]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/mlock.c | |
3 | * | |
4 | * (C) Copyright 1995 Linus Torvalds | |
5 | * (C) Copyright 2002 Christoph Hellwig | |
6 | */ | |
7 | ||
c59ede7b | 8 | #include <linux/capability.h> |
1da177e4 LT |
9 | #include <linux/mman.h> |
10 | #include <linux/mm.h> | |
b291f000 NP |
11 | #include <linux/swap.h> |
12 | #include <linux/swapops.h> | |
13 | #include <linux/pagemap.h> | |
7225522b | 14 | #include <linux/pagevec.h> |
1da177e4 LT |
15 | #include <linux/mempolicy.h> |
16 | #include <linux/syscalls.h> | |
e8edc6e0 | 17 | #include <linux/sched.h> |
b95f1b31 | 18 | #include <linux/export.h> |
b291f000 NP |
19 | #include <linux/rmap.h> |
20 | #include <linux/mmzone.h> | |
21 | #include <linux/hugetlb.h> | |
7225522b VB |
22 | #include <linux/memcontrol.h> |
23 | #include <linux/mm_inline.h> | |
b291f000 NP |
24 | |
25 | #include "internal.h" | |
1da177e4 | 26 | |
e8edc6e0 AD |
27 | int can_do_mlock(void) |
28 | { | |
59e99e5b | 29 | if (rlimit(RLIMIT_MEMLOCK) != 0) |
e8edc6e0 | 30 | return 1; |
a5a6579d JVS |
31 | if (capable(CAP_IPC_LOCK)) |
32 | return 1; | |
e8edc6e0 AD |
33 | return 0; |
34 | } | |
35 | EXPORT_SYMBOL(can_do_mlock); | |
1da177e4 | 36 | |
b291f000 NP |
37 | /* |
38 | * Mlocked pages are marked with PageMlocked() flag for efficient testing | |
39 | * in vmscan and, possibly, the fault path; and to support semi-accurate | |
40 | * statistics. | |
41 | * | |
42 | * An mlocked page [PageMlocked(page)] is unevictable. As such, it will | |
43 | * be placed on the LRU "unevictable" list, rather than the [in]active lists. | |
44 | * The unevictable list is an LRU sibling list to the [in]active lists. | |
45 | * PageUnevictable is set to indicate the unevictable state. | |
46 | * | |
47 | * When lazy mlocking via vmscan, it is important to ensure that the | |
48 | * vma's VM_LOCKED status is not concurrently being modified, otherwise we | |
49 | * may have mlocked a page that is being munlocked. So lazy mlock must take | |
50 | * the mmap_sem for read, and verify that the vma really is locked | |
51 | * (see mm/rmap.c). | |
52 | */ | |
53 | ||
54 | /* | |
55 | * LRU accounting for clear_page_mlock() | |
56 | */ | |
e6c509f8 | 57 | void clear_page_mlock(struct page *page) |
b291f000 | 58 | { |
e6c509f8 | 59 | if (!TestClearPageMlocked(page)) |
b291f000 | 60 | return; |
b291f000 | 61 | |
8449d21f DR |
62 | mod_zone_page_state(page_zone(page), NR_MLOCK, |
63 | -hpage_nr_pages(page)); | |
5344b7e6 | 64 | count_vm_event(UNEVICTABLE_PGCLEARED); |
b291f000 NP |
65 | if (!isolate_lru_page(page)) { |
66 | putback_lru_page(page); | |
67 | } else { | |
68 | /* | |
8891d6da | 69 | * We lost the race. the page already moved to evictable list. |
b291f000 | 70 | */ |
8891d6da | 71 | if (PageUnevictable(page)) |
5344b7e6 | 72 | count_vm_event(UNEVICTABLE_PGSTRANDED); |
b291f000 NP |
73 | } |
74 | } | |
75 | ||
76 | /* | |
77 | * Mark page as mlocked if not already. | |
78 | * If page on LRU, isolate and putback to move to unevictable list. | |
79 | */ | |
80 | void mlock_vma_page(struct page *page) | |
81 | { | |
57e68e9c | 82 | /* Serialize with page migration */ |
b291f000 NP |
83 | BUG_ON(!PageLocked(page)); |
84 | ||
5344b7e6 | 85 | if (!TestSetPageMlocked(page)) { |
8449d21f DR |
86 | mod_zone_page_state(page_zone(page), NR_MLOCK, |
87 | hpage_nr_pages(page)); | |
5344b7e6 NP |
88 | count_vm_event(UNEVICTABLE_PGMLOCKED); |
89 | if (!isolate_lru_page(page)) | |
90 | putback_lru_page(page); | |
91 | } | |
b291f000 NP |
92 | } |
93 | ||
01cc2e58 VB |
94 | /* |
95 | * Isolate a page from LRU with optional get_page() pin. | |
96 | * Assumes lru_lock already held and page already pinned. | |
97 | */ | |
98 | static bool __munlock_isolate_lru_page(struct page *page, bool getpage) | |
