]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
73860c6b | 2 | * (c) 2003-2010 Advanced Micro Devices, Inc. |
1da177e4 LT |
3 | * Your use of this code is subject to the terms and conditions of the |
4 | * GNU general public license version 2. See "COPYING" or | |
5 | * http://www.gnu.org/licenses/gpl.html | |
6 | * | |
065b807c | 7 | * Support : [email protected] |
1da177e4 LT |
8 | * |
9 | * Based on the powernow-k7.c module written by Dave Jones. | |
f4432c5c | 10 | * (C) 2003 Dave Jones on behalf of SuSE Labs |
1da177e4 | 11 | * (C) 2004 Dominik Brodowski <[email protected]> |
a2531293 | 12 | * (C) 2004 Pavel Machek <[email protected]> |
1da177e4 LT |
13 | * Licensed under the terms of the GNU GPL License version 2. |
14 | * Based upon datasheets & sample CPUs kindly provided by AMD. | |
15 | * | |
16 | * Valuable input gratefully received from Dave Jones, Pavel Machek, | |
1f729e06 | 17 | * Dominik Brodowski, Jacob Shin, and others. |
065b807c | 18 | * Originally developed by Paul Devriendt. |
1da177e4 LT |
19 | * Processor information obtained from Chapter 9 (Power and Thermal Management) |
20 | * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD | |
21 | * Opteron Processors" available for download from www.amd.com | |
22 | * | |
2e3f8faa | 23 | * Tables for specific CPUs can be inferred from |
065b807c | 24 | * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf |
1da177e4 LT |
25 | */ |
26 | ||
27 | #include <linux/kernel.h> | |
28 | #include <linux/smp.h> | |
29 | #include <linux/module.h> | |
30 | #include <linux/init.h> | |
31 | #include <linux/cpufreq.h> | |
32 | #include <linux/slab.h> | |
33 | #include <linux/string.h> | |
065b807c | 34 | #include <linux/cpumask.h> |
4e57b681 | 35 | #include <linux/sched.h> /* for current / set_cpus_allowed() */ |
0e64a0c9 DJ |
36 | #include <linux/io.h> |
37 | #include <linux/delay.h> | |
1da177e4 LT |
38 | |
39 | #include <asm/msr.h> | |
1da177e4 | 40 | |
1da177e4 | 41 | #include <linux/acpi.h> |
14cc3e2b | 42 | #include <linux/mutex.h> |
1da177e4 | 43 | #include <acpi/processor.h> |
1da177e4 LT |
44 | |
45 | #define PFX "powernow-k8: " | |
c5829cd0 | 46 | #define VERSION "version 2.20.00" |
1da177e4 | 47 | #include "powernow-k8.h" |
a2fed573 | 48 | #include "mperf.h" |
1da177e4 LT |
49 | |
50 | /* serialize freq changes */ | |
14cc3e2b | 51 | static DEFINE_MUTEX(fidvid_mutex); |
1da177e4 | 52 | |
2c6b8c03 | 53 | static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data); |
1da177e4 | 54 | |
1f729e06 DJ |
55 | static int cpu_family = CPU_OPTERON; |
56 | ||
73860c6b BP |
57 | /* core performance boost */ |
58 | static bool cpb_capable, cpb_enabled; | |
59 | static struct msr __percpu *msrs; | |
60 | ||
a2fed573 ML |
61 | static struct cpufreq_driver cpufreq_amd64_driver; |
62 | ||
065b807c | 63 | #ifndef CONFIG_SMP |
7ad728f9 RR |
64 | static inline const struct cpumask *cpu_core_mask(int cpu) |
65 | { | |
66 | return cpumask_of(0); | |
67 | } | |
065b807c DJ |
68 | #endif |
69 | ||
1da177e4 LT |
70 | /* Return a frequency in MHz, given an input fid */ |
71 | static u32 find_freq_from_fid(u32 fid) | |
72 | { | |
73 | return 800 + (fid * 100); | |
74 | } | |
75 | ||
76 | /* Return a frequency in KHz, given an input fid */ | |
77 | static u32 find_khz_freq_from_fid(u32 fid) | |
78 | { | |
79 | return 1000 * find_freq_from_fid(fid); | |
80 | } | |
81 | ||
0e64a0c9 DJ |
82 | static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data, |
83 | u32 pstate) | |
1f729e06 | 84 | { |
c5829cd0 | 85 | return data[pstate].frequency; |
1f729e06 DJ |
86 | } |
87 | ||
1da177e4 LT |
88 | /* Return the vco fid for an input fid |
89 | * | |
90 | * Each "low" fid has corresponding "high" fid, and you can get to "low" fids | |
91 | * only from corresponding high fids. This returns "high" fid corresponding to | |
92 | * "low" one. | |
93 | */ | |
94 | static u32 convert_fid_to_vco_fid(u32 fid) | |
95 | { | |
32ee8c3e | 96 | if (fid < HI_FID_TABLE_BOTTOM) |
1da177e4 | 97 | return 8 + (2 * fid); |
32ee8c3e | 98 | else |
1da177e4 | 99 | return fid; |
1da177e4 LT |
100 | } |
101 | ||
102 | /* | |
103 | * Return 1 if the pending bit is set. Unless we just instructed the processor | |
104 | * to transition to a new state, seeing this bit set is really bad news. | |
105 | */ | |
106 | static int pending_bit_stuck(void) | |
107 | { | |
108 | u32 lo, hi; | |
109 | ||
e7bdd7a5 | 110 | if (cpu_family == CPU_HW_PSTATE) |
1f729e06 DJ |
111 | return 0; |
112 | ||
1da177e4 LT |
113 | rdmsr(MSR_FIDVID_STATUS, lo, hi); |
114 | return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0; | |
115 | } | |
116 | ||
117 | /* | |
118 | * Update the global current fid / vid values from the status msr. | |
119 | * Returns 1 on error. | |
120 | */ | |
121 | static int query_current_values_with_pending_wait(struct powernow_k8_data *data) | |
122 | { | |
123 | u32 lo, hi; | |
124 | u32 i = 0; | |
125 | ||
e7bdd7a5 | 126 | if (cpu_family == CPU_HW_PSTATE) { |
532cfee6 NC |
127 | rdmsr(MSR_PSTATE_STATUS, lo, hi); |
128 | i = lo & HW_PSTATE_MASK; | |
129 | data->currpstate = i; | |
130 | ||
131 | /* | |
132 | * a workaround for family 11h erratum 311 might cause | |
133 | * an "out-of-range Pstate if the core is in Pstate-0 | |
134 | */ | |
135 | if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps)) | |
136 | data->currpstate = HW_PSTATE_0; | |
137 | ||
1f729e06 DJ |
138 | return 0; |
139 | } | |
7153d961 | 140 | do { |
0213df74 | 141 | if (i++ > 10000) { |
2d06d8c4 | 142 | pr_debug("detected change pending stuck\n"); |
1da177e4 LT |
143 | return 1; |
144 | } | |
145 | rdmsr(MSR_FIDVID_STATUS, lo, hi); | |
7153d961 | 146 | } while (lo & MSR_S_LO_CHANGE_PENDING); |
1da177e4 LT |
147 | |
148 | data->currvid = hi & MSR_S_HI_CURRENT_VID; | |
149 | data->currfid = lo & MSR_S_LO_CURRENT_FID; | |
150 | ||
151 | return 0; | |
152 | } | |
153 | ||
154 | /* the isochronous relief time */ | |
155 | static void count_off_irt(struct powernow_k8_data *data) | |
156 | { | |
157 | udelay((1 << data->irt) * 10); | |
158 | return; | |
159 | } | |
160 | ||
27b46d76 | 161 | /* the voltage stabilization time */ |
1da177e4 LT |
162 | static void count_off_vst(struct powernow_k8_data *data) |
163 | { | |
164 | udelay(data->vstable * VST_UNITS_20US); | |
165 | return; | |
166 | } | |
167 | ||
168 | /* need to init the control msr to a safe value (for each cpu) */ | |
169 | static void fidvid_msr_init(void) | |
170 | { | |
171 | u32 lo, hi; | |
172 | u8 fid, vid; | |
173 | ||
174 | rdmsr(MSR_FIDVID_STATUS, lo, hi); | |
175 | vid = hi & MSR_S_HI_CURRENT_VID; | |
176 | fid = lo & MSR_S_LO_CURRENT_FID; | |
177 | lo = fid | (vid << MSR_C_LO_VID_SHIFT); | |
178 | hi = MSR_C_HI_STP_GNT_BENIGN; | |
2d06d8c4 | 179 | pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi); |
1da177e4 LT |
180 | wrmsr(MSR_FIDVID_CTL, lo, hi); |
181 | } | |
182 | ||
1da177e4 LT |
183 | /* write the new fid value along with the other control fields to the msr */ |
184 | static int write_new_fid(struct powernow_k8_data *data, u32 fid) | |
185 | { | |
186 | u32 lo; | |
187 | u32 savevid = data->currvid; | |
0213df74 | 188 | u32 i = 0; |
1da177e4 LT |
189 | |
190 | if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) { | |
191 | printk(KERN_ERR PFX "internal error - overflow on fid write\n"); | |
192 | return 1; | |
193 | } | |
194 | ||
0e64a0c9 DJ |
195 | lo = fid; |
196 | lo |= (data->currvid << MSR_C_LO_VID_SHIFT); | |
197 | lo |= MSR_C_LO_INIT_FID_VID; | |
1da177e4 | 198 | |
2d06d8c4 | 199 | pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n", |
1da177e4 LT |
200 | fid, lo, data->plllock * PLL_LOCK_CONVERSION); |
201 | ||
0213df74 DJ |
202 | do { |
