]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 LT |
2 | /* |
3 | * linux/mm/slab.c | |
4 | * Written by Mark Hemment, 1996/97. | |
5 | * ([email protected]) | |
6 | * | |
7 | * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli | |
8 | * | |
9 | * Major cleanup, different bufctl logic, per-cpu arrays | |
10 | * (c) 2000 Manfred Spraul | |
11 | * | |
12 | * Cleanup, make the head arrays unconditional, preparation for NUMA | |
13 | * (c) 2002 Manfred Spraul | |
14 | * | |
15 | * An implementation of the Slab Allocator as described in outline in; | |
16 | * UNIX Internals: The New Frontiers by Uresh Vahalia | |
17 | * Pub: Prentice Hall ISBN 0-13-101908-2 | |
18 | * or with a little more detail in; | |
19 | * The Slab Allocator: An Object-Caching Kernel Memory Allocator | |
20 | * Jeff Bonwick (Sun Microsystems). | |
21 | * Presented at: USENIX Summer 1994 Technical Conference | |
22 | * | |
23 | * The memory is organized in caches, one cache for each object type. | |
24 | * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) | |
25 | * Each cache consists out of many slabs (they are small (usually one | |
26 | * page long) and always contiguous), and each slab contains multiple | |
27 | * initialized objects. | |
28 | * | |
29 | * This means, that your constructor is used only for newly allocated | |
183ff22b | 30 | * slabs and you must pass objects with the same initializations to |
1da177e4 LT |
31 | * kmem_cache_free. |
32 | * | |
33 | * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, | |
34 | * normal). If you need a special memory type, then must create a new | |
35 | * cache for that memory type. | |
36 | * | |
37 | * In order to reduce fragmentation, the slabs are sorted in 3 groups: | |
38 | * full slabs with 0 free objects | |
39 | * partial slabs | |
40 | * empty slabs with no allocated objects | |
41 | * | |
42 | * If partial slabs exist, then new allocations come from these slabs, | |
43 | * otherwise from empty slabs or new slabs are allocated. | |
44 | * | |
45 | * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache | |
46 | * during kmem_cache_destroy(). The caller must prevent concurrent allocs. | |
47 | * | |
48 | * Each cache has a short per-cpu head array, most allocs | |
49 | * and frees go into that array, and if that array overflows, then 1/2 | |
50 | * of the entries in the array are given back into the global cache. | |
51 | * The head array is strictly LIFO and should improve the cache hit rates. | |
52 | * On SMP, it additionally reduces the spinlock operations. | |
53 | * | |
a737b3e2 | 54 | * The c_cpuarray may not be read with enabled local interrupts - |
1da177e4 LT |
55 | * it's changed with a smp_call_function(). |
56 | * | |
57 | * SMP synchronization: | |
58 | * constructors and destructors are called without any locking. | |
343e0d7a | 59 | * Several members in struct kmem_cache and struct slab never change, they |
1da177e4 LT |
60 | * are accessed without any locking. |
61 | * The per-cpu arrays are never accessed from the wrong cpu, no locking, | |
62 | * and local interrupts are disabled so slab code is preempt-safe. | |
63 | * The non-constant members are protected with a per-cache irq spinlock. | |
64 | * | |
65 | * Many thanks to Mark Hemment, who wrote another per-cpu slab patch | |
66 | * in 2000 - many ideas in the current implementation are derived from | |
67 | * his patch. | |
68 | * | |
69 | * Further notes from the original documentation: | |
70 | * | |
71 | * 11 April '97. Started multi-threading - markhe | |
18004c5d | 72 | * The global cache-chain is protected by the mutex 'slab_mutex'. |
1da177e4 LT |
73 | * The sem is only needed when accessing/extending the cache-chain, which |
74 | * can never happen inside an interrupt (kmem_cache_create(), | |
75 | * kmem_cache_shrink() and kmem_cache_reap()). | |
76 | * | |
77 | * At present, each engine can be growing a cache. This should be blocked. | |
78 | * | |
e498be7d CL |
79 | * 15 March 2005. NUMA slab allocator. |
80 | * Shai Fultheim <[email protected]>. | |
81 | * Shobhit Dayal <[email protected]> | |
82 | * Alok N Kataria <[email protected]> | |
83 | * Christoph Lameter <[email protected]> | |
84 | * | |
85 | * Modified the slab allocator to be node aware on NUMA systems. | |
86 | * Each node has its own list of partial, free and full slabs. | |
87 | * All object allocations for a node occur from node specific slab lists. | |
1da177e4 LT |
88 | */ |
89 | ||
1da177e4 LT |
90 | #include <linux/slab.h> |
91 | #include <linux/mm.h> | |
c9cf5528 | 92 | #include <linux/poison.h> |
1da177e4 LT |
93 | #include <linux/swap.h> |
94 | #include <linux/cache.h> | |
95 | #include <linux/interrupt.h> | |
96 | #include <linux/init.h> | |
97 | #include <linux/compiler.h> | |
101a5001 | 98 | #include <linux/cpuset.h> |
a0ec95a8 | 99 | #include <linux/proc_fs.h> |
1da177e4 LT |
100 | #include <linux/seq_file.h> |
101 | #include <linux/notifier.h> | |
102 | #include <linux/kallsyms.h> | |
d3fb45f3 | 103 | #include <linux/kfence.h> |
1da177e4 LT |
104 | #include <linux/cpu.h> |
105 | #include <linux/sysctl.h> | |
106 | #include <linux/module.h> | |
107 | #include <linux/rcupdate.h> | |
543537bd | 108 | #include <linux/string.h> |
138ae663 | 109 | #include <linux/uaccess.h> |
e498be7d | 110 | #include <linux/nodemask.h> |
d5cff635 | 111 | #include <linux/kmemleak.h> |
dc85da15 | 112 | #include <linux/mempolicy.h> |
fc0abb14 | 113 | #include <linux/mutex.h> |
8a8b6502 | 114 | #include <linux/fault-inject.h> |
e7eebaf6 | 115 | #include <linux/rtmutex.h> |
6a2d7a95 | 116 | #include <linux/reciprocal_div.h> |
3ac7fe5a | 117 | #include <linux/debugobjects.h> |
8f9f8d9e | 118 | #include <linux/memory.h> |
268bb0ce | 119 | #include <linux/prefetch.h> |
3f8c2452 | 120 | #include <linux/sched/task_stack.h> |
1da177e4 | 121 | |
381760ea MG |
122 | #include <net/sock.h> |
123 | ||
1da177e4 LT |
124 | #include <asm/cacheflush.h> |
125 | #include <asm/tlbflush.h> | |
126 | #include <asm/page.h> | |
127 | ||
4dee6b64 SR |
128 | #include <trace/events/kmem.h> |
129 | ||
072bb0aa MG |
130 | #include "internal.h" |
131 | ||
b9ce5ef4 GC |
132 | #include "slab.h" |
133 | ||
1da177e4 | 134 | /* |
50953fe9 | 135 | * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. |
1da177e4 LT |
136 | * 0 for faster, smaller code (especially in the critical paths). |
137 | * | |
138 | * STATS - 1 to collect stats for /proc/slabinfo. | |
139 | * 0 for faster, smaller code (especially in the critical paths). | |
140 | * | |
141 | * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) | |
142 | */ | |
143 | ||
144 | #ifdef CONFIG_DEBUG_SLAB | |
145 | #define DEBUG 1 | |
146 | #define STATS 1 | |
147 | #define FORCED_DEBUG 1 | |
148 | #else | |
149 | #define DEBUG 0 | |
150 | #define STATS 0 | |
151 | #define FORCED_DEBUG 0 | |
152 | #endif | |
153 | ||
1da177e4 LT |
154 | /* Shouldn't this be in a header file somewhere? */ |
155 | #define BYTES_PER_WORD sizeof(void *) | |
87a927c7 | 156 | #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) |
1da177e4 | 157 | |
1da177e4 LT |
158 | #ifndef ARCH_KMALLOC_FLAGS |
159 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | |
160 | #endif | |
161 | ||
f315e3fa JK |
162 | #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ |
163 | <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) | |
164 | ||
165 | #if FREELIST_BYTE_INDEX | |
166 | typedef unsigned char freelist_idx_t; | |
167 | #else | |
168 | typedef unsigned short freelist_idx_t; | |
169 | #endif | |
170 | ||
30321c7b | 171 | #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) |
f315e3fa | 172 | |
1da177e4 LT |
173 | /* |
174 | * struct array_cache | |
175 | * | |
1da177e4 LT |
176 | * Purpose: |
177 | * - LIFO ordering, to hand out cache-warm objects from _alloc | |
178 | * - reduce the number of linked list operations | |
179 | * - reduce spinlock operations | |
180 | * | |
181 | * The limit is stored in the per-cpu structure to reduce the data cache | |
182 | * footprint. | |
183 | * | |
184 | */ | |
185 | struct array_cache { | |
186 | unsigned int avail; | |
187 | unsigned int limit; | |
188 | unsigned int batchcount; | |
189 | unsigned int touched; | |
bda5b655 | 190 | void *entry[]; /* |
a737b3e2 AM |
191 | * Must have this definition in here for the proper |
192 | * alignment of array_cache. Also simplifies accessing | |
193 | * the entries. | |
a737b3e2 | 194 | */ |
1da177e4 LT |
195 | }; |
196 | ||
c8522a3a JK |
197 | struct alien_cache { |
198 | spinlock_t lock; | |
199 | struct array_cache ac; | |
200 | }; | |
201 | ||
e498be7d CL |
202 | /* |
203 | * Need this for bootstrapping a per node allocator. | |
204 | */ | |
bf0dea23 | 205 | #define NUM_INIT_LISTS (2 * MAX_NUMNODES) |
ce8eb6c4 | 206 | static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; |
e498be7d | 207 | #define CACHE_CACHE 0 |
bf0dea23 | 208 | #define SIZE_NODE (MAX_NUMNODES) |
e498be7d | 209 | |
ed11d9eb | 210 | static int drain_freelist(struct kmem_cache *cache, |
ce8eb6c4 | 211 | struct kmem_cache_node *n, int tofree); |
ed11d9eb | 212 | static void free_block(struct kmem_cache *cachep, void **objpp, int len, |
97654dfa JK |
213 | int node, struct list_head *list); |
214 | static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); | |
83b519e8 | 215 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); |
65f27f38 | 216 | static void cache_reap(struct work_struct *unused); |
ed11d9eb | 217 | |
76b342bd JK |
218 | static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, |
219 | void **list); | |
220 | static inline void fixup_slab_list(struct kmem_cache *cachep, | |
7981e67e | 221 | struct kmem_cache_node *n, struct slab *slab, |
76b342bd | 222 | void **list); |
e0a42726 | 223 | |
ce8eb6c4 | 224 | #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) |
1da177e4 | 225 | |
ce8eb6c4 | 226 | static void kmem_cache_node_init(struct kmem_cache_node *parent) |
e498be7d CL |
227 | { |
228 | INIT_LIST_HEAD(&parent->slabs_full); | |
229 | INIT_LIST_HEAD(&parent->slabs_partial); | |
230 | INIT_LIST_HEAD(&parent->slabs_free); | |
bf00bd34 | 231 | parent->total_slabs = 0; |
f728b0a5 | 232 | parent->free_slabs = 0; |
e498be7d CL |
233 | parent->shared = NULL; |
234 | parent->alien = NULL; | |
2e1217cf | 235 | parent->colour_next = 0; |
b539ce9f | 236 | raw_spin_lock_init(&parent->list_lock); |
e498be7d CL |
237 | parent->free_objects = 0; |
238 | parent->free_touched = 0; | |
239 | } | |
240 | ||
a737b3e2 AM |
241 | #define MAKE_LIST(cachep, listp, slab, nodeid) \ |
242 | do { \ | |
243 | INIT_LIST_HEAD(listp); \ | |
18bf8541 | 244 | list_splice(&get_node(cachep, nodeid)->slab, listp); \ |
e498be7d CL |
245 | } while (0) |
246 | ||
a737b3e2 AM |
247 | #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ |
248 | do { \ | |
e498be7d CL |
249 | MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ |
250 | MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ | |
251 | MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ | |
252 | } while (0) | |
1da177e4 | 253 | |
4fd0b46e AD |
254 | #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) |
255 | #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) | |
b03a017b | 256 | #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) |
1da177e4 LT |
257 | #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) |
258 | ||
259 | #define BATCHREFILL_LIMIT 16 | |
a737b3e2 | 260 | /* |
f0953a1b | 261 | * Optimization question: fewer reaps means less probability for unnecessary |
a737b3e2 | 262 | * cpucache drain/refill cycles. |
1da177e4 | 263 | * |
dc6f3f27 | 264 | * OTOH the cpuarrays can contain lots of objects, |
1da177e4 LT |
265 | * which could lock up otherwise freeable slabs. |
266 | */ | |
5f0985bb JZ |
267 | #define REAPTIMEOUT_AC (2*HZ) |
268 | #define REAPTIMEOUT_NODE (4*HZ) | |
1da177e4 LT |
269 | |
270 | #if STATS | |
271 | #define STATS_INC_ACTIVE(x) ((x)->num_active++) | |
272 | #define STATS_DEC_ACTIVE(x) ((x)->num_active--) | |
273 | #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) | |
274 | #define STATS_INC_GROWN(x) ((x)->grown++) | |
0b411634 | 275 | #define STATS_ADD_REAPED(x, y) ((x)->reaped += (y)) |
a737b3e2 AM |
276 | #define STATS_SET_HIGH(x) \ |
277 | do { \ | |
278 | if ((x)->num_active > (x)->high_mark) \ | |
279 | (x)->high_mark = (x)->num_active; \ | |
280 | } while (0) | |
1da177e4 LT |
281 | #define STATS_INC_ERR(x) ((x)->errors++) |
282 | #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) | |
e498be7d | 283 | #define STATS_INC_NODEFREES(x) ((x)->node_frees++) |
fb7faf33 | 284 | #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) |
a737b3e2 AM |
285 | #define STATS_SET_FREEABLE(x, i) \ |
286 | do { \ | |
287 | if ((x)->max_freeable < i) \ | |
288 | (x)->max_freeable = i; \ | |
289 | } while (0) | |
1da177e4 LT |
290 | #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) |
291 | #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) | |
292 | #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) | |
293 | #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) | |
294 | #else | |
295 | #define STATS_INC_ACTIVE(x) do { } while (0) | |
296 | #define STATS_DEC_ACTIVE(x) do { } while (0) | |
297 | #define STATS_INC_ALLOCED(x) do { } while (0) | |
298 | #define STATS_INC_GROWN(x) do { } while (0) | |
0b411634 | 299 | #define STATS_ADD_REAPED(x, y) do { (void)(y); } while (0) |
1da177e4 LT |
300 | #define STATS_SET_HIGH(x) do { } while (0) |
301 | #define STATS_INC_ERR(x) do { } while (0) | |
302 | #define STATS_INC_NODEALLOCS(x) do { } while (0) | |
e498be7d | 303 | #define STATS_INC_NODEFREES(x) do { } while (0) |
fb7faf33 | 304 | #define STATS_INC_ACOVERFLOW(x) do { } while (0) |
a737b3e2 | 305 | #define STATS_SET_FREEABLE(x, i) do { } while (0) |
1da177e4 LT |
306 | #define STATS_INC_ALLOCHIT(x) do { } while (0) |
307 | #define STATS_INC_ALLOCMISS(x) do { } while (0) | |
308 | #define STATS_INC_FREEHIT(x) do { } while (0) | |
309 | #define STATS_INC_FREEMISS(x) do { } while (0) | |
310 | #endif | |
311 | ||
312 | #if DEBUG | |
1da177e4 | 313 | |
a737b3e2 AM |
314 | /* |
315 | * memory layout of objects: | |
1da177e4 | 316 | * 0 : objp |
3dafccf2 | 317 | * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that |
1da177e4 LT |
318 | * the end of an object is aligned with the end of the real |
319 | * allocation. Catches writes behind the end of the allocation. | |
3dafccf2 | 320 | * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: |
1da177e4 | 321 | * redzone word. |
3dafccf2 | 322 | * cachep->obj_offset: The real object. |
3b0efdfa CL |
323 | * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] |
324 | * cachep->size - 1* BYTES_PER_WORD: last caller address | |
a737b3e2 | 325 | * [BYTES_PER_WORD long] |
1da177e4 | 326 | */ |
343e0d7a | 327 | static int obj_offset(struct kmem_cache *cachep) |
1da177e4 | 328 | { |
3dafccf2 | 329 | return cachep->obj_offset; |
1da177e4 LT |
330 | } |
331 | ||
b46b8f19 | 332 | static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
333 | { |
334 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
0b411634 | 335 | return (unsigned long long *) (objp + obj_offset(cachep) - |
b46b8f19 | 336 | sizeof(unsigned long long)); |
1da177e4 LT |
337 | } |
338 | ||
b46b8f19 | 339 | static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
340 | { |
341 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
342 | if (cachep->flags & SLAB_STORE_USER) | |
3b0efdfa | 343 | return (unsigned long long *)(objp + cachep->size - |
b46b8f19 | 344 | sizeof(unsigned long long) - |
87a927c7 | 345 | REDZONE_ALIGN); |
3b0efdfa | 346 | return (unsigned long long *) (objp + cachep->size - |
b46b8f19 | 347 | sizeof(unsigned long long)); |
1da177e4 LT |
348 | } |
349 | ||
343e0d7a | 350 | static void **dbg_userword(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
351 | { |
352 | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | |
3b0efdfa | 353 | return (void **)(objp + cachep->size - BYTES_PER_WORD); |
1da177e4 LT |
354 | } |
355 | ||
356 | #else | |
357 | ||
3dafccf2 | 358 | #define obj_offset(x) 0 |
b46b8f19 DW |
359 | #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) |
360 | #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) | |
1da177e4 LT |
361 | #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) |
362 | ||
363 | #endif | |
364 | ||
1da177e4 | 365 | /* |
3df1cccd DR |
366 | * Do not go above this order unless 0 objects fit into the slab or |
367 | * overridden on the command line. | |
1da177e4 | 368 | */ |
543585cc DR |
369 | #define SLAB_MAX_ORDER_HI 1 |
370 | #define SLAB_MAX_ORDER_LO 0 | |
371 | static int slab_max_order = SLAB_MAX_ORDER_LO; | |
3df1cccd | 372 | static bool slab_max_order_set __initdata; |
1da177e4 | 373 | |
0b3eb091 | 374 | static inline void *index_to_obj(struct kmem_cache *cache, |
7981e67e | 375 | const struct slab *slab, unsigned int idx) |
8fea4e96 | 376 | { |
7981e67e | 377 | return slab->s_mem + cache->size * idx; |
8fea4e96 PE |
378 | } |
379 | ||
6fb92430 | 380 | #define BOOT_CPUCACHE_ENTRIES 1 |
1da177e4 | 381 | /* internal cache of cache description objs */ |
9b030cb8 | 382 | static struct kmem_cache kmem_cache_boot = { |
b28a02de PE |
383 | .batchcount = 1, |
384 | .limit = BOOT_CPUCACHE_ENTRIES, | |
385 | .shared = 1, | |
3b0efdfa | 386 | .size = sizeof(struct kmem_cache), |
b28a02de | 387 | .name = "kmem_cache", |
1da177e4 LT |
388 | }; |
389 | ||
1871e52c | 390 | static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); |
1da177e4 | 391 | |
343e0d7a | 392 | static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) |
1da177e4 | 393 | { |
bf0dea23 | 394 | return this_cpu_ptr(cachep->cpu_cache); |
1da177e4 LT |
395 | } |
396 | ||
a737b3e2 AM |
397 | /* |
398 | * Calculate the number of objects and left-over bytes for a given buffer size. | |
399 | */ | |
70f75067 | 400 | static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, |
d50112ed | 401 | slab_flags_t flags, size_t *left_over) |
fbaccacf | 402 | { |
70f75067 | 403 | unsigned int num; |
fbaccacf | 404 | size_t slab_size = PAGE_SIZE << gfporder; |
1da177e4 | 405 | |
fbaccacf SR |
406 | /* |
407 | * The slab management structure can be either off the slab or | |
408 | * on it. For the latter case, the memory allocated for a | |
409 | * slab is used for: | |
410 | * | |
fbaccacf | 411 | * - @buffer_size bytes for each object |
2e6b3602 JK |
412 | * - One freelist_idx_t for each object |
413 | * | |
414 | * We don't need to consider alignment of freelist because | |
415 | * freelist will be at the end of slab page. The objects will be | |
416 | * at the correct alignment. | |
fbaccacf SR |
417 | * |
418 | * If the slab management structure is off the slab, then the | |
419 | * alignment will already be calculated into the size. Because | |
420 | * the slabs are all pages aligned, the objects will be at the | |
421 | * correct alignment when allocated. | |
422 | */ | |
b03a017b | 423 | if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { |
70f75067 | 424 | num = slab_size / buffer_size; |
2e6b3602 | 425 | *left_over = slab_size % buffer_size; |
fbaccacf | 426 | } else { |
70f75067 | 427 | num = slab_size / (buffer_size + sizeof(freelist_idx_t)); |
2e6b3602 JK |
428 | *left_over = slab_size % |
429 | (buffer_size + sizeof(freelist_idx_t)); | |
fbaccacf | 430 | } |
70f75067 JK |
431 | |
432 | return num; | |
1da177e4 LT |
433 | } |
434 | ||
f28510d3 | 435 | #if DEBUG |
d40cee24 | 436 | #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) |
1da177e4 | 437 | |
a737b3e2 AM |
438 | static void __slab_error(const char *function, struct kmem_cache *cachep, |
439 | char *msg) | |
1da177e4 | 440 | { |
1170532b | 441 | pr_err("slab error in %s(): cache `%s': %s\n", |
b28a02de | 442 | function, cachep->name, msg); |
1da177e4 | 443 | dump_stack(); |
373d4d09 | 444 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
1da177e4 | 445 | } |
f28510d3 | 446 | #endif |
1da177e4 | 447 | |
3395ee05 PM |
448 | /* |
449 | * By default on NUMA we use alien caches to stage the freeing of | |
