]>
Commit | Line | Data |
---|---|---|
40b0b3f8 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
a43cac0d DY |
2 | /* |
3 | * kexec: kexec_file_load system call | |
4 | * | |
5 | * Copyright (C) 2014 Red Hat Inc. | |
6 | * Authors: | |
7 | * Vivek Goyal <[email protected]> | |
a43cac0d DY |
8 | */ |
9 | ||
de90a6bc MH |
10 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
11 | ||
a43cac0d DY |
12 | #include <linux/capability.h> |
13 | #include <linux/mm.h> | |
14 | #include <linux/file.h> | |
15 | #include <linux/slab.h> | |
16 | #include <linux/kexec.h> | |
735c2f90 | 17 | #include <linux/memblock.h> |
a43cac0d DY |
18 | #include <linux/mutex.h> |
19 | #include <linux/list.h> | |
b804defe | 20 | #include <linux/fs.h> |
7b8589cc | 21 | #include <linux/ima.h> |
a43cac0d | 22 | #include <crypto/hash.h> |
a24d22b2 | 23 | #include <crypto/sha2.h> |
babac4a8 AT |
24 | #include <linux/elf.h> |
25 | #include <linux/elfcore.h> | |
26 | #include <linux/kernel.h> | |
b89999d0 | 27 | #include <linux/kernel_read_file.h> |
a43cac0d DY |
28 | #include <linux/syscalls.h> |
29 | #include <linux/vmalloc.h> | |
30 | #include "kexec_internal.h" | |
31 | ||
af16df54 CX |
32 | #ifdef CONFIG_KEXEC_SIG |
33 | static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE); | |
34 | ||
35 | void set_kexec_sig_enforced(void) | |
36 | { | |
37 | sig_enforce = true; | |
38 | } | |
39 | #endif | |
40 | ||
a43cac0d DY |
41 | static int kexec_calculate_store_digests(struct kimage *image); |
42 | ||
f4da7afe PT |
43 | /* Maximum size in bytes for kernel/initrd files. */ |
44 | #define KEXEC_FILE_SIZE_MAX min_t(s64, 4LL << 30, SSIZE_MAX) | |
45 | ||
9ec4ecef AT |
46 | /* |
47 | * Currently this is the only default function that is exported as some | |
48 | * architectures need it to do additional handlings. | |
49 | * In the future, other default functions may be exported too if required. | |
50 | */ | |
51 | int kexec_image_probe_default(struct kimage *image, void *buf, | |
52 | unsigned long buf_len) | |
53 | { | |
54 | const struct kexec_file_ops * const *fops; | |
55 | int ret = -ENOEXEC; | |
56 | ||
57 | for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) { | |
58 | ret = (*fops)->probe(buf, buf_len); | |
59 | if (!ret) { | |
60 | image->fops = *fops; | |
61 | return ret; | |
62 | } | |
63 | } | |
64 | ||
65 | return ret; | |
66 | } | |
67 | ||
fb15abdc | 68 | static void *kexec_image_load_default(struct kimage *image) |
9ec4ecef AT |
69 | { |
70 | if (!image->fops || !image->fops->load) | |
71 | return ERR_PTR(-ENOEXEC); | |
72 | ||
73 | return image->fops->load(image, image->kernel_buf, | |
74 | image->kernel_buf_len, image->initrd_buf, | |
75 | image->initrd_buf_len, image->cmdline_buf, | |
76 | image->cmdline_buf_len); | |
a43cac0d DY |
77 | } |
78 | ||
92a98a2b | 79 | int kexec_image_post_load_cleanup_default(struct kimage *image) |
9ec4ecef AT |
80 | { |
81 | if (!image->fops || !image->fops->cleanup) | |
82 | return 0; | |
83 | ||
84 | return image->fops->cleanup(image->image_loader_data); | |
a43cac0d DY |
85 | } |
86 | ||
a43cac0d DY |
87 | /* |
88 | * Free up memory used by kernel, initrd, and command line. This is temporary | |
89 | * memory allocation which is not needed any more after these buffers have | |
90 | * been loaded into separate segments and have been copied elsewhere. | |
91 | */ | |
92 | void kimage_file_post_load_cleanup(struct kimage *image) | |
93 | { | |
94 | struct purgatory_info *pi = &image->purgatory_info; | |
95 | ||
96 | vfree(image->kernel_buf); | |
97 | image->kernel_buf = NULL; | |
98 | ||
99 | vfree(image->initrd_buf); | |
100 | image->initrd_buf = NULL; | |
101 | ||
102 | kfree(image->cmdline_buf); | |
103 | image->cmdline_buf = NULL; | |
104 | ||
105 | vfree(pi->purgatory_buf); | |
106 | pi->purgatory_buf = NULL; | |
107 | ||
108 | vfree(pi->sechdrs); | |
109 | pi->sechdrs = NULL; | |
110 | ||
f31e3386 LR |
111 | #ifdef CONFIG_IMA_KEXEC |
112 | vfree(image->ima_buffer); | |
113 | image->ima_buffer = NULL; | |
114 | #endif /* CONFIG_IMA_KEXEC */ | |
115 | ||
a43cac0d DY |
116 | /* See if architecture has anything to cleanup post load */ |
117 | arch_kimage_file_post_load_cleanup(image); | |
118 | ||
119 | /* | |
120 | * Above call should have called into bootloader to free up | |
121 | * any data stored in kimage->image_loader_data. It should | |
122 | * be ok now to free it up. | |
123 | */ | |
124 | kfree(image->image_loader_data); | |
125 | image->image_loader_data = NULL; | |
126 | } | |
127 | ||
99d5cadf | 128 | #ifdef CONFIG_KEXEC_SIG |
c903dae8 CX |
129 | #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION |
130 | int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len) | |
131 | { | |
132 | int ret; | |
133 | ||
134 | ret = verify_pefile_signature(kernel, kernel_len, | |
135 | VERIFY_USE_SECONDARY_KEYRING, | |
136 | VERIFYING_KEXEC_PE_SIGNATURE); | |
137 | if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) { | |
138 | ret = verify_pefile_signature(kernel, kernel_len, | |
139 | VERIFY_USE_PLATFORM_KEYRING, | |
140 | VERIFYING_KEXEC_PE_SIGNATURE); | |
141 | } | |
142 | return ret; | |
143 | } | |
144 | #endif | |
145 | ||
689a7149 CX |
146 | static int kexec_image_verify_sig(struct kimage *image, void *buf, |
147 | unsigned long buf_len) | |
148 | { | |
149 | if (!image->fops || !image->fops->verify_sig) { | |
150 | pr_debug("kernel loader does not support signature verification.\n"); | |
151 | return -EKEYREJECTED; | |
152 | } | |
153 | ||
154 | return image->fops->verify_sig(buf, buf_len); | |
155 | } | |
156 | ||
99d5cadf JB |
157 | static int |
158 | kimage_validate_signature(struct kimage *image) | |
159 | { | |
99d5cadf JB |
160 | int ret; |
161 | ||
689a7149 CX |
162 | ret = kexec_image_verify_sig(image, image->kernel_buf, |
163 | image->kernel_buf_len); | |
fd7af71b | 164 | if (ret) { |
99d5cadf | 165 | |
af16df54 | 166 | if (sig_enforce) { |
fd7af71b | 167 | pr_notice("Enforced kernel signature verification failed (%d).\n", ret); |
