]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/fork.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * 'fork.c' contains the help-routines for the 'fork' system call | |
9 | * (see also entry.S and others). | |
10 | * Fork is rather simple, once you get the hang of it, but the memory | |
11 | * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' | |
12 | */ | |
13 | ||
14 | #include <linux/config.h> | |
15 | #include <linux/slab.h> | |
16 | #include <linux/init.h> | |
17 | #include <linux/unistd.h> | |
18 | #include <linux/smp_lock.h> | |
19 | #include <linux/module.h> | |
20 | #include <linux/vmalloc.h> | |
21 | #include <linux/completion.h> | |
22 | #include <linux/namespace.h> | |
23 | #include <linux/personality.h> | |
24 | #include <linux/mempolicy.h> | |
25 | #include <linux/sem.h> | |
26 | #include <linux/file.h> | |
27 | #include <linux/key.h> | |
28 | #include <linux/binfmts.h> | |
29 | #include <linux/mman.h> | |
30 | #include <linux/fs.h> | |
31 | #include <linux/cpu.h> | |
32 | #include <linux/cpuset.h> | |
33 | #include <linux/security.h> | |
34 | #include <linux/swap.h> | |
35 | #include <linux/syscalls.h> | |
36 | #include <linux/jiffies.h> | |
37 | #include <linux/futex.h> | |
ab2af1f5 | 38 | #include <linux/rcupdate.h> |
1da177e4 LT |
39 | #include <linux/ptrace.h> |
40 | #include <linux/mount.h> | |
41 | #include <linux/audit.h> | |
42 | #include <linux/profile.h> | |
43 | #include <linux/rmap.h> | |
44 | #include <linux/acct.h> | |
9f46080c | 45 | #include <linux/cn_proc.h> |
1da177e4 LT |
46 | |
47 | #include <asm/pgtable.h> | |
48 | #include <asm/pgalloc.h> | |
49 | #include <asm/uaccess.h> | |
50 | #include <asm/mmu_context.h> | |
51 | #include <asm/cacheflush.h> | |
52 | #include <asm/tlbflush.h> | |
53 | ||
54 | /* | |
55 | * Protected counters by write_lock_irq(&tasklist_lock) | |
56 | */ | |
57 | unsigned long total_forks; /* Handle normal Linux uptimes. */ | |
58 | int nr_threads; /* The idle threads do not count.. */ | |
59 | ||
60 | int max_threads; /* tunable limit on nr_threads */ | |
61 | ||
62 | DEFINE_PER_CPU(unsigned long, process_counts) = 0; | |
63 | ||
64 | __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ | |
65 | ||
66 | EXPORT_SYMBOL(tasklist_lock); | |
67 | ||
68 | int nr_processes(void) | |
69 | { | |
70 | int cpu; | |
71 | int total = 0; | |
72 | ||
73 | for_each_online_cpu(cpu) | |
74 | total += per_cpu(process_counts, cpu); | |
75 | ||
76 | return total; | |
77 | } | |
78 | ||
79 | #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR | |
80 | # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL) | |
81 | # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk)) | |
82 | static kmem_cache_t *task_struct_cachep; | |
83 | #endif | |
84 | ||
85 | /* SLAB cache for signal_struct structures (tsk->signal) */ | |
86 | kmem_cache_t *signal_cachep; | |
87 | ||
88 | /* SLAB cache for sighand_struct structures (tsk->sighand) */ | |
89 | kmem_cache_t *sighand_cachep; | |
90 | ||
91 | /* SLAB cache for files_struct structures (tsk->files) */ | |
92 | kmem_cache_t *files_cachep; | |
93 | ||
94 | /* SLAB cache for fs_struct structures (tsk->fs) */ | |
95 | kmem_cache_t *fs_cachep; | |
96 | ||
97 | /* SLAB cache for vm_area_struct structures */ | |
98 | kmem_cache_t *vm_area_cachep; | |
99 | ||
100 | /* SLAB cache for mm_struct structures (tsk->mm) */ | |
101 | static kmem_cache_t *mm_cachep; | |
102 | ||
103 | void free_task(struct task_struct *tsk) | |
104 | { | |
105 | free_thread_info(tsk->thread_info); | |
106 | free_task_struct(tsk); | |
107 | } | |
108 | EXPORT_SYMBOL(free_task); | |
109 | ||
110 | void __put_task_struct(struct task_struct *tsk) | |
111 | { | |
112 | WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE))); | |
113 | WARN_ON(atomic_read(&tsk->usage)); | |
114 | WARN_ON(tsk == current); | |
115 | ||
116 | if (unlikely(tsk->audit_context)) | |
117 | audit_free(tsk); | |
118 | security_task_free(tsk); | |
119 | free_uid(tsk->user); | |
120 | put_group_info(tsk->group_info); | |
121 | ||
122 | if (!profile_handoff_task(tsk)) | |
123 | free_task(tsk); | |
124 | } | |
125 | ||
126 | void __init fork_init(unsigned long mempages) | |
127 | { | |
128 | #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR | |
129 | #ifndef ARCH_MIN_TASKALIGN | |
130 | #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES | |
131 | #endif | |
132 | /* create a slab on which task_structs can be allocated */ | |
133 | task_struct_cachep = | |
134 | kmem_cache_create("task_struct", sizeof(struct task_struct), | |
135 | ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL); | |
136 | #endif | |
137 | ||
138 | /* | |
139 | * The default maximum number of threads is set to a safe | |
140 | * value: the thread structures can take up at most half | |
141 | * of memory. | |
142 | */ | |
143 | max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); | |
144 | ||
145 | /* | |
146 | * we need to allow at least 20 threads to boot a system | |
147 | */ | |
148 | if(max_threads < 20) | |
149 | max_threads = 20; | |
150 | ||
151 | init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; | |
152 | init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; | |
153 | init_task.signal->rlim[RLIMIT_SIGPENDING] = | |
154 | init_task.signal->rlim[RLIMIT_NPROC]; | |
155 | } | |
156 | ||
157 | static struct task_struct *dup_task_struct(struct task_struct *orig) | |
158 | { | |
159 | struct task_struct *tsk; | |
160 | struct thread_info *ti; | |
161 | ||
162 | prepare_to_copy(orig); | |
163 | ||
164 | tsk = alloc_task_struct(); | |
165 | if (!tsk) | |
166 | return NULL; | |
167 | ||
168 | ti = alloc_thread_info(tsk); | |
169 | if (!ti) { | |