450 | * objects allocated from other nodes. This causes massive memory | |
451 | * inefficiencies when using fake NUMA setup to split memory into a | |
452 | * large number of small nodes, so it can be disabled on the command | |
453 | * line | |
454 | */ | |
455 | ||
456 | static int use_alien_caches __read_mostly = 1; | |
457 | static int __init noaliencache_setup(char *s) | |
458 | { | |
459 | use_alien_caches = 0; | |
460 | return 1; | |
461 | } | |
462 | __setup("noaliencache", noaliencache_setup); | |
463 | ||
3df1cccd DR |
464 | static int __init slab_max_order_setup(char *str) |
465 | { | |
466 | get_option(&str, &slab_max_order); | |
467 | slab_max_order = slab_max_order < 0 ? 0 : | |
23baf831 | 468 | min(slab_max_order, MAX_ORDER); |
3df1cccd DR |
469 | slab_max_order_set = true; |
470 | ||
471 | return 1; | |
472 | } | |
473 | __setup("slab_max_order=", slab_max_order_setup); | |
474 | ||
8fce4d8e CL |
475 | #ifdef CONFIG_NUMA |
476 | /* | |
477 | * Special reaping functions for NUMA systems called from cache_reap(). | |
478 | * These take care of doing round robin flushing of alien caches (containing | |
479 | * objects freed on different nodes from which they were allocated) and the | |
480 | * flushing of remote pcps by calling drain_node_pages. | |
481 | */ | |
1871e52c | 482 | static DEFINE_PER_CPU(unsigned long, slab_reap_node); |
8fce4d8e CL |
483 | |
484 | static void init_reap_node(int cpu) | |
485 | { | |
0edaf86c AM |
486 | per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), |
487 | node_online_map); | |
8fce4d8e CL |
488 | } |
489 | ||
490 | static void next_reap_node(void) | |
491 | { | |
909ea964 | 492 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e | 493 | |
0edaf86c | 494 | node = next_node_in(node, node_online_map); |
909ea964 | 495 | __this_cpu_write(slab_reap_node, node); |
8fce4d8e CL |
496 | } |
497 | ||
498 | #else | |
499 | #define init_reap_node(cpu) do { } while (0) | |
500 | #define next_reap_node(void) do { } while (0) | |
501 | #endif | |
502 | ||
1da177e4 LT |
503 | /* |
504 | * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz | |
505 | * via the workqueue/eventd. | |
506 | * Add the CPU number into the expiration time to minimize the possibility of | |
507 | * the CPUs getting into lockstep and contending for the global cache chain | |
508 | * lock. | |
509 | */ | |
0db0628d | 510 | static void start_cpu_timer(int cpu) |
1da177e4 | 511 | { |
1871e52c | 512 | struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); |
1da177e4 | 513 | |
eac0337a | 514 | if (reap_work->work.func == NULL) { |
8fce4d8e | 515 | init_reap_node(cpu); |
203b42f7 | 516 | INIT_DEFERRABLE_WORK(reap_work, cache_reap); |
2b284214 AV |
517 | schedule_delayed_work_on(cpu, reap_work, |
518 | __round_jiffies_relative(HZ, cpu)); | |
1da177e4 LT |
519 | } |
520 | } | |
521 | ||
1fe00d50 | 522 | static void init_arraycache(struct array_cache *ac, int limit, int batch) |
1da177e4 | 523 | { |
1fe00d50 JK |
524 | if (ac) { |
525 | ac->avail = 0; | |
526 | ac->limit = limit; | |
527 | ac->batchcount = batch; | |
528 | ac->touched = 0; | |
1da177e4 | 529 | } |
1fe00d50 JK |
530 | } |
531 | ||
532 | static struct array_cache *alloc_arraycache(int node, int entries, | |
533 | int batchcount, gfp_t gfp) | |
534 | { | |
5e804789 | 535 | size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); |
1fe00d50 JK |
536 | struct array_cache *ac = NULL; |
537 | ||
538 | ac = kmalloc_node(memsize, gfp, node); | |
92d1d07d QC |
539 | /* |
540 | * The array_cache structures contain pointers to free object. | |
541 | * However, when such objects are allocated or transferred to another | |
542 | * cache the pointers are not cleared and they could be counted as | |
543 | * valid references during a kmemleak scan. Therefore, kmemleak must | |
544 | * not scan such objects. | |
545 | */ | |
546 | kmemleak_no_scan(ac); | |
1fe00d50 JK |
547 | init_arraycache(ac, entries, batchcount); |
548 | return ac; | |
1da177e4 LT |
549 | } |
550 | ||
f68f8ddd | 551 | static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, |
7981e67e | 552 | struct slab *slab, void *objp) |
072bb0aa | 553 | { |
f68f8ddd | 554 | struct kmem_cache_node *n; |
7981e67e | 555 | int slab_node; |
f68f8ddd | 556 | LIST_HEAD(list); |
072bb0aa | 557 | |
7981e67e VB |
558 | slab_node = slab_nid(slab); |
559 | n = get_node(cachep, slab_node); | |
381760ea | 560 | |
b539ce9f | 561 | raw_spin_lock(&n->list_lock); |
7981e67e | 562 | free_block(cachep, &objp, 1, slab_node, &list); |
b539ce9f | 563 | raw_spin_unlock(&n->list_lock); |
381760ea | 564 | |
f68f8ddd | 565 | slabs_destroy(cachep, &list); |
072bb0aa MG |
566 | } |
567 | ||
3ded175a CL |
568 | /* |
569 | * Transfer objects in one arraycache to another. | |
570 | * Locking must be handled by the caller. | |
571 | * | |
572 | * Return the number of entries transferred. | |
573 | */ | |
574 | static int transfer_objects(struct array_cache *to, | |
575 | struct array_cache *from, unsigned int max) | |
576 | { | |
577 | /* Figure out how many entries to transfer */ | |
732eacc0 | 578 | int nr = min3(from->avail, max, to->limit - to->avail); |
3ded175a CL |
579 | |
580 | if (!nr) | |
581 | return 0; | |
582 | ||
0b411634 | 583 | memcpy(to->entry + to->avail, from->entry + from->avail - nr, |
3ded175a CL |
584 | sizeof(void *) *nr); |
585 | ||
586 | from->avail -= nr; | |
587 | to->avail += nr; | |
3ded175a CL |
588 | return nr; |
589 | } | |
590 | ||
dabc3e29 KC |
591 | /* &alien->lock must be held by alien callers. */ |
592 | static __always_inline void __free_one(struct array_cache *ac, void *objp) | |
593 | { | |
594 | /* Avoid trivial double-free. */ | |
595 | if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && | |
596 | WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp)) | |
597 | return; | |
598 | ac->entry[ac->avail++] = objp; | |
599 | } | |
600 | ||
765c4507 CL |
601 | #ifndef CONFIG_NUMA |
602 | ||
603 | #define drain_alien_cache(cachep, alien) do { } while (0) | |
ce8eb6c4 | 604 | #define reap_alien(cachep, n) do { } while (0) |
765c4507 | 605 | |
c8522a3a JK |
606 | static inline struct alien_cache **alloc_alien_cache(int node, |
607 | int limit, gfp_t gfp) | |
765c4507 | 608 | { |
8888177e | 609 | return NULL; |
765c4507 CL |
610 | } |
611 | ||
c8522a3a | 612 | static inline void free_alien_cache(struct alien_cache **ac_ptr) |
765c4507 CL |
613 | { |
614 | } | |
615 | ||
616 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |
617 | { | |
618 | return 0; | |
619 | } | |
620 | ||
4167e9b2 DR |
621 | static inline gfp_t gfp_exact_node(gfp_t flags) |
622 | { | |
444eb2a4 | 623 | return flags & ~__GFP_NOFAIL; |
4167e9b2 DR |
624 | } |
625 | ||
765c4507 CL |
626 | #else /* CONFIG_NUMA */ |
627 | ||
c8522a3a JK |
628 | static struct alien_cache *__alloc_alien_cache(int node, int entries, |
629 | int batch, gfp_t gfp) | |
630 | { | |
5e804789 | 631 | size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); |
c8522a3a JK |
632 | struct alien_cache *alc = NULL; |
633 | ||
634 | alc = kmalloc_node(memsize, gfp, node); | |
09c2e76e | 635 | if (alc) { |
92d1d07d | 636 | kmemleak_no_scan(alc); |
09c2e76e CL |
637 | init_arraycache(&alc->ac, entries, batch); |
638 | spin_lock_init(&alc->lock); | |
639 | } | |
c8522a3a JK |
640 | return alc; |
641 | } | |
642 | ||
643 | static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) | |
e498be7d | 644 | { |
c8522a3a | 645 | struct alien_cache **alc_ptr; |
e498be7d CL |
646 | int i; |
647 | ||
648 | if (limit > 1) | |
649 | limit = 12; | |
b9726c26 | 650 | alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node); |
c8522a3a JK |
651 | if (!alc_ptr) |
652 | return NULL; | |
653 | ||
654 | for_each_node(i) { | |
655 | if (i == node || !node_online(i)) | |
656 | continue; | |
657 | alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); | |
658 | if (!alc_ptr[i]) { | |
659 | for (i--; i >= 0; i--) | |
660 | kfree(alc_ptr[i]); | |
661 | kfree(alc_ptr); | |
662 | return NULL; | |
e498be7d CL |
663 | } |
664 | } | |
c8522a3a | 665 | return alc_ptr; |
e498be7d CL |
666 | } |
667 | ||
c8522a3a | 668 | static void free_alien_cache(struct alien_cache **alc_ptr) |
e498be7d CL |
669 | { |
670 | int i; | |
671 | ||
c8522a3a | 672 | if (!alc_ptr) |
e498be7d | 673 | return; |
e498be7d | 674 | for_each_node(i) |
c8522a3a JK |
675 | kfree(alc_ptr[i]); |
676 | kfree(alc_ptr); | |
e498be7d CL |
677 | } |
678 | ||
343e0d7a | 679 | static void __drain_alien_cache(struct kmem_cache *cachep, |
833b706c JK |
680 | struct array_cache *ac, int node, |
681 | struct list_head *list) | |
e498be7d | 682 | { |
18bf8541 | 683 | struct kmem_cache_node *n = get_node(cachep, node); |
e498be7d CL |
684 | |
685 | if (ac->avail) { | |
b539ce9f | 686 | raw_spin_lock(&n->list_lock); |
e00946fe CL |
687 | /* |
688 | * Stuff objects into the remote nodes shared array first. | |
689 | * That way we could avoid the overhead of putting the objects | |
690 | * into the free lists and getting them back later. | |
691 | */ | |
ce8eb6c4 CL |
692 | if (n->shared) |
693 | transfer_objects(n->shared, ac, ac->limit); | |
e00946fe | 694 | |
833b706c | 695 | free_block(cachep, ac->entry, ac->avail, node, list); |
e498be7d | 696 | ac->avail = 0; |
b539ce9f | 697 | raw_spin_unlock(&n->list_lock); |
e498be7d CL |
698 | } |
699 | } | |
700 | ||
8fce4d8e CL |
701 | /* |
702 | * Called from cache_reap() to regularly drain alien caches round robin. | |
703 | */ | |
ce8eb6c4 | 704 | static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) |
8fce4d8e | 705 | { |
909ea964 | 706 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e | 707 | |
ce8eb6c4 | 708 | if (n->alien) { |
c8522a3a JK |
709 | struct alien_cache *alc = n->alien[node]; |
710 | struct array_cache *ac; | |
711 | ||
712 | if (alc) { | |
713 | ac = &alc->ac; | |
49dfc304 | 714 | if (ac->avail && spin_trylock_irq(&alc->lock)) { |
833b706c JK |
715 | LIST_HEAD(list); |
716 | ||
717 | __drain_alien_cache(cachep, ac, node, &list); | |
49dfc304 | 718 | spin_unlock_irq(&alc->lock); |
833b706c | 719 | slabs_destroy(cachep, &list); |
c8522a3a | 720 | } |
8fce4d8e CL |
721 | } |
722 | } | |
723 | } | |
724 | ||
a737b3e2 | 725 | static void drain_alien_cache(struct kmem_cache *cachep, |
c8522a3a | 726 | struct alien_cache **alien) |
e498be7d | 727 | { |
b28a02de | 728 | int i = 0; |
c8522a3a | 729 | struct alien_cache *alc; |
e498be7d CL |
730 | struct array_cache *ac; |
731 | unsigned long flags; | |
732 | ||
733 | for_each_online_node(i) { | |
c8522a3a JK |
734 | alc = alien[i]; |
735 | if (alc) { | |
833b706c JK |
736 | LIST_HEAD(list); |
737 | ||
c8522a3a | 738 | ac = &alc->ac; |
49dfc304 | 739 | spin_lock_irqsave(&alc->lock, flags); |
833b706c | 740 | __drain_alien_cache(cachep, ac, i, &list); |
49dfc304 | 741 | spin_unlock_irqrestore(&alc->lock, flags); |
833b706c | 742 | slabs_destroy(cachep, &list); |
e498be7d CL |
743 | } |
744 | } | |
745 | } | |
729bd0b7 | 746 | |
25c4f304 | 747 | static int __cache_free_alien(struct kmem_cache *cachep, void *objp, |
7981e67e | 748 | int node, int slab_node) |
729bd0b7 | 749 | { |
ce8eb6c4 | 750 | struct kmem_cache_node *n; |
c8522a3a JK |
751 | struct alien_cache *alien = NULL; |
752 | struct array_cache *ac; | |
97654dfa | 753 | LIST_HEAD(list); |
1ca4cb24 | 754 | |
18bf8541 | 755 | n = get_node(cachep, node); |
729bd0b7 | 756 | STATS_INC_NODEFREES(cachep); |
7981e67e VB |
757 | if (n->alien && n->alien[slab_node]) { |
758 | alien = n->alien[slab_node]; | |
c8522a3a | 759 | ac = &alien->ac; |
49dfc304 | 760 | spin_lock(&alien->lock); |
c8522a3a | 761 | if (unlikely(ac->avail == ac->limit)) { |
729bd0b7 | 762 | STATS_INC_ACOVERFLOW(cachep); |
7981e67e | 763 | __drain_alien_cache(cachep, ac, slab_node, &list); |
729bd0b7 | 764 | } |
dabc3e29 | 765 | __free_one(ac, objp); |
49dfc304 | 766 | spin_unlock(&alien->lock); |
833b706c | 767 | slabs_destroy(cachep, &list); |
729bd0b7 | 768 | } else { |
7981e67e | 769 | n = get_node(cachep, slab_node); |
b539ce9f | 770 | raw_spin_lock(&n->list_lock); |
7981e67e | 771 | free_block(cachep, &objp, 1, slab_node, &list); |
b539ce9f | 772 | raw_spin_unlock(&n->list_lock); |
97654dfa | 773 | slabs_destroy(cachep, &list); |
729bd0b7 PE |
774 | } |
775 | return 1; | |
776 | } | |
25c4f304 JK |
777 | |
778 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |
779 | { | |
dd35f71a | 780 | int slab_node = slab_nid(virt_to_slab(objp)); |
25c4f304 JK |
781 | int node = numa_mem_id(); |
782 | /* | |
a8f23dd1 | 783 | * Make sure we are not freeing an object from another node to the array |
25c4f304 JK |
784 | * cache on this cpu. |
785 | */ | |
dd35f71a | 786 | if (likely(node == slab_node)) |
25c4f304 JK |
787 | return 0; |
788 | ||
dd35f71a | 789 | return __cache_free_alien(cachep, objp, node, slab_node); |
25c4f304 | 790 | } |
4167e9b2 DR |
791 | |
792 | /* | |
444eb2a4 MG |
793 | * Construct gfp mask to allocate from a specific node but do not reclaim or |
794 | * warn about failures. | |
4167e9b2 DR |
795 | */ |
796 | static inline gfp_t gfp_exact_node(gfp_t flags) | |
797 | { | |
444eb2a4 | 798 | return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); |
4167e9b2 | 799 | } |
e498be7d CL |
800 | #endif |
801 | ||
ded0ecf6 JK |
802 | static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) |
803 | { | |
804 | struct kmem_cache_node *n; | |
805 | ||
806 | /* | |
807 | * Set up the kmem_cache_node for cpu before we can | |
808 | * begin anything. Make sure some other cpu on this | |
809 | * node has not already allocated this | |
810 | */ | |
811 | n = get_node(cachep, node); | |
812 | if (n) { | |
b539ce9f | 813 | raw_spin_lock_irq(&n->list_lock); |
ded0ecf6 JK |
814 | n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + |
815 | cachep->num; | |
b539ce9f | 816 | raw_spin_unlock_irq(&n->list_lock); |
ded0ecf6 JK |
817 | |
818 | return 0; | |
819 | } | |
820 | ||
821 | n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); | |
822 | if (!n) | |
823 | return -ENOMEM; | |
824 | ||
825 | kmem_cache_node_init(n); | |
826 | n->next_reap = jiffies + REAPTIMEOUT_NODE + | |
827 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
828 | ||
829 | n->free_limit = | |
830 | (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; | |
831 | ||
832 | /* | |
833 | * The kmem_cache_nodes don't come and go as CPUs | |
a8f23dd1 | 834 | * come and go. slab_mutex provides sufficient |
ded0ecf6 JK |
835 | * protection here. |
836 | */ | |
837 | cachep->node[node] = n; | |
838 | ||
839 | return 0; | |
840 | } | |
841 | ||
66a1c22b | 842 | #if defined(CONFIG_NUMA) || defined(CONFIG_SMP) |
8f9f8d9e | 843 | /* |
6a67368c | 844 | * Allocates and initializes node for a node on each slab cache, used for |
ce8eb6c4 | 845 | * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node |
8f9f8d9e | 846 | * will be allocated off-node since memory is not yet online for the new node. |
a8f23dd1 | 847 | * When hotplugging memory or a cpu, existing nodes are not replaced if |
8f9f8d9e DR |
848 | * already in use. |
849 | * | |
18004c5d | 850 | * Must hold slab_mutex. |
8f9f8d9e | 851 | */ |
6a67368c | 852 | static int init_cache_node_node(int node) |
8f9f8d9e | 853 | { |
ded0ecf6 | 854 | int ret; |
8f9f8d9e | 855 | struct kmem_cache *cachep; |
8f9f8d9e | 856 | |
18004c5d | 857 | list_for_each_entry(cachep, &slab_caches, list) { |
ded0ecf6 JK |
858 | ret = init_cache_node(cachep, node, GFP_KERNEL); |
859 | if (ret) | |
860 | return ret; | |
8f9f8d9e | 861 | } |
ded0ecf6 | 862 | |
8f9f8d9e DR |
863 | return 0; |
864 | } | |
6731d4f1 | 865 | #endif |
8f9f8d9e | 866 | |
c3d332b6 JK |
867 | static int setup_kmem_cache_node(struct kmem_cache *cachep, |
868 | int node, gfp_t gfp, bool force_change) | |
869 | { | |
870 | int ret = -ENOMEM; | |
871 | struct kmem_cache_node *n; | |
872 | struct array_cache *old_shared = NULL; | |
873 | struct array_cache *new_shared = NULL; | |
874 | struct alien_cache **new_alien = NULL; | |
875 | LIST_HEAD(list); | |
876 | ||
877 | if (use_alien_caches) { | |
878 | new_alien = alloc_alien_cache(node, cachep->limit, gfp); | |
879 | if (!new_alien) | |
880 | goto fail; | |
881 | } | |
882 | ||
883 | if (cachep->shared) { | |
884 | new_shared = alloc_arraycache(node, | |
885 | cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); | |
886 | if (!new_shared) | |
887 | goto fail; | |
888 | } | |
889 | ||
890 | ret = init_cache_node(cachep, node, gfp); | |
891 | if (ret) | |
892 | goto fail; | |
893 | ||
894 | n = get_node(cachep, node); | |
b539ce9f | 895 | raw_spin_lock_irq(&n->list_lock); |
c3d332b6 JK |
896 | if (n->shared && force_change) { |
897 | free_block(cachep, n->shared->entry, | |
898 | n->shared->avail, node, &list); | |
899 | n->shared->avail = 0; | |
900 | } | |
901 | ||
902 | if (!n->shared || force_change) { | |
903 | old_shared = n->shared; | |
904 | n->shared = new_shared; | |
905 | new_shared = NULL; | |
906 | } | |
907 | ||
908 | if (!n->alien) { | |
909 | n->alien = new_alien; | |
910 | new_alien = NULL; | |
911 | } | |
912 | ||
b539ce9f | 913 | raw_spin_unlock_irq(&n->list_lock); |
c3d332b6 JK |
914 | slabs_destroy(cachep, &list); |
915 | ||
801faf0d JK |
916 | /* |
917 | * To protect lockless access to n->shared during irq disabled context. | |
918 | * If n->shared isn't NULL in irq disabled context, accessing to it is | |
919 | * guaranteed to be valid until irq is re-enabled, because it will be | |
6564a25e | 920 | * freed after synchronize_rcu(). |
801faf0d | 921 | */ |
86d9f485 | 922 | if (old_shared && force_change) |
6564a25e | 923 | synchronize_rcu(); |
801faf0d | 924 | |
c3d332b6 JK |
925 | fail: |
926 | kfree(old_shared); | |
927 | kfree(new_shared); | |
928 | free_alien_cache(new_alien); | |
929 | ||
930 | return ret; | |
931 | } | |
932 | ||
6731d4f1 SAS |
933 | #ifdef CONFIG_SMP |
934 | ||
0db0628d | 935 | static void cpuup_canceled(long cpu) |
fbf1e473 AM |
936 | { |
937 | struct kmem_cache *cachep; | |
ce8eb6c4 | 938 | struct kmem_cache_node *n = NULL; |
7d6e6d09 | 939 | int node = cpu_to_mem(cpu); |
a70f7302 | 940 | const struct cpumask *mask = cpumask_of_node(node); |
fbf1e473 | 941 | |
18004c5d | 942 | list_for_each_entry(cachep, &slab_caches, list) { |
fbf1e473 AM |
943 | struct array_cache *nc; |
944 | struct array_cache *shared; | |
c8522a3a | 945 | struct alien_cache **alien; |
97654dfa | 946 | LIST_HEAD(list); |
fbf1e473 | 947 | |
18bf8541 | 948 | n = get_node(cachep, node); |
ce8eb6c4 | 949 | if (!n) |
bf0dea23 | 950 | continue; |
fbf1e473 | 951 | |
b539ce9f | 952 | raw_spin_lock_irq(&n->list_lock); |
fbf1e473 | 953 | |
ce8eb6c4 CL |
954 | /* Free limit for this kmem_cache_node */ |
955 | n->free_limit -= cachep->batchcount; | |
bf0dea23 JK |
956 | |
957 | /* cpu is dead; no one can alloc from it. */ | |
958 | nc = per_cpu_ptr(cachep->cpu_cache, cpu); | |
517f9f1e LR |
959 | free_block(cachep, nc->entry, nc->avail, node, &list); |
960 | nc->avail = 0; | |
fbf1e473 | 961 | |
58463c1f | 962 | if (!cpumask_empty(mask)) { |
b539ce9f | 963 | raw_spin_unlock_irq(&n->list_lock); |
bf0dea23 | 964 | goto free_slab; |
fbf1e473 AM |
965 | } |
966 | ||
ce8eb6c4 | 967 | shared = n->shared; |
fbf1e473 AM |
968 | if (shared) { |
969 | free_block(cachep, shared->entry, | |
97654dfa | 970 | shared->avail, node, &list); |
ce8eb6c4 | 971 | n->shared = NULL; |
fbf1e473 AM |
972 | } |
973 | ||
ce8eb6c4 CL |
974 | alien = n->alien; |
975 | n->alien = NULL; | |
fbf1e473 | 976 | |
b539ce9f | 977 | raw_spin_unlock_irq(&n->list_lock); |
fbf1e473 AM |
978 | |
979 | kfree(shared); | |
980 | if (alien) { | |
981 | drain_alien_cache(cachep, alien); | |
982 | free_alien_cache(alien); | |
983 | } | |
bf0dea23 JK |
984 | |
985 | free_slab: | |
97654dfa | 986 | slabs_destroy(cachep, &list); |
fbf1e473 AM |
987 | } |
988 | /* | |
989 | * In the previous loop, all the objects were freed to | |
990 | * the respective cache's slabs, now we can go ahead and | |
991 | * shrink each nodelist to its limit. | |
992 | */ | |
18004c5d | 993 | list_for_each_entry(cachep, &slab_caches, list) { |