99d5cadf JB |
168 | return ret; |
169 | } | |
170 | ||
fd7af71b LJ |
171 | /* |
172 | * If IMA is guaranteed to appraise a signature on the kexec | |
29d3c1c8 MG |
173 | * image, permit it even if the kernel is otherwise locked |
174 | * down. | |
175 | */ | |
176 | if (!ima_appraise_signature(READING_KEXEC_IMAGE) && | |
177 | security_locked_down(LOCKDOWN_KEXEC)) | |
178 | return -EPERM; | |
179 | ||
fd7af71b | 180 | pr_debug("kernel signature verification failed (%d).\n", ret); |
99d5cadf JB |
181 | } |
182 | ||
fd7af71b | 183 | return 0; |
99d5cadf JB |
184 | } |
185 | #endif | |
186 | ||
a43cac0d DY |
187 | /* |
188 | * In file mode list of segments is prepared by kernel. Copy relevant | |
189 | * data from user space, do error checking, prepare segment list | |
190 | */ | |
191 | static int | |
192 | kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, | |
193 | const char __user *cmdline_ptr, | |
194 | unsigned long cmdline_len, unsigned flags) | |
195 | { | |
f4da7afe | 196 | ssize_t ret; |
a43cac0d DY |
197 | void *ldata; |
198 | ||
0fa8e084 | 199 | ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf, |
f4da7afe PT |
200 | KEXEC_FILE_SIZE_MAX, NULL, |
201 | READING_KEXEC_IMAGE); | |
f7a4f689 | 202 | if (ret < 0) |
a43cac0d | 203 | return ret; |
f7a4f689 | 204 | image->kernel_buf_len = ret; |
a43cac0d DY |
205 | |
206 | /* Call arch image probe handlers */ | |
207 | ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, | |
208 | image->kernel_buf_len); | |
a43cac0d DY |
209 | if (ret) |
210 | goto out; | |
211 | ||
99d5cadf JB |
212 | #ifdef CONFIG_KEXEC_SIG |
213 | ret = kimage_validate_signature(image); | |
214 | ||
215 | if (ret) | |
a43cac0d | 216 | goto out; |
a43cac0d DY |
217 | #endif |
218 | /* It is possible that there no initramfs is being loaded */ | |
219 | if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { | |
0fa8e084 | 220 | ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf, |
f4da7afe | 221 | KEXEC_FILE_SIZE_MAX, NULL, |
b804defe | 222 | READING_KEXEC_INITRAMFS); |
f7a4f689 | 223 | if (ret < 0) |
a43cac0d | 224 | goto out; |
f7a4f689 KC |
225 | image->initrd_buf_len = ret; |
226 | ret = 0; | |
a43cac0d DY |
227 | } |
228 | ||
229 | if (cmdline_len) { | |
a9bd8dfa AV |
230 | image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len); |
231 | if (IS_ERR(image->cmdline_buf)) { | |
232 | ret = PTR_ERR(image->cmdline_buf); | |
233 | image->cmdline_buf = NULL; | |
a43cac0d DY |
234 | goto out; |
235 | } | |
236 | ||
237 | image->cmdline_buf_len = cmdline_len; | |
238 | ||
239 | /* command line should be a string with last byte null */ | |
240 | if (image->cmdline_buf[cmdline_len - 1] != '\0') { | |
241 | ret = -EINVAL; | |
242 | goto out; | |
243 | } | |
6a31fcd4 | 244 | |
4834177e | 245 | ima_kexec_cmdline(kernel_fd, image->cmdline_buf, |
6a31fcd4 | 246 | image->cmdline_buf_len - 1); |
a43cac0d DY |
247 | } |
248 | ||
6a31fcd4 PS |
249 | /* IMA needs to pass the measurement list to the next kernel. */ |
250 | ima_add_kexec_buffer(image); | |
251 | ||
fb15abdc BH |
252 | /* Call image load handler */ |
253 | ldata = kexec_image_load_default(image); | |
a43cac0d DY |
254 | |
255 | if (IS_ERR(ldata)) { | |
256 | ret = PTR_ERR(ldata); | |
257 | goto out; | |
258 | } | |
259 | ||
260 | image->image_loader_data = ldata; | |
261 | out: | |
262 | /* In case of error, free up all allocated memory in this function */ | |
263 | if (ret) | |
264 | kimage_file_post_load_cleanup(image); | |
265 | return ret; | |
266 | } | |
267 | ||
268 | static int | |
269 | kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, | |
270 | int initrd_fd, const char __user *cmdline_ptr, | |
271 | unsigned long cmdline_len, unsigned long flags) | |
272 | { | |
273 | int ret; | |
274 | struct kimage *image; | |
275 | bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; | |
276 | ||
277 | image = do_kimage_alloc_init(); | |
278 | if (!image) | |
279 | return -ENOMEM; | |
280 | ||
281 | image->file_mode = 1; | |
282 | ||
283 | if (kexec_on_panic) { | |
284 | /* Enable special crash kernel control page alloc policy. */ | |
285 | image->control_page = crashk_res.start; | |
286 | image->type = KEXEC_TYPE_CRASH; | |
287 | } | |
288 | ||
289 | ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, | |
290 | cmdline_ptr, cmdline_len, flags); | |
291 | if (ret) | |
292 | goto out_free_image; | |
293 | ||
294 | ret = sanity_check_segment_list(image); | |
295 | if (ret) | |
296 | goto out_free_post_load_bufs; | |
297 | ||
298 | ret = -ENOMEM; | |
299 | image->control_code_page = kimage_alloc_control_pages(image, | |
300 | get_order(KEXEC_CONTROL_PAGE_SIZE)); | |
301 | if (!image->control_code_page) { | |
302 | pr_err("Could not allocate control_code_buffer\n"); | |
303 | goto out_free_post_load_bufs; | |
304 | } | |
305 | ||
306 | if (!kexec_on_panic) { | |
307 | image->swap_page = kimage_alloc_control_pages(image, 0); | |
308 | if (!image->swap_page) { | |
309 | pr_err("Could not allocate swap buffer\n"); | |
310 | goto out_free_control_pages; | |
311 | } | |
312 | } | |
313 | ||
314 | *rimage = image; | |
315 | return 0; | |
316 | out_free_control_pages: | |
317 | kimage_free_page_list(&image->control_pages); | |
318 | out_free_post_load_bufs: | |
319 | kimage_file_post_load_cleanup(image); | |
320 | out_free_image: | |
321 | kfree(image); | |
322 | return ret; | |
323 | } | |
324 | ||
325 | SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, | |
326 | unsigned long, cmdline_len, const char __user *, cmdline_ptr, | |
327 | unsigned long, flags) | |
328 | { | |
a42aaad2 RR |
329 | int image_type = (flags & KEXEC_FILE_ON_CRASH) ? |
330 | KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT; | |
a43cac0d | 331 | struct kimage **dest_image, *image; |
a42aaad2 | 332 | int ret = 0, i; |
a43cac0d DY |
333 | |
334 | /* We only trust the superuser with rebooting the system. */ | |
a42aaad2 | 335 | if (!kexec_load_permitted(image_type)) |
a43cac0d DY |
336 | return -EPERM; |