203 | wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION); | |
204 | if (i++ > 100) { | |
0e64a0c9 DJ |
205 | printk(KERN_ERR PFX |
206 | "Hardware error - pending bit very stuck - " | |
207 | "no further pstate changes possible\n"); | |
63172cb3 | 208 | return 1; |
32ee8c3e | 209 | } |
0213df74 | 210 | } while (query_current_values_with_pending_wait(data)); |
1da177e4 LT |
211 | |
212 | count_off_irt(data); | |
213 | ||
214 | if (savevid != data->currvid) { | |
0e64a0c9 DJ |
215 | printk(KERN_ERR PFX |
216 | "vid change on fid trans, old 0x%x, new 0x%x\n", | |
217 | savevid, data->currvid); | |
1da177e4 LT |
218 | return 1; |
219 | } | |
220 | ||
221 | if (fid != data->currfid) { | |
0e64a0c9 DJ |
222 | printk(KERN_ERR PFX |
223 | "fid trans failed, fid 0x%x, curr 0x%x\n", fid, | |
224 | data->currfid); | |
1da177e4 LT |
225 | return 1; |
226 | } | |
227 | ||
228 | return 0; | |
229 | } | |
230 | ||
231 | /* Write a new vid to the hardware */ | |
232 | static int write_new_vid(struct powernow_k8_data *data, u32 vid) | |
233 | { | |
234 | u32 lo; | |
235 | u32 savefid = data->currfid; | |
0213df74 | 236 | int i = 0; |
1da177e4 LT |
237 | |
238 | if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) { | |
239 | printk(KERN_ERR PFX "internal error - overflow on vid write\n"); | |
240 | return 1; | |
241 | } | |
242 | ||
0e64a0c9 DJ |
243 | lo = data->currfid; |
244 | lo |= (vid << MSR_C_LO_VID_SHIFT); | |
245 | lo |= MSR_C_LO_INIT_FID_VID; | |
1da177e4 | 246 | |
2d06d8c4 | 247 | pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n", |
1da177e4 LT |
248 | vid, lo, STOP_GRANT_5NS); |
249 | ||
0213df74 DJ |
250 | do { |
251 | wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS); | |
6df89006 | 252 | if (i++ > 100) { |
0e64a0c9 DJ |
253 | printk(KERN_ERR PFX "internal error - pending bit " |
254 | "very stuck - no further pstate " | |
255 | "changes possible\n"); | |
6df89006 DJ |
256 | return 1; |
257 | } | |
0213df74 | 258 | } while (query_current_values_with_pending_wait(data)); |
1da177e4 LT |
259 | |
260 | if (savefid != data->currfid) { | |
0e64a0c9 DJ |
261 | printk(KERN_ERR PFX "fid changed on vid trans, old " |
262 | "0x%x new 0x%x\n", | |
1da177e4 LT |
263 | savefid, data->currfid); |
264 | return 1; | |
265 | } | |
266 | ||
267 | if (vid != data->currvid) { | |
0e64a0c9 DJ |
268 | printk(KERN_ERR PFX "vid trans failed, vid 0x%x, " |
269 | "curr 0x%x\n", | |
270 | vid, data->currvid); | |
1da177e4 LT |
271 | return 1; |
272 | } | |
273 | ||
274 | return 0; | |
275 | } | |
276 | ||
277 | /* | |
278 | * Reduce the vid by the max of step or reqvid. | |
279 | * Decreasing vid codes represent increasing voltages: | |
841e40b3 | 280 | * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off. |
1da177e4 | 281 | */ |
0e64a0c9 DJ |
282 | static int decrease_vid_code_by_step(struct powernow_k8_data *data, |
283 | u32 reqvid, u32 step) | |
1da177e4 LT |
284 | { |
285 | if ((data->currvid - reqvid) > step) | |
286 | reqvid = data->currvid - step; | |
287 | ||
288 | if (write_new_vid(data, reqvid)) | |
289 | return 1; | |
290 | ||
291 | count_off_vst(data); | |
292 | ||
293 | return 0; | |
294 | } | |
295 | ||
1f729e06 DJ |
296 | /* Change hardware pstate by single MSR write */ |
297 | static int transition_pstate(struct powernow_k8_data *data, u32 pstate) | |
298 | { | |
299 | wrmsr(MSR_PSTATE_CTRL, pstate, 0); | |
c5829cd0 | 300 | data->currpstate = pstate; |
1f729e06 DJ |
301 | return 0; |
302 | } | |
303 | ||
304 | /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */ | |
0e64a0c9 DJ |
305 | static int transition_fid_vid(struct powernow_k8_data *data, |
306 | u32 reqfid, u32 reqvid) | |
1da177e4 | 307 | { |
a2e1b4c3 | 308 | if (core_voltage_pre_transition(data, reqvid, reqfid)) |
1da177e4 LT |
309 | return 1; |
310 | ||
311 | if (core_frequency_transition(data, reqfid)) | |
312 | return 1; | |
313 | ||
314 | if (core_voltage_post_transition(data, reqvid)) | |
315 | return 1; | |
316 | ||
317 | if (query_current_values_with_pending_wait(data)) | |
318 | return 1; | |
319 | ||
320 | if ((reqfid != data->currfid) || (reqvid != data->currvid)) { | |
0e64a0c9 DJ |
321 | printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, " |
322 | "curr 0x%x 0x%x\n", | |
1da177e4 LT |
323 | smp_processor_id(), |
324 | reqfid, reqvid, data->currfid, data->currvid); | |
325 | return 1; | |
326 | } | |
327 | ||
2d06d8c4 | 328 | pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n", |
1da177e4 LT |
329 | smp_processor_id(), data->currfid, data->currvid); |
330 | ||
331 | return 0; | |
332 | } | |
333 | ||
334 | /* Phase 1 - core voltage transition ... setup voltage */ | |
0e64a0c9 | 335 | static int core_voltage_pre_transition(struct powernow_k8_data *data, |
a2e1b4c3 | 336 | u32 reqvid, u32 reqfid) |
1da177e4 LT |
337 | { |
338 | u32 rvosteps = data->rvo; | |
339 | u32 savefid = data->currfid; | |
a2e1b4c3 | 340 | u32 maxvid, lo, rvomult = 1; |
1da177e4 | 341 | |
2d06d8c4 | 342 | pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, " |
0e64a0c9 | 343 | "reqvid 0x%x, rvo 0x%x\n", |
1da177e4 LT |
344 | smp_processor_id(), |
345 | data->currfid, data->currvid, reqvid, data->rvo); | |
346 | ||
a2e1b4c3 ML |
347 | if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP)) |
348 | rvomult = 2; | |
349 | rvosteps *= rvomult; | |
065b807c DJ |
350 | rdmsr(MSR_FIDVID_STATUS, lo, maxvid); |
351 | maxvid = 0x1f & (maxvid >> 16); | |
2d06d8c4 | 352 | pr_debug("ph1 maxvid=0x%x\n", maxvid); |
065b807c DJ |
353 | if (reqvid < maxvid) /* lower numbers are higher voltages */ |
354 | reqvid = maxvid; | |
355 | ||
1da177e4 | 356 | while (data->currvid > reqvid) { |
2d06d8c4 | 357 | pr_debug("ph1: curr 0x%x, req vid 0x%x\n", |
1da177e4 LT |
358 | data->currvid, reqvid); |
359 | if (decrease_vid_code_by_step(data, reqvid, data->vidmvs)) | |
360 | return 1; | |
361 | } | |
362 | ||
a2e1b4c3 ML |
363 | while ((rvosteps > 0) && |
364 | ((rvomult * data->rvo + data->currvid) > reqvid)) { | |
065b807c | 365 | if (data->currvid == maxvid) { |
1da177e4 LT |
366 | rvosteps = 0; |
367 | } else { | |
2d06d8c4 | 368 | pr_debug("ph1: changing vid for rvo, req 0x%x\n", |
1da177e4 | 369 | data->currvid - 1); |
0e64a0c9 | 370 | if (decrease_vid_code_by_step(data, data->currvid-1, 1)) |
1da177e4 LT |
371 | return 1; |
372 | rvosteps--; | |
373 | } | |
374 | } | |
375 | ||
376 | if (query_current_values_with_pending_wait(data)) | |
377 | return 1; | |
378 | ||
379 | if (savefid != data->currfid) { | |
0e64a0c9 DJ |
380 | printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", |
381 | data->currfid); | |
1da177e4 LT |
382 | return 1; |
383 | } | |
384 | ||
2d06d8c4 | 385 | pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n", |
1da177e4 LT |
386 | data->currfid, data->currvid); |
387 | ||
388 | return 0; | |
389 | } | |
390 | ||
391 | /* Phase 2 - core frequency transition */ | |
392 | static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid) | |
393 | { | |
0e64a0c9 DJ |
394 | u32 vcoreqfid, vcocurrfid, vcofiddiff; |
395 | u32 fid_interval, savevid = data->currvid; | |
1da177e4 | 396 | |
1da177e4 | 397 | if (data->currfid == reqfid) { |
0e64a0c9 DJ |
398 | printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", |
399 | data->currfid); | |
1da177e4 LT |
400 | return 0; |
401 | } | |
402 | ||
2d06d8c4 | 403 | pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, " |
0e64a0c9 | 404 | "reqfid 0x%x\n", |
1da177e4 LT |
405 | smp_processor_id(), |
406 | data->currfid, data->currvid, reqfid); | |
407 | ||
408 | vcoreqfid = convert_fid_to_vco_fid(reqfid); | |
409 | vcocurrfid = convert_fid_to_vco_fid(data->currfid); | |
410 | vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid | |
