]> Git Repo - linux.git/blame - drivers/hv/vmbus_drv.c
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux.git] / drivers / hv / vmbus_drv.c
CommitLineData
3b20eb23 1// SPDX-License-Identifier: GPL-2.0-only
3e7ee490 2/*
3e7ee490
HJ
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
3e7ee490
HJ
5 * Authors:
6 * Haiyang Zhang <[email protected]>
7 * Hank Janssen <[email protected]>
b0069f43 8 * K. Y. Srinivasan <[email protected]>
3e7ee490 9 */
0a46618d
HJ
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
3e7ee490
HJ
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/device.h>
3e7ee490
HJ
15#include <linux/interrupt.h>
16#include <linux/sysctl.h>
5a0e3ad6 17#include <linux/slab.h>
b0069f43 18#include <linux/acpi.h>
8b5d6d3b 19#include <linux/completion.h>
46a97191 20#include <linux/hyperv.h>
b0209501 21#include <linux/kernel_stat.h>
4061ed9e 22#include <linux/clockchips.h>
e513229b 23#include <linux/cpu.h>
68db0cf1
IM
24#include <linux/sched/task_stack.h>
25
1f48dcf1 26#include <linux/delay.h>
96c1d058
NM
27#include <linux/notifier.h>
28#include <linux/ptrace.h>
35464483 29#include <linux/screen_info.h>
510f7aef 30#include <linux/kdebug.h>
6d146aef 31#include <linux/efi.h>
4b44f2d1 32#include <linux/random.h>
f3a99e76 33#include <linux/kernel.h>
63ecc6d2 34#include <linux/syscore_ops.h>
fd1fea68 35#include <clocksource/hyperv_timer.h>
0f2a6619 36#include "hyperv_vmbus.h"
3e7ee490 37
fc76936d
SH
38struct vmbus_dynid {
39 struct list_head node;
40 struct hv_vmbus_device_id id;
41};
42
607c1a11 43static struct acpi_device *hv_acpi_dev;
1168ac22 44
71a6655d 45static struct completion probe_event;
98db4335 46
76d36ab7 47static int hyperv_cpuhp_online;
96c1d058 48
81b18bce
SM
49static void *hv_panic_page;
50
626b901f
MK
51/* Values parsed from ACPI DSDT */
52static int vmbus_irq;
53int vmbus_interrupt;
54
040026df
TL
55/*
56 * Boolean to control whether to report panic messages over Hyper-V.
57 *
b18e3589 58 * It can be set via /proc/sys/kernel/hyperv_record_panic_msg
040026df
TL
59 */
60static int sysctl_record_panic_msg = 1;
61
62static int hyperv_report_reg(void)
63{
64 return !sysctl_record_panic_msg || !hv_panic_page;
65}
66
510f7aef
VK
67static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
68 void *args)
69{
70 struct pt_regs *regs;
71
74347a99 72 vmbus_initiate_unload(true);
510f7aef 73
73f26e52
TL
74 /*
75 * Hyper-V should be notified only once about a panic. If we will be
76 * doing hyperv_report_panic_msg() later with kmsg data, don't do
77 * the notification here.
78 */
79 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
040026df 80 && hyperv_report_reg()) {
74347a99 81 regs = current_pt_regs();
f3a99e76 82 hyperv_report_panic(regs, val, false);
74347a99 83 }
96c1d058
NM
84 return NOTIFY_DONE;
85}
86
510f7aef
VK
87static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
88 void *args)
89{
49971e6b 90 struct die_args *die = args;
510f7aef
VK
91 struct pt_regs *regs = die->regs;
92
608a973b
MK
93 /* Don't notify Hyper-V if the die event is other than oops */
94 if (val != DIE_OOPS)
95 return NOTIFY_DONE;
96
73f26e52
TL
97 /*
98 * Hyper-V should be notified only once about a panic. If we will be
99 * doing hyperv_report_panic_msg() later with kmsg data, don't do
100 * the notification here.
101 */
040026df 102 if (hyperv_report_reg())
f3a99e76 103 hyperv_report_panic(regs, val, true);
510f7aef
VK
104 return NOTIFY_DONE;
105}
106
107static struct notifier_block hyperv_die_block = {
108 .notifier_call = hyperv_die_event,
109};
96c1d058
NM
110static struct notifier_block hyperv_panic_block = {
111 .notifier_call = hyperv_panic_event,
112};
113
6d146aef
JO
114static const char *fb_mmio_name = "fb_range";
115static struct resource *fb_mmio;
e2e80841 116static struct resource *hyperv_mmio;
8aea7f82 117static DEFINE_MUTEX(hyperv_mmio_lock);
98db4335 118
cf6a2eac
S
119static int vmbus_exists(void)
120{
121 if (hv_acpi_dev == NULL)
122 return -ENODEV;
123
124 return 0;
125}
126
c2e5df61 127static u8 channel_monitor_group(const struct vmbus_channel *channel)
76c52bbe
GKH
128{
129 return (u8)channel->offermsg.monitorid / 32;
130}
131
c2e5df61 132static u8 channel_monitor_offset(const struct vmbus_channel *channel)
76c52bbe
GKH
133{
134 return (u8)channel->offermsg.monitorid % 32;
135}
136
c2e5df61
SH
137static u32 channel_pending(const struct vmbus_channel *channel,
138 const struct hv_monitor_page *monitor_page)
76c52bbe
GKH
139{
140 u8 monitor_group = channel_monitor_group(channel);
c2e5df61 141
76c52bbe
GKH
142 return monitor_page->trigger_group[monitor_group].pending;
143}
144
c2e5df61
SH
145static u32 channel_latency(const struct vmbus_channel *channel,
146 const struct hv_monitor_page *monitor_page)
1cee272b
GKH
147{
148 u8 monitor_group = channel_monitor_group(channel);
149 u8 monitor_offset = channel_monitor_offset(channel);
c2e5df61 150
1cee272b
GKH
151 return monitor_page->latency[monitor_group][monitor_offset];
152}
153
4947c745
GKH
154static u32 channel_conn_id(struct vmbus_channel *channel,
155 struct hv_monitor_page *monitor_page)
156{
157 u8 monitor_group = channel_monitor_group(channel);
158 u8 monitor_offset = channel_monitor_offset(channel);
e4f2212e 159
4947c745
GKH
160 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
161}
162
03f3a910
GKH
163static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
164 char *buf)
165{
166 struct hv_device *hv_dev = device_to_hv_device(dev);
167
168 if (!hv_dev->channel)
169 return -ENODEV;
170 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
171}
172static DEVICE_ATTR_RO(id);
173
a8fb5f3d
GKH
174static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
175 char *buf)
176{
177 struct hv_device *hv_dev = device_to_hv_device(dev);
178
179 if (!hv_dev->channel)
180 return -ENODEV;
181 return sprintf(buf, "%d\n", hv_dev->channel->state);
182}
183static DEVICE_ATTR_RO(state);
184
5ffd00e2
GKH
185static ssize_t monitor_id_show(struct device *dev,
186 struct device_attribute *dev_attr, char *buf)
187{
188 struct hv_device *hv_dev = device_to_hv_device(dev);
189
190 if (!hv_dev->channel)
191 return -ENODEV;
192 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
193}
194static DEVICE_ATTR_RO(monitor_id);
195
68234c04
GKH
196static ssize_t class_id_show(struct device *dev,
197 struct device_attribute *dev_attr, char *buf)
198{
199 struct hv_device *hv_dev = device_to_hv_device(dev);
200
201 if (!hv_dev->channel)
202 return -ENODEV;
203 return sprintf(buf, "{%pUl}\n",
458c4475 204 &hv_dev->channel->offermsg.offer.if_type);
68234c04
GKH
205}
206static DEVICE_ATTR_RO(class_id);
207
7c55e1d0
GKH
208static ssize_t device_id_show(struct device *dev,