337 | ||
338 | /* Make sure we have a legal set of flags */ | |
339 | if (flags != (flags & KEXEC_FILE_FLAGS)) | |
340 | return -EINVAL; | |
341 | ||
342 | image = NULL; | |
343 | ||
05c62574 | 344 | if (!kexec_trylock()) |
a43cac0d DY |
345 | return -EBUSY; |
346 | ||
a42aaad2 | 347 | if (image_type == KEXEC_TYPE_CRASH) { |
a43cac0d | 348 | dest_image = &kexec_crash_image; |
9b492cf5 XP |
349 | if (kexec_crash_image) |
350 | arch_kexec_unprotect_crashkres(); | |
a42aaad2 RR |
351 | } else { |
352 | dest_image = &kexec_image; | |
9b492cf5 | 353 | } |
a43cac0d DY |
354 | |
355 | if (flags & KEXEC_FILE_UNLOAD) | |
356 | goto exchange; | |
357 | ||
358 | /* | |
359 | * In case of crash, new kernel gets loaded in reserved region. It is | |
360 | * same memory where old crash kernel might be loaded. Free any | |
361 | * current crash dump kernel before we corrupt it. | |
362 | */ | |
363 | if (flags & KEXEC_FILE_ON_CRASH) | |
364 | kimage_free(xchg(&kexec_crash_image, NULL)); | |
365 | ||
366 | ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, | |
367 | cmdline_len, flags); | |
368 | if (ret) | |
369 | goto out; | |
370 | ||
371 | ret = machine_kexec_prepare(image); | |
372 | if (ret) | |
373 | goto out; | |
374 | ||
1229384f XP |
375 | /* |
376 | * Some architecture(like S390) may touch the crash memory before | |
377 | * machine_kexec_prepare(), we must copy vmcoreinfo data after it. | |
378 | */ | |
379 | ret = kimage_crash_copy_vmcoreinfo(image); | |
380 | if (ret) | |
381 | goto out; | |
382 | ||
a43cac0d DY |
383 | ret = kexec_calculate_store_digests(image); |
384 | if (ret) | |
385 | goto out; | |
386 | ||
387 | for (i = 0; i < image->nr_segments; i++) { | |
388 | struct kexec_segment *ksegment; | |
389 | ||
390 | ksegment = &image->segment[i]; | |
391 | pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", | |
392 | i, ksegment->buf, ksegment->bufsz, ksegment->mem, | |
393 | ksegment->memsz); | |
394 | ||
395 | ret = kimage_load_segment(image, &image->segment[i]); | |
396 | if (ret) | |
397 | goto out; | |
398 | } | |
399 | ||
400 | kimage_terminate(image); | |
401 | ||
de68e4da PT |
402 | ret = machine_kexec_post_load(image); |
403 | if (ret) | |
404 | goto out; | |
405 | ||
a43cac0d DY |
406 | /* |
407 | * Free up any temporary buffers allocated which are not needed | |
408 | * after image has been loaded | |
409 | */ | |
410 | kimage_file_post_load_cleanup(image); | |
411 | exchange: | |
412 | image = xchg(dest_image, image); | |
413 | out: | |
9b492cf5 XP |
414 | if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image) |
415 | arch_kexec_protect_crashkres(); | |
416 | ||
05c62574 | 417 | kexec_unlock(); |
a43cac0d DY |
418 | kimage_free(image); |
419 | return ret; | |
420 | } | |
421 | ||
422 | static int locate_mem_hole_top_down(unsigned long start, unsigned long end, | |
423 | struct kexec_buf *kbuf) | |
424 | { | |
425 | struct kimage *image = kbuf->image; | |
426 | unsigned long temp_start, temp_end; | |
427 | ||
428 | temp_end = min(end, kbuf->buf_max); | |
429 | temp_start = temp_end - kbuf->memsz; | |
430 | ||
431 | do { | |
432 | /* align down start */ | |
433 | temp_start = temp_start & (~(kbuf->buf_align - 1)); | |
434 | ||
435 | if (temp_start < start || temp_start < kbuf->buf_min) | |
436 | return 0; | |
437 | ||
438 | temp_end = temp_start + kbuf->memsz - 1; | |
439 | ||
440 | /* | |
441 | * Make sure this does not conflict with any of existing | |
442 | * segments | |
443 | */ | |
444 | if (kimage_is_destination_range(image, temp_start, temp_end)) { | |
445 | temp_start = temp_start - PAGE_SIZE; | |
446 | continue; | |
447 | } | |
448 | ||
449 | /* We found a suitable memory range */ | |
450 | break; | |
451 | } while (1); | |
452 | ||
453 | /* If we are here, we found a suitable memory range */ | |
454 | kbuf->mem = temp_start; | |
455 | ||
456 | /* Success, stop navigating through remaining System RAM ranges */ | |
457 | return 1; | |
458 | } | |
459 | ||
460 | static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, | |
461 | struct kexec_buf *kbuf) | |
462 | { | |
463 | struct kimage *image = kbuf->image; | |
464 | unsigned long temp_start, temp_end; | |
465 | ||
466 | temp_start = max(start, kbuf->buf_min); | |
467 | ||
468 | do { | |
469 | temp_start = ALIGN(temp_start, kbuf->buf_align); | |
470 | temp_end = temp_start + kbuf->memsz - 1; | |
471 | ||
472 | if (temp_end > end || temp_end > kbuf->buf_max) | |
473 | return 0; | |
474 | /* | |
475 | * Make sure this does not conflict with any of existing | |
476 | * segments | |
477 | */ | |
478 | if (kimage_is_destination_range(image, temp_start, temp_end)) { | |
479 | temp_start = temp_start + PAGE_SIZE; | |
480 | continue; | |
481 | } | |
482 | ||
483 | /* We found a suitable memory range */ | |
484 | break; | |
485 | } while (1); | |
486 | ||
487 | /* If we are here, we found a suitable memory range */ | |
488 | kbuf->mem = temp_start; | |
489 | ||
490 | /* Success, stop navigating through remaining System RAM ranges */ | |
491 | return 1; | |
492 | } | |
493 | ||
1d2e733b | 494 | static int locate_mem_hole_callback(struct resource *res, void *arg) |
a43cac0d DY |
495 | { |
496 | struct kexec_buf *kbuf = (struct kexec_buf *)arg; | |
1d2e733b | 497 | u64 start = res->start, end = res->end; |
a43cac0d DY |
498 | unsigned long sz = end - start + 1; |
499 | ||
500 | /* Returning 0 will take to next memory range */ | |
3fe4f499 DH |
501 | |
502 | /* Don't use memory that will be detected and handled by a driver. */ | |
7cf603d1 | 503 | if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED) |
3fe4f499 DH |
504 | return 0; |
505 | ||
a43cac0d DY |
506 | if (sz < kbuf->memsz) |
507 | return 0; | |
508 | ||
509 | if (end < kbuf->buf_min || start > kbuf->buf_max) | |
510 | return 0; | |
511 | ||
512 | /* | |
513 | * Allocate memory top down with-in ram range. Otherwise bottom up | |
514 | * allocation. | |
515 | */ | |
516 | if (kbuf->top_down) | |
517 | return locate_mem_hole_top_down(start, end, kbuf); | |