411 | : vcoreqfid - vcocurrfid; | |
412 | ||
a2e1b4c3 ML |
413 | if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP)) |
414 | vcofiddiff = 0; | |
415 | ||
1da177e4 | 416 | while (vcofiddiff > 2) { |
019a61b9 LM |
417 | (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2); |
418 | ||
1da177e4 LT |
419 | if (reqfid > data->currfid) { |
420 | if (data->currfid > LO_FID_TABLE_TOP) { | |
0e64a0c9 DJ |
421 | if (write_new_fid(data, |
422 | data->currfid + fid_interval)) | |
1da177e4 | 423 | return 1; |
1da177e4 LT |
424 | } else { |
425 | if (write_new_fid | |
0e64a0c9 DJ |
426 | (data, |
427 | 2 + convert_fid_to_vco_fid(data->currfid))) | |
1da177e4 | 428 | return 1; |
1da177e4 LT |
429 | } |
430 | } else { | |
019a61b9 | 431 | if (write_new_fid(data, data->currfid - fid_interval)) |
1da177e4 LT |
432 | return 1; |
433 | } | |
434 | ||
435 | vcocurrfid = convert_fid_to_vco_fid(data->currfid); | |
436 | vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid | |
437 | : vcoreqfid - vcocurrfid; | |
438 | } | |
439 | ||
440 | if (write_new_fid(data, reqfid)) | |
441 | return 1; | |
442 | ||
443 | if (query_current_values_with_pending_wait(data)) | |
444 | return 1; | |
445 | ||
446 | if (data->currfid != reqfid) { | |
447 | printk(KERN_ERR PFX | |
0e64a0c9 DJ |
448 | "ph2: mismatch, failed fid transition, " |
449 | "curr 0x%x, req 0x%x\n", | |
1da177e4 LT |
450 | data->currfid, reqfid); |
451 | return 1; | |
452 | } | |
453 | ||
454 | if (savevid != data->currvid) { | |
455 | printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n", | |
456 | savevid, data->currvid); | |
457 | return 1; | |
458 | } | |
459 | ||
2d06d8c4 | 460 | pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n", |
1da177e4 LT |
461 | data->currfid, data->currvid); |
462 | ||
463 | return 0; | |
464 | } | |
465 | ||
466 | /* Phase 3 - core voltage transition flow ... jump to the final vid. */ | |
0e64a0c9 DJ |
467 | static int core_voltage_post_transition(struct powernow_k8_data *data, |
468 | u32 reqvid) | |
1da177e4 LT |
469 | { |
470 | u32 savefid = data->currfid; | |
471 | u32 savereqvid = reqvid; | |
472 | ||
2d06d8c4 | 473 | pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n", |
1da177e4 LT |
474 | smp_processor_id(), |
475 | data->currfid, data->currvid); | |
476 | ||
477 | if (reqvid != data->currvid) { | |
478 | if (write_new_vid(data, reqvid)) | |
479 | return 1; | |
480 | ||
481 | if (savefid != data->currfid) { | |
482 | printk(KERN_ERR PFX | |
483 | "ph3: bad fid change, save 0x%x, curr 0x%x\n", | |
484 | savefid, data->currfid); | |
485 | return 1; | |
486 | } | |
487 | ||
488 | if (data->currvid != reqvid) { | |
489 | printk(KERN_ERR PFX | |
0e64a0c9 DJ |
490 | "ph3: failed vid transition\n, " |
491 | "req 0x%x, curr 0x%x", | |
1da177e4 LT |
492 | reqvid, data->currvid); |
493 | return 1; | |
494 | } | |
495 | } | |
496 | ||
497 | if (query_current_values_with_pending_wait(data)) | |
498 | return 1; | |
499 | ||
500 | if (savereqvid != data->currvid) { | |
2d06d8c4 | 501 | pr_debug("ph3 failed, currvid 0x%x\n", data->currvid); |
1da177e4 LT |
502 | return 1; |
503 | } | |
504 | ||
505 | if (savefid != data->currfid) { | |
2d06d8c4 | 506 | pr_debug("ph3 failed, currfid changed 0x%x\n", |
1da177e4 LT |
507 | data->currfid); |
508 | return 1; | |
509 | } | |
510 | ||
2d06d8c4 | 511 | pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n", |
1da177e4 LT |
512 | data->currfid, data->currvid); |
513 | ||
514 | return 0; | |
515 | } | |
516 | ||
1ff6e97f | 517 | static void check_supported_cpu(void *_rc) |
1da177e4 | 518 | { |
1da177e4 | 519 | u32 eax, ebx, ecx, edx; |
1ff6e97f | 520 | int *rc = _rc; |
1da177e4 | 521 | |
1ff6e97f | 522 | *rc = -ENODEV; |
1da177e4 | 523 | |
7b543a53 | 524 | if (__this_cpu_read(cpu_info.x86_vendor) != X86_VENDOR_AMD) |
1ff6e97f | 525 | return; |
1da177e4 LT |
526 | |
527 | eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); | |
1f729e06 DJ |
528 | if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) && |
529 | ((eax & CPUID_XFAM) < CPUID_XFAM_10H)) | |
1ff6e97f | 530 | return; |
2c906ae6 | 531 | |
1f729e06 DJ |
532 | if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) { |
533 | if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) || | |
99fbe1ac | 534 | ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) { |
0e64a0c9 DJ |
535 | printk(KERN_INFO PFX |
536 | "Processor cpuid %x not supported\n", eax); | |
1ff6e97f | 537 | return; |
1f729e06 | 538 | } |
1da177e4 | 539 | |
1f729e06 DJ |
540 | eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES); |
541 | if (eax < CPUID_FREQ_VOLT_CAPABILITIES) { | |
542 | printk(KERN_INFO PFX | |
543 | "No frequency change capabilities detected\n"); | |
1ff6e97f | 544 | return; |
1f729e06 | 545 | } |
1da177e4 | 546 | |
1f729e06 | 547 | cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); |
0e64a0c9 DJ |
548 | if ((edx & P_STATE_TRANSITION_CAPABLE) |
549 | != P_STATE_TRANSITION_CAPABLE) { | |
550 | printk(KERN_INFO PFX | |
551 | "Power state transitions not supported\n"); | |
1ff6e97f | 552 | return; |
1f729e06 DJ |
553 | } |
554 | } else { /* must be a HW Pstate capable processor */ | |
555 | cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); | |
556 | if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE) | |
557 | cpu_family = CPU_HW_PSTATE; | |
558 | else | |
1ff6e97f | 559 | return; |
1da177e4 LT |
560 | } |
561 | ||
1ff6e97f | 562 | *rc = 0; |
1da177e4 LT |
563 | } |
564 | ||
0e64a0c9 DJ |
565 | static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, |
566 | u8 maxvid) | |
1da177e4 LT |
567 | { |
568 | unsigned int j; | |
569 | u8 lastfid = 0xff; | |
570 | ||
571 | for (j = 0; j < data->numps; j++) { | |
572 | if (pst[j].vid > LEAST_VID) { | |
2fd47094 TR |
573 | printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n", |
574 | j, pst[j].vid); | |
1da177e4 LT |
575 | return -EINVAL; |
576 | } | |
0e64a0c9 DJ |
577 | if (pst[j].vid < data->rvo) { |
578 | /* vid + rvo >= 0 */ | |
2fd47094 TR |
579 | printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate" |
580 | " %d\n", j); | |
1da177e4 LT |
581 | return -ENODEV; |
582 | } | |
0e64a0c9 DJ |
583 | if (pst[j].vid < maxvid + data->rvo) { |
584 | /* vid + rvo >= maxvid */ | |
2fd47094 TR |
585 | printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate" |
586 | " %d\n", j); | |
1da177e4 LT |
587 | return -ENODEV; |
588 | } | |
8aae8284 | 589 | if (pst[j].fid > MAX_FID) { |
2fd47094 TR |
590 | printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate" |
591 | " %d\n", j); | |
8aae8284 JS |
592 | return -ENODEV; |
593 | } | |
8aae8284 | 594 | if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) { |
1da177e4 | 595 | /* Only first fid is allowed to be in "low" range */ |
2fd47094 TR |
596 | printk(KERN_ERR FW_BUG PFX "two low fids - %d : " |
597 | "0x%x\n", j, pst[j].fid); | |
1da177e4 LT |
598 | return -EINVAL; |
599 | } | |
600 | if (pst[j].fid < lastfid) | |
601 | lastfid = pst[j].fid; | |
602 | } | |
603 | if (lastfid & 1) { | |
2fd47094 | 604 | printk(KERN_ERR FW_BUG PFX "lastfid invalid\n"); |
1da177e4 LT |
605 | return -EINVAL; |
606 | } | |
607 | if (lastfid > LO_FID_TABLE_TOP) | |
0e64a0c9 DJ |
608 | printk(KERN_INFO FW_BUG PFX |
609 | "first fid not from lo freq table\n"); | |
1da177e4 LT |
610 | |
611 | return 0; | |
612 | } | |
613 | ||
f0adb134 KR |
614 | static void invalidate_entry(struct cpufreq_frequency_table *powernow_table, |
615 | unsigned int entry) | |
0e64a0c9 | 616 | { |
f0adb134 | 617 | powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID; |
0e64a0c9 DJ |
618 | } |
619 | ||
1da177e4 LT |
