131 /*
1132 * Add a completion event to the ring buffer. Must be done holding
4b30f07e 1133 * ctx->completion_lock to prevent other code from messing with the tail
0460fef2
KO
1134 * pointer since we might be called from irq context.
1135 */
1136 spin_lock_irqsave(&ctx->completion_lock, flags);
1137
58c85dc2 1138 tail = ctx->tail;
21b40200
KO
1139 pos = tail + AIO_EVENTS_OFFSET;
1140
58c85dc2 1141 if (++tail >= ctx->nr_events)
4bf69b2a 1142 tail = 0;
1da177e4 1143
5c075c5b 1144 ev_page = page_address(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1145 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1146
a9339b78 1147 *event = iocb->ki_res;
1da177e4 1148
58c85dc2 1149 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200 1150
a9339b78
AV
1151 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1152 (void __user *)(unsigned long)iocb->ki_res.obj,
1153 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1da177e4
LT
1154
1155 /* after flagging the request as done, we
1156 * must never even look at it again
1157 */
1158 smp_wmb(); /* make event visible before updating tail */
1159
58c85dc2 1160 ctx->tail = tail;
1da177e4 1161
5c075c5b 1162 ring = page_address(ctx->ring_pages[0]);
d856f32a 1163 head = ring->head;
21b40200 1164 ring->tail = tail;
58c85dc2 1165 flush_dcache_page(ctx->ring_pages[0]);
1da177e4 1166
d856f32a
BL
1167 ctx->completed_events++;
1168 if (ctx->completed_events > 1)
1169 refill_reqs_available(ctx, head, tail);
71eb6b6b
KO
1170
1171 avail = tail > head
1172 ? tail - head
1173 : tail + ctx->nr_events - head;
0460fef2
KO
1174 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1175
21b40200 1176 pr_debug("added to ring %p at [%u]\n", iocb, tail);
8d1c98b0
DL
1177
1178 /*
1179 * Check if the user asked us to deliver the result through an
1180 * eventfd. The eventfd_signal() function is safe to be called
1181 * from IRQ context.
1182 */
74259703 1183 if (iocb->ki_eventfd)
3652117f 1184 eventfd_signal(iocb->ki_eventfd);
8d1c98b0 1185
6cb2a210
QB
1186 /*
1187 * We have to order our ring_info tail store above and test
1188 * of the wait list below outside the wait lock. This is
1189 * like in wake_up_bit() where clearing a bit has to be
1190 * ordered with the unlocked test.
1191 */
1192 smp_mb();
1193
71eb6b6b
KO
1194 if (waitqueue_active(&ctx->wait)) {
1195 struct aio_waiter *curr, *next;
1196 unsigned long flags;
1197
1198 spin_lock_irqsave(&ctx->wait.lock, flags);
1199 list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry)
1200 if (avail >= curr->min_nr) {
1201 list_del_init_careful(&curr->w.entry);
1202 wake_up_process(curr->w.private);
1203 }
1204 spin_unlock_irqrestore(&ctx->wait.lock, flags);
1205 }
2bb874c0
AV
1206}
1207
1208static inline void iocb_put(struct aio_kiocb *iocb)
1209{
1210 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1211 aio_complete(iocb);
1212 iocb_destroy(iocb);
1213 }
1da177e4
LT
1214}
1215
2be4e7de 1216/* aio_read_events_ring
a31ad380
KO
1217 * Pull an event off of the ioctx's event ring. Returns the number of
1218 * events fetched
1da177e4 1219 */
a31ad380
KO
1220static long aio_read_events_ring(struct kioctx *ctx,
1221 struct io_event __user *event, long nr)
1da177e4 1222{
1da177e4 1223 struct aio_ring *ring;
5ffac122 1224 unsigned head, tail, pos;
a31ad380
KO
1225 long ret = 0;
1226 int copy_ret;
1227
9c9ce763
DC
1228 /*
1229 * The mutex can block and wake us up and that will cause
1230 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1231 * and repeat. This should be rare enough that it doesn't cause
1232 * peformance issues. See the comment in read_events() for more detail.
1233 */
1234 sched_annotate_sleep();
58c85dc2 1235 mutex_lock(&ctx->ring_lock);
1da177e4 1236
fa8a53c3 1237 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
5c075c5b 1238 ring = page_address(ctx->ring_pages[0]);
a31ad380 1239 head = ring->head;
5ffac122 1240 tail = ring->tail;
a31ad380 1241
2ff396be
JM
1242 /*
1243 * Ensure that once we've read the current tail pointer, that
1244 * we also see the events that were stored up to the tail.
1245 */
1246 smp_rmb();
1247
5ffac122 1248 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1da177e4 1249
5ffac122 1250 if (head == tail)
1da177e4
LT
1251 goto out;
1252
edfbbf38
BL
1253 head %= ctx->nr_events;
1254 tail %= ctx->nr_events;
1255
a31ad380
KO
1256 while (ret < nr) {
1257 long avail;
1258 struct io_event *ev;
1259 struct page *page;
1260
5ffac122
KO
1261 avail = (head <= tail ? tail : ctx->nr_events) - head;
1262 if (head == tail)
a31ad380
KO
1263 break;
1264
a31ad380 1265 pos = head + AIO_EVENTS_OFFSET;
58c85dc2 1266 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
a31ad380
KO
1267 pos %= AIO_EVENTS_PER_PAGE;
1268
d2988bd4
AV
1269 avail = min(avail, nr - ret);
1270 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1271
5c075c5b 1272 ev = page_address(page);
a31ad380
KO
1273 copy_ret = copy_to_user(event + ret, ev + pos,
1274 sizeof(*ev) * avail);
a31ad380
KO
1275
1276 if (unlikely(copy_ret)) {
1277 ret = -EFAULT;
1278 goto out;
1279 }
1280
1281 ret += avail;
1282 head += avail;
58c85dc2 1283 head %= ctx->nr_events;
1da177e4 1284 }
1da177e4 1285
5c075c5b 1286 ring = page_address(ctx->ring_pages[0]);
a31ad380 1287 ring->head = head;
58c85dc2 1288 flush_dcache_page(ctx->ring_pages[0]);
a31ad380 1289
5ffac122 1290 pr_debug("%li h%u t%u\n", ret, head, tail);
a31ad380 1291out:
58c85dc2 1292 mutex_unlock(&ctx->ring_lock);
a31ad380 1293
1da177e4
LT
1294 return ret;
1295}
1296
a31ad380
KO
1297static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1298 struct io_event __user *event, long *i)
1da177e4 1299{
a31ad380 1300 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1da177e4 1301
a31ad380
KO
1302 if (ret > 0)
1303 *i += ret;
1da177e4 1304
a31ad380
KO
1305 if (unlikely(atomic_read(&ctx->dead)))
1306 ret = -EINVAL;
1da177e4 1307
a31ad380
KO
1308 if (!*i)
1309 *i = ret;
1da177e4 1310
a31ad380 1311 return ret < 0 || *i >= min_nr;
1da177e4
LT
1312}
1313
a31ad380 1314static long read_events(struct kioctx *ctx, long min_nr, long nr,
1da177e4 1315 struct io_event __user *event,
fa2e62a5 1316 ktime_t until)
1da177e4 1317{
71eb6b6b
KO
1318 struct hrtimer_sleeper t;
1319 struct aio_waiter w;
1320 long ret = 0, ret2 = 0;
1da177e4 1321
a31ad380
KO
1322 /*
1323 * Note that aio_read_events() is being called as the conditional - i.e.
