]> Git Repo - linux.git/blame - drivers/net/ethernet/intel/i40e/i40e_txrx.c
i40e/i40evf: Add support for mapping pages with DMA attributes
[linux.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
CommitLineData
fd0a05ce
JB
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
ecc6a239 4 * Copyright(c) 2013 - 2016 Intel Corporation.
fd0a05ce
JB
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
dc641b73
GR
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
fd0a05ce
JB
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <[email protected]>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
1c112a64 27#include <linux/prefetch.h>
a132af24 28#include <net/busy_poll.h>
fd0a05ce 29#include "i40e.h"
206812b5 30#include "i40e_prototype.h"
fd0a05ce
JB
31
32static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33 u32 td_tag)
34{
35 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
37 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
40}
41
eaefbd06 42#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
5e02f283
AD
43/**
44 * i40e_fdir - Generate a Flow Director descriptor based on fdata
45 * @tx_ring: Tx ring to send buffer on
46 * @fdata: Flow director filter data
47 * @add: Indicate if we are adding a rule or deleting one
48 *
49 **/
50static void i40e_fdir(struct i40e_ring *tx_ring,
51 struct i40e_fdir_filter *fdata, bool add)
52{
53 struct i40e_filter_program_desc *fdir_desc;
54 struct i40e_pf *pf = tx_ring->vsi->back;
55 u32 flex_ptype, dtype_cmd;
56 u16 i;
57
58 /* grab the next descriptor */
59 i = tx_ring->next_to_use;
60 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
61
62 i++;
63 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
64
65 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
66 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
67
68 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
69 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
70
71 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
72 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
73
74 /* Use LAN VSI Id if not programmed by user */
75 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
76 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
77 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
78
79 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
80
81 dtype_cmd |= add ?
82 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
83 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
84 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
85 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
86
87 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
88 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
89
90 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
91 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
92
93 if (fdata->cnt_index) {
94 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
95 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
96 ((u32)fdata->cnt_index <<
97 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
98 }
99
100 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
101 fdir_desc->rsvd = cpu_to_le32(0);
102 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
103 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
104}
105
49d7d933 106#define I40E_FD_CLEAN_DELAY 10
fd0a05ce
JB
107/**
108 * i40e_program_fdir_filter - Program a Flow Director filter
17a73f6b
JG
109 * @fdir_data: Packet data that will be filter parameters
110 * @raw_packet: the pre-allocated packet buffer for FDir
b40c82e6 111 * @pf: The PF pointer
fd0a05ce
JB
112 * @add: True for add/update, False for remove
113 **/
1eb846ac
AD
114static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
115 u8 *raw_packet, struct i40e_pf *pf,
116 bool add)
fd0a05ce 117{
49d7d933 118 struct i40e_tx_buffer *tx_buf, *first;
fd0a05ce
JB
119 struct i40e_tx_desc *tx_desc;
120 struct i40e_ring *tx_ring;
121 struct i40e_vsi *vsi;
122 struct device *dev;
123 dma_addr_t dma;
124 u32 td_cmd = 0;
125 u16 i;
126
127 /* find existing FDIR VSI */
4b816446 128 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
fd0a05ce
JB
129 if (!vsi)
130 return -ENOENT;
131
9f65e15b 132 tx_ring = vsi->tx_rings[0];
fd0a05ce
JB
133 dev = tx_ring->dev;
134
49d7d933 135 /* we need two descriptors to add/del a filter and we can wait */
ed245406
AD
136 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
137 if (!i)
138 return -EAGAIN;
49d7d933 139 msleep_interruptible(1);
ed245406 140 }
49d7d933 141
17a73f6b
JG
142 dma = dma_map_single(dev, raw_packet,
143 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
fd0a05ce
JB
144 if (dma_mapping_error(dev, dma))
145 goto dma_fail;
146
147 /* grab the next descriptor */
fc4ac67b 148 i = tx_ring->next_to_use;
49d7d933 149 first = &tx_ring->tx_bi[i];
5e02f283 150 i40e_fdir(tx_ring, fdir_data, add);
fd0a05ce
JB
151
152 /* Now program a dummy descriptor */
fc4ac67b
AD
153 i = tx_ring->next_to_use;
154 tx_desc = I40E_TX_DESC(tx_ring, i);
298deef1 155 tx_buf = &tx_ring->tx_bi[i];
fc4ac67b 156
49d7d933
ASJ
157 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
158
159 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
fd0a05ce 160
298deef1 161 /* record length, and DMA address */
17a73f6b 162 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
298deef1
ASJ
163 dma_unmap_addr_set(tx_buf, dma, dma);
164
fd0a05ce 165 tx_desc->buffer_addr = cpu_to_le64(dma);
eaefbd06 166 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
fd0a05ce 167
49d7d933
ASJ
168 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
169 tx_buf->raw_buf = (void *)raw_packet;
170
fd0a05ce 171 tx_desc->cmd_type_offset_bsz =
17a73f6b 172 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
fd0a05ce 173
fd0a05ce 174 /* Force memory writes to complete before letting h/w
49d7d933 175 * know there are new descriptors to fetch.
fd0a05ce
JB
176 */
177 wmb();
178
fc4ac67b 179 /* Mark the data descriptor to be watched */
49d7d933 180 first->next_to_watch = tx_desc;
fc4ac67b 181
fd0a05ce
JB
182 writel(tx_ring->next_to_use, tx_ring->tail);
183 return 0;
184
185dma_fail:
186 return -1;
187}
188
17a73f6b
JG
189#define IP_HEADER_OFFSET 14
190#define I40E_UDPIP_DUMMY_PACKET_LEN 42
191/**
192 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
193 * @vsi: pointer to the targeted VSI
194 * @fd_data: the flow director data required for the FDir descriptor
17a73f6b
JG
195 * @add: true adds a filter, false removes it
196 *
197 * Returns 0 if the filters were successfully added or removed
198 **/
199static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
200 struct i40e_fdir_filter *fd_data,
49d7d933 201 bool add)
17a73f6b
JG
202{
203 struct i40e_pf *pf = vsi->back;
204 struct udphdr *udp;
205 struct iphdr *ip;
206 bool err = false;
49d7d933 207 u8 *raw_packet;
17a73f6b 208 int ret;
17a73f6b
JG
209 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
210 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
211 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
212
49d7d933
ASJ
213 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
214 if (!raw_packet)
215 return -ENOMEM;
17a73f6b
JG
216 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
217
218 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
219 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
220 + sizeof(struct iphdr));
221
222 ip->daddr = fd_data->dst_ip[0];
223 udp->dest = fd_data->dst_port;
224 ip->saddr = fd_data->src_ip[0];
225 udp->source = fd_data->src_port;
226
b2d36c03
KS
227 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
228 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
229 if (ret) {
230 dev_info(&pf->pdev->dev,
e99bdd39
CW
231 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
232 fd_data->pctype, fd_data->fd_id, ret);
b2d36c03 233 err = true;
4205d379 234 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
f7233c54
ASJ
235 if (add)
236 dev_info(&pf->pdev->dev,
237 "Filter OK for PCTYPE %d loc = %d\n",
238 fd_data->pctype, fd_data->fd_id);
239 else
240 dev_info(&pf->pdev->dev,
241 "Filter deleted for PCTYPE %d loc = %d\n",
242 fd_data->pctype, fd_data->fd_id);
17a73f6b 243 }
a42e7a36
KP
244 if (err)
245 kfree(raw_packet);
246
17a73f6b
JG
247 return err ? -EOPNOTSUPP : 0;
248}
249
250#define I40E_TCPIP_DUMMY_PACKET_LEN 54
251/**
252 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
253 * @vsi: pointer to the targeted VSI
254 * @fd_data: the flow director data required for the FDir descriptor
17a73f6b
JG
255 * @add: true adds a filter, false removes it
256 *
257 * Returns 0 if the filters were successfully added or removed
258 **/
259static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
260 struct i40e_fdir_filter *fd_data,
49d7d933 261 bool add)
17a73f6b
JG
262{
263 struct i40e_pf *pf = vsi->back;
264 struct tcphdr *tcp;
265 struct iphdr *ip;
266 bool err = false;
49d7d933 267 u8 *raw_packet;
17a73f6b
JG
268 int ret;
269 /* Dummy packet */
270 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
271 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
272 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
273 0x0, 0x72, 0, 0, 0, 0};
274
49d7d933
ASJ
275 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
276 if (!raw_packet)
277 return -ENOMEM;
17a73f6b
JG
278 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
279
280 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
281 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
282 + sizeof(struct iphdr));
283
284 ip->daddr = fd_data->dst_ip[0];
285 tcp->dest = fd_data->dst_port;
286 ip->saddr = fd_data->src_ip[0];
287 tcp->source = fd_data->src_port;
288
289 if (add) {
1e1be8f6 290 pf->fd_tcp_rule++;
234dc4e6
JK
291 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
292 I40E_DEBUG_FD & pf->hw.debug_mask)
293 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
294 pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
1e1be8f6
ASJ
295 } else {
296 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
297 (pf->fd_tcp_rule - 1) : 0;
298 if (pf->fd_tcp_rule == 0) {
234dc4e6
JK
299 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
300 I40E_DEBUG_FD & pf->hw.debug_mask)
2e4875e3 301 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
234dc4e6 302 pf->auto_disable_flags &= ~I40E_FLAG_FD_ATR_ENABLED;
1e1be8f6 303 }
17a73f6b
JG
304 }
305
b2d36c03 306 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
17a73f6b
JG
307 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
308
309 if (ret) {
310 dev_info(&pf->pdev->dev,
e99bdd39
CW
311 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
312 fd_data->pctype, fd_data->fd_id, ret);
17a73f6b 313 err = true;
4205d379 314 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
f7233c54
ASJ
315 if (add)
316 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
317 fd_data->pctype, fd_data->fd_id);
318 else
319 dev_info(&pf->pdev->dev,
320 "Filter deleted for PCTYPE %d loc = %d\n",
321 fd_data->pctype, fd_data->fd_id);
17a73f6b
JG
322 }
323
a42e7a36
KP
324 if (err)
325 kfree(raw_packet);
326
17a73f6b
JG
327 return err ? -EOPNOTSUPP : 0;
328}
329
17a73f6b
JG
330#define I40E_IP_DUMMY_PACKET_LEN 34
331/**
332 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
333 * a specific flow spec
334 * @vsi: pointer to the targeted VSI
335 * @fd_data: the flow director data required for the FDir descriptor
17a73f6b
JG
336 * @add: true adds a filter, false removes it
337 *
338 * Returns 0 if the filters were successfully added or removed
339 **/
340static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
341 struct i40e_fdir_filter *fd_data,
49d7d933 342 bool add)
17a73f6b
JG
343{
344 struct i40e_pf *pf = vsi->back;
345 struct iphdr *ip;
346 bool err = false;
49d7d933 347 u8 *raw_packet;
17a73f6b
JG
348 int ret;
349 int i;
350 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
351 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
352 0, 0, 0, 0};
353
17a73f6b
JG
354 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
355 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
49d7d933
ASJ
356 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
357 if (!raw_packet)
358 return -ENOMEM;
359 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
360 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
361
362 ip->saddr = fd_data->src_ip[0];
363 ip->daddr = fd_data->dst_ip[0];
364 ip->protocol = 0;
365
17a73f6b
JG
366 fd_data->pctype = i;
367 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
368
369 if (ret) {
370 dev_info(&pf->pdev->dev,
e99bdd39
CW
371 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
372 fd_data->pctype, fd_data->fd_id, ret);
17a73f6b 373 err = true;
4205d379 374 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
f7233c54
ASJ
375 if (add)
376 dev_info(&pf->pdev->dev,
377 "Filter OK for PCTYPE %d loc = %d\n",
378 fd_data->pctype, fd_data->fd_id);
379 else
380 dev_info(&pf->pdev->dev,
381 "Filter deleted for PCTYPE %d loc = %d\n",
382 fd_data->pctype, fd_data->fd_id);
17a73f6b
JG
383 }
384 }
385
a42e7a36
KP
386 if (err)
387 kfree(raw_packet);
388
17a73f6b
JG
389 return err ? -EOPNOTSUPP : 0;
390}
391
392/**
393 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
394 * @vsi: pointer to the targeted VSI
395 * @cmd: command to get or set RX flow classification rules
396 * @add: true adds a filter, false removes it
397 *
398 **/
399int i40e_add_del_fdir(struct i40e_vsi *vsi,
400 struct i40e_fdir_filter *input, bool add)
401{
402 struct i40e_pf *pf = vsi->back;
17a73f6b
JG
403 int ret;
404
17a73f6b
JG
405 switch (input->flow_type & ~FLOW_EXT) {
406 case TCP_V4_FLOW:
49d7d933 407 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
17a73f6b
JG
408 break;
409 case UDP_V4_FLOW:
49d7d933 410 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
17a73f6b 411 break;
17a73f6b
JG
412 case IP_USER_FLOW:
413 switch (input->ip4_proto) {
414 case IPPROTO_TCP:
49d7d933 415 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
17a73f6b
JG
416 break;
417 case IPPROTO_UDP:
49d7d933 418 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
17a73f6b 419 break;
e1da71ca 420 case IPPROTO_IP:
49d7d933 421 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
17a73f6b 422 break;
e1da71ca
AD
423 default:
424 /* We cannot support masking based on protocol */
425 goto unsupported_flow;
17a73f6b
JG
426 }
427 break;
428 default:
e1da71ca 429unsupported_flow:
c5ffe7e1 430 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
17a73f6b
JG
431 input->flow_type);
432 ret = -EINVAL;
433 }
434
a158aeaf
JK
435 /* The buffer allocated here will be normally be freed by
436 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
437 * completion. In the event of an error adding the buffer to the FDIR
438 * ring, it will immediately be freed. It may also be freed by
439 * i40e_clean_tx_ring() when closing the VSI.