170 | free_task_struct(tsk); | |
171 | return NULL; | |
172 | } | |
173 | ||
1da177e4 LT |
174 | *tsk = *orig; |
175 | tsk->thread_info = ti; | |
10ebffde | 176 | setup_thread_stack(tsk, orig); |
1da177e4 LT |
177 | |
178 | /* One for us, one for whoever does the "release_task()" (usually parent) */ | |
179 | atomic_set(&tsk->usage,2); | |
4b5d37ac | 180 | atomic_set(&tsk->fs_excl, 0); |
1da177e4 LT |
181 | return tsk; |
182 | } | |
183 | ||
184 | #ifdef CONFIG_MMU | |
fd3e42fc | 185 | static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) |
1da177e4 | 186 | { |
fd3e42fc | 187 | struct vm_area_struct *mpnt, *tmp, **pprev; |
1da177e4 LT |
188 | struct rb_node **rb_link, *rb_parent; |
189 | int retval; | |
190 | unsigned long charge; | |
191 | struct mempolicy *pol; | |
192 | ||
193 | down_write(&oldmm->mmap_sem); | |
fd3e42fc | 194 | flush_cache_mm(oldmm); |
7ee78232 HD |
195 | down_write(&mm->mmap_sem); |
196 | ||
1da177e4 LT |
197 | mm->locked_vm = 0; |
198 | mm->mmap = NULL; | |
199 | mm->mmap_cache = NULL; | |
200 | mm->free_area_cache = oldmm->mmap_base; | |
1363c3cd | 201 | mm->cached_hole_size = ~0UL; |
1da177e4 | 202 | mm->map_count = 0; |
1da177e4 LT |
203 | cpus_clear(mm->cpu_vm_mask); |
204 | mm->mm_rb = RB_ROOT; | |
205 | rb_link = &mm->mm_rb.rb_node; | |
206 | rb_parent = NULL; | |
207 | pprev = &mm->mmap; | |
208 | ||
fd3e42fc | 209 | for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { |
1da177e4 LT |
210 | struct file *file; |
211 | ||
212 | if (mpnt->vm_flags & VM_DONTCOPY) { | |
3b6bfcdb HD |
213 | long pages = vma_pages(mpnt); |
214 | mm->total_vm -= pages; | |
ab50b8ed | 215 | vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, |
3b6bfcdb | 216 | -pages); |
1da177e4 LT |
217 | continue; |
218 | } | |
219 | charge = 0; | |
220 | if (mpnt->vm_flags & VM_ACCOUNT) { | |
221 | unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; | |
222 | if (security_vm_enough_memory(len)) | |
223 | goto fail_nomem; | |
224 | charge = len; | |
225 | } | |
226 | tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); | |
227 | if (!tmp) | |
228 | goto fail_nomem; | |
229 | *tmp = *mpnt; | |
230 | pol = mpol_copy(vma_policy(mpnt)); | |
231 | retval = PTR_ERR(pol); | |
232 | if (IS_ERR(pol)) | |
233 | goto fail_nomem_policy; | |
234 | vma_set_policy(tmp, pol); | |
235 | tmp->vm_flags &= ~VM_LOCKED; | |
236 | tmp->vm_mm = mm; | |
237 | tmp->vm_next = NULL; | |
238 | anon_vma_link(tmp); | |
239 | file = tmp->vm_file; | |
240 | if (file) { | |
241 | struct inode *inode = file->f_dentry->d_inode; | |
242 | get_file(file); | |
243 | if (tmp->vm_flags & VM_DENYWRITE) | |
244 | atomic_dec(&inode->i_writecount); | |
245 | ||
246 | /* insert tmp into the share list, just after mpnt */ | |
247 | spin_lock(&file->f_mapping->i_mmap_lock); | |
248 | tmp->vm_truncate_count = mpnt->vm_truncate_count; | |
249 | flush_dcache_mmap_lock(file->f_mapping); | |
250 | vma_prio_tree_add(tmp, mpnt); | |
251 | flush_dcache_mmap_unlock(file->f_mapping); | |
252 | spin_unlock(&file->f_mapping->i_mmap_lock); | |
253 | } | |
254 | ||
255 | /* | |
7ee78232 | 256 | * Link in the new vma and copy the page table entries. |
1da177e4 | 257 | */ |
1da177e4 LT |
258 | *pprev = tmp; |
259 | pprev = &tmp->vm_next; | |
260 | ||
261 | __vma_link_rb(mm, tmp, rb_link, rb_parent); | |
262 | rb_link = &tmp->vm_rb.rb_right; | |
263 | rb_parent = &tmp->vm_rb; | |
264 | ||
265 | mm->map_count++; | |
0b0db14c | 266 | retval = copy_page_range(mm, oldmm, mpnt); |
1da177e4 LT |
267 | |
268 | if (tmp->vm_ops && tmp->vm_ops->open) | |
269 | tmp->vm_ops->open(tmp); | |
270 | ||
271 | if (retval) | |
272 | goto out; | |
273 | } | |
274 | retval = 0; | |
1da177e4 | 275 | out: |
7ee78232 | 276 | up_write(&mm->mmap_sem); |
fd3e42fc | 277 | flush_tlb_mm(oldmm); |
1da177e4 LT |
278 | up_write(&oldmm->mmap_sem); |
279 | return retval; | |
280 | fail_nomem_policy: | |
281 | kmem_cache_free(vm_area_cachep, tmp); | |
282 | fail_nomem: | |
283 | retval = -ENOMEM; | |
284 | vm_unacct_memory(charge); | |
285 | goto out; | |
286 | } | |
287 | ||
288 | static inline int mm_alloc_pgd(struct mm_struct * mm) | |
289 | { | |
290 | mm->pgd = pgd_alloc(mm); | |
291 | if (unlikely(!mm->pgd)) | |
292 | return -ENOMEM; | |
293 | return 0; | |
294 | } | |
295 | ||
296 | static inline void mm_free_pgd(struct mm_struct * mm) | |
297 | { | |
298 | pgd_free(mm->pgd); | |
299 | } | |
300 | #else | |
301 | #define dup_mmap(mm, oldmm) (0) | |
302 | #define mm_alloc_pgd(mm) (0) | |
303 | #define mm_free_pgd(mm) | |
304 | #endif /* CONFIG_MMU */ | |
305 | ||
306 | __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); | |
307 | ||
308 | #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL)) | |
309 | #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) | |
310 | ||
311 | #include <linux/init_task.h> | |
312 | ||
313 | static struct mm_struct * mm_init(struct mm_struct * mm) | |
314 | { | |
315 | atomic_set(&mm->mm_users, 1); | |
316 | atomic_set(&mm->mm_count, 1); | |
317 | init_rwsem(&mm->mmap_sem); | |
318 | INIT_LIST_HEAD(&mm->mmlist); | |
319 | mm->core_waiters = 0; | |
320 | mm->nr_ptes = 0; | |
4294621f | 321 | set_mm_counter(mm, file_rss, 0); |
404351e6 | 322 | set_mm_counter(mm, anon_rss, 0); |
1da177e4 LT |
323 | spin_lock_init(&mm->page_table_lock); |
324 | rwlock_init(&mm->ioctx_list_lock); | |
325 | mm->ioctx_list = NULL; | |
1da177e4 | 326 | mm->free_area_cache = TASK_UNMAPPED_BASE; |
1363c3cd | 327 | mm->cached_hole_size = ~0UL; |
1da177e4 LT |
328 | |
329 | if (likely(!mm_alloc_pgd(mm))) { | |
330 | mm->def_flags = 0; | |
331 | return mm; | |
332 | } | |
333 | free_mm(mm); | |
334 | return NULL; | |
335 | } | |
336 | ||
337 | /* | |