1324 * we're calling it after prepare_to_wait() has set task state to
1325 * TASK_INTERRUPTIBLE.
1326 *
1327 * But aio_read_events() can block, and if it blocks it's going to flip
1328 * the task state back to TASK_RUNNING.
1329 *
1330 * This should be ok, provided it doesn't flip the state back to
1331 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1332 * will only happen if the mutex_lock() call blocks, and we then find
1333 * the ringbuffer empty. So in practice we should be ok, but it's
1334 * something to be aware of when touching this code.
1335 */
71eb6b6b
KO
1336 aio_read_events(ctx, min_nr, nr, event, &ret);
1337 if (until == 0 || ret < 0 || ret >= min_nr)
1338 return ret;
1339
1340 hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1341 if (until != KTIME_MAX) {
1342 hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns);
1343 hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL);
1344 }
1345
1346 init_wait(&w.w);
1347
1348 while (1) {
1349 unsigned long nr_got = ret;
1350
1351 w.min_nr = min_nr - ret;
1352
1353 ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE);
1354 if (!ret2 && !t.task)
1355 ret2 = -ETIME;
1356
1357 if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2)
1358 break;
1359
1360 if (nr_got == ret)
1361 schedule();
1362 }
1363
1364 finish_wait(&ctx->wait, &w.w);
1365 hrtimer_cancel(&t.timer);
1366 destroy_hrtimer_on_stack(&t.timer);
1367
a31ad380 1368 return ret;
1da177e4
LT
1369}
1370
1da177e4
LT
1371/* sys_io_setup:
1372 * Create an aio_context capable of receiving at least nr_events.
1373 * ctxp must not point to an aio_context that already exists, and
1374 * must be initialized to 0 prior to the call. On successful
1375 * creation of the aio_context, *ctxp is filled in with the resulting
1376 * handle. May fail with -EINVAL if *ctxp is not initialized,
1377 * if the specified nr_events exceeds internal limits. May fail
1378 * with -EAGAIN if the specified nr_events exceeds the user's limit
1379 * of available events. May fail with -ENOMEM if insufficient kernel
1380 * resources are available. May fail with -EFAULT if an invalid
1381 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1382 * implemented.
1383 */
002c8976 1384SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1da177e4
LT
1385{
1386 struct kioctx *ioctx = NULL;
1387 unsigned long ctx;
1388 long ret;
1389
1390 ret = get_user(ctx, ctxp);
1391 if (unlikely(ret))
1392 goto out;
1393
1394 ret = -EINVAL;
d55b5fda 1395 if (unlikely(ctx || nr_events == 0)) {
acd88d4e 1396 pr_debug("EINVAL: ctx %lu nr_events %u\n",
d55b5fda 1397 ctx, nr_events);
1da177e4
LT
1398 goto out;
1399 }
1400
1401 ioctx = ioctx_alloc(nr_events);
1402 ret = PTR_ERR(ioctx);
1403 if (!IS_ERR(ioctx)) {
1404 ret = put_user(ioctx->user_id, ctxp);
a2e1859a 1405 if (ret)
e02ba72a 1406 kill_ioctx(current->mm, ioctx, NULL);
723be6e3 1407 percpu_ref_put(&ioctx->users);
1da177e4
LT
1408 }
1409
1410out:
1411 return ret;
1412}
1413
c00d2c7e
AV
1414#ifdef CONFIG_COMPAT
1415COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1416{
1417 struct kioctx *ioctx = NULL;
1418 unsigned long ctx;
1419 long ret;
1420
1421 ret = get_user(ctx, ctx32p);
1422 if (unlikely(ret))
1423 goto out;
1424
1425 ret = -EINVAL;
1426 if (unlikely(ctx || nr_events == 0)) {
1427 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1428 ctx, nr_events);
1429 goto out;
1430 }
1431
1432 ioctx = ioctx_alloc(nr_events);
1433 ret = PTR_ERR(ioctx);
1434 if (!IS_ERR(ioctx)) {
1435 /* truncating is ok because it's a user address */
1436 ret = put_user((u32)ioctx->user_id, ctx32p);
1437 if (ret)
1438 kill_ioctx(current->mm, ioctx, NULL);
1439 percpu_ref_put(&ioctx->users);
1440 }
1441
1442out:
1443 return ret;
1444}
1445#endif
1446
1da177e4
LT
1447/* sys_io_destroy:
1448 * Destroy the aio_context specified. May cancel any outstanding
1449 * AIOs and block on completion. Will fail with -ENOSYS if not
642b5123 1450 * implemented. May fail with -EINVAL if the context pointed to
1da177e4
LT
1451 * is invalid.
1452 */
002c8976 1453SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1da177e4
LT
1454{
1455 struct kioctx *ioctx = lookup_ioctx(ctx);
1456 if (likely(NULL != ioctx)) {
dc48e56d 1457 struct ctx_rq_wait wait;
fb2d4483 1458 int ret;
e02ba72a 1459
dc48e56d
JA
1460 init_completion(&wait.comp);
1461 atomic_set(&wait.count, 1);
1462
e02ba72a
AP
1463 /* Pass requests_done to kill_ioctx() where it can be set
1464 * in a thread-safe way. If we try to set it here then we have
1465 * a race condition if two io_destroy() called simultaneously.