209 struct device_attribute *dev_attr, char *buf)
210{
211 struct hv_device *hv_dev = device_to_hv_device(dev);
212
213 if (!hv_dev->channel)
214 return -ENODEV;
215 return sprintf(buf, "{%pUl}\n",
458c4475 216 &hv_dev->channel->offermsg.offer.if_instance);
7c55e1d0
GKH
217}
218static DEVICE_ATTR_RO(device_id);
219
647fa371
GKH
220static ssize_t modalias_show(struct device *dev,
221 struct device_attribute *dev_attr, char *buf)
222{
223 struct hv_device *hv_dev = device_to_hv_device(dev);
647fa371 224
0027e3fd 225 return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
647fa371
GKH
226}
227static DEVICE_ATTR_RO(modalias);
228
7ceb1c37
SH
229#ifdef CONFIG_NUMA
230static ssize_t numa_node_show(struct device *dev,
231 struct device_attribute *attr, char *buf)
232{
233 struct hv_device *hv_dev = device_to_hv_device(dev);
234
235 if (!hv_dev->channel)
236 return -ENODEV;
237
458d090f 238 return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
7ceb1c37
SH
239}
240static DEVICE_ATTR_RO(numa_node);
241#endif
242
76c52bbe
GKH
243static ssize_t server_monitor_pending_show(struct device *dev,
244 struct device_attribute *dev_attr,
245 char *buf)
246{
247 struct hv_device *hv_dev = device_to_hv_device(dev);
248
249 if (!hv_dev->channel)
250 return -ENODEV;
251 return sprintf(buf, "%d\n",
252 channel_pending(hv_dev->channel,
fd8e3c35 253 vmbus_connection.monitor_pages[0]));
76c52bbe
GKH
254}
255static DEVICE_ATTR_RO(server_monitor_pending);
256
257static ssize_t client_monitor_pending_show(struct device *dev,
258 struct device_attribute *dev_attr,
259 char *buf)
260{
261 struct hv_device *hv_dev = device_to_hv_device(dev);
262
263 if (!hv_dev->channel)
264 return -ENODEV;
265 return sprintf(buf, "%d\n",
266 channel_pending(hv_dev->channel,
267 vmbus_connection.monitor_pages[1]));
268}
269static DEVICE_ATTR_RO(client_monitor_pending);
68234c04 270
1cee272b
GKH
271static ssize_t server_monitor_latency_show(struct device *dev,
272 struct device_attribute *dev_attr,
273 char *buf)
274{
275 struct hv_device *hv_dev = device_to_hv_device(dev);
276
277 if (!hv_dev->channel)
278 return -ENODEV;
279 return sprintf(buf, "%d\n",
280 channel_latency(hv_dev->channel,
281 vmbus_connection.monitor_pages[0]));
282}
283static DEVICE_ATTR_RO(server_monitor_latency);
284
285static ssize_t client_monitor_latency_show(struct device *dev,
286 struct device_attribute *dev_attr,
287 char *buf)
288{
289 struct hv_device *hv_dev = device_to_hv_device(dev);
290
291 if (!hv_dev->channel)
292 return -ENODEV;
293 return sprintf(buf, "%d\n",
294 channel_latency(hv_dev->channel,
295 vmbus_connection.monitor_pages[1]));
296}
297static DEVICE_ATTR_RO(client_monitor_latency);
298
4947c745
GKH
299static ssize_t server_monitor_conn_id_show(struct device *dev,
300 struct device_attribute *dev_attr,
301 char *buf)
302{
303 struct hv_device *hv_dev = device_to_hv_device(dev);
304
305 if (!hv_dev->channel)
306 return -ENODEV;
307 return sprintf(buf, "%d\n",
308 channel_conn_id(hv_dev->channel,
309 vmbus_connection.monitor_pages[0]));
310}
311static DEVICE_ATTR_RO(server_monitor_conn_id);
312
313static ssize_t client_monitor_conn_id_show(struct device *dev,
314 struct device_attribute *dev_attr,
315 char *buf)
316{
317 struct hv_device *hv_dev = device_to_hv_device(dev);
318
319 if (!hv_dev->channel)
320 return -ENODEV;
321 return sprintf(buf, "%d\n",
322 channel_conn_id(hv_dev->channel,
323 vmbus_connection.monitor_pages[1]));
324}
325static DEVICE_ATTR_RO(client_monitor_conn_id);
326
98f4c651
GKH
327static ssize_t out_intr_mask_show(struct device *dev,
328 struct device_attribute *dev_attr, char *buf)
329{
330 struct hv_device *hv_dev = device_to_hv_device(dev);
331 struct hv_ring_buffer_debug_info outbound;
ba50bf1c 332 int ret;
98f4c651
GKH
333
334 if (!hv_dev->channel)
335 return -ENODEV;
ba50bf1c
DC
336
337 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
338 &outbound);
339 if (ret < 0)
340 return ret;
341
98f4c651
GKH
342 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
343}
344static DEVICE_ATTR_RO(out_intr_mask);
345
346static ssize_t out_read_index_show(struct device *dev,
347 struct device_attribute *dev_attr, char *buf)
348{
349 struct hv_device *hv_dev = device_to_hv_device(dev);
350 struct hv_ring_buffer_debug_info outbound;
ba50bf1c 351 int ret;
98f4c651
GKH
352
353 if (!hv_dev->channel)
354 return -ENODEV;
ba50bf1c
DC
355
356 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
357 &outbound);
358 if (ret < 0)
359 return ret;
98f4c651
GKH
360 return sprintf(buf, "%d\n", outbound.current_read_index);
361}
362static DEVICE_ATTR_RO(out_read_index);
363
364static ssize_t out_write_index_show(struct device *dev,
365 struct device_attribute *dev_attr,
366 char *buf)
367{
368 struct hv_device *hv_dev = device_to_hv_device(dev);
369 struct hv_ring_buffer_debug_info outbound;
ba50bf1c 370 int ret;
98f4c651
GKH
371
372 if (!hv_dev->channel)
373 return -ENODEV;
ba50bf1c
DC
374
375 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
376 &outbound);
377 if (ret < 0)
378 return ret;
98f4c651
GKH
379 return sprintf(buf, "%d\n", outbound.current_write_index);
380}
381static DEVICE_ATTR_RO(out_write_index);
382
383static ssize_t out_read_bytes_avail_show(struct device *dev,
384 struct device_attribute *dev_attr,
385 char *buf)
386{
387 struct hv_device *hv_dev = device_to_hv_device(dev);
388 struct hv_ring_buffer_debug_info outbound;
ba50bf1c 389 int ret;
98f4c651
GKH
390
391 if (!hv_dev->channel)
392 return -ENODEV;
ba50bf1c
DC
393
394 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
395 &outbound);
396 if (ret < 0)
397 return ret;
98f4c651
GKH
398 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
399}
400static DEVICE_ATTR_RO(out_read_bytes_avail);
401
402static ssize_t out_write_bytes_avail_show(struct device *dev,
403 struct device_attribute *dev_attr,
404 char *buf)
405{
406 struct hv_device *hv_dev = device_to_hv_device(dev);
407 struct hv_ring_buffer_debug_info outbound;
ba50bf1c 408 int ret;
98f4c651
GKH
409
410 if (!hv_dev->channel)
411 return -ENODEV;
ba50bf1c
DC
412
413 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
414 &outbound);
415 if (ret < 0)
416 return ret;
98f4c651
GKH
417 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
418}
419static DEVICE_ATTR_RO(out_write_bytes_avail);
420
421static ssize_t in_intr_mask_show(struct device *dev,
422 struct device_attribute *dev_attr, char *buf)
423{
424 struct hv_device *hv_dev = device_to_hv_device(dev);
425 struct hv_ring_buffer_debug_info inbound;
ba50bf1c 426 int ret;
98f4c651
GKH
427
428 if (!hv_dev->channel)
429 return -ENODEV;
ba50bf1c
DC
430
431 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