338 | * Allocate and initialize an mm_struct. | |
339 | */ | |
340 | struct mm_struct * mm_alloc(void) | |
341 | { | |
342 | struct mm_struct * mm; | |
343 | ||
344 | mm = allocate_mm(); | |
345 | if (mm) { | |
346 | memset(mm, 0, sizeof(*mm)); | |
347 | mm = mm_init(mm); | |
348 | } | |
349 | return mm; | |
350 | } | |
351 | ||
352 | /* | |
353 | * Called when the last reference to the mm | |
354 | * is dropped: either by a lazy thread or by | |
355 | * mmput. Free the page directory and the mm. | |
356 | */ | |
357 | void fastcall __mmdrop(struct mm_struct *mm) | |
358 | { | |
359 | BUG_ON(mm == &init_mm); | |
360 | mm_free_pgd(mm); | |
361 | destroy_context(mm); | |
362 | free_mm(mm); | |
363 | } | |
364 | ||
365 | /* | |
366 | * Decrement the use count and release all resources for an mm. | |
367 | */ | |
368 | void mmput(struct mm_struct *mm) | |
369 | { | |
370 | if (atomic_dec_and_test(&mm->mm_users)) { | |
371 | exit_aio(mm); | |
372 | exit_mmap(mm); | |
373 | if (!list_empty(&mm->mmlist)) { | |
374 | spin_lock(&mmlist_lock); | |
375 | list_del(&mm->mmlist); | |
376 | spin_unlock(&mmlist_lock); | |
377 | } | |
378 | put_swap_token(mm); | |
379 | mmdrop(mm); | |
380 | } | |
381 | } | |
382 | EXPORT_SYMBOL_GPL(mmput); | |
383 | ||
384 | /** | |
385 | * get_task_mm - acquire a reference to the task's mm | |
386 | * | |
387 | * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning | |
388 | * this kernel workthread has transiently adopted a user mm with use_mm, | |
389 | * to do its AIO) is not set and if so returns a reference to it, after | |
390 | * bumping up the use count. User must release the mm via mmput() | |
391 | * after use. Typically used by /proc and ptrace. | |
392 | */ | |
393 | struct mm_struct *get_task_mm(struct task_struct *task) | |
394 | { | |
395 | struct mm_struct *mm; | |
396 | ||
397 | task_lock(task); | |
398 | mm = task->mm; | |
399 | if (mm) { | |
400 | if (task->flags & PF_BORROWED_MM) | |
401 | mm = NULL; | |
402 | else | |
403 | atomic_inc(&mm->mm_users); | |
404 | } | |
405 | task_unlock(task); | |
406 | return mm; | |
407 | } | |
408 | EXPORT_SYMBOL_GPL(get_task_mm); | |
409 | ||
410 | /* Please note the differences between mmput and mm_release. | |
411 | * mmput is called whenever we stop holding onto a mm_struct, | |
412 | * error success whatever. | |
413 | * | |
414 | * mm_release is called after a mm_struct has been removed | |
415 | * from the current process. | |
416 | * | |
417 | * This difference is important for error handling, when we | |
418 | * only half set up a mm_struct for a new process and need to restore | |
419 | * the old one. Because we mmput the new mm_struct before | |
420 | * restoring the old one. . . | |
421 | * Eric Biederman 10 January 1998 | |
422 | */ | |
423 | void mm_release(struct task_struct *tsk, struct mm_struct *mm) | |
424 | { | |
425 | struct completion *vfork_done = tsk->vfork_done; | |
426 | ||
427 | /* Get rid of any cached register state */ | |
428 | deactivate_mm(tsk, mm); | |
429 | ||
430 | /* notify parent sleeping on vfork() */ | |
431 | if (vfork_done) { | |
432 | tsk->vfork_done = NULL; | |
433 | complete(vfork_done); | |
434 | } | |
435 | if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) { | |
436 | u32 __user * tidptr = tsk->clear_child_tid; | |
437 | tsk->clear_child_tid = NULL; | |
438 | ||
439 | /* | |
440 | * We don't check the error code - if userspace has | |
441 | * not set up a proper pointer then tough luck. | |
442 | */ | |
443 | put_user(0, tidptr); | |
444 | sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0); | |
445 | } | |
446 | } | |
447 | ||
448 | static int copy_mm(unsigned long clone_flags, struct task_struct * tsk) | |
449 | { | |
450 | struct mm_struct * mm, *oldmm; | |
451 | int retval; | |
452 | ||
453 | tsk->min_flt = tsk->maj_flt = 0; | |
454 | tsk->nvcsw = tsk->nivcsw = 0; | |
455 | ||
456 | tsk->mm = NULL; | |
457 | tsk->active_mm = NULL; | |
458 | ||
459 | /* | |
460 | * Are we cloning a kernel thread? | |
461 | * | |
462 | * We need to steal a active VM for that.. | |
463 | */ | |
464 | oldmm = current->mm; | |
465 | if (!oldmm) | |
466 | return 0; | |
467 | ||
468 | if (clone_flags & CLONE_VM) { | |
469 | atomic_inc(&oldmm->mm_users); | |
470 | mm = oldmm; | |
1da177e4 LT |
471 | goto good_mm; |
472 | } | |
473 | ||
474 | retval = -ENOMEM; | |
475 | mm = allocate_mm(); | |
476 | if (!mm) | |
477 | goto fail_nomem; | |
478 | ||
479 | /* Copy the current MM stuff.. */ | |
480 | memcpy(mm, oldmm, sizeof(*mm)); | |
481 | if (!mm_init(mm)) | |
482 | goto fail_nomem; | |
483 | ||
484 | if (init_new_context(tsk,mm)) | |
485 | goto fail_nocontext; | |
486 | ||
487 | retval = dup_mmap(mm, oldmm); | |
488 | if (retval) | |
489 | goto free_pt; | |
490 | ||
4294621f | 491 | mm->hiwater_rss = get_mm_rss(mm); |
1da177e4 LT |
492 | mm->hiwater_vm = mm->total_vm; |
493 | ||
494 | good_mm: | |
495 | tsk->mm = mm; | |
496 | tsk->active_mm = mm; | |
497 | return 0; | |
498 | ||
499 | free_pt: | |
500 | mmput(mm); | |
501 | fail_nomem: | |
502 | return retval; | |
503 | ||
504 | fail_nocontext: | |
505 | /* | |
506 | * If init_new_context() failed, we cannot use mmput() to free the mm | |
507 | * because it calls destroy_context() | |
508 | */ | |
509 | mm_free_pgd(mm); | |
510 | free_mm(mm); | |
511 | return retval; | |
512 | } | |
513 | ||
514 | static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old) | |
515 | { | |
516 | struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL); | |
517 | /* We don't need to lock fs - think why ;-) */ | |
518 | if (fs) { | |
519 | atomic_set(&fs->count, 1); | |
520 | rwlock_init(&fs->lock); | |
521 | fs->umask = old->umask; | |
522 | read_lock(&old->lock); | |