1466 */
dc48e56d 1467 ret = kill_ioctx(current->mm, ioctx, &wait);
723be6e3 1468 percpu_ref_put(&ioctx->users);
e02ba72a
AP
1469
1470 /* Wait until all IO for the context are done. Otherwise kernel
1471 * keep using user-space buffers even if user thinks the context
1472 * is destroyed.
1473 */
fb2d4483 1474 if (!ret)
dc48e56d 1475 wait_for_completion(&wait.comp);
e02ba72a 1476
fb2d4483 1477 return ret;
1da177e4 1478 }
acd88d4e 1479 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1480 return -EINVAL;
1481}
1482
3c96c7f4
AV
1483static void aio_remove_iocb(struct aio_kiocb *iocb)
1484{
1485 struct kioctx *ctx = iocb->ki_ctx;
1486 unsigned long flags;
1487
1488 spin_lock_irqsave(&ctx->ctx_lock, flags);
1489 list_del(&iocb->ki_list);
1490 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1491}
1492
6b19b766 1493static void aio_complete_rw(struct kiocb *kiocb, long res)
54843f87
CH
1494{
1495 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1496
3c96c7f4
AV
1497 if (!list_empty_careful(&iocb->ki_list))
1498 aio_remove_iocb(iocb);
1499
54843f87
CH
1500 if (kiocb->ki_flags & IOCB_WRITE) {
1501 struct inode *inode = file_inode(kiocb->ki_filp);
1502
54843f87 1503 if (S_ISREG(inode->i_mode))
8c3cfa80 1504 kiocb_end_write(kiocb);
54843f87
CH
1505 }
1506
2bb874c0 1507 iocb->ki_res.res = res;
6b19b766 1508 iocb->ki_res.res2 = 0;
2bb874c0 1509 iocb_put(iocb);
54843f87
CH
1510}
1511
88a6f18b 1512static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
54843f87
CH
1513{
1514 int ret;
1515
54843f87 1516 req->ki_complete = aio_complete_rw;
ec51f8ee 1517 req->private = NULL;
54843f87 1518 req->ki_pos = iocb->aio_offset;
b820de74 1519 req->ki_flags = req->ki_filp->f_iocb_flags | IOCB_AIO_RW;
54843f87
CH
1520 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1521 req->ki_flags |= IOCB_EVENTFD;
d9a08a9e
AM
1522 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1523 /*
1524 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1525 * aio_reqprio is interpreted as an I/O scheduling
1526 * class and priority.
1527 */
1528 ret = ioprio_check_cap(iocb->aio_reqprio);
1529 if (ret) {
9a6d9a62 1530 pr_debug("aio ioprio check cap error: %d\n", ret);
84c4e1f8 1531 return ret;
d9a08a9e
AM
1532 }
1533
1534 req->ki_ioprio = iocb->aio_reqprio;
1535 } else
76dc8913 1536 req->ki_ioprio = get_current_ioprio();
d9a08a9e 1537
54843f87
CH
1538 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1539 if (unlikely(ret))
84c4e1f8 1540 return ret;
154989e4
CH
1541
1542 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1543 return 0;
54843f87
CH
1544}
1545
87e5e6da
JA
1546static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1547 struct iovec **iovec, bool vectored, bool compat,
1548 struct iov_iter *iter)
eed4e51f 1549{
89319d31
CH
1550 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1551 size_t len = iocb->aio_nbytes;
1552
1553 if (!vectored) {
9fd7874c 1554 ssize_t ret = import_ubuf(rw, buf, len, iter);
89319d31
CH
1555 *iovec = NULL;
1556 return ret;
1557 }
89cd35c5
CH
1558
1559 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
eed4e51f
BP
1560}
1561
9061d14a 1562static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
89319d31
CH
1563{
1564 switch (ret) {
1565 case -EIOCBQUEUED:
9061d14a 1566 break;
89319d31
CH
1567 case -ERESTARTSYS:
1568 case -ERESTARTNOINTR:
1569 case -ERESTARTNOHAND:
1570 case -ERESTART_RESTARTBLOCK:
1571 /*
1572 * There's no easy way to restart the syscall since other AIO's
1573 * may be already running. Just fail this IO with EINTR.
1574 */
1575 ret = -EINTR;
df561f66 1576 fallthrough;
89319d31 1577 default:
6b19b766 1578 req->ki_complete(req, ret);
89319d31
CH
1579 }
1580}
1581
958c13ce 1582static int aio_read(struct kiocb *req, const struct iocb *iocb,
88a6f18b 1583 bool vectored, bool compat)
1da177e4 1584{
00fefb9c 1585 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
293bc982 1586 struct iov_iter iter;
54843f87 1587 struct file *file;
958c13ce 1588 int ret;
1da177e4 1589
54843f87
CH
1590 ret = aio_prep_rw(req, iocb);
1591 if (ret)
1592 return ret;
1593 file = req->ki_filp;
89319d31 1594 if (unlikely(!(file->f_mode & FMODE_READ)))
84c4e1f8 1595 return -EBADF;
89319d31 1596 if (unlikely(!file->f_op->read_iter))
84c4e1f8 1597 return -EINVAL;
73a7075e 1598
de4eda9d 1599 ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
87e5e6da 1600 if (ret < 0)
84c4e1f8 1601 return ret;
89319d31
CH
1602 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1603 if (!ret)
9061d14a 1604 aio_rw_done(req, call_read_iter(file, req, &iter));
89319d31
CH
1605 kfree(iovec);
1606 return ret;
1607}
73a7075e 1608
958c13ce 1609static int aio_write(struct kiocb *req, const struct iocb *iocb,
88a6f18b 1610 bool vectored, bool compat)
89319d31 1611{
89319d31
CH
1612 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1613 struct iov_iter iter;
54843f87 1614 struct file *file;
958c13ce 1615 int ret;
41ef4eb8 1616
54843f87
CH
1617 ret = aio_prep_rw(req, iocb);
1618 if (ret)
1619 return ret;
1620 file = req->ki_filp;
1621
89319d31 1622 if (unlikely(!(file->f_mode & FMODE_WRITE)))
84c4e1f8 1623 return -EBADF;
89319d31 1624 if (unlikely(!file->f_op->write_iter))
84c4e1f8 1625 return -EINVAL;
1da177e4 1626
de4eda9d 1627 ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
87e5e6da 1628 if (ret < 0)
84c4e1f8 1629 return ret;
89319d31
CH
1630 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1631 if (!ret) {
8c3cfa80
AG
1632 if (S_ISREG(file_inode(file)->i_mode))
1633 kiocb_start_write(req);
92ce4728 1634 req->ki_flags |= IOCB_WRITE;
9061d14a 1635 aio_rw_done(req, call_write_iter(file, req, &iter));
41ef4eb8 1636 }
89319d31
CH
1637 kfree(iovec);
1638 return ret;
1da177e4
LT
1639}
1640
a3c0d439
CH
1641static void aio_fsync_work(struct work_struct *work)
1642{
2bb874c0 1643 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