518 | return locate_mem_hole_bottom_up(start, end, kbuf); | |
519 | } | |
520 | ||
350e88ba | 521 | #ifdef CONFIG_ARCH_KEEP_MEMBLOCK |
735c2f90 AT |
522 | static int kexec_walk_memblock(struct kexec_buf *kbuf, |
523 | int (*func)(struct resource *, void *)) | |
524 | { | |
525 | int ret = 0; | |
526 | u64 i; | |
527 | phys_addr_t mstart, mend; | |
528 | struct resource res = { }; | |
529 | ||
497e1858 AT |
530 | if (kbuf->image->type == KEXEC_TYPE_CRASH) |
531 | return func(&crashk_res, kbuf); | |
532 | ||
f7892d8e DH |
533 | /* |
534 | * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See | |
535 | * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in | |
536 | * locate_mem_hole_callback(). | |
537 | */ | |
735c2f90 | 538 | if (kbuf->top_down) { |
497e1858 | 539 | for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE, |
735c2f90 AT |
540 | &mstart, &mend, NULL) { |
541 | /* | |
542 | * In memblock, end points to the first byte after the | |
543 | * range while in kexec, end points to the last byte | |
544 | * in the range. | |
545 | */ | |
546 | res.start = mstart; | |
547 | res.end = mend - 1; | |
548 | ret = func(&res, kbuf); | |
549 | if (ret) | |
550 | break; | |
551 | } | |
552 | } else { | |
497e1858 AT |
553 | for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, |
554 | &mstart, &mend, NULL) { | |
735c2f90 AT |
555 | /* |
556 | * In memblock, end points to the first byte after the | |
557 | * range while in kexec, end points to the last byte | |
558 | * in the range. | |
559 | */ | |
560 | res.start = mstart; | |
561 | res.end = mend - 1; | |
562 | ret = func(&res, kbuf); | |
563 | if (ret) | |
564 | break; | |
565 | } | |
566 | } | |
567 | ||
568 | return ret; | |
569 | } | |
350e88ba MR |
570 | #else |
571 | static int kexec_walk_memblock(struct kexec_buf *kbuf, | |
572 | int (*func)(struct resource *, void *)) | |
573 | { | |
574 | return 0; | |
575 | } | |
735c2f90 AT |
576 | #endif |
577 | ||
60fe3910 | 578 | /** |
735c2f90 | 579 | * kexec_walk_resources - call func(data) on free memory regions |
60fe3910 TJB |
580 | * @kbuf: Context info for the search. Also passed to @func. |
581 | * @func: Function to call for each memory region. | |
582 | * | |
583 | * Return: The memory walk will stop when func returns a non-zero value | |
584 | * and that value will be returned. If all free regions are visited without | |
585 | * func returning non-zero, then zero will be returned. | |
586 | */ | |
735c2f90 AT |
587 | static int kexec_walk_resources(struct kexec_buf *kbuf, |
588 | int (*func)(struct resource *, void *)) | |
60fe3910 TJB |
589 | { |
590 | if (kbuf->image->type == KEXEC_TYPE_CRASH) | |
591 | return walk_iomem_res_desc(crashk_res.desc, | |
592 | IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY, | |
593 | crashk_res.start, crashk_res.end, | |
594 | kbuf, func); | |
595 | else | |
596 | return walk_system_ram_res(0, ULONG_MAX, kbuf, func); | |
597 | } | |
598 | ||
e2e806f9 TJB |
599 | /** |
600 | * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel | |
601 | * @kbuf: Parameters for the memory search. | |
602 | * | |
603 | * On success, kbuf->mem will have the start address of the memory region found. | |
604 | * | |
605 | * Return: 0 on success, negative errno on error. | |
606 | */ | |
607 | int kexec_locate_mem_hole(struct kexec_buf *kbuf) | |
608 | { | |
609 | int ret; | |
610 | ||
b6664ba4 AT |
611 | /* Arch knows where to place */ |
612 | if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN) | |
613 | return 0; | |
614 | ||
350e88ba | 615 | if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) |
735c2f90 AT |
616 | ret = kexec_walk_resources(kbuf, locate_mem_hole_callback); |
617 | else | |
618 | ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback); | |
e2e806f9 TJB |
619 | |
620 | return ret == 1 ? 0 : -EADDRNOTAVAIL; | |
621 | } | |
622 | ||
ec2b9bfa TJB |
623 | /** |
624 | * kexec_add_buffer - place a buffer in a kexec segment | |
625 | * @kbuf: Buffer contents and memory parameters. | |
626 | * | |
627 | * This function assumes that kexec_mutex is held. | |
628 | * On successful return, @kbuf->mem will have the physical address of | |
629 | * the buffer in memory. | |
630 | * | |
631 | * Return: 0 on success, negative errno on error. | |
a43cac0d | 632 | */ |
ec2b9bfa | 633 | int kexec_add_buffer(struct kexec_buf *kbuf) |
a43cac0d | 634 | { |
a43cac0d | 635 | struct kexec_segment *ksegment; |
a43cac0d DY |
636 | int ret; |
637 | ||
638 | /* Currently adding segment this way is allowed only in file mode */ | |
ec2b9bfa | 639 | if (!kbuf->image->file_mode) |
a43cac0d DY |
640 | return -EINVAL; |
641 | ||
ec2b9bfa | 642 | if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX) |
a43cac0d DY |
643 | return -EINVAL; |
644 | ||
645 | /* | |
646 | * Make sure we are not trying to add buffer after allocating | |
647 | * control pages. All segments need to be placed first before | |
648 | * any control pages are allocated. As control page allocation | |
649 | * logic goes through list of segments to make sure there are | |
650 | * no destination overlaps. | |
651 | */ | |
ec2b9bfa | 652 | if (!list_empty(&kbuf->image->control_pages)) { |
a43cac0d DY |
653 | WARN_ON(1); |
654 | return -EINVAL; | |
655 | } | |
656 | ||
ec2b9bfa TJB |
657 | /* Ensure minimum alignment needed for segments. */ |
658 | kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE); | |
659 | kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE); | |
a43cac0d DY |
660 | |
661 | /* Walk the RAM ranges and allocate a suitable range for the buffer */ | |
f891f197 | 662 | ret = arch_kexec_locate_mem_hole(kbuf); |
e2e806f9 TJB |
663 | if (ret) |
664 | return ret; | |
a43cac0d DY |
665 | |
666 | /* Found a suitable memory range */ | |
ec2b9bfa | 667 | ksegment = &kbuf->image->segment[kbuf->image->nr_segments]; |
a43cac0d DY |
668 | ksegment->kbuf = kbuf->buffer; |
669 | ksegment->bufsz = kbuf->bufsz; | |
670 | ksegment->mem = kbuf->mem; | |