18bf8541 | 994 | n = get_node(cachep, node); |
ce8eb6c4 | 995 | if (!n) |
fbf1e473 | 996 | continue; |
a5aa63a5 | 997 | drain_freelist(cachep, n, INT_MAX); |
fbf1e473 AM |
998 | } |
999 | } | |
1000 | ||
0db0628d | 1001 | static int cpuup_prepare(long cpu) |
1da177e4 | 1002 | { |
343e0d7a | 1003 | struct kmem_cache *cachep; |
7d6e6d09 | 1004 | int node = cpu_to_mem(cpu); |
8f9f8d9e | 1005 | int err; |
1da177e4 | 1006 | |
fbf1e473 AM |
1007 | /* |
1008 | * We need to do this right in the beginning since | |
1009 | * alloc_arraycache's are going to use this list. | |
1010 | * kmalloc_node allows us to add the slab to the right | |
ce8eb6c4 | 1011 | * kmem_cache_node and not this cpu's kmem_cache_node |
fbf1e473 | 1012 | */ |
6a67368c | 1013 | err = init_cache_node_node(node); |
8f9f8d9e DR |
1014 | if (err < 0) |
1015 | goto bad; | |
fbf1e473 AM |
1016 | |
1017 | /* | |
1018 | * Now we can go ahead with allocating the shared arrays and | |
1019 | * array caches | |
1020 | */ | |
18004c5d | 1021 | list_for_each_entry(cachep, &slab_caches, list) { |
c3d332b6 JK |
1022 | err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); |
1023 | if (err) | |
1024 | goto bad; | |
fbf1e473 | 1025 | } |
ce79ddc8 | 1026 | |
fbf1e473 AM |
1027 | return 0; |
1028 | bad: | |
12d00f6a | 1029 | cpuup_canceled(cpu); |
fbf1e473 AM |
1030 | return -ENOMEM; |
1031 | } | |
1032 | ||
6731d4f1 | 1033 | int slab_prepare_cpu(unsigned int cpu) |
fbf1e473 | 1034 | { |
6731d4f1 | 1035 | int err; |
fbf1e473 | 1036 | |
6731d4f1 SAS |
1037 | mutex_lock(&slab_mutex); |
1038 | err = cpuup_prepare(cpu); | |
1039 | mutex_unlock(&slab_mutex); | |
1040 | return err; | |
1041 | } | |
1042 | ||
1043 | /* | |
1044 | * This is called for a failed online attempt and for a successful | |
1045 | * offline. | |
1046 | * | |
1047 | * Even if all the cpus of a node are down, we don't free the | |
a8f23dd1 | 1048 | * kmem_cache_node of any cache. This is to avoid a race between cpu_down, and |
6731d4f1 | 1049 | * a kmalloc allocation from another cpu for memory from the node of |
70b6d25e | 1050 | * the cpu going down. The kmem_cache_node structure is usually allocated from |
6731d4f1 SAS |
1051 | * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). |
1052 | */ | |
1053 | int slab_dead_cpu(unsigned int cpu) | |
1054 | { | |
1055 | mutex_lock(&slab_mutex); | |
1056 | cpuup_canceled(cpu); | |
1057 | mutex_unlock(&slab_mutex); | |
1058 | return 0; | |
1059 | } | |
8f5be20b | 1060 | #endif |
6731d4f1 SAS |
1061 | |
1062 | static int slab_online_cpu(unsigned int cpu) | |
1063 | { | |
1064 | start_cpu_timer(cpu); | |
1065 | return 0; | |
1da177e4 LT |
1066 | } |
1067 | ||
6731d4f1 SAS |
1068 | static int slab_offline_cpu(unsigned int cpu) |
1069 | { | |
1070 | /* | |
1071 | * Shutdown cache reaper. Note that the slab_mutex is held so | |
1072 | * that if cache_reap() is invoked it cannot do anything | |
1073 | * expensive but will only modify reap_work and reschedule the | |
1074 | * timer. | |
1075 | */ | |
1076 | cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); | |
1077 | /* Now the cache_reaper is guaranteed to be not running. */ | |
1078 | per_cpu(slab_reap_work, cpu).work.func = NULL; | |
1079 | return 0; | |
1080 | } | |
1da177e4 | 1081 | |
76af6a05 | 1082 | #if defined(CONFIG_NUMA) |
8f9f8d9e DR |
1083 | /* |
1084 | * Drains freelist for a node on each slab cache, used for memory hot-remove. | |
1085 | * Returns -EBUSY if all objects cannot be drained so that the node is not | |
1086 | * removed. | |
1087 | * | |
18004c5d | 1088 | * Must hold slab_mutex. |
8f9f8d9e | 1089 | */ |
6a67368c | 1090 | static int __meminit drain_cache_node_node(int node) |
8f9f8d9e DR |
1091 | { |
1092 | struct kmem_cache *cachep; | |
1093 | int ret = 0; | |
1094 | ||
18004c5d | 1095 | list_for_each_entry(cachep, &slab_caches, list) { |
ce8eb6c4 | 1096 | struct kmem_cache_node *n; |
8f9f8d9e | 1097 | |
18bf8541 | 1098 | n = get_node(cachep, node); |
ce8eb6c4 | 1099 | if (!n) |
8f9f8d9e DR |
1100 | continue; |
1101 | ||
a5aa63a5 | 1102 | drain_freelist(cachep, n, INT_MAX); |
8f9f8d9e | 1103 | |
ce8eb6c4 CL |
1104 | if (!list_empty(&n->slabs_full) || |
1105 | !list_empty(&n->slabs_partial)) { | |
8f9f8d9e DR |
1106 | ret = -EBUSY; |
1107 | break; | |
1108 | } | |
1109 | } | |
1110 | return ret; | |
1111 | } | |
1112 | ||
1113 | static int __meminit slab_memory_callback(struct notifier_block *self, | |
1114 | unsigned long action, void *arg) | |
1115 | { | |
1116 | struct memory_notify *mnb = arg; | |
1117 | int ret = 0; | |
1118 | int nid; | |
1119 | ||
1120 | nid = mnb->status_change_nid; | |
1121 | if (nid < 0) | |
1122 | goto out; | |
1123 | ||
1124 | switch (action) { | |
1125 | case MEM_GOING_ONLINE: | |
18004c5d | 1126 | mutex_lock(&slab_mutex); |
6a67368c | 1127 | ret = init_cache_node_node(nid); |
18004c5d | 1128 | mutex_unlock(&slab_mutex); |
8f9f8d9e DR |
1129 | break; |
1130 | case MEM_GOING_OFFLINE: | |
18004c5d | 1131 | mutex_lock(&slab_mutex); |
6a67368c | 1132 | ret = drain_cache_node_node(nid); |
18004c5d | 1133 | mutex_unlock(&slab_mutex); |
8f9f8d9e DR |
1134 | break; |
1135 | case MEM_ONLINE: | |
1136 | case MEM_OFFLINE: | |
1137 | case MEM_CANCEL_ONLINE: | |
1138 | case MEM_CANCEL_OFFLINE: | |
1139 | break; | |
1140 | } | |
1141 | out: | |
5fda1bd5 | 1142 | return notifier_from_errno(ret); |
8f9f8d9e | 1143 | } |
76af6a05 | 1144 | #endif /* CONFIG_NUMA */ |
8f9f8d9e | 1145 | |
e498be7d | 1146 | /* |
ce8eb6c4 | 1147 | * swap the static kmem_cache_node with kmalloced memory |
e498be7d | 1148 | */ |
6744f087 | 1149 | static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, |
8f9f8d9e | 1150 | int nodeid) |
e498be7d | 1151 | { |
6744f087 | 1152 | struct kmem_cache_node *ptr; |
e498be7d | 1153 | |
6744f087 | 1154 | ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); |
e498be7d CL |
1155 | BUG_ON(!ptr); |
1156 | ||
6744f087 | 1157 | memcpy(ptr, list, sizeof(struct kmem_cache_node)); |
2b2d5493 IM |
1158 | /* |
1159 | * Do not assume that spinlocks can be initialized via memcpy: | |
1160 | */ | |
b539ce9f | 1161 | raw_spin_lock_init(&ptr->list_lock); |
2b2d5493 | 1162 | |
e498be7d | 1163 | MAKE_ALL_LISTS(cachep, ptr, nodeid); |
6a67368c | 1164 | cachep->node[nodeid] = ptr; |
e498be7d CL |
1165 | } |
1166 | ||
556a169d | 1167 | /* |
ce8eb6c4 CL |
1168 | * For setting up all the kmem_cache_node for cache whose buffer_size is same as |
1169 | * size of kmem_cache_node. | |
556a169d | 1170 | */ |
ce8eb6c4 | 1171 | static void __init set_up_node(struct kmem_cache *cachep, int index) |
556a169d PE |
1172 | { |
1173 | int node; | |
1174 | ||
1175 | for_each_online_node(node) { | |
ce8eb6c4 | 1176 | cachep->node[node] = &init_kmem_cache_node[index + node]; |
6a67368c | 1177 | cachep->node[node]->next_reap = jiffies + |
5f0985bb JZ |
1178 | REAPTIMEOUT_NODE + |
1179 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
556a169d PE |
1180 | } |
1181 | } | |
1182 | ||
a737b3e2 AM |
1183 | /* |
1184 | * Initialisation. Called after the page allocator have been initialised and | |
1185 | * before smp_init(). | |
1da177e4 LT |
1186 | */ |
1187 | void __init kmem_cache_init(void) | |
1188 | { | |
e498be7d CL |
1189 | int i; |
1190 | ||
9b030cb8 CL |
1191 | kmem_cache = &kmem_cache_boot; |
1192 | ||
8888177e | 1193 | if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) |
62918a03 SS |
1194 | use_alien_caches = 0; |
1195 | ||
3c583465 | 1196 | for (i = 0; i < NUM_INIT_LISTS; i++) |
ce8eb6c4 | 1197 | kmem_cache_node_init(&init_kmem_cache_node[i]); |
3c583465 | 1198 | |
1da177e4 LT |
1199 | /* |
1200 | * Fragmentation resistance on low memory - only use bigger | |
3df1cccd DR |
1201 | * page orders on machines with more than 32MB of memory if |
1202 | * not overridden on the command line. | |
1da177e4 | 1203 | */ |
ca79b0c2 | 1204 | if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT) |
543585cc | 1205 | slab_max_order = SLAB_MAX_ORDER_HI; |
1da177e4 | 1206 | |
1da177e4 LT |
1207 | /* Bootstrap is tricky, because several objects are allocated |
1208 | * from caches that do not exist yet: | |
9b030cb8 CL |
1209 | * 1) initialize the kmem_cache cache: it contains the struct |
1210 | * kmem_cache structures of all caches, except kmem_cache itself: | |
1211 | * kmem_cache is statically allocated. | |
e498be7d | 1212 | * Initially an __init data area is used for the head array and the |
ce8eb6c4 | 1213 | * kmem_cache_node structures, it's replaced with a kmalloc allocated |
e498be7d | 1214 | * array at the end of the bootstrap. |
1da177e4 | 1215 | * 2) Create the first kmalloc cache. |
343e0d7a | 1216 | * The struct kmem_cache for the new cache is allocated normally. |
e498be7d CL |
1217 | * An __init data area is used for the head array. |
1218 | * 3) Create the remaining kmalloc caches, with minimally sized | |
1219 | * head arrays. | |
9b030cb8 | 1220 | * 4) Replace the __init data head arrays for kmem_cache and the first |
1da177e4 | 1221 | * kmalloc cache with kmalloc allocated arrays. |
ce8eb6c4 | 1222 | * 5) Replace the __init data for kmem_cache_node for kmem_cache and |
e498be7d CL |
1223 | * the other cache's with kmalloc allocated memory. |
1224 | * 6) Resize the head arrays of the kmalloc caches to their final sizes. | |
1da177e4 LT |
1225 | */ |
1226 | ||
9b030cb8 | 1227 | /* 1) create the kmem_cache */ |
1da177e4 | 1228 | |
8da3430d | 1229 | /* |
b56efcf0 | 1230 | * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids |
8da3430d | 1231 | */ |
2f9baa9f | 1232 | create_boot_cache(kmem_cache, "kmem_cache", |
bf0dea23 | 1233 | offsetof(struct kmem_cache, node) + |
6744f087 | 1234 | nr_node_ids * sizeof(struct kmem_cache_node *), |
8eb8284b | 1235 | SLAB_HWCACHE_ALIGN, 0, 0); |
2f9baa9f | 1236 | list_add(&kmem_cache->list, &slab_caches); |
bf0dea23 | 1237 | slab_state = PARTIAL; |
1da177e4 | 1238 | |
a737b3e2 | 1239 | /* |
bf0dea23 JK |
1240 | * Initialize the caches that provide memory for the kmem_cache_node |
1241 | * structures first. Without this, further allocations will bug. | |
e498be7d | 1242 | */ |
0c474d31 | 1243 | new_kmalloc_cache(INDEX_NODE, KMALLOC_NORMAL, ARCH_KMALLOC_FLAGS); |
bf0dea23 | 1244 | slab_state = PARTIAL_NODE; |
34cc6990 | 1245 | setup_kmalloc_cache_index_table(); |
e498be7d | 1246 | |
ce8eb6c4 | 1247 | /* 5) Replace the bootstrap kmem_cache_node */ |
e498be7d | 1248 | { |
1ca4cb24 PE |
1249 | int nid; |
1250 | ||
9c09a95c | 1251 | for_each_online_node(nid) { |
ce8eb6c4 | 1252 | init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); |
556a169d | 1253 | |
cc252eae | 1254 | init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE], |
ce8eb6c4 | 1255 | &init_kmem_cache_node[SIZE_NODE + nid], nid); |
e498be7d CL |
1256 | } |
1257 | } | |
1da177e4 | 1258 | |
f97d5f63 | 1259 | create_kmalloc_caches(ARCH_KMALLOC_FLAGS); |
8429db5c PE |
1260 | } |
1261 | ||
1262 | void __init kmem_cache_init_late(void) | |
1263 | { | |
1264 | struct kmem_cache *cachep; | |
1265 | ||
8429db5c | 1266 | /* 6) resize the head arrays to their final sizes */ |
18004c5d CL |
1267 | mutex_lock(&slab_mutex); |
1268 | list_for_each_entry(cachep, &slab_caches, list) | |
8429db5c PE |
1269 | if (enable_cpucache(cachep, GFP_NOWAIT)) |
1270 | BUG(); | |
18004c5d | 1271 | mutex_unlock(&slab_mutex); |
056c6241 | 1272 | |
97d06609 CL |
1273 | /* Done! */ |
1274 | slab_state = FULL; | |
1275 | ||
8f9f8d9e DR |
1276 | #ifdef CONFIG_NUMA |
1277 | /* | |
1278 | * Register a memory hotplug callback that initializes and frees | |
6a67368c | 1279 | * node. |
8f9f8d9e DR |
1280 | */ |
1281 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | |
1282 | #endif | |
1283 | ||
a737b3e2 AM |
1284 | /* |
1285 | * The reap timers are started later, with a module init call: That part | |
1286 | * of the kernel is not yet operational. | |
1da177e4 LT |
1287 | */ |
1288 | } | |
1289 | ||
1290 | static int __init cpucache_init(void) | |
1291 | { | |
6731d4f1 | 1292 | int ret; |
1da177e4 | 1293 | |
a737b3e2 AM |
1294 | /* |
1295 | * Register the timers that return unneeded pages to the page allocator | |
1da177e4 | 1296 | */ |
6731d4f1 SAS |
1297 | ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", |
1298 | slab_online_cpu, slab_offline_cpu); | |
1299 | WARN_ON(ret < 0); | |
a164f896 | 1300 | |
1da177e4 LT |
1301 | return 0; |
1302 | } | |
1da177e4 LT |
1303 | __initcall(cpucache_init); |
1304 | ||
8bdec192 RA |
1305 | static noinline void |
1306 | slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) | |
1307 | { | |
9a02d699 | 1308 | #if DEBUG |
ce8eb6c4 | 1309 | struct kmem_cache_node *n; |
8bdec192 RA |
1310 | unsigned long flags; |
1311 | int node; | |
9a02d699 DR |
1312 | static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, |
1313 | DEFAULT_RATELIMIT_BURST); | |
1314 | ||
1315 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) | |
1316 | return; | |
8bdec192 | 1317 | |
5b3810e5 VB |
1318 | pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", |
1319 | nodeid, gfpflags, &gfpflags); | |
1320 | pr_warn(" cache: %s, object size: %d, order: %d\n", | |
3b0efdfa | 1321 | cachep->name, cachep->size, cachep->gfporder); |
8bdec192 | 1322 | |
18bf8541 | 1323 | for_each_kmem_cache_node(cachep, node, n) { |
bf00bd34 | 1324 | unsigned long total_slabs, free_slabs, free_objs; |
8bdec192 | 1325 | |
b539ce9f | 1326 | raw_spin_lock_irqsave(&n->list_lock, flags); |
bf00bd34 DR |
1327 | total_slabs = n->total_slabs; |
1328 | free_slabs = n->free_slabs; | |
1329 | free_objs = n->free_objects; | |
b539ce9f | 1330 | raw_spin_unlock_irqrestore(&n->list_lock, flags); |
8bdec192 | 1331 | |
bf00bd34 DR |
1332 | pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", |
1333 | node, total_slabs - free_slabs, total_slabs, | |
1334 | (total_slabs * cachep->num) - free_objs, | |
1335 | total_slabs * cachep->num); | |
8bdec192 | 1336 | } |
9a02d699 | 1337 | #endif |
8bdec192 RA |
1338 | } |
1339 | ||
1da177e4 | 1340 | /* |
8a7d9b43 WSH |
1341 | * Interface to system's page allocator. No need to hold the |
1342 | * kmem_cache_node ->list_lock. | |
1da177e4 LT |
1343 | * |
1344 | * If we requested dmaable memory, we will get it. Even if we | |
1345 | * did not request dmaable memory, we might get it, but that | |
1346 | * would be relatively rare and ignorable. | |
1347 | */ | |
42c0faac | 1348 | static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, |
0c3aa83e | 1349 | int nodeid) |
1da177e4 | 1350 | { |
42c0faac VB |
1351 | struct folio *folio; |
1352 | struct slab *slab; | |
765c4507 | 1353 | |
a618e89f | 1354 | flags |= cachep->allocflags; |
e1b6aa6f | 1355 | |
42c0faac VB |
1356 | folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder); |
1357 | if (!folio) { | |
9a02d699 | 1358 | slab_out_of_memory(cachep, flags, nodeid); |
1da177e4 | 1359 | return NULL; |
8bdec192 | 1360 | } |
1da177e4 | 1361 | |
42c0faac VB |
1362 | slab = folio_slab(folio); |
1363 | ||
1364 | account_slab(slab, cachep->gfporder, cachep, flags); | |
1365 | __folio_set_slab(folio); | |
8b881763 VB |
1366 | /* Make the flag visible before any changes to folio->mapping */ |
1367 | smp_wmb(); | |
f68f8ddd | 1368 | /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ |
02d65d6f | 1369 | if (sk_memalloc_socks() && folio_is_pfmemalloc(folio)) |
42c0faac | 1370 | slab_set_pfmemalloc(slab); |
072bb0aa | 1371 | |
42c0faac | 1372 | return slab; |
1da177e4 LT |
1373 | } |
1374 | ||
1375 | /* | |
1376 | * Interface to system's page release. | |
1377 | */ | |
42c0faac | 1378 | static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab) |
1da177e4 | 1379 | { |
27ee57c9 | 1380 | int order = cachep->gfporder; |
42c0faac | 1381 | struct folio *folio = slab_folio(slab); |
73293c2f | 1382 | |
42c0faac VB |
1383 | BUG_ON(!folio_test_slab(folio)); |
1384 | __slab_clear_pfmemalloc(slab); | |
c034c6a4 | 1385 | page_mapcount_reset(&folio->page); |
42c0faac | 1386 | folio->mapping = NULL; |
8b881763 VB |
1387 | /* Make the mapping reset visible before clearing the flag */ |
1388 | smp_wmb(); | |
1389 | __folio_clear_slab(folio); | |
1f458cbf | 1390 | |
c7b23b68 | 1391 | mm_account_reclaimed_pages(1 << order); |
42c0faac | 1392 | unaccount_slab(slab, order, cachep); |
c034c6a4 | 1393 | __free_pages(&folio->page, order); |
1da177e4 LT |
1394 | } |
1395 | ||
1396 | static void kmem_rcu_free(struct rcu_head *head) | |
1397 | { | |
68126702 | 1398 | struct kmem_cache *cachep; |
42c0faac | 1399 | struct slab *slab; |
1da177e4 | 1400 | |
42c0faac VB |
1401 | slab = container_of(head, struct slab, rcu_head); |
1402 | cachep = slab->slab_cache; | |
68126702 | 1403 | |
42c0faac | 1404 | kmem_freepages(cachep, slab); |
1da177e4 LT |
1405 | } |
1406 | ||
1407 | #if DEBUG | |
81ce2ebd | 1408 | static inline bool is_debug_pagealloc_cache(struct kmem_cache *cachep) |
40b44137 | 1409 | { |
81ce2ebd | 1410 | return debug_pagealloc_enabled_static() && OFF_SLAB(cachep) && |
1411 | ((cachep->size % PAGE_SIZE) == 0); | |
40b44137 | 1412 | } |
1da177e4 LT |
1413 | |
1414 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
80552f0f | 1415 | static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map) |
40b44137 JK |
1416 | { |
1417 | if (!is_debug_pagealloc_cache(cachep)) | |
1418 | return; | |
1419 | ||
77bc7fd6 | 1420 | __kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); |
40b44137 JK |
1421 | } |
1422 | ||
1423 | #else | |
1424 | static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, | |
80552f0f | 1425 | int map) {} |
40b44137 | 1426 | |
1da177e4 LT |
1427 | #endif |
1428 | ||
343e0d7a | 1429 | static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) |
1da177e4 | 1430 | { |
8c138bc0 | 1431 | int size = cachep->object_size; |
3dafccf2 | 1432 | addr = &((char *)addr)[obj_offset(cachep)]; |
1da177e4 LT |
1433 | |
1434 | memset(addr, val, size); | |
b28a02de | 1435 | *(unsigned char *)(addr + size - 1) = POISON_END; |
1da177e4 LT |
1436 | } |
1437 | ||
1438 | static void dump_line(char *data, int offset, int limit) | |
1439 | { | |
1440 | int i; | |
aa83aa40 DJ |
1441 | unsigned char error = 0; |
1442 | int bad_count = 0; | |
1443 | ||
1170532b | 1444 | pr_err("%03x: ", offset); |
aa83aa40 DJ |
1445 | for (i = 0; i < limit; i++) { |
1446 | if (data[offset + i] != POISON_FREE) { | |
1447 | error = data[offset + i]; | |
1448 | bad_count++; | |
1449 | } | |
aa83aa40 | 1450 | } |
fdde6abb SAS |
1451 | print_hex_dump(KERN_CONT, "", 0, 16, 1, |
1452 | &data[offset], limit, 1); | |
aa83aa40 DJ |
1453 | |
1454 | if (bad_count == 1) { | |
1455 | error ^= POISON_FREE; | |
1456 | if (!(error & (error - 1))) { | |
1170532b | 1457 | pr_err("Single bit error detected. Probably bad RAM.\n"); |
aa83aa40 | 1458 | #ifdef CONFIG_X86 |
1170532b | 1459 | pr_err("Run memtest86+ or a similar memory test tool.\n"); |
aa83aa40 | 1460 | #else |
1170532b | 1461 | pr_err("Run a memory test tool.\n"); |
aa83aa40 DJ |
1462 | #endif |
1463 | } | |
1464 | } | |
1da177e4 LT |
1465 | } |
1466 | #endif | |
1467 | ||
1468 | #if DEBUG | |
1469 | ||
343e0d7a | 1470 | static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) |
1da177e4 LT |
1471 | { |
1472 | int i, size; | |
1473 | char *realobj; | |
1474 | ||
1475 | if (cachep->flags & SLAB_RED_ZONE) { | |
1170532b JP |
1476 | pr_err("Redzone: 0x%llx/0x%llx\n", |
1477 | *dbg_redzone1(cachep, objp), | |
1478 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
1479 | } |
1480 | ||
85c3e4a5 GU |
1481 | if (cachep->flags & SLAB_STORE_USER) |
1482 | pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp)); | |
3dafccf2 | 1483 | realobj = (char *)objp + obj_offset(cachep); |
8c138bc0 | 1484 | size = cachep->object_size; |
b28a02de | 1485 | for (i = 0; i < size && lines; i += 16, lines--) { |
1da177e4 LT |
1486 | int limit; |
1487 | limit = 16; | |
b28a02de PE |
1488 | if (i + limit > size) |
1489 | limit = size - i; | |
1da177e4 LT |
1490 | dump_line(realobj, i, limit); |
1491 | } | |
1492 | } | |
1493 | ||
343e0d7a | 1494 | static void check_poison_obj(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
1495 | { |
1496 | char *realobj; | |
1497 | int size, i; | |