523 | fs->rootmnt = mntget(old->rootmnt); | |
524 | fs->root = dget(old->root); | |
525 | fs->pwdmnt = mntget(old->pwdmnt); | |
526 | fs->pwd = dget(old->pwd); | |
527 | if (old->altroot) { | |
528 | fs->altrootmnt = mntget(old->altrootmnt); | |
529 | fs->altroot = dget(old->altroot); | |
530 | } else { | |
531 | fs->altrootmnt = NULL; | |
532 | fs->altroot = NULL; | |
533 | } | |
534 | read_unlock(&old->lock); | |
535 | } | |
536 | return fs; | |
537 | } | |
538 | ||
539 | struct fs_struct *copy_fs_struct(struct fs_struct *old) | |
540 | { | |
541 | return __copy_fs_struct(old); | |
542 | } | |
543 | ||
544 | EXPORT_SYMBOL_GPL(copy_fs_struct); | |
545 | ||
546 | static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk) | |
547 | { | |
548 | if (clone_flags & CLONE_FS) { | |
549 | atomic_inc(¤t->fs->count); | |
550 | return 0; | |
551 | } | |
552 | tsk->fs = __copy_fs_struct(current->fs); | |
553 | if (!tsk->fs) | |
554 | return -ENOMEM; | |
555 | return 0; | |
556 | } | |
557 | ||
ab2af1f5 | 558 | static int count_open_files(struct fdtable *fdt) |
1da177e4 | 559 | { |
ab2af1f5 | 560 | int size = fdt->max_fdset; |
1da177e4 LT |
561 | int i; |
562 | ||
563 | /* Find the last open fd */ | |
564 | for (i = size/(8*sizeof(long)); i > 0; ) { | |
badf1662 | 565 | if (fdt->open_fds->fds_bits[--i]) |
1da177e4 LT |
566 | break; |
567 | } | |
568 | i = (i+1) * 8 * sizeof(long); | |
569 | return i; | |
570 | } | |
571 | ||
badf1662 DS |
572 | static struct files_struct *alloc_files(void) |
573 | { | |
574 | struct files_struct *newf; | |
575 | struct fdtable *fdt; | |
576 | ||
577 | newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL); | |
578 | if (!newf) | |
579 | goto out; | |
580 | ||
581 | atomic_set(&newf->count, 1); | |
582 | ||
583 | spin_lock_init(&newf->file_lock); | |
ab2af1f5 | 584 | fdt = &newf->fdtab; |
badf1662 DS |
585 | fdt->next_fd = 0; |
586 | fdt->max_fds = NR_OPEN_DEFAULT; | |
587 | fdt->max_fdset = __FD_SETSIZE; | |
588 | fdt->close_on_exec = &newf->close_on_exec_init; | |
589 | fdt->open_fds = &newf->open_fds_init; | |
590 | fdt->fd = &newf->fd_array[0]; | |
ab2af1f5 DS |
591 | INIT_RCU_HEAD(&fdt->rcu); |
592 | fdt->free_files = NULL; | |
593 | fdt->next = NULL; | |
594 | rcu_assign_pointer(newf->fdt, fdt); | |
badf1662 DS |
595 | out: |
596 | return newf; | |
597 | } | |
598 | ||
1da177e4 LT |
599 | static int copy_files(unsigned long clone_flags, struct task_struct * tsk) |
600 | { | |
601 | struct files_struct *oldf, *newf; | |
602 | struct file **old_fds, **new_fds; | |
603 | int open_files, size, i, error = 0, expand; | |
badf1662 | 604 | struct fdtable *old_fdt, *new_fdt; |
1da177e4 LT |
605 | |
606 | /* | |
607 | * A background process may not have any files ... | |
608 | */ | |
609 | oldf = current->files; | |
610 | if (!oldf) | |
611 | goto out; | |
612 | ||
613 | if (clone_flags & CLONE_FILES) { | |
614 | atomic_inc(&oldf->count); | |
615 | goto out; | |
616 | } | |
617 | ||
618 | /* | |
619 | * Note: we may be using current for both targets (See exec.c) | |
620 | * This works because we cache current->files (old) as oldf. Don't | |
621 | * break this. | |
622 | */ | |
623 | tsk->files = NULL; | |
624 | error = -ENOMEM; | |
badf1662 DS |
625 | newf = alloc_files(); |
626 | if (!newf) | |
1da177e4 LT |
627 | goto out; |
628 | ||
1da177e4 | 629 | spin_lock(&oldf->file_lock); |
badf1662 DS |
630 | old_fdt = files_fdtable(oldf); |
631 | new_fdt = files_fdtable(newf); | |
632 | size = old_fdt->max_fdset; | |
ab2af1f5 | 633 | open_files = count_open_files(old_fdt); |
1da177e4 LT |
634 | expand = 0; |
635 | ||
636 | /* | |
637 | * Check whether we need to allocate a larger fd array or fd set. | |
638 | * Note: we're not a clone task, so the open count won't change. | |
639 | */ | |
badf1662 DS |
640 | if (open_files > new_fdt->max_fdset) { |
641 | new_fdt->max_fdset = 0; | |
1da177e4 LT |
642 | expand = 1; |
643 | } | |
badf1662 DS |
644 | if (open_files > new_fdt->max_fds) { |
645 | new_fdt->max_fds = 0; | |
1da177e4 LT |
646 | expand = 1; |
647 | } | |
648 | ||
649 | /* if the old fdset gets grown now, we'll only copy up to "size" fds */ | |
650 | if (expand) { | |
651 | spin_unlock(&oldf->file_lock); | |
652 | spin_lock(&newf->file_lock); | |
653 | error = expand_files(newf, open_files-1); | |
654 | spin_unlock(&newf->file_lock); | |
655 | if (error < 0) | |
656 | goto out_release; | |
ab2af1f5 DS |
657 | new_fdt = files_fdtable(newf); |
658 | /* | |
659 | * Reacquire the oldf lock and a pointer to its fd table | |
660 | * who knows it may have a new bigger fd table. We need | |
661 | * the latest pointer. | |
662 | */ | |
1da177e4 | 663 | spin_lock(&oldf->file_lock); |
ab2af1f5 | 664 | old_fdt = files_fdtable(oldf); |
1da177e4 LT |
665 | } |
666 | ||
badf1662 DS |
667 | old_fds = old_fdt->fd; |
668 | new_fds = new_fdt->fd; | |
1da177e4 | 669 | |
badf1662 DS |
670 | memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8); |
671 | memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8); | |
1da177e4 LT |
672 | |
673 | for (i = open_files; i != 0; i--) { | |
674 | struct file *f = *old_fds++; | |
675 | if (f) { | |
676 | get_file(f); | |
677 | } else { | |
678 | /* | |
679 | * The fd may be claimed in the fd bitmap but not yet | |
680 | * instantiated in the files array if a sibling thread | |
681 | * is partway through open(). So make sure that this | |
682 | * fd is available to the new process. | |
683 | */ | |
badf1662 | 684 | FD_CLR(open_files - i, new_fdt->open_fds); |
1da177e4 | 685 | } |
ab2af1f5 | 686 | rcu_assign_pointer(*new_fds++, f); |
1da177e4 LT |
687 | } |
688 | spin_unlock(&oldf->file_lock); | |
689 | ||