99 | { | |
100 | if (PageLRU(page)) { | |
101 | struct lruvec *lruvec; | |
102 | ||
103 | lruvec = mem_cgroup_page_lruvec(page, page_zone(page)); | |
104 | if (getpage) | |
105 | get_page(page); | |
106 | ClearPageLRU(page); | |
107 | del_page_from_lru_list(page, lruvec, page_lru(page)); | |
108 | return true; | |
109 | } | |
110 | ||
111 | return false; | |
112 | } | |
113 | ||
7225522b VB |
114 | /* |
115 | * Finish munlock after successful page isolation | |
116 | * | |
117 | * Page must be locked. This is a wrapper for try_to_munlock() | |
118 | * and putback_lru_page() with munlock accounting. | |
119 | */ | |
120 | static void __munlock_isolated_page(struct page *page) | |
121 | { | |
122 | int ret = SWAP_AGAIN; | |
123 | ||
124 | /* | |
125 | * Optimization: if the page was mapped just once, that's our mapping | |
126 | * and we don't need to check all the other vmas. | |
127 | */ | |
128 | if (page_mapcount(page) > 1) | |
129 | ret = try_to_munlock(page); | |
130 | ||
131 | /* Did try_to_unlock() succeed or punt? */ | |
132 | if (ret != SWAP_MLOCK) | |
133 | count_vm_event(UNEVICTABLE_PGMUNLOCKED); | |
134 | ||
135 | putback_lru_page(page); | |
136 | } | |
137 | ||
138 | /* | |
139 | * Accounting for page isolation fail during munlock | |
140 | * | |
141 | * Performs accounting when page isolation fails in munlock. There is nothing | |
142 | * else to do because it means some other task has already removed the page | |
143 | * from the LRU. putback_lru_page() will take care of removing the page from | |
144 | * the unevictable list, if necessary. vmscan [page_referenced()] will move | |
145 | * the page back to the unevictable list if some other vma has it mlocked. | |
146 | */ | |
147 | static void __munlock_isolation_failed(struct page *page) | |
148 | { | |
149 | if (PageUnevictable(page)) | |
01cc2e58 | 150 | __count_vm_event(UNEVICTABLE_PGSTRANDED); |
7225522b | 151 | else |
01cc2e58 | 152 | __count_vm_event(UNEVICTABLE_PGMUNLOCKED); |
7225522b VB |
153 | } |
154 | ||
6927c1dd LS |
155 | /** |
156 | * munlock_vma_page - munlock a vma page | |
c424be1c VB |
157 | * @page - page to be unlocked, either a normal page or THP page head |
158 | * | |
159 | * returns the size of the page as a page mask (0 for normal page, | |
160 | * HPAGE_PMD_NR - 1 for THP head page) | |
b291f000 | 161 | * |
6927c1dd LS |
162 | * called from munlock()/munmap() path with page supposedly on the LRU. |
163 | * When we munlock a page, because the vma where we found the page is being | |
164 | * munlock()ed or munmap()ed, we want to check whether other vmas hold the | |
165 | * page locked so that we can leave it on the unevictable lru list and not | |
166 | * bother vmscan with it. However, to walk the page's rmap list in | |
167 | * try_to_munlock() we must isolate the page from the LRU. If some other | |
168 | * task has removed the page from the LRU, we won't be able to do that. | |
169 | * So we clear the PageMlocked as we might not get another chance. If we | |
170 | * can't isolate the page, we leave it for putback_lru_page() and vmscan | |
171 | * [page_referenced()/try_to_unmap()] to deal with. | |
b291f000 | 172 | */ |
ff6a6da6 | 173 | unsigned int munlock_vma_page(struct page *page) |
b291f000 | 174 | { |
c424be1c | 175 | unsigned int nr_pages; |
01cc2e58 | 176 | struct zone *zone = page_zone(page); |
ff6a6da6 | 177 | |
57e68e9c | 178 | /* For try_to_munlock() and to serialize with page migration */ |
b291f000 NP |
179 | BUG_ON(!PageLocked(page)); |
180 | ||
c424be1c | 181 | /* |
01cc2e58 VB |
182 | * Serialize with any parallel __split_huge_page_refcount() which |
183 | * might otherwise copy PageMlocked to part of the tail pages before | |
184 | * we clear it in the head page. It also stabilizes hpage_nr_pages(). | |