671 | ksegment->memsz = kbuf->memsz; | |
ec2b9bfa | 672 | kbuf->image->nr_segments++; |
a43cac0d DY |
673 | return 0; |
674 | } | |
675 | ||
676 | /* Calculate and store the digest of segments */ | |
677 | static int kexec_calculate_store_digests(struct kimage *image) | |
678 | { | |
679 | struct crypto_shash *tfm; | |
680 | struct shash_desc *desc; | |
681 | int ret = 0, i, j, zero_buf_sz, sha_region_sz; | |
682 | size_t desc_size, nullsz; | |
683 | char *digest; | |
684 | void *zero_buf; | |
685 | struct kexec_sha_region *sha_regions; | |
686 | struct purgatory_info *pi = &image->purgatory_info; | |
687 | ||
b799a09f AT |
688 | if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY)) |
689 | return 0; | |
690 | ||
a43cac0d DY |
691 | zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); |
692 | zero_buf_sz = PAGE_SIZE; | |
693 | ||
694 | tfm = crypto_alloc_shash("sha256", 0, 0); | |
695 | if (IS_ERR(tfm)) { | |
696 | ret = PTR_ERR(tfm); | |
697 | goto out; | |
698 | } | |
699 | ||
700 | desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); | |
701 | desc = kzalloc(desc_size, GFP_KERNEL); | |
702 | if (!desc) { | |
703 | ret = -ENOMEM; | |
704 | goto out_free_tfm; | |
705 | } | |
706 | ||
707 | sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); | |
708 | sha_regions = vzalloc(sha_region_sz); | |
31d82c2c JJB |
709 | if (!sha_regions) { |
710 | ret = -ENOMEM; | |
a43cac0d | 711 | goto out_free_desc; |
31d82c2c | 712 | } |
a43cac0d DY |
713 | |
714 | desc->tfm = tfm; | |
a43cac0d DY |
715 | |
716 | ret = crypto_shash_init(desc); | |
717 | if (ret < 0) | |
718 | goto out_free_sha_regions; | |
719 | ||
720 | digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); | |
721 | if (!digest) { | |
722 | ret = -ENOMEM; | |
723 | goto out_free_sha_regions; | |
724 | } | |
725 | ||
726 | for (j = i = 0; i < image->nr_segments; i++) { | |
727 | struct kexec_segment *ksegment; | |
728 | ||
729 | ksegment = &image->segment[i]; | |
730 | /* | |
731 | * Skip purgatory as it will be modified once we put digest | |
732 | * info in purgatory. | |
733 | */ | |
734 | if (ksegment->kbuf == pi->purgatory_buf) | |
735 | continue; | |
736 | ||
737 | ret = crypto_shash_update(desc, ksegment->kbuf, | |
738 | ksegment->bufsz); | |
739 | if (ret) | |
740 | break; | |
741 | ||
742 | /* | |
743 | * Assume rest of the buffer is filled with zero and | |
744 | * update digest accordingly. | |
745 | */ | |
746 | nullsz = ksegment->memsz - ksegment->bufsz; | |
747 | while (nullsz) { | |
748 | unsigned long bytes = nullsz; | |
749 | ||
750 | if (bytes > zero_buf_sz) | |
751 | bytes = zero_buf_sz; | |
752 | ret = crypto_shash_update(desc, zero_buf, bytes); | |
753 | if (ret) | |
754 | break; | |
755 | nullsz -= bytes; | |
756 | } | |
757 | ||
758 | if (ret) | |
759 | break; | |
760 | ||
761 | sha_regions[j].start = ksegment->mem; | |
762 | sha_regions[j].len = ksegment->memsz; | |
763 | j++; | |
764 | } | |
765 | ||
766 | if (!ret) { | |
767 | ret = crypto_shash_final(desc, digest); | |
768 | if (ret) | |
769 | goto out_free_digest; | |
40c50c1f TG |
770 | ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions", |
771 | sha_regions, sha_region_sz, 0); | |
a43cac0d DY |
772 | if (ret) |
773 | goto out_free_digest; | |
774 | ||
40c50c1f TG |
775 | ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest", |
776 | digest, SHA256_DIGEST_SIZE, 0); | |
a43cac0d DY |
777 | if (ret) |
778 | goto out_free_digest; | |
779 | } | |
780 | ||
781 | out_free_digest: | |
782 | kfree(digest); | |
783 | out_free_sha_regions: | |
784 | vfree(sha_regions); | |
785 | out_free_desc: | |
786 | kfree(desc); | |
787 | out_free_tfm: | |
788 | kfree(tfm); | |
789 | out: | |
790 | return ret; | |
791 | } | |
792 | ||
b799a09f | 793 | #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY |
93045705 PR |
794 | /* |
795 | * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory. | |
796 | * @pi: Purgatory to be loaded. | |
797 | * @kbuf: Buffer to setup. | |
798 | * | |
799 | * Allocates the memory needed for the buffer. Caller is responsible to free | |
800 | * the memory after use. | |
801 | * | |
802 | * Return: 0 on success, negative errno on error. | |
803 | */ | |
804 | static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi, | |
805 | struct kexec_buf *kbuf) | |
a43cac0d | 806 | { |
93045705 PR |
807 | const Elf_Shdr *sechdrs; |
808 | unsigned long bss_align; | |
809 | unsigned long bss_sz; | |
810 | unsigned long align; | |
811 | int i, ret; | |
a43cac0d | 812 | |
93045705 | 813 | sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; |
3be3f61d PR |
814 | kbuf->buf_align = bss_align = 1; |
815 | kbuf->bufsz = bss_sz = 0; | |
93045705 PR |
816 | |
817 | for (i = 0; i < pi->ehdr->e_shnum; i++) { | |
818 | if (!(sechdrs[i].sh_flags & SHF_ALLOC)) | |
819 | continue; | |
820 | ||
821 | align = sechdrs[i].sh_addralign; | |
822 | if (sechdrs[i].sh_type != SHT_NOBITS) { | |
823 | if (kbuf->buf_align < align) | |
824 | kbuf->buf_align = align; | |
825 | kbuf->bufsz = ALIGN(kbuf->bufsz, align); | |
826 | kbuf->bufsz += sechdrs[i].sh_size; | |
827 | } else { | |
828 | if (bss_align < align) | |
829 | bss_align = align; | |
830 | bss_sz = ALIGN(bss_sz, align); | |
831 | bss_sz += sechdrs[i].sh_size; | |
832 | } | |
833 | } | |
834 | kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align); | |
835 | kbuf->memsz = kbuf->bufsz + bss_sz; | |
836 | if (kbuf->buf_align < bss_align) | |
837 | kbuf->buf_align = bss_align; | |
838 | ||
839 | kbuf->buffer = vzalloc(kbuf->bufsz); | |
840 | if (!kbuf->buffer) | |
841 | return -ENOMEM; | |
842 | pi->purgatory_buf = kbuf->buffer; | |
843 | ||
844 | ret = kexec_add_buffer(kbuf); | |
845 | if (ret) | |
846 | goto out; | |
93045705 PR |
847 | |
848 | return 0; | |
849 | out: | |
850 | vfree(pi->purgatory_buf); | |
851 | pi->purgatory_buf = NULL; | |
852 | return ret; | |
853 | } | |
854 | ||
855 | /* | |
856 | * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer. | |
857 | * @pi: Purgatory to be loaded. | |