690 | /* compute the remainder to be cleared */ | |
badf1662 | 691 | size = (new_fdt->max_fds - open_files) * sizeof(struct file *); |
1da177e4 LT |
692 | |
693 | /* This is long word aligned thus could use a optimized version */ | |
694 | memset(new_fds, 0, size); | |
695 | ||
badf1662 DS |
696 | if (new_fdt->max_fdset > open_files) { |
697 | int left = (new_fdt->max_fdset-open_files)/8; | |
1da177e4 LT |
698 | int start = open_files / (8 * sizeof(unsigned long)); |
699 | ||
badf1662 DS |
700 | memset(&new_fdt->open_fds->fds_bits[start], 0, left); |
701 | memset(&new_fdt->close_on_exec->fds_bits[start], 0, left); | |
1da177e4 LT |
702 | } |
703 | ||
704 | tsk->files = newf; | |
705 | error = 0; | |
706 | out: | |
707 | return error; | |
708 | ||
709 | out_release: | |
badf1662 DS |
710 | free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset); |
711 | free_fdset (new_fdt->open_fds, new_fdt->max_fdset); | |
712 | free_fd_array(new_fdt->fd, new_fdt->max_fds); | |
1da177e4 LT |
713 | kmem_cache_free(files_cachep, newf); |
714 | goto out; | |
715 | } | |
716 | ||
717 | /* | |
718 | * Helper to unshare the files of the current task. | |
719 | * We don't want to expose copy_files internals to | |
720 | * the exec layer of the kernel. | |
721 | */ | |
722 | ||
723 | int unshare_files(void) | |
724 | { | |
725 | struct files_struct *files = current->files; | |
726 | int rc; | |
727 | ||
728 | if(!files) | |
729 | BUG(); | |
730 | ||
731 | /* This can race but the race causes us to copy when we don't | |
732 | need to and drop the copy */ | |
733 | if(atomic_read(&files->count) == 1) | |
734 | { | |
735 | atomic_inc(&files->count); | |
736 | return 0; | |
737 | } | |
738 | rc = copy_files(0, current); | |
739 | if(rc) | |
740 | current->files = files; | |
741 | return rc; | |
742 | } | |
743 | ||
744 | EXPORT_SYMBOL(unshare_files); | |
745 | ||
e56d0903 IM |
746 | void sighand_free_cb(struct rcu_head *rhp) |
747 | { | |
748 | struct sighand_struct *sp; | |
749 | ||
750 | sp = container_of(rhp, struct sighand_struct, rcu); | |
751 | kmem_cache_free(sighand_cachep, sp); | |
752 | } | |
753 | ||
1da177e4 LT |
754 | static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk) |
755 | { | |
756 | struct sighand_struct *sig; | |
757 | ||
758 | if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) { | |
759 | atomic_inc(¤t->sighand->count); | |
760 | return 0; | |
761 | } | |
762 | sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); | |
e56d0903 | 763 | rcu_assign_pointer(tsk->sighand, sig); |
1da177e4 LT |
764 | if (!sig) |
765 | return -ENOMEM; | |
766 | spin_lock_init(&sig->siglock); | |
767 | atomic_set(&sig->count, 1); | |
768 | memcpy(sig->action, current->sighand->action, sizeof(sig->action)); | |
769 | return 0; | |
770 | } | |
771 | ||
772 | static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk) | |
773 | { | |
774 | struct signal_struct *sig; | |
775 | int ret; | |
776 | ||
777 | if (clone_flags & CLONE_THREAD) { | |
778 | atomic_inc(¤t->signal->count); | |
779 | atomic_inc(¤t->signal->live); | |
780 | return 0; | |
781 | } | |
782 | sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL); | |
783 | tsk->signal = sig; | |
784 | if (!sig) | |
785 | return -ENOMEM; | |
786 | ||
787 | ret = copy_thread_group_keys(tsk); | |
788 | if (ret < 0) { | |
789 | kmem_cache_free(signal_cachep, sig); | |
790 | return ret; | |
791 | } | |
792 | ||
793 | atomic_set(&sig->count, 1); | |
794 | atomic_set(&sig->live, 1); | |
795 | init_waitqueue_head(&sig->wait_chldexit); | |
796 | sig->flags = 0; | |
797 | sig->group_exit_code = 0; | |
798 | sig->group_exit_task = NULL; | |
799 | sig->group_stop_count = 0; | |
800 | sig->curr_target = NULL; | |
801 | init_sigpending(&sig->shared_pending); | |
802 | INIT_LIST_HEAD(&sig->posix_timers); | |
803 | ||
804 | sig->it_real_value = sig->it_real_incr = 0; | |
805 | sig->real_timer.function = it_real_fn; | |
806 | sig->real_timer.data = (unsigned long) tsk; | |
807 | init_timer(&sig->real_timer); | |
808 | ||
809 | sig->it_virt_expires = cputime_zero; | |
810 | sig->it_virt_incr = cputime_zero; | |
811 | sig->it_prof_expires = cputime_zero; | |
812 | sig->it_prof_incr = cputime_zero; | |
813 | ||
814 | sig->tty = current->signal->tty; | |
815 | sig->pgrp = process_group(current); | |
816 | sig->session = current->signal->session; | |
817 | sig->leader = 0; /* session leadership doesn't inherit */ | |
818 | sig->tty_old_pgrp = 0; | |
819 | ||
820 | sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero; | |
821 | sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; | |
822 | sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; | |
823 | sig->sched_time = 0; | |
824 | INIT_LIST_HEAD(&sig->cpu_timers[0]); | |
825 | INIT_LIST_HEAD(&sig->cpu_timers[1]); | |
826 | INIT_LIST_HEAD(&sig->cpu_timers[2]); | |
827 | ||
828 | task_lock(current->group_leader); | |
829 | memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); | |
830 | task_unlock(current->group_leader); | |
831 | ||
832 | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { | |
833 | /* | |
834 | * New sole thread in the process gets an expiry time | |
835 | * of the whole CPU time limit. | |
836 | */ | |
837 | tsk->it_prof_expires = | |
838 | secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur); | |
839 | } | |
840 | ||
841 | return 0; | |
842 | } | |
843 | ||
844 | static inline void copy_flags(unsigned long clone_flags, struct task_struct *p) | |
845 | { | |
846 | unsigned long new_flags = p->flags; | |
847 | ||
d1209d04 | 848 | new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE); |
1da177e4 LT |
849 | new_flags |= PF_FORKNOEXEC; |
850 | if (!(clone_flags & CLONE_PTRACE)) | |
851 | p->ptrace = 0; | |