440 */
17a73f6b
JG
441 return ret;
442}
443
fd0a05ce
JB
444/**
445 * i40e_fd_handle_status - check the Programming Status for FD
446 * @rx_ring: the Rx ring for this descriptor
55a5e60b 447 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
fd0a05ce
JB
448 * @prog_id: the id originally used for programming
449 *
450 * This is used to verify if the FD programming or invalidation
451 * requested by SW to the HW is successful or not and take actions accordingly.
452 **/
55a5e60b
ASJ
453static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
454 union i40e_rx_desc *rx_desc, u8 prog_id)
fd0a05ce 455{
55a5e60b
ASJ
456 struct i40e_pf *pf = rx_ring->vsi->back;
457 struct pci_dev *pdev = pf->pdev;
458 u32 fcnt_prog, fcnt_avail;
fd0a05ce 459 u32 error;
55a5e60b 460 u64 qw;
fd0a05ce 461
55a5e60b 462 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
fd0a05ce
JB
463 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
464 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
465
41a1d04b 466 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
3487b6c3 467 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
f7233c54
ASJ
468 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
469 (I40E_DEBUG_FD & pf->hw.debug_mask))
470 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
3487b6c3 471 pf->fd_inv);
55a5e60b 472
04294e38
ASJ
473 /* Check if the programming error is for ATR.
474 * If so, auto disable ATR and set a state for
475 * flush in progress. Next time we come here if flush is in
476 * progress do nothing, once flush is complete the state will
477 * be cleared.
478 */
479 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
480 return;
481
1e1be8f6
ASJ
482 pf->fd_add_err++;
483 /* store the current atr filter count */
484 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
485
04294e38
ASJ
486 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
487 (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
488 pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
489 set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
490 }
491
55a5e60b 492 /* filter programming failed most likely due to table full */
04294e38 493 fcnt_prog = i40e_get_global_fd_count(pf);
12957388 494 fcnt_avail = pf->fdir_pf_filter_count;
55a5e60b
ASJ
495 /* If ATR is running fcnt_prog can quickly change,
496 * if we are very close to full, it makes sense to disable
497 * FD ATR/SB and then re-enable it when there is room.
498 */
499 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
1e1be8f6 500 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
b814ba65 501 !(pf->auto_disable_flags &
b814ba65 502 I40E_FLAG_FD_SB_ENABLED)) {
2e4875e3
ASJ
503 if (I40E_DEBUG_FD & pf->hw.debug_mask)
504 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
55a5e60b
ASJ
505 pf->auto_disable_flags |=
506 I40E_FLAG_FD_SB_ENABLED;
55a5e60b 507 }
55a5e60b 508 }
41a1d04b 509 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
13c2884f 510 if (I40E_DEBUG_FD & pf->hw.debug_mask)
e99bdd39 511 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
13c2884f 512 rx_desc->wb.qword0.hi_dword.fd_id);
55a5e60b 513 }
fd0a05ce
JB
514}
515
516/**
a5e9c572 517 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
fd0a05ce
JB
518 * @ring: the ring that owns the buffer
519 * @tx_buffer: the buffer to free
520 **/
a5e9c572
AD
521static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
522 struct i40e_tx_buffer *tx_buffer)
fd0a05ce 523{
a5e9c572 524 if (tx_buffer->skb) {
64bfd68e
AD
525 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
526 kfree(tx_buffer->raw_buf);
527 else
528 dev_kfree_skb_any(tx_buffer->skb);
a5e9c572 529 if (dma_unmap_len(tx_buffer, len))
fd0a05ce 530 dma_unmap_single(ring->dev,
35a1e2ad
AD
531 dma_unmap_addr(tx_buffer, dma),
532 dma_unmap_len(tx_buffer, len),
fd0a05ce 533 DMA_TO_DEVICE);
a5e9c572
AD
534 } else if (dma_unmap_len(tx_buffer, len)) {
535 dma_unmap_page(ring->dev,
536 dma_unmap_addr(tx_buffer, dma),
537 dma_unmap_len(tx_buffer, len),
538 DMA_TO_DEVICE);
fd0a05ce 539 }
a42e7a36 540
a5e9c572
AD
541 tx_buffer->next_to_watch = NULL;
542 tx_buffer->skb = NULL;
35a1e2ad 543 dma_unmap_len_set(tx_buffer, len, 0);
a5e9c572 544 /* tx_buffer must be completely set up in the transmit path */
fd0a05ce
JB
545}
546
547/**
548 * i40e_clean_tx_ring - Free any empty Tx buffers
549 * @tx_ring: ring to be cleaned
550 **/
551void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
552{
fd0a05ce
JB
553 unsigned long bi_size;
554 u16 i;
555
556 /* ring already cleared, nothing to do */
557 if (!tx_ring->tx_bi)
558 return;
559
560 /* Free all the Tx ring sk_buffs */
a5e9c572
AD
561 for (i = 0; i < tx_ring->count; i++)
562 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
fd0a05ce
JB
563
564 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
565 memset(tx_ring->tx_bi, 0, bi_size);
566
567 /* Zero out the descriptor ring */
568 memset(tx_ring->desc, 0, tx_ring->size);
569
570 tx_ring->next_to_use = 0;
571 tx_ring->next_to_clean = 0;
7070ce0a
AD
572
573 if (!tx_ring->netdev)
574 return;
575
576 /* cleanup Tx queue statistics */
e486bdfd 577 netdev_tx_reset_queue(txring_txq(tx_ring));
fd0a05ce
JB
578}
579
580/**
581 * i40e_free_tx_resources - Free Tx resources per queue
582 * @tx_ring: Tx descriptor ring for a specific queue
583 *
584 * Free all transmit software resources
585 **/
586void i40e_free_tx_resources(struct i40e_ring *tx_ring)
587{
588 i40e_clean_tx_ring(tx_ring);
589 kfree(tx_ring->tx_bi);
590 tx_ring->tx_bi = NULL;
591
592 if (tx_ring->desc) {
593 dma_free_coherent(tx_ring->dev, tx_ring->size,
594 tx_ring->desc, tx_ring->dma);
595 tx_ring->desc = NULL;
596 }
597}
598
599/**
600 * i40e_get_tx_pending - how many tx descriptors not processed
601 * @tx_ring: the ring of descriptors
dd353109 602 * @in_sw: is tx_pending being checked in SW or HW
fd0a05ce
JB
603 *
604 * Since there is no access to the ring head register
605 * in XL710, we need to use our local copies
606 **/
dd353109 607u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
fd0a05ce 608{
a68de58d
JB
609 u32 head, tail;
610
dd353109
ASJ
611 if (!in_sw)
612 head = i40e_get_head(ring);
613 else
614 head = ring->next_to_clean;
a68de58d
JB
615 tail = readl(ring->tail);
616
617 if (head != tail)
618 return (head < tail) ?
619 tail - head : (tail + ring->count - head);
620
621 return 0;
fd0a05ce
JB
622}
623
1dc8b538 624#define WB_STRIDE 4
d91649f5 625
fd0a05ce
JB
626/**
627 * i40e_clean_tx_irq - Reclaim resources after transmit completes
a619afe8
AD
628 * @vsi: the VSI we care about
629 * @tx_ring: Tx ring to clean
630 * @napi_budget: Used to determine if we are in netpoll
fd0a05ce
JB
631 *
632 * Returns true if there's any budget left (e.g. the clean is finished)
633 **/
a619afe8
AD
634static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
635 struct i40e_ring *tx_ring, int napi_budget)
fd0a05ce
JB
636{
637 u16 i = tx_ring->next_to_clean;
638 struct i40e_tx_buffer *tx_buf;
1943d8ba 639 struct i40e_tx_desc *tx_head;
fd0a05ce 640 struct i40e_tx_desc *tx_desc;
a619afe8
AD
641 unsigned int total_bytes = 0, total_packets = 0;
642 unsigned int budget = vsi->work_limit;
fd0a05ce
JB
643
644 tx_buf = &tx_ring->tx_bi[i];
645 tx_desc = I40E_TX_DESC(tx_ring, i);
a5e9c572 646 i -= tx_ring->count;
fd0a05ce 647
1943d8ba
JB
648 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
649
a5e9c572
AD
650 do {
651 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
fd0a05ce
JB
652
653 /* if next_to_watch is not set then there is no work pending */
654 if (!eop_desc)
655 break;
656
a5e9c572
AD
657 /* prevent any other reads prior to eop_desc */
658 read_barrier_depends();
659
1943d8ba
JB
660 /* we have caught up to head, no work left to do */
661 if (tx_head == tx_desc)
fd0a05ce
JB
662 break;
663
c304fdac 664 /* clear next_to_watch to prevent false hangs */
fd0a05ce 665 tx_buf->next_to_watch = NULL;
fd0a05ce 666
a5e9c572
AD
667 /* update the statistics for this packet */
668 total_bytes += tx_buf->bytecount;
669 total_packets += tx_buf->gso_segs;
fd0a05ce 670
a5e9c572 671 /* free the skb */
a619afe8 672 napi_consume_skb(tx_buf->skb, napi_budget);
fd0a05ce 673
a5e9c572
AD
674 /* unmap skb header data */
675 dma_unmap_single(tx_ring->dev,
676 dma_unmap_addr(tx_buf, dma),
677 dma_unmap_len(tx_buf, len),
678 DMA_TO_DEVICE);
fd0a05ce 679
a5e9c572
AD
680 /* clear tx_buffer data */
681 tx_buf->skb = NULL;
682 dma_unmap_len_set(tx_buf, len, 0);
fd0a05ce 683
a5e9c572
AD
684 /* unmap remaining buffers */
685 while (tx_desc != eop_desc) {
fd0a05ce
JB
686
687 tx_buf++;
688 tx_desc++;
689 i++;
a5e9c572
AD
690 if (unlikely(!i)) {
691 i -= tx_ring->count;
fd0a05ce
JB
692 tx_buf = tx_ring->tx_bi;
693 tx_desc = I40E_TX_DESC(tx_ring, 0);
694 }
fd0a05ce 695
a5e9c572
AD
696 /* unmap any remaining paged data */
697 if (dma_unmap_len(tx_buf, len)) {
698 dma_unmap_page(tx_ring->dev,
699 dma_unmap_addr(tx_buf, dma),
700 dma_unmap_len(tx_buf, len),
701 DMA_TO_DEVICE);
702 dma_unmap_len_set(tx_buf, len, 0);
703 }
704 }
705
706 /* move us one more past the eop_desc for start of next pkt */
707 tx_buf++;
708 tx_desc++;
709 i++;
710 if (unlikely(!i)) {
711 i -= tx_ring->count;
712 tx_buf = tx_ring->tx_bi;
713 tx_desc = I40E_TX_DESC(tx_ring, 0);
714 }
715
016890b9
JB
716 prefetch(tx_desc);
717
a5e9c572
AD
718 /* update budget accounting */
719 budget--;
720 } while (likely(budget));
721
722 i += tx_ring->count;
fd0a05ce 723 tx_ring->next_to_clean = i;
980e9b11 724 u64_stats_update_begin(&tx_ring->syncp);
a114d0a6
AD
725 tx_ring->stats.bytes += total_bytes;
726 tx_ring->stats.packets += total_packets;
980e9b11 727 u64_stats_update_end(&tx_ring->syncp);
fd0a05ce
JB
728 tx_ring->q_vector->tx.total_bytes += total_bytes;
729 tx_ring->q_vector->tx.total_packets += total_packets;
a5e9c572 730
58044743 731 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
58044743
AS
732 /* check to see if there are < 4 descriptors
733 * waiting to be written back, then kick the hardware to force
734 * them to be written back in case we stay in NAPI.
735 * In this mode on X722 we do not enable Interrupt.
736 */
88dc9e6f 737 unsigned int j = i40e_get_tx_pending(tx_ring, false);
58044743
AS
738
739 if (budget &&
1dc8b538 740 ((j / WB_STRIDE) == 0) && (j > 0) &&
a619afe8 741 !test_bit(__I40E_DOWN, &vsi->state) &&
58044743
AS
742 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
743 tx_ring->arm_wb = true;
744 }
d91649f5 745
e486bdfd
AD
746 /* notify netdev of completed buffers */
747 netdev_tx_completed_queue(txring_txq(tx_ring),
7070ce0a
AD
748 total_packets, total_bytes);
749
fd0a05ce
JB
750#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
751 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
752 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
753 /* Make sure that anybody stopping the queue after this
754 * sees the new next_to_clean.