620 | static void print_basics(struct powernow_k8_data *data) |
621 | { | |
622 | int j; | |
623 | for (j = 0; j < data->numps; j++) { | |
0e64a0c9 DJ |
624 | if (data->powernow_table[j].frequency != |
625 | CPUFREQ_ENTRY_INVALID) { | |
e7bdd7a5 | 626 | if (cpu_family == CPU_HW_PSTATE) { |
0e64a0c9 DJ |
627 | printk(KERN_INFO PFX |
628 | " %d : pstate %d (%d MHz)\n", j, | |
4ae5c49f | 629 | data->powernow_table[j].index, |
9a60ddbc | 630 | data->powernow_table[j].frequency/1000); |
1f729e06 | 631 | } else { |
0e64a0c9 | 632 | printk(KERN_INFO PFX |
9e918695 | 633 | "fid 0x%x (%d MHz), vid 0x%x\n", |
9a60ddbc DJ |
634 | data->powernow_table[j].index & 0xff, |
635 | data->powernow_table[j].frequency/1000, | |
636 | data->powernow_table[j].index >> 8); | |
1f729e06 DJ |
637 | } |
638 | } | |
1da177e4 LT |
639 | } |
640 | if (data->batps) | |
0e64a0c9 DJ |
641 | printk(KERN_INFO PFX "Only %d pstates on battery\n", |
642 | data->batps); | |
1da177e4 LT |
643 | } |
644 | ||
ca446d06 AH |
645 | static u32 freq_from_fid_did(u32 fid, u32 did) |
646 | { | |
647 | u32 mhz = 0; | |
648 | ||
649 | if (boot_cpu_data.x86 == 0x10) | |
650 | mhz = (100 * (fid + 0x10)) >> did; | |
651 | else if (boot_cpu_data.x86 == 0x11) | |
652 | mhz = (100 * (fid + 8)) >> did; | |
653 | else | |
654 | BUG(); | |
655 | ||
656 | return mhz * 1000; | |
657 | } | |
658 | ||
0e64a0c9 DJ |
659 | static int fill_powernow_table(struct powernow_k8_data *data, |
660 | struct pst_s *pst, u8 maxvid) | |
1da177e4 LT |
661 | { |
662 | struct cpufreq_frequency_table *powernow_table; | |
663 | unsigned int j; | |
664 | ||
0e64a0c9 DJ |
665 | if (data->batps) { |
666 | /* use ACPI support to get full speed on mains power */ | |
667 | printk(KERN_WARNING PFX | |
668 | "Only %d pstates usable (use ACPI driver for full " | |
669 | "range\n", data->batps); | |
1da177e4 LT |
670 | data->numps = data->batps; |
671 | } | |
672 | ||
0e64a0c9 | 673 | for (j = 1; j < data->numps; j++) { |
1da177e4 LT |
674 | if (pst[j-1].fid >= pst[j].fid) { |
675 | printk(KERN_ERR PFX "PST out of sequence\n"); | |
676 | return -EINVAL; | |
677 | } | |
678 | } | |
679 | ||
680 | if (data->numps < 2) { | |
681 | printk(KERN_ERR PFX "no p states to transition\n"); | |
682 | return -ENODEV; | |
683 | } | |
684 | ||
685 | if (check_pst_table(data, pst, maxvid)) | |
686 | return -EINVAL; | |
687 | ||
688 | powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) | |
689 | * (data->numps + 1)), GFP_KERNEL); | |
690 | if (!powernow_table) { | |
691 | printk(KERN_ERR PFX "powernow_table memory alloc failure\n"); | |
692 | return -ENOMEM; | |
693 | } | |
694 | ||
695 | for (j = 0; j < data->numps; j++) { | |
0e64a0c9 | 696 | int freq; |
1da177e4 LT |
697 | powernow_table[j].index = pst[j].fid; /* lower 8 bits */ |
698 | powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */ | |
0e64a0c9 DJ |
699 | freq = find_khz_freq_from_fid(pst[j].fid); |
700 | powernow_table[j].frequency = freq; | |
1da177e4 LT |
701 | } |
702 | powernow_table[data->numps].frequency = CPUFREQ_TABLE_END; | |
703 | powernow_table[data->numps].index = 0; | |
704 | ||
705 | if (query_current_values_with_pending_wait(data)) { | |
706 | kfree(powernow_table); | |
707 | return -EIO; | |
708 | } | |
709 | ||
2d06d8c4 | 710 | pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid); |
1da177e4 | 711 | data->powernow_table = powernow_table; |
7ad728f9 | 712 | if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu) |
2e497620 | 713 | print_basics(data); |
1da177e4 LT |
714 | |
715 | for (j = 0; j < data->numps; j++) | |
0e64a0c9 DJ |
716 | if ((pst[j].fid == data->currfid) && |
717 | (pst[j].vid == data->currvid)) | |
1da177e4 LT |
718 | return 0; |
719 | ||
2d06d8c4 | 720 | pr_debug("currfid/vid do not match PST, ignoring\n"); |
1da177e4 LT |
721 | return 0; |
722 | } | |
723 | ||
724 | /* Find and validate the PSB/PST table in BIOS. */ | |
725 | static int find_psb_table(struct powernow_k8_data *data) | |
726 | { | |
727 | struct psb_s *psb; | |
728 | unsigned int i; | |
729 | u32 mvs; | |
730 | u8 maxvid; | |
731 | u32 cpst = 0; | |
732 | u32 thiscpuid; | |
733 | ||
734 | for (i = 0xc0000; i < 0xffff0; i += 0x10) { | |
735 | /* Scan BIOS looking for the signature. */ | |
736 | /* It can not be at ffff0 - it is too big. */ | |
737 | ||
738 | psb = phys_to_virt(i); | |
739 | if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0) | |
740 | continue; | |
741 | ||
2d06d8c4 | 742 | pr_debug("found PSB header at 0x%p\n", psb); |
1da177e4 | 743 | |
2d06d8c4 | 744 | pr_debug("table vers: 0x%x\n", psb->tableversion); |
1da177e4 | 745 | if (psb->tableversion != PSB_VERSION_1_4) { |
2fd47094 | 746 | printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n"); |
1da177e4 LT |
747 | return -ENODEV; |
748 | } | |
749 | ||
2d06d8c4 | 750 | pr_debug("flags: 0x%x\n", psb->flags1); |
1da177e4 | 751 | if (psb->flags1) { |
2fd47094 | 752 | printk(KERN_ERR FW_BUG PFX "unknown flags\n"); |
1da177e4 LT |
753 | return -ENODEV; |
754 | } | |
755 | ||
756 | data->vstable = psb->vstable; | |
2d06d8c4 | 757 | pr_debug("voltage stabilization time: %d(*20us)\n", |
0e64a0c9 | 758 | data->vstable); |
1da177e4 | 759 | |
2d06d8c4 | 760 | pr_debug("flags2: 0x%x\n", psb->flags2); |
1da177e4 LT |
761 | data->rvo = psb->flags2 & 3; |
762 | data->irt = ((psb->flags2) >> 2) & 3; | |
763 | mvs = ((psb->flags2) >> 4) & 3; | |
764 | data->vidmvs = 1 << mvs; | |
765 | data->batps = ((psb->flags2) >> 6) & 3; | |
766 | ||
2d06d8c4 DB |
767 | pr_debug("ramp voltage offset: %d\n", data->rvo); |
768 | pr_debug("isochronous relief time: %d\n", data->irt); | |
769 | pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs); | |
1da177e4 | 770 | |
2d06d8c4 | 771 | pr_debug("numpst: 0x%x\n", psb->num_tables); |
1da177e4 | 772 | cpst = psb->num_tables; |
0e64a0c9 DJ |
773 | if ((psb->cpuid == 0x00000fc0) || |
774 | (psb->cpuid == 0x00000fe0)) { | |
1da177e4 | 775 | thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); |
0e64a0c9 DJ |
776 | if ((thiscpuid == 0x00000fc0) || |
777 | (thiscpuid == 0x00000fe0)) | |
1da177e4 | 778 | cpst = 1; |
1da177e4 LT |
779 | } |
780 | if (cpst != 1) { | |
2fd47094 | 781 | printk(KERN_ERR FW_BUG PFX "numpst must be 1\n"); |
1da177e4 LT |
782 | return -ENODEV; |
783 | } | |
784 | ||
785 | data->plllock = psb->plllocktime; | |
2d06d8c4 DB |
786 | pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime); |
787 | pr_debug("maxfid: 0x%x\n", psb->maxfid); | |
788 | pr_debug("maxvid: 0x%x\n", psb->maxvid); | |
1da177e4 LT |
789 | maxvid = psb->maxvid; |
790 | ||
791 | data->numps = psb->numps; | |
2d06d8c4 | 792 | pr_debug("numpstates: 0x%x\n", data->numps); |
0e64a0c9 DJ |
793 | return fill_powernow_table(data, |
794 | (struct pst_s *)(psb+1), maxvid); | |
1da177e4 LT |
795 | } |
796 | /* | |
797 | * If you see this message, complain to BIOS manufacturer. If | |
798 | * he tells you "we do not support Linux" or some similar | |
799 | * nonsense, remember that Windows 2000 uses the same legacy | |
800 | * mechanism that the old Linux PSB driver uses. Tell them it | |
801 | * is broken with Windows 2000. | |
802 | * | |
803 | * The reference to the AMD documentation is chapter 9 in the | |
804 | * BIOS and Kernel Developer's Guide, which is available on | |
805 | * www.amd.com | |
806 | */ | |
79cc56af | 807 | printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n"); |
298decfb MR |
808 | printk(KERN_ERR PFX "Make sure that your BIOS is up to date" |
809 | " and Cool'N'Quiet support is enabled in BIOS setup\n"); | |
1da177e4 LT |
810 | return -ENODEV; |
811 | } | |
812 | ||
0e64a0c9 DJ |
813 | static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, |
814 | unsigned int index) | |