c424be1c | 185 | */ |
01cc2e58 VB |
186 | spin_lock_irq(&zone->lru_lock); |
187 | ||
188 | nr_pages = hpage_nr_pages(page); | |
189 | if (!TestClearPageMlocked(page)) | |
190 | goto unlock_out; | |
191 | ||
192 | __mod_zone_page_state(zone, NR_MLOCK, -nr_pages); | |
193 | ||
194 | if (__munlock_isolate_lru_page(page, true)) { | |
195 | spin_unlock_irq(&zone->lru_lock); | |
196 | __munlock_isolated_page(page); | |
197 | goto out; | |
198 | } | |
199 | __munlock_isolation_failed(page); | |
200 | ||
201 | unlock_out: | |
202 | spin_unlock_irq(&zone->lru_lock); | |
203 | ||
204 | out: | |
c424be1c | 205 | return nr_pages - 1; |
b291f000 NP |
206 | } |
207 | ||
9978ad58 LS |
208 | /* |
209 | * convert get_user_pages() return value to posix mlock() error | |
210 | */ | |
211 | static int __mlock_posix_error_return(long retval) | |
212 | { | |
213 | if (retval == -EFAULT) | |
214 | retval = -ENOMEM; | |
215 | else if (retval == -ENOMEM) | |
216 | retval = -EAGAIN; | |
217 | return retval; | |
b291f000 NP |
218 | } |
219 | ||
56afe477 VB |
220 | /* |
221 | * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() | |
222 | * | |
223 | * The fast path is available only for evictable pages with single mapping. | |
224 | * Then we can bypass the per-cpu pvec and get better performance. | |
225 | * when mapcount > 1 we need try_to_munlock() which can fail. | |
226 | * when !page_evictable(), we need the full redo logic of putback_lru_page to | |
227 | * avoid leaving evictable page in unevictable list. | |
228 | * | |
229 | * In case of success, @page is added to @pvec and @pgrescued is incremented | |
230 | * in case that the page was previously unevictable. @page is also unlocked. | |
231 | */ | |
232 | static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, | |
233 | int *pgrescued) | |
234 | { | |
309381fe SL |
235 | VM_BUG_ON_PAGE(PageLRU(page), page); |
236 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
56afe477 VB |
237 | |
238 | if (page_mapcount(page) <= 1 && page_evictable(page)) { | |
239 | pagevec_add(pvec, page); | |
240 | if (TestClearPageUnevictable(page)) | |
241 | (*pgrescued)++; | |
242 | unlock_page(page); | |
243 | return true; | |
244 | } | |
245 | ||
246 | return false; | |
247 | } | |
248 | ||
249 | /* | |
250 | * Putback multiple evictable pages to the LRU | |
251 | * | |
252 | * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of | |
253 | * the pages might have meanwhile become unevictable but that is OK. | |
254 | */ | |
255 | static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) | |
256 | { | |
257 | count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); | |
258 | /* | |
259 | *__pagevec_lru_add() calls release_pages() so we don't call | |
260 | * put_page() explicitly | |
261 | */ | |
262 | __pagevec_lru_add(pvec); | |
263 | count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); | |
264 | } | |
265 | ||
7225522b VB |
266 | /* |
267 | * Munlock a batch of pages from the same zone | |
268 | * | |
269 | * The work is split to two main phases. First phase clears the Mlocked flag | |
270 | * and attempts to isolate the pages, all under a single zone lru lock. | |
271 | * The second phase finishes the munlock only for pages where isolation | |
272 | * succeeded. | |
273 | * | |
7a8010cd | 274 | * Note that the pagevec may be modified during the process. |
7225522b VB |
275 | */ |
276 | static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) | |
277 | { | |
278 | int i; | |
279 | int nr = pagevec_count(pvec); | |
3b25df93 | 280 | int delta_munlocked; |
56afe477 VB |
281 | struct pagevec pvec_putback; |
282 | int pgrescued = 0; | |
7225522b | 283 | |
3b25df93 VB |
284 | pagevec_init(&pvec_putback, 0); |
285 | ||
7225522b VB |
286 | /* Phase 1: page isolation */ |