755 */
756 smp_mb();
757 if (__netif_subqueue_stopped(tx_ring->netdev,
758 tx_ring->queue_index) &&
a619afe8 759 !test_bit(__I40E_DOWN, &vsi->state)) {
fd0a05ce
JB
760 netif_wake_subqueue(tx_ring->netdev,
761 tx_ring->queue_index);
762 ++tx_ring->tx_stats.restart_queue;
763 }
764 }
765
d91649f5
JB
766 return !!budget;
767}
768
769/**
ecc6a239 770 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
d91649f5 771 * @vsi: the VSI we care about
ecc6a239 772 * @q_vector: the vector on which to enable writeback
d91649f5
JB
773 *
774 **/
ecc6a239
ASJ
775static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
776 struct i40e_q_vector *q_vector)
d91649f5 777{
8e0764b4 778 u16 flags = q_vector->tx.ring[0].flags;
ecc6a239 779 u32 val;
8e0764b4 780
ecc6a239
ASJ
781 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
782 return;
8e0764b4 783
ecc6a239
ASJ
784 if (q_vector->arm_wb_state)
785 return;
8e0764b4 786
ecc6a239
ASJ
787 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
788 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
789 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
a3d772a3 790
ecc6a239
ASJ
791 wr32(&vsi->back->hw,
792 I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
793 val);
794 } else {
795 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
796 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
a3d772a3 797
ecc6a239
ASJ
798 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
799 }
800 q_vector->arm_wb_state = true;
801}
802
803/**
804 * i40e_force_wb - Issue SW Interrupt so HW does a wb
805 * @vsi: the VSI we care about
806 * @q_vector: the vector on which to force writeback
807 *
808 **/
809void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
810{
811 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
8e0764b4
ASJ
812 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
813 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
814 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
815 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
816 /* allow 00 to be written to the index */
817
818 wr32(&vsi->back->hw,
819 I40E_PFINT_DYN_CTLN(q_vector->v_idx +
820 vsi->base_vector - 1), val);
821 } else {
822 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
823 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
824 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
825 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
826 /* allow 00 to be written to the index */
827
828 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
829 }
fd0a05ce
JB
830}
831
832/**
833 * i40e_set_new_dynamic_itr - Find new ITR level
834 * @rc: structure containing ring performance data
835 *
8f5e39ce
JB
836 * Returns true if ITR changed, false if not
837 *
fd0a05ce
JB
838 * Stores a new ITR value based on packets and byte counts during
839 * the last interrupt. The advantage of per interrupt computation
840 * is faster updates and more accurate ITR for the current traffic
841 * pattern. Constants in this function were computed based on
842 * theoretical maximum wire speed and thresholds were set based on
843 * testing data as well as attempting to minimize response time
844 * while increasing bulk throughput.
845 **/
8f5e39ce 846static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
fd0a05ce
JB
847{
848 enum i40e_latency_range new_latency_range = rc->latency_range;
c56625d5 849 struct i40e_q_vector *qv = rc->ring->q_vector;
fd0a05ce
JB
850 u32 new_itr = rc->itr;
851 int bytes_per_int;
51cc6d9f 852 int usecs;
fd0a05ce
JB
853
854 if (rc->total_packets == 0 || !rc->itr)
8f5e39ce 855 return false;
fd0a05ce
JB
856
857 /* simple throttlerate management
c56625d5 858 * 0-10MB/s lowest (50000 ints/s)
fd0a05ce 859 * 10-20MB/s low (20000 ints/s)
c56625d5
JB
860 * 20-1249MB/s bulk (18000 ints/s)
861 * > 40000 Rx packets per second (8000 ints/s)
51cc6d9f
JB
862 *
863 * The math works out because the divisor is in 10^(-6) which
864 * turns the bytes/us input value into MB/s values, but
865 * make sure to use usecs, as the register values written
ee2319cf
JB
866 * are in 2 usec increments in the ITR registers, and make sure
867 * to use the smoothed values that the countdown timer gives us.
fd0a05ce 868 */
ee2319cf 869 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
51cc6d9f 870 bytes_per_int = rc->total_bytes / usecs;
ee2319cf 871
de32e3ef 872 switch (new_latency_range) {
fd0a05ce
JB
873 case I40E_LOWEST_LATENCY:
874 if (bytes_per_int > 10)
875 new_latency_range = I40E_LOW_LATENCY;
876 break;
877 case I40E_LOW_LATENCY:
878 if (bytes_per_int > 20)
879 new_latency_range = I40E_BULK_LATENCY;
880 else if (bytes_per_int <= 10)
881 new_latency_range = I40E_LOWEST_LATENCY;
882 break;
883 case I40E_BULK_LATENCY:
c56625d5 884 case I40E_ULTRA_LATENCY:
de32e3ef
CW
885 default:
886 if (bytes_per_int <= 20)
887 new_latency_range = I40E_LOW_LATENCY;
fd0a05ce
JB
888 break;
889 }
c56625d5
JB
890
891 /* this is to adjust RX more aggressively when streaming small
892 * packets. The value of 40000 was picked as it is just beyond
893 * what the hardware can receive per second if in low latency
894 * mode.
895 */
896#define RX_ULTRA_PACKET_RATE 40000
897
898 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
899 (&qv->rx == rc))
900 new_latency_range = I40E_ULTRA_LATENCY;
901
de32e3ef 902 rc->latency_range = new_latency_range;
fd0a05ce
JB
903
904 switch (new_latency_range) {
905 case I40E_LOWEST_LATENCY:
c56625d5 906 new_itr = I40E_ITR_50K;
fd0a05ce
JB
907 break;
908 case I40E_LOW_LATENCY:
909 new_itr = I40E_ITR_20K;
910 break;
911 case I40E_BULK_LATENCY:
c56625d5
JB
912 new_itr = I40E_ITR_18K;
913 break;
914 case I40E_ULTRA_LATENCY:
fd0a05ce
JB
915 new_itr = I40E_ITR_8K;
916 break;
917 default:
918 break;
919 }
920
fd0a05ce
JB
921 rc->total_bytes = 0;
922 rc->total_packets = 0;
8f5e39ce
JB
923
924 if (new_itr != rc->itr) {
925 rc->itr = new_itr;
926 return true;
927 }
928
929 return false;
fd0a05ce
JB
930}
931
fd0a05ce
JB
932/**
933 * i40e_clean_programming_status - clean the programming status descriptor
934 * @rx_ring: the rx ring that has this descriptor
935 * @rx_desc: the rx descriptor written back by HW
936 *
937 * Flow director should handle FD_FILTER_STATUS to check its filter programming
938 * status being successful or not and take actions accordingly. FCoE should
939 * handle its context/filter programming/invalidation status and take actions.
940 *
941 **/
942static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
943 union i40e_rx_desc *rx_desc)
944{
945 u64 qw;
946 u8 id;
947
948 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
949 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
950 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
951
952 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
55a5e60b 953 i40e_fd_handle_status(rx_ring, rx_desc, id);
38e00438
VD
954#ifdef I40E_FCOE
955 else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
956 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
957 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
958#endif
fd0a05ce
JB
959}
960
961/**
962 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
963 * @tx_ring: the tx ring to set up
964 *
965 * Return 0 on success, negative on error
966 **/
967int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
968{
969 struct device *dev = tx_ring->dev;
970 int bi_size;
971
972 if (!dev)
973 return -ENOMEM;
974
e908f815
JB
975 /* warn if we are about to overwrite the pointer */
976 WARN_ON(tx_ring->tx_bi);
fd0a05ce
JB
977 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
978 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
979 if (!tx_ring->tx_bi)
980 goto err;
981
982 /* round up to nearest 4K */
983 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1943d8ba
JB
984 /* add u32 for head writeback, align after this takes care of
985 * guaranteeing this is at least one cache line in size
986 */
987 tx_ring->size += sizeof(u32);
fd0a05ce
JB
988 tx_ring->size = ALIGN(tx_ring->size, 4096);
989 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
990 &tx_ring->dma, GFP_KERNEL);
991 if (!tx_ring->desc) {
992 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
993 tx_ring->size);
994 goto err;
995 }
996
997 tx_ring->next_to_use = 0;
998 tx_ring->next_to_clean = 0;
999 return 0;
1000
1001err:
1002 kfree(tx_ring->tx_bi);
1003 tx_ring->tx_bi = NULL;
1004 return -ENOMEM;
1005}
1006
1007/**
1008 * i40e_clean_rx_ring - Free Rx buffers
1009 * @rx_ring: ring to be cleaned
1010 **/
1011void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1012{
fd0a05ce
JB
1013 unsigned long bi_size;
1014 u16 i;
1015
1016 /* ring already cleared, nothing to do */
1017 if (!rx_ring->rx_bi)
1018 return;
1019
e72e5659
SP
1020 if (rx_ring->skb) {
1021 dev_kfree_skb(rx_ring->skb);
1022 rx_ring->skb = NULL;
1023 }
1024
fd0a05ce
JB
1025 /* Free all the Rx ring sk_buffs */
1026 for (i = 0; i < rx_ring->count; i++) {
1a557afc
JB
1027 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1028
1a557afc
JB
1029 if (!rx_bi->page)
1030 continue;
1031
59605bc0
AD
1032 /* Invalidate cache lines that may have been written to by
1033 * device so that we avoid corrupting memory.
1034 */
1035 dma_sync_single_range_for_cpu(rx_ring->dev,
1036 rx_bi->dma,
1037 rx_bi->page_offset,
1038 I40E_RXBUFFER_2048,
1039 DMA_FROM_DEVICE);
1040
1041 /* free resources associated with mapping */
1042 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1043 PAGE_SIZE,
1044 DMA_FROM_DEVICE,
1045 I40E_RX_DMA_ATTR);
1a557afc
JB
1046 __free_pages(rx_bi->page, 0);
1047
1048 rx_bi->page = NULL;
1049 rx_bi->page_offset = 0;
fd0a05ce
JB
1050 }
1051
1052 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1053 memset(rx_ring->rx_bi, 0, bi_size);
1054
1055 /* Zero out the descriptor ring */
1056 memset(rx_ring->desc, 0, rx_ring->size);
1057
1a557afc 1058 rx_ring->next_to_alloc = 0;
fd0a05ce
JB
1059 rx_ring->next_to_clean = 0;
1060 rx_ring->next_to_use = 0;
1061}
1062
1063/**
1064 * i40e_free_rx_resources - Free Rx resources
1065 * @rx_ring: ring to clean the resources from
1066 *
1067 * Free all receive software resources
1068 **/
1069void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1070{
1071 i40e_clean_rx_ring(rx_ring);
1072 kfree(rx_ring->rx_bi);
1073 rx_ring->rx_bi = NULL;
1074
1075 if (rx_ring->desc) {
1076 dma_free_coherent(rx_ring->dev, rx_ring->size,
1077 rx_ring->desc, rx_ring->dma);
1078 rx_ring->desc = NULL;
1079 }
1080}
1081
1082/**
1083 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1084 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1085 *
1086 * Returns 0 on success, negative on failure
1087 **/
1088int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1089{
1090 struct device *dev = rx_ring->dev;
1091 int bi_size;
1092
e908f815
JB
1093 /* warn if we are about to overwrite the pointer */
1094 WARN_ON(rx_ring->rx_bi);
fd0a05ce
JB
1095 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1096 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1097 if (!rx_ring->rx_bi)
1098 goto err;
1099
f217d6ca 1100 u64_stats_init(&rx_ring->syncp);
638702bd 1101
fd0a05ce 1102 /* Round up to nearest 4K */
1a557afc 1103 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
fd0a05ce
JB
1104 rx_ring->size = ALIGN(rx_ring->size, 4096);
1105 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1106 &rx_ring->dma, GFP_KERNEL);
1107
1108 if (!rx_ring->desc) {
1109 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1110 rx_ring->size);
1111 goto err;
1112 }
1113
1a557afc 1114 rx_ring->next_to_alloc = 0;
fd0a05ce
JB
1115 rx_ring->next_to_clean = 0;
1116 rx_ring->next_to_use = 0;
1117
1118 return 0;
1119err:
1120 kfree(rx_ring->rx_bi);
1121 rx_ring->rx_bi = NULL;
1122 return -ENOMEM;
1123}
1124
1125/**
1126 * i40e_release_rx_desc - Store the new tail and head values
1127 * @rx_ring: ring to bump
1128 * @val: new head index
1129 **/
1130static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1131{
1132 rx_ring->next_to_use = val;
1a557afc
JB
1133
1134 /* update next to alloc since we have filled the ring */
1135 rx_ring->next_to_alloc = val;
1136
fd0a05ce
JB
1137 /* Force memory writes to complete before letting h/w
1138 * know there are new descriptors to fetch. (Only
1139 * applicable for weak-ordered memory model archs,
1140 * such as IA-64).
1141 */
1142 wmb();
1143 writel(val, rx_ring->tail);
1144}
1145
1146/**
1a557afc
JB
1147 * i40e_alloc_mapped_page - recycle or make a new page
1148 * @rx_ring: ring to use
1149 * @bi: rx_buffer struct to modify
c2e245ab 1150 *
1a557afc
JB
1151 * Returns true if the page was successfully allocated or
1152 * reused.
fd0a05ce 1153 **/
1a557afc
JB
1154static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1155 struct i40e_rx_buffer *bi)
a132af24 1156{
1a557afc
JB
1157 struct page *page = bi->page;
1158 dma_addr_t dma;
a132af24 1159
1a557afc
JB
1160 /* since we are recycling buffers we should seldom need to alloc */
1161 if (likely(page)) {
1162 rx_ring->rx_stats.page_reuse_count++;
1163 return true;
1164 }
a132af24 1165
1a557afc
JB
1166 /* alloc new page for storage */
1167 page = dev_alloc_page();
1168 if (unlikely(!page)) {
1169 rx_ring->rx_stats.alloc_page_failed++;
1170 return false;
1171 }
a132af24 1172
1a557afc 1173 /* map page for use */
59605bc0
AD
1174 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1175 PAGE_SIZE,
1176 DMA_FROM_DEVICE,
1177 I40E_RX_DMA_ATTR);
f16704e5 1178
1a557afc
JB
1179 /* if mapping failed free memory back to system since
1180 * there isn't much point in holding memory we can't use
f16704e5 1181 */
1a557afc
JB
1182 if (dma_mapping_error(rx_ring->dev, dma)) {
1183 __free_pages(page, 0);
1184 rx_ring->rx_stats.alloc_page_failed++;
1185 return false;
a132af24
MW
1186 }
1187
1a557afc
JB
1188 bi->dma = dma;
1189 bi->page = page;
1190 bi->page_offset = 0;
c2e245ab 1191
1a557afc
JB
1192 return true;
1193}
c2e245ab 1194
1a557afc
JB
1195/**
1196 * i40e_receive_skb - Send a completed packet up the stack
1197 * @rx_ring: rx ring in play
1198 * @skb: packet to send up
1199 * @vlan_tag: vlan tag for packet
1200 **/
1201static void i40e_receive_skb(struct i40e_ring *rx_ring,
1202 struct sk_buff *skb, u16 vlan_tag)
1203{
1204 struct i40e_q_vector *q_vector = rx_ring->q_vector;
c2e245ab 1205
1a557afc
JB
1206 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1207 (vlan_tag & VLAN_VID_MASK))
1208 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1209
1210 napi_gro_receive(&q_vector->napi, skb);
a132af24
MW
1211}
1212
1213/**
1a557afc 1214 * i40e_alloc_rx_buffers - Replace used receive buffers
a132af24
MW
1215 * @rx_ring: ring to place buffers on
1216 * @cleaned_count: number of buffers to replace
c2e245ab 1217 *
1a557afc 1218 * Returns false if all allocations were successful, true if any fail
a132af24 1219 **/
1a557afc 1220bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
fd0a05ce 1221{
1a557afc 1222 u16 ntu = rx_ring->next_to_use;
fd0a05ce
JB
1223 union i40e_rx_desc *rx_desc;
1224 struct i40e_rx_buffer *bi;
fd0a05ce
JB
1225
1226 /* do nothing if no valid netdev defined */
1227 if (!rx_ring->netdev || !cleaned_count)
c2e245ab 1228 return false;
fd0a05ce 1229
1a557afc
JB
1230 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1231 bi = &rx_ring->rx_bi[ntu];
fd0a05ce 1232
1a557afc
JB
1233 do {
1234 if (!i40e_alloc_mapped_page(rx_ring, bi))
1235 goto no_buffers;
fd0a05ce 1236
59605bc0
AD
1237 /* sync the buffer for use by the device */
1238 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1239 bi->page_offset,
1240 I40E_RXBUFFER_2048,
1241 DMA_FROM_DEVICE);
1242
1a557afc
JB
1243 /* Refresh the desc even if buffer_addrs didn't change
1244 * because each write-back erases this info.