432 if (ret < 0)
433 return ret;
434
98f4c651
GKH
435 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
436}
437static DEVICE_ATTR_RO(in_intr_mask);
438
439static ssize_t in_read_index_show(struct device *dev,
440 struct device_attribute *dev_attr, char *buf)
441{
442 struct hv_device *hv_dev = device_to_hv_device(dev);
443 struct hv_ring_buffer_debug_info inbound;
ba50bf1c 444 int ret;
98f4c651
GKH
445
446 if (!hv_dev->channel)
447 return -ENODEV;
ba50bf1c
DC
448
449 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
450 if (ret < 0)
451 return ret;
452
98f4c651
GKH
453 return sprintf(buf, "%d\n", inbound.current_read_index);
454}
455static DEVICE_ATTR_RO(in_read_index);
456
457static ssize_t in_write_index_show(struct device *dev,
458 struct device_attribute *dev_attr, char *buf)
459{
460 struct hv_device *hv_dev = device_to_hv_device(dev);
461 struct hv_ring_buffer_debug_info inbound;
ba50bf1c 462 int ret;
98f4c651
GKH
463
464 if (!hv_dev->channel)
465 return -ENODEV;
ba50bf1c
DC
466
467 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
468 if (ret < 0)
469 return ret;
470
98f4c651
GKH
471 return sprintf(buf, "%d\n", inbound.current_write_index);
472}
473static DEVICE_ATTR_RO(in_write_index);
474
475static ssize_t in_read_bytes_avail_show(struct device *dev,
476 struct device_attribute *dev_attr,
477 char *buf)
478{
479 struct hv_device *hv_dev = device_to_hv_device(dev);
480 struct hv_ring_buffer_debug_info inbound;
ba50bf1c 481 int ret;
98f4c651
GKH
482
483 if (!hv_dev->channel)
484 return -ENODEV;
ba50bf1c
DC
485
486 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
487 if (ret < 0)
488 return ret;
489
98f4c651
GKH
490 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
491}
492static DEVICE_ATTR_RO(in_read_bytes_avail);
493
494static ssize_t in_write_bytes_avail_show(struct device *dev,
495 struct device_attribute *dev_attr,
496 char *buf)
497{
498 struct hv_device *hv_dev = device_to_hv_device(dev);
499 struct hv_ring_buffer_debug_info inbound;
ba50bf1c 500 int ret;
98f4c651
GKH
501
502 if (!hv_dev->channel)
503 return -ENODEV;
ba50bf1c
DC
504
505 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
506 if (ret < 0)
507 return ret;
508
98f4c651
GKH
509 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
510}
511static DEVICE_ATTR_RO(in_write_bytes_avail);
512
042ab031
DC
513static ssize_t channel_vp_mapping_show(struct device *dev,
514 struct device_attribute *dev_attr,
515 char *buf)
516{
517 struct hv_device *hv_dev = device_to_hv_device(dev);
518 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
042ab031
DC
519 int buf_size = PAGE_SIZE, n_written, tot_written;
520 struct list_head *cur;
521
522 if (!channel)
523 return -ENODEV;
524
3eb0ac86
APM
525 mutex_lock(&vmbus_connection.channel_mutex);
526
042ab031
DC
527 tot_written = snprintf(buf, buf_size, "%u:%u\n",
528 channel->offermsg.child_relid, channel->target_cpu);
529
042ab031
DC
530 list_for_each(cur, &channel->sc_list) {
531 if (tot_written >= buf_size - 1)
532 break;
533
534 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
535 n_written = scnprintf(buf + tot_written,
536 buf_size - tot_written,
537 "%u:%u\n",
538 cur_sc->offermsg.child_relid,
539 cur_sc->target_cpu);
540 tot_written += n_written;
541 }
542
3eb0ac86 543 mutex_unlock(&vmbus_connection.channel_mutex);
042ab031
DC
544
545 return tot_written;
546}
547static DEVICE_ATTR_RO(channel_vp_mapping);
548
7047f17d
S
549static ssize_t vendor_show(struct device *dev,
550 struct device_attribute *dev_attr,
551 char *buf)
552{
553 struct hv_device *hv_dev = device_to_hv_device(dev);
e4f2212e 554
7047f17d
S
555 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
556}
557static DEVICE_ATTR_RO(vendor);
558
559static ssize_t device_show(struct device *dev,
560 struct device_attribute *dev_attr,
561 char *buf)
562{
563 struct hv_device *hv_dev = device_to_hv_device(dev);
e4f2212e 564
7047f17d
S
565 return sprintf(buf, "0x%x\n", hv_dev->device_id);
566}
567static DEVICE_ATTR_RO(device);
568
d765edbb
SH
569static ssize_t driver_override_store(struct device *dev,
570 struct device_attribute *attr,
571 const char *buf, size_t count)
572{
573 struct hv_device *hv_dev = device_to_hv_device(dev);
574 char *driver_override, *old, *cp;
575
576 /* We need to keep extra room for a newline */
577 if (count >= (PAGE_SIZE - 1))
578 return -EINVAL;
579
580 driver_override = kstrndup(buf, count, GFP_KERNEL);
581 if (!driver_override)
582 return -ENOMEM;
583
584 cp = strchr(driver_override, '\n');
585 if (cp)
586 *cp = '\0';
587
588 device_lock(dev);
589 old = hv_dev->driver_override;
590 if (strlen(driver_override)) {
591 hv_dev->driver_override = driver_override;
592 } else {
593 kfree(driver_override);
594 hv_dev->driver_override = NULL;
595 }
596 device_unlock(dev);
597
598 kfree(old);
599
600 return count;
601}
602
603static ssize_t driver_override_show(struct device *dev,
604 struct device_attribute *attr, char *buf)
605{
606 struct hv_device *hv_dev = device_to_hv_device(dev);
607 ssize_t len;
608
609 device_lock(dev);
610 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
611 device_unlock(dev);
612
613 return len;
614}
615static DEVICE_ATTR_RW(driver_override);
616
98f4c651 617/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
fc76936d 618static struct attribute *vmbus_dev_attrs[] = {
03f3a910 619 &dev_attr_id.attr,
a8fb5f3d 620 &dev_attr_state.attr,
5ffd00e2 621 &dev_attr_monitor_id.attr,
68234c04 622 &dev_attr_class_id.attr,
7c55e1d0 623 &dev_attr_device_id.attr,
647fa371 624 &dev_attr_modalias.attr,
7ceb1c37
SH
625#ifdef CONFIG_NUMA
626 &dev_attr_numa_node.attr,
627#endif
76c52bbe
GKH
628 &dev_attr_server_monitor_pending.attr,
629 &dev_attr_client_monitor_pending.attr,
1cee272b
GKH
630 &dev_attr_server_monitor_latency.attr,
631 &dev_attr_client_monitor_latency.attr,
4947c745
GKH
632 &dev_attr_server_monitor_conn_id.attr,
633 &dev_attr_client_monitor_conn_id.attr,
98f4c651
GKH
634 &dev_attr_out_intr_mask.attr,
635 &dev_attr_out_read_index.attr,
636 &dev_attr_out_write_index.attr,
637 &dev_attr_out_read_bytes_avail.attr,
638 &dev_attr_out_write_bytes_avail.attr,
639 &dev_attr_in_intr_mask.attr,
640 &dev_attr_in_read_index.attr,
641 &dev_attr_in_write_index.attr,
642 &dev_attr_in_read_bytes_avail.attr,
643 &dev_attr_in_write_bytes_avail.attr,
042ab031 644 &dev_attr_channel_vp_mapping.attr,
7047f17d
S
645 &dev_attr_vendor.attr,
646 &dev_attr_device.attr,
d765edbb 647 &dev_attr_driver_override.attr,
03f3a910
GKH
648 NULL,
649};
46fc1548
KB
650
651/*
652 * Device-level attribute_group callback function. Returns the permission for
653 * each attribute, and returns 0 if an attribute is not visible.