530f32fc 1644 const struct cred *old_cred = override_creds(iocb->fsync.creds);
a3c0d439 1645
2bb874c0 1646 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
530f32fc
MS
1647 revert_creds(old_cred);
1648 put_cred(iocb->fsync.creds);
2bb874c0 1649 iocb_put(iocb);
a3c0d439
CH
1650}
1651
88a6f18b
JA
1652static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1653 bool datasync)
a3c0d439
CH
1654{
1655 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1656 iocb->aio_rw_flags))
1657 return -EINVAL;
a11e1d43 1658
84c4e1f8 1659 if (unlikely(!req->file->f_op->fsync))
a3c0d439 1660 return -EINVAL;
a3c0d439 1661
530f32fc
MS
1662 req->creds = prepare_creds();
1663 if (!req->creds)
1664 return -ENOMEM;
1665
a3c0d439
CH
1666 req->datasync = datasync;
1667 INIT_WORK(&req->work, aio_fsync_work);
1668 schedule_work(&req->work);
9061d14a 1669 return 0;
a3c0d439
CH
1670}
1671
01d7a356
JA
1672static void aio_poll_put_work(struct work_struct *work)
1673{
1674 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1675 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1676
1677 iocb_put(iocb);
1678}
1679
50252e4b
EB
1680/*
1681 * Safely lock the waitqueue which the request is on, synchronizing with the
1682 * case where the ->poll() provider decides to free its waitqueue early.
1683 *
1684 * Returns true on success, meaning that req->head->lock was locked, req->wait
1685 * is on req->head, and an RCU read lock was taken. Returns false if the
1686 * request was already removed from its waitqueue (which might no longer exist).
1687 */
1688static bool poll_iocb_lock_wq(struct poll_iocb *req)
1689{
1690 wait_queue_head_t *head;
1691
1692 /*
1693 * While we hold the waitqueue lock and the waitqueue is nonempty,
1694 * wake_up_pollfree() will wait for us. However, taking the waitqueue
1695 * lock in the first place can race with the waitqueue being freed.
1696 *
1697 * We solve this as eventpoll does: by taking advantage of the fact that
1698 * all users of wake_up_pollfree() will RCU-delay the actual free. If
1699 * we enter rcu_read_lock() and see that the pointer to the queue is
1700 * non-NULL, we can then lock it without the memory being freed out from
1701 * under us, then check whether the request is still on the queue.
1702 *
1703 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1704 * case the caller deletes the entry from the queue, leaving it empty.
1705 * In that case, only RCU prevents the queue memory from being freed.
1706 */
1707 rcu_read_lock();
1708 head = smp_load_acquire(&req->head);
1709 if (head) {
1710 spin_lock(&head->lock);
1711 if (!list_empty(&req->wait.entry))
1712 return true;
1713 spin_unlock(&head->lock);
1714 }
1715 rcu_read_unlock();
1716 return false;
1717}
1718
1719static void poll_iocb_unlock_wq(struct poll_iocb *req)
1720{
1721 spin_unlock(&req->head->lock);
1722 rcu_read_unlock();
1723}
1724
bfe4037e
CH
1725static void aio_poll_complete_work(struct work_struct *work)
1726{
1727 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1728 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1729 struct poll_table_struct pt = { ._key = req->events };
1730 struct kioctx *ctx = iocb->ki_ctx;
1731 __poll_t mask = 0;
1732
1733 if (!READ_ONCE(req->cancelled))
1734 mask = vfs_poll(req->file, &pt) & req->events;
1735
1736 /*
1737 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1738 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1739 * synchronize with them. In the cancellation case the list_del_init
1740 * itself is not actually needed, but harmless so we keep it in to
1741 * avoid further branches in the fast path.
1742 */
1743 spin_lock_irq(&ctx->ctx_lock);
50252e4b
EB
1744 if (poll_iocb_lock_wq(req)) {
1745 if (!mask && !READ_ONCE(req->cancelled)) {
1746 /*
1747 * The request isn't actually ready to be completed yet.
1748 * Reschedule completion if another wakeup came in.
1749 */
1750 if (req->work_need_resched) {
1751 schedule_work(&req->work);
1752 req->work_need_resched = false;
1753 } else {
1754 req->work_scheduled = false;
1755 }
1756 poll_iocb_unlock_wq(req);
1757 spin_unlock_irq(&ctx->ctx_lock);
1758 return;
363bee27 1759 }
50252e4b
EB
1760 list_del_init(&req->wait.entry);
1761 poll_iocb_unlock_wq(req);
1762 } /* else, POLLFREE has freed the waitqueue, so we must complete */
bfe4037e 1763 list_del_init(&iocb->ki_list);
af5c72b1 1764 iocb->ki_res.res = mangle_poll(mask);
bfe4037e
CH
1765 spin_unlock_irq(&ctx->ctx_lock);
1766
af5c72b1 1767 iocb_put(iocb);
bfe4037e
CH
1768}
1769
1770/* assumes we are called with irqs disabled */
1771static int aio_poll_cancel(struct kiocb *iocb)
1772{
1773 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1774 struct poll_iocb *req = &aiocb->poll;
1775
50252e4b
EB
1776 if (poll_iocb_lock_wq(req)) {
1777 WRITE_ONCE(req->cancelled, true);
1778 if (!req->work_scheduled) {
1779 schedule_work(&aiocb->poll.work);
1780 req->work_scheduled = true;
1781 }
1782 poll_iocb_unlock_wq(req);
1783 } /* else, the request was force-cancelled by POLLFREE already */
bfe4037e
CH
1784
1785 return 0;
1786}
1787
1788static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1789 void *key)
1790{
1791 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
e8693bcf 1792 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
bfe4037e 1793 __poll_t mask = key_to_poll(key);
d3d6a18d 1794 unsigned long flags;
bfe4037e 1795
bfe4037e 1796 /* for instances that support it check for an event match first: */
af5c72b1
AV
1797 if (mask && !(mask & req->events))
1798 return 0;
e8693bcf 1799
363bee27
EB
1800 /*
1801 * Complete the request inline if possible. This requires that three
1802 * conditions be met:
1803 * 1. An event mask must have been passed. If a plain wakeup was done
1804 * instead, then mask == 0 and we have to call vfs_poll() to get
1805 * the events, so inline completion isn't possible.