1498 | int lines = 0; | |
1499 | ||
40b44137 JK |
1500 | if (is_debug_pagealloc_cache(cachep)) |
1501 | return; | |
1502 | ||
3dafccf2 | 1503 | realobj = (char *)objp + obj_offset(cachep); |
8c138bc0 | 1504 | size = cachep->object_size; |
1da177e4 | 1505 | |
b28a02de | 1506 | for (i = 0; i < size; i++) { |
1da177e4 | 1507 | char exp = POISON_FREE; |
b28a02de | 1508 | if (i == size - 1) |
1da177e4 LT |
1509 | exp = POISON_END; |
1510 | if (realobj[i] != exp) { | |
1511 | int limit; | |
1512 | /* Mismatch ! */ | |
1513 | /* Print header */ | |
1514 | if (lines == 0) { | |
85c3e4a5 | 1515 | pr_err("Slab corruption (%s): %s start=%px, len=%d\n", |
1170532b JP |
1516 | print_tainted(), cachep->name, |
1517 | realobj, size); | |
1da177e4 LT |
1518 | print_objinfo(cachep, objp, 0); |
1519 | } | |
1520 | /* Hexdump the affected line */ | |
b28a02de | 1521 | i = (i / 16) * 16; |
1da177e4 | 1522 | limit = 16; |
b28a02de PE |
1523 | if (i + limit > size) |
1524 | limit = size - i; | |
1da177e4 LT |
1525 | dump_line(realobj, i, limit); |
1526 | i += 16; | |
1527 | lines++; | |
1528 | /* Limit to 5 lines */ | |
1529 | if (lines > 5) | |
1530 | break; | |
1531 | } | |
1532 | } | |
1533 | if (lines != 0) { | |
1534 | /* Print some data about the neighboring objects, if they | |
1535 | * exist: | |
1536 | */ | |
7981e67e | 1537 | struct slab *slab = virt_to_slab(objp); |
8fea4e96 | 1538 | unsigned int objnr; |
1da177e4 | 1539 | |
40f3bf0c | 1540 | objnr = obj_to_index(cachep, slab, objp); |
1da177e4 | 1541 | if (objnr) { |
7981e67e | 1542 | objp = index_to_obj(cachep, slab, objnr - 1); |
3dafccf2 | 1543 | realobj = (char *)objp + obj_offset(cachep); |
85c3e4a5 | 1544 | pr_err("Prev obj: start=%px, len=%d\n", realobj, size); |
1da177e4 LT |
1545 | print_objinfo(cachep, objp, 2); |
1546 | } | |
b28a02de | 1547 | if (objnr + 1 < cachep->num) { |
7981e67e | 1548 | objp = index_to_obj(cachep, slab, objnr + 1); |
3dafccf2 | 1549 | realobj = (char *)objp + obj_offset(cachep); |
85c3e4a5 | 1550 | pr_err("Next obj: start=%px, len=%d\n", realobj, size); |
1da177e4 LT |
1551 | print_objinfo(cachep, objp, 2); |
1552 | } | |
1553 | } | |
1554 | } | |
1555 | #endif | |
1556 | ||
12dd36fa | 1557 | #if DEBUG |
8456a648 | 1558 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, |
7981e67e | 1559 | struct slab *slab) |
1da177e4 | 1560 | { |
1da177e4 | 1561 | int i; |
b03a017b JK |
1562 | |
1563 | if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { | |
7981e67e | 1564 | poison_obj(cachep, slab->freelist - obj_offset(cachep), |
b03a017b JK |
1565 | POISON_FREE); |
1566 | } | |
1567 | ||
1da177e4 | 1568 | for (i = 0; i < cachep->num; i++) { |
7981e67e | 1569 | void *objp = index_to_obj(cachep, slab, i); |
1da177e4 LT |
1570 | |
1571 | if (cachep->flags & SLAB_POISON) { | |
1da177e4 | 1572 | check_poison_obj(cachep, objp); |
80552f0f | 1573 | slab_kernel_map(cachep, objp, 1); |
1da177e4 LT |
1574 | } |
1575 | if (cachep->flags & SLAB_RED_ZONE) { | |
1576 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | |
756a025f | 1577 | slab_error(cachep, "start of a freed object was overwritten"); |
1da177e4 | 1578 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) |
756a025f | 1579 | slab_error(cachep, "end of a freed object was overwritten"); |
1da177e4 | 1580 | } |
1da177e4 | 1581 | } |
12dd36fa | 1582 | } |
1da177e4 | 1583 | #else |
8456a648 | 1584 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, |
7981e67e | 1585 | struct slab *slab) |
12dd36fa | 1586 | { |
12dd36fa | 1587 | } |
1da177e4 LT |
1588 | #endif |
1589 | ||
911851e6 RD |
1590 | /** |
1591 | * slab_destroy - destroy and release all objects in a slab | |
1592 | * @cachep: cache pointer being destroyed | |
dd35f71a | 1593 | * @slab: slab being destroyed |
911851e6 | 1594 | * |
dd35f71a VB |
1595 | * Destroy all the objs in a slab, and release the mem back to the system. |
1596 | * Before calling the slab must have been unlinked from the cache. The | |
8a7d9b43 | 1597 | * kmem_cache_node ->list_lock is not held/needed. |
12dd36fa | 1598 | */ |
7981e67e | 1599 | static void slab_destroy(struct kmem_cache *cachep, struct slab *slab) |
12dd36fa | 1600 | { |
7e007355 | 1601 | void *freelist; |
12dd36fa | 1602 | |
7981e67e VB |
1603 | freelist = slab->freelist; |
1604 | slab_destroy_debugcheck(cachep, slab); | |
5f0d5a3a | 1605 | if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) |
7981e67e | 1606 | call_rcu(&slab->rcu_head, kmem_rcu_free); |
bc4f610d | 1607 | else |
7981e67e | 1608 | kmem_freepages(cachep, slab); |
68126702 JK |
1609 | |
1610 | /* | |
8456a648 | 1611 | * From now on, we don't use freelist |
68126702 JK |
1612 | * although actual page can be freed in rcu context |
1613 | */ | |
1614 | if (OFF_SLAB(cachep)) | |
e36ce448 | 1615 | kfree(freelist); |
1da177e4 LT |
1616 | } |
1617 | ||
678ff6a7 SB |
1618 | /* |
1619 | * Update the size of the caches before calling slabs_destroy as it may | |
1620 | * recursively call kfree. | |
1621 | */ | |
97654dfa JK |
1622 | static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) |
1623 | { | |
7981e67e | 1624 | struct slab *slab, *n; |
97654dfa | 1625 | |
7981e67e VB |
1626 | list_for_each_entry_safe(slab, n, list, slab_list) { |
1627 | list_del(&slab->slab_list); | |
1628 | slab_destroy(cachep, slab); | |
97654dfa JK |
1629 | } |
1630 | } | |
1631 | ||
4d268eba | 1632 | /** |
a70773dd RD |
1633 | * calculate_slab_order - calculate size (page order) of slabs |
1634 | * @cachep: pointer to the cache that is being created | |
1635 | * @size: size of objects to be created in this cache. | |
a70773dd RD |
1636 | * @flags: slab allocation flags |
1637 | * | |
1638 | * Also calculates the number of objects per slab. | |
4d268eba PE |
1639 | * |
1640 | * This could be made much more intelligent. For now, try to avoid using | |
1641 | * high order pages for slabs. When the gfp() functions are more friendly | |
1642 | * towards high-order requests, this should be changed. | |
a862f68a MR |
1643 | * |
1644 | * Return: number of left-over bytes in a slab | |
4d268eba | 1645 | */ |
a737b3e2 | 1646 | static size_t calculate_slab_order(struct kmem_cache *cachep, |
d50112ed | 1647 | size_t size, slab_flags_t flags) |
4d268eba PE |
1648 | { |
1649 | size_t left_over = 0; | |
9888e6fa | 1650 | int gfporder; |
4d268eba | 1651 | |
0aa817f0 | 1652 | for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { |
4d268eba PE |
1653 | unsigned int num; |
1654 | size_t remainder; | |
1655 | ||
70f75067 | 1656 | num = cache_estimate(gfporder, size, flags, &remainder); |
4d268eba PE |
1657 | if (!num) |
1658 | continue; | |
9888e6fa | 1659 | |
f315e3fa JK |
1660 | /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ |
1661 | if (num > SLAB_OBJ_MAX_NUM) | |
1662 | break; | |
1663 | ||
b1ab41c4 | 1664 | if (flags & CFLGS_OFF_SLAB) { |
3217fd9b JK |
1665 | struct kmem_cache *freelist_cache; |
1666 | size_t freelist_size; | |
e36ce448 | 1667 | size_t freelist_cache_size; |
3217fd9b JK |
1668 | |
1669 | freelist_size = num * sizeof(freelist_idx_t); | |
e36ce448 HY |
1670 | if (freelist_size > KMALLOC_MAX_CACHE_SIZE) { |
1671 | freelist_cache_size = PAGE_SIZE << get_order(freelist_size); | |
1672 | } else { | |
3c615294 | 1673 | freelist_cache = kmalloc_slab(freelist_size, 0u, _RET_IP_); |
e36ce448 HY |
1674 | if (!freelist_cache) |
1675 | continue; | |
1676 | freelist_cache_size = freelist_cache->size; | |
1677 | ||
1678 | /* | |
1679 | * Needed to avoid possible looping condition | |
1680 | * in cache_grow_begin() | |
1681 | */ | |
1682 | if (OFF_SLAB(freelist_cache)) | |
1683 | continue; | |
1684 | } | |
b1ab41c4 | 1685 | |
3217fd9b | 1686 | /* check if off slab has enough benefit */ |
e36ce448 | 1687 | if (freelist_cache_size > cachep->size / 2) |
3217fd9b | 1688 | continue; |
b1ab41c4 | 1689 | } |
4d268eba | 1690 | |
9888e6fa | 1691 | /* Found something acceptable - save it away */ |
4d268eba | 1692 | cachep->num = num; |
9888e6fa | 1693 | cachep->gfporder = gfporder; |
4d268eba PE |
1694 | left_over = remainder; |
1695 | ||
f78bb8ad LT |
1696 | /* |
1697 | * A VFS-reclaimable slab tends to have most allocations | |
1698 | * as GFP_NOFS and we really don't want to have to be allocating | |
1699 | * higher-order pages when we are unable to shrink dcache. | |
1700 | */ | |
1701 | if (flags & SLAB_RECLAIM_ACCOUNT) | |
1702 | break; | |
1703 | ||
4d268eba PE |
1704 | /* |
1705 | * Large number of objects is good, but very large slabs are | |
1706 | * currently bad for the gfp()s. | |
1707 | */ | |
543585cc | 1708 | if (gfporder >= slab_max_order) |
4d268eba PE |
1709 | break; |
1710 | ||
9888e6fa LT |
1711 | /* |
1712 | * Acceptable internal fragmentation? | |
1713 | */ | |
a737b3e2 | 1714 | if (left_over * 8 <= (PAGE_SIZE << gfporder)) |
4d268eba PE |
1715 | break; |
1716 | } | |
1717 | return left_over; | |
1718 | } | |
1719 | ||
bf0dea23 JK |
1720 | static struct array_cache __percpu *alloc_kmem_cache_cpus( |
1721 | struct kmem_cache *cachep, int entries, int batchcount) | |
1722 | { | |
1723 | int cpu; | |
1724 | size_t size; | |
1725 | struct array_cache __percpu *cpu_cache; | |
1726 | ||
1727 | size = sizeof(void *) * entries + sizeof(struct array_cache); | |
85c9f4b0 | 1728 | cpu_cache = __alloc_percpu(size, sizeof(void *)); |
bf0dea23 JK |
1729 | |
1730 | if (!cpu_cache) | |
1731 | return NULL; | |
1732 | ||
1733 | for_each_possible_cpu(cpu) { | |
1734 | init_arraycache(per_cpu_ptr(cpu_cache, cpu), | |
1735 | entries, batchcount); | |
1736 | } | |
1737 | ||
1738 | return cpu_cache; | |
1739 | } | |
1740 | ||
bd721ea7 | 1741 | static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) |
f30cf7d1 | 1742 | { |
97d06609 | 1743 | if (slab_state >= FULL) |
83b519e8 | 1744 | return enable_cpucache(cachep, gfp); |
2ed3a4ef | 1745 | |
bf0dea23 JK |
1746 | cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); |
1747 | if (!cachep->cpu_cache) | |
1748 | return 1; | |
1749 | ||
97d06609 | 1750 | if (slab_state == DOWN) { |
bf0dea23 JK |
1751 | /* Creation of first cache (kmem_cache). */ |
1752 | set_up_node(kmem_cache, CACHE_CACHE); | |
2f9baa9f | 1753 | } else if (slab_state == PARTIAL) { |
bf0dea23 JK |
1754 | /* For kmem_cache_node */ |
1755 | set_up_node(cachep, SIZE_NODE); | |
f30cf7d1 | 1756 | } else { |
bf0dea23 | 1757 | int node; |
f30cf7d1 | 1758 | |
bf0dea23 JK |
1759 | for_each_online_node(node) { |
1760 | cachep->node[node] = kmalloc_node( | |
1761 | sizeof(struct kmem_cache_node), gfp, node); | |
1762 | BUG_ON(!cachep->node[node]); | |
1763 | kmem_cache_node_init(cachep->node[node]); | |
f30cf7d1 PE |
1764 | } |
1765 | } | |
bf0dea23 | 1766 | |
6a67368c | 1767 | cachep->node[numa_mem_id()]->next_reap = |
5f0985bb JZ |
1768 | jiffies + REAPTIMEOUT_NODE + |
1769 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
f30cf7d1 PE |
1770 | |
1771 | cpu_cache_get(cachep)->avail = 0; | |
1772 | cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | |
1773 | cpu_cache_get(cachep)->batchcount = 1; | |
1774 | cpu_cache_get(cachep)->touched = 0; | |
1775 | cachep->batchcount = 1; | |
1776 | cachep->limit = BOOT_CPUCACHE_ENTRIES; | |
2ed3a4ef | 1777 | return 0; |
f30cf7d1 PE |
1778 | } |
1779 | ||
0293d1fd | 1780 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
37540008 | 1781 | slab_flags_t flags, const char *name) |
12220dea JK |
1782 | { |
1783 | return flags; | |
1784 | } | |
1785 | ||
1786 | struct kmem_cache * | |
f4957d5b | 1787 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
d50112ed | 1788 | slab_flags_t flags, void (*ctor)(void *)) |
12220dea JK |
1789 | { |
1790 | struct kmem_cache *cachep; | |
1791 | ||
1792 | cachep = find_mergeable(size, align, flags, name, ctor); | |
1793 | if (cachep) { | |
1794 | cachep->refcount++; | |
1795 | ||
1796 | /* | |
1797 | * Adjust the object sizes so that we clear | |
1798 | * the complete object on kzalloc. | |
1799 | */ | |
1800 | cachep->object_size = max_t(int, cachep->object_size, size); | |
1801 | } | |
1802 | return cachep; | |
1803 | } | |
1804 | ||
b03a017b | 1805 | static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, |
d50112ed | 1806 | size_t size, slab_flags_t flags) |
b03a017b JK |
1807 | { |
1808 | size_t left; | |
1809 | ||
1810 | cachep->num = 0; | |
1811 | ||
6471384a AP |
1812 | /* |
1813 | * If slab auto-initialization on free is enabled, store the freelist | |
1814 | * off-slab, so that its contents don't end up in one of the allocated | |
1815 | * objects. | |
1816 | */ | |
1817 | if (unlikely(slab_want_init_on_free(cachep))) | |
1818 | return false; | |
1819 | ||
5f0d5a3a | 1820 | if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) |
b03a017b JK |
1821 | return false; |
1822 | ||
1823 | left = calculate_slab_order(cachep, size, | |
1824 | flags | CFLGS_OBJFREELIST_SLAB); | |
1825 | if (!cachep->num) | |
1826 | return false; | |
1827 | ||
1828 | if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) | |
1829 | return false; | |
1830 | ||
1831 | cachep->colour = left / cachep->colour_off; | |
1832 | ||
1833 | return true; | |
1834 | } | |
1835 | ||
158e319b | 1836 | static bool set_off_slab_cache(struct kmem_cache *cachep, |
d50112ed | 1837 | size_t size, slab_flags_t flags) |
158e319b JK |
1838 | { |
1839 | size_t left; | |
1840 | ||
1841 | cachep->num = 0; | |
1842 | ||
1843 | /* | |
3217fd9b JK |
1844 | * Always use on-slab management when SLAB_NOLEAKTRACE |
1845 | * to avoid recursive calls into kmemleak. | |
158e319b | 1846 | */ |
158e319b JK |
1847 | if (flags & SLAB_NOLEAKTRACE) |
1848 | return false; | |
1849 | ||
1850 | /* | |
1851 | * Size is large, assume best to place the slab management obj | |
1852 | * off-slab (should allow better packing of objs). | |
1853 | */ | |
1854 | left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); | |
1855 | if (!cachep->num) | |
1856 | return false; | |
1857 | ||
1858 | /* | |
1859 | * If the slab has been placed off-slab, and we have enough space then | |
1860 | * move it on-slab. This is at the expense of any extra colouring. | |
1861 | */ | |
1862 | if (left >= cachep->num * sizeof(freelist_idx_t)) | |
1863 | return false; | |
1864 | ||
1865 | cachep->colour = left / cachep->colour_off; | |
1866 | ||
1867 | return true; | |
1868 | } | |
1869 | ||
1870 | static bool set_on_slab_cache(struct kmem_cache *cachep, | |
d50112ed | 1871 | size_t size, slab_flags_t flags) |
158e319b JK |
1872 | { |
1873 | size_t left; | |
1874 | ||
1875 | cachep->num = 0; | |
1876 | ||
1877 | left = calculate_slab_order(cachep, size, flags); | |
1878 | if (!cachep->num) | |
1879 | return false; | |
1880 | ||
1881 | cachep->colour = left / cachep->colour_off; | |
1882 | ||
1883 | return true; | |
1884 | } | |
1885 | ||
444f20c2 | 1886 | /* |
039363f3 | 1887 | * __kmem_cache_create - Create a cache. |
a755b76a | 1888 | * @cachep: cache management descriptor |
1da177e4 | 1889 | * @flags: SLAB flags |
1da177e4 | 1890 | * |
444f20c2 | 1891 | * Returns zero on success, nonzero on failure. |
1da177e4 | 1892 | * |
1da177e4 LT |
1893 | * The flags are |
1894 | * | |
1895 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
1896 | * to catch references to uninitialised memory. | |
1897 | * | |
1898 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
1899 | * for buffer overruns. | |
1900 | * | |
1da177e4 LT |
1901 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware |
1902 | * cacheline. This can be beneficial if you're counting cycles as closely | |
1903 | * as davem. | |
1904 | */ | |
d50112ed | 1905 | int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) |
1da177e4 | 1906 | { |
d4a5fca5 | 1907 | size_t ralign = BYTES_PER_WORD; |
83b519e8 | 1908 | gfp_t gfp; |
278b1bb1 | 1909 | int err; |
be4a7988 | 1910 | unsigned int size = cachep->size; |
1da177e4 | 1911 | |
1da177e4 | 1912 | #if DEBUG |
1da177e4 LT |
1913 | #if FORCED_DEBUG |
1914 | /* | |
1915 | * Enable redzoning and last user accounting, except for caches with | |
1916 | * large objects, if the increased size would increase the object size | |
1917 | * above the next power of two: caches with object sizes just above a | |
1918 | * power of two have a significant amount of internal fragmentation. | |
1919 | */ | |
87a927c7 DW |
1920 | if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + |
1921 | 2 * sizeof(unsigned long long))) | |
b28a02de | 1922 | flags |= SLAB_RED_ZONE | SLAB_STORE_USER; |
5f0d5a3a | 1923 | if (!(flags & SLAB_TYPESAFE_BY_RCU)) |
1da177e4 LT |
1924 | flags |= SLAB_POISON; |
1925 | #endif | |
1da177e4 | 1926 | #endif |
1da177e4 | 1927 | |
a737b3e2 AM |
1928 | /* |
1929 | * Check that size is in terms of words. This is needed to avoid | |
1da177e4 LT |
1930 | * unaligned accesses for some archs when redzoning is used, and makes |
1931 | * sure any on-slab bufctl's are also correctly aligned. | |
1932 | */ | |
e0771950 | 1933 | size = ALIGN(size, BYTES_PER_WORD); |
1da177e4 | 1934 | |
87a927c7 DW |
1935 | if (flags & SLAB_RED_ZONE) { |
1936 | ralign = REDZONE_ALIGN; | |
1937 | /* If redzoning, ensure that the second redzone is suitably | |
1938 | * aligned, by adjusting the object size accordingly. */ | |
e0771950 | 1939 | size = ALIGN(size, REDZONE_ALIGN); |
87a927c7 | 1940 | } |
ca5f9703 | 1941 | |
a44b56d3 | 1942 | /* 3) caller mandated alignment */ |
8a13a4cc CL |
1943 | if (ralign < cachep->align) { |
1944 | ralign = cachep->align; | |
1da177e4 | 1945 | } |
3ff84a7f PE |
1946 | /* disable debug if necessary */ |
1947 | if (ralign > __alignof__(unsigned long long)) | |
a44b56d3 | 1948 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); |
a737b3e2 | 1949 | /* |
ca5f9703 | 1950 | * 4) Store it. |
1da177e4 | 1951 | */ |
8a13a4cc | 1952 | cachep->align = ralign; |
158e319b JK |
1953 | cachep->colour_off = cache_line_size(); |
1954 | /* Offset must be a multiple of the alignment. */ | |
1955 | if (cachep->colour_off < cachep->align) | |
1956 | cachep->colour_off = cachep->align; | |
1da177e4 | 1957 | |
83b519e8 PE |
1958 | if (slab_is_available()) |
1959 | gfp = GFP_KERNEL; | |
1960 | else | |
1961 | gfp = GFP_NOWAIT; | |
1962 | ||
1da177e4 | 1963 | #if DEBUG |
1da177e4 | 1964 | |
ca5f9703 PE |
1965 | /* |
1966 | * Both debugging options require word-alignment which is calculated | |
1967 | * into align above. | |
1968 | */ | |
1da177e4 | 1969 | if (flags & SLAB_RED_ZONE) { |
1da177e4 | 1970 | /* add space for red zone words */ |
3ff84a7f PE |
1971 | cachep->obj_offset += sizeof(unsigned long long); |
1972 | size += 2 * sizeof(unsigned long long); | |
1da177e4 LT |
1973 | } |
1974 | if (flags & SLAB_STORE_USER) { | |
ca5f9703 | 1975 | /* user store requires one word storage behind the end of |
87a927c7 DW |
1976 | * the real object. But if the second red zone needs to be |
1977 | * aligned to 64 bits, we must allow that much space. | |
1da177e4 | 1978 | */ |
87a927c7 DW |
1979 | if (flags & SLAB_RED_ZONE) |
1980 | size += REDZONE_ALIGN; | |
1981 | else | |
1982 | size += BYTES_PER_WORD; | |
1da177e4 | 1983 | } |
832a15d2 JK |
1984 | #endif |
1985 | ||
7ed2f9e6 AP |
1986 | kasan_cache_create(cachep, &size, &flags); |
1987 | ||
832a15d2 JK |
1988 | size = ALIGN(size, cachep->align); |
1989 | /* | |
1990 | * We should restrict the number of objects in a slab to implement | |
1991 | * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. | |
1992 | */ | |
1993 | if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) | |
1994 | size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); | |
1995 | ||
1996 | #if DEBUG | |
03a2d2a3 JK |
1997 | /* |
1998 | * To activate debug pagealloc, off-slab management is necessary | |
1999 | * requirement. In early phase of initialization, small sized slab | |
2000 | * doesn't get initialized so it would not be possible. So, we need | |
2001 | * to check size >= 256. It guarantees that all necessary small | |
2002 | * sized slab is initialized in current slab initialization sequence. | |
2003 | */ | |
8e57f8ac | 2004 | if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) && |
f3a3c320 JK |
2005 | size >= 256 && cachep->object_size > cache_line_size()) { |