1245 */
1246 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
fd0a05ce 1247
1a557afc
JB
1248 rx_desc++;
1249 bi++;
1250 ntu++;
1251 if (unlikely(ntu == rx_ring->count)) {
1252 rx_desc = I40E_RX_DESC(rx_ring, 0);
1253 bi = rx_ring->rx_bi;
1254 ntu = 0;
1255 }
1256
1257 /* clear the status bits for the next_to_use descriptor */
1258 rx_desc->wb.qword1.status_error_len = 0;
1259
1260 cleaned_count--;
1261 } while (cleaned_count);
1262
1263 if (rx_ring->next_to_use != ntu)
1264 i40e_release_rx_desc(rx_ring, ntu);
c2e245ab
JB
1265
1266 return false;
1267
fd0a05ce 1268no_buffers:
1a557afc
JB
1269 if (rx_ring->next_to_use != ntu)
1270 i40e_release_rx_desc(rx_ring, ntu);
c2e245ab
JB
1271
1272 /* make sure to come back via polling to try again after
1273 * allocation failure
1274 */
1275 return true;
fd0a05ce
JB
1276}
1277
fd0a05ce
JB
1278/**
1279 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1280 * @vsi: the VSI we care about
1281 * @skb: skb currently being received and modified
1a557afc
JB
1282 * @rx_desc: the receive descriptor
1283 *
1284 * skb->protocol must be set before this function is called
fd0a05ce
JB
1285 **/
1286static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1287 struct sk_buff *skb,
1a557afc 1288 union i40e_rx_desc *rx_desc)
fd0a05ce 1289{
1a557afc 1290 struct i40e_rx_ptype_decoded decoded;
1a557afc 1291 u32 rx_error, rx_status;
858296c8 1292 bool ipv4, ipv6;
1a557afc
JB
1293 u8 ptype;
1294 u64 qword;
1295
1296 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1297 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1298 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1299 I40E_RXD_QW1_ERROR_SHIFT;
1300 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1301 I40E_RXD_QW1_STATUS_SHIFT;
1302 decoded = decode_rx_desc_ptype(ptype);
8144f0f7 1303
fd0a05ce
JB
1304 skb->ip_summed = CHECKSUM_NONE;
1305
1a557afc
JB
1306 skb_checksum_none_assert(skb);
1307
fd0a05ce 1308 /* Rx csum enabled and ip headers found? */
8a3c91cc
JB
1309 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1310 return;
1311
1312 /* did the hardware decode the packet and checksum? */
41a1d04b 1313 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
8a3c91cc
JB
1314 return;
1315
1316 /* both known and outer_ip must be set for the below code to work */
1317 if (!(decoded.known && decoded.outer_ip))
fd0a05ce
JB
1318 return;
1319
fad57330
AD
1320 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1321 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1322 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1323 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
8a3c91cc
JB
1324
1325 if (ipv4 &&
41a1d04b
JB
1326 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1327 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
8a3c91cc
JB
1328 goto checksum_fail;
1329
ddf1d0d7 1330 /* likely incorrect csum if alternate IP extension headers found */
8a3c91cc 1331 if (ipv6 &&
41a1d04b 1332 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
8a3c91cc 1333 /* don't increment checksum err here, non-fatal err */
8ee75a8e
SN
1334 return;
1335
8a3c91cc 1336 /* there was some L4 error, count error and punt packet to the stack */
41a1d04b 1337 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
8a3c91cc
JB
1338 goto checksum_fail;
1339
1340 /* handle packets that were not able to be checksummed due
1341 * to arrival speed, in this case the stack can compute
1342 * the csum.
1343 */
41a1d04b 1344 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
fd0a05ce 1345 return;
fd0a05ce 1346
858296c8
AD
1347 /* If there is an outer header present that might contain a checksum
1348 * we need to bump the checksum level by 1 to reflect the fact that
1349 * we are indicating we validated the inner checksum.
8a3c91cc 1350 */
858296c8
AD
1351 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1352 skb->csum_level = 1;
1353
1354 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1355 switch (decoded.inner_prot) {
1356 case I40E_RX_PTYPE_INNER_PROT_TCP:
1357 case I40E_RX_PTYPE_INNER_PROT_UDP:
1358 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1359 skb->ip_summed = CHECKSUM_UNNECESSARY;
1360 /* fall though */
1361 default:
1362 break;
1363 }
8a3c91cc
JB
1364
1365 return;
1366
1367checksum_fail:
1368 vsi->back->hw_csum_rx_error++;
fd0a05ce
JB
1369}
1370
1371/**
857942fd 1372 * i40e_ptype_to_htype - get a hash type
206812b5
JB
1373 * @ptype: the ptype value from the descriptor
1374 *
1375 * Returns a hash type to be used by skb_set_hash
1376 **/
1a557afc 1377static inline int i40e_ptype_to_htype(u8 ptype)
206812b5
JB
1378{
1379 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1380
1381 if (!decoded.known)
1382 return PKT_HASH_TYPE_NONE;
1383
1384 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1385 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1386 return PKT_HASH_TYPE_L4;
1387 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1388 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1389 return PKT_HASH_TYPE_L3;
1390 else
1391 return PKT_HASH_TYPE_L2;
1392}
1393
857942fd
ASJ
1394/**
1395 * i40e_rx_hash - set the hash value in the skb
1396 * @ring: descriptor ring
1397 * @rx_desc: specific descriptor
1398 **/
1399static inline void i40e_rx_hash(struct i40e_ring *ring,
1400 union i40e_rx_desc *rx_desc,
1401 struct sk_buff *skb,
1402 u8 rx_ptype)
1403{
1404 u32 hash;
1a557afc 1405 const __le64 rss_mask =
857942fd
ASJ
1406 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1407 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1408
a876c3ba 1409 if (!(ring->netdev->features & NETIF_F_RXHASH))
857942fd
ASJ
1410 return;
1411
1412 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1413 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1414 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1415 }
1416}
1417
a132af24 1418/**
1a557afc
JB
1419 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1420 * @rx_ring: rx descriptor ring packet is being transacted on
1421 * @rx_desc: pointer to the EOP Rx descriptor
1422 * @skb: pointer to current skb being populated
1423 * @rx_ptype: the packet type decoded by hardware
1424 *
1425 * This function checks the ring, descriptor, and packet information in
1426 * order to populate the hash, checksum, VLAN, protocol, and
1427 * other fields within the skb.
1428 **/
1429static inline
1430void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1431 union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1432 u8 rx_ptype)
1433{
1434 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1435 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1436 I40E_RXD_QW1_STATUS_SHIFT;
144ed176
JK
1437 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1438 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1a557afc
JB
1439 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1440
12490501 1441 if (unlikely(tsynvalid))
144ed176 1442 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1a557afc
JB
1443
1444 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1445
1446 /* modifies the skb - consumes the enet header */
1447 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1448
1449 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1450
1451 skb_record_rx_queue(skb, rx_ring->queue_index);
1452}
1453
1a557afc
JB
1454/**
1455 * i40e_cleanup_headers - Correct empty headers
1456 * @rx_ring: rx descriptor ring packet is being transacted on
1457 * @skb: pointer to current skb being fixed
1458 *
1459 * Also address the case where we are pulling data in on pages only
1460 * and as such no data is present in the skb header.
1461 *
1462 * In addition if skb is not at least 60 bytes we need to pad it so that
1463 * it is large enough to qualify as a valid Ethernet frame.
1464 *
1465 * Returns true if an error was encountered and skb was freed.
1466 **/
1467static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
1468{
1a557afc
JB
1469 /* if eth_skb_pad returns an error the skb was freed */
1470 if (eth_skb_pad(skb))
1471 return true;
1472
1473 return false;
1474}
1475
1476/**
1477 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1478 * @rx_ring: rx descriptor ring to store buffers on
1479 * @old_buff: donor buffer to have page reused
1480 *
1481 * Synchronizes page for reuse by the adapter
1482 **/
1483static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1484 struct i40e_rx_buffer *old_buff)
1485{
1486 struct i40e_rx_buffer *new_buff;
1487 u16 nta = rx_ring->next_to_alloc;
1488
1489 new_buff = &rx_ring->rx_bi[nta];
1490
1491 /* update, and store next to alloc */
1492 nta++;
1493 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1494
1495 /* transfer page from old buffer to new buffer */
1496 *new_buff = *old_buff;
1497}
1498
1499/**
9b37c937 1500 * i40e_page_is_reusable - check if any reuse is possible
1a557afc 1501 * @page: page struct to check
9b37c937
SP
1502 *
1503 * A page is not reusable if it was allocated under low memory
1504 * conditions, or it's not in the same NUMA node as this CPU.
1a557afc 1505 */
9b37c937 1506static inline bool i40e_page_is_reusable(struct page *page)
1a557afc 1507{
9b37c937
SP
1508 return (page_to_nid(page) == numa_mem_id()) &&
1509 !page_is_pfmemalloc(page);
1510}
1511
1512/**
1513 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1514 * the adapter for another receive
1515 *
1516 * @rx_buffer: buffer containing the page
1517 * @page: page address from rx_buffer
1518 * @truesize: actual size of the buffer in this page
1519 *
1520 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1521 * an unused region in the page.
1522 *
1523 * For small pages, @truesize will be a constant value, half the size
1524 * of the memory at page. We'll attempt to alternate between high and
1525 * low halves of the page, with one half ready for use by the hardware
1526 * and the other half being consumed by the stack. We use the page
1527 * ref count to determine whether the stack has finished consuming the
1528 * portion of this page that was passed up with a previous packet. If
1529 * the page ref count is >1, we'll assume the "other" half page is
1530 * still busy, and this page cannot be reused.
1531 *
1532 * For larger pages, @truesize will be the actual space used by the
1533 * received packet (adjusted upward to an even multiple of the cache
1534 * line size). This will advance through the page by the amount
1535 * actually consumed by the received packets while there is still
1536 * space for a buffer. Each region of larger pages will be used at
1537 * most once, after which the page will not be reused.
1538 *
1539 * In either case, if the page is reusable its refcount is increased.
1540 **/
1541static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1542 struct page *page,
1543 const unsigned int truesize)
1544{
1545#if (PAGE_SIZE >= 8192)
1546 unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
1547#endif
1548
1549 /* Is any reuse possible? */
1550 if (unlikely(!i40e_page_is_reusable(page)))
1551 return false;
1552
1553#if (PAGE_SIZE < 8192)
1554 /* if we are only owner of page we can reuse it */
1555 if (unlikely(page_count(page) != 1))
1556 return false;
1557
1558 /* flip page offset to other buffer */
1559 rx_buffer->page_offset ^= truesize;
1560#else
1561 /* move offset up to the next cache line */
1562 rx_buffer->page_offset += truesize;
1563
1564 if (rx_buffer->page_offset > last_offset)
1565 return false;
1566#endif
1567
1568 /* Inc ref count on page before passing it up to the stack */
1569 get_page(page);
1570
1571 return true;
1a557afc
JB
1572}
1573
1574/**
1575 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1576 * @rx_ring: rx descriptor ring to transact packets on
1577 * @rx_buffer: buffer containing page to add
7987dcd7 1578 * @size: packet length from rx_desc
1a557afc
JB
1579 * @skb: sk_buff to place the data into
1580 *
1581 * This function will add the data contained in rx_buffer->page to the skb.
1582 * This is done either through a direct copy if the data in the buffer is
1583 * less than the skb header size, otherwise it will just attach the page as
1584 * a frag to the skb.
1585 *
1586 * The function will then update the page offset if necessary and return
1587 * true if the buffer can be reused by the adapter.