1806 * 2. The completion work must not have already been scheduled.
1807 * 3. ctx_lock must not be busy. We have to use trylock because we
1808 * already hold the waitqueue lock, so this inverts the normal
1809 * locking order. Use irqsave/irqrestore because not all
1810 * filesystems (e.g. fuse) call this function with IRQs disabled,
1811 * yet IRQs have to be disabled before ctx_lock is obtained.
1812 */
1813 if (mask && !req->work_scheduled &&
1814 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
01d7a356
JA
1815 struct kioctx *ctx = iocb->ki_ctx;
1816
363bee27 1817 list_del_init(&req->wait.entry);
af5c72b1
AV
1818 list_del(&iocb->ki_list);
1819 iocb->ki_res.res = mangle_poll(mask);
4b374986 1820 if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
01d7a356
JA
1821 iocb = NULL;
1822 INIT_WORK(&req->work, aio_poll_put_work);
1823 schedule_work(&req->work);
1824 }
1825 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1826 if (iocb)
1827 iocb_put(iocb);
af5c72b1 1828 } else {
363bee27
EB
1829 /*
1830 * Schedule the completion work if needed. If it was already
1831 * scheduled, record that another wakeup came in.
1832 *
1833 * Don't remove the request from the waitqueue here, as it might
1834 * not actually be complete yet (we won't know until vfs_poll()
50252e4b
EB
1835 * is called), and we must not miss any wakeups. POLLFREE is an
1836 * exception to this; see below.
363bee27
EB
1837 */
1838 if (req->work_scheduled) {
1839 req->work_need_resched = true;
1840 } else {
1841 schedule_work(&req->work);
1842 req->work_scheduled = true;
1843 }
50252e4b
EB
1844
1845 /*
1846 * If the waitqueue is being freed early but we can't complete
1847 * the request inline, we have to tear down the request as best
1848 * we can. That means immediately removing the request from its
1849 * waitqueue and preventing all further accesses to the
1850 * waitqueue via the request. We also need to schedule the
1851 * completion work (done above). Also mark the request as
1852 * cancelled, to potentially skip an unneeded call to ->poll().
1853 */
1854 if (mask & POLLFREE) {
1855 WRITE_ONCE(req->cancelled, true);
1856 list_del_init(&req->wait.entry);
1857
1858 /*
1859 * Careful: this *must* be the last step, since as soon
1860 * as req->head is NULL'ed out, the request can be
1861 * completed and freed, since aio_poll_complete_work()
1862 * will no longer need to take the waitqueue lock.
1863 */
1864 smp_store_release(&req->head, NULL);
1865 }
e8693bcf 1866 }
bfe4037e
CH
1867 return 1;
1868}
1869
1870struct aio_poll_table {
1871 struct poll_table_struct pt;
1872 struct aio_kiocb *iocb;
50252e4b 1873 bool queued;
bfe4037e
CH
1874 int error;
1875};
1876
1877static void
1878aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1879 struct poll_table_struct *p)
1880{
1881 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1882
1883 /* multiple wait queues per file are not supported */
50252e4b 1884 if (unlikely(pt->queued)) {
bfe4037e
CH
1885 pt->error = -EINVAL;
1886 return;
1887 }
1888
50252e4b 1889 pt->queued = true;
bfe4037e
CH
1890 pt->error = 0;
1891 pt->iocb->poll.head = head;
1892 add_wait_queue(head, &pt->iocb->poll.wait);
1893}
1894
958c13ce 1895static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
bfe4037e
CH
1896{
1897 struct kioctx *ctx = aiocb->ki_ctx;
1898 struct poll_iocb *req = &aiocb->poll;
1899 struct aio_poll_table apt;
af5c72b1 1900 bool cancel = false;
bfe4037e
CH
1901 __poll_t mask;
1902
1903 /* reject any unknown events outside the normal event mask. */
1904 if ((u16)iocb->aio_buf != iocb->aio_buf)
1905 return -EINVAL;
1906 /* reject fields that are not defined for poll */
1907 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1908 return -EINVAL;
1909
1910 INIT_WORK(&req->work, aio_poll_complete_work);
1911 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
bfe4037e 1912
2bc4ca9b 1913 req->head = NULL;
2bc4ca9b 1914 req->cancelled = false;
363bee27
EB
1915 req->work_scheduled = false;
1916 req->work_need_resched = false;
2bc4ca9b 1917
bfe4037e
CH
1918 apt.pt._qproc = aio_poll_queue_proc;
1919 apt.pt._key = req->events;
1920 apt.iocb = aiocb;
50252e4b 1921 apt.queued = false;
bfe4037e
CH
1922 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1923
1924 /* initialized the list so that we can do list_empty checks */
1925 INIT_LIST_HEAD(&req->wait.entry);
1926 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1927
bfe4037e 1928 mask = vfs_poll(req->file, &apt.pt) & req->events;
bfe4037e 1929 spin_lock_irq(&ctx->ctx_lock);
50252e4b
EB
1930 if (likely(apt.queued)) {
1931 bool on_queue = poll_iocb_lock_wq(req);
1932
1933 if (!on_queue || req->work_scheduled) {
363bee27
EB
1934 /*
1935 * aio_poll_wake() already either scheduled the async
1936 * completion work, or completed the request inline.