2006 | if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { | |
2007 | size_t tmp_size = ALIGN(size, PAGE_SIZE); | |
2008 | ||
2009 | if (set_off_slab_cache(cachep, tmp_size, flags)) { | |
2010 | flags |= CFLGS_OFF_SLAB; | |
2011 | cachep->obj_offset += tmp_size - size; | |
2012 | size = tmp_size; | |
2013 | goto done; | |
2014 | } | |
2015 | } | |
1da177e4 | 2016 | } |
1da177e4 LT |
2017 | #endif |
2018 | ||
b03a017b JK |
2019 | if (set_objfreelist_slab_cache(cachep, size, flags)) { |
2020 | flags |= CFLGS_OBJFREELIST_SLAB; | |
2021 | goto done; | |
2022 | } | |
2023 | ||
158e319b | 2024 | if (set_off_slab_cache(cachep, size, flags)) { |
1da177e4 | 2025 | flags |= CFLGS_OFF_SLAB; |
158e319b | 2026 | goto done; |
832a15d2 | 2027 | } |
1da177e4 | 2028 | |
158e319b JK |
2029 | if (set_on_slab_cache(cachep, size, flags)) |
2030 | goto done; | |
1da177e4 | 2031 | |
158e319b | 2032 | return -E2BIG; |
1da177e4 | 2033 | |
158e319b JK |
2034 | done: |
2035 | cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); | |
1da177e4 | 2036 | cachep->flags = flags; |
a57a4988 | 2037 | cachep->allocflags = __GFP_COMP; |
a3187e43 | 2038 | if (flags & SLAB_CACHE_DMA) |
a618e89f | 2039 | cachep->allocflags |= GFP_DMA; |
6d6ea1e9 NB |
2040 | if (flags & SLAB_CACHE_DMA32) |
2041 | cachep->allocflags |= GFP_DMA32; | |
a3ba0744 DR |
2042 | if (flags & SLAB_RECLAIM_ACCOUNT) |
2043 | cachep->allocflags |= __GFP_RECLAIMABLE; | |
3b0efdfa | 2044 | cachep->size = size; |
6a2d7a95 | 2045 | cachep->reciprocal_buffer_size = reciprocal_value(size); |
1da177e4 | 2046 | |
40b44137 JK |
2047 | #if DEBUG |
2048 | /* | |
2049 | * If we're going to use the generic kernel_map_pages() | |
2050 | * poisoning, then it's going to smash the contents of | |
2051 | * the redzone and userword anyhow, so switch them off. | |
2052 | */ | |
2053 | if (IS_ENABLED(CONFIG_PAGE_POISONING) && | |
2054 | (cachep->flags & SLAB_POISON) && | |
2055 | is_debug_pagealloc_cache(cachep)) | |
2056 | cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); | |
2057 | #endif | |
2058 | ||
278b1bb1 CL |
2059 | err = setup_cpu_cache(cachep, gfp); |
2060 | if (err) { | |
52b4b950 | 2061 | __kmem_cache_release(cachep); |
278b1bb1 | 2062 | return err; |
2ed3a4ef | 2063 | } |
1da177e4 | 2064 | |
278b1bb1 | 2065 | return 0; |
1da177e4 | 2066 | } |
1da177e4 LT |
2067 | |
2068 | #if DEBUG | |
2069 | static void check_irq_off(void) | |
2070 | { | |
2071 | BUG_ON(!irqs_disabled()); | |
2072 | } | |
2073 | ||
2074 | static void check_irq_on(void) | |
2075 | { | |
2076 | BUG_ON(irqs_disabled()); | |
2077 | } | |
2078 | ||
18726ca8 JK |
2079 | static void check_mutex_acquired(void) |
2080 | { | |
2081 | BUG_ON(!mutex_is_locked(&slab_mutex)); | |
2082 | } | |
2083 | ||
343e0d7a | 2084 | static void check_spinlock_acquired(struct kmem_cache *cachep) |
1da177e4 LT |
2085 | { |
2086 | #ifdef CONFIG_SMP | |
2087 | check_irq_off(); | |
b539ce9f | 2088 | assert_raw_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); |
1da177e4 LT |
2089 | #endif |
2090 | } | |
e498be7d | 2091 | |
343e0d7a | 2092 | static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) |
e498be7d CL |
2093 | { |
2094 | #ifdef CONFIG_SMP | |
2095 | check_irq_off(); | |
b539ce9f | 2096 | assert_raw_spin_locked(&get_node(cachep, node)->list_lock); |
e498be7d CL |
2097 | #endif |
2098 | } | |
2099 | ||
1da177e4 LT |
2100 | #else |
2101 | #define check_irq_off() do { } while(0) | |
2102 | #define check_irq_on() do { } while(0) | |
18726ca8 | 2103 | #define check_mutex_acquired() do { } while(0) |
1da177e4 | 2104 | #define check_spinlock_acquired(x) do { } while(0) |
e498be7d | 2105 | #define check_spinlock_acquired_node(x, y) do { } while(0) |
1da177e4 LT |
2106 | #endif |
2107 | ||
18726ca8 JK |
2108 | static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, |
2109 | int node, bool free_all, struct list_head *list) | |
2110 | { | |
2111 | int tofree; | |
2112 | ||
2113 | if (!ac || !ac->avail) | |
2114 | return; | |
2115 | ||
2116 | tofree = free_all ? ac->avail : (ac->limit + 4) / 5; | |
2117 | if (tofree > ac->avail) | |
2118 | tofree = (ac->avail + 1) / 2; | |
2119 | ||
2120 | free_block(cachep, ac->entry, tofree, node, list); | |
2121 | ac->avail -= tofree; | |
2122 | memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); | |
2123 | } | |
aab2207c | 2124 | |
1da177e4 LT |
2125 | static void do_drain(void *arg) |
2126 | { | |
a737b3e2 | 2127 | struct kmem_cache *cachep = arg; |
1da177e4 | 2128 | struct array_cache *ac; |
7d6e6d09 | 2129 | int node = numa_mem_id(); |
18bf8541 | 2130 | struct kmem_cache_node *n; |
97654dfa | 2131 | LIST_HEAD(list); |
1da177e4 LT |
2132 | |
2133 | check_irq_off(); | |
9a2dba4b | 2134 | ac = cpu_cache_get(cachep); |
18bf8541 | 2135 | n = get_node(cachep, node); |
b539ce9f | 2136 | raw_spin_lock(&n->list_lock); |
97654dfa | 2137 | free_block(cachep, ac->entry, ac->avail, node, &list); |
b539ce9f | 2138 | raw_spin_unlock(&n->list_lock); |
1da177e4 | 2139 | ac->avail = 0; |
678ff6a7 | 2140 | slabs_destroy(cachep, &list); |
1da177e4 LT |
2141 | } |
2142 | ||
343e0d7a | 2143 | static void drain_cpu_caches(struct kmem_cache *cachep) |
1da177e4 | 2144 | { |
ce8eb6c4 | 2145 | struct kmem_cache_node *n; |
e498be7d | 2146 | int node; |
18726ca8 | 2147 | LIST_HEAD(list); |
e498be7d | 2148 | |
15c8b6c1 | 2149 | on_each_cpu(do_drain, cachep, 1); |
1da177e4 | 2150 | check_irq_on(); |
18bf8541 CL |
2151 | for_each_kmem_cache_node(cachep, node, n) |
2152 | if (n->alien) | |
ce8eb6c4 | 2153 | drain_alien_cache(cachep, n->alien); |
a4523a8b | 2154 | |
18726ca8 | 2155 | for_each_kmem_cache_node(cachep, node, n) { |
b539ce9f | 2156 | raw_spin_lock_irq(&n->list_lock); |
18726ca8 | 2157 | drain_array_locked(cachep, n->shared, node, true, &list); |
b539ce9f | 2158 | raw_spin_unlock_irq(&n->list_lock); |
18726ca8 JK |
2159 | |
2160 | slabs_destroy(cachep, &list); | |
2161 | } | |
1da177e4 LT |
2162 | } |
2163 | ||
ed11d9eb CL |
2164 | /* |
2165 | * Remove slabs from the list of free slabs. | |
2166 | * Specify the number of slabs to drain in tofree. | |
2167 | * | |
2168 | * Returns the actual number of slabs released. | |
2169 | */ | |
2170 | static int drain_freelist(struct kmem_cache *cache, | |
ce8eb6c4 | 2171 | struct kmem_cache_node *n, int tofree) |
1da177e4 | 2172 | { |
ed11d9eb CL |
2173 | struct list_head *p; |
2174 | int nr_freed; | |
7981e67e | 2175 | struct slab *slab; |
1da177e4 | 2176 | |
ed11d9eb | 2177 | nr_freed = 0; |
ce8eb6c4 | 2178 | while (nr_freed < tofree && !list_empty(&n->slabs_free)) { |
1da177e4 | 2179 | |
b539ce9f | 2180 | raw_spin_lock_irq(&n->list_lock); |
ce8eb6c4 CL |
2181 | p = n->slabs_free.prev; |
2182 | if (p == &n->slabs_free) { | |
b539ce9f | 2183 | raw_spin_unlock_irq(&n->list_lock); |
ed11d9eb CL |
2184 | goto out; |
2185 | } | |
1da177e4 | 2186 | |
7981e67e VB |
2187 | slab = list_entry(p, struct slab, slab_list); |
2188 | list_del(&slab->slab_list); | |
f728b0a5 | 2189 | n->free_slabs--; |
bf00bd34 | 2190 | n->total_slabs--; |
ed11d9eb CL |
2191 | /* |
2192 | * Safe to drop the lock. The slab is no longer linked | |
2193 | * to the cache. | |
2194 | */ | |
ce8eb6c4 | 2195 | n->free_objects -= cache->num; |
b539ce9f | 2196 | raw_spin_unlock_irq(&n->list_lock); |
7981e67e | 2197 | slab_destroy(cache, slab); |
ed11d9eb | 2198 | nr_freed++; |
cc2e9d2b DR |
2199 | |
2200 | cond_resched(); | |
1da177e4 | 2201 | } |
ed11d9eb CL |
2202 | out: |
2203 | return nr_freed; | |
1da177e4 LT |
2204 | } |
2205 | ||
f9e13c0a SB |
2206 | bool __kmem_cache_empty(struct kmem_cache *s) |
2207 | { | |
2208 | int node; | |
2209 | struct kmem_cache_node *n; | |
2210 | ||
2211 | for_each_kmem_cache_node(s, node, n) | |
2212 | if (!list_empty(&n->slabs_full) || | |
2213 | !list_empty(&n->slabs_partial)) | |
2214 | return false; | |
2215 | return true; | |
2216 | } | |
2217 | ||
c9fc5864 | 2218 | int __kmem_cache_shrink(struct kmem_cache *cachep) |
e498be7d | 2219 | { |
18bf8541 CL |
2220 | int ret = 0; |
2221 | int node; | |
ce8eb6c4 | 2222 | struct kmem_cache_node *n; |
e498be7d CL |
2223 | |
2224 | drain_cpu_caches(cachep); | |
2225 | ||
2226 | check_irq_on(); | |
18bf8541 | 2227 | for_each_kmem_cache_node(cachep, node, n) { |
a5aa63a5 | 2228 | drain_freelist(cachep, n, INT_MAX); |
ed11d9eb | 2229 | |
ce8eb6c4 CL |
2230 | ret += !list_empty(&n->slabs_full) || |
2231 | !list_empty(&n->slabs_partial); | |
e498be7d CL |
2232 | } |
2233 | return (ret ? 1 : 0); | |
2234 | } | |
2235 | ||
945cf2b6 | 2236 | int __kmem_cache_shutdown(struct kmem_cache *cachep) |
52b4b950 | 2237 | { |
c9fc5864 | 2238 | return __kmem_cache_shrink(cachep); |
52b4b950 DS |
2239 | } |
2240 | ||
2241 | void __kmem_cache_release(struct kmem_cache *cachep) | |
1da177e4 | 2242 | { |
12c3667f | 2243 | int i; |
ce8eb6c4 | 2244 | struct kmem_cache_node *n; |
1da177e4 | 2245 | |
c7ce4f60 TG |
2246 | cache_random_seq_destroy(cachep); |
2247 | ||
bf0dea23 | 2248 | free_percpu(cachep->cpu_cache); |
1da177e4 | 2249 | |
ce8eb6c4 | 2250 | /* NUMA: free the node structures */ |
18bf8541 CL |
2251 | for_each_kmem_cache_node(cachep, i, n) { |
2252 | kfree(n->shared); | |
2253 | free_alien_cache(n->alien); | |
2254 | kfree(n); | |
2255 | cachep->node[i] = NULL; | |
12c3667f | 2256 | } |
1da177e4 | 2257 | } |
1da177e4 | 2258 | |
e5ac9c5a RT |
2259 | /* |
2260 | * Get the memory for a slab management obj. | |
5f0985bb JZ |
2261 | * |
2262 | * For a slab cache when the slab descriptor is off-slab, the | |
2263 | * slab descriptor can't come from the same cache which is being created, | |
2264 | * Because if it is the case, that means we defer the creation of | |
2265 | * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. | |
2266 | * And we eventually call down to __kmem_cache_create(), which | |
80d01558 | 2267 | * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one. |
5f0985bb JZ |
2268 | * This is a "chicken-and-egg" problem. |
2269 | * | |
2270 | * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, | |
2271 | * which are all initialized during kmem_cache_init(). | |
e5ac9c5a | 2272 | */ |
7e007355 | 2273 | static void *alloc_slabmgmt(struct kmem_cache *cachep, |
7981e67e | 2274 | struct slab *slab, int colour_off, |
0c3aa83e | 2275 | gfp_t local_flags, int nodeid) |
1da177e4 | 2276 | { |
7e007355 | 2277 | void *freelist; |
7981e67e | 2278 | void *addr = slab_address(slab); |
b28a02de | 2279 | |
7981e67e VB |
2280 | slab->s_mem = addr + colour_off; |
2281 | slab->active = 0; | |
2e6b3602 | 2282 | |
b03a017b JK |
2283 | if (OBJFREELIST_SLAB(cachep)) |
2284 | freelist = NULL; | |
2285 | else if (OFF_SLAB(cachep)) { | |
1da177e4 | 2286 | /* Slab management obj is off-slab. */ |
e36ce448 | 2287 | freelist = kmalloc_node(cachep->freelist_size, |
8759ec50 | 2288 | local_flags, nodeid); |
1da177e4 | 2289 | } else { |
2e6b3602 JK |
2290 | /* We will use last bytes at the slab for freelist */ |
2291 | freelist = addr + (PAGE_SIZE << cachep->gfporder) - | |
2292 | cachep->freelist_size; | |
1da177e4 | 2293 | } |
2e6b3602 | 2294 | |
8456a648 | 2295 | return freelist; |
1da177e4 LT |
2296 | } |
2297 | ||
7981e67e | 2298 | static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx) |
1da177e4 | 2299 | { |
7981e67e | 2300 | return ((freelist_idx_t *) slab->freelist)[idx]; |
e5c58dfd JK |
2301 | } |
2302 | ||
7981e67e | 2303 | static inline void set_free_obj(struct slab *slab, |
7cc68973 | 2304 | unsigned int idx, freelist_idx_t val) |
e5c58dfd | 2305 | { |
7981e67e | 2306 | ((freelist_idx_t *)(slab->freelist))[idx] = val; |
1da177e4 LT |
2307 | } |
2308 | ||
7981e67e | 2309 | static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab) |
1da177e4 | 2310 | { |
10b2e9e8 | 2311 | #if DEBUG |
1da177e4 LT |
2312 | int i; |
2313 | ||
2314 | for (i = 0; i < cachep->num; i++) { | |
7981e67e | 2315 | void *objp = index_to_obj(cachep, slab, i); |
10b2e9e8 | 2316 | |
1da177e4 LT |
2317 | if (cachep->flags & SLAB_STORE_USER) |
2318 | *dbg_userword(cachep, objp) = NULL; | |
2319 | ||
2320 | if (cachep->flags & SLAB_RED_ZONE) { | |
2321 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | |
2322 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2323 | } | |
2324 | /* | |
a737b3e2 AM |
2325 | * Constructors are not allowed to allocate memory from the same |
2326 | * cache which they are a constructor for. Otherwise, deadlock. | |
2327 | * They must also be threaded. | |
1da177e4 | 2328 | */ |
7ed2f9e6 AP |
2329 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { |
2330 | kasan_unpoison_object_data(cachep, | |
2331 | objp + obj_offset(cachep)); | |
51cc5068 | 2332 | cachep->ctor(objp + obj_offset(cachep)); |
7ed2f9e6 AP |
2333 | kasan_poison_object_data( |
2334 | cachep, objp + obj_offset(cachep)); | |
2335 | } | |
1da177e4 LT |
2336 | |
2337 | if (cachep->flags & SLAB_RED_ZONE) { | |
2338 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | |
756a025f | 2339 | slab_error(cachep, "constructor overwrote the end of an object"); |
1da177e4 | 2340 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) |
756a025f | 2341 | slab_error(cachep, "constructor overwrote the start of an object"); |
1da177e4 | 2342 | } |
40b44137 JK |
2343 | /* need to poison the objs? */ |
2344 | if (cachep->flags & SLAB_POISON) { | |
2345 | poison_obj(cachep, objp, POISON_FREE); | |
80552f0f | 2346 | slab_kernel_map(cachep, objp, 0); |
40b44137 | 2347 | } |
10b2e9e8 | 2348 | } |
1da177e4 | 2349 | #endif |
10b2e9e8 JK |
2350 | } |
2351 | ||
c7ce4f60 TG |
2352 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
2353 | /* Hold information during a freelist initialization */ | |
f7e466e9 DKS |
2354 | struct freelist_init_state { |
2355 | unsigned int pos; | |
2356 | unsigned int *list; | |
2357 | unsigned int count; | |
c7ce4f60 TG |
2358 | }; |
2359 | ||
2360 | /* | |
f0953a1b IM |
2361 | * Initialize the state based on the randomization method available. |
2362 | * return true if the pre-computed list is available, false otherwise. | |
c7ce4f60 | 2363 | */ |
f7e466e9 | 2364 | static bool freelist_state_initialize(struct freelist_init_state *state, |
c7ce4f60 TG |
2365 | struct kmem_cache *cachep, |
2366 | unsigned int count) | |
2367 | { | |
2368 | bool ret; | |
c7ce4f60 | 2369 | if (!cachep->random_seq) { |
c7ce4f60 TG |
2370 | ret = false; |
2371 | } else { | |
2372 | state->list = cachep->random_seq; | |
2373 | state->count = count; | |
f7e466e9 | 2374 | state->pos = get_random_u32_below(count); |
c7ce4f60 TG |
2375 | ret = true; |
2376 | } | |
2377 | return ret; | |
2378 | } | |
2379 | ||
2380 | /* Get the next entry on the list and randomize it using a random shift */ | |
f7e466e9 | 2381 | static freelist_idx_t next_random_slot(struct freelist_init_state *state) |
c7ce4f60 | 2382 | { |
c4e490cf JS |
2383 | if (state->pos >= state->count) |
2384 | state->pos = 0; | |
2385 | return state->list[state->pos++]; | |
c7ce4f60 TG |
2386 | } |
2387 | ||
7c00fce9 | 2388 | /* Swap two freelist entries */ |
7981e67e | 2389 | static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b) |
7c00fce9 | 2390 | { |
7981e67e VB |
2391 | swap(((freelist_idx_t *) slab->freelist)[a], |
2392 | ((freelist_idx_t *) slab->freelist)[b]); | |
7c00fce9 TG |
2393 | } |
2394 | ||
c7ce4f60 TG |
2395 | /* |
2396 | * Shuffle the freelist initialization state based on pre-computed lists. | |
2397 | * return true if the list was successfully shuffled, false otherwise. | |
2398 | */ | |
7981e67e | 2399 | static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab) |
c7ce4f60 | 2400 | { |
7c00fce9 | 2401 | unsigned int objfreelist = 0, i, rand, count = cachep->num; |
f7e466e9 | 2402 | struct freelist_init_state state; |
c7ce4f60 TG |
2403 | bool precomputed; |
2404 | ||
2405 | if (count < 2) | |
2406 | return false; | |
2407 | ||
2408 | precomputed = freelist_state_initialize(&state, cachep, count); | |
2409 | ||
2410 | /* Take a random entry as the objfreelist */ | |
2411 | if (OBJFREELIST_SLAB(cachep)) { | |
2412 | if (!precomputed) | |
2413 | objfreelist = count - 1; | |
2414 | else | |
2415 | objfreelist = next_random_slot(&state); | |
7981e67e | 2416 | slab->freelist = index_to_obj(cachep, slab, objfreelist) + |
c7ce4f60 TG |
2417 | obj_offset(cachep); |
2418 | count--; | |
2419 | } | |
2420 | ||
2421 | /* | |
2422 | * On early boot, generate the list dynamically. | |
2423 | * Later use a pre-computed list for speed. | |
2424 | */ | |
2425 | if (!precomputed) { | |
7c00fce9 | 2426 | for (i = 0; i < count; i++) |
7981e67e | 2427 | set_free_obj(slab, i, i); |
7c00fce9 TG |
2428 | |
2429 | /* Fisher-Yates shuffle */ | |
2430 | for (i = count - 1; i > 0; i--) { | |
f7e466e9 | 2431 | rand = get_random_u32_below(i + 1); |
7981e67e | 2432 | swap_free_obj(slab, i, rand); |
7c00fce9 | 2433 | } |
c7ce4f60 TG |
2434 | } else { |
2435 | for (i = 0; i < count; i++) | |
7981e67e | 2436 | set_free_obj(slab, i, next_random_slot(&state)); |
c7ce4f60 TG |
2437 | } |
2438 | ||
2439 | if (OBJFREELIST_SLAB(cachep)) | |
7981e67e | 2440 | set_free_obj(slab, cachep->num - 1, objfreelist); |
c7ce4f60 TG |
2441 | |
2442 | return true; | |
2443 | } | |
2444 | #else | |
2445 | static inline bool shuffle_freelist(struct kmem_cache *cachep, | |
7981e67e | 2446 | struct slab *slab) |
c7ce4f60 TG |
2447 | { |
2448 | return false; | |
2449 | } | |
2450 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
2451 | ||
10b2e9e8 | 2452 | static void cache_init_objs(struct kmem_cache *cachep, |
7981e67e | 2453 | struct slab *slab) |
10b2e9e8 JK |
2454 | { |
2455 | int i; | |
7ed2f9e6 | 2456 | void *objp; |
c7ce4f60 | 2457 | bool shuffled; |
10b2e9e8 | 2458 | |
7981e67e | 2459 | cache_init_objs_debug(cachep, slab); |
10b2e9e8 | 2460 | |
c7ce4f60 | 2461 | /* Try to randomize the freelist if enabled */ |
7981e67e | 2462 | shuffled = shuffle_freelist(cachep, slab); |
c7ce4f60 TG |
2463 | |
2464 | if (!shuffled && OBJFREELIST_SLAB(cachep)) { | |
7981e67e | 2465 | slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) + |
b03a017b JK |
2466 | obj_offset(cachep); |
2467 | } | |
2468 | ||
10b2e9e8 | 2469 | for (i = 0; i < cachep->num; i++) { |
7981e67e | 2470 | objp = index_to_obj(cachep, slab, i); |
4d176711 | 2471 | objp = kasan_init_slab_obj(cachep, objp); |
b3cbd9bf | 2472 | |
10b2e9e8 | 2473 | /* constructor could break poison info */ |
7ed2f9e6 | 2474 | if (DEBUG == 0 && cachep->ctor) { |
7ed2f9e6 AP |
2475 | kasan_unpoison_object_data(cachep, objp); |
2476 | cachep->ctor(objp); | |
2477 | kasan_poison_object_data(cachep, objp); | |
2478 | } | |
10b2e9e8 | 2479 | |
c7ce4f60 | 2480 | if (!shuffled) |
7981e67e | 2481 | set_free_obj(slab, i, i); |
1da177e4 | 2482 | } |
1da177e4 LT |
2483 | } |
2484 | ||
7981e67e | 2485 | static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab) |
78d382d7 | 2486 | { |
b1cb0982 | 2487 | void *objp; |
78d382d7 | 2488 | |
7981e67e VB |
2489 | objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active)); |
2490 | slab->active++; | |
78d382d7 MD |
2491 | |
2492 | return objp; | |
2493 | } | |
2494 | ||
260b61dd | 2495 | static void slab_put_obj(struct kmem_cache *cachep, |
7981e67e | 2496 | struct slab *slab, void *objp) |
78d382d7 | 2497 | { |
40f3bf0c | 2498 | unsigned int objnr = obj_to_index(cachep, slab, objp); |
78d382d7 | 2499 | #if DEBUG |
16025177 | 2500 | unsigned int i; |
b1cb0982 | 2501 | |
b1cb0982 | 2502 | /* Verify double free bug */ |
7981e67e VB |
2503 | for (i = slab->active; i < cachep->num; i++) { |
2504 | if (get_free_obj(slab, i) == objnr) { | |
85c3e4a5 | 2505 | pr_err("slab: double free detected in cache '%s', objp %px\n", |
756a025f | 2506 | cachep->name, objp); |
b1cb0982 JK |
2507 | BUG(); |
2508 | } | |
78d382d7 MD |
2509 | } |
2510 | #endif | |
7981e67e VB |
2511 | slab->active--; |
2512 | if (!slab->freelist) | |
2513 | slab->freelist = objp + obj_offset(cachep); | |
b03a017b | 2514 | |
7981e67e | 2515 | set_free_obj(slab, slab->active, objnr); |
78d382d7 MD |
2516 | } |
2517 | ||
1da177e4 LT |
2518 | /* |
2519 | * Grow (by 1) the number of slabs within a cache. This is called by | |