1588 **/
1589static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
1590 struct i40e_rx_buffer *rx_buffer,
7987dcd7 1591 unsigned int size,
1a557afc
JB
1592 struct sk_buff *skb)
1593{
1594 struct page *page = rx_buffer->page;
9b37c937 1595 unsigned char *va = page_address(page) + rx_buffer->page_offset;
1a557afc
JB
1596#if (PAGE_SIZE < 8192)
1597 unsigned int truesize = I40E_RXBUFFER_2048;
1598#else
1599 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
1a557afc 1600#endif
9b37c937
SP
1601 unsigned int pull_len;
1602
1603 if (unlikely(skb_is_nonlinear(skb)))
1604 goto add_tail_frag;
1a557afc
JB
1605
1606 /* will the data fit in the skb we allocated? if so, just
1607 * copy it as it is pretty small anyway
1608 */
9b37c937 1609 if (size <= I40E_RX_HDR_SIZE) {
1a557afc
JB
1610 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
1611
9b37c937
SP
1612 /* page is reusable, we can reuse buffer as-is */
1613 if (likely(i40e_page_is_reusable(page)))
1a557afc
JB
1614 return true;
1615
1616 /* this page cannot be reused so discard it */
1617 __free_pages(page, 0);
1618 return false;
1619 }
1620
9b37c937
SP
1621 /* we need the header to contain the greater of either
1622 * ETH_HLEN or 60 bytes if the skb->len is less than
1623 * 60 for skb_pad.
1624 */
1625 pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1a557afc 1626
9b37c937
SP
1627 /* align pull length to size of long to optimize
1628 * memcpy performance
1629 */
1630 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
1a557afc 1631
9b37c937
SP
1632 /* update all of the pointers */
1633 va += pull_len;
1634 size -= pull_len;
1a557afc 1635
9b37c937
SP
1636add_tail_frag:
1637 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1638 (unsigned long)va & ~PAGE_MASK, size, truesize);
1a557afc 1639
9b37c937 1640 return i40e_can_reuse_rx_page(rx_buffer, page, truesize);
1a557afc
JB
1641}
1642
1643/**
1644 * i40e_fetch_rx_buffer - Allocate skb and populate it
1645 * @rx_ring: rx descriptor ring to transact packets on
1646 * @rx_desc: descriptor containing info written by hardware
a132af24 1647 *
1a557afc
JB
1648 * This function allocates an skb on the fly, and populates it with the page
1649 * data from the current receive descriptor, taking care to set up the skb
1650 * correctly, as well as handling calling the page recycle function if
1651 * necessary.
1652 */
1653static inline
1654struct sk_buff *i40e_fetch_rx_buffer(struct i40e_ring *rx_ring,
e72e5659
SP
1655 union i40e_rx_desc *rx_desc,
1656 struct sk_buff *skb)
1a557afc 1657{
7987dcd7
SP
1658 u64 local_status_error_len =
1659 le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1660 unsigned int size =
1661 (local_status_error_len & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1662 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1a557afc 1663 struct i40e_rx_buffer *rx_buffer;
1a557afc
JB
1664 struct page *page;
1665
1666 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1667 page = rx_buffer->page;
1668 prefetchw(page);
1669
1a557afc
JB
1670 if (likely(!skb)) {
1671 void *page_addr = page_address(page) + rx_buffer->page_offset;
1672
1673 /* prefetch first cache line of first page */
1674 prefetch(page_addr);
1675#if L1_CACHE_BYTES < 128
1676 prefetch(page_addr + L1_CACHE_BYTES);
1677#endif
1678
1679 /* allocate a skb to store the frags */
1680 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1681 I40E_RX_HDR_SIZE,
1682 GFP_ATOMIC | __GFP_NOWARN);
1683 if (unlikely(!skb)) {
1684 rx_ring->rx_stats.alloc_buff_failed++;
1685 return NULL;
1686 }
1687
1688 /* we will be copying header into skb->data in
1689 * pskb_may_pull so it is in our interest to prefetch
1690 * it now to avoid a possible cache miss
1691 */
1692 prefetchw(skb->data);
1a557afc
JB
1693 }
1694
1695 /* we are reusing so sync this buffer for CPU use */
1696 dma_sync_single_range_for_cpu(rx_ring->dev,
1697 rx_buffer->dma,
1698 rx_buffer->page_offset,
7987dcd7 1699 size,
1a557afc
JB
1700 DMA_FROM_DEVICE);
1701
1702 /* pull page into skb */
7987dcd7 1703 if (i40e_add_rx_frag(rx_ring, rx_buffer, size, skb)) {
1a557afc
JB
1704 /* hand second half of page back to the ring */
1705 i40e_reuse_rx_page(rx_ring, rx_buffer);
1706 rx_ring->rx_stats.page_reuse_count++;
1707 } else {
1708 /* we are not reusing the buffer so unmap it */
59605bc0
AD
1709 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
1710 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1a557afc
JB
1711 }
1712
1713 /* clear contents of buffer_info */
1714 rx_buffer->page = NULL;
1715
1716 return skb;
1717}
1718
1719/**
1720 * i40e_is_non_eop - process handling of non-EOP buffers
1721 * @rx_ring: Rx ring being processed
1722 * @rx_desc: Rx descriptor for current buffer
1723 * @skb: Current socket buffer containing buffer in progress
1724 *
1725 * This function updates next to clean. If the buffer is an EOP buffer
1726 * this function exits returning false, otherwise it will place the
1727 * sk_buff in the next buffer to be chained and return true indicating
1728 * that this is in fact a non-EOP buffer.
a132af24 1729 **/
1a557afc
JB
1730static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1731 union i40e_rx_desc *rx_desc,
1732 struct sk_buff *skb)
1733{
1734 u32 ntc = rx_ring->next_to_clean + 1;
1735
1736 /* fetch, update, and store next to clean */
1737 ntc = (ntc < rx_ring->count) ? ntc : 0;
1738 rx_ring->next_to_clean = ntc;
1739
1740 prefetch(I40E_RX_DESC(rx_ring, ntc));
1741
1742#define staterrlen rx_desc->wb.qword1.status_error_len
1743 if (unlikely(i40e_rx_is_programming_status(le64_to_cpu(staterrlen)))) {
1744 i40e_clean_programming_status(rx_ring, rx_desc);
1a557afc
JB
1745 return true;
1746 }
1747 /* if we are the last buffer then there is nothing else to do */
1748#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1749 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1750 return false;
1751
1a557afc
JB
1752 rx_ring->rx_stats.non_eop_descs++;
1753
1754 return true;
1755}
1756
1757/**
1758 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1759 * @rx_ring: rx descriptor ring to transact packets on
1760 * @budget: Total limit on number of packets to process
1761 *
1762 * This function provides a "bounce buffer" approach to Rx interrupt
1763 * processing. The advantage to this is that on systems that have
1764 * expensive overhead for IOMMU access this provides a means of avoiding
1765 * it by maintaining the mapping of the page to the system.
1766 *
1767 * Returns amount of work completed
1768 **/
1769static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
a132af24
MW
1770{
1771 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
e72e5659 1772 struct sk_buff *skb = rx_ring->skb;
a132af24 1773 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
c2e245ab 1774 bool failure = false;
a132af24 1775
1a557afc
JB
1776 while (likely(total_rx_packets < budget)) {
1777 union i40e_rx_desc *rx_desc;
a132af24 1778 u16 vlan_tag;
1a557afc
JB
1779 u8 rx_ptype;
1780 u64 qword;
1781
fd0a05ce
JB
1782 /* return some buffers to hardware, one at a time is too slow */
1783 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
c2e245ab 1784 failure = failure ||
1a557afc 1785 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
fd0a05ce
JB
1786 cleaned_count = 0;
1787 }
1788
1a557afc
JB
1789 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
1790
1a557afc
JB
1791 /* status_error_len will always be zero for unused descriptors
1792 * because it's cleared in cleanup, and overlaps with hdr_addr
1793 * which is always zero because packet split isn't used, if the
1794 * hardware wrote DD then it will be non-zero
1795 */
99dad8b3
AD
1796 if (!i40e_test_staterr(rx_desc,
1797 BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1a557afc
JB
1798 break;
1799
a132af24
MW
1800 /* This memory barrier is needed to keep us from reading
1801 * any other fields out of the rx_desc until we know the
1802 * DD bit is set.
1803 */
67317166 1804 dma_rmb();
a132af24 1805
e72e5659 1806 skb = i40e_fetch_rx_buffer(rx_ring, rx_desc, skb);
1a557afc
JB
1807 if (!skb)
1808 break;
a132af24 1809
a132af24
MW
1810 cleaned_count++;
1811
1a557afc 1812 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
a132af24 1813 continue;
a132af24 1814
1a557afc
JB
1815 /* ERR_MASK will only have valid bits if EOP set, and
1816 * what we are doing here is actually checking
1817 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1818 * the error field
1819 */
1820 if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
a132af24 1821 dev_kfree_skb_any(skb);
a132af24
MW
1822 continue;
1823 }
1824
e72e5659
SP
1825 if (i40e_cleanup_headers(rx_ring, skb)) {
1826 skb = NULL;
1a557afc 1827 continue;
e72e5659 1828 }
a132af24
MW
1829
1830 /* probably a little skewed due to removing CRC */
1831 total_rx_bytes += skb->len;
a132af24 1832
99dad8b3
AD
1833 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1834 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1835 I40E_RXD_QW1_PTYPE_SHIFT;
1836
1a557afc
JB
1837 /* populate checksum, VLAN, and protocol */
1838 i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
a132af24 1839
a132af24 1840#ifdef I40E_FCOE
1f15d667
JB
1841 if (unlikely(
1842 i40e_rx_is_fcoe(rx_ptype) &&
1843 !i40e_fcoe_handle_offload(rx_ring, rx_desc, skb))) {
a132af24
MW
1844 dev_kfree_skb_any(skb);
1845 continue;
1846 }
1847#endif
1a557afc
JB
1848
1849 vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1850 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1851
a132af24 1852 i40e_receive_skb(rx_ring, skb, vlan_tag);
e72e5659 1853 skb = NULL;
a132af24 1854
1a557afc
JB
1855 /* update budget accounting */
1856 total_rx_packets++;
1857 }
fd0a05ce 1858
e72e5659
SP
1859 rx_ring->skb = skb;
1860
980e9b11 1861 u64_stats_update_begin(&rx_ring->syncp);
a114d0a6
AD
1862 rx_ring->stats.packets += total_rx_packets;
1863 rx_ring->stats.bytes += total_rx_bytes;
980e9b11 1864 u64_stats_update_end(&rx_ring->syncp);
fd0a05ce
JB
1865 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1866 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1867
1a557afc 1868 /* guarantee a trip back through this routine if there was a failure */
c2e245ab 1869 return failure ? budget : total_rx_packets;
fd0a05ce
JB
1870}
1871
8f5e39ce
JB
1872static u32 i40e_buildreg_itr(const int type, const u16 itr)
1873{
1874 u32 val;
1875
1876 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
40d72a50
JB
1877 /* Don't clear PBA because that can cause lost interrupts that
1878 * came in while we were cleaning/polling
1879 */
8f5e39ce
JB
1880 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1881 (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1882
1883 return val;
1884}
1885
1886/* a small macro to shorten up some long lines */
1887#define INTREG I40E_PFINT_DYN_CTLN
3c234c47 1888static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
65e87c03 1889{
3c234c47 1890 return vsi->rx_rings[idx]->rx_itr_setting;
65e87c03
JK
1891}
1892
3c234c47 1893static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
65e87c03 1894{
3c234c47 1895 return vsi->tx_rings[idx]->tx_itr_setting;
65e87c03 1896}
8f5e39ce 1897
de32e3ef
CW
1898/**
1899 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1900 * @vsi: the VSI we care about
1901 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1902 *
1903 **/
1904static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1905 struct i40e_q_vector *q_vector)
1906{
1907 struct i40e_hw *hw = &vsi->back->hw;
8f5e39ce
JB
1908 bool rx = false, tx = false;
1909 u32 rxval, txval;
de32e3ef 1910 int vector;
a75e8005 1911 int idx = q_vector->v_idx;
65e87c03 1912 int rx_itr_setting, tx_itr_setting;
de32e3ef
CW
1913
1914 vector = (q_vector->v_idx + vsi->base_vector);
8f5e39ce 1915
ee2319cf
JB
1916 /* avoid dynamic calculation if in countdown mode OR if
1917 * all dynamic is disabled
1918 */
8f5e39ce
JB
1919 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1920
3c234c47
CW
1921 rx_itr_setting = get_rx_itr(vsi, idx);
1922 tx_itr_setting = get_tx_itr(vsi, idx);
65e87c03 1923
ee2319cf 1924 if (q_vector->itr_countdown > 0 ||
65e87c03
JK
1925 (!ITR_IS_DYNAMIC(rx_itr_setting) &&
1926 !ITR_IS_DYNAMIC(tx_itr_setting))) {
ee2319cf
JB
1927 goto enable_int;
1928 }
1929
65e87c03 1930 if (ITR_IS_DYNAMIC(tx_itr_setting)) {
8f5e39ce
JB
1931 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1932 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
de32e3ef 1933 }
8f5e39ce 1934
65e87c03 1935 if (ITR_IS_DYNAMIC(tx_itr_setting)) {
8f5e39ce
JB
1936 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1937 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
de32e3ef 1938 }
8f5e39ce
JB
1939
1940 if (rx || tx) {
1941 /* get the higher of the two ITR adjustments and
1942 * use the same value for both ITR registers
1943 * when in adaptive mode (Rx and/or Tx)
1944 */
1945 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1946
1947 q_vector->tx.itr = q_vector->rx.itr = itr;
1948 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1949 tx = true;
1950 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1951 rx = true;
1952 }
1953
1954 /* only need to enable the interrupt once, but need
1955 * to possibly update both ITR values
1956 */
1957 if (rx) {
1958 /* set the INTENA_MSK_MASK so that this first write
1959 * won't actually enable the interrupt, instead just
1960 * updating the ITR (it's bit 31 PF and VF)
1961 */
1962 rxval |= BIT(31);
1963 /* don't check _DOWN because interrupt isn't being enabled */
1964 wr32(hw, INTREG(vector - 1), rxval);
1965 }
1966
ee2319cf 1967enable_int:
8f5e39ce
JB
1968 if (!test_bit(__I40E_DOWN, &vsi->state))
1969 wr32(hw, INTREG(vector - 1), txval);
ee2319cf
JB
1970
1971 if (q_vector->itr_countdown)
1972 q_vector->itr_countdown--;
1973 else
1974 q_vector->itr_countdown = ITR_COUNTDOWN_START;
de32e3ef
CW
1975}
1976
fd0a05ce
JB
1977/**
1978 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1979 * @napi: napi struct with our devices info in it
1980 * @budget: amount of work driver is allowed to do this pass, in packets
1981 *
1982 * This function will clean all queues associated with a q_vector.