852 | p->flags = new_flags; | |
853 | } | |
854 | ||
855 | asmlinkage long sys_set_tid_address(int __user *tidptr) | |
856 | { | |
857 | current->clear_child_tid = tidptr; | |
858 | ||
859 | return current->pid; | |
860 | } | |
861 | ||
862 | /* | |
863 | * This creates a new process as a copy of the old one, | |
864 | * but does not actually start it yet. | |
865 | * | |
866 | * It copies the registers, and all the appropriate | |
867 | * parts of the process environment (as per the clone | |
868 | * flags). The actual kick-off is left to the caller. | |
869 | */ | |
870 | static task_t *copy_process(unsigned long clone_flags, | |
871 | unsigned long stack_start, | |
872 | struct pt_regs *regs, | |
873 | unsigned long stack_size, | |
874 | int __user *parent_tidptr, | |
875 | int __user *child_tidptr, | |
876 | int pid) | |
877 | { | |
878 | int retval; | |
879 | struct task_struct *p = NULL; | |
880 | ||
881 | if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) | |
882 | return ERR_PTR(-EINVAL); | |
883 | ||
884 | /* | |
885 | * Thread groups must share signals as well, and detached threads | |
886 | * can only be started up within the thread group. | |
887 | */ | |
888 | if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) | |
889 | return ERR_PTR(-EINVAL); | |
890 | ||
891 | /* | |
892 | * Shared signal handlers imply shared VM. By way of the above, | |
893 | * thread groups also imply shared VM. Blocking this case allows | |
894 | * for various simplifications in other code. | |
895 | */ | |
896 | if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) | |
897 | return ERR_PTR(-EINVAL); | |
898 | ||
899 | retval = security_task_create(clone_flags); | |
900 | if (retval) | |
901 | goto fork_out; | |
902 | ||
903 | retval = -ENOMEM; | |
904 | p = dup_task_struct(current); | |
905 | if (!p) | |
906 | goto fork_out; | |
907 | ||
908 | retval = -EAGAIN; | |
909 | if (atomic_read(&p->user->processes) >= | |
910 | p->signal->rlim[RLIMIT_NPROC].rlim_cur) { | |
911 | if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && | |
912 | p->user != &root_user) | |
913 | goto bad_fork_free; | |
914 | } | |
915 | ||
916 | atomic_inc(&p->user->__count); | |
917 | atomic_inc(&p->user->processes); | |
918 | get_group_info(p->group_info); | |
919 | ||
920 | /* | |
921 | * If multiple threads are within copy_process(), then this check | |
922 | * triggers too late. This doesn't hurt, the check is only there | |
923 | * to stop root fork bombs. | |
924 | */ | |
925 | if (nr_threads >= max_threads) | |
926 | goto bad_fork_cleanup_count; | |
927 | ||
a1261f54 | 928 | if (!try_module_get(task_thread_info(p)->exec_domain->module)) |
1da177e4 LT |
929 | goto bad_fork_cleanup_count; |
930 | ||
931 | if (p->binfmt && !try_module_get(p->binfmt->module)) | |
932 | goto bad_fork_cleanup_put_domain; | |
933 | ||
934 | p->did_exec = 0; | |
935 | copy_flags(clone_flags, p); | |
936 | p->pid = pid; | |
937 | retval = -EFAULT; | |
938 | if (clone_flags & CLONE_PARENT_SETTID) | |
939 | if (put_user(p->pid, parent_tidptr)) | |
940 | goto bad_fork_cleanup; | |
941 | ||
942 | p->proc_dentry = NULL; | |
943 | ||
944 | INIT_LIST_HEAD(&p->children); | |
945 | INIT_LIST_HEAD(&p->sibling); | |
946 | p->vfork_done = NULL; | |
947 | spin_lock_init(&p->alloc_lock); | |
948 | spin_lock_init(&p->proc_lock); | |
949 | ||
950 | clear_tsk_thread_flag(p, TIF_SIGPENDING); | |
951 | init_sigpending(&p->pending); | |
952 | ||
953 | p->utime = cputime_zero; | |
954 | p->stime = cputime_zero; | |
955 | p->sched_time = 0; | |
956 | p->rchar = 0; /* I/O counter: bytes read */ | |
957 | p->wchar = 0; /* I/O counter: bytes written */ | |
958 | p->syscr = 0; /* I/O counter: read syscalls */ | |
959 | p->syscw = 0; /* I/O counter: write syscalls */ | |
960 | acct_clear_integrals(p); | |
961 | ||
962 | p->it_virt_expires = cputime_zero; | |
963 | p->it_prof_expires = cputime_zero; | |
964 | p->it_sched_expires = 0; | |
965 | INIT_LIST_HEAD(&p->cpu_timers[0]); | |
966 | INIT_LIST_HEAD(&p->cpu_timers[1]); | |
967 | INIT_LIST_HEAD(&p->cpu_timers[2]); | |
968 | ||
969 | p->lock_depth = -1; /* -1 = no lock */ | |
970 | do_posix_clock_monotonic_gettime(&p->start_time); | |
971 | p->security = NULL; | |
972 | p->io_context = NULL; | |
973 | p->io_wait = NULL; | |
974 | p->audit_context = NULL; | |
975 | #ifdef CONFIG_NUMA | |
976 | p->mempolicy = mpol_copy(p->mempolicy); | |
977 | if (IS_ERR(p->mempolicy)) { | |
978 | retval = PTR_ERR(p->mempolicy); | |
979 | p->mempolicy = NULL; | |
980 | goto bad_fork_cleanup; | |
981 | } | |
982 | #endif | |
983 | ||
984 | p->tgid = p->pid; | |
985 | if (clone_flags & CLONE_THREAD) | |
986 | p->tgid = current->tgid; | |
987 | ||
988 | if ((retval = security_task_alloc(p))) | |
989 | goto bad_fork_cleanup_policy; | |
990 | if ((retval = audit_alloc(p))) | |
991 | goto bad_fork_cleanup_security; | |
992 | /* copy all the process information */ | |
993 | if ((retval = copy_semundo(clone_flags, p))) | |
994 | goto bad_fork_cleanup_audit; | |
995 | if ((retval = copy_files(clone_flags, p))) | |
996 | goto bad_fork_cleanup_semundo; | |
997 | if ((retval = copy_fs(clone_flags, p))) | |
998 | goto bad_fork_cleanup_files; | |
999 | if ((retval = copy_sighand(clone_flags, p))) | |
1000 | goto bad_fork_cleanup_fs; | |
1001 | if ((retval = copy_signal(clone_flags, p))) | |
1002 | goto bad_fork_cleanup_sighand; | |
1003 | if ((retval = copy_mm(clone_flags, p))) | |
1004 | goto bad_fork_cleanup_signal; | |
1005 | if ((retval = copy_keys(clone_flags, p))) | |
1006 | goto bad_fork_cleanup_mm; | |
1007 | if ((retval = copy_namespace(clone_flags, p))) | |
1008 | goto bad_fork_cleanup_keys; | |