654 */
655static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
656 struct attribute *attr, int idx)
657{
658 struct device *dev = kobj_to_dev(kobj);
659 const struct hv_device *hv_dev = device_to_hv_device(dev);
660
661 /* Hide the monitor attributes if the monitor mechanism is not used. */
662 if (!hv_dev->channel->offermsg.monitor_allocated &&
663 (attr == &dev_attr_monitor_id.attr ||
664 attr == &dev_attr_server_monitor_pending.attr ||
665 attr == &dev_attr_client_monitor_pending.attr ||
666 attr == &dev_attr_server_monitor_latency.attr ||
667 attr == &dev_attr_client_monitor_latency.attr ||
668 attr == &dev_attr_server_monitor_conn_id.attr ||
669 attr == &dev_attr_client_monitor_conn_id.attr))
670 return 0;
671
672 return attr->mode;
673}
674
675static const struct attribute_group vmbus_dev_group = {
676 .attrs = vmbus_dev_attrs,
677 .is_visible = vmbus_dev_attr_is_visible
678};
679__ATTRIBUTE_GROUPS(vmbus_dev);
03f3a910 680
adde2487
S
681/*
682 * vmbus_uevent - add uevent for our device
683 *
684 * This routine is invoked when a device is added or removed on the vmbus to
685 * generate a uevent to udev in the userspace. The udev will then look at its
686 * rule and the uevent generated here to load the appropriate driver
0ddda660
S
687 *
688 * The alias string will be of the form vmbus:guid where guid is the string
689 * representation of the device guid (each byte of the guid will be
690 * represented with two hex characters.
adde2487
S
691 */
692static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
693{
694 struct hv_device *dev = device_to_hv_device(device);
0027e3fd 695 const char *format = "MODALIAS=vmbus:%*phN";
0ddda660 696
0027e3fd 697 return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
adde2487
S
698}
699
d765edbb 700static const struct hv_vmbus_device_id *
593db803 701hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
d765edbb
SH
702{
703 if (id == NULL)
704 return NULL; /* empty device table */
705
593db803
AS
706 for (; !guid_is_null(&id->guid); id++)
707 if (guid_equal(&id->guid, guid))
d765edbb
SH
708 return id;
709
710 return NULL;
711}
712
713static const struct hv_vmbus_device_id *
593db803 714hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
3037a7b6 715{
fc76936d
SH
716 const struct hv_vmbus_device_id *id = NULL;
717 struct vmbus_dynid *dynid;
718
fc76936d
SH
719 spin_lock(&drv->dynids.lock);
720 list_for_each_entry(dynid, &drv->dynids.list, node) {
593db803 721 if (guid_equal(&dynid->id.guid, guid)) {
fc76936d
SH
722 id = &dynid->id;
723 break;
724 }
725 }
726 spin_unlock(&drv->dynids.lock);
727
d765edbb
SH
728 return id;
729}
fc76936d 730
593db803 731static const struct hv_vmbus_device_id vmbus_device_null;
fc76936d 732
d765edbb
SH
733/*
734 * Return a matching hv_vmbus_device_id pointer.
735 * If there is no match, return NULL.
736 */
737static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
738 struct hv_device *dev)
739{
593db803 740 const guid_t *guid = &dev->dev_type;
d765edbb 741 const struct hv_vmbus_device_id *id;
3037a7b6 742
d765edbb
SH
743 /* When driver_override is set, only bind to the matching driver */
744 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
745 return NULL;
746
747 /* Look at the dynamic ids first, before the static ones */
748 id = hv_vmbus_dynid_match(drv, guid);
749 if (!id)
750 id = hv_vmbus_dev_match(drv->id_table, guid);
751
752 /* driver_override will always match, send a dummy id */
753 if (!id && dev->driver_override)
754 id = &vmbus_device_null;
755
756 return id;
3037a7b6
S
757}
758
fc76936d 759/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
593db803 760static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
fc76936d
SH
761{
762 struct vmbus_dynid *dynid;
763
764 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
765 if (!dynid)
766 return -ENOMEM;
767
768 dynid->id.guid = *guid;
769
770 spin_lock(&drv->dynids.lock);
771 list_add_tail(&dynid->node, &drv->dynids.list);
772 spin_unlock(&drv->dynids.lock);
773
774 return driver_attach(&drv->driver);
775}
776
777static void vmbus_free_dynids(struct hv_driver *drv)
778{
779 struct vmbus_dynid *dynid, *n;
780
781 spin_lock(&drv->dynids.lock);
782 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
783 list_del(&dynid->node);
784 kfree(dynid);
785 }
786 spin_unlock(&drv->dynids.lock);
787}
788
fc76936d
SH
789/*
790 * store_new_id - sysfs frontend to vmbus_add_dynid()
791 *
792 * Allow GUIDs to be added to an existing driver via sysfs.
793 */
794static ssize_t new_id_store(struct device_driver *driver, const char *buf,
795 size_t count)
796{
797 struct hv_driver *drv = drv_to_hv_drv(driver);
593db803 798 guid_t guid;
fc76936d
SH
799 ssize_t retval;
800
593db803 801 retval = guid_parse(buf, &guid);
31100108
AS
802 if (retval)
803 return retval;
fc76936d 804
d765edbb 805 if (hv_vmbus_dynid_match(drv, &guid))
fc76936d
SH
806 return -EEXIST;
807
808 retval = vmbus_add_dynid(drv, &guid);
809 if (retval)
810 return retval;
811 return count;
812}
813static DRIVER_ATTR_WO(new_id);
814
815/*
816 * store_remove_id - remove a PCI device ID from this driver
817 *
818 * Removes a dynamic pci device ID to this driver.