2520 | * kmem_cache_alloc() when there are no active objs left in a cache. | |
2521 | */ | |
7981e67e | 2522 | static struct slab *cache_grow_begin(struct kmem_cache *cachep, |
76b342bd | 2523 | gfp_t flags, int nodeid) |
1da177e4 | 2524 | { |
7e007355 | 2525 | void *freelist; |
b28a02de PE |
2526 | size_t offset; |
2527 | gfp_t local_flags; | |
dd35f71a | 2528 | int slab_node; |
ce8eb6c4 | 2529 | struct kmem_cache_node *n; |
7981e67e | 2530 | struct slab *slab; |
1da177e4 | 2531 | |
a737b3e2 AM |
2532 | /* |
2533 | * Be lazy and only check for valid flags here, keeping it out of the | |
2534 | * critical path in kmem_cache_alloc(). | |
1da177e4 | 2535 | */ |
44405099 LL |
2536 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) |
2537 | flags = kmalloc_fix_flags(flags); | |
2538 | ||
128227e7 | 2539 | WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); |
6cb06229 | 2540 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); |
1da177e4 | 2541 | |
1da177e4 | 2542 | check_irq_off(); |
d0164adc | 2543 | if (gfpflags_allow_blocking(local_flags)) |
1da177e4 LT |
2544 | local_irq_enable(); |
2545 | ||
a737b3e2 AM |
2546 | /* |
2547 | * Get mem for the objs. Attempt to allocate a physical page from | |
2548 | * 'nodeid'. | |
e498be7d | 2549 | */ |
7981e67e VB |
2550 | slab = kmem_getpages(cachep, local_flags, nodeid); |
2551 | if (!slab) | |
1da177e4 LT |
2552 | goto failed; |
2553 | ||
dd35f71a VB |
2554 | slab_node = slab_nid(slab); |
2555 | n = get_node(cachep, slab_node); | |
03d1d43a JK |
2556 | |
2557 | /* Get colour for the slab, and cal the next value. */ | |
2558 | n->colour_next++; | |
2559 | if (n->colour_next >= cachep->colour) | |
2560 | n->colour_next = 0; | |
2561 | ||
2562 | offset = n->colour_next; | |
2563 | if (offset >= cachep->colour) | |
2564 | offset = 0; | |
2565 | ||
2566 | offset *= cachep->colour_off; | |
2567 | ||
51dedad0 AK |
2568 | /* |
2569 | * Call kasan_poison_slab() before calling alloc_slabmgmt(), so | |
2570 | * page_address() in the latter returns a non-tagged pointer, | |
2571 | * as it should be for slab pages. | |
2572 | */ | |
6e48a966 | 2573 | kasan_poison_slab(slab); |
51dedad0 | 2574 | |
1da177e4 | 2575 | /* Get slab management. */ |
7981e67e | 2576 | freelist = alloc_slabmgmt(cachep, slab, offset, |
dd35f71a | 2577 | local_flags & ~GFP_CONSTRAINT_MASK, slab_node); |
b03a017b | 2578 | if (OFF_SLAB(cachep) && !freelist) |
1da177e4 LT |
2579 | goto opps1; |
2580 | ||
7981e67e VB |
2581 | slab->slab_cache = cachep; |
2582 | slab->freelist = freelist; | |
1da177e4 | 2583 | |
7981e67e | 2584 | cache_init_objs(cachep, slab); |
1da177e4 | 2585 | |
d0164adc | 2586 | if (gfpflags_allow_blocking(local_flags)) |
1da177e4 | 2587 | local_irq_disable(); |
1da177e4 | 2588 | |
7981e67e | 2589 | return slab; |
76b342bd | 2590 | |
a737b3e2 | 2591 | opps1: |
7981e67e | 2592 | kmem_freepages(cachep, slab); |
a737b3e2 | 2593 | failed: |
d0164adc | 2594 | if (gfpflags_allow_blocking(local_flags)) |
1da177e4 | 2595 | local_irq_disable(); |
76b342bd JK |
2596 | return NULL; |
2597 | } | |
2598 | ||
7981e67e | 2599 | static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab) |
76b342bd JK |
2600 | { |
2601 | struct kmem_cache_node *n; | |
2602 | void *list = NULL; | |
2603 | ||
2604 | check_irq_off(); | |
2605 | ||
7981e67e | 2606 | if (!slab) |
76b342bd JK |
2607 | return; |
2608 | ||
7981e67e VB |
2609 | INIT_LIST_HEAD(&slab->slab_list); |
2610 | n = get_node(cachep, slab_nid(slab)); | |
76b342bd | 2611 | |
b539ce9f | 2612 | raw_spin_lock(&n->list_lock); |
bf00bd34 | 2613 | n->total_slabs++; |
7981e67e VB |
2614 | if (!slab->active) { |
2615 | list_add_tail(&slab->slab_list, &n->slabs_free); | |
f728b0a5 | 2616 | n->free_slabs++; |
bf00bd34 | 2617 | } else |
7981e67e | 2618 | fixup_slab_list(cachep, n, slab, &list); |
07a63c41 | 2619 | |
76b342bd | 2620 | STATS_INC_GROWN(cachep); |
7981e67e | 2621 | n->free_objects += cachep->num - slab->active; |
b539ce9f | 2622 | raw_spin_unlock(&n->list_lock); |
76b342bd JK |
2623 | |
2624 | fixup_objfreelist_debug(cachep, &list); | |
1da177e4 LT |
2625 | } |
2626 | ||
2627 | #if DEBUG | |
2628 | ||
2629 | /* | |
2630 | * Perform extra freeing checks: | |
2631 | * - detect bad pointers. | |
2632 | * - POISON/RED_ZONE checking | |
1da177e4 LT |
2633 | */ |
2634 | static void kfree_debugcheck(const void *objp) | |
2635 | { | |
1da177e4 | 2636 | if (!virt_addr_valid(objp)) { |
1170532b | 2637 | pr_err("kfree_debugcheck: out of range ptr %lxh\n", |
b28a02de PE |
2638 | (unsigned long)objp); |
2639 | BUG(); | |
1da177e4 | 2640 | } |
1da177e4 LT |
2641 | } |
2642 | ||
58ce1fd5 PE |
2643 | static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) |
2644 | { | |
b46b8f19 | 2645 | unsigned long long redzone1, redzone2; |
58ce1fd5 PE |
2646 | |
2647 | redzone1 = *dbg_redzone1(cache, obj); | |
2648 | redzone2 = *dbg_redzone2(cache, obj); | |
2649 | ||
2650 | /* | |
2651 | * Redzone is ok. | |
2652 | */ | |
2653 | if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) | |
2654 | return; | |
2655 | ||
2656 | if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) | |
2657 | slab_error(cache, "double free detected"); | |
2658 | else | |
2659 | slab_error(cache, "memory outside object was overwritten"); | |
2660 | ||
85c3e4a5 | 2661 | pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", |
1170532b | 2662 | obj, redzone1, redzone2); |
58ce1fd5 PE |
2663 | } |
2664 | ||
343e0d7a | 2665 | static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, |
7c0cb9c6 | 2666 | unsigned long caller) |
1da177e4 | 2667 | { |
1da177e4 | 2668 | unsigned int objnr; |
7981e67e | 2669 | struct slab *slab; |
1da177e4 | 2670 | |
80cbd911 MW |
2671 | BUG_ON(virt_to_cache(objp) != cachep); |
2672 | ||
3dafccf2 | 2673 | objp -= obj_offset(cachep); |
1da177e4 | 2674 | kfree_debugcheck(objp); |
7981e67e | 2675 | slab = virt_to_slab(objp); |
1da177e4 | 2676 | |
1da177e4 | 2677 | if (cachep->flags & SLAB_RED_ZONE) { |
58ce1fd5 | 2678 | verify_redzone_free(cachep, objp); |
1da177e4 LT |
2679 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; |
2680 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2681 | } | |
7878c231 | 2682 | if (cachep->flags & SLAB_STORE_USER) |
7c0cb9c6 | 2683 | *dbg_userword(cachep, objp) = (void *)caller; |
1da177e4 | 2684 | |
40f3bf0c | 2685 | objnr = obj_to_index(cachep, slab, objp); |
1da177e4 LT |
2686 | |
2687 | BUG_ON(objnr >= cachep->num); | |
7981e67e | 2688 | BUG_ON(objp != index_to_obj(cachep, slab, objnr)); |
1da177e4 | 2689 | |
1da177e4 | 2690 | if (cachep->flags & SLAB_POISON) { |
1da177e4 | 2691 | poison_obj(cachep, objp, POISON_FREE); |
80552f0f | 2692 | slab_kernel_map(cachep, objp, 0); |
1da177e4 LT |
2693 | } |
2694 | return objp; | |
2695 | } | |
2696 | ||
1da177e4 LT |
2697 | #else |
2698 | #define kfree_debugcheck(x) do { } while(0) | |
0b411634 | 2699 | #define cache_free_debugcheck(x, objp, z) (objp) |
1da177e4 LT |
2700 | #endif |
2701 | ||
b03a017b JK |
2702 | static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, |
2703 | void **list) | |
2704 | { | |
2705 | #if DEBUG | |
2706 | void *next = *list; | |
2707 | void *objp; | |
2708 | ||
2709 | while (next) { | |
2710 | objp = next - obj_offset(cachep); | |
2711 | next = *(void **)next; | |
2712 | poison_obj(cachep, objp, POISON_FREE); | |
2713 | } | |
2714 | #endif | |
2715 | } | |
2716 | ||
d8410234 | 2717 | static inline void fixup_slab_list(struct kmem_cache *cachep, |
7981e67e | 2718 | struct kmem_cache_node *n, struct slab *slab, |
b03a017b | 2719 | void **list) |
d8410234 JK |
2720 | { |
2721 | /* move slabp to correct slabp list: */ | |
7981e67e VB |
2722 | list_del(&slab->slab_list); |
2723 | if (slab->active == cachep->num) { | |
2724 | list_add(&slab->slab_list, &n->slabs_full); | |
b03a017b JK |
2725 | if (OBJFREELIST_SLAB(cachep)) { |
2726 | #if DEBUG | |
2727 | /* Poisoning will be done without holding the lock */ | |
2728 | if (cachep->flags & SLAB_POISON) { | |
7981e67e | 2729 | void **objp = slab->freelist; |
b03a017b JK |
2730 | |
2731 | *objp = *list; | |
2732 | *list = objp; | |
2733 | } | |
2734 | #endif | |
7981e67e | 2735 | slab->freelist = NULL; |
b03a017b JK |
2736 | } |
2737 | } else | |
7981e67e | 2738 | list_add(&slab->slab_list, &n->slabs_partial); |
d8410234 JK |
2739 | } |
2740 | ||
f68f8ddd | 2741 | /* Try to find non-pfmemalloc slab if needed */ |
7981e67e VB |
2742 | static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n, |
2743 | struct slab *slab, bool pfmemalloc) | |
f68f8ddd | 2744 | { |
7981e67e | 2745 | if (!slab) |
f68f8ddd JK |
2746 | return NULL; |
2747 | ||
2748 | if (pfmemalloc) | |
7981e67e | 2749 | return slab; |
f68f8ddd | 2750 | |
7981e67e VB |
2751 | if (!slab_test_pfmemalloc(slab)) |
2752 | return slab; | |
f68f8ddd JK |
2753 | |
2754 | /* No need to keep pfmemalloc slab if we have enough free objects */ | |
2755 | if (n->free_objects > n->free_limit) { | |
7981e67e VB |
2756 | slab_clear_pfmemalloc(slab); |
2757 | return slab; | |
f68f8ddd JK |
2758 | } |
2759 | ||
2760 | /* Move pfmemalloc slab to the end of list to speed up next search */ | |
7981e67e VB |
2761 | list_del(&slab->slab_list); |
2762 | if (!slab->active) { | |
2763 | list_add_tail(&slab->slab_list, &n->slabs_free); | |
bf00bd34 | 2764 | n->free_slabs++; |
f728b0a5 | 2765 | } else |
7981e67e | 2766 | list_add_tail(&slab->slab_list, &n->slabs_partial); |
f68f8ddd | 2767 | |
7981e67e VB |
2768 | list_for_each_entry(slab, &n->slabs_partial, slab_list) { |
2769 | if (!slab_test_pfmemalloc(slab)) | |
2770 | return slab; | |
f68f8ddd JK |
2771 | } |
2772 | ||
f728b0a5 | 2773 | n->free_touched = 1; |
7981e67e VB |
2774 | list_for_each_entry(slab, &n->slabs_free, slab_list) { |
2775 | if (!slab_test_pfmemalloc(slab)) { | |
bf00bd34 | 2776 | n->free_slabs--; |
7981e67e | 2777 | return slab; |
f728b0a5 | 2778 | } |
f68f8ddd JK |
2779 | } |
2780 | ||
2781 | return NULL; | |
2782 | } | |
2783 | ||
7981e67e | 2784 | static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) |
7aa0d227 | 2785 | { |
7981e67e | 2786 | struct slab *slab; |
7aa0d227 | 2787 | |
b539ce9f | 2788 | assert_raw_spin_locked(&n->list_lock); |
7981e67e | 2789 | slab = list_first_entry_or_null(&n->slabs_partial, struct slab, |
16cb0ec7 | 2790 | slab_list); |
7981e67e | 2791 | if (!slab) { |
7aa0d227 | 2792 | n->free_touched = 1; |
7981e67e | 2793 | slab = list_first_entry_or_null(&n->slabs_free, struct slab, |
16cb0ec7 | 2794 | slab_list); |
7981e67e | 2795 | if (slab) |
bf00bd34 | 2796 | n->free_slabs--; |
7aa0d227 GT |
2797 | } |
2798 | ||
f68f8ddd | 2799 | if (sk_memalloc_socks()) |
7981e67e | 2800 | slab = get_valid_first_slab(n, slab, pfmemalloc); |
f68f8ddd | 2801 | |
7981e67e | 2802 | return slab; |
7aa0d227 GT |
2803 | } |
2804 | ||
f68f8ddd JK |
2805 | static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, |
2806 | struct kmem_cache_node *n, gfp_t flags) | |
2807 | { | |
7981e67e | 2808 | struct slab *slab; |
f68f8ddd JK |
2809 | void *obj; |
2810 | void *list = NULL; | |
2811 | ||
2812 | if (!gfp_pfmemalloc_allowed(flags)) | |
2813 | return NULL; | |
2814 | ||
b539ce9f | 2815 | raw_spin_lock(&n->list_lock); |
7981e67e VB |
2816 | slab = get_first_slab(n, true); |
2817 | if (!slab) { | |
b539ce9f | 2818 | raw_spin_unlock(&n->list_lock); |
f68f8ddd JK |
2819 | return NULL; |
2820 | } | |
2821 | ||
7981e67e | 2822 | obj = slab_get_obj(cachep, slab); |
f68f8ddd JK |
2823 | n->free_objects--; |
2824 | ||
7981e67e | 2825 | fixup_slab_list(cachep, n, slab, &list); |
f68f8ddd | 2826 | |
b539ce9f | 2827 | raw_spin_unlock(&n->list_lock); |
f68f8ddd JK |
2828 | fixup_objfreelist_debug(cachep, &list); |
2829 | ||
2830 | return obj; | |
2831 | } | |
2832 | ||
213b4695 JK |
2833 | /* |
2834 | * Slab list should be fixed up by fixup_slab_list() for existing slab | |
2835 | * or cache_grow_end() for new slab | |
2836 | */ | |
2837 | static __always_inline int alloc_block(struct kmem_cache *cachep, | |
7981e67e | 2838 | struct array_cache *ac, struct slab *slab, int batchcount) |
213b4695 JK |
2839 | { |
2840 | /* | |
2841 | * There must be at least one object available for | |
2842 | * allocation. | |
2843 | */ | |
7981e67e | 2844 | BUG_ON(slab->active >= cachep->num); |
213b4695 | 2845 | |
7981e67e | 2846 | while (slab->active < cachep->num && batchcount--) { |
213b4695 JK |
2847 | STATS_INC_ALLOCED(cachep); |
2848 | STATS_INC_ACTIVE(cachep); | |
2849 | STATS_SET_HIGH(cachep); | |
2850 | ||
7981e67e | 2851 | ac->entry[ac->avail++] = slab_get_obj(cachep, slab); |
213b4695 JK |
2852 | } |
2853 | ||
2854 | return batchcount; | |
2855 | } | |
2856 | ||
f68f8ddd | 2857 | static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 LT |
2858 | { |
2859 | int batchcount; | |
ce8eb6c4 | 2860 | struct kmem_cache_node *n; |
801faf0d | 2861 | struct array_cache *ac, *shared; |
1ca4cb24 | 2862 | int node; |
b03a017b | 2863 | void *list = NULL; |
7981e67e | 2864 | struct slab *slab; |
1ca4cb24 | 2865 | |
1da177e4 | 2866 | check_irq_off(); |
7d6e6d09 | 2867 | node = numa_mem_id(); |
f68f8ddd | 2868 | |
9a2dba4b | 2869 | ac = cpu_cache_get(cachep); |
1da177e4 LT |
2870 | batchcount = ac->batchcount; |
2871 | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | |
a737b3e2 AM |
2872 | /* |
2873 | * If there was little recent activity on this cache, then | |
2874 | * perform only a partial refill. Otherwise we could generate | |
2875 | * refill bouncing. | |
1da177e4 LT |
2876 | */ |
2877 | batchcount = BATCHREFILL_LIMIT; | |
2878 | } | |
18bf8541 | 2879 | n = get_node(cachep, node); |
e498be7d | 2880 | |
ce8eb6c4 | 2881 | BUG_ON(ac->avail > 0 || !n); |
801faf0d JK |
2882 | shared = READ_ONCE(n->shared); |
2883 | if (!n->free_objects && (!shared || !shared->avail)) | |
2884 | goto direct_grow; | |
2885 | ||
b539ce9f | 2886 | raw_spin_lock(&n->list_lock); |
801faf0d | 2887 | shared = READ_ONCE(n->shared); |
1da177e4 | 2888 | |
3ded175a | 2889 | /* See if we can refill from the shared array */ |
801faf0d JK |
2890 | if (shared && transfer_objects(ac, shared, batchcount)) { |
2891 | shared->touched = 1; | |
3ded175a | 2892 | goto alloc_done; |
44b57f1c | 2893 | } |
3ded175a | 2894 | |
1da177e4 | 2895 | while (batchcount > 0) { |
1da177e4 | 2896 | /* Get slab alloc is to come from. */ |
7981e67e VB |
2897 | slab = get_first_slab(n, false); |
2898 | if (!slab) | |
7aa0d227 | 2899 | goto must_grow; |
1da177e4 | 2900 | |
1da177e4 | 2901 | check_spinlock_acquired(cachep); |
714b8171 | 2902 | |
7981e67e VB |
2903 | batchcount = alloc_block(cachep, ac, slab, batchcount); |
2904 | fixup_slab_list(cachep, n, slab, &list); | |
1da177e4 LT |
2905 | } |
2906 | ||
a737b3e2 | 2907 | must_grow: |
ce8eb6c4 | 2908 | n->free_objects -= ac->avail; |
a737b3e2 | 2909 | alloc_done: |
b539ce9f | 2910 | raw_spin_unlock(&n->list_lock); |
b03a017b | 2911 | fixup_objfreelist_debug(cachep, &list); |
1da177e4 | 2912 | |
801faf0d | 2913 | direct_grow: |
1da177e4 | 2914 | if (unlikely(!ac->avail)) { |
f68f8ddd JK |
2915 | /* Check if we can use obj in pfmemalloc slab */ |
2916 | if (sk_memalloc_socks()) { | |
2917 | void *obj = cache_alloc_pfmemalloc(cachep, n, flags); | |
2918 | ||
2919 | if (obj) | |
2920 | return obj; | |
2921 | } | |
2922 | ||
7981e67e | 2923 | slab = cache_grow_begin(cachep, gfp_exact_node(flags), node); |
e498be7d | 2924 | |
76b342bd JK |
2925 | /* |
2926 | * cache_grow_begin() can reenable interrupts, | |
2927 | * then ac could change. | |
2928 | */ | |
9a2dba4b | 2929 | ac = cpu_cache_get(cachep); |
7981e67e VB |
2930 | if (!ac->avail && slab) |
2931 | alloc_block(cachep, ac, slab, batchcount); | |
2932 | cache_grow_end(cachep, slab); | |
072bb0aa | 2933 | |
213b4695 | 2934 | if (!ac->avail) |
1da177e4 | 2935 | return NULL; |
1da177e4 LT |
2936 | } |
2937 | ac->touched = 1; | |
072bb0aa | 2938 | |
f68f8ddd | 2939 | return ac->entry[--ac->avail]; |
1da177e4 LT |
2940 | } |
2941 | ||
1da177e4 | 2942 | #if DEBUG |
a737b3e2 | 2943 | static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, |
7c0cb9c6 | 2944 | gfp_t flags, void *objp, unsigned long caller) |
1da177e4 | 2945 | { |
128227e7 | 2946 | WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); |
df3ae2c9 | 2947 | if (!objp || is_kfence_address(objp)) |
1da177e4 | 2948 | return objp; |
b28a02de | 2949 | if (cachep->flags & SLAB_POISON) { |
1da177e4 | 2950 | check_poison_obj(cachep, objp); |
80552f0f | 2951 | slab_kernel_map(cachep, objp, 1); |
1da177e4 LT |
2952 | poison_obj(cachep, objp, POISON_INUSE); |
2953 | } | |
2954 | if (cachep->flags & SLAB_STORE_USER) | |
7c0cb9c6 | 2955 | *dbg_userword(cachep, objp) = (void *)caller; |
1da177e4 LT |
2956 | |
2957 | if (cachep->flags & SLAB_RED_ZONE) { | |
a737b3e2 AM |
2958 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || |
2959 | *dbg_redzone2(cachep, objp) != RED_INACTIVE) { | |
756a025f | 2960 | slab_error(cachep, "double free, or memory outside object was overwritten"); |
85c3e4a5 | 2961 | pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", |
1170532b JP |
2962 | objp, *dbg_redzone1(cachep, objp), |
2963 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
2964 | } |
2965 | *dbg_redzone1(cachep, objp) = RED_ACTIVE; | |
2966 | *dbg_redzone2(cachep, objp) = RED_ACTIVE; | |
2967 | } | |
03787301 | 2968 | |
3dafccf2 | 2969 | objp += obj_offset(cachep); |
4f104934 | 2970 | if (cachep->ctor && cachep->flags & SLAB_POISON) |
51cc5068 | 2971 | cachep->ctor(objp); |
d949a815 PC |
2972 | if ((unsigned long)objp & (arch_slab_minalign() - 1)) { |
2973 | pr_err("0x%px: not aligned to arch_slab_minalign()=%u\n", objp, | |
2974 | arch_slab_minalign()); | |
a44b56d3 | 2975 | } |
1da177e4 LT |
2976 | return objp; |
2977 | } | |
2978 | #else | |
0b411634 | 2979 | #define cache_alloc_debugcheck_after(a, b, objp, d) (objp) |
1da177e4 LT |
2980 | #endif |
2981 | ||
343e0d7a | 2982 | static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 2983 | { |
b28a02de | 2984 | void *objp; |
1da177e4 LT |
2985 | struct array_cache *ac; |
2986 | ||
5c382300 | 2987 | check_irq_off(); |
8a8b6502 | 2988 | |
9a2dba4b | 2989 | ac = cpu_cache_get(cachep); |
1da177e4 | 2990 | if (likely(ac->avail)) { |
1da177e4 | 2991 | ac->touched = 1; |
f68f8ddd | 2992 | objp = ac->entry[--ac->avail]; |
072bb0aa | 2993 | |
f68f8ddd JK |
2994 | STATS_INC_ALLOCHIT(cachep); |
2995 | goto out; | |
1da177e4 | 2996 | } |
072bb0aa MG |
2997 | |
2998 | STATS_INC_ALLOCMISS(cachep); | |
f68f8ddd | 2999 | objp = cache_alloc_refill(cachep, flags); |
072bb0aa MG |
3000 | /* |
3001 | * the 'ac' may be updated by cache_alloc_refill(), | |
3002 | * and kmemleak_erase() requires its correct value. | |
3003 | */ | |
3004 | ac = cpu_cache_get(cachep); | |
3005 | ||
3006 | out: | |
d5cff635 CM |
3007 | /* |
3008 | * To avoid a false negative, if an object that is in one of the | |
3009 | * per-CPU caches is leaked, we need to make sure kmemleak doesn't | |
3010 | * treat the array pointers as a reference to the object. | |
3011 | */ | |
f3d8b53a O |
3012 | if (objp) |
3013 | kmemleak_erase(&ac->entry[ac->avail]); | |
5c382300 AK |
3014 | return objp; |
3015 | } | |
3016 | ||
e498be7d | 3017 | #ifdef CONFIG_NUMA |
1e703d05 ML |
3018 | static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); |
3019 | ||
c61afb18 | 3020 | /* |
2ad654bc | 3021 | * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. |
c61afb18 PJ |
3022 | * |
3023 | * If we are in_interrupt, then process context, including cpusets and | |
3024 | * mempolicy, may not apply and should not be used for allocation policy. | |
3025 | */ | |
3026 | static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3027 | { | |
3028 | int nid_alloc, nid_here; | |
3029 | ||
765c4507 | 3030 | if (in_interrupt() || (flags & __GFP_THISNODE)) |
c61afb18 | 3031 | return NULL; |
7d6e6d09 | 3032 | nid_alloc = nid_here = numa_mem_id(); |
c61afb18 | 3033 | if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) |
6adef3eb | 3034 | nid_alloc = cpuset_slab_spread_node(); |
c61afb18 | 3035 | else if (current->mempolicy) |
2a389610 | 3036 | nid_alloc = mempolicy_slab_node(); |
c61afb18 | 3037 | if (nid_alloc != nid_here) |