1009 | retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs); | |
1010 | if (retval) | |
1011 | goto bad_fork_cleanup_namespace; | |
1012 | ||
1013 | p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; | |
1014 | /* | |
1015 | * Clear TID on mm_release()? | |
1016 | */ | |
1017 | p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL; | |
1018 | ||
1019 | /* | |
1020 | * Syscall tracing should be turned off in the child regardless | |
1021 | * of CLONE_PTRACE. | |
1022 | */ | |
1023 | clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); | |
ed75e8d5 LV |
1024 | #ifdef TIF_SYSCALL_EMU |
1025 | clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); | |
1026 | #endif | |
1da177e4 LT |
1027 | |
1028 | /* Our parent execution domain becomes current domain | |
1029 | These must match for thread signalling to apply */ | |
1030 | ||
1031 | p->parent_exec_id = p->self_exec_id; | |
1032 | ||
1033 | /* ok, now we should be set up.. */ | |
1034 | p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL); | |
1035 | p->pdeath_signal = 0; | |
1036 | p->exit_state = 0; | |
1037 | ||
1da177e4 LT |
1038 | /* |
1039 | * Ok, make it visible to the rest of the system. | |
1040 | * We dont wake it up yet. | |
1041 | */ | |
1042 | p->group_leader = p; | |
1043 | INIT_LIST_HEAD(&p->ptrace_children); | |
1044 | INIT_LIST_HEAD(&p->ptrace_list); | |
1045 | ||
476d139c NP |
1046 | /* Perform scheduler related setup. Assign this task to a CPU. */ |
1047 | sched_fork(p, clone_flags); | |
1048 | ||
1da177e4 LT |
1049 | /* Need tasklist lock for parent etc handling! */ |
1050 | write_lock_irq(&tasklist_lock); | |
1051 | ||
1052 | /* | |
476d139c NP |
1053 | * The task hasn't been attached yet, so its cpus_allowed mask will |
1054 | * not be changed, nor will its assigned CPU. | |
1055 | * | |
1056 | * The cpus_allowed mask of the parent may have changed after it was | |
1057 | * copied first time - so re-copy it here, then check the child's CPU | |
1058 | * to ensure it is on a valid CPU (and if not, just force it back to | |
1059 | * parent's CPU). This avoids alot of nasty races. | |
1da177e4 LT |
1060 | */ |
1061 | p->cpus_allowed = current->cpus_allowed; | |
26ff6ad9 SV |
1062 | if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) || |
1063 | !cpu_online(task_cpu(p)))) | |
476d139c | 1064 | set_task_cpu(p, smp_processor_id()); |
1da177e4 LT |
1065 | |
1066 | /* | |
1067 | * Check for pending SIGKILL! The new thread should not be allowed | |
1068 | * to slip out of an OOM kill. (or normal SIGKILL.) | |
1069 | */ | |
1070 | if (sigismember(¤t->pending.signal, SIGKILL)) { | |
1071 | write_unlock_irq(&tasklist_lock); | |
1072 | retval = -EINTR; | |
1073 | goto bad_fork_cleanup_namespace; | |
1074 | } | |
1075 | ||
1076 | /* CLONE_PARENT re-uses the old parent */ | |
1077 | if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) | |
1078 | p->real_parent = current->real_parent; | |
1079 | else | |
1080 | p->real_parent = current; | |
1081 | p->parent = p->real_parent; | |
1082 | ||
1083 | if (clone_flags & CLONE_THREAD) { | |
1084 | spin_lock(¤t->sighand->siglock); | |
1085 | /* | |
1086 | * Important: if an exit-all has been started then | |
1087 | * do not create this new thread - the whole thread | |
1088 | * group is supposed to exit anyway. | |
1089 | */ | |
1090 | if (current->signal->flags & SIGNAL_GROUP_EXIT) { | |
1091 | spin_unlock(¤t->sighand->siglock); | |
1092 | write_unlock_irq(&tasklist_lock); | |
1093 | retval = -EAGAIN; | |
1094 | goto bad_fork_cleanup_namespace; | |
1095 | } | |
1096 | p->group_leader = current->group_leader; | |
1097 | ||
1098 | if (current->signal->group_stop_count > 0) { | |
1099 | /* | |
1100 | * There is an all-stop in progress for the group. | |
1101 | * We ourselves will stop as soon as we check signals. | |
1102 | * Make the new thread part of that group stop too. | |
1103 | */ | |
1104 | current->signal->group_stop_count++; | |
1105 | set_tsk_thread_flag(p, TIF_SIGPENDING); | |
1106 | } | |
1107 | ||
1108 | if (!cputime_eq(current->signal->it_virt_expires, | |
1109 | cputime_zero) || | |
1110 | !cputime_eq(current->signal->it_prof_expires, | |
1111 | cputime_zero) || | |
1112 | current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY || | |
1113 | !list_empty(¤t->signal->cpu_timers[0]) || | |
1114 | !list_empty(¤t->signal->cpu_timers[1]) || | |
1115 | !list_empty(¤t->signal->cpu_timers[2])) { | |
1116 | /* | |
1117 | * Have child wake up on its first tick to check | |
1118 | * for process CPU timers. | |
1119 | */ | |
1120 | p->it_prof_expires = jiffies_to_cputime(1); | |
1121 | } | |
1122 | ||
1123 | spin_unlock(¤t->sighand->siglock); | |
1124 | } | |
1125 | ||
22e2c507 JA |
1126 | /* |
1127 | * inherit ioprio | |
1128 | */ | |
1129 | p->ioprio = current->ioprio; | |
1130 | ||
1da177e4 LT |
1131 | SET_LINKS(p); |
1132 | if (unlikely(p->ptrace & PT_PTRACED)) | |
1133 | __ptrace_link(p, current->parent); | |
1134 | ||
1da177e4 LT |
1135 | attach_pid(p, PIDTYPE_PID, p->pid); |
1136 | attach_pid(p, PIDTYPE_TGID, p->tgid); | |
1137 | if (thread_group_leader(p)) { | |
1138 | attach_pid(p, PIDTYPE_PGID, process_group(p)); | |
1139 | attach_pid(p, PIDTYPE_SID, p->signal->session); | |
1140 | if (p->pid) | |
1141 | __get_cpu_var(process_counts)++; | |
1142 | } | |
1143 | ||
b0d62e6d JB |
1144 | if (!current->signal->tty && p->signal->tty) |
1145 | p->signal->tty = NULL; | |
1146 | ||
1da177e4 LT |
1147 | nr_threads++; |
1148 | total_forks++; | |
1149 | write_unlock_irq(&tasklist_lock); | |
c13cf856 | 1150 | proc_fork_connector(p); |
8c4b8add | 1151 | cpuset_fork(p); |
1da177e4 LT |
1152 | retval = 0; |
1153 | ||
1154 | fork_out: | |
1155 | if (retval) | |
1156 | return ERR_PTR(retval); | |