858 | * @kbuf: Buffer prepared to store purgatory. | |
859 | * | |
860 | * Allocates the memory needed for the buffer. Caller is responsible to free | |
861 | * the memory after use. | |
862 | * | |
863 | * Return: 0 on success, negative errno on error. | |
864 | */ | |
865 | static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi, | |
866 | struct kexec_buf *kbuf) | |
867 | { | |
93045705 PR |
868 | unsigned long bss_addr; |
869 | unsigned long offset; | |
4df3504e | 870 | size_t sechdrs_size; |
93045705 | 871 | Elf_Shdr *sechdrs; |
93045705 | 872 | int i; |
a43cac0d | 873 | |
8da0b724 PR |
874 | /* |
875 | * The section headers in kexec_purgatory are read-only. In order to | |
876 | * have them modifiable make a temporary copy. | |
877 | */ | |
4df3504e SH |
878 | sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum); |
879 | sechdrs = vzalloc(sechdrs_size); | |
a43cac0d DY |
880 | if (!sechdrs) |
881 | return -ENOMEM; | |
4df3504e | 882 | memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size); |
93045705 | 883 | pi->sechdrs = sechdrs; |
a43cac0d | 884 | |
620f697c PR |
885 | offset = 0; |
886 | bss_addr = kbuf->mem + kbuf->bufsz; | |
f1b1cca3 | 887 | kbuf->image->start = pi->ehdr->e_entry; |
a43cac0d DY |
888 | |
889 | for (i = 0; i < pi->ehdr->e_shnum; i++) { | |
93045705 | 890 | unsigned long align; |
620f697c | 891 | void *src, *dst; |
93045705 | 892 | |
a43cac0d DY |
893 | if (!(sechdrs[i].sh_flags & SHF_ALLOC)) |
894 | continue; | |
895 | ||
896 | align = sechdrs[i].sh_addralign; | |
f1b1cca3 | 897 | if (sechdrs[i].sh_type == SHT_NOBITS) { |
a43cac0d DY |
898 | bss_addr = ALIGN(bss_addr, align); |
899 | sechdrs[i].sh_addr = bss_addr; | |
900 | bss_addr += sechdrs[i].sh_size; | |
f1b1cca3 PR |
901 | continue; |
902 | } | |
903 | ||
620f697c | 904 | offset = ALIGN(offset, align); |
8652d44f RR |
905 | |
906 | /* | |
907 | * Check if the segment contains the entry point, if so, | |
908 | * calculate the value of image->start based on it. | |
909 | * If the compiler has produced more than one .text section | |
910 | * (Eg: .text.hot), they are generally after the main .text | |
911 | * section, and they shall not be used to calculate | |
912 | * image->start. So do not re-calculate image->start if it | |
913 | * is not set to the initial value, and warn the user so they | |
914 | * have a chance to fix their purgatory's linker script. | |
915 | */ | |
f1b1cca3 PR |
916 | if (sechdrs[i].sh_flags & SHF_EXECINSTR && |
917 | pi->ehdr->e_entry >= sechdrs[i].sh_addr && | |
918 | pi->ehdr->e_entry < (sechdrs[i].sh_addr | |
8652d44f RR |
919 | + sechdrs[i].sh_size) && |
920 | !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) { | |
f1b1cca3 | 921 | kbuf->image->start -= sechdrs[i].sh_addr; |
620f697c | 922 | kbuf->image->start += kbuf->mem + offset; |
a43cac0d | 923 | } |
a43cac0d | 924 | |
8da0b724 | 925 | src = (void *)pi->ehdr + sechdrs[i].sh_offset; |
620f697c PR |
926 | dst = pi->purgatory_buf + offset; |
927 | memcpy(dst, src, sechdrs[i].sh_size); | |
928 | ||
929 | sechdrs[i].sh_addr = kbuf->mem + offset; | |
8da0b724 | 930 | sechdrs[i].sh_offset = offset; |
620f697c | 931 | offset += sechdrs[i].sh_size; |
f1b1cca3 | 932 | } |
a43cac0d | 933 | |
93045705 | 934 | return 0; |
a43cac0d DY |
935 | } |
936 | ||
937 | static int kexec_apply_relocations(struct kimage *image) | |
938 | { | |
939 | int i, ret; | |
940 | struct purgatory_info *pi = &image->purgatory_info; | |
8aec395b PR |
941 | const Elf_Shdr *sechdrs; |
942 | ||
943 | sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; | |
a43cac0d | 944 | |
a43cac0d | 945 | for (i = 0; i < pi->ehdr->e_shnum; i++) { |
8aec395b PR |
946 | const Elf_Shdr *relsec; |
947 | const Elf_Shdr *symtab; | |
948 | Elf_Shdr *section; | |
949 | ||
950 | relsec = sechdrs + i; | |
a43cac0d | 951 | |
8aec395b PR |
952 | if (relsec->sh_type != SHT_RELA && |
953 | relsec->sh_type != SHT_REL) | |
a43cac0d DY |
954 | continue; |
955 | ||
956 | /* | |
957 | * For section of type SHT_RELA/SHT_REL, | |
958 | * ->sh_link contains section header index of associated | |
959 | * symbol table. And ->sh_info contains section header | |
960 | * index of section to which relocations apply. | |
961 | */ | |
8aec395b PR |
962 | if (relsec->sh_info >= pi->ehdr->e_shnum || |
963 | relsec->sh_link >= pi->ehdr->e_shnum) | |
a43cac0d DY |
964 | return -ENOEXEC; |
965 | ||
8aec395b PR |
966 | section = pi->sechdrs + relsec->sh_info; |
967 | symtab = sechdrs + relsec->sh_link; | |
a43cac0d DY |
968 | |
969 | if (!(section->sh_flags & SHF_ALLOC)) | |
970 | continue; | |
971 | ||
972 | /* | |
973 | * symtab->sh_link contain section header index of associated | |
974 | * string table. | |
975 | */ | |
976 | if (symtab->sh_link >= pi->ehdr->e_shnum) | |
977 | /* Invalid section number? */ | |
978 | continue; | |
979 | ||
980 | /* | |
981 | * Respective architecture needs to provide support for applying | |
982 | * relocations of type SHT_RELA/SHT_REL. | |
983 | */ | |
8aec395b PR |
984 | if (relsec->sh_type == SHT_RELA) |
985 | ret = arch_kexec_apply_relocations_add(pi, section, | |
986 | relsec, symtab); | |
987 | else if (relsec->sh_type == SHT_REL) | |
988 | ret = arch_kexec_apply_relocations(pi, section, | |
989 | relsec, symtab); | |
a43cac0d DY |
990 | if (ret) |
991 | return ret; | |
992 | } | |
993 | ||
994 | return 0; | |
995 | } | |
996 | ||
3be3f61d PR |
997 | /* |
998 | * kexec_load_purgatory - Load and relocate the purgatory object. | |
999 | * @image: Image to add the purgatory to. | |
1000 | * @kbuf: Memory parameters to use. | |
1001 | * | |
1002 | * Allocates the memory needed for image->purgatory_info.sechdrs and | |
1003 | * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible | |
1004 | * to free the memory after use. | |
1005 | * | |
1006 | * Return: 0 on success, negative errno on error. | |
1007 | */ | |
1008 | int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf) | |
a43cac0d DY |
1009 | { |