1937 */
1938 if (apt.error) /* unsupported case: multiple queues */
af5c72b1
AV
1939 cancel = true;
1940 apt.error = 0;
1941 mask = 0;
1942 }
1943 if (mask || apt.error) {
363bee27 1944 /* Steal to complete synchronously. */
af5c72b1
AV
1945 list_del_init(&req->wait.entry);
1946 } else if (cancel) {
363bee27 1947 /* Cancel if possible (may be too late though). */
af5c72b1 1948 WRITE_ONCE(req->cancelled, true);
50252e4b 1949 } else if (on_queue) {
363bee27
EB
1950 /*
1951 * Actually waiting for an event, so add the request to
1952 * active_reqs so that it can be cancelled if needed.
1953 */
af5c72b1
AV
1954 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1955 aiocb->ki_cancel = aio_poll_cancel;
1956 }
50252e4b
EB
1957 if (on_queue)
1958 poll_iocb_unlock_wq(req);
af5c72b1
AV
1959 }
1960 if (mask) { /* no async, we'd stolen it */
1961 aiocb->ki_res.res = mangle_poll(mask);
bfe4037e 1962 apt.error = 0;
bfe4037e 1963 }
bfe4037e 1964 spin_unlock_irq(&ctx->ctx_lock);
bfe4037e 1965 if (mask)
af5c72b1
AV
1966 iocb_put(aiocb);
1967 return apt.error;
bfe4037e
CH
1968}
1969
88a6f18b 1970static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
7316b49c
AV
1971 struct iocb __user *user_iocb, struct aio_kiocb *req,
1972 bool compat)
1da177e4 1973{
84c4e1f8 1974 req->ki_filp = fget(iocb->aio_fildes);
84c4e1f8 1975 if (unlikely(!req->ki_filp))
7316b49c 1976 return -EBADF;
84c4e1f8 1977
88a6f18b 1978 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
74259703 1979 struct eventfd_ctx *eventfd;
9c3060be
DL
1980 /*
1981 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1982 * instance of the file* now. The file descriptor must be
1983 * an eventfd() fd, and will be signaled for each completed
1984 * event using the eventfd_signal() function.
1985 */
74259703 1986 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
7316b49c 1987 if (IS_ERR(eventfd))
18bfb9c6 1988 return PTR_ERR(eventfd);
7316b49c 1989
74259703 1990 req->ki_eventfd = eventfd;
9830f4be
GR
1991 }
1992
7316b49c 1993 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
caf4167a 1994 pr_debug("EFAULT: aio_key\n");
7316b49c 1995 return -EFAULT;
1da177e4
LT
1996 }
1997
a9339b78
AV
1998 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1999 req->ki_res.data = iocb->aio_data;
2000 req->ki_res.res = 0;
2001 req->ki_res.res2 = 0;
1da177e4 2002
88a6f18b 2003 switch (iocb->aio_lio_opcode) {
89319d31 2004 case IOCB_CMD_PREAD:
7316b49c 2005 return aio_read(&req->rw, iocb, false, compat);
89319d31 2006 case IOCB_CMD_PWRITE:
7316b49c 2007 return aio_write(&req->rw, iocb, false, compat);
89319d31 2008 case IOCB_CMD_PREADV:
7316b49c 2009 return aio_read(&req->rw, iocb, true, compat);
89319d31 2010 case IOCB_CMD_PWRITEV:
7316b49c 2011 return aio_write(&req->rw, iocb, true, compat);
a3c0d439 2012 case IOCB_CMD_FSYNC:
7316b49c 2013 return aio_fsync(&req->fsync, iocb, false);
a3c0d439 2014 case IOCB_CMD_FDSYNC:
7316b49c 2015 return aio_fsync(&req->fsync, iocb, true);
bfe4037e 2016 case IOCB_CMD_POLL:
7316b49c 2017 return aio_poll(req, iocb);
89319d31 2018 default:
88a6f18b 2019 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
7316b49c 2020 return -EINVAL;
89319d31 2021 }
1da177e4
LT
2022}
2023
88a6f18b
JA
2024static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
2025 bool compat)
2026{
7316b49c 2027 struct aio_kiocb *req;
88a6f18b 2028 struct iocb iocb;
7316b49c 2029 int err;
88a6f18b
JA
2030
2031 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2032 return -EFAULT;
2033
7316b49c
AV
2034 /* enforce forwards compatibility on users */
2035 if (unlikely(iocb.aio_reserved2)) {
2036 pr_debug("EINVAL: reserve field set\n");
2037 return -EINVAL;
2038 }
2039
2040 /* prevent overflows */
2041 if (unlikely(
2042 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2043 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2044 ((ssize_t)iocb.aio_nbytes < 0)
2045 )) {
2046 pr_debug("EINVAL: overflow check\n");
2047 return -EINVAL;
2048 }
2049
2050 req = aio_get_req(ctx);
2051 if (unlikely(!req))
2052 return -EAGAIN;
2053
2054 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2055
2056 /* Done with the synchronous reference */
2057 iocb_put(req);
2058
2059 /*
2060 * If err is 0, we'd either done aio_complete() ourselves or have
2061 * arranged for that to be done asynchronously. Anything non-zero
2062 * means that we need to destroy req ourselves.
2063 */
2064 if (unlikely(err)) {
2065 iocb_destroy(req);
2066 put_reqs_available(ctx, 1);
2067 }
2068 return err;
88a6f18b
JA
2069}
2070
67ba049f
AV
2071/* sys_io_submit:
2072 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
2073 * the number of iocbs queued. May return -EINVAL if the aio_context
2074 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
2075 * *iocbpp[0] is not properly initialized, if the operation specified
2076 * is invalid for the file descriptor in the iocb. May fail with
2077 * -EFAULT if any of the data structures point to invalid data. May
2078 * fail with -EBADF if the file descriptor specified in the first
2079 * iocb is invalid. May fail with -EAGAIN if insufficient resources
2080 * are available to queue any iocbs. Will return 0 if nr is 0. Will
2081 * fail with -ENOSYS if not implemented.