1157 | return p; | |
1158 | ||
1159 | bad_fork_cleanup_namespace: | |
1160 | exit_namespace(p); | |
1161 | bad_fork_cleanup_keys: | |
1162 | exit_keys(p); | |
1163 | bad_fork_cleanup_mm: | |
1164 | if (p->mm) | |
1165 | mmput(p->mm); | |
1166 | bad_fork_cleanup_signal: | |
1167 | exit_signal(p); | |
1168 | bad_fork_cleanup_sighand: | |
1169 | exit_sighand(p); | |
1170 | bad_fork_cleanup_fs: | |
1171 | exit_fs(p); /* blocking */ | |
1172 | bad_fork_cleanup_files: | |
1173 | exit_files(p); /* blocking */ | |
1174 | bad_fork_cleanup_semundo: | |
1175 | exit_sem(p); | |
1176 | bad_fork_cleanup_audit: | |
1177 | audit_free(p); | |
1178 | bad_fork_cleanup_security: | |
1179 | security_task_free(p); | |
1180 | bad_fork_cleanup_policy: | |
1181 | #ifdef CONFIG_NUMA | |
1182 | mpol_free(p->mempolicy); | |
1183 | #endif | |
1184 | bad_fork_cleanup: | |
1185 | if (p->binfmt) | |
1186 | module_put(p->binfmt->module); | |
1187 | bad_fork_cleanup_put_domain: | |
a1261f54 | 1188 | module_put(task_thread_info(p)->exec_domain->module); |
1da177e4 LT |
1189 | bad_fork_cleanup_count: |
1190 | put_group_info(p->group_info); | |
1191 | atomic_dec(&p->user->processes); | |
1192 | free_uid(p->user); | |
1193 | bad_fork_free: | |
1194 | free_task(p); | |
1195 | goto fork_out; | |
1196 | } | |
1197 | ||
1198 | struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs) | |
1199 | { | |
1200 | memset(regs, 0, sizeof(struct pt_regs)); | |
1201 | return regs; | |
1202 | } | |
1203 | ||
1204 | task_t * __devinit fork_idle(int cpu) | |
1205 | { | |
1206 | task_t *task; | |
1207 | struct pt_regs regs; | |
1208 | ||
1209 | task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, NULL, 0); | |
1210 | if (!task) | |
1211 | return ERR_PTR(-ENOMEM); | |
1212 | init_idle(task, cpu); | |
1213 | unhash_process(task); | |
1214 | return task; | |
1215 | } | |
1216 | ||
1217 | static inline int fork_traceflag (unsigned clone_flags) | |
1218 | { | |
1219 | if (clone_flags & CLONE_UNTRACED) | |
1220 | return 0; | |
1221 | else if (clone_flags & CLONE_VFORK) { | |
1222 | if (current->ptrace & PT_TRACE_VFORK) | |
1223 | return PTRACE_EVENT_VFORK; | |
1224 | } else if ((clone_flags & CSIGNAL) != SIGCHLD) { | |
1225 | if (current->ptrace & PT_TRACE_CLONE) | |
1226 | return PTRACE_EVENT_CLONE; | |
1227 | } else if (current->ptrace & PT_TRACE_FORK) | |
1228 | return PTRACE_EVENT_FORK; | |
1229 | ||
1230 | return 0; | |
1231 | } | |
1232 | ||
1233 | /* | |
1234 | * Ok, this is the main fork-routine. | |
1235 | * | |
1236 | * It copies the process, and if successful kick-starts | |
1237 | * it and waits for it to finish using the VM if required. | |
1238 | */ | |
1239 | long do_fork(unsigned long clone_flags, | |
1240 | unsigned long stack_start, | |
1241 | struct pt_regs *regs, | |
1242 | unsigned long stack_size, | |
1243 | int __user *parent_tidptr, | |
1244 | int __user *child_tidptr) | |
1245 | { | |
1246 | struct task_struct *p; | |
1247 | int trace = 0; | |
1248 | long pid = alloc_pidmap(); | |
1249 | ||
1250 | if (pid < 0) | |
1251 | return -EAGAIN; | |
1252 | if (unlikely(current->ptrace)) { | |
1253 | trace = fork_traceflag (clone_flags); | |
1254 | if (trace) | |
1255 | clone_flags |= CLONE_PTRACE; | |
1256 | } | |
1257 | ||
1258 | p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid); | |
1259 | /* | |
1260 | * Do this prior waking up the new thread - the thread pointer | |
1261 | * might get invalid after that point, if the thread exits quickly. | |
1262 | */ | |
1263 | if (!IS_ERR(p)) { | |
1264 | struct completion vfork; | |
1265 | ||
1266 | if (clone_flags & CLONE_VFORK) { | |
1267 | p->vfork_done = &vfork; | |
1268 | init_completion(&vfork); | |
1269 | } | |
1270 | ||
1271 | if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) { | |
1272 | /* | |
1273 | * We'll start up with an immediate SIGSTOP. | |
1274 | */ | |
1275 | sigaddset(&p->pending.signal, SIGSTOP); | |
1276 | set_tsk_thread_flag(p, TIF_SIGPENDING); | |
1277 | } | |
1278 | ||
1279 | if (!(clone_flags & CLONE_STOPPED)) | |
1280 | wake_up_new_task(p, clone_flags); | |
1281 | else | |
1282 | p->state = TASK_STOPPED; | |
1283 | ||
1284 | if (unlikely (trace)) { | |
1285 | current->ptrace_message = pid; | |
1286 | ptrace_notify ((trace << 8) | SIGTRAP); | |
1287 | } | |
1288 | ||
1289 | if (clone_flags & CLONE_VFORK) { | |
1290 | wait_for_completion(&vfork); | |
1291 | if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) | |
1292 | ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP); | |
1293 | } | |
1294 | } else { | |
1295 | free_pidmap(pid); | |
1296 | pid = PTR_ERR(p); | |
1297 | } | |
1298 | return pid; | |
1299 | } | |
1300 | ||
1301 | void __init proc_caches_init(void) | |
1302 | { | |
1303 | sighand_cachep = kmem_cache_create("sighand_cache", | |
1304 | sizeof(struct sighand_struct), 0, | |
1305 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | |
1306 | signal_cachep = kmem_cache_create("signal_cache", | |
1307 | sizeof(struct signal_struct), 0, | |
1308 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | |
1309 | files_cachep = kmem_cache_create("files_cache", | |
1310 | sizeof(struct files_struct), 0, | |
1311 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | |
1312 | fs_cachep = kmem_cache_create("fs_cache", | |
1313 | sizeof(struct fs_struct), 0, | |
1314 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | |
1315 | vm_area_cachep = kmem_cache_create("vm_area_struct", | |
1316 | sizeof(struct vm_area_struct), 0, | |
1317 | SLAB_PANIC, NULL, NULL); | |
1318 | mm_cachep = kmem_cache_create("mm_struct", | |
1319 | sizeof(struct mm_struct), 0, | |
1320 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | |
1321 | } |