1010 | struct purgatory_info *pi = &image->purgatory_info; | |
1011 | int ret; | |
1012 | ||
1013 | if (kexec_purgatory_size <= 0) | |
1014 | return -EINVAL; | |
1015 | ||
65c225d3 | 1016 | pi->ehdr = (const Elf_Ehdr *)kexec_purgatory; |
a43cac0d | 1017 | |
3be3f61d | 1018 | ret = kexec_purgatory_setup_kbuf(pi, kbuf); |
a43cac0d DY |
1019 | if (ret) |
1020 | return ret; | |
1021 | ||
3be3f61d | 1022 | ret = kexec_purgatory_setup_sechdrs(pi, kbuf); |
93045705 PR |
1023 | if (ret) |
1024 | goto out_free_kbuf; | |
1025 | ||
a43cac0d DY |
1026 | ret = kexec_apply_relocations(image); |
1027 | if (ret) | |
1028 | goto out; | |
1029 | ||
a43cac0d DY |
1030 | return 0; |
1031 | out: | |
1032 | vfree(pi->sechdrs); | |
070c43ee | 1033 | pi->sechdrs = NULL; |
93045705 | 1034 | out_free_kbuf: |
a43cac0d | 1035 | vfree(pi->purgatory_buf); |
070c43ee | 1036 | pi->purgatory_buf = NULL; |
a43cac0d DY |
1037 | return ret; |
1038 | } | |
1039 | ||
961d921a PR |
1040 | /* |
1041 | * kexec_purgatory_find_symbol - find a symbol in the purgatory | |
1042 | * @pi: Purgatory to search in. | |
1043 | * @name: Name of the symbol. | |
1044 | * | |
1045 | * Return: pointer to symbol in read-only symtab on success, NULL on error. | |
1046 | */ | |
1047 | static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, | |
1048 | const char *name) | |
a43cac0d | 1049 | { |
961d921a | 1050 | const Elf_Shdr *sechdrs; |
65c225d3 | 1051 | const Elf_Ehdr *ehdr; |
961d921a | 1052 | const Elf_Sym *syms; |
a43cac0d | 1053 | const char *strtab; |
961d921a | 1054 | int i, k; |
a43cac0d | 1055 | |
961d921a | 1056 | if (!pi->ehdr) |
a43cac0d DY |
1057 | return NULL; |
1058 | ||
a43cac0d | 1059 | ehdr = pi->ehdr; |
961d921a | 1060 | sechdrs = (void *)ehdr + ehdr->e_shoff; |
a43cac0d DY |
1061 | |
1062 | for (i = 0; i < ehdr->e_shnum; i++) { | |
1063 | if (sechdrs[i].sh_type != SHT_SYMTAB) | |
1064 | continue; | |
1065 | ||
1066 | if (sechdrs[i].sh_link >= ehdr->e_shnum) | |
1067 | /* Invalid strtab section number */ | |
1068 | continue; | |
961d921a PR |
1069 | strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset; |
1070 | syms = (void *)ehdr + sechdrs[i].sh_offset; | |
a43cac0d DY |
1071 | |
1072 | /* Go through symbols for a match */ | |
1073 | for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { | |
1074 | if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) | |
1075 | continue; | |
1076 | ||
1077 | if (strcmp(strtab + syms[k].st_name, name) != 0) | |
1078 | continue; | |
1079 | ||
1080 | if (syms[k].st_shndx == SHN_UNDEF || | |
1081 | syms[k].st_shndx >= ehdr->e_shnum) { | |
1082 | pr_debug("Symbol: %s has bad section index %d.\n", | |
1083 | name, syms[k].st_shndx); | |
1084 | return NULL; | |
1085 | } | |
1086 | ||
1087 | /* Found the symbol we are looking for */ | |
1088 | return &syms[k]; | |
1089 | } | |
1090 | } | |
1091 | ||
1092 | return NULL; | |
1093 | } | |
1094 | ||
1095 | void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) | |
1096 | { | |
1097 | struct purgatory_info *pi = &image->purgatory_info; | |
961d921a | 1098 | const Elf_Sym *sym; |
a43cac0d DY |
1099 | Elf_Shdr *sechdr; |
1100 | ||
1101 | sym = kexec_purgatory_find_symbol(pi, name); | |
1102 | if (!sym) | |
1103 | return ERR_PTR(-EINVAL); | |
1104 | ||
1105 | sechdr = &pi->sechdrs[sym->st_shndx]; | |
1106 | ||
1107 | /* | |
1108 | * Returns the address where symbol will finally be loaded after | |
1109 | * kexec_load_segment() | |
1110 | */ | |
1111 | return (void *)(sechdr->sh_addr + sym->st_value); | |
1112 | } | |
1113 | ||
1114 | /* | |
1115 | * Get or set value of a symbol. If "get_value" is true, symbol value is | |
1116 | * returned in buf otherwise symbol value is set based on value in buf. | |
1117 | */ | |
1118 | int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, | |
1119 | void *buf, unsigned int size, bool get_value) | |
1120 | { | |
a43cac0d | 1121 | struct purgatory_info *pi = &image->purgatory_info; |
961d921a PR |
1122 | const Elf_Sym *sym; |
1123 | Elf_Shdr *sec; | |
a43cac0d DY |
1124 | char *sym_buf; |
1125 | ||
1126 | sym = kexec_purgatory_find_symbol(pi, name); | |
1127 | if (!sym) | |
1128 | return -EINVAL; | |
1129 | ||
1130 | if (sym->st_size != size) { | |
1131 | pr_err("symbol %s size mismatch: expected %lu actual %u\n", | |
1132 | name, (unsigned long)sym->st_size, size); | |
1133 | return -EINVAL; | |
1134 | } | |
1135 | ||
961d921a | 1136 | sec = pi->sechdrs + sym->st_shndx; |
a43cac0d | 1137 | |
961d921a | 1138 | if (sec->sh_type == SHT_NOBITS) { |
a43cac0d DY |
1139 | pr_err("symbol %s is in a bss section. Cannot %s\n", name, |
1140 | get_value ? "get" : "set"); | |
1141 | return -EINVAL; | |
1142 | } | |
1143 | ||
8da0b724 | 1144 | sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value; |
a43cac0d DY |
1145 | |
1146 | if (get_value) | |
1147 | memcpy((void *)buf, sym_buf, size); | |
1148 | else | |
1149 | memcpy((void *)sym_buf, buf, size); | |
1150 | ||
1151 | return 0; | |
1152 | } | |
b799a09f | 1153 | #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */ |
babac4a8 AT |
1154 | |
1155 | int crash_exclude_mem_range(struct crash_mem *mem, | |
1156 | unsigned long long mstart, unsigned long long mend) | |
1157 | { | |
1158 | int i, j; | |
a2e9a95d | 1159 | unsigned long long start, end, p_start, p_end; |
cade589f | 1160 | struct range temp_range = {0, 0}; |
babac4a8 AT |
1161 | |
1162 | for (i = 0; i < mem->nr_ranges; i++) { | |
1163 | start = mem->ranges[i].start; | |
1164 | end = mem->ranges[i].end; | |
a2e9a95d LJ |
1165 | p_start = mstart; |
1166 | p_end = mend; | |
babac4a8 AT |
1167 | |
1168 | if (mstart > end || mend < start) | |
1169 | continue; | |
1170 | ||
1171 | /* Truncate any area outside of range */ | |
1172 | if (mstart < start) | |
a2e9a95d | 1173 | p_start = start; |
babac4a8 | 1174 | if (mend > end) |
a2e9a95d | 1175 | p_end = end; |
babac4a8 AT |
1176 | |
1177 | /* Found completely overlapping range */ | |
a2e9a95d | 1178 | if (p_start == start && p_end == end) { |
babac4a8 AT |