1da177e4 | 815 | { |
439913ff | 816 | u64 control; |
0e64a0c9 | 817 | |
f607e3a0 | 818 | if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE)) |
1da177e4 LT |
819 | return; |
820 | ||
21335d02 LH |
821 | control = data->acpi_data.states[index].control; |
822 | data->irt = (control >> IRT_SHIFT) & IRT_MASK; | |
823 | data->rvo = (control >> RVO_SHIFT) & RVO_MASK; | |
824 | data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK; | |
825 | data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK; | |
826 | data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK); | |
827 | data->vstable = (control >> VST_SHIFT) & VST_MASK; | |
828 | } | |
1da177e4 LT |
829 | |
830 | static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) | |
831 | { | |
1da177e4 | 832 | struct cpufreq_frequency_table *powernow_table; |
2fdf66b4 | 833 | int ret_val = -ENODEV; |
439913ff | 834 | u64 control, status; |
1da177e4 | 835 | |
f607e3a0 | 836 | if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) { |
2d06d8c4 | 837 | pr_debug("register performance failed: bad ACPI data\n"); |
1da177e4 LT |
838 | return -EIO; |
839 | } | |
840 | ||
841 | /* verify the data contained in the ACPI structures */ | |
f607e3a0 | 842 | if (data->acpi_data.state_count <= 1) { |
2d06d8c4 | 843 | pr_debug("No ACPI P-States\n"); |
1da177e4 LT |
844 | goto err_out; |
845 | } | |
846 | ||
2c701b10 DJ |
847 | control = data->acpi_data.control_register.space_id; |
848 | status = data->acpi_data.status_register.space_id; | |
849 | ||
850 | if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) || | |
851 | (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) { | |
2d06d8c4 | 852 | pr_debug("Invalid control/status registers (%llx - %llx)\n", |
2c701b10 | 853 | control, status); |
1da177e4 LT |
854 | goto err_out; |
855 | } | |
856 | ||
857 | /* fill in data->powernow_table */ | |
858 | powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) | |
f607e3a0 | 859 | * (data->acpi_data.state_count + 1)), GFP_KERNEL); |
1da177e4 | 860 | if (!powernow_table) { |
2d06d8c4 | 861 | pr_debug("powernow_table memory alloc failure\n"); |
1da177e4 LT |
862 | goto err_out; |
863 | } | |
864 | ||
db39d552 ML |
865 | /* fill in data */ |
866 | data->numps = data->acpi_data.state_count; | |
867 | powernow_k8_acpi_pst_values(data, 0); | |
868 | ||
e7bdd7a5 | 869 | if (cpu_family == CPU_HW_PSTATE) |
1f729e06 DJ |
870 | ret_val = fill_powernow_table_pstate(data, powernow_table); |
871 | else | |
872 | ret_val = fill_powernow_table_fidvid(data, powernow_table); | |
873 | if (ret_val) | |
874 | goto err_out_mem; | |
875 | ||
0e64a0c9 DJ |
876 | powernow_table[data->acpi_data.state_count].frequency = |
877 | CPUFREQ_TABLE_END; | |
f607e3a0 | 878 | powernow_table[data->acpi_data.state_count].index = 0; |
1f729e06 DJ |
879 | data->powernow_table = powernow_table; |
880 | ||
7ad728f9 | 881 | if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu) |
2e497620 | 882 | print_basics(data); |
1f729e06 DJ |
883 | |
884 | /* notify BIOS that we exist */ | |
885 | acpi_processor_notify_smm(THIS_MODULE); | |
886 | ||
eaa95840 | 887 | if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) { |
2fdf66b4 RR |
888 | printk(KERN_ERR PFX |
889 | "unable to alloc powernow_k8_data cpumask\n"); | |
890 | ret_val = -ENOMEM; | |
891 | goto err_out_mem; | |
892 | } | |
893 | ||
1f729e06 DJ |
894 | return 0; |
895 | ||
896 | err_out_mem: | |
897 | kfree(powernow_table); | |
898 | ||
899 | err_out: | |
f607e3a0 | 900 | acpi_processor_unregister_performance(&data->acpi_data, data->cpu); |
1f729e06 | 901 | |
0e64a0c9 DJ |
902 | /* data->acpi_data.state_count informs us at ->exit() |
903 | * whether ACPI was used */ | |
f607e3a0 | 904 | data->acpi_data.state_count = 0; |
1f729e06 | 905 | |
2fdf66b4 | 906 | return ret_val; |
1f729e06 DJ |
907 | } |
908 | ||
0e64a0c9 DJ |
909 | static int fill_powernow_table_pstate(struct powernow_k8_data *data, |
910 | struct cpufreq_frequency_table *powernow_table) | |
1f729e06 DJ |
911 | { |
912 | int i; | |
c5829cd0 | 913 | u32 hi = 0, lo = 0; |
b30d3304 BP |
914 | rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi); |
915 | data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT; | |
1f729e06 | 916 | |
f607e3a0 | 917 | for (i = 0; i < data->acpi_data.state_count; i++) { |
1f729e06 | 918 | u32 index; |
1f729e06 | 919 | |
f607e3a0 | 920 | index = data->acpi_data.states[i].control & HW_PSTATE_MASK; |
c5829cd0 | 921 | if (index > data->max_hw_pstate) { |
0e64a0c9 DJ |
922 | printk(KERN_ERR PFX "invalid pstate %d - " |
923 | "bad value %d.\n", i, index); | |
924 | printk(KERN_ERR PFX "Please report to BIOS " | |
925 | "manufacturer\n"); | |
f0adb134 | 926 | invalidate_entry(powernow_table, i); |
c5829cd0 | 927 | continue; |
1f729e06 DJ |
928 | } |
929 | rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi); | |
930 | if (!(hi & HW_PSTATE_VALID_MASK)) { | |
2d06d8c4 | 931 | pr_debug("invalid pstate %d, ignoring\n", index); |
f0adb134 | 932 | invalidate_entry(powernow_table, i); |
1f729e06 DJ |
933 | continue; |
934 | } | |
935 | ||
c5829cd0 | 936 | powernow_table[i].index = index; |
1f729e06 | 937 | |
ca446d06 | 938 | /* Frequency may be rounded for these */ |
67937064 ML |
939 | if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10) |
940 | || boot_cpu_data.x86 == 0x11) { | |
ca446d06 AH |
941 | powernow_table[i].frequency = |
942 | freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7); | |
943 | } else | |
944 | powernow_table[i].frequency = | |
945 | data->acpi_data.states[i].core_frequency * 1000; | |
1f729e06 DJ |
946 | } |
947 | return 0; | |
948 | } | |
949 | ||
0e64a0c9 DJ |
950 | static int fill_powernow_table_fidvid(struct powernow_k8_data *data, |
951 | struct cpufreq_frequency_table *powernow_table) | |
1f729e06 DJ |
952 | { |
953 | int i; | |
0e64a0c9 | 954 | |
f607e3a0 | 955 | for (i = 0; i < data->acpi_data.state_count; i++) { |
094ce7fd DJ |
956 | u32 fid; |
957 | u32 vid; | |
0e64a0c9 | 958 | u32 freq, index; |
439913ff | 959 | u64 status, control; |
094ce7fd DJ |
960 | |
961 | if (data->exttype) { | |
0e64a0c9 DJ |
962 | status = data->acpi_data.states[i].status; |
963 | fid = status & EXT_FID_MASK; | |
964 | vid = (status >> VID_SHIFT) & EXT_VID_MASK; | |
841e40b3 | 965 | } else { |
0e64a0c9 DJ |
966 | control = data->acpi_data.states[i].control; |
967 | fid = control & FID_MASK; | |
968 | vid = (control >> VID_SHIFT) & VID_MASK; | |
841e40b3 | 969 | } |
1da177e4 | 970 | |
2d06d8c4 | 971 | pr_debug(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid); |
1da177e4 | 972 | |
0e64a0c9 DJ |
973 | index = fid | (vid<<8); |
974 | powernow_table[i].index = index; | |
975 | ||
976 | freq = find_khz_freq_from_fid(fid); | |
977 | powernow_table[i].frequency = freq; | |
1da177e4 LT |
978 | |
979 | /* verify frequency is OK */ | |
0e64a0c9 | 980 | if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) { |
2d06d8c4 | 981 | pr_debug("invalid freq %u kHz, ignoring\n", freq); |
f0adb134 | 982 | invalidate_entry(powernow_table, i); |
1da177e4 LT |
983 | continue; |
984 | } | |
985 | ||
0e64a0c9 DJ |
986 | /* verify voltage is OK - |
987 | * BIOSs are using "off" to indicate invalid */ | |
841e40b3 | 988 | if (vid == VID_OFF) { |
2d06d8c4 | 989 | pr_debug("invalid vid %u, ignoring\n", vid); |
f0adb134 | 990 | invalidate_entry(powernow_table, i); |
1da177e4 LT |
991 | continue; |
992 | } | |
993 | ||
0e64a0c9 DJ |
994 | if (freq != (data->acpi_data.states[i].core_frequency * 1000)) { |
995 | printk(KERN_INFO PFX "invalid freq entries " | |
996 | "%u kHz vs. %u kHz\n", freq, | |
997 | (unsigned int) | |
998 | (data->acpi_data.states[i].core_frequency | |
999 | * 1000)); | |