287 | spin_lock_irq(&zone->lru_lock); | |
288 | for (i = 0; i < nr; i++) { | |
289 | struct page *page = pvec->pages[i]; | |
290 | ||
291 | if (TestClearPageMlocked(page)) { | |
7225522b | 292 | /* |
01cc2e58 VB |
293 | * We already have pin from follow_page_mask() |
294 | * so we can spare the get_page() here. | |
7225522b | 295 | */ |
01cc2e58 VB |
296 | if (__munlock_isolate_lru_page(page, false)) |
297 | continue; | |
298 | else | |
299 | __munlock_isolation_failed(page); | |
7225522b | 300 | } |
01cc2e58 VB |
301 | |
302 | /* | |
303 | * We won't be munlocking this page in the next phase | |
304 | * but we still need to release the follow_page_mask() | |
305 | * pin. We cannot do it under lru_lock however. If it's | |
306 | * the last pin, __page_cache_release() would deadlock. | |
307 | */ | |
308 | pagevec_add(&pvec_putback, pvec->pages[i]); | |
309 | pvec->pages[i] = NULL; | |
7225522b | 310 | } |
3b25df93 | 311 | delta_munlocked = -nr + pagevec_count(&pvec_putback); |
1ebb7cc6 | 312 | __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); |
7225522b VB |
313 | spin_unlock_irq(&zone->lru_lock); |
314 | ||
3b25df93 VB |
315 | /* Now we can release pins of pages that we are not munlocking */ |
316 | pagevec_release(&pvec_putback); | |
317 | ||
56afe477 | 318 | /* Phase 2: page munlock */ |
7225522b VB |
319 | for (i = 0; i < nr; i++) { |
320 | struct page *page = pvec->pages[i]; | |
321 | ||
322 | if (page) { | |
323 | lock_page(page); | |
56afe477 VB |
324 | if (!__putback_lru_fast_prepare(page, &pvec_putback, |
325 | &pgrescued)) { | |
5b40998a VB |
326 | /* |
327 | * Slow path. We don't want to lose the last | |
328 | * pin before unlock_page() | |
329 | */ | |
330 | get_page(page); /* for putback_lru_page() */ | |
56afe477 VB |
331 | __munlock_isolated_page(page); |
332 | unlock_page(page); | |
5b40998a | 333 | put_page(page); /* from follow_page_mask() */ |
56afe477 | 334 | } |
7225522b VB |
335 | } |
336 | } | |
56afe477 | 337 | |
5b40998a VB |
338 | /* |
339 | * Phase 3: page putback for pages that qualified for the fast path | |
340 | * This will also call put_page() to return pin from follow_page_mask() | |
341 | */ | |
56afe477 VB |
342 | if (pagevec_count(&pvec_putback)) |
343 | __putback_lru_fast(&pvec_putback, pgrescued); | |
7a8010cd VB |
344 | } |
345 | ||
346 | /* | |
347 | * Fill up pagevec for __munlock_pagevec using pte walk | |
348 | * | |
349 | * The function expects that the struct page corresponding to @start address is | |
350 | * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. | |
351 | * | |
352 | * The rest of @pvec is filled by subsequent pages within the same pmd and same | |
353 | * zone, as long as the pte's are present and vm_normal_page() succeeds. These | |
354 | * pages also get pinned. | |
355 | * | |
356 | * Returns the address of the next page that should be scanned. This equals | |
357 | * @start + PAGE_SIZE when no page could be added by the pte walk. | |
358 | */ | |
359 | static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, | |
360 | struct vm_area_struct *vma, int zoneid, unsigned long start, | |
361 | unsigned long end) | |
362 | { | |
363 | pte_t *pte; | |
364 | spinlock_t *ptl; | |
365 | ||
366 | /* | |
367 | * Initialize pte walk starting at the already pinned page where we | |
eadb41ae VB |
368 | * are sure that there is a pte, as it was pinned under the same |
369 | * mmap_sem write op. | |
7a8010cd VB |
370 | */ |
371 | pte = get_locked_pte(vma->vm_mm, start, &ptl); | |
eadb41ae VB |
372 | /* Make sure we do not cross the page table boundary */ |
373 | end = pgd_addr_end(start, end); | |
374 | end = pud_addr_end(start, end); | |
375 | end = pmd_addr_end(start, end); | |
7a8010cd VB |
376 | |
377 | /* The page next to the pinned page is the first we will try to get */ | |