1983 *
1984 * Returns the amount of work done
1985 **/
1986int i40e_napi_poll(struct napi_struct *napi, int budget)
1987{
1988 struct i40e_q_vector *q_vector =
1989 container_of(napi, struct i40e_q_vector, napi);
1990 struct i40e_vsi *vsi = q_vector->vsi;
cd0b6fa6 1991 struct i40e_ring *ring;
fd0a05ce 1992 bool clean_complete = true;
d91649f5 1993 bool arm_wb = false;
fd0a05ce 1994 int budget_per_ring;
32b3e08f 1995 int work_done = 0;
fd0a05ce
JB
1996
1997 if (test_bit(__I40E_DOWN, &vsi->state)) {
1998 napi_complete(napi);
1999 return 0;
2000 }
2001
9c6c1259
KP
2002 /* Clear hung_detected bit */
2003 clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
cd0b6fa6
AD
2004 /* Since the actual Tx work is minimal, we can give the Tx a larger
2005 * budget and be more aggressive about cleaning up the Tx descriptors.
2006 */
d91649f5 2007 i40e_for_each_ring(ring, q_vector->tx) {
a619afe8 2008 if (!i40e_clean_tx_irq(vsi, ring, budget)) {
f2edaaaa
AD
2009 clean_complete = false;
2010 continue;
2011 }
2012 arm_wb |= ring->arm_wb;
0deda868 2013 ring->arm_wb = false;
d91649f5 2014 }
cd0b6fa6 2015
c67caceb
AD
2016 /* Handle case where we are called by netpoll with a budget of 0 */
2017 if (budget <= 0)
2018 goto tx_only;
2019
fd0a05ce
JB
2020 /* We attempt to distribute budget to each Rx queue fairly, but don't
2021 * allow the budget to go below 1 because that would exit polling early.
fd0a05ce
JB
2022 */
2023 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
cd0b6fa6 2024
a132af24 2025 i40e_for_each_ring(ring, q_vector->rx) {
1a557afc 2026 int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
32b3e08f
JB
2027
2028 work_done += cleaned;
f2edaaaa
AD
2029 /* if we clean as many as budgeted, we must not be done */
2030 if (cleaned >= budget_per_ring)
2031 clean_complete = false;
a132af24 2032 }
fd0a05ce
JB
2033
2034 /* If work not completed, return budget and polling will return */
d91649f5 2035 if (!clean_complete) {
96db776a
AB
2036 const cpumask_t *aff_mask = &q_vector->affinity_mask;
2037 int cpu_id = smp_processor_id();
2038
2039 /* It is possible that the interrupt affinity has changed but,
2040 * if the cpu is pegged at 100%, polling will never exit while
2041 * traffic continues and the interrupt will be stuck on this
2042 * cpu. We check to make sure affinity is correct before we
2043 * continue to poll, otherwise we must stop polling so the
2044 * interrupt can move to the correct cpu.
2045 */
2046 if (likely(cpumask_test_cpu(cpu_id, aff_mask) ||
2047 !(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))) {
c67caceb 2048tx_only:
96db776a
AB
2049 if (arm_wb) {
2050 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2051 i40e_enable_wb_on_itr(vsi, q_vector);
2052 }
2053 return budget;
164c9f54 2054 }
d91649f5 2055 }
fd0a05ce 2056
8e0764b4
ASJ
2057 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2058 q_vector->arm_wb_state = false;
2059
fd0a05ce 2060 /* Work is done so exit the polling mode and re-enable the interrupt */
32b3e08f 2061 napi_complete_done(napi, work_done);
96db776a
AB
2062
2063 /* If we're prematurely stopping polling to fix the interrupt
2064 * affinity we want to make sure polling starts back up so we
2065 * issue a call to i40e_force_wb which triggers a SW interrupt.
2066 */
2067 if (!clean_complete)
2068 i40e_force_wb(vsi, q_vector);
2069 else if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))
40d72a50 2070 i40e_irq_dynamic_enable_icr0(vsi->back, false);
96db776a
AB
2071 else
2072 i40e_update_enable_itr(vsi, q_vector);
2073
6beb84a7 2074 return min(work_done, budget - 1);
fd0a05ce
JB
2075}
2076
2077/**
2078 * i40e_atr - Add a Flow Director ATR filter
2079 * @tx_ring: ring to add programming descriptor to
2080 * @skb: send buffer
89232c3b 2081 * @tx_flags: send tx flags
fd0a05ce
JB
2082 **/
2083static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
6b037cd4 2084 u32 tx_flags)
fd0a05ce
JB
2085{
2086 struct i40e_filter_program_desc *fdir_desc;
2087 struct i40e_pf *pf = tx_ring->vsi->back;
2088 union {
2089 unsigned char *network;
2090 struct iphdr *ipv4;
2091 struct ipv6hdr *ipv6;
2092 } hdr;
2093 struct tcphdr *th;
2094 unsigned int hlen;
2095 u32 flex_ptype, dtype_cmd;
ffcc55c0 2096 int l4_proto;
fc4ac67b 2097 u16 i;
fd0a05ce
JB
2098
2099 /* make sure ATR is enabled */
60ea5f83 2100 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
fd0a05ce
JB
2101 return;
2102
04294e38
ASJ
2103 if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2104 return;
2105
fd0a05ce
JB
2106 /* if sampling is disabled do nothing */
2107 if (!tx_ring->atr_sample_rate)
2108 return;
2109
6b037cd4 2110 /* Currently only IPv4/IPv6 with TCP is supported */
89232c3b
ASJ
2111 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2112 return;
fd0a05ce 2113
ffcc55c0
AD
2114 /* snag network header to get L4 type and address */
2115 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2116 skb_inner_network_header(skb) : skb_network_header(skb);
fd0a05ce 2117
ffcc55c0
AD
2118 /* Note: tx_flags gets modified to reflect inner protocols in
2119 * tx_enable_csum function if encap is enabled.
2120 */
2121 if (tx_flags & I40E_TX_FLAGS_IPV4) {
6b037cd4 2122 /* access ihl as u8 to avoid unaligned access on ia64 */
ffcc55c0
AD
2123 hlen = (hdr.network[0] & 0x0F) << 2;
2124 l4_proto = hdr.ipv4->protocol;
fd0a05ce 2125 } else {
ffcc55c0
AD
2126 hlen = hdr.network - skb->data;
2127 l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
2128 hlen -= hdr.network - skb->data;
fd0a05ce
JB
2129 }
2130
6b037cd4 2131 if (l4_proto != IPPROTO_TCP)
89232c3b
ASJ
2132 return;
2133
fd0a05ce
JB
2134 th = (struct tcphdr *)(hdr.network + hlen);
2135
55a5e60b
ASJ
2136 /* Due to lack of space, no more new filters can be programmed */
2137 if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2138 return;
72b74869
ASJ
2139 if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2140 (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
52eb95ef
ASJ
2141 /* HW ATR eviction will take care of removing filters on FIN
2142 * and RST packets.
2143 */
2144 if (th->fin || th->rst)
2145 return;
2146 }
55a5e60b
ASJ
2147
2148 tx_ring->atr_count++;
2149
ce806783
ASJ
2150 /* sample on all syn/fin/rst packets or once every atr sample rate */
2151 if (!th->fin &&
2152 !th->syn &&
2153 !th->rst &&
2154 (tx_ring->atr_count < tx_ring->atr_sample_rate))
fd0a05ce
JB
2155 return;
2156
2157 tx_ring->atr_count = 0;
2158
2159 /* grab the next descriptor */
fc4ac67b
AD
2160 i = tx_ring->next_to_use;
2161 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2162
2163 i++;
2164 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
fd0a05ce
JB
2165
2166 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2167 I40E_TXD_FLTR_QW0_QINDEX_MASK;
6b037cd4 2168 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
fd0a05ce
JB
2169 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2170 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2171 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2172 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2173
2174 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2175
2176 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2177
ce806783 2178 dtype_cmd |= (th->fin || th->rst) ?
fd0a05ce
JB
2179 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2180 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2181 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2182 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2183
2184 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2185 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2186
2187 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2188 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2189
433c47de 2190 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
6a899024 2191 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
60ccd45c
ASJ
2192 dtype_cmd |=
2193 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2194 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2195 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2196 else
2197 dtype_cmd |=
2198 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2199 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2200 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
433c47de 2201
72b74869
ASJ
2202 if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2203 (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
52eb95ef
ASJ
2204 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2205
fd0a05ce 2206 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
99753ea6 2207 fdir_desc->rsvd = cpu_to_le32(0);
fd0a05ce 2208 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
99753ea6 2209 fdir_desc->fd_id = cpu_to_le32(0);
fd0a05ce
JB
2210}
2211
fd0a05ce
JB
2212/**
2213 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2214 * @skb: send buffer
2215 * @tx_ring: ring to send buffer on
2216 * @flags: the tx flags to be set
2217 *
2218 * Checks the skb and set up correspondingly several generic transmit flags
2219 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2220 *
2221 * Returns error code indicate the frame should be dropped upon error and the
2222 * otherwise returns 0 to indicate the flags has been set properly.
2223 **/
38e00438 2224#ifdef I40E_FCOE
3e587cf3 2225inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
fd0a05ce
JB
2226 struct i40e_ring *tx_ring,
2227 u32 *flags)
3e587cf3
JB
2228#else
2229static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2230 struct i40e_ring *tx_ring,
2231 u32 *flags)
38e00438 2232#endif
fd0a05ce
JB
2233{
2234 __be16 protocol = skb->protocol;
2235 u32 tx_flags = 0;
2236
31eaaccf
GR
2237 if (protocol == htons(ETH_P_8021Q) &&
2238 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2239 /* When HW VLAN acceleration is turned off by the user the
2240 * stack sets the protocol to 8021q so that the driver
2241 * can take any steps required to support the SW only
2242 * VLAN handling. In our case the driver doesn't need
2243 * to take any further steps so just set the protocol
2244 * to the encapsulated ethertype.