819 */
820static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
821 size_t count)
822{
823 struct hv_driver *drv = drv_to_hv_drv(driver);
824 struct vmbus_dynid *dynid, *n;
593db803 825 guid_t guid;
31100108 826 ssize_t retval;
fc76936d 827
593db803 828 retval = guid_parse(buf, &guid);
31100108
AS
829 if (retval)
830 return retval;
fc76936d 831
31100108 832 retval = -ENODEV;
fc76936d
SH
833 spin_lock(&drv->dynids.lock);
834 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
835 struct hv_vmbus_device_id *id = &dynid->id;
836
593db803 837 if (guid_equal(&id->guid, &guid)) {
fc76936d
SH
838 list_del(&dynid->node);
839 kfree(dynid);
840 retval = count;
841 break;
842 }
843 }
844 spin_unlock(&drv->dynids.lock);
845
846 return retval;
847}
848static DRIVER_ATTR_WO(remove_id);
849
850static struct attribute *vmbus_drv_attrs[] = {
851 &driver_attr_new_id.attr,
852 &driver_attr_remove_id.attr,
853 NULL,
854};
855ATTRIBUTE_GROUPS(vmbus_drv);
3037a7b6 856
b7fc147b
S
857
858/*
859 * vmbus_match - Attempt to match the specified device to the specified driver
860 */
861static int vmbus_match(struct device *device, struct device_driver *driver)
862{
b7fc147b 863 struct hv_driver *drv = drv_to_hv_drv(driver);
e8e27047 864 struct hv_device *hv_dev = device_to_hv_device(device);
b7fc147b 865
8981da32
DC
866 /* The hv_sock driver handles all hv_sock offers. */
867 if (is_hvsock_channel(hv_dev->channel))
868 return drv->hvsock;
869
d765edbb 870 if (hv_vmbus_get_id(drv, hv_dev))
3037a7b6 871 return 1;
de632a2b 872
5841a829 873 return 0;
b7fc147b
S
874}
875
f1f0d67b
S
876/*
877 * vmbus_probe - Add the new vmbus's child device
878 */
879static int vmbus_probe(struct device *child_device)
880{
881 int ret = 0;
882 struct hv_driver *drv =
883 drv_to_hv_drv(child_device->driver);
9efd21e1 884 struct hv_device *dev = device_to_hv_device(child_device);
84946899 885 const struct hv_vmbus_device_id *dev_id;
f1f0d67b 886
d765edbb 887 dev_id = hv_vmbus_get_id(drv, dev);
9efd21e1 888 if (drv->probe) {
84946899 889 ret = drv->probe(dev, dev_id);
b14a7b30 890 if (ret != 0)
0a46618d
HJ
891 pr_err("probe failed for device %s (%d)\n",
892 dev_name(child_device), ret);
f1f0d67b 893
f1f0d67b 894 } else {
0a46618d
HJ
895 pr_err("probe not set for driver %s\n",
896 dev_name(child_device));
6de925b1 897 ret = -ENODEV;
f1f0d67b
S
898 }
899 return ret;
900}
901
c5dce3db
S
902/*
903 * vmbus_remove - Remove a vmbus device
904 */
905static int vmbus_remove(struct device *child_device)
906{
d15a0301 907 struct hv_driver *drv;
415b023a 908 struct hv_device *dev = device_to_hv_device(child_device);
c5dce3db 909
d15a0301
S
910 if (child_device->driver) {
911 drv = drv_to_hv_drv(child_device->driver);
912 if (drv->remove)
913 drv->remove(dev);
d15a0301 914 }
c5dce3db
S
915
916 return 0;
917}
918
eb1bb259
S
919
920/*
921 * vmbus_shutdown - Shutdown a vmbus device
922 */
923static void vmbus_shutdown(struct device *child_device)
924{
925 struct hv_driver *drv;
ca6887fb 926 struct hv_device *dev = device_to_hv_device(child_device);
eb1bb259
S
927
928
929 /* The device may not be attached yet */
930 if (!child_device->driver)
931 return;
932
933 drv = drv_to_hv_drv(child_device->driver);
934
ca6887fb
S
935 if (drv->shutdown)
936 drv->shutdown(dev);
eb1bb259
S
937}
938
83b50f83 939#ifdef CONFIG_PM_SLEEP
271b2224
DC
940/*
941 * vmbus_suspend - Suspend a vmbus device
942 */
943static int vmbus_suspend(struct device *child_device)
944{
945 struct hv_driver *drv;
946 struct hv_device *dev = device_to_hv_device(child_device);
947
948 /* The device may not be attached yet */
949 if (!child_device->driver)
950 return 0;
951
952 drv = drv_to_hv_drv(child_device->driver);
953 if (!drv->suspend)
954 return -EOPNOTSUPP;
955
956 return drv->suspend(dev);
957}
958
959/*
960 * vmbus_resume - Resume a vmbus device
961 */
962static int vmbus_resume(struct device *child_device)
963{
964 struct hv_driver *drv;
965 struct hv_device *dev = device_to_hv_device(child_device);
966
967 /* The device may not be attached yet */
968 if (!child_device->driver)
969 return 0;
970
971 drv = drv_to_hv_drv(child_device->driver);
972 if (!drv->resume)
973 return -EOPNOTSUPP;
974
975 return drv->resume(dev);
976}
1a06d017
DC
977#else
978#define vmbus_suspend NULL
979#define vmbus_resume NULL
83b50f83 980#endif /* CONFIG_PM_SLEEP */
086e7a56
S
981
982/*
983 * vmbus_device_release - Final callback release of the vmbus child device
984 */
985static void vmbus_device_release(struct device *device)
986{
e8e27047 987 struct hv_device *hv_dev = device_to_hv_device(device);
34c6801e 988 struct vmbus_channel *channel = hv_dev->channel;
086e7a56 989
af9ca6f9
BB
990 hv_debug_rm_dev_dir(hv_dev);
991
54a66265 992 mutex_lock(&vmbus_connection.channel_mutex);
800b9329 993 hv_process_channel_removal(channel);
54a66265 994 mutex_unlock(&vmbus_connection.channel_mutex);
e8e27047 995 kfree(hv_dev);
086e7a56
S
996}
997
271b2224 998/*
1a06d017
DC
999 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
1000 *
1001 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
1002 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
1003 * is no way to wake up a Generation-2 VM.
1004 *
1005 * The other 4 ops are for hibernation.
271b2224 1006 */
1a06d017 1007
271b2224 1008static const struct dev_pm_ops vmbus_pm = {
1a06d017
DC
1009 .suspend_noirq = NULL,
1010 .resume_noirq = NULL,
1011 .freeze_noirq = vmbus_suspend,
1012 .thaw_noirq = vmbus_resume,
1013 .poweroff_noirq = vmbus_suspend,
1014 .restore_noirq = vmbus_resume,
271b2224
DC
1015};
1016
454f18a9 1017/* The one and only one */
9adcac5c
S
1018static struct bus_type hv_bus = {
1019 .name = "vmbus",
1020 .match = vmbus_match,
1021 .shutdown = vmbus_shutdown,
1022 .remove = vmbus_remove,
1023 .probe = vmbus_probe,
1024 .uevent = vmbus_uevent,
fc76936d
SH
1025 .dev_groups = vmbus_dev_groups,
1026 .drv_groups = vmbus_drv_groups,
271b2224 1027 .pm = &vmbus_pm,
3e7ee490
HJ
1028};
1029
bf6506f6
TT
1030struct onmessage_work_context {
1031 struct work_struct work;
a276463b
VK
1032 struct {
1033 struct hv_message_header header;
1034 u8 payload[];
1035 } msg;
bf6506f6
TT
1036};
1037
1038static void vmbus_onmessage_work(struct work_struct *work)
1039{
1040 struct onmessage_work_context *ctx;
1041
09a19628
VK
1042 /* Do not process messages if we're in DISCONNECTED state */
1043 if (vmbus_connection.conn_state == DISCONNECTED)
1044 return;
1045
bf6506f6
TT
1046 ctx = container_of(work, struct onmessage_work_context,
1047 work);
5cc41500
VK
1048 vmbus_onmessage((struct vmbus_channel_message_header *)
1049 &ctx->msg.payload);
bf6506f6
TT
1050 kfree(ctx);
1051}
1052
d81274aa 1053void vmbus_on_msg_dpc(unsigned long data)
36199a99 1054{
37cdd991
SH
1055 struct hv_per_cpu_context *hv_cpu = (void *)data;
1056 void *page_addr = hv_cpu->synic_message_page;
36199a99
GKH
1057 struct hv_message *msg = (struct hv_message *)page_addr +
1058 VMBUS_MESSAGE_SINT;
652594c7 1059 struct vmbus_channel_message_header *hdr;
e6242fa0 1060 const struct vmbus_channel_message_table_entry *entry;
bf6506f6 1061 struct onmessage_work_context *ctx;
cd95aad5 1062 u32 message_type = msg->header.message_type;
36199a99 1063
b0a284dc
VK
1064 /*
1065 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1066 * it is being used in 'struct vmbus_channel_message_header' definition
1067 * which is supposed to match hypervisor ABI.