1179 | mem->ranges[i].start = 0; |
1180 | mem->ranges[i].end = 0; | |
1181 | if (i < mem->nr_ranges - 1) { | |
1182 | /* Shift rest of the ranges to left */ | |
1183 | for (j = i; j < mem->nr_ranges - 1; j++) { | |
1184 | mem->ranges[j].start = | |
1185 | mem->ranges[j+1].start; | |
1186 | mem->ranges[j].end = | |
1187 | mem->ranges[j+1].end; | |
1188 | } | |
a2e9a95d LJ |
1189 | |
1190 | /* | |
1191 | * Continue to check if there are another overlapping ranges | |
1192 | * from the current position because of shifting the above | |
1193 | * mem ranges. | |
1194 | */ | |
1195 | i--; | |
1196 | mem->nr_ranges--; | |
1197 | continue; | |
babac4a8 AT |
1198 | } |
1199 | mem->nr_ranges--; | |
1200 | return 0; | |
1201 | } | |
1202 | ||
a2e9a95d | 1203 | if (p_start > start && p_end < end) { |
babac4a8 | 1204 | /* Split original range */ |
a2e9a95d LJ |
1205 | mem->ranges[i].end = p_start - 1; |
1206 | temp_range.start = p_end + 1; | |
babac4a8 | 1207 | temp_range.end = end; |
a2e9a95d LJ |
1208 | } else if (p_start != start) |
1209 | mem->ranges[i].end = p_start - 1; | |
babac4a8 | 1210 | else |
a2e9a95d | 1211 | mem->ranges[i].start = p_end + 1; |
babac4a8 AT |
1212 | break; |
1213 | } | |
1214 | ||
1215 | /* If a split happened, add the split to array */ | |
1216 | if (!temp_range.end) | |
1217 | return 0; | |
1218 | ||
1219 | /* Split happened */ | |
1220 | if (i == mem->max_nr_ranges - 1) | |
1221 | return -ENOMEM; | |
1222 | ||
1223 | /* Location where new range should go */ | |
1224 | j = i + 1; | |
1225 | if (j < mem->nr_ranges) { | |
1226 | /* Move over all ranges one slot towards the end */ | |
1227 | for (i = mem->nr_ranges - 1; i >= j; i--) | |
1228 | mem->ranges[i + 1] = mem->ranges[i]; | |
1229 | } | |
1230 | ||
1231 | mem->ranges[j].start = temp_range.start; | |
1232 | mem->ranges[j].end = temp_range.end; | |
1233 | mem->nr_ranges++; | |
1234 | return 0; | |
1235 | } | |
1236 | ||
4853f68d | 1237 | int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map, |
babac4a8 AT |
1238 | void **addr, unsigned long *sz) |
1239 | { | |
1240 | Elf64_Ehdr *ehdr; | |
1241 | Elf64_Phdr *phdr; | |
1242 | unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; | |
1243 | unsigned char *buf; | |
1244 | unsigned int cpu, i; | |
1245 | unsigned long long notes_addr; | |
1246 | unsigned long mstart, mend; | |
1247 | ||
475f63ae | 1248 | /* extra phdr for vmcoreinfo ELF note */ |
babac4a8 AT |
1249 | nr_phdr = nr_cpus + 1; |
1250 | nr_phdr += mem->nr_ranges; | |
1251 | ||
1252 | /* | |
1253 | * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping | |
1254 | * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64). | |
1255 | * I think this is required by tools like gdb. So same physical | |
475f63ae | 1256 | * memory will be mapped in two ELF headers. One will contain kernel |
babac4a8 AT |
1257 | * text virtual addresses and other will have __va(physical) addresses. |
1258 | */ | |
1259 | ||
1260 | nr_phdr++; | |
1261 | elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); | |
1262 | elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); | |
1263 | ||
1264 | buf = vzalloc(elf_sz); | |
1265 | if (!buf) | |
1266 | return -ENOMEM; | |
1267 | ||
1268 | ehdr = (Elf64_Ehdr *)buf; | |
1269 | phdr = (Elf64_Phdr *)(ehdr + 1); | |
1270 | memcpy(ehdr->e_ident, ELFMAG, SELFMAG); | |
1271 | ehdr->e_ident[EI_CLASS] = ELFCLASS64; | |
1272 | ehdr->e_ident[EI_DATA] = ELFDATA2LSB; | |
1273 | ehdr->e_ident[EI_VERSION] = EV_CURRENT; | |
1274 | ehdr->e_ident[EI_OSABI] = ELF_OSABI; | |
1275 | memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); | |
1276 | ehdr->e_type = ET_CORE; | |
1277 | ehdr->e_machine = ELF_ARCH; | |
1278 | ehdr->e_version = EV_CURRENT; | |
1279 | ehdr->e_phoff = sizeof(Elf64_Ehdr); | |
1280 | ehdr->e_ehsize = sizeof(Elf64_Ehdr); | |
1281 | ehdr->e_phentsize = sizeof(Elf64_Phdr); | |
1282 | ||
a2e9a95d | 1283 | /* Prepare one phdr of type PT_NOTE for each present CPU */ |
babac4a8 AT |
1284 | for_each_present_cpu(cpu) { |
1285 | phdr->p_type = PT_NOTE; | |
1286 | notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); | |
1287 | phdr->p_offset = phdr->p_paddr = notes_addr; | |
1288 | phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); | |
1289 | (ehdr->e_phnum)++; | |
1290 | phdr++; | |
1291 | } | |
1292 | ||
1293 | /* Prepare one PT_NOTE header for vmcoreinfo */ | |
1294 | phdr->p_type = PT_NOTE; | |
1295 | phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); | |
1296 | phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE; | |
1297 | (ehdr->e_phnum)++; | |
1298 | phdr++; | |
1299 | ||
1300 | /* Prepare PT_LOAD type program header for kernel text region */ | |
4853f68d | 1301 | if (need_kernel_map) { |
babac4a8 AT |
1302 | phdr->p_type = PT_LOAD; |
1303 | phdr->p_flags = PF_R|PF_W|PF_X; | |
f973cce0 | 1304 | phdr->p_vaddr = (unsigned long) _text; |
babac4a8 AT |
1305 | phdr->p_filesz = phdr->p_memsz = _end - _text; |
1306 | phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); | |
1307 | ehdr->e_phnum++; | |
1308 | phdr++; | |
1309 | } | |
1310 | ||
1311 | /* Go through all the ranges in mem->ranges[] and prepare phdr */ | |
1312 | for (i = 0; i < mem->nr_ranges; i++) { | |
1313 | mstart = mem->ranges[i].start; | |
1314 | mend = mem->ranges[i].end; | |
1315 | ||
1316 | phdr->p_type = PT_LOAD; | |
1317 | phdr->p_flags = PF_R|PF_W|PF_X; | |
1318 | phdr->p_offset = mstart; | |
1319 | ||
1320 | phdr->p_paddr = mstart; | |
f973cce0 | 1321 | phdr->p_vaddr = (unsigned long) __va(mstart); |
babac4a8 AT |
1322 | phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; |
1323 | phdr->p_align = 0; | |
1324 | ehdr->e_phnum++; | |
475f63ae | 1325 | pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", |
babac4a8 AT |
1326 | phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, |
1327 | ehdr->e_phnum, phdr->p_offset); | |
475f63ae | 1328 | phdr++; |
babac4a8 AT |
1329 | } |
1330 | ||
1331 | *addr = buf; | |
1332 | *sz = elf_sz; | |
1333 | return 0; | |
1334 | } |