2245 */
2246 skb->protocol = vlan_get_protocol(skb);
2247 goto out;
2248 }
2249
fd0a05ce 2250 /* if we have a HW VLAN tag being added, default to the HW one */
df8a39de
JP
2251 if (skb_vlan_tag_present(skb)) {
2252 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
fd0a05ce
JB
2253 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2254 /* else if it is a SW VLAN, check the next protocol and store the tag */
0e2fe46c 2255 } else if (protocol == htons(ETH_P_8021Q)) {
fd0a05ce 2256 struct vlan_hdr *vhdr, _vhdr;
6995b36c 2257
fd0a05ce
JB
2258 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2259 if (!vhdr)
2260 return -EINVAL;
2261
2262 protocol = vhdr->h_vlan_encapsulated_proto;
2263 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2264 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2265 }
2266
d40d00b1
NP
2267 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2268 goto out;
2269
fd0a05ce 2270 /* Insert 802.1p priority into VLAN header */
38e00438
VD
2271 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2272 (skb->priority != TC_PRIO_CONTROL)) {
fd0a05ce
JB
2273 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2274 tx_flags |= (skb->priority & 0x7) <<
2275 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2276 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2277 struct vlan_ethhdr *vhdr;
dd225bc6
FR
2278 int rc;
2279
2280 rc = skb_cow_head(skb, 0);
2281 if (rc < 0)
2282 return rc;
fd0a05ce
JB
2283 vhdr = (struct vlan_ethhdr *)skb->data;
2284 vhdr->h_vlan_TCI = htons(tx_flags >>
2285 I40E_TX_FLAGS_VLAN_SHIFT);
2286 } else {
2287 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2288 }
2289 }
d40d00b1
NP
2290
2291out:
fd0a05ce
JB
2292 *flags = tx_flags;
2293 return 0;
2294}
2295
fd0a05ce
JB
2296/**
2297 * i40e_tso - set up the tso context descriptor
52ea3e80 2298 * @first: pointer to first Tx buffer for xmit
fd0a05ce 2299 * @hdr_len: ptr to the size of the packet header
9c883bd3 2300 * @cd_type_cmd_tso_mss: Quad Word 1
fd0a05ce
JB
2301 *
2302 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2303 **/
52ea3e80
AD
2304static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2305 u64 *cd_type_cmd_tso_mss)
fd0a05ce 2306{
52ea3e80 2307 struct sk_buff *skb = first->skb;
03f9d6a5 2308 u64 cd_cmd, cd_tso_len, cd_mss;
c777019a
AD
2309 union {
2310 struct iphdr *v4;
2311 struct ipv6hdr *v6;
2312 unsigned char *hdr;
2313 } ip;
c49a7bc3
AD
2314 union {
2315 struct tcphdr *tcp;
5453205c 2316 struct udphdr *udp;
c49a7bc3
AD
2317 unsigned char *hdr;
2318 } l4;
2319 u32 paylen, l4_offset;
52ea3e80 2320 u16 gso_segs, gso_size;
fd0a05ce 2321 int err;
fd0a05ce 2322
e9f6563d
SN
2323 if (skb->ip_summed != CHECKSUM_PARTIAL)
2324 return 0;
2325
fd0a05ce
JB
2326 if (!skb_is_gso(skb))
2327 return 0;
2328
dd225bc6
FR
2329 err = skb_cow_head(skb, 0);
2330 if (err < 0)
2331 return err;
fd0a05ce 2332
c777019a
AD
2333 ip.hdr = skb_network_header(skb);
2334 l4.hdr = skb_transport_header(skb);
df23075f 2335
c777019a
AD
2336 /* initialize outer IP header fields */
2337 if (ip.v4->version == 4) {
2338 ip.v4->tot_len = 0;
2339 ip.v4->check = 0;
c49a7bc3 2340 } else {
c777019a
AD
2341 ip.v6->payload_len = 0;
2342 }
2343
577389a5 2344 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1c7b4a23 2345 SKB_GSO_GRE_CSUM |
7e13318d 2346 SKB_GSO_IPXIP4 |
bf2d1df3 2347 SKB_GSO_IPXIP6 |
577389a5 2348 SKB_GSO_UDP_TUNNEL |
5453205c 2349 SKB_GSO_UDP_TUNNEL_CSUM)) {
1c7b4a23
AD
2350 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2351 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2352 l4.udp->len = 0;
2353
5453205c
AD
2354 /* determine offset of outer transport header */
2355 l4_offset = l4.hdr - skb->data;
2356
2357 /* remove payload length from outer checksum */
24d41e5e 2358 paylen = skb->len - l4_offset;
b9c015d4
JK
2359 csum_replace_by_diff(&l4.udp->check,
2360 (__force __wsum)htonl(paylen));
5453205c
AD
2361 }
2362
c777019a
AD
2363 /* reset pointers to inner headers */
2364 ip.hdr = skb_inner_network_header(skb);
2365 l4.hdr = skb_inner_transport_header(skb);
2366
2367 /* initialize inner IP header fields */
2368 if (ip.v4->version == 4) {
2369 ip.v4->tot_len = 0;
2370 ip.v4->check = 0;
2371 } else {
2372 ip.v6->payload_len = 0;
2373 }
fd0a05ce
JB
2374 }
2375
c49a7bc3
AD
2376 /* determine offset of inner transport header */
2377 l4_offset = l4.hdr - skb->data;
2378
2379 /* remove payload length from inner checksum */
24d41e5e 2380 paylen = skb->len - l4_offset;
b9c015d4 2381 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
c49a7bc3
AD
2382
2383 /* compute length of segmentation header */
2384 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
fd0a05ce 2385
52ea3e80
AD
2386 /* pull values out of skb_shinfo */
2387 gso_size = skb_shinfo(skb)->gso_size;
2388 gso_segs = skb_shinfo(skb)->gso_segs;
2389
2390 /* update GSO size and bytecount with header size */
2391 first->gso_segs = gso_segs;
2392 first->bytecount += (first->gso_segs - 1) * *hdr_len;
2393
fd0a05ce
JB
2394 /* find the field values */
2395 cd_cmd = I40E_TX_CTX_DESC_TSO;
2396 cd_tso_len = skb->len - *hdr_len;
52ea3e80 2397 cd_mss = gso_size;
03f9d6a5
AD
2398 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2399 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2400 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
fd0a05ce
JB
2401 return 1;
2402}
2403
beb0dff1
JK
2404/**
2405 * i40e_tsyn - set up the tsyn context descriptor
2406 * @tx_ring: ptr to the ring to send
2407 * @skb: ptr to the skb we're sending
2408 * @tx_flags: the collected send information
9c883bd3 2409 * @cd_type_cmd_tso_mss: Quad Word 1
beb0dff1
JK
2410 *
2411 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2412 **/
2413static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2414 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2415{
2416 struct i40e_pf *pf;
2417
2418 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2419 return 0;
2420
2421 /* Tx timestamps cannot be sampled when doing TSO */
2422 if (tx_flags & I40E_TX_FLAGS_TSO)
2423 return 0;
2424
2425 /* only timestamp the outbound packet if the user has requested it and
2426 * we are not already transmitting a packet to be timestamped
2427 */
2428 pf = i40e_netdev_to_pf(tx_ring->netdev);
22b4777d
JK
2429 if (!(pf->flags & I40E_FLAG_PTP))
2430 return 0;
2431
9ce34f02
JK
2432 if (pf->ptp_tx &&
2433 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
beb0dff1
JK
2434 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2435 pf->ptp_tx_skb = skb_get(skb);
2436 } else {
2437 return 0;
2438 }
2439
2440 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2441 I40E_TXD_CTX_QW1_CMD_SHIFT;
2442
beb0dff1
JK
2443 return 1;
2444}
2445
fd0a05ce
JB
2446/**
2447 * i40e_tx_enable_csum - Enable Tx checksum offloads
2448 * @skb: send buffer
89232c3b 2449 * @tx_flags: pointer to Tx flags currently set
fd0a05ce
JB
2450 * @td_cmd: Tx descriptor command bits to set
2451 * @td_offset: Tx descriptor header offsets to set
554f4544 2452 * @tx_ring: Tx descriptor ring
fd0a05ce
JB
2453 * @cd_tunneling: ptr to context desc bits
2454 **/
529f1f65
AD
2455static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2456 u32 *td_cmd, u32 *td_offset,
2457 struct i40e_ring *tx_ring,
2458 u32 *cd_tunneling)
fd0a05ce 2459{
b96b78f2
AD
2460 union {
2461 struct iphdr *v4;
2462 struct ipv6hdr *v6;
2463 unsigned char *hdr;
2464 } ip;
2465 union {
2466 struct tcphdr *tcp;
2467 struct udphdr *udp;
2468 unsigned char *hdr;
2469 } l4;
a3fd9d88 2470 unsigned char *exthdr;
d1bd743b 2471 u32 offset, cmd = 0;
a3fd9d88 2472 __be16 frag_off;
b96b78f2
AD
2473 u8 l4_proto = 0;
2474
529f1f65
AD
2475 if (skb->ip_summed != CHECKSUM_PARTIAL)
2476 return 0;
2477
b96b78f2
AD
2478 ip.hdr = skb_network_header(skb);
2479 l4.hdr = skb_transport_header(skb);
fd0a05ce 2480
475b4205
AD
2481 /* compute outer L2 header size */
2482 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2483
fd0a05ce 2484 if (skb->encapsulation) {
d1bd743b 2485 u32 tunnel = 0;
a0064728
AD
2486 /* define outer network header type */
2487 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
475b4205
AD
2488 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2489 I40E_TX_CTX_EXT_IP_IPV4 :
2490 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2491
a0064728
AD
2492 l4_proto = ip.v4->protocol;
2493 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 2494 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
a3fd9d88
AD
2495
2496 exthdr = ip.hdr + sizeof(*ip.v6);
a0064728 2497 l4_proto = ip.v6->nexthdr;
a3fd9d88
AD
2498 if (l4.hdr != exthdr)
2499 ipv6_skip_exthdr(skb, exthdr - skb->data,
2500 &l4_proto, &frag_off);
a0064728
AD
2501 }
2502
2503 /* define outer transport */
2504 switch (l4_proto) {
45991204 2505 case IPPROTO_UDP:
475b4205 2506 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
6a899024 2507 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
45991204 2508 break;
c1d1791d 2509 case IPPROTO_GRE:
475b4205 2510 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
a0064728 2511 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
c1d1791d 2512 break;
577389a5
AD
2513 case IPPROTO_IPIP:
2514 case IPPROTO_IPV6:
2515 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2516 l4.hdr = skb_inner_network_header(skb);
2517 break;
45991204 2518 default:
529f1f65
AD
2519 if (*tx_flags & I40E_TX_FLAGS_TSO)
2520 return -1;
2521
2522 skb_checksum_help(skb);
2523 return 0;
45991204 2524 }
b96b78f2 2525
577389a5
AD
2526 /* compute outer L3 header size */
2527 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2528 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2529
2530 /* switch IP header pointer from outer to inner header */
2531 ip.hdr = skb_inner_network_header(skb);
2532
475b4205
AD
2533 /* compute tunnel header size */
2534 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2535 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2536
5453205c
AD
2537 /* indicate if we need to offload outer UDP header */
2538 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1c7b4a23 2539 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
5453205c
AD
2540 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2541 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2542
475b4205
AD
2543 /* record tunnel offload values */
2544 *cd_tunneling |= tunnel;
2545
b96b78f2 2546 /* switch L4 header pointer from outer to inner */
b96b78f2 2547 l4.hdr = skb_inner_transport_header(skb);
a0064728 2548 l4_proto = 0;
fd0a05ce 2549
a0064728
AD
2550 /* reset type as we transition from outer to inner headers */
2551 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2552 if (ip.v4->version == 4)
2553 *tx_flags |= I40E_TX_FLAGS_IPV4;
2554 if (ip.v6->version == 6)
89232c3b 2555 *tx_flags |= I40E_TX_FLAGS_IPV6;
fd0a05ce
JB
2556 }
2557
2558 /* Enable IP checksum offloads */
89232c3b 2559 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
b96b78f2 2560 l4_proto = ip.v4->protocol;
fd0a05ce
JB
2561 /* the stack computes the IP header already, the only time we
2562 * need the hardware to recompute it is in the case of TSO.
2563 */
475b4205
AD
2564 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2565 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2566 I40E_TX_DESC_CMD_IIPT_IPV4;
89232c3b 2567 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 2568 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
a3fd9d88
AD
2569
2570 exthdr = ip.hdr + sizeof(*ip.v6);
2571 l4_proto = ip.v6->nexthdr;
2572 if (l4.hdr != exthdr)
2573 ipv6_skip_exthdr(skb, exthdr - skb->data,
2574 &l4_proto, &frag_off);
fd0a05ce 2575 }
b96b78f2 2576
475b4205
AD
2577 /* compute inner L3 header size */
2578 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
fd0a05ce
JB
2579
2580 /* Enable L4 checksum offloads */
b96b78f2 2581 switch (l4_proto) {
fd0a05ce
JB
2582 case IPPROTO_TCP:
2583 /* enable checksum offloads */
475b4205
AD
2584 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2585 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
fd0a05ce
JB
2586 break;
2587 case IPPROTO_SCTP:
2588 /* enable SCTP checksum offload */
475b4205
AD
2589 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2590 offset |= (sizeof(struct sctphdr) >> 2) <<
2591 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
fd0a05ce
JB
2592 break;
2593 case IPPROTO_UDP:
2594 /* enable UDP checksum offload */
475b4205
AD
2595 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2596 offset |= (sizeof(struct udphdr) >> 2) <<
2597 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
fd0a05ce
JB
2598 break;
2599 default:
529f1f65
AD
2600 if (*tx_flags & I40E_TX_FLAGS_TSO)
2601 return -1;
2602 skb_checksum_help(skb);
2603 return 0;
fd0a05ce 2604 }
475b4205
AD
2605
2606 *td_cmd |= cmd;
2607 *td_offset |= offset;
529f1f65
AD
2608
2609 return 1;
fd0a05ce
JB
2610}
2611
2612/**
2613 * i40e_create_tx_ctx Build the Tx context descriptor
2614 * @tx_ring: ring to create the descriptor on
2615 * @cd_type_cmd_tso_mss: Quad Word 1
2616 * @cd_tunneling: Quad Word 0 - bits 0-31
2617 * @cd_l2tag2: Quad Word 0 - bits 32-63
2618 **/
2619static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2620 const u64 cd_type_cmd_tso_mss,
2621 const u32 cd_tunneling, const u32 cd_l2tag2)
2622{
2623 struct i40e_tx_context_desc *context_desc;
fc4ac67b 2624 int i = tx_ring->next_to_use;
fd0a05ce 2625
ff40dd5d
JB
2626 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2627 !cd_tunneling && !cd_l2tag2)
fd0a05ce
JB
2628 return;
2629
2630 /* grab the next descriptor */
fc4ac67b
AD
2631 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2632
2633 i++;
2634 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
fd0a05ce
JB
2635
2636 /* cpu_to_le32 and assign to struct fields */
2637 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2638 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3efbbb20 2639 context_desc->rsvd = cpu_to_le16(0);
fd0a05ce
JB
2640 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2641}
2642
4567dc10
ED
2643/**
2644 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2645 * @tx_ring: the ring to be checked
2646 * @size: the size buffer we want to assure is available
2647 *
2648 * Returns -EBUSY if a stop is needed, else 0
2649 **/
4ec441df 2650int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
4567dc10
ED
2651{
2652 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2653 /* Memory barrier before checking head and tail */
2654 smp_mb();
2655
2656 /* Check again in a case another CPU has just made room available. */
2657 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2658 return -EBUSY;
2659
2660 /* A reprieve! - use start_queue because it doesn't call schedule */
2661 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2662 ++tx_ring->tx_stats.restart_queue;
2663 return 0;
2664}
2665
71da6197 2666/**
3f3f7cb8 2667 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
71da6197 2668 * @skb: send buffer
71da6197 2669 *
3f3f7cb8
AD
2670 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2671 * and so we need to figure out the cases where we need to linearize the skb.
2672 *
2673 * For TSO we need to count the TSO header and segment payload separately.
2674 * As such we need to check cases where we have 7 fragments or more as we
2675 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2676 * the segment payload in the first descriptor, and another 7 for the
2677 * fragments.
71da6197 2678 **/
2d37490b 2679bool __i40e_chk_linearize(struct sk_buff *skb)
71da6197 2680{
2d37490b 2681 const struct skb_frag_struct *frag, *stale;
3f3f7cb8 2682 int nr_frags, sum;
71da6197 2683
3f3f7cb8 2684 /* no need to check if number of frags is less than 7 */
2d37490b 2685 nr_frags = skb_shinfo(skb)->nr_frags;
3f3f7cb8 2686 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2d37490b 2687 return false;
71da6197 2688
2d37490b 2689 /* We need to walk through the list and validate that each group
841493a3 2690 * of 6 fragments totals at least gso_size.