8b98c169 | 3038 | return ____cache_alloc_node(cachep, flags, nid_alloc); |
c61afb18 PJ |
3039 | return NULL; |
3040 | } | |
3041 | ||
765c4507 CL |
3042 | /* |
3043 | * Fallback function if there was no memory available and no objects on a | |
3c517a61 | 3044 | * certain node and fall back is permitted. First we scan all the |
6a67368c | 3045 | * available node for available objects. If that fails then we |
3c517a61 CL |
3046 | * perform an allocation without specifying a node. This allows the page |
3047 | * allocator to do its reclaim / fallback magic. We then insert the | |
3048 | * slab into the proper nodelist and then allocate from it. | |
765c4507 | 3049 | */ |
8c8cc2c1 | 3050 | static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) |
765c4507 | 3051 | { |
8c8cc2c1 | 3052 | struct zonelist *zonelist; |
dd1a239f | 3053 | struct zoneref *z; |
54a6eb5c | 3054 | struct zone *zone; |
97a225e6 | 3055 | enum zone_type highest_zoneidx = gfp_zone(flags); |
765c4507 | 3056 | void *obj = NULL; |
7981e67e | 3057 | struct slab *slab; |
3c517a61 | 3058 | int nid; |
cc9a6c87 | 3059 | unsigned int cpuset_mems_cookie; |
8c8cc2c1 PE |
3060 | |
3061 | if (flags & __GFP_THISNODE) | |
3062 | return NULL; | |
3063 | ||
cc9a6c87 | 3064 | retry_cpuset: |
d26914d1 | 3065 | cpuset_mems_cookie = read_mems_allowed_begin(); |
2a389610 | 3066 | zonelist = node_zonelist(mempolicy_slab_node(), flags); |
cc9a6c87 | 3067 | |
3c517a61 CL |
3068 | retry: |
3069 | /* | |
3070 | * Look through allowed nodes for objects available | |
3071 | * from existing per node queues. | |
3072 | */ | |
97a225e6 | 3073 | for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { |
54a6eb5c | 3074 | nid = zone_to_nid(zone); |
aedb0eb1 | 3075 | |
061d7074 | 3076 | if (cpuset_zone_allowed(zone, flags) && |
18bf8541 CL |
3077 | get_node(cache, nid) && |
3078 | get_node(cache, nid)->free_objects) { | |
3c517a61 | 3079 | obj = ____cache_alloc_node(cache, |
4167e9b2 | 3080 | gfp_exact_node(flags), nid); |
481c5346 CL |
3081 | if (obj) |
3082 | break; | |
3083 | } | |
3c517a61 CL |
3084 | } |
3085 | ||
cfce6604 | 3086 | if (!obj) { |
3c517a61 CL |
3087 | /* |
3088 | * This allocation will be performed within the constraints | |
3089 | * of the current cpuset / memory policy requirements. | |
3090 | * We may trigger various forms of reclaim on the allowed | |
3091 | * set and go into memory reserves if necessary. | |
3092 | */ | |
7981e67e VB |
3093 | slab = cache_grow_begin(cache, flags, numa_mem_id()); |
3094 | cache_grow_end(cache, slab); | |
3095 | if (slab) { | |
3096 | nid = slab_nid(slab); | |
511e3a05 JK |
3097 | obj = ____cache_alloc_node(cache, |
3098 | gfp_exact_node(flags), nid); | |
0c3aa83e | 3099 | |
3c517a61 | 3100 | /* |
511e3a05 JK |
3101 | * Another processor may allocate the objects in |
3102 | * the slab since we are not holding any locks. | |
3c517a61 | 3103 | */ |
511e3a05 JK |
3104 | if (!obj) |
3105 | goto retry; | |
3c517a61 | 3106 | } |
aedb0eb1 | 3107 | } |
cc9a6c87 | 3108 | |
d26914d1 | 3109 | if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) |
cc9a6c87 | 3110 | goto retry_cpuset; |
765c4507 CL |
3111 | return obj; |
3112 | } | |
3113 | ||
e498be7d | 3114 | /* |
a8f23dd1 | 3115 | * An interface to enable slab creation on nodeid |
1da177e4 | 3116 | */ |
8b98c169 | 3117 | static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, |
a737b3e2 | 3118 | int nodeid) |
e498be7d | 3119 | { |
7981e67e | 3120 | struct slab *slab; |
ce8eb6c4 | 3121 | struct kmem_cache_node *n; |
213b4695 | 3122 | void *obj = NULL; |
b03a017b | 3123 | void *list = NULL; |
b28a02de | 3124 | |
7c3fbbdd | 3125 | VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); |
18bf8541 | 3126 | n = get_node(cachep, nodeid); |
ce8eb6c4 | 3127 | BUG_ON(!n); |
b28a02de | 3128 | |
ca3b9b91 | 3129 | check_irq_off(); |
b539ce9f | 3130 | raw_spin_lock(&n->list_lock); |
7981e67e VB |
3131 | slab = get_first_slab(n, false); |
3132 | if (!slab) | |
7aa0d227 | 3133 | goto must_grow; |
b28a02de | 3134 | |
b28a02de | 3135 | check_spinlock_acquired_node(cachep, nodeid); |
b28a02de PE |
3136 | |
3137 | STATS_INC_NODEALLOCS(cachep); | |
3138 | STATS_INC_ACTIVE(cachep); | |
3139 | STATS_SET_HIGH(cachep); | |
3140 | ||
7981e67e | 3141 | BUG_ON(slab->active == cachep->num); |
b28a02de | 3142 | |
7981e67e | 3143 | obj = slab_get_obj(cachep, slab); |
ce8eb6c4 | 3144 | n->free_objects--; |
b28a02de | 3145 | |
7981e67e | 3146 | fixup_slab_list(cachep, n, slab, &list); |
e498be7d | 3147 | |
b539ce9f | 3148 | raw_spin_unlock(&n->list_lock); |
b03a017b | 3149 | fixup_objfreelist_debug(cachep, &list); |
213b4695 | 3150 | return obj; |
e498be7d | 3151 | |
a737b3e2 | 3152 | must_grow: |
b539ce9f | 3153 | raw_spin_unlock(&n->list_lock); |
7981e67e VB |
3154 | slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); |
3155 | if (slab) { | |
213b4695 | 3156 | /* This slab isn't counted yet so don't update free_objects */ |
7981e67e | 3157 | obj = slab_get_obj(cachep, slab); |
213b4695 | 3158 | } |
7981e67e | 3159 | cache_grow_end(cachep, slab); |
1da177e4 | 3160 | |
213b4695 | 3161 | return obj ? obj : fallback_alloc(cachep, flags); |
e498be7d | 3162 | } |
8c8cc2c1 | 3163 | |
8c8cc2c1 | 3164 | static __always_inline void * |
c31a910c | 3165 | __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
8c8cc2c1 | 3166 | { |
c31a910c HY |
3167 | void *objp = NULL; |
3168 | int slab_node = numa_mem_id(); | |
8c8cc2c1 | 3169 | |
c31a910c HY |
3170 | if (nodeid == NUMA_NO_NODE) { |
3171 | if (current->mempolicy || cpuset_do_slab_mem_spread()) { | |
3172 | objp = alternate_node_alloc(cachep, flags); | |
3173 | if (objp) | |
3174 | goto out; | |
3175 | } | |
3176 | /* | |
3177 | * Use the locally cached objects if possible. | |
3178 | * However ____cache_alloc does not allow fallback | |
3179 | * to other nodes. It may fail while we still have | |
3180 | * objects on other nodes available. | |
3181 | */ | |
3182 | objp = ____cache_alloc(cachep, flags); | |
3183 | nodeid = slab_node; | |
3184 | } else if (nodeid == slab_node) { | |
3185 | objp = ____cache_alloc(cachep, flags); | |
3186 | } else if (!get_node(cachep, nodeid)) { | |
3187 | /* Node not bootstrapped yet */ | |
3188 | objp = fallback_alloc(cachep, flags); | |
3189 | goto out; | |
8c8cc2c1 | 3190 | } |
8c8cc2c1 PE |
3191 | |
3192 | /* | |
3193 | * We may just have run out of memory on the local node. | |
3194 | * ____cache_alloc_node() knows how to locate memory on other nodes | |
3195 | */ | |
7d6e6d09 | 3196 | if (!objp) |
c31a910c | 3197 | objp = ____cache_alloc_node(cachep, flags, nodeid); |
d1ca263d | 3198 | out: |
8c8cc2c1 PE |
3199 | return objp; |
3200 | } | |
3201 | #else | |
3202 | ||
3203 | static __always_inline void * | |
c31a910c | 3204 | __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid __maybe_unused) |
8c8cc2c1 PE |
3205 | { |
3206 | return ____cache_alloc(cachep, flags); | |
3207 | } | |
3208 | ||
3209 | #endif /* CONFIG_NUMA */ | |
3210 | ||
3211 | static __always_inline void * | |
07588d72 HY |
3212 | slab_alloc_node(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags, |
3213 | int nodeid, size_t orig_size, unsigned long caller) | |
8c8cc2c1 PE |
3214 | { |
3215 | unsigned long save_flags; | |
3216 | void *objp; | |
964d4bd3 | 3217 | struct obj_cgroup *objcg = NULL; |
da844b78 | 3218 | bool init = false; |
8c8cc2c1 | 3219 | |
dcce284a | 3220 | flags &= gfp_allowed_mask; |
88f2ef73 | 3221 | cachep = slab_pre_alloc_hook(cachep, lru, &objcg, 1, flags); |
011eceaf | 3222 | if (unlikely(!cachep)) |
824ebef1 AM |
3223 | return NULL; |
3224 | ||
d3fb45f3 AP |
3225 | objp = kfence_alloc(cachep, orig_size, flags); |
3226 | if (unlikely(objp)) | |
3227 | goto out; | |
3228 | ||
8c8cc2c1 | 3229 | local_irq_save(save_flags); |
07588d72 | 3230 | objp = __do_cache_alloc(cachep, flags, nodeid); |
8c8cc2c1 PE |
3231 | local_irq_restore(save_flags); |
3232 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); | |
3233 | prefetchw(objp); | |
da844b78 | 3234 | init = slab_want_init_on_alloc(flags, cachep); |
d07dbea4 | 3235 | |
d3fb45f3 | 3236 | out: |
9ce67395 FT |
3237 | slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init, |
3238 | cachep->object_size); | |
8c8cc2c1 PE |
3239 | return objp; |
3240 | } | |
e498be7d | 3241 | |
07588d72 HY |
3242 | static __always_inline void * |
3243 | slab_alloc(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags, | |
3244 | size_t orig_size, unsigned long caller) | |
3245 | { | |
3246 | return slab_alloc_node(cachep, lru, flags, NUMA_NO_NODE, orig_size, | |
3247 | caller); | |
3248 | } | |
3249 | ||
e498be7d | 3250 | /* |
5f0985bb | 3251 | * Caller needs to acquire correct kmem_cache_node's list_lock |
97654dfa | 3252 | * @list: List of detached free slabs should be freed by caller |
e498be7d | 3253 | */ |
97654dfa JK |
3254 | static void free_block(struct kmem_cache *cachep, void **objpp, |
3255 | int nr_objects, int node, struct list_head *list) | |
1da177e4 LT |
3256 | { |
3257 | int i; | |
25c063fb | 3258 | struct kmem_cache_node *n = get_node(cachep, node); |
7981e67e | 3259 | struct slab *slab; |
6052b788 JK |
3260 | |
3261 | n->free_objects += nr_objects; | |
1da177e4 LT |
3262 | |
3263 | for (i = 0; i < nr_objects; i++) { | |
072bb0aa | 3264 | void *objp; |
7981e67e | 3265 | struct slab *slab; |
1da177e4 | 3266 | |
072bb0aa MG |
3267 | objp = objpp[i]; |
3268 | ||
7981e67e VB |
3269 | slab = virt_to_slab(objp); |
3270 | list_del(&slab->slab_list); | |
ff69416e | 3271 | check_spinlock_acquired_node(cachep, node); |
7981e67e | 3272 | slab_put_obj(cachep, slab, objp); |
1da177e4 | 3273 | STATS_DEC_ACTIVE(cachep); |
1da177e4 LT |
3274 | |
3275 | /* fixup slab chains */ | |
7981e67e VB |
3276 | if (slab->active == 0) { |
3277 | list_add(&slab->slab_list, &n->slabs_free); | |
f728b0a5 | 3278 | n->free_slabs++; |
f728b0a5 | 3279 | } else { |
1da177e4 LT |
3280 | /* Unconditionally move a slab to the end of the |
3281 | * partial list on free - maximum time for the | |
3282 | * other objects to be freed, too. | |
3283 | */ | |
7981e67e | 3284 | list_add_tail(&slab->slab_list, &n->slabs_partial); |
1da177e4 LT |
3285 | } |
3286 | } | |
6052b788 JK |
3287 | |
3288 | while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { | |
3289 | n->free_objects -= cachep->num; | |
3290 | ||
7981e67e VB |
3291 | slab = list_last_entry(&n->slabs_free, struct slab, slab_list); |
3292 | list_move(&slab->slab_list, list); | |
f728b0a5 | 3293 | n->free_slabs--; |
bf00bd34 | 3294 | n->total_slabs--; |
6052b788 | 3295 | } |
1da177e4 LT |
3296 | } |
3297 | ||
343e0d7a | 3298 | static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) |
1da177e4 LT |
3299 | { |
3300 | int batchcount; | |
ce8eb6c4 | 3301 | struct kmem_cache_node *n; |
7d6e6d09 | 3302 | int node = numa_mem_id(); |
97654dfa | 3303 | LIST_HEAD(list); |
1da177e4 LT |
3304 | |
3305 | batchcount = ac->batchcount; | |
260b61dd | 3306 | |
1da177e4 | 3307 | check_irq_off(); |
18bf8541 | 3308 | n = get_node(cachep, node); |
b539ce9f | 3309 | raw_spin_lock(&n->list_lock); |
ce8eb6c4 CL |
3310 | if (n->shared) { |
3311 | struct array_cache *shared_array = n->shared; | |
b28a02de | 3312 | int max = shared_array->limit - shared_array->avail; |
1da177e4 LT |
3313 | if (max) { |
3314 | if (batchcount > max) | |
3315 | batchcount = max; | |
e498be7d | 3316 | memcpy(&(shared_array->entry[shared_array->avail]), |
b28a02de | 3317 | ac->entry, sizeof(void *) * batchcount); |
1da177e4 LT |
3318 | shared_array->avail += batchcount; |
3319 | goto free_done; | |
3320 | } | |
3321 | } | |
3322 | ||
97654dfa | 3323 | free_block(cachep, ac->entry, batchcount, node, &list); |
a737b3e2 | 3324 | free_done: |
1da177e4 LT |
3325 | #if STATS |
3326 | { | |
3327 | int i = 0; | |
7981e67e | 3328 | struct slab *slab; |
1da177e4 | 3329 | |
7981e67e VB |
3330 | list_for_each_entry(slab, &n->slabs_free, slab_list) { |
3331 | BUG_ON(slab->active); | |
1da177e4 LT |
3332 | |
3333 | i++; | |
1da177e4 LT |
3334 | } |
3335 | STATS_SET_FREEABLE(cachep, i); | |
3336 | } | |
3337 | #endif | |
b539ce9f | 3338 | raw_spin_unlock(&n->list_lock); |
1da177e4 | 3339 | ac->avail -= batchcount; |
a737b3e2 | 3340 | memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); |
678ff6a7 | 3341 | slabs_destroy(cachep, &list); |
1da177e4 LT |
3342 | } |
3343 | ||
3344 | /* | |
a737b3e2 AM |
3345 | * Release an obj back to its cache. If the obj has a constructed state, it must |
3346 | * be in this state _before_ it is released. Called with disabled ints. | |
1da177e4 | 3347 | */ |
ee3ce779 DV |
3348 | static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, |
3349 | unsigned long caller) | |
1da177e4 | 3350 | { |
d57a964e AK |
3351 | bool init; |
3352 | ||
b77d5b1b MS |
3353 | memcg_slab_free_hook(cachep, virt_to_slab(objp), &objp, 1); |
3354 | ||
d3fb45f3 AP |
3355 | if (is_kfence_address(objp)) { |
3356 | kmemleak_free_recursive(objp, cachep->flags); | |
3357 | __kfence_free(objp); | |
3358 | return; | |
3359 | } | |
3360 | ||
d57a964e AK |
3361 | /* |
3362 | * As memory initialization might be integrated into KASAN, | |
3363 | * kasan_slab_free and initialization memset must be | |
3364 | * kept together to avoid discrepancies in behavior. | |
3365 | */ | |
3366 | init = slab_want_init_on_free(cachep); | |
3367 | if (init && !kasan_has_integrated_init()) | |
a32d654d | 3368 | memset(objp, 0, cachep->object_size); |
d57a964e AK |
3369 | /* KASAN might put objp into memory quarantine, delaying its reuse. */ |
3370 | if (kasan_slab_free(cachep, objp, init)) | |
55834c59 AP |
3371 | return; |
3372 | ||
cfbe1636 ME |
3373 | /* Use KCSAN to help debug racy use-after-free. */ |
3374 | if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU)) | |
3375 | __kcsan_check_access(objp, cachep->object_size, | |
3376 | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); | |
3377 | ||
55834c59 AP |
3378 | ___cache_free(cachep, objp, caller); |
3379 | } | |
1da177e4 | 3380 | |
55834c59 AP |
3381 | void ___cache_free(struct kmem_cache *cachep, void *objp, |
3382 | unsigned long caller) | |
3383 | { | |
3384 | struct array_cache *ac = cpu_cache_get(cachep); | |
7ed2f9e6 | 3385 | |
1da177e4 | 3386 | check_irq_off(); |
d5cff635 | 3387 | kmemleak_free_recursive(objp, cachep->flags); |
a947eb95 | 3388 | objp = cache_free_debugcheck(cachep, objp, caller); |
1da177e4 | 3389 | |
1807a1aa SS |
3390 | /* |
3391 | * Skip calling cache_free_alien() when the platform is not numa. | |
3392 | * This will avoid cache misses that happen while accessing slabp (which | |
3393 | * is per page memory reference) to get nodeid. Instead use a global | |
3394 | * variable to skip the call, which is mostly likely to be present in | |
3395 | * the cache. | |
3396 | */ | |
b6e68bc1 | 3397 | if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) |
729bd0b7 PE |
3398 | return; |
3399 | ||
3d880194 | 3400 | if (ac->avail < ac->limit) { |
1da177e4 | 3401 | STATS_INC_FREEHIT(cachep); |
1da177e4 LT |
3402 | } else { |
3403 | STATS_INC_FREEMISS(cachep); | |
3404 | cache_flusharray(cachep, ac); | |
1da177e4 | 3405 | } |
42c8c99c | 3406 | |
f68f8ddd | 3407 | if (sk_memalloc_socks()) { |
7981e67e | 3408 | struct slab *slab = virt_to_slab(objp); |
f68f8ddd | 3409 | |
7981e67e VB |
3410 | if (unlikely(slab_test_pfmemalloc(slab))) { |
3411 | cache_free_pfmemalloc(cachep, slab, objp); | |
f68f8ddd JK |
3412 | return; |
3413 | } | |
3414 | } | |
3415 | ||
dabc3e29 | 3416 | __free_one(ac, objp); |
1da177e4 LT |
3417 | } |
3418 | ||
88f2ef73 MS |
3419 | static __always_inline |
3420 | void *__kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, | |
3421 | gfp_t flags) | |
3422 | { | |
3423 | void *ret = slab_alloc(cachep, lru, flags, cachep->object_size, _RET_IP_); | |
3424 | ||
2c1d697f | 3425 | trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, NUMA_NO_NODE); |
88f2ef73 MS |
3426 | |
3427 | return ret; | |
3428 | } | |
3429 | ||
343e0d7a | 3430 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3431 | { |
88f2ef73 | 3432 | return __kmem_cache_alloc_lru(cachep, NULL, flags); |
1da177e4 LT |
3433 | } |
3434 | EXPORT_SYMBOL(kmem_cache_alloc); | |
3435 | ||
88f2ef73 MS |
3436 | void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, |
3437 | gfp_t flags) | |
3438 | { | |
3439 | return __kmem_cache_alloc_lru(cachep, lru, flags); | |
3440 | } | |
3441 | EXPORT_SYMBOL(kmem_cache_alloc_lru); | |
3442 | ||
7b0501dd JDB |
3443 | static __always_inline void |
3444 | cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, | |
3445 | size_t size, void **p, unsigned long caller) | |
3446 | { | |
3447 | size_t i; | |
3448 | ||
3449 | for (i = 0; i < size; i++) | |
3450 | p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); | |
3451 | } | |
3452 | ||
865762a8 | 3453 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, |
2a777eac | 3454 | void **p) |
484748f0 | 3455 | { |
964d4bd3 | 3456 | struct obj_cgroup *objcg = NULL; |
f5451547 TG |
3457 | unsigned long irqflags; |
3458 | size_t i; | |
2a777eac | 3459 | |
88f2ef73 | 3460 | s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); |
2a777eac JDB |
3461 | if (!s) |
3462 | return 0; | |
3463 | ||
f5451547 | 3464 | local_irq_save(irqflags); |
2a777eac | 3465 | for (i = 0; i < size; i++) { |
c31a910c HY |
3466 | void *objp = kfence_alloc(s, s->object_size, flags) ?: |
3467 | __do_cache_alloc(s, flags, NUMA_NO_NODE); | |
2a777eac | 3468 | |
2a777eac JDB |
3469 | if (unlikely(!objp)) |
3470 | goto error; | |
3471 | p[i] = objp; | |
3472 | } | |
f5451547 | 3473 | local_irq_restore(irqflags); |
2a777eac | 3474 | |
7b0501dd JDB |
3475 | cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); |
3476 | ||
da844b78 AK |
3477 | /* |
3478 | * memcg and kmem_cache debug support and memory initialization. | |
3479 | * Done outside of the IRQ disabled section. | |
3480 | */ | |
3481 | slab_post_alloc_hook(s, objcg, flags, size, p, | |
9ce67395 | 3482 | slab_want_init_on_alloc(flags, s), s->object_size); |
2a777eac JDB |
3483 | /* FIXME: Trace call missing. Christoph would like a bulk variant */ |
3484 | return size; | |
3485 | error: | |
f5451547 | 3486 | local_irq_restore(irqflags); |
7b0501dd | 3487 | cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); |
9ce67395 | 3488 | slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size); |
2055e67b | 3489 | kmem_cache_free_bulk(s, i, p); |
2a777eac | 3490 | return 0; |
484748f0 CL |
3491 | } |
3492 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | |
3493 | ||
d0d04b78 ZL |
3494 | /** |
3495 | * kmem_cache_alloc_node - Allocate an object on the specified node | |
3496 | * @cachep: The cache to allocate from. | |
3497 | * @flags: See kmalloc(). | |
3498 | * @nodeid: node number of the target node. | |
3499 | * | |
3500 | * Identical to kmem_cache_alloc but it will allocate memory on the given | |
3501 | * node, which can improve the performance for cpu bound structures. | |
3502 | * | |
3503 | * Fallback to other node is possible if __GFP_THISNODE is not set. | |
a862f68a MR |
3504 | * |
3505 | * Return: pointer to the new object or %NULL in case of error | |
d0d04b78 | 3506 | */ |
8b98c169 CH |
3507 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
3508 | { | |
07588d72 | 3509 | void *ret = slab_alloc_node(cachep, NULL, flags, nodeid, cachep->object_size, _RET_IP_); |
36555751 | 3510 | |
2c1d697f | 3511 | trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, nodeid); |
36555751 EGM |
3512 | |
3513 | return ret; | |
8b98c169 | 3514 | } |
1da177e4 LT |
3515 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
3516 | ||
ed4cd17e HY |
3517 | void *__kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, |
3518 | int nodeid, size_t orig_size, | |
3519 | unsigned long caller) | |
3520 | { | |
3521 | return slab_alloc_node(cachep, NULL, flags, nodeid, | |
3522 | orig_size, caller); | |
3523 | } | |
3524 | ||
5bb1bb35 | 3525 | #ifdef CONFIG_PRINTK |
2dfe63e6 | 3526 | void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) |
8e7f37f2 PM |
3527 | { |
3528 | struct kmem_cache *cachep; | |