1068 */
1069 BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1070
cd95aad5 1071 if (message_type == HVMSG_NONE)
7be3e169
VK
1072 /* no msg */
1073 return;
652594c7 1074
7be3e169 1075 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
652594c7 1076
c9fe0f8f
VK
1077 trace_vmbus_on_msg_dpc(hdr);
1078
7be3e169
VK
1079 if (hdr->msgtype >= CHANNELMSG_COUNT) {
1080 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
1081 goto msg_handled;
1082 }
652594c7 1083
ac0f7d42
VK
1084 if (msg->header.payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1085 WARN_ONCE(1, "payload size is too large (%d)\n",
1086 msg->header.payload_size);
1087 goto msg_handled;
1088 }
1089
7be3e169 1090 entry = &channel_message_table[hdr->msgtype];
ddc9d357
DC
1091
1092 if (!entry->message_handler)
1093 goto msg_handled;
1094
52c7803f
VK
1095 if (msg->header.payload_size < entry->min_payload_len) {
1096 WARN_ONCE(1, "message too short: msgtype=%d len=%d\n",
1097 hdr->msgtype, msg->header.payload_size);
1098 goto msg_handled;
1099 }
1100
7be3e169 1101 if (entry->handler_type == VMHT_BLOCKING) {
a276463b
VK
1102 ctx = kmalloc(sizeof(*ctx) + msg->header.payload_size,
1103 GFP_ATOMIC);
7be3e169
VK
1104 if (ctx == NULL)
1105 return;
652594c7 1106
7be3e169 1107 INIT_WORK(&ctx->work, vmbus_onmessage_work);
ac0f7d42
VK
1108 memcpy(&ctx->msg, msg, sizeof(msg->header) +
1109 msg->header.payload_size);
652594c7 1110
54a66265
S
1111 /*
1112 * The host can generate a rescind message while we
1113 * may still be handling the original offer. We deal with
b9fa1b87
APM
1114 * this condition by relying on the synchronization provided
1115 * by offer_in_progress and by channel_mutex. See also the
1116 * inline comments in vmbus_onoffer_rescind().
54a66265
S
1117 */
1118 switch (hdr->msgtype) {
1119 case CHANNELMSG_RESCIND_CHANNELOFFER:
1120 /*
1121 * If we are handling the rescind message;
1122 * schedule the work on the global work queue.
8a857c55
APM
1123 *
1124 * The OFFER message and the RESCIND message should
1125 * not be handled by the same serialized work queue,
1126 * because the OFFER handler may call vmbus_open(),
1127 * which tries to open the channel by sending an
1128 * OPEN_CHANNEL message to the host and waits for
1129 * the host's response; however, if the host has
1130 * rescinded the channel before it receives the
1131 * OPEN_CHANNEL message, the host just silently
1132 * ignores the OPEN_CHANNEL message; as a result,
1133 * the guest's OFFER handler hangs for ever, if we
1134 * handle the RESCIND message in the same serialized
1135 * work queue: the RESCIND handler can not start to
1136 * run before the OFFER handler finishes.
54a66265 1137 */
b9fa1b87 1138 schedule_work(&ctx->work);
54a66265
S
1139 break;
1140
1141 case CHANNELMSG_OFFERCHANNEL:
b9fa1b87
APM
1142 /*
1143 * The host sends the offer message of a given channel
1144 * before sending the rescind message of the same
1145 * channel. These messages are sent to the guest's
1146 * connect CPU; the guest then starts processing them
1147 * in the tasklet handler on this CPU:
1148 *
1149 * VMBUS_CONNECT_CPU
1150 *
1151 * [vmbus_on_msg_dpc()]
1152 * atomic_inc() // CHANNELMSG_OFFERCHANNEL
1153 * queue_work()
1154 * ...
1155 * [vmbus_on_msg_dpc()]
1156 * schedule_work() // CHANNELMSG_RESCIND_CHANNELOFFER
1157 *
1158 * We rely on the memory-ordering properties of the
1159 * queue_work() and schedule_work() primitives, which
1160 * guarantee that the atomic increment will be visible
1161 * to the CPUs which will execute the offer & rescind
1162 * works by the time these works will start execution.
1163 */
54a66265 1164 atomic_inc(&vmbus_connection.offer_in_progress);
b9fa1b87 1165 fallthrough;
54a66265
S
1166
1167 default:
1168 queue_work(vmbus_connection.work_queue, &ctx->work);
1169 }
7be3e169
VK
1170 } else
1171 entry->message_handler(hdr);
36199a99 1172
652594c7 1173msg_handled:
cd95aad5 1174 vmbus_signal_eom(msg, message_type);
36199a99
GKH
1175}
1176
83b50f83 1177#ifdef CONFIG_PM_SLEEP
1f48dcf1
DC
1178/*
1179 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1180 * hibernation, because hv_sock connections can not persist across hibernation.
1181 */
1182static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1183{
1184 struct onmessage_work_context *ctx;
1185 struct vmbus_channel_rescind_offer *rescind;
1186
1187 WARN_ON(!is_hvsock_channel(channel));
1188
1189 /*
a276463b 1190 * Allocation size is small and the allocation should really not fail,
1f48dcf1
DC
1191 * otherwise the state of the hv_sock connections ends up in limbo.
1192 */
a276463b
VK
1193 ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1194 GFP_KERNEL | __GFP_NOFAIL);
1f48dcf1
DC
1195
1196 /*
1197 * So far, these are not really used by Linux. Just set them to the
1198 * reasonable values conforming to the definitions of the fields.
1199 */
1200 ctx->msg.header.message_type = 1;
1201 ctx->msg.header.payload_size = sizeof(*rescind);
1202
1203 /* These values are actually used by Linux. */
a276463b 1204 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1f48dcf1
DC
1205 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1206 rescind->child_relid = channel->offermsg.child_relid;
1207
1208 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1209
b9fa1b87 1210 queue_work(vmbus_connection.work_queue, &ctx->work);
1f48dcf1 1211}
83b50f83 1212#endif /* CONFIG_PM_SLEEP */
631e63a9
SH
1213
1214/*
1215 * Schedule all channels with events pending
1216 */
1217static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1218{
1219 unsigned long *recv_int_page;
1220 u32 maxbits, relid;
1221
1222 if (vmbus_proto_version < VERSION_WIN8) {
1223 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1224 recv_int_page = vmbus_connection.recv_int_page;
1225 } else {
1226 /*
1227 * When the host is win8 and beyond, the event page
1228 * can be directly checked to get the id of the channel
1229 * that has the interrupt pending.