f0adb134 | 1000 | invalidate_entry(powernow_table, i); |
1da177e4 LT |
1001 | continue; |
1002 | } | |
1003 | } | |
1da177e4 | 1004 | return 0; |
1da177e4 LT |
1005 | } |
1006 | ||
1007 | static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) | |
1008 | { | |
f607e3a0 | 1009 | if (data->acpi_data.state_count) |
0e64a0c9 DJ |
1010 | acpi_processor_unregister_performance(&data->acpi_data, |
1011 | data->cpu); | |
2fdf66b4 | 1012 | free_cpumask_var(data->acpi_data.shared_cpu_map); |
1da177e4 LT |
1013 | } |
1014 | ||
732553e5 ML |
1015 | static int get_transition_latency(struct powernow_k8_data *data) |
1016 | { | |
1017 | int max_latency = 0; | |
1018 | int i; | |
1019 | for (i = 0; i < data->acpi_data.state_count; i++) { | |
1020 | int cur_latency = data->acpi_data.states[i].transition_latency | |
1021 | + data->acpi_data.states[i].bus_master_latency; | |
1022 | if (cur_latency > max_latency) | |
1023 | max_latency = cur_latency; | |
1024 | } | |
86e13684 TR |
1025 | if (max_latency == 0) { |
1026 | /* | |
c2f4a2c6 BP |
1027 | * Fam 11h and later may return 0 as transition latency. This |
1028 | * is intended and means "very fast". While cpufreq core and | |
1029 | * governors currently can handle that gracefully, better set it | |
1030 | * to 1 to avoid problems in the future. | |
86e13684 | 1031 | */ |
c2f4a2c6 | 1032 | if (boot_cpu_data.x86 < 0x11) |
86e13684 TR |
1033 | printk(KERN_ERR FW_WARN PFX "Invalid zero transition " |
1034 | "latency\n"); | |
1035 | max_latency = 1; | |
1036 | } | |
732553e5 ML |
1037 | /* value in usecs, needs to be in nanoseconds */ |
1038 | return 1000 * max_latency; | |
1039 | } | |
1040 | ||
1da177e4 | 1041 | /* Take a frequency, and issue the fid/vid transition command */ |
0e64a0c9 DJ |
1042 | static int transition_frequency_fidvid(struct powernow_k8_data *data, |
1043 | unsigned int index) | |
1da177e4 | 1044 | { |
1f729e06 DJ |
1045 | u32 fid = 0; |
1046 | u32 vid = 0; | |
065b807c | 1047 | int res, i; |
1da177e4 LT |
1048 | struct cpufreq_freqs freqs; |
1049 | ||
2d06d8c4 | 1050 | pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index); |
1da177e4 | 1051 | |
1f729e06 | 1052 | /* fid/vid correctness check for k8 */ |
1da177e4 | 1053 | /* fid are the lower 8 bits of the index we stored into |
1f729e06 DJ |
1054 | * the cpufreq frequency table in find_psb_table, vid |
1055 | * are the upper 8 bits. | |
1da177e4 | 1056 | */ |
1da177e4 LT |
1057 | fid = data->powernow_table[index].index & 0xFF; |
1058 | vid = (data->powernow_table[index].index & 0xFF00) >> 8; | |
1059 | ||
2d06d8c4 | 1060 | pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid); |
1da177e4 LT |
1061 | |
1062 | if (query_current_values_with_pending_wait(data)) | |
1063 | return 1; | |
1064 | ||
1065 | if ((data->currvid == vid) && (data->currfid == fid)) { | |
2d06d8c4 | 1066 | pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n", |
1da177e4 LT |
1067 | fid, vid); |
1068 | return 0; | |
1069 | } | |
1070 | ||
2d06d8c4 | 1071 | pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n", |
1da177e4 | 1072 | smp_processor_id(), fid, vid); |
1da177e4 LT |
1073 | freqs.old = find_khz_freq_from_fid(data->currfid); |
1074 | freqs.new = find_khz_freq_from_fid(fid); | |
1f729e06 | 1075 | |
8e7c2597 | 1076 | for_each_cpu(i, data->available_cores) { |
065b807c DJ |
1077 | freqs.cpu = i; |
1078 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | |
1079 | } | |
1da177e4 | 1080 | |
1da177e4 | 1081 | res = transition_fid_vid(data, fid, vid); |
1da177e4 | 1082 | freqs.new = find_khz_freq_from_fid(data->currfid); |
1f729e06 | 1083 | |
8e7c2597 | 1084 | for_each_cpu(i, data->available_cores) { |
1f729e06 DJ |
1085 | freqs.cpu = i; |
1086 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | |
1087 | } | |
1088 | return res; | |
1089 | } | |
1090 | ||
1091 | /* Take a frequency, and issue the hardware pstate transition command */ | |
0e64a0c9 DJ |
1092 | static int transition_frequency_pstate(struct powernow_k8_data *data, |
1093 | unsigned int index) | |
1f729e06 | 1094 | { |
1f729e06 DJ |
1095 | u32 pstate = 0; |
1096 | int res, i; | |
1097 | struct cpufreq_freqs freqs; | |
1098 | ||
2d06d8c4 | 1099 | pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index); |
1f729e06 | 1100 | |
c5829cd0 | 1101 | /* get MSR index for hardware pstate transition */ |
1f729e06 | 1102 | pstate = index & HW_PSTATE_MASK; |
c5829cd0 | 1103 | if (pstate > data->max_hw_pstate) |
1f729e06 | 1104 | return 0; |
0e64a0c9 DJ |
1105 | freqs.old = find_khz_freq_from_pstate(data->powernow_table, |
1106 | data->currpstate); | |
c5829cd0 | 1107 | freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate); |
1f729e06 | 1108 | |
8e7c2597 | 1109 | for_each_cpu(i, data->available_cores) { |
1f729e06 DJ |
1110 | freqs.cpu = i; |
1111 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | |
1112 | } | |
1113 | ||
1114 | res = transition_pstate(data, pstate); | |
c5829cd0 | 1115 | freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate); |
1f729e06 | 1116 | |
8e7c2597 | 1117 | for_each_cpu(i, data->available_cores) { |
065b807c DJ |
1118 | freqs.cpu = i; |
1119 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | |
2e3f8faa | 1120 | } |
1da177e4 LT |
1121 | return res; |
1122 | } | |
1123 | ||
1124 | /* Driver entry point to switch to the target frequency */ | |
0e64a0c9 DJ |
1125 | static int powernowk8_target(struct cpufreq_policy *pol, |
1126 | unsigned targfreq, unsigned relation) | |
1da177e4 | 1127 | { |
b8cbe7e8 | 1128 | cpumask_var_t oldmask; |
2c6b8c03 | 1129 | struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); |
9180053c AB |
1130 | u32 checkfid; |
1131 | u32 checkvid; | |
1da177e4 LT |
1132 | unsigned int newstate; |
1133 | int ret = -EIO; | |
1134 | ||
4211a303 JS |
1135 | if (!data) |
1136 | return -EINVAL; | |
1137 | ||
9180053c AB |
1138 | checkfid = data->currfid; |
1139 | checkvid = data->currvid; | |
1140 | ||
b8cbe7e8 RR |
1141 | /* only run on specific CPU from here on. */ |
1142 | /* This is poor form: use a workqueue or smp_call_function_single */ | |
1143 | if (!alloc_cpumask_var(&oldmask, GFP_KERNEL)) | |
1144 | return -ENOMEM; | |
1145 | ||
a4636818 | 1146 | cpumask_copy(oldmask, tsk_cpus_allowed(current)); |
b8cbe7e8 | 1147 | set_cpus_allowed_ptr(current, cpumask_of(pol->cpu)); |
1da177e4 LT |
1148 | |
1149 | if (smp_processor_id() != pol->cpu) { | |
8aae8284 | 1150 | printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu); |
1da177e4 LT |
1151 | goto err_out; |
1152 | } | |
1153 | ||
1154 | if (pending_bit_stuck()) { | |
1155 | printk(KERN_ERR PFX "failing targ, change pending bit set\n"); | |
1156 | goto err_out; | |
1157 | } | |
1158 | ||
2d06d8c4 | 1159 | pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n", |
1da177e4 LT |
1160 | pol->cpu, targfreq, pol->min, pol->max, relation); |
1161 | ||
83844510 | 1162 | if (query_current_values_with_pending_wait(data)) |
1da177e4 | 1163 | goto err_out; |
1da177e4 | 1164 | |
c5829cd0 | 1165 | if (cpu_family != CPU_HW_PSTATE) { |
2d06d8c4 | 1166 | pr_debug("targ: curr fid 0x%x, vid 0x%x\n", |
1da177e4 LT |
1167 | data->currfid, data->currvid); |
1168 | ||
0e64a0c9 DJ |
1169 | if ((checkvid != data->currvid) || |
1170 | (checkfid != data->currfid)) { | |
1f729e06 | 1171 | printk(KERN_INFO PFX |
0e64a0c9 DJ |
1172 | "error - out of sync, fix 0x%x 0x%x, " |
1173 | "vid 0x%x 0x%x\n", | |
1174 | checkfid, data->currfid, | |
1175 | checkvid, data->currvid); | |
1f729e06 | 1176 | } |
1da177e4 LT |
1177 | } |
1178 | ||
0e64a0c9 DJ |
1179 | if (cpufreq_frequency_table_target(pol, data->powernow_table, |
1180 | targfreq, relation, &newstate)) | |
1da177e4 LT |
1181 | goto err_out; |
1182 | ||