378 | start += PAGE_SIZE; | |
379 | while (start < end) { | |
380 | struct page *page = NULL; | |
381 | pte++; | |
382 | if (pte_present(*pte)) | |
383 | page = vm_normal_page(vma, start, *pte); | |
384 | /* | |
385 | * Break if page could not be obtained or the page's node+zone does not | |
386 | * match | |
387 | */ | |
388 | if (!page || page_zone_id(page) != zoneid) | |
389 | break; | |
56afe477 | 390 | |
7a8010cd VB |
391 | get_page(page); |
392 | /* | |
393 | * Increase the address that will be returned *before* the | |
394 | * eventual break due to pvec becoming full by adding the page | |
395 | */ | |
396 | start += PAGE_SIZE; | |
397 | if (pagevec_add(pvec, page) == 0) | |
398 | break; | |
399 | } | |
400 | pte_unmap_unlock(pte, ptl); | |
401 | return start; | |
7225522b VB |
402 | } |
403 | ||
b291f000 | 404 | /* |
ba470de4 RR |
405 | * munlock_vma_pages_range() - munlock all pages in the vma range.' |
406 | * @vma - vma containing range to be munlock()ed. | |
407 | * @start - start address in @vma of the range | |
408 | * @end - end of range in @vma. | |
409 | * | |
410 | * For mremap(), munmap() and exit(). | |
411 | * | |
412 | * Called with @vma VM_LOCKED. | |
413 | * | |
414 | * Returns with VM_LOCKED cleared. Callers must be prepared to | |
415 | * deal with this. | |
416 | * | |
417 | * We don't save and restore VM_LOCKED here because pages are | |
418 | * still on lru. In unmap path, pages might be scanned by reclaim | |
419 | * and re-mlocked by try_to_{munlock|unmap} before we unmap and | |
420 | * free them. This will result in freeing mlocked pages. | |
b291f000 | 421 | */ |
ba470de4 | 422 | void munlock_vma_pages_range(struct vm_area_struct *vma, |
408e82b7 | 423 | unsigned long start, unsigned long end) |
b291f000 | 424 | { |
de60f5f1 | 425 | vma->vm_flags &= VM_LOCKED_CLEAR_MASK; |
408e82b7 | 426 | |
ff6a6da6 | 427 | while (start < end) { |
ab7a5af7 | 428 | struct page *page; |
c424be1c VB |
429 | unsigned int page_mask; |
430 | unsigned long page_increm; | |
7a8010cd VB |
431 | struct pagevec pvec; |
432 | struct zone *zone; | |
433 | int zoneid; | |
ff6a6da6 | 434 | |
7a8010cd | 435 | pagevec_init(&pvec, 0); |
6e919717 HD |
436 | /* |
437 | * Although FOLL_DUMP is intended for get_dump_page(), | |
438 | * it just so happens that its special treatment of the | |
439 | * ZERO_PAGE (returning an error instead of doing get_page) | |
440 | * suits munlock very well (and if somehow an abnormal page | |
441 | * has sneaked into the range, we won't oops here: great). | |
442 | */ | |
ff6a6da6 | 443 | page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP, |
7a8010cd VB |
444 | &page_mask); |
445 | ||
6e919717 | 446 | if (page && !IS_ERR(page)) { |
7225522b | 447 | if (PageTransHuge(page)) { |
7225522b VB |
448 | lock_page(page); |
449 | /* | |
450 | * Any THP page found by follow_page_mask() may | |
451 | * have gotten split before reaching | |
452 | * munlock_vma_page(), so we need to recompute | |
453 | * the page_mask here. | |
454 | */ | |
455 | page_mask = munlock_vma_page(page); | |
456 | unlock_page(page); | |
457 | put_page(page); /* follow_page_mask() */ | |
458 | } else { | |
459 | /* | |
7a8010cd VB |
460 | * Non-huge pages are handled in batches via |
461 | * pagevec. The pin from follow_page_mask() | |
462 | * prevents them from collapsing by THP. | |
463 | */ | |
464 | pagevec_add(&pvec, page); | |
465 | zone = page_zone(page); | |
466 | zoneid = page_zone_id(page); | |
467 | ||
468 | /* | |
469 | * Try to fill the rest of pagevec using fast | |
470 | * pte walk. This will also update start to | |
471 | * the next page to process. Then munlock the | |
472 | * pagevec. | |
7225522b | 473 | */ |
7a8010cd VB |
474 | start = __munlock_pagevec_fill(&pvec, vma, |