1230 */
1231 void *page_addr = hv_cpu->synic_event_page;
1232 union hv_synic_event_flags *event
1233 = (union hv_synic_event_flags *)page_addr +
1234 VMBUS_MESSAGE_SINT;
1235
1236 maxbits = HV_EVENT_FLAGS_COUNT;
1237 recv_int_page = event->flags;
1238 }
1239
1240 if (unlikely(!recv_int_page))
1241 return;
1242
1243 for_each_set_bit(relid, recv_int_page, maxbits) {
9403b66e 1244 void (*callback_fn)(void *context);
631e63a9
SH
1245 struct vmbus_channel *channel;
1246
1247 if (!sync_test_and_clear_bit(relid, recv_int_page))
1248 continue;
1249
1250 /* Special case - vmbus channel protocol msg */
1251 if (relid == 0)
1252 continue;
1253
8b6a877c
APM
1254 /*
1255 * Pairs with the kfree_rcu() in vmbus_chan_release().
1256 * Guarantees that the channel data structure doesn't
1257 * get freed while the channel pointer below is being
1258 * dereferenced.
1259 */
8200f208
SH
1260 rcu_read_lock();
1261
631e63a9 1262 /* Find channel based on relid */
8b6a877c
APM
1263 channel = relid2channel(relid);
1264 if (channel == NULL)
1265 goto sched_unlock_rcu;
b71e3282 1266
8b6a877c
APM
1267 if (channel->rescind)
1268 goto sched_unlock_rcu;
6f3d791f 1269
9403b66e
APM
1270 /*
1271 * Make sure that the ring buffer data structure doesn't get
1272 * freed while we dereference the ring buffer pointer. Test
1273 * for the channel's onchannel_callback being NULL within a
1274 * sched_lock critical section. See also the inline comments
1275 * in vmbus_reset_channel_cb().
1276 */
1277 spin_lock(&channel->sched_lock);
991f8f1c 1278
9403b66e
APM
1279 callback_fn = channel->onchannel_callback;
1280 if (unlikely(callback_fn == NULL))
1281 goto sched_unlock;
6981fbf3 1282
8b6a877c 1283 trace_vmbus_chan_sched(channel);
b71e3282 1284
8b6a877c 1285 ++channel->interrupts;
6981fbf3 1286
8b6a877c
APM
1287 switch (channel->callback_mode) {
1288 case HV_CALL_ISR:
9403b66e 1289 (*callback_fn)(channel->channel_callback_context);
8b6a877c 1290 break;
b71e3282 1291
8b6a877c
APM
1292 case HV_CALL_BATCHED:
1293 hv_begin_read(&channel->inbound);
1294 fallthrough;
1295 case HV_CALL_DIRECT:
1296 tasklet_schedule(&channel->callback_event);
631e63a9 1297 }
8200f208 1298
9403b66e
APM
1299sched_unlock:
1300 spin_unlock(&channel->sched_lock);
8b6a877c 1301sched_unlock_rcu:
8200f208 1302 rcu_read_unlock();
631e63a9
SH
1303 }
1304}
1305
76d388cd 1306static void vmbus_isr(void)
36199a99 1307{
37cdd991
SH
1308 struct hv_per_cpu_context *hv_cpu
1309 = this_cpu_ptr(hv_context.cpu_context);
1310 void *page_addr = hv_cpu->synic_event_page;
36199a99
GKH
1311 struct hv_message *msg;
1312 union hv_synic_event_flags *event;
ae4636e6 1313 bool handled = false;
36199a99 1314
37cdd991 1315 if (unlikely(page_addr == NULL))
76d388cd 1316 return;
5ab05951
S
1317
1318 event = (union hv_synic_event_flags *)page_addr +
1319 VMBUS_MESSAGE_SINT;
7341d908
S
1320 /*
1321 * Check for events before checking for messages. This is the order
1322 * in which events and messages are checked in Windows guests on
1323 * Hyper-V, and the Windows team suggested we do the same.
1324 */
36199a99 1325
6552ecd7
S
1326 if ((vmbus_proto_version == VERSION_WS2008) ||
1327 (vmbus_proto_version == VERSION_WIN7)) {
36199a99 1328
6552ecd7 1329 /* Since we are a child, we only need to check bit 0 */
5c1bec61 1330 if (sync_test_and_clear_bit(0, event->flags))
6552ecd7 1331 handled = true;
6552ecd7
S
1332 } else {
1333 /*
1334 * Our host is win8 or above. The signaling mechanism
1335 * has changed and we can directly look at the event page.
1336 * If bit n is set then we have an interrup on the channel
1337 * whose id is n.
1338 */
ae4636e6 1339 handled = true;
ae4636e6 1340 }
793be9c7 1341
6552ecd7 1342 if (handled)
631e63a9 1343 vmbus_chan_sched(hv_cpu);
6552ecd7 1344
37cdd991 1345 page_addr = hv_cpu->synic_message_page;
7341d908
S
1346 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1347
1348 /* Check if there are actual msgs to be processed */
4061ed9e 1349 if (msg->header.message_type != HVMSG_NONE) {
fd1fea68
MK
1350 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1351 hv_stimer0_isr();
1352 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1353 } else
37cdd991 1354 tasklet_schedule(&hv_cpu->msg_dpc);
4061ed9e 1355 }
4b44f2d1 1356
626b901f 1357 add_interrupt_randomness(hv_get_vector(), 0);
793be9c7
S
1358}
1359
81b18bce
SM
1360/*
1361 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1362 * buffer and call into Hyper-V to transfer the data.
1363 */
1364static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1365 enum kmsg_dump_reason reason)
1366{
1367 size_t bytes_written;
1368 phys_addr_t panic_pa;
1369
1370 /* We are only interested in panics. */
1371 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1372 return;
1373
1374 panic_pa = virt_to_phys(hv_panic_page);
1375
1376 /*
1377 * Write dump contents to the page. No need to synchronize; panic should
1378 * be single-threaded.
1379 */
77b48bea 1380 kmsg_dump_get_buffer(dumper, false, hv_panic_page, HV_HYP_PAGE_SIZE,
ddcaf3ca
SM
1381 &bytes_written);
1382 if (bytes_written)
1383 hyperv_report_panic_msg(panic_pa, bytes_written);
81b18bce
SM
1384}
1385
1386static struct kmsg_dumper hv_kmsg_dumper = {
1387 .dump = hv_kmsg_dump,
1388};
1389
b0c03eff
MC
1390static void hv_kmsg_dump_register(void)
1391{
1392 int ret;
1393
1394 hv_panic_page = hv_alloc_hyperv_zeroed_page();
1395 if (!hv_panic_page) {
1396 pr_err("Hyper-V: panic message page memory allocation failed\n");
1397 return;
1398 }
1399
1400 ret = kmsg_dump_register(&hv_kmsg_dumper);
1401 if (ret) {
1402 pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret);
1403 hv_free_hyperv_page((unsigned long)hv_panic_page);
1404 hv_panic_page = NULL;
1405 }
1406}
1407
81b18bce 1408static struct ctl_table_header *hv_ctl_table_hdr;
81b18bce
SM
1409
1410/*
1411 * sysctl option to allow the user to control whether kmsg data should be
1412 * reported to Hyper-V on panic.