2d37490b 2691 */
3f3f7cb8 2692 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2d37490b
AD
2693 frag = &skb_shinfo(skb)->frags[0];
2694
2695 /* Initialize size to the negative value of gso_size minus 1. We
2696 * use this as the worst case scenerio in which the frag ahead
2697 * of us only provides one byte which is why we are limited to 6
2698 * descriptors for a single transmit as the header and previous
2699 * fragment are already consuming 2 descriptors.
2700 */
3f3f7cb8 2701 sum = 1 - skb_shinfo(skb)->gso_size;
2d37490b 2702
3f3f7cb8
AD
2703 /* Add size of frags 0 through 4 to create our initial sum */
2704 sum += skb_frag_size(frag++);
2705 sum += skb_frag_size(frag++);
2706 sum += skb_frag_size(frag++);
2707 sum += skb_frag_size(frag++);
2708 sum += skb_frag_size(frag++);
2d37490b
AD
2709
2710 /* Walk through fragments adding latest fragment, testing it, and
2711 * then removing stale fragments from the sum.
2712 */
2713 stale = &skb_shinfo(skb)->frags[0];
2714 for (;;) {
3f3f7cb8 2715 sum += skb_frag_size(frag++);
2d37490b
AD
2716
2717 /* if sum is negative we failed to make sufficient progress */
2718 if (sum < 0)
2719 return true;
2720
841493a3 2721 if (!nr_frags--)
2d37490b
AD
2722 break;
2723
3f3f7cb8 2724 sum -= skb_frag_size(stale++);
71da6197
AS
2725 }
2726
2d37490b 2727 return false;
71da6197
AS
2728}
2729
fd0a05ce
JB
2730/**
2731 * i40e_tx_map - Build the Tx descriptor
2732 * @tx_ring: ring to send buffer on
2733 * @skb: send buffer
2734 * @first: first buffer info buffer to use
2735 * @tx_flags: collected send information
2736 * @hdr_len: size of the packet header
2737 * @td_cmd: the command field in the descriptor
2738 * @td_offset: offset for checksum or crc
2739 **/
38e00438 2740#ifdef I40E_FCOE
3e587cf3 2741inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
fd0a05ce
JB
2742 struct i40e_tx_buffer *first, u32 tx_flags,
2743 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3e587cf3
JB
2744#else
2745static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2746 struct i40e_tx_buffer *first, u32 tx_flags,
2747 const u8 hdr_len, u32 td_cmd, u32 td_offset)
38e00438 2748#endif
fd0a05ce 2749{
fd0a05ce
JB
2750 unsigned int data_len = skb->data_len;
2751 unsigned int size = skb_headlen(skb);
a5e9c572 2752 struct skb_frag_struct *frag;
fd0a05ce
JB
2753 struct i40e_tx_buffer *tx_bi;
2754 struct i40e_tx_desc *tx_desc;
a5e9c572 2755 u16 i = tx_ring->next_to_use;
fd0a05ce
JB
2756 u32 td_tag = 0;
2757 dma_addr_t dma;
1dc8b538 2758 u16 desc_count = 1;
fd0a05ce 2759
fd0a05ce
JB
2760 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2761 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2762 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2763 I40E_TX_FLAGS_VLAN_SHIFT;
2764 }
2765
a5e9c572
AD
2766 first->tx_flags = tx_flags;
2767
2768 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2769
fd0a05ce 2770 tx_desc = I40E_TX_DESC(tx_ring, i);
a5e9c572
AD
2771 tx_bi = first;
2772
2773 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5c4654da
AD
2774 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2775
a5e9c572
AD
2776 if (dma_mapping_error(tx_ring->dev, dma))
2777 goto dma_error;
2778
2779 /* record length, and DMA address */
2780 dma_unmap_len_set(tx_bi, len, size);
2781 dma_unmap_addr_set(tx_bi, dma, dma);
2782
5c4654da
AD
2783 /* align size to end of page */
2784 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
a5e9c572
AD
2785 tx_desc->buffer_addr = cpu_to_le64(dma);
2786
2787 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
fd0a05ce
JB
2788 tx_desc->cmd_type_offset_bsz =
2789 build_ctob(td_cmd, td_offset,
5c4654da 2790 max_data, td_tag);
fd0a05ce 2791
fd0a05ce
JB
2792 tx_desc++;
2793 i++;
58044743
AS
2794 desc_count++;
2795
fd0a05ce
JB
2796 if (i == tx_ring->count) {
2797 tx_desc = I40E_TX_DESC(tx_ring, 0);
2798 i = 0;
2799 }
fd0a05ce 2800
5c4654da
AD
2801 dma += max_data;
2802 size -= max_data;
fd0a05ce 2803
5c4654da 2804 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
a5e9c572
AD
2805 tx_desc->buffer_addr = cpu_to_le64(dma);
2806 }
fd0a05ce
JB
2807
2808 if (likely(!data_len))
2809 break;
2810
a5e9c572
AD
2811 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2812 size, td_tag);
fd0a05ce
JB
2813
2814 tx_desc++;
2815 i++;
58044743
AS
2816 desc_count++;
2817
fd0a05ce
JB
2818 if (i == tx_ring->count) {
2819 tx_desc = I40E_TX_DESC(tx_ring, 0);
2820 i = 0;
2821 }
2822
a5e9c572
AD
2823 size = skb_frag_size(frag);
2824 data_len -= size;
fd0a05ce 2825
a5e9c572
AD
2826 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2827 DMA_TO_DEVICE);
fd0a05ce 2828
a5e9c572
AD
2829 tx_bi = &tx_ring->tx_bi[i];
2830 }
fd0a05ce 2831
1dc8b538 2832 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
a5e9c572
AD
2833
2834 i++;
2835 if (i == tx_ring->count)
2836 i = 0;
2837
2838 tx_ring->next_to_use = i;
2839
4567dc10 2840 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
58044743 2841
1dc8b538
AD
2842 /* write last descriptor with EOP bit */
2843 td_cmd |= I40E_TX_DESC_CMD_EOP;
2844
2845 /* We can OR these values together as they both are checked against
2846 * 4 below and at this point desc_count will be used as a boolean value
2847 * after this if/else block.
2848 */
2849 desc_count |= ++tx_ring->packet_stride;
2850
58044743 2851 /* Algorithm to optimize tail and RS bit setting:
1dc8b538
AD
2852 * if queue is stopped
2853 * mark RS bit
2854 * reset packet counter
2855 * else if xmit_more is supported and is true
2856 * advance packet counter to 4
2857 * reset desc_count to 0
58044743 2858 *
1dc8b538
AD
2859 * if desc_count >= 4
2860 * mark RS bit
2861 * reset packet counter
2862 * if desc_count > 0
2863 * update tail
58044743 2864 *
1dc8b538 2865 * Note: If there are less than 4 descriptors
58044743
AS
2866 * pending and interrupts were disabled the service task will
2867 * trigger a force WB.
2868 */
1dc8b538
AD
2869 if (netif_xmit_stopped(txring_txq(tx_ring))) {
2870 goto do_rs;
2871 } else if (skb->xmit_more) {
2872 /* set stride to arm on next packet and reset desc_count */
2873 tx_ring->packet_stride = WB_STRIDE;
2874 desc_count = 0;
2875 } else if (desc_count >= WB_STRIDE) {
2876do_rs:
2877 /* write last descriptor with RS bit set */
2878 td_cmd |= I40E_TX_DESC_CMD_RS;
58044743 2879 tx_ring->packet_stride = 0;
58044743 2880 }
58044743
AS
2881
2882 tx_desc->cmd_type_offset_bsz =
1dc8b538
AD
2883 build_ctob(td_cmd, td_offset, size, td_tag);
2884
2885 /* Force memory writes to complete before letting h/w know there
2886 * are new descriptors to fetch.
2887 *
2888 * We also use this memory barrier to make certain all of the
2889 * status bits have been updated before next_to_watch is written.
2890 */
2891 wmb();
2892
2893 /* set next_to_watch value indicating a packet is present */
2894 first->next_to_watch = tx_desc;
58044743 2895
a5e9c572 2896 /* notify HW of packet */
1dc8b538 2897 if (desc_count) {
58044743 2898 writel(i, tx_ring->tail);
1dc8b538
AD
2899
2900 /* we need this if more than one processor can write to our tail
2901 * at a time, it synchronizes IO on IA64/Altix systems
2902 */
2903 mmiowb();
58044743 2904 }
1dc8b538 2905
fd0a05ce
JB
2906 return;
2907
2908dma_error:
a5e9c572 2909 dev_info(tx_ring->dev, "TX DMA map failed\n");
fd0a05ce
JB
2910
2911 /* clear dma mappings for failed tx_bi map */
2912 for (;;) {
2913 tx_bi = &tx_ring->tx_bi[i];
a5e9c572 2914 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
fd0a05ce
JB
2915 if (tx_bi == first)
2916 break;
2917 if (i == 0)
2918 i = tx_ring->count;
2919 i--;
2920 }
2921
fd0a05ce
JB
2922 tx_ring->next_to_use = i;
2923}
2924
fd0a05ce
JB
2925/**
2926 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2927 * @skb: send buffer
2928 * @tx_ring: ring to send buffer on
2929 *
2930 * Returns NETDEV_TX_OK if sent, else an error code
2931 **/
2932static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2933 struct i40e_ring *tx_ring)
2934{
2935 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2936 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2937 struct i40e_tx_buffer *first;
2938 u32 td_offset = 0;
2939 u32 tx_flags = 0;
2940 __be16 protocol;
2941 u32 td_cmd = 0;
2942 u8 hdr_len = 0;
4ec441df 2943 int tso, count;
beb0dff1 2944 int tsyn;
6995b36c 2945
b74118f0
JB
2946 /* prefetch the data, we'll need it later */
2947 prefetch(skb->data);
2948
4ec441df 2949 count = i40e_xmit_descriptor_count(skb);
2d37490b 2950 if (i40e_chk_linearize(skb, count)) {
52ea3e80
AD
2951 if (__skb_linearize(skb)) {
2952 dev_kfree_skb_any(skb);
2953 return NETDEV_TX_OK;
2954 }
5c4654da 2955 count = i40e_txd_use_count(skb->len);
2d37490b
AD
2956 tx_ring->tx_stats.tx_linearize++;
2957 }
4ec441df
AD
2958
2959 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2960 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2961 * + 4 desc gap to avoid the cache line where head is,
2962 * + 1 desc for context descriptor,
2963 * otherwise try next time
2964 */
2965 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2966 tx_ring->tx_stats.tx_busy++;
fd0a05ce 2967 return NETDEV_TX_BUSY;
4ec441df 2968 }
fd0a05ce 2969
52ea3e80
AD
2970 /* record the location of the first descriptor for this packet */
2971 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2972 first->skb = skb;
2973 first->bytecount = skb->len;
2974 first->gso_segs = 1;
2975
fd0a05ce
JB
2976 /* prepare the xmit flags */
2977 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2978 goto out_drop;
2979
2980 /* obtain protocol of skb */
3d34dd03 2981 protocol = vlan_get_protocol(skb);
fd0a05ce 2982
fd0a05ce 2983 /* setup IPv4/IPv6 offloads */
0e2fe46c 2984 if (protocol == htons(ETH_P_IP))
fd0a05ce 2985 tx_flags |= I40E_TX_FLAGS_IPV4;
0e2fe46c 2986 else if (protocol == htons(ETH_P_IPV6))
fd0a05ce
JB
2987 tx_flags |= I40E_TX_FLAGS_IPV6;
2988
52ea3e80 2989 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
fd0a05ce
JB
2990
2991 if (tso < 0)
2992 goto out_drop;
2993 else if (tso)
2994 tx_flags |= I40E_TX_FLAGS_TSO;
2995
3bc67973
AD
2996 /* Always offload the checksum, since it's in the data descriptor */
2997 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2998 tx_ring, &cd_tunneling);
2999 if (tso < 0)
3000 goto out_drop;
3001
beb0dff1
JK
3002 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3003
3004 if (tsyn)
3005 tx_flags |= I40E_TX_FLAGS_TSYN;
3006
259afec7
JK
3007 skb_tx_timestamp(skb);
3008
b1941306
AD
3009 /* always enable CRC insertion offload */
3010 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3011
fd0a05ce
JB
3012 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3013 cd_tunneling, cd_l2tag2);
3014
3015 /* Add Flow Director ATR if it's enabled.
3016 *
3017 * NOTE: this must always be directly before the data descriptor.
3018 */
6b037cd4 3019 i40e_atr(tx_ring, skb, tx_flags);
fd0a05ce
JB
3020
3021 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3022 td_cmd, td_offset);
3023
fd0a05ce
JB
3024 return NETDEV_TX_OK;
3025
3026out_drop:
52ea3e80
AD
3027 dev_kfree_skb_any(first->skb);
3028 first->skb = NULL;
fd0a05ce
JB
3029 return NETDEV_TX_OK;
3030}
3031
3032/**
3033 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3034 * @skb: send buffer
3035 * @netdev: network interface device structure
3036 *
3037 * Returns NETDEV_TX_OK if sent, else an error code
3038 **/
3039netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3040{
3041 struct i40e_netdev_priv *np = netdev_priv(netdev);
3042 struct i40e_vsi *vsi = np->vsi;
9f65e15b 3043 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
fd0a05ce
JB
3044
3045 /* hardware can't handle really short frames, hardware padding works
3046 * beyond this point
3047 */
a94d9e22
AD
3048 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3049 return NETDEV_TX_OK;
fd0a05ce
JB
3050
3051 return i40e_xmit_frame_ring(skb, tx_ring);
3052}
This page took 1.061348 seconds and 4 git commands to generate.