14cc3e2b | 1183 | mutex_lock(&fidvid_mutex); |
065b807c | 1184 | |
1da177e4 LT |
1185 | powernow_k8_acpi_pst_values(data, newstate); |
1186 | ||
e7bdd7a5 | 1187 | if (cpu_family == CPU_HW_PSTATE) |
1f729e06 DJ |
1188 | ret = transition_frequency_pstate(data, newstate); |
1189 | else | |
1190 | ret = transition_frequency_fidvid(data, newstate); | |
1191 | if (ret) { | |
1da177e4 LT |
1192 | printk(KERN_ERR PFX "transition frequency failed\n"); |
1193 | ret = 1; | |
14cc3e2b | 1194 | mutex_unlock(&fidvid_mutex); |
1da177e4 LT |
1195 | goto err_out; |
1196 | } | |
14cc3e2b | 1197 | mutex_unlock(&fidvid_mutex); |
065b807c | 1198 | |
e7bdd7a5 | 1199 | if (cpu_family == CPU_HW_PSTATE) |
0e64a0c9 DJ |
1200 | pol->cur = find_khz_freq_from_pstate(data->powernow_table, |
1201 | newstate); | |
1f729e06 DJ |
1202 | else |
1203 | pol->cur = find_khz_freq_from_fid(data->currfid); | |
1da177e4 LT |
1204 | ret = 0; |
1205 | ||
1206 | err_out: | |
b8cbe7e8 RR |
1207 | set_cpus_allowed_ptr(current, oldmask); |
1208 | free_cpumask_var(oldmask); | |
1da177e4 LT |
1209 | return ret; |
1210 | } | |
1211 | ||
1212 | /* Driver entry point to verify the policy and range of frequencies */ | |
1213 | static int powernowk8_verify(struct cpufreq_policy *pol) | |
1214 | { | |
2c6b8c03 | 1215 | struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); |
1da177e4 | 1216 | |
4211a303 JS |
1217 | if (!data) |
1218 | return -EINVAL; | |
1219 | ||
1da177e4 LT |
1220 | return cpufreq_frequency_table_verify(pol, data->powernow_table); |
1221 | } | |
1222 | ||
1ff6e97f RR |
1223 | struct init_on_cpu { |
1224 | struct powernow_k8_data *data; | |
1225 | int rc; | |
1226 | }; | |
1227 | ||
1228 | static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu) | |
1229 | { | |
1230 | struct init_on_cpu *init_on_cpu = _init_on_cpu; | |
1231 | ||
1232 | if (pending_bit_stuck()) { | |
1233 | printk(KERN_ERR PFX "failing init, change pending bit set\n"); | |
1234 | init_on_cpu->rc = -ENODEV; | |
1235 | return; | |
1236 | } | |
1237 | ||
1238 | if (query_current_values_with_pending_wait(init_on_cpu->data)) { | |
1239 | init_on_cpu->rc = -ENODEV; | |
1240 | return; | |
1241 | } | |
1242 | ||
1243 | if (cpu_family == CPU_OPTERON) | |
1244 | fidvid_msr_init(); | |
1245 | ||
1246 | init_on_cpu->rc = 0; | |
1247 | } | |
1248 | ||
1da177e4 | 1249 | /* per CPU init entry point to the driver */ |
aa41eb99 | 1250 | static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol) |
1da177e4 | 1251 | { |
b394f1df AM |
1252 | static const char ACPI_PSS_BIOS_BUG_MSG[] = |
1253 | KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n" | |
ad361c98 | 1254 | FW_BUG PFX "Try again with latest BIOS.\n"; |
1da177e4 | 1255 | struct powernow_k8_data *data; |
1ff6e97f | 1256 | struct init_on_cpu init_on_cpu; |
d7fa706c | 1257 | int rc; |
a2fed573 | 1258 | struct cpuinfo_x86 *c = &cpu_data(pol->cpu); |
1da177e4 | 1259 | |
8aae8284 JS |
1260 | if (!cpu_online(pol->cpu)) |
1261 | return -ENODEV; | |
1262 | ||
1ff6e97f RR |
1263 | smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1); |
1264 | if (rc) | |
1da177e4 LT |
1265 | return -ENODEV; |
1266 | ||
bfdc708d | 1267 | data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL); |
1da177e4 LT |
1268 | if (!data) { |
1269 | printk(KERN_ERR PFX "unable to alloc powernow_k8_data"); | |
1270 | return -ENOMEM; | |
1271 | } | |
1da177e4 LT |
1272 | |
1273 | data->cpu = pol->cpu; | |
a266d9f1 | 1274 | data->currpstate = HW_PSTATE_INVALID; |
1da177e4 | 1275 | |
a0abd520 | 1276 | if (powernow_k8_cpu_init_acpi(data)) { |
1da177e4 | 1277 | /* |
0d2eb44f | 1278 | * Use the PSB BIOS structure. This is only available on |
1da177e4 LT |
1279 | * an UP version, and is deprecated by AMD. |
1280 | */ | |
9ed059e1 | 1281 | if (num_online_cpus() != 1) { |
df182977 | 1282 | printk_once(ACPI_PSS_BIOS_BUG_MSG); |
0cb8bc25 | 1283 | goto err_out; |
1da177e4 LT |
1284 | } |
1285 | if (pol->cpu != 0) { | |
2fd47094 TR |
1286 | printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for " |
1287 | "CPU other than CPU0. Complain to your BIOS " | |
1288 | "vendor.\n"); | |
0cb8bc25 | 1289 | goto err_out; |
1da177e4 LT |
1290 | } |
1291 | rc = find_psb_table(data); | |
0cb8bc25 DJ |
1292 | if (rc) |
1293 | goto err_out; | |
1294 | ||
732553e5 ML |
1295 | /* Take a crude guess here. |
1296 | * That guess was in microseconds, so multiply with 1000 */ | |
1297 | pol->cpuinfo.transition_latency = ( | |
1298 | ((data->rvo + 8) * data->vstable * VST_UNITS_20US) + | |
1299 | ((1 << data->irt) * 30)) * 1000; | |
1300 | } else /* ACPI _PSS objects available */ | |
1301 | pol->cpuinfo.transition_latency = get_transition_latency(data); | |
1da177e4 LT |
1302 | |
1303 | /* only run on specific CPU from here on */ | |
1ff6e97f RR |
1304 | init_on_cpu.data = data; |
1305 | smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu, | |
1306 | &init_on_cpu, 1); | |
1307 | rc = init_on_cpu.rc; | |
1308 | if (rc != 0) | |
1309 | goto err_out_exit_acpi; | |
1da177e4 | 1310 | |
f607e3a0 | 1311 | if (cpu_family == CPU_HW_PSTATE) |
835481d9 | 1312 | cpumask_copy(pol->cpus, cpumask_of(pol->cpu)); |
f607e3a0 | 1313 | else |
7ad728f9 | 1314 | cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu)); |
835481d9 | 1315 | data->available_cores = pol->cpus; |
1da177e4 | 1316 | |
e7bdd7a5 | 1317 | if (cpu_family == CPU_HW_PSTATE) |
0e64a0c9 DJ |
1318 | pol->cur = find_khz_freq_from_pstate(data->powernow_table, |
1319 | data->currpstate); | |
1f729e06 DJ |
1320 | else |
1321 | pol->cur = find_khz_freq_from_fid(data->currfid); | |
2d06d8c4 | 1322 | pr_debug("policy current frequency %d kHz\n", pol->cur); |
1da177e4 LT |
1323 | |
1324 | /* min/max the cpu is capable of */ | |
1325 | if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) { | |
2fd47094 | 1326 | printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n"); |
1da177e4 LT |
1327 | powernow_k8_cpu_exit_acpi(data); |
1328 | kfree(data->powernow_table); | |
1329 | kfree(data); | |
1330 | return -EINVAL; | |
1331 | } | |
1332 | ||
a2fed573 ML |
1333 | /* Check for APERF/MPERF support in hardware */ |
1334 | if (cpu_has(c, X86_FEATURE_APERFMPERF)) | |
1335 | cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf; | |
1336 | ||
1da177e4 LT |
1337 | cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu); |
1338 | ||
e7bdd7a5 | 1339 | if (cpu_family == CPU_HW_PSTATE) |
2d06d8c4 | 1340 | pr_debug("cpu_init done, current pstate 0x%x\n", |
0e64a0c9 | 1341 | data->currpstate); |
1f729e06 | 1342 | else |
2d06d8c4 | 1343 | pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n", |
1f729e06 | 1344 | data->currfid, data->currvid); |
1da177e4 | 1345 | |
2c6b8c03 | 1346 | per_cpu(powernow_data, pol->cpu) = data; |
1da177e4 LT |
1347 | |
1348 | return 0; | |
1349 | ||
1ff6e97f | 1350 | err_out_exit_acpi: |
1da177e4 LT |
1351 | powernow_k8_cpu_exit_acpi(data); |
1352 | ||
0cb8bc25 | 1353 | err_out: |
1da177e4 LT |
1354 | kfree(data); |
1355 | return -ENODEV; | |
1356 | } | |
1357 | ||
0e64a0c9 | 1358 | static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol) |
1da177e4 | 1359 | { |
2c6b8c03 | 1360 | struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); |
1da177e4 LT |
1361 | |
1362 | if (!data) | |
1363 | return -EINVAL; | |
1364 | ||
1365 | powernow_k8_cpu_exit_acpi(data); | |
1366 | ||
1367 | cpufreq_frequency_table_put_attr(pol->cpu); | |
1368 | ||
1369 | kfree(data->powernow_table); | |
1370 | kfree(data); | |
557a701c | 1371 | per_cpu(powernow_data, pol->cpu) = NULL; |
1da177e4 LT |
1372 | |
1373 | return 0; | |
1374 | } | |
1375 | ||
1ff6e97f RR |
1376 | static void query_values_on_cpu(void *_err) |
1377 | { | |
1378 | int *err = _err; | |