475 | zoneid, start, end); | |
476 | __munlock_pagevec(&pvec, zone); | |
477 | goto next; | |
7225522b | 478 | } |
408e82b7 | 479 | } |
c424be1c VB |
480 | /* It's a bug to munlock in the middle of a THP page */ |
481 | VM_BUG_ON((start >> PAGE_SHIFT) & page_mask); | |
482 | page_increm = 1 + page_mask; | |
ff6a6da6 | 483 | start += page_increm * PAGE_SIZE; |
7a8010cd | 484 | next: |
408e82b7 HD |
485 | cond_resched(); |
486 | } | |
b291f000 NP |
487 | } |
488 | ||
489 | /* | |
490 | * mlock_fixup - handle mlock[all]/munlock[all] requests. | |
491 | * | |
492 | * Filters out "special" vmas -- VM_LOCKED never gets set for these, and | |
493 | * munlock is a no-op. However, for some special vmas, we go ahead and | |
cea10a19 | 494 | * populate the ptes. |
b291f000 NP |
495 | * |
496 | * For vmas that pass the filters, merge/split as appropriate. | |
497 | */ | |
1da177e4 | 498 | static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, |
ca16d140 | 499 | unsigned long start, unsigned long end, vm_flags_t newflags) |
1da177e4 | 500 | { |
b291f000 | 501 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 502 | pgoff_t pgoff; |
b291f000 | 503 | int nr_pages; |
1da177e4 | 504 | int ret = 0; |
ca16d140 | 505 | int lock = !!(newflags & VM_LOCKED); |
1da177e4 | 506 | |
fed067da | 507 | if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || |
31db58b3 | 508 | is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm)) |
b0f205c2 EM |
509 | /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */ |
510 | goto out; | |
b291f000 | 511 | |
1da177e4 LT |
512 | pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); |
513 | *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, | |
19a809af AA |
514 | vma->vm_file, pgoff, vma_policy(vma), |
515 | vma->vm_userfaultfd_ctx); | |
1da177e4 LT |
516 | if (*prev) { |
517 | vma = *prev; | |
518 | goto success; | |
519 | } | |
520 | ||
1da177e4 LT |
521 | if (start != vma->vm_start) { |
522 | ret = split_vma(mm, vma, start, 1); | |
523 | if (ret) | |
524 | goto out; | |
525 | } | |
526 | ||
527 | if (end != vma->vm_end) { | |
528 | ret = split_vma(mm, vma, end, 0); | |
529 | if (ret) | |
530 | goto out; | |
531 | } | |
532 | ||
533 | success: | |
b291f000 NP |
534 | /* |
535 | * Keep track of amount of locked VM. | |
536 | */ | |
537 | nr_pages = (end - start) >> PAGE_SHIFT; | |
538 | if (!lock) | |
539 | nr_pages = -nr_pages; | |
540 | mm->locked_vm += nr_pages; | |
541 | ||
1da177e4 LT |
542 | /* |
543 | * vm_flags is protected by the mmap_sem held in write mode. | |
544 | * It's okay if try_to_unmap_one unmaps a page just after we | |
fc05f566 | 545 | * set VM_LOCKED, populate_vma_page_range will bring it back. |
1da177e4 | 546 | */ |
1da177e4 | 547 | |
fed067da | 548 | if (lock) |
408e82b7 | 549 | vma->vm_flags = newflags; |
fed067da | 550 | else |
408e82b7 | 551 | munlock_vma_pages_range(vma, start, end); |
1da177e4 | 552 | |
1da177e4 | 553 | out: |
b291f000 | 554 | *prev = vma; |
1da177e4 LT |
555 | return ret; |
556 | } | |
557 | ||
1aab92ec EM |
558 | static int apply_vma_lock_flags(unsigned long start, size_t len, |
559 | vm_flags_t flags) | |
1da177e4 LT |
560 | { |
561 | unsigned long nstart, end, tmp; | |
562 | struct vm_area_struct * vma, * prev; | |
563 | int error; | |
564 | ||
8fd9e488 | 565 | VM_BUG_ON(offset_in_page(start)); |
fed067da | 566 | VM_BUG_ON(len != PAGE_ALIGN(len)); |
1da177e4 LT |
567 | end = start + len; |
568 | if (end < start) | |
569 | return -EINVAL; | |
570 | if (end == start) | |
571 | return 0; | |
097d5910 | 572 | vma = find_vma(current->mm, start); |
1da177e4 LT |
573 | if (!vma || vma->vm_start > start) |
574 | return -ENOMEM; | |
575 | ||
097d5910 | 576 | prev = vma->vm_prev; |
1da177e4 LT |
577 | if (start > vma->vm_start) |