2082 */
2083SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2084 struct iocb __user * __user *, iocbpp)
1da177e4
LT
2085{
2086 struct kioctx *ctx;
2087 long ret = 0;
080d676d 2088 int i = 0;
9f5b9425 2089 struct blk_plug plug;
1da177e4
LT
2090
2091 if (unlikely(nr < 0))
2092 return -EINVAL;
2093
1da177e4
LT
2094 ctx = lookup_ioctx(ctx_id);
2095 if (unlikely(!ctx)) {
caf4167a 2096 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
2097 return -EINVAL;
2098 }
2099
1da92779
AV
2100 if (nr > ctx->nr_events)
2101 nr = ctx->nr_events;
2102
a79d40e9
JA
2103 if (nr > AIO_PLUG_THRESHOLD)
2104 blk_start_plug(&plug);
67ba049f 2105 for (i = 0; i < nr; i++) {
1da177e4 2106 struct iocb __user *user_iocb;
1da177e4 2107
67ba049f 2108 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1da177e4
LT
2109 ret = -EFAULT;
2110 break;
2111 }
2112
67ba049f 2113 ret = io_submit_one(ctx, user_iocb, false);
1da177e4
LT
2114 if (ret)
2115 break;
2116 }
a79d40e9
JA
2117 if (nr > AIO_PLUG_THRESHOLD)
2118 blk_finish_plug(&plug);
1da177e4 2119
723be6e3 2120 percpu_ref_put(&ctx->users);
1da177e4
LT
2121 return i ? i : ret;
2122}
2123
c00d2c7e 2124#ifdef CONFIG_COMPAT
c00d2c7e 2125COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
67ba049f 2126 int, nr, compat_uptr_t __user *, iocbpp)
c00d2c7e 2127{
67ba049f
AV
2128 struct kioctx *ctx;
2129 long ret = 0;
2130 int i = 0;
2131 struct blk_plug plug;
c00d2c7e
AV
2132
2133 if (unlikely(nr < 0))
2134 return -EINVAL;
2135
67ba049f
AV
2136 ctx = lookup_ioctx(ctx_id);
2137 if (unlikely(!ctx)) {
2138 pr_debug("EINVAL: invalid context id\n");
2139 return -EINVAL;
2140 }
2141
1da92779
AV
2142 if (nr > ctx->nr_events)
2143 nr = ctx->nr_events;
2144
a79d40e9
JA
2145 if (nr > AIO_PLUG_THRESHOLD)
2146 blk_start_plug(&plug);
67ba049f
AV
2147 for (i = 0; i < nr; i++) {
2148 compat_uptr_t user_iocb;
2149
2150 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2151 ret = -EFAULT;
2152 break;
2153 }
2154
2155 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2156 if (ret)
2157 break;
2158 }
a79d40e9
JA
2159 if (nr > AIO_PLUG_THRESHOLD)
2160 blk_finish_plug(&plug);
67ba049f
AV
2161
2162 percpu_ref_put(&ctx->users);
2163 return i ? i : ret;
c00d2c7e
AV
2164}
2165#endif
2166
1da177e4 2167/* sys_io_cancel:
54cbc058
BVA
2168 * Attempts to cancel an iocb previously passed to io_submit(). If the
2169 * operation is successfully cancelled 0 is returned. May fail with
2170 * -EFAULT if any of the data structures pointed to are invalid. May
2171 * fail with -EINVAL if aio_context specified by ctx_id is invalid. Will
2172 * fail with -ENOSYS if not implemented.
1da177e4 2173 */
002c8976
HC
2174SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2175 struct io_event __user *, result)
1da177e4 2176{
1da177e4 2177 struct kioctx *ctx;
04b2fa9f 2178 struct aio_kiocb *kiocb;
888933f8 2179 int ret = -EINVAL;
1da177e4 2180 u32 key;
a9339b78 2181 u64 obj = (u64)(unsigned long)iocb;
1da177e4 2182
f3a2752a 2183 if (unlikely(get_user(key, &iocb->aio_key)))
1da177e4 2184 return -EFAULT;
f3a2752a
CH
2185 if (unlikely(key != KIOCB_KEY))
2186 return -EINVAL;
1da177e4
LT
2187
2188 ctx = lookup_ioctx(ctx_id);
2189 if (unlikely(!ctx))
2190 return -EINVAL;
2191
2192 spin_lock_irq(&ctx->ctx_lock);
833f4154
AV
2193 /* TODO: use a hash or array, this sucks. */
2194 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
a9339b78 2195 if (kiocb->ki_res.obj == obj) {
833f4154
AV
2196 ret = kiocb->ki_cancel(&kiocb->rw);
2197 list_del_init(&kiocb->ki_list);
2198 break;
2199 }
888933f8 2200 }
1da177e4
LT
2201 spin_unlock_irq(&ctx->ctx_lock);
2202
54cbc058
BVA
2203 /*
2204 * The result argument is no longer used - the io_event is always
2205 * delivered via the ring buffer.
2206 */
2207 if (ret == 0 && kiocb->rw.ki_flags & IOCB_AIO_RW)
2208 aio_complete_rw(&kiocb->rw, -EINTR);
1da177e4 2209
723be6e3 2210 percpu_ref_put(&ctx->users);
1da177e4
LT
2211
2212 return ret;
2213}
2214
fa2e62a5
DD
2215static long do_io_getevents(aio_context_t ctx_id,
2216 long min_nr,
2217 long nr,
2218 struct io_event __user *events,
2219 struct timespec64 *ts)
2220{
2221 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2222 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2223 long ret = -EINVAL;
2224
2225 if (likely(ioctx)) {
2226 if (likely(min_nr <= nr && min_nr >= 0))
2227 ret = read_events(ioctx, min_nr, nr, events, until);
2228 percpu_ref_put(&ioctx->users);
2229 }
2230
2231 return ret;
2232}
2233
1da177e4
LT
2234/* io_getevents:
2235 * Attempts to read at least min_nr events and up to nr events from
642b5123
ST
2236 * the completion queue for the aio_context specified by ctx_id. If
2237 * it succeeds, the number of read events is returned. May fail with
2238 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2239 * out of range, if timeout is out of range. May fail with -EFAULT
2240 * if any of the memory specified is invalid. May return 0 or
2241 * < min_nr if the timeout specified by timeout has elapsed
2242 * before sufficient events are available, where timeout == NULL
2243 * specifies an infinite timeout. Note that the timeout pointed to by
6900807c 2244 * timeout is relative. Will fail with -ENOSYS if not implemented.