0a3aee0d | 1379 | struct powernow_k8_data *data = __this_cpu_read(powernow_data); |
1ff6e97f RR |
1380 | |
1381 | *err = query_current_values_with_pending_wait(data); | |
1382 | } | |
1383 | ||
0e64a0c9 | 1384 | static unsigned int powernowk8_get(unsigned int cpu) |
1da177e4 | 1385 | { |
e15bc455 | 1386 | struct powernow_k8_data *data = per_cpu(powernow_data, cpu); |
1da177e4 | 1387 | unsigned int khz = 0; |
1ff6e97f | 1388 | int err; |
eef5167e JS |
1389 | |
1390 | if (!data) | |
557a701c | 1391 | return 0; |
eef5167e | 1392 | |
1ff6e97f RR |
1393 | smp_call_function_single(cpu, query_values_on_cpu, &err, true); |
1394 | if (err) | |
1da177e4 LT |
1395 | goto out; |
1396 | ||
58389a86 | 1397 | if (cpu_family == CPU_HW_PSTATE) |
fc0e4748 MT |
1398 | khz = find_khz_freq_from_pstate(data->powernow_table, |
1399 | data->currpstate); | |
58389a86 JD |
1400 | else |
1401 | khz = find_khz_freq_from_fid(data->currfid); | |
1402 | ||
1da177e4 | 1403 | |
b9111b7b | 1404 | out: |
1da177e4 LT |
1405 | return khz; |
1406 | } | |
1407 | ||
73860c6b BP |
1408 | static void _cpb_toggle_msrs(bool t) |
1409 | { | |
1410 | int cpu; | |
1411 | ||
1412 | get_online_cpus(); | |
1413 | ||
1414 | rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs); | |
1415 | ||
1416 | for_each_cpu(cpu, cpu_online_mask) { | |
1417 | struct msr *reg = per_cpu_ptr(msrs, cpu); | |
1418 | if (t) | |
1419 | reg->l &= ~BIT(25); | |
1420 | else | |
1421 | reg->l |= BIT(25); | |
1422 | } | |
1423 | wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs); | |
1424 | ||
1425 | put_online_cpus(); | |
1426 | } | |
1427 | ||
1428 | /* | |
1429 | * Switch on/off core performance boosting. | |
1430 | * | |
1431 | * 0=disable | |
1432 | * 1=enable. | |
1433 | */ | |
1434 | static void cpb_toggle(bool t) | |
1435 | { | |
1436 | if (!cpb_capable) | |
1437 | return; | |
1438 | ||
1439 | if (t && !cpb_enabled) { | |
1440 | cpb_enabled = true; | |
1441 | _cpb_toggle_msrs(t); | |
1442 | printk(KERN_INFO PFX "Core Boosting enabled.\n"); | |
1443 | } else if (!t && cpb_enabled) { | |
1444 | cpb_enabled = false; | |
1445 | _cpb_toggle_msrs(t); | |
1446 | printk(KERN_INFO PFX "Core Boosting disabled.\n"); | |
1447 | } | |
1448 | } | |
1449 | ||
1450 | static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf, | |
1451 | size_t count) | |
1452 | { | |
1453 | int ret = -EINVAL; | |
1454 | unsigned long val = 0; | |
1455 | ||
1456 | ret = strict_strtoul(buf, 10, &val); | |
1457 | if (!ret && (val == 0 || val == 1) && cpb_capable) | |
1458 | cpb_toggle(val); | |
1459 | else | |
1460 | return -EINVAL; | |
1461 | ||
1462 | return count; | |
1463 | } | |
1464 | ||
1465 | static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf) | |
1466 | { | |
1467 | return sprintf(buf, "%u\n", cpb_enabled); | |
1468 | } | |
1469 | ||
1470 | #define define_one_rw(_name) \ | |
1471 | static struct freq_attr _name = \ | |
1472 | __ATTR(_name, 0644, show_##_name, store_##_name) | |
1473 | ||
1474 | define_one_rw(cpb); | |
1475 | ||
0e64a0c9 | 1476 | static struct freq_attr *powernow_k8_attr[] = { |
1da177e4 | 1477 | &cpufreq_freq_attr_scaling_available_freqs, |
73860c6b | 1478 | &cpb, |
1da177e4 LT |
1479 | NULL, |
1480 | }; | |
1481 | ||
221dee28 | 1482 | static struct cpufreq_driver cpufreq_amd64_driver = { |
e2f74f35 TR |
1483 | .verify = powernowk8_verify, |
1484 | .target = powernowk8_target, | |
1485 | .bios_limit = acpi_processor_get_bios_limit, | |
1486 | .init = powernowk8_cpu_init, | |
1487 | .exit = __devexit_p(powernowk8_cpu_exit), | |
1488 | .get = powernowk8_get, | |
1489 | .name = "powernow-k8", | |
1490 | .owner = THIS_MODULE, | |
1491 | .attr = powernow_k8_attr, | |
1da177e4 LT |
1492 | }; |
1493 | ||
73860c6b BP |
1494 | /* |
1495 | * Clear the boost-disable flag on the CPU_DOWN path so that this cpu | |
1496 | * cannot block the remaining ones from boosting. On the CPU_UP path we | |
1497 | * simply keep the boost-disable flag in sync with the current global | |
1498 | * state. | |
1499 | */ | |
fe501f1e BP |
1500 | static int cpb_notify(struct notifier_block *nb, unsigned long action, |
1501 | void *hcpu) | |
73860c6b BP |
1502 | { |
1503 | unsigned cpu = (long)hcpu; | |
1504 | u32 lo, hi; | |
1505 | ||
1506 | switch (action) { | |
1507 | case CPU_UP_PREPARE: | |
1508 | case CPU_UP_PREPARE_FROZEN: | |
1509 | ||
1510 | if (!cpb_enabled) { | |
1511 | rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); | |
1512 | lo |= BIT(25); | |
1513 | wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi); | |
1514 | } | |
1515 | break; | |
1516 | ||
1517 | case CPU_DOWN_PREPARE: | |
1518 | case CPU_DOWN_PREPARE_FROZEN: | |
1519 | rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); | |
1520 | lo &= ~BIT(25); | |
1521 | wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi); | |
1522 | break; | |
1523 | ||
1524 | default: | |
1525 | break; | |
1526 | } | |
1527 | ||
1528 | return NOTIFY_OK; | |
1529 | } | |
1530 | ||
fe501f1e | 1531 | static struct notifier_block cpb_nb = { |
73860c6b BP |
1532 | .notifier_call = cpb_notify, |
1533 | }; | |
1534 | ||
1da177e4 | 1535 | /* driver entry point for init */ |
aa41eb99 | 1536 | static int __cpuinit powernowk8_init(void) |
1da177e4 | 1537 | { |
73860c6b | 1538 | unsigned int i, supported_cpus = 0, cpu; |
ac818314 | 1539 | int rv; |
1da177e4 | 1540 | |
a7201156 | 1541 | for_each_online_cpu(i) { |
1ff6e97f RR |
1542 | int rc; |
1543 | smp_call_function_single(i, check_supported_cpu, &rc, 1); | |
1544 | if (rc == 0) | |
1da177e4 LT |
1545 | supported_cpus++; |
1546 | } | |
1547 | ||
73860c6b BP |
1548 | if (supported_cpus != num_online_cpus()) |
1549 | return -ENODEV; | |
1550 | ||
1551 | printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n", | |
1552 | num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus); | |
1553 | ||
1554 | if (boot_cpu_has(X86_FEATURE_CPB)) { | |
1555 | ||
1556 | cpb_capable = true; | |
1557 | ||
73860c6b BP |
1558 | msrs = msrs_alloc(); |
1559 | if (!msrs) { | |
1560 | printk(KERN_ERR "%s: Error allocating msrs!\n", __func__); | |
1561 | return -ENOMEM; | |
1562 | } | |
1563 | ||
a536b126 DJ |
1564 | register_cpu_notifier(&cpb_nb); |
1565 | ||
73860c6b BP |
1566 | rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs); |
1567 | ||
1568 | for_each_cpu(cpu, cpu_online_mask) { | |
1569 | struct msr *reg = per_cpu_ptr(msrs, cpu); | |
1570 | cpb_enabled |= !(!!(reg->l & BIT(25))); | |
1571 | } | |
1572 | ||
1573 | printk(KERN_INFO PFX "Core Performance Boosting: %s.\n", | |
1574 | (cpb_enabled ? "on" : "off")); | |
1da177e4 LT |
1575 | } |
1576 | ||
ac818314 NB |
1577 | rv = cpufreq_register_driver(&cpufreq_amd64_driver); |
1578 | if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) { | |
1579 | unregister_cpu_notifier(&cpb_nb); | |
1580 | msrs_free(msrs); | |
1581 | msrs = NULL; | |
1582 | } | |
1583 | return rv; | |
1da177e4 LT |
1584 | } |
1585 | ||
1586 | /* driver entry point for term */ | |
1587 | static void __exit powernowk8_exit(void) | |
1588 | { | |
2d06d8c4 | 1589 | pr_debug("exit\n"); |
1da177e4 | 1590 | |
73860c6b BP |
1591 | if (boot_cpu_has(X86_FEATURE_CPB)) { |
1592 | msrs_free(msrs); | |
1593 | msrs = NULL; | |
1594 | ||
1595 | unregister_cpu_notifier(&cpb_nb); | |
1596 | } | |
1597 | ||
1da177e4 LT |
1598 | cpufreq_unregister_driver(&cpufreq_amd64_driver); |
1599 | } | |
1600 | ||
0e64a0c9 DJ |
1601 | MODULE_AUTHOR("Paul Devriendt <[email protected]> and " |
1602 | "Mark Langsdorf <[email protected]>"); | |
1da177e4 LT |
1603 | MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver."); |
1604 | MODULE_LICENSE("GPL"); | |
1605 | ||
1606 | late_initcall(powernowk8_init); | |
1607 | module_exit(powernowk8_exit); |