578 | prev = vma; | |
579 | ||
580 | for (nstart = start ; ; ) { | |
b0f205c2 | 581 | vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; |
1da177e4 | 582 | |
1aab92ec | 583 | newflags |= flags; |
1da177e4 | 584 | |
1aab92ec | 585 | /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ |
1da177e4 LT |
586 | tmp = vma->vm_end; |
587 | if (tmp > end) | |
588 | tmp = end; | |
589 | error = mlock_fixup(vma, &prev, nstart, tmp, newflags); | |
590 | if (error) | |
591 | break; | |
592 | nstart = tmp; | |
593 | if (nstart < prev->vm_end) | |
594 | nstart = prev->vm_end; | |
595 | if (nstart >= end) | |
596 | break; | |
597 | ||
598 | vma = prev->vm_next; | |
599 | if (!vma || vma->vm_start != nstart) { | |
600 | error = -ENOMEM; | |
601 | break; | |
602 | } | |
603 | } | |
604 | return error; | |
605 | } | |
606 | ||
1aab92ec | 607 | static int do_mlock(unsigned long start, size_t len, vm_flags_t flags) |
1da177e4 LT |
608 | { |
609 | unsigned long locked; | |
610 | unsigned long lock_limit; | |
611 | int error = -ENOMEM; | |
612 | ||
613 | if (!can_do_mlock()) | |
614 | return -EPERM; | |
615 | ||
8891d6da KM |
616 | lru_add_drain_all(); /* flush pagevec */ |
617 | ||
8fd9e488 | 618 | len = PAGE_ALIGN(len + (offset_in_page(start))); |
1da177e4 LT |
619 | start &= PAGE_MASK; |
620 | ||
59e99e5b | 621 | lock_limit = rlimit(RLIMIT_MEMLOCK); |
1da177e4 | 622 | lock_limit >>= PAGE_SHIFT; |
1f1cd705 DB |
623 | locked = len >> PAGE_SHIFT; |
624 | ||
625 | down_write(¤t->mm->mmap_sem); | |
626 | ||
627 | locked += current->mm->locked_vm; | |
1da177e4 LT |
628 | |
629 | /* check against resource limits */ | |
630 | if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) | |
1aab92ec | 631 | error = apply_vma_lock_flags(start, len, flags); |
1f1cd705 | 632 | |
1da177e4 | 633 | up_write(¤t->mm->mmap_sem); |
c561259c KS |
634 | if (error) |
635 | return error; | |
636 | ||
637 | error = __mm_populate(start, len, 0); | |
638 | if (error) | |
639 | return __mlock_posix_error_return(error); | |
640 | return 0; | |
1da177e4 LT |
641 | } |
642 | ||
1aab92ec EM |
643 | SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) |
644 | { | |
645 | return do_mlock(start, len, VM_LOCKED); | |
646 | } | |
647 | ||
a8ca5d0e EM |
648 | SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags) |
649 | { | |
b0f205c2 EM |
650 | vm_flags_t vm_flags = VM_LOCKED; |
651 | ||
652 | if (flags & ~MLOCK_ONFAULT) | |
a8ca5d0e EM |
653 | return -EINVAL; |
654 | ||
b0f205c2 EM |
655 | if (flags & MLOCK_ONFAULT) |
656 | vm_flags |= VM_LOCKONFAULT; | |
657 | ||
658 | return do_mlock(start, len, vm_flags); | |
a8ca5d0e EM |
659 | } |
660 | ||
6a6160a7 | 661 | SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) |
1da177e4 LT |
662 | { |
663 | int ret; | |
664 | ||
8fd9e488 | 665 | len = PAGE_ALIGN(len + (offset_in_page(start))); |
1da177e4 | 666 | start &= PAGE_MASK; |
1f1cd705 DB |
667 | |
668 | down_write(¤t->mm->mmap_sem); | |
1aab92ec | 669 | ret = apply_vma_lock_flags(start, len, 0); |
1da177e4 | 670 | up_write(¤t->mm->mmap_sem); |
1f1cd705 | 671 | |
1da177e4 LT |
672 | return ret; |
673 | } | |
674 | ||
b0f205c2 EM |
675 | /* |
676 | * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall) | |
677 | * and translate into the appropriate modifications to mm->def_flags and/or the | |
678 | * flags for all current VMAs. | |
679 | * | |
680 | * There are a couple of subtleties with this. If mlockall() is called multiple | |
681 | * times with different flags, the values do not necessarily stack. If mlockall | |
682 | * is called once including the MCL_FUTURE flag and then a second time without | |
683 | * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags. | |
684 | */ | |
1aab92ec | 685 | static int apply_mlockall_flags(int flags) |
1da177e4 LT |