3529 | unsigned int objnr; | |
3530 | void *objp; | |
3531 | ||
3532 | kpp->kp_ptr = object; | |
7213230a MWO |
3533 | kpp->kp_slab = slab; |
3534 | cachep = slab->slab_cache; | |
8e7f37f2 PM |
3535 | kpp->kp_slab_cache = cachep; |
3536 | objp = object - obj_offset(cachep); | |
3537 | kpp->kp_data_offset = obj_offset(cachep); | |
7213230a | 3538 | slab = virt_to_slab(objp); |
40f3bf0c | 3539 | objnr = obj_to_index(cachep, slab, objp); |
7981e67e | 3540 | objp = index_to_obj(cachep, slab, objnr); |
8e7f37f2 PM |
3541 | kpp->kp_objp = objp; |
3542 | if (DEBUG && cachep->flags & SLAB_STORE_USER) | |
3543 | kpp->kp_ret = *dbg_userword(cachep, objp); | |
3544 | } | |
5bb1bb35 | 3545 | #endif |
8e7f37f2 | 3546 | |
ed4cd17e HY |
3547 | static __always_inline |
3548 | void __do_kmem_cache_free(struct kmem_cache *cachep, void *objp, | |
3549 | unsigned long caller) | |
3550 | { | |
3551 | unsigned long flags; | |
3552 | ||
3553 | local_irq_save(flags); | |
3554 | debug_check_no_locks_freed(objp, cachep->object_size); | |
3555 | if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) | |
3556 | debug_check_no_obj_freed(objp, cachep->object_size); | |
3557 | __cache_free(cachep, objp, caller); | |
3558 | local_irq_restore(flags); | |
3559 | } | |
3560 | ||
3561 | void __kmem_cache_free(struct kmem_cache *cachep, void *objp, | |
3562 | unsigned long caller) | |
3563 | { | |
3564 | __do_kmem_cache_free(cachep, objp, caller); | |
3565 | } | |
3566 | ||
1da177e4 LT |
3567 | /** |
3568 | * kmem_cache_free - Deallocate an object | |
3569 | * @cachep: The cache the allocation was from. | |
3570 | * @objp: The previously allocated object. | |
3571 | * | |
3572 | * Free an object which was previously allocated from this | |
3573 | * cache. | |
3574 | */ | |
343e0d7a | 3575 | void kmem_cache_free(struct kmem_cache *cachep, void *objp) |
1da177e4 | 3576 | { |
b9ce5ef4 GC |
3577 | cachep = cache_from_obj(cachep, objp); |
3578 | if (!cachep) | |
3579 | return; | |
1da177e4 | 3580 | |
2c1d697f | 3581 | trace_kmem_cache_free(_RET_IP_, objp, cachep); |
ed4cd17e | 3582 | __do_kmem_cache_free(cachep, objp, _RET_IP_); |
1da177e4 LT |
3583 | } |
3584 | EXPORT_SYMBOL(kmem_cache_free); | |
3585 | ||
e6cdb58d JDB |
3586 | void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) |
3587 | { | |
f5451547 | 3588 | unsigned long flags; |
e6cdb58d | 3589 | |
f5451547 | 3590 | local_irq_save(flags); |
d6a71648 | 3591 | for (int i = 0; i < size; i++) { |
e6cdb58d | 3592 | void *objp = p[i]; |
d6a71648 | 3593 | struct kmem_cache *s; |
e6cdb58d | 3594 | |
d6a71648 HY |
3595 | if (!orig_s) { |
3596 | struct folio *folio = virt_to_folio(objp); | |
3597 | ||
3598 | /* called via kfree_bulk */ | |
3599 | if (!folio_test_slab(folio)) { | |
f5451547 | 3600 | local_irq_restore(flags); |
d6a71648 | 3601 | free_large_kmalloc(folio, objp); |
f5451547 | 3602 | local_irq_save(flags); |
d6a71648 HY |
3603 | continue; |
3604 | } | |
3605 | s = folio_slab(folio)->slab_cache; | |
3606 | } else { | |
ca257195 | 3607 | s = cache_from_obj(orig_s, objp); |
d6a71648 HY |
3608 | } |
3609 | ||
a64b5378 KC |
3610 | if (!s) |
3611 | continue; | |
e6cdb58d JDB |
3612 | |
3613 | debug_check_no_locks_freed(objp, s->object_size); | |
3614 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) | |
3615 | debug_check_no_obj_freed(objp, s->object_size); | |
3616 | ||
3617 | __cache_free(s, objp, _RET_IP_); | |
3618 | } | |
f5451547 | 3619 | local_irq_restore(flags); |
e6cdb58d JDB |
3620 | |
3621 | /* FIXME: add tracing */ | |
3622 | } | |
3623 | EXPORT_SYMBOL(kmem_cache_free_bulk); | |
3624 | ||
e498be7d | 3625 | /* |
ce8eb6c4 | 3626 | * This initializes kmem_cache_node or resizes various caches for all nodes. |
e498be7d | 3627 | */ |
c3d332b6 | 3628 | static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) |
e498be7d | 3629 | { |
c3d332b6 | 3630 | int ret; |
e498be7d | 3631 | int node; |
ce8eb6c4 | 3632 | struct kmem_cache_node *n; |
e498be7d | 3633 | |
9c09a95c | 3634 | for_each_online_node(node) { |
c3d332b6 JK |
3635 | ret = setup_kmem_cache_node(cachep, node, gfp, true); |
3636 | if (ret) | |
e498be7d CL |
3637 | goto fail; |
3638 | ||
e498be7d | 3639 | } |
c3d332b6 | 3640 | |
cafeb02e | 3641 | return 0; |
0718dc2a | 3642 | |
a737b3e2 | 3643 | fail: |
3b0efdfa | 3644 | if (!cachep->list.next) { |
0718dc2a CL |
3645 | /* Cache is not active yet. Roll back what we did */ |
3646 | node--; | |
3647 | while (node >= 0) { | |
18bf8541 CL |
3648 | n = get_node(cachep, node); |
3649 | if (n) { | |
ce8eb6c4 CL |
3650 | kfree(n->shared); |
3651 | free_alien_cache(n->alien); | |
3652 | kfree(n); | |
6a67368c | 3653 | cachep->node[node] = NULL; |
0718dc2a CL |
3654 | } |
3655 | node--; | |
3656 | } | |
3657 | } | |
cafeb02e | 3658 | return -ENOMEM; |
e498be7d CL |
3659 | } |
3660 | ||
18004c5d | 3661 | /* Always called with the slab_mutex held */ |
10befea9 RG |
3662 | static int do_tune_cpucache(struct kmem_cache *cachep, int limit, |
3663 | int batchcount, int shared, gfp_t gfp) | |
1da177e4 | 3664 | { |
bf0dea23 JK |
3665 | struct array_cache __percpu *cpu_cache, *prev; |
3666 | int cpu; | |
1da177e4 | 3667 | |
bf0dea23 JK |
3668 | cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); |
3669 | if (!cpu_cache) | |
d2e7b7d0 SS |
3670 | return -ENOMEM; |
3671 | ||
bf0dea23 JK |
3672 | prev = cachep->cpu_cache; |
3673 | cachep->cpu_cache = cpu_cache; | |
a87c75fb GT |
3674 | /* |
3675 | * Without a previous cpu_cache there's no need to synchronize remote | |
3676 | * cpus, so skip the IPIs. | |
3677 | */ | |
3678 | if (prev) | |
3679 | kick_all_cpus_sync(); | |
e498be7d | 3680 | |
1da177e4 | 3681 | check_irq_on(); |
1da177e4 LT |
3682 | cachep->batchcount = batchcount; |
3683 | cachep->limit = limit; | |
e498be7d | 3684 | cachep->shared = shared; |
1da177e4 | 3685 | |
bf0dea23 | 3686 | if (!prev) |
c3d332b6 | 3687 | goto setup_node; |
bf0dea23 JK |
3688 | |
3689 | for_each_online_cpu(cpu) { | |
97654dfa | 3690 | LIST_HEAD(list); |
18bf8541 CL |
3691 | int node; |
3692 | struct kmem_cache_node *n; | |
bf0dea23 | 3693 | struct array_cache *ac = per_cpu_ptr(prev, cpu); |
18bf8541 | 3694 | |
bf0dea23 | 3695 | node = cpu_to_mem(cpu); |
18bf8541 | 3696 | n = get_node(cachep, node); |
b539ce9f | 3697 | raw_spin_lock_irq(&n->list_lock); |
bf0dea23 | 3698 | free_block(cachep, ac->entry, ac->avail, node, &list); |
b539ce9f | 3699 | raw_spin_unlock_irq(&n->list_lock); |
97654dfa | 3700 | slabs_destroy(cachep, &list); |
1da177e4 | 3701 | } |
bf0dea23 JK |
3702 | free_percpu(prev); |
3703 | ||
c3d332b6 JK |
3704 | setup_node: |
3705 | return setup_kmem_cache_nodes(cachep, gfp); | |
1da177e4 LT |
3706 | } |
3707 | ||
18004c5d | 3708 | /* Called with slab_mutex held always */ |
83b519e8 | 3709 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) |
1da177e4 LT |
3710 | { |
3711 | int err; | |
943a451a GC |
3712 | int limit = 0; |
3713 | int shared = 0; | |
3714 | int batchcount = 0; | |
3715 | ||
7c00fce9 | 3716 | err = cache_random_seq_create(cachep, cachep->num, gfp); |
c7ce4f60 TG |
3717 | if (err) |
3718 | goto end; | |
3719 | ||
a737b3e2 AM |
3720 | /* |
3721 | * The head array serves three purposes: | |
1da177e4 LT |
3722 | * - create a LIFO ordering, i.e. return objects that are cache-warm |
3723 | * - reduce the number of spinlock operations. | |
a737b3e2 | 3724 | * - reduce the number of linked list operations on the slab and |
1da177e4 LT |
3725 | * bufctl chains: array operations are cheaper. |
3726 | * The numbers are guessed, we should auto-tune as described by | |
3727 | * Bonwick. | |
3728 | */ | |
3b0efdfa | 3729 | if (cachep->size > 131072) |
1da177e4 | 3730 | limit = 1; |
3b0efdfa | 3731 | else if (cachep->size > PAGE_SIZE) |
1da177e4 | 3732 | limit = 8; |
3b0efdfa | 3733 | else if (cachep->size > 1024) |
1da177e4 | 3734 | limit = 24; |
3b0efdfa | 3735 | else if (cachep->size > 256) |
1da177e4 LT |
3736 | limit = 54; |
3737 | else | |
3738 | limit = 120; | |
3739 | ||
a737b3e2 AM |
3740 | /* |
3741 | * CPU bound tasks (e.g. network routing) can exhibit cpu bound | |
1da177e4 LT |
3742 | * allocation behaviour: Most allocs on one cpu, most free operations |
3743 | * on another cpu. For these cases, an efficient object passing between | |
3744 | * cpus is necessary. This is provided by a shared array. The array | |
3745 | * replaces Bonwick's magazine layer. | |
3746 | * On uniprocessor, it's functionally equivalent (but less efficient) | |
3747 | * to a larger limit. Thus disabled by default. | |
3748 | */ | |
3749 | shared = 0; | |
3b0efdfa | 3750 | if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) |
1da177e4 | 3751 | shared = 8; |
1da177e4 LT |
3752 | |
3753 | #if DEBUG | |
a737b3e2 AM |
3754 | /* |
3755 | * With debugging enabled, large batchcount lead to excessively long | |
3756 | * periods with disabled local interrupts. Limit the batchcount | |
1da177e4 LT |
3757 | */ |
3758 | if (limit > 32) | |
3759 | limit = 32; | |
3760 | #endif | |
943a451a | 3761 | batchcount = (limit + 1) / 2; |
943a451a | 3762 | err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); |
c7ce4f60 | 3763 | end: |
1da177e4 | 3764 | if (err) |
1170532b | 3765 | pr_err("enable_cpucache failed for %s, error %d\n", |
b28a02de | 3766 | cachep->name, -err); |
2ed3a4ef | 3767 | return err; |
1da177e4 LT |
3768 | } |
3769 | ||
1b55253a | 3770 | /* |
ce8eb6c4 CL |
3771 | * Drain an array if it contains any elements taking the node lock only if |
3772 | * necessary. Note that the node listlock also protects the array_cache | |
b18e7e65 | 3773 | * if drain_array() is used on the shared array. |
1b55253a | 3774 | */ |
ce8eb6c4 | 3775 | static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, |
18726ca8 | 3776 | struct array_cache *ac, int node) |
1da177e4 | 3777 | { |
97654dfa | 3778 | LIST_HEAD(list); |
18726ca8 JK |
3779 | |
3780 | /* ac from n->shared can be freed if we don't hold the slab_mutex. */ | |
3781 | check_mutex_acquired(); | |
1da177e4 | 3782 | |
1b55253a CL |
3783 | if (!ac || !ac->avail) |
3784 | return; | |
18726ca8 JK |
3785 | |
3786 | if (ac->touched) { | |
1da177e4 | 3787 | ac->touched = 0; |
18726ca8 | 3788 | return; |
1da177e4 | 3789 | } |
18726ca8 | 3790 | |
b539ce9f | 3791 | raw_spin_lock_irq(&n->list_lock); |
18726ca8 | 3792 | drain_array_locked(cachep, ac, node, false, &list); |
b539ce9f | 3793 | raw_spin_unlock_irq(&n->list_lock); |
18726ca8 JK |
3794 | |
3795 | slabs_destroy(cachep, &list); | |
1da177e4 LT |
3796 | } |
3797 | ||
3798 | /** | |
3799 | * cache_reap - Reclaim memory from caches. | |
05fb6bf0 | 3800 | * @w: work descriptor |
1da177e4 LT |
3801 | * |
3802 | * Called from workqueue/eventd every few seconds. | |
3803 | * Purpose: | |
3804 | * - clear the per-cpu caches for this CPU. | |
3805 | * - return freeable pages to the main free memory pool. | |
3806 | * | |
a737b3e2 AM |
3807 | * If we cannot acquire the cache chain mutex then just give up - we'll try |
3808 | * again on the next iteration. | |
1da177e4 | 3809 | */ |
7c5cae36 | 3810 | static void cache_reap(struct work_struct *w) |
1da177e4 | 3811 | { |
7a7c381d | 3812 | struct kmem_cache *searchp; |
ce8eb6c4 | 3813 | struct kmem_cache_node *n; |
7d6e6d09 | 3814 | int node = numa_mem_id(); |
bf6aede7 | 3815 | struct delayed_work *work = to_delayed_work(w); |
1da177e4 | 3816 | |
18004c5d | 3817 | if (!mutex_trylock(&slab_mutex)) |
1da177e4 | 3818 | /* Give up. Setup the next iteration. */ |
7c5cae36 | 3819 | goto out; |
1da177e4 | 3820 | |
18004c5d | 3821 | list_for_each_entry(searchp, &slab_caches, list) { |
1da177e4 LT |
3822 | check_irq_on(); |
3823 | ||
35386e3b | 3824 | /* |
ce8eb6c4 | 3825 | * We only take the node lock if absolutely necessary and we |
35386e3b CL |
3826 | * have established with reasonable certainty that |
3827 | * we can do some work if the lock was obtained. | |
3828 | */ | |
18bf8541 | 3829 | n = get_node(searchp, node); |
35386e3b | 3830 | |
ce8eb6c4 | 3831 | reap_alien(searchp, n); |
1da177e4 | 3832 | |
18726ca8 | 3833 | drain_array(searchp, n, cpu_cache_get(searchp), node); |
1da177e4 | 3834 | |
35386e3b CL |
3835 | /* |
3836 | * These are racy checks but it does not matter | |
3837 | * if we skip one check or scan twice. | |
3838 | */ | |
ce8eb6c4 | 3839 | if (time_after(n->next_reap, jiffies)) |
35386e3b | 3840 | goto next; |
1da177e4 | 3841 | |
5f0985bb | 3842 | n->next_reap = jiffies + REAPTIMEOUT_NODE; |
1da177e4 | 3843 | |
18726ca8 | 3844 | drain_array(searchp, n, n->shared, node); |
1da177e4 | 3845 | |
ce8eb6c4 CL |
3846 | if (n->free_touched) |
3847 | n->free_touched = 0; | |
ed11d9eb CL |
3848 | else { |
3849 | int freed; | |
1da177e4 | 3850 | |
ce8eb6c4 | 3851 | freed = drain_freelist(searchp, n, (n->free_limit + |
ed11d9eb CL |
3852 | 5 * searchp->num - 1) / (5 * searchp->num)); |
3853 | STATS_ADD_REAPED(searchp, freed); | |
3854 | } | |
35386e3b | 3855 | next: |
1da177e4 LT |
3856 | cond_resched(); |
3857 | } | |
3858 | check_irq_on(); | |
18004c5d | 3859 | mutex_unlock(&slab_mutex); |
8fce4d8e | 3860 | next_reap_node(); |
7c5cae36 | 3861 | out: |
a737b3e2 | 3862 | /* Set up the next iteration */ |
a9f2a846 VB |
3863 | schedule_delayed_work_on(smp_processor_id(), work, |
3864 | round_jiffies_relative(REAPTIMEOUT_AC)); | |
1da177e4 LT |
3865 | } |
3866 | ||
0d7561c6 | 3867 | void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) |
1da177e4 | 3868 | { |
f728b0a5 | 3869 | unsigned long active_objs, num_objs, active_slabs; |
bf00bd34 DR |
3870 | unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; |
3871 | unsigned long free_slabs = 0; | |
e498be7d | 3872 | int node; |
ce8eb6c4 | 3873 | struct kmem_cache_node *n; |
1da177e4 | 3874 | |
18bf8541 | 3875 | for_each_kmem_cache_node(cachep, node, n) { |
ca3b9b91 | 3876 | check_irq_on(); |
b539ce9f | 3877 | raw_spin_lock_irq(&n->list_lock); |
e498be7d | 3878 | |
bf00bd34 DR |
3879 | total_slabs += n->total_slabs; |
3880 | free_slabs += n->free_slabs; | |
f728b0a5 | 3881 | free_objs += n->free_objects; |
07a63c41 | 3882 | |
ce8eb6c4 CL |
3883 | if (n->shared) |
3884 | shared_avail += n->shared->avail; | |
e498be7d | 3885 | |
b539ce9f | 3886 | raw_spin_unlock_irq(&n->list_lock); |
1da177e4 | 3887 | } |
bf00bd34 DR |
3888 | num_objs = total_slabs * cachep->num; |
3889 | active_slabs = total_slabs - free_slabs; | |
f728b0a5 | 3890 | active_objs = num_objs - free_objs; |
1da177e4 | 3891 | |
0d7561c6 GC |
3892 | sinfo->active_objs = active_objs; |
3893 | sinfo->num_objs = num_objs; | |
3894 | sinfo->active_slabs = active_slabs; | |
bf00bd34 | 3895 | sinfo->num_slabs = total_slabs; |
0d7561c6 GC |
3896 | sinfo->shared_avail = shared_avail; |
3897 | sinfo->limit = cachep->limit; | |
3898 | sinfo->batchcount = cachep->batchcount; | |
3899 | sinfo->shared = cachep->shared; | |
3900 | sinfo->objects_per_slab = cachep->num; | |
3901 | sinfo->cache_order = cachep->gfporder; | |
3902 | } | |
3903 | ||
3904 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) | |
3905 | { | |
1da177e4 | 3906 | #if STATS |
ce8eb6c4 | 3907 | { /* node stats */ |
1da177e4 LT |
3908 | unsigned long high = cachep->high_mark; |
3909 | unsigned long allocs = cachep->num_allocations; | |
3910 | unsigned long grown = cachep->grown; | |
3911 | unsigned long reaped = cachep->reaped; | |
3912 | unsigned long errors = cachep->errors; | |
3913 | unsigned long max_freeable = cachep->max_freeable; | |
1da177e4 | 3914 | unsigned long node_allocs = cachep->node_allocs; |
e498be7d | 3915 | unsigned long node_frees = cachep->node_frees; |
fb7faf33 | 3916 | unsigned long overflows = cachep->node_overflow; |
1da177e4 | 3917 | |
756a025f | 3918 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", |
e92dd4fd JP |
3919 | allocs, high, grown, |
3920 | reaped, errors, max_freeable, node_allocs, | |
3921 | node_frees, overflows); | |
1da177e4 LT |
3922 | } |
3923 | /* cpu stats */ | |
3924 | { | |
3925 | unsigned long allochit = atomic_read(&cachep->allochit); | |
3926 | unsigned long allocmiss = atomic_read(&cachep->allocmiss); | |
3927 | unsigned long freehit = atomic_read(&cachep->freehit); | |
3928 | unsigned long freemiss = atomic_read(&cachep->freemiss); | |
3929 | ||
3930 | seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", | |
b28a02de | 3931 | allochit, allocmiss, freehit, freemiss); |
1da177e4 LT |
3932 | } |
3933 | #endif | |
1da177e4 LT |
3934 | } |
3935 | ||
1da177e4 LT |
3936 | #define MAX_SLABINFO_WRITE 128 |
3937 | /** | |
3938 | * slabinfo_write - Tuning for the slab allocator | |
3939 | * @file: unused | |
3940 | * @buffer: user buffer | |
3941 | * @count: data length | |
3942 | * @ppos: unused | |
a862f68a MR |
3943 | * |
3944 | * Return: %0 on success, negative error code otherwise. | |
1da177e4 | 3945 | */ |
b7454ad3 | 3946 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
b28a02de | 3947 | size_t count, loff_t *ppos) |
1da177e4 | 3948 | { |
b28a02de | 3949 | char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; |
1da177e4 | 3950 | int limit, batchcount, shared, res; |
7a7c381d | 3951 | struct kmem_cache *cachep; |
b28a02de | 3952 | |
1da177e4 LT |
3953 | if (count > MAX_SLABINFO_WRITE) |
3954 | return -EINVAL; | |
3955 | if (copy_from_user(&kbuf, buffer, count)) | |
3956 | return -EFAULT; | |
b28a02de | 3957 | kbuf[MAX_SLABINFO_WRITE] = '\0'; |
1da177e4 LT |
3958 | |
3959 | tmp = strchr(kbuf, ' '); | |
3960 | if (!tmp) | |
3961 | return -EINVAL; | |
3962 | *tmp = '\0'; | |
3963 | tmp++; | |
3964 | if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) | |
3965 | return -EINVAL; | |
3966 | ||
3967 | /* Find the cache in the chain of caches. */ | |
18004c5d | 3968 | mutex_lock(&slab_mutex); |
1da177e4 | 3969 | res = -EINVAL; |
18004c5d | 3970 | list_for_each_entry(cachep, &slab_caches, list) { |
1da177e4 | 3971 | if (!strcmp(cachep->name, kbuf)) { |
a737b3e2 AM |
3972 | if (limit < 1 || batchcount < 1 || |
3973 | batchcount > limit || shared < 0) { | |
e498be7d | 3974 | res = 0; |
1da177e4 | 3975 | } else { |
e498be7d | 3976 | res = do_tune_cpucache(cachep, limit, |
83b519e8 PE |
3977 | batchcount, shared, |
3978 | GFP_KERNEL); | |
1da177e4 LT |
3979 | } |
3980 | break; | |
3981 | } | |
3982 | } | |
18004c5d | 3983 | mutex_unlock(&slab_mutex); |
1da177e4 LT |
3984 | if (res >= 0) |
3985 | res = count; | |
3986 | return res; | |
3987 | } | |
871751e2 | 3988 | |
04385fc5 KC |
3989 | #ifdef CONFIG_HARDENED_USERCOPY |
3990 | /* | |
afcc90f8 KC |
3991 | * Rejects incorrectly sized objects and objects that are to be copied |
3992 | * to/from userspace but do not fall entirely within the containing slab | |
3993 | * cache's usercopy region. | |
04385fc5 KC |
3994 | * |
3995 | * Returns NULL if check passes, otherwise const char * to name of cache | |
3996 | * to indicate an error. | |
3997 | */ | |
0b3eb091 MWO |
3998 | void __check_heap_object(const void *ptr, unsigned long n, |
3999 | const struct slab *slab, bool to_user) | |
04385fc5 KC |
4000 | { |
4001 | struct kmem_cache *cachep; | |
4002 | unsigned int objnr; | |
4003 | unsigned long offset; | |
4004 | ||
219667c2 AK |
4005 | ptr = kasan_reset_tag(ptr); |
4006 | ||
04385fc5 | 4007 | /* Find and validate object. */ |
0b3eb091 | 4008 | cachep = slab->slab_cache; |
40f3bf0c | 4009 | objnr = obj_to_index(cachep, slab, (void *)ptr); |
04385fc5 KC |
4010 | BUG_ON(objnr >= cachep->num); |
4011 | ||
4012 | /* Find offset within object. */ | |
d3fb45f3 AP |
4013 | if (is_kfence_address(ptr)) |
4014 | offset = ptr - kfence_object_start(ptr); | |
4015 | else | |
7981e67e | 4016 | offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep); |
04385fc5 | 4017 | |
afcc90f8 KC |
4018 | /* Allow address range falling entirely within usercopy region. */ |
4019 | if (offset >= cachep->useroffset && | |
4020 | offset - cachep->useroffset <= cachep->usersize && | |
4021 | n <= cachep->useroffset - offset + cachep->usersize) | |
f4e6e289 | 4022 | return; |
04385fc5 | 4023 | |
f4e6e289 | 4024 | usercopy_abort("SLAB object", cachep->name, to_user, offset, n); |
04385fc5 KC |
4025 | } |
4026 | #endif /* CONFIG_HARDENED_USERCOPY */ |