1da177e4 2245 */
3ca47e95 2246#ifdef CONFIG_64BIT
7a35397f 2247
002c8976
HC
2248SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2249 long, min_nr,
2250 long, nr,
2251 struct io_event __user *, events,
7a35397f 2252 struct __kernel_timespec __user *, timeout)
1da177e4 2253{
fa2e62a5 2254 struct timespec64 ts;
7a074e96
CH
2255 int ret;
2256
2257 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2258 return -EFAULT;
2259
2260 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2261 if (!ret && signal_pending(current))
2262 ret = -EINTR;
2263 return ret;
2264}
1da177e4 2265
7a35397f
DD
2266#endif
2267
9ba546c0
CH
2268struct __aio_sigset {
2269 const sigset_t __user *sigmask;
2270 size_t sigsetsize;
2271};
2272
7a074e96
CH
2273SYSCALL_DEFINE6(io_pgetevents,
2274 aio_context_t, ctx_id,
2275 long, min_nr,
2276 long, nr,
2277 struct io_event __user *, events,
7a35397f 2278 struct __kernel_timespec __user *, timeout,
7a074e96
CH
2279 const struct __aio_sigset __user *, usig)
2280{
2281 struct __aio_sigset ksig = { NULL, };
7a074e96 2282 struct timespec64 ts;
97abc889 2283 bool interrupted;
7a074e96
CH
2284 int ret;
2285
2286 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2287 return -EFAULT;
2288
2289 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2290 return -EFAULT;
2291
b772434b 2292 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
7a35397f
DD
2293 if (ret)
2294 return ret;
7a074e96
CH
2295
2296 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
97abc889
ON
2297
2298 interrupted = signal_pending(current);
b772434b 2299 restore_saved_sigmask_unless(interrupted);
97abc889 2300 if (interrupted && !ret)
7a35397f 2301 ret = -ERESTARTNOHAND;
7a074e96 2302
7a35397f
DD
2303 return ret;
2304}
2305
2306#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2307
2308SYSCALL_DEFINE6(io_pgetevents_time32,
2309 aio_context_t, ctx_id,
2310 long, min_nr,
2311 long, nr,
2312 struct io_event __user *, events,
2313 struct old_timespec32 __user *, timeout,
2314 const struct __aio_sigset __user *, usig)
2315{
2316 struct __aio_sigset ksig = { NULL, };
7a35397f 2317 struct timespec64 ts;
97abc889 2318 bool interrupted;
7a35397f
DD
2319 int ret;
2320
2321 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2322 return -EFAULT;
2323
2324 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2325 return -EFAULT;
2326
ded653cc 2327
b772434b 2328 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
ded653cc
DD
2329 if (ret)
2330 return ret;
7a074e96
CH
2331
2332 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
97abc889
ON
2333
2334 interrupted = signal_pending(current);
b772434b 2335 restore_saved_sigmask_unless(interrupted);
97abc889 2336 if (interrupted && !ret)
854a6ed5 2337 ret = -ERESTARTNOHAND;
fa2e62a5 2338
7a074e96 2339 return ret;
1da177e4 2340}
c00d2c7e 2341
7a35397f
DD
2342#endif
2343
2344#if defined(CONFIG_COMPAT_32BIT_TIME)
2345
8dabe724
AB
2346SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2347 __s32, min_nr,
2348 __s32, nr,
2349 struct io_event __user *, events,
2350 struct old_timespec32 __user *, timeout)
c00d2c7e 2351{
fa2e62a5 2352 struct timespec64 t;
7a074e96
CH
2353 int ret;
2354
9afc5eee 2355 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2356 return -EFAULT;
2357
2358 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2359 if (!ret && signal_pending(current))
2360 ret = -EINTR;
2361 return ret;
2362}
2363
7a35397f
DD
2364#endif
2365
2366#ifdef CONFIG_COMPAT
c00d2c7e 2367
7a074e96 2368struct __compat_aio_sigset {
97eba80f 2369 compat_uptr_t sigmask;
7a074e96
CH
2370 compat_size_t sigsetsize;
2371};
2372
7a35397f
DD
2373#if defined(CONFIG_COMPAT_32BIT_TIME)
2374
7a074e96
CH
2375COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2376 compat_aio_context_t, ctx_id,
2377 compat_long_t, min_nr,
2378 compat_long_t, nr,
2379 struct io_event __user *, events,
9afc5eee 2380 struct old_timespec32 __user *, timeout,
7a074e96
CH
2381 const struct __compat_aio_sigset __user *, usig)
2382{
97eba80f 2383 struct __compat_aio_sigset ksig = { 0, };
7a074e96 2384 struct timespec64 t;
97abc889 2385 bool interrupted;
7a074e96
CH
2386 int ret;
2387
9afc5eee 2388 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2389 return -EFAULT;
2390
2391 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2392 return -EFAULT;
2393
97eba80f 2394 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
ded653cc
DD
2395 if (ret)
2396 return ret;
c00d2c7e 2397
7a074e96 2398 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
97abc889
ON
2399
2400 interrupted = signal_pending(current);
b772434b 2401 restore_saved_sigmask_unless(interrupted);
97abc889 2402 if (interrupted && !ret)
854a6ed5 2403 ret = -ERESTARTNOHAND;
fa2e62a5 2404
7a074e96 2405 return ret;
c00d2c7e 2406}
7a35397f
DD
2407
2408#endif
2409
2410COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2411 compat_aio_context_t, ctx_id,
2412 compat_long_t, min_nr,
2413 compat_long_t, nr,
2414 struct io_event __user *, events,
2415 struct __kernel_timespec __user *, timeout,
2416 const struct __compat_aio_sigset __user *, usig)
2417{
97eba80f 2418 struct __compat_aio_sigset ksig = { 0, };
7a35397f 2419 struct timespec64 t;
97abc889 2420 bool interrupted;
7a35397f
DD
2421 int ret;
2422
2423 if (timeout && get_timespec64(&t, timeout))
2424 return -EFAULT;
2425
2426 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2427 return -EFAULT;
2428
97eba80f 2429 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
7a35397f
DD
2430 if (ret)
2431 return ret;
2432
2433 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
97abc889
ON
2434
2435 interrupted = signal_pending(current);
b772434b 2436 restore_saved_sigmask_unless(interrupted);
97abc889 2437 if (interrupted && !ret)
7a35397f 2438 ret = -ERESTARTNOHAND;
fa2e62a5 2439
7a074e96 2440 return ret;
c00d2c7e
AV
2441}
2442#endif
This page took 1.556128 seconds and 4 git commands to generate.