686 | { |
687 | struct vm_area_struct * vma, * prev = NULL; | |
b0f205c2 | 688 | vm_flags_t to_add = 0; |
1da177e4 | 689 | |
b0f205c2 EM |
690 | current->mm->def_flags &= VM_LOCKED_CLEAR_MASK; |
691 | if (flags & MCL_FUTURE) { | |
09a9f1d2 | 692 | current->mm->def_flags |= VM_LOCKED; |
1aab92ec | 693 | |
b0f205c2 EM |
694 | if (flags & MCL_ONFAULT) |
695 | current->mm->def_flags |= VM_LOCKONFAULT; | |
696 | ||
697 | if (!(flags & MCL_CURRENT)) | |
698 | goto out; | |
699 | } | |
700 | ||
701 | if (flags & MCL_CURRENT) { | |
702 | to_add |= VM_LOCKED; | |
703 | if (flags & MCL_ONFAULT) | |
704 | to_add |= VM_LOCKONFAULT; | |
705 | } | |
1da177e4 LT |
706 | |
707 | for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { | |
ca16d140 | 708 | vm_flags_t newflags; |
1da177e4 | 709 | |
b0f205c2 EM |
710 | newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; |
711 | newflags |= to_add; | |
1da177e4 LT |
712 | |
713 | /* Ignore errors */ | |
714 | mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); | |
bde6c3aa | 715 | cond_resched_rcu_qs(); |
1da177e4 LT |
716 | } |
717 | out: | |
718 | return 0; | |
719 | } | |
720 | ||
3480b257 | 721 | SYSCALL_DEFINE1(mlockall, int, flags) |
1da177e4 LT |
722 | { |
723 | unsigned long lock_limit; | |
86d2adcc | 724 | int ret; |
1da177e4 | 725 | |
b0f205c2 | 726 | if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT))) |
86d2adcc | 727 | return -EINVAL; |
1da177e4 | 728 | |
1da177e4 | 729 | if (!can_do_mlock()) |
86d2adcc | 730 | return -EPERM; |
1da177e4 | 731 | |
df9d6985 CL |
732 | if (flags & MCL_CURRENT) |
733 | lru_add_drain_all(); /* flush pagevec */ | |
8891d6da | 734 | |
59e99e5b | 735 | lock_limit = rlimit(RLIMIT_MEMLOCK); |
1da177e4 LT |
736 | lock_limit >>= PAGE_SHIFT; |
737 | ||
738 | ret = -ENOMEM; | |
1f1cd705 DB |
739 | down_write(¤t->mm->mmap_sem); |
740 | ||
1da177e4 LT |
741 | if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || |
742 | capable(CAP_IPC_LOCK)) | |
1aab92ec | 743 | ret = apply_mlockall_flags(flags); |
1da177e4 | 744 | up_write(¤t->mm->mmap_sem); |
bebeb3d6 ML |
745 | if (!ret && (flags & MCL_CURRENT)) |
746 | mm_populate(0, TASK_SIZE); | |
86d2adcc | 747 | |
1da177e4 LT |
748 | return ret; |
749 | } | |
750 | ||
3480b257 | 751 | SYSCALL_DEFINE0(munlockall) |
1da177e4 LT |
752 | { |
753 | int ret; | |
754 | ||
755 | down_write(¤t->mm->mmap_sem); | |
1aab92ec | 756 | ret = apply_mlockall_flags(0); |
1da177e4 LT |
757 | up_write(¤t->mm->mmap_sem); |
758 | return ret; | |
759 | } | |
760 | ||
761 | /* | |
762 | * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB | |
763 | * shm segments) get accounted against the user_struct instead. | |
764 | */ | |
765 | static DEFINE_SPINLOCK(shmlock_user_lock); | |
766 | ||
767 | int user_shm_lock(size_t size, struct user_struct *user) | |
768 | { | |
769 | unsigned long lock_limit, locked; | |
770 | int allowed = 0; | |
771 | ||
772 | locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
59e99e5b | 773 | lock_limit = rlimit(RLIMIT_MEMLOCK); |
5ed44a40 HB |
774 | if (lock_limit == RLIM_INFINITY) |
775 | allowed = 1; | |
1da177e4 LT |
776 | lock_limit >>= PAGE_SHIFT; |
777 | spin_lock(&shmlock_user_lock); | |
5ed44a40 HB |
778 | if (!allowed && |
779 | locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) | |
1da177e4 LT |
780 | goto out; |
781 | get_uid(user); | |
782 | user->locked_shm += locked; | |
783 | allowed = 1; | |
784 | out: | |
785 | spin_unlock(&shmlock_user_lock); | |
786 | return allowed; | |
787 | } | |
788 | ||
789 | void user_shm_unlock(size_t size, struct user_struct *user) | |
790 | { | |
791 | spin_lock(&shmlock_user_lock); | |
792 | user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
793 | spin_unlock(&shmlock_user_lock); | |
794 | free_uid(user); | |
795 | } |