1413 */
1414static struct ctl_table hv_ctl_table[] = {
1415 {
1416 .procname = "hyperv_record_panic_msg",
1417 .data = &sysctl_record_panic_msg,
1418 .maxlen = sizeof(int),
1419 .mode = 0644,
1420 .proc_handler = proc_dointvec_minmax,
eec4844f
MC
1421 .extra1 = SYSCTL_ZERO,
1422 .extra2 = SYSCTL_ONE
81b18bce
SM
1423 },
1424 {}
1425};
1426
1427static struct ctl_table hv_root_table[] = {
1428 {
1429 .procname = "kernel",
1430 .mode = 0555,
1431 .child = hv_ctl_table
1432 },
1433 {}
1434};
e513229b 1435
3e189519 1436/*
90c9960e
GKH
1437 * vmbus_bus_init -Main vmbus driver initialization routine.
1438 *
1439 * Here, we
0686e4f4 1440 * - initialize the vmbus driver context
0686e4f4 1441 * - invoke the vmbus hv main init routine
0686e4f4 1442 * - retrieve the channel offers
90c9960e 1443 */
efc26722 1444static int vmbus_bus_init(void)
3e7ee490 1445{
90c9960e 1446 int ret;
3e7ee490 1447
6d26e38f 1448 ret = hv_init();
90c9960e 1449 if (ret != 0) {
0a46618d 1450 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
d6c1c5de 1451 return ret;
3e7ee490
HJ
1452 }
1453
9adcac5c 1454 ret = bus_register(&hv_bus);
d6c1c5de 1455 if (ret)
d6f3609d 1456 return ret;
3e7ee490 1457
626b901f
MK
1458 ret = hv_setup_vmbus_irq(vmbus_irq, vmbus_isr);
1459 if (ret)
1460 goto err_setup;
3e7ee490 1461
2608fb65
JW
1462 ret = hv_synic_alloc();
1463 if (ret)
1464 goto err_alloc;
fd1fea68 1465
800b6902 1466 /*
fd1fea68
MK
1467 * Initialize the per-cpu interrupt state and stimer state.
1468 * Then connect to the host.
800b6902 1469 */
4a5f3cde 1470 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
76d36ab7
VK
1471 hv_synic_init, hv_synic_cleanup);
1472 if (ret < 0)
fd1fea68 1473 goto err_cpuhp;
76d36ab7
VK
1474 hyperv_cpuhp_online = ret;
1475
800b6902 1476 ret = vmbus_connect();
8b9987e9 1477 if (ret)
17efbee8 1478 goto err_connect;
800b6902 1479
96c1d058
NM
1480 /*
1481 * Only register if the crash MSRs are available
1482 */
cc2dd402 1483 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
81b18bce
SM
1484 u64 hyperv_crash_ctl;
1485 /*
1486 * Sysctl registration is not fatal, since by default
1487 * reporting is enabled.
1488 */
1489 hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1490 if (!hv_ctl_table_hdr)
1491 pr_err("Hyper-V: sysctl table register error");
1492
1493 /*
1494 * Register for panic kmsg callback only if the right
1495 * capability is supported by the hypervisor.
1496 */
9d9c9656 1497 hv_get_crash_ctl(hyperv_crash_ctl);
b0c03eff
MC
1498 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG)
1499 hv_kmsg_dump_register();
81b18bce 1500
510f7aef 1501 register_die_notifier(&hyperv_die_block);
96c1d058
NM
1502 }
1503
74347a99
TL
1504 /*
1505 * Always register the panic notifier because we need to unload
1506 * the VMbus channel connection to prevent any VMbus
1507 * activity after the VM panics.
1508 */
1509 atomic_notifier_chain_register(&panic_notifier_list,
1510 &hyperv_panic_block);
1511
2d6e882b 1512 vmbus_request_offers();
8b5d6d3b 1513
d6c1c5de 1514 return 0;
8b9987e9 1515
17efbee8 1516err_connect:
76d36ab7 1517 cpuhp_remove_state(hyperv_cpuhp_online);
fd1fea68 1518err_cpuhp:
2608fb65 1519 hv_synic_free();
4df4cb9e 1520err_alloc:
76d388cd 1521 hv_remove_vmbus_irq();
626b901f 1522err_setup:
8b9987e9 1523 bus_unregister(&hv_bus);
8afc06dd
SM
1524 unregister_sysctl_table(hv_ctl_table_hdr);
1525 hv_ctl_table_hdr = NULL;
8b9987e9 1526 return ret;
3e7ee490
HJ
1527}
1528
90c9960e 1529/**
35464483
JO
1530 * __vmbus_child_driver_register() - Register a vmbus's driver
1531 * @hv_driver: Pointer to driver structure you want to register
768fa219
GKH
1532 * @owner: owner module of the drv
1533 * @mod_name: module name string
3e189519
HJ
1534 *
1535 * Registers the given driver with Linux through the 'driver_register()' call
768fa219 1536 * and sets up the hyper-v vmbus handling for this driver.
3e189519
HJ
1537 * It will return the state of the 'driver_register()' call.
1538 *
90c9960e 1539 */
768fa219 1540int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
3e7ee490 1541{
5d48a1c2 1542 int ret;
3e7ee490 1543
768fa219 1544 pr_info("registering driver %s\n", hv_driver->name);
3e7ee490 1545
cf6a2eac
S
1546 ret = vmbus_exists();
1547 if (ret < 0)
1548 return ret;
1549
768fa219
GKH
1550 hv_driver->driver.name = hv_driver->name;
1551 hv_driver->driver.owner = owner;
1552 hv_driver->driver.mod_name = mod_name;
1553 hv_driver->driver.bus = &hv_bus;
3e7ee490 1554
fc76936d
SH
1555 spin_lock_init(&hv_driver->dynids.lock);
1556 INIT_LIST_HEAD(&hv_driver->dynids.list);
1557
768fa219 1558 ret = driver_register(&hv_driver->driver);
3e7ee490 1559
5d48a1c2 1560 return ret;
3e7ee490 1561}
768fa219 1562EXPORT_SYMBOL_GPL(__vmbus_driver_register);
3e7ee490 1563
90c9960e 1564/**
768fa219 1565 * vmbus_driver_unregister() - Unregister a vmbus's driver
35464483
JO
1566 * @hv_driver: Pointer to driver structure you want to
1567 * un-register
3e189519 1568 *
768fa219
GKH
1569 * Un-register the given driver that was previous registered with a call to
1570 * vmbus_driver_register()
90c9960e 1571 */
768fa219 1572void vmbus_driver_unregister(struct hv_driver *hv_driver)
3e7ee490 1573{
768fa219 1574 pr_info("unregistering driver %s\n", hv_driver->name);
3e7ee490 1575
fc76936d 1576 if (!vmbus_exists()) {
8f257a14 1577 driver_unregister(&hv_driver->driver);
fc76936d
SH
1578 vmbus_free_dynids(hv_driver);
1579 }
3e7ee490 1580}
768fa219 1581EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
3e7ee490 1582
c2e5df61
SH
1583
1584/*
1585 * Called when last reference to channel is gone.
1586 */
1587static void vmbus_chan_release(struct kobject *kobj)
1588{
1589 struct vmbus_channel *channel
1590 = container_of(kobj, struct vmbus_channel, kobj);
1591
1592 kfree_rcu(channel, rcu);
1593}
1594
1595struct vmbus_chan_attribute {
1596 struct attribute attr;
14948e39 1597 ssize_t (*show)(struct vmbus_channel *chan, char *buf);
c2e5df61
SH
1598 ssize_t (*store)(struct vmbus_channel *chan,
1599 const char *buf, size_t count);
1600};
1601#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1602 struct vmbus_chan_attribute chan_attr_##_name \
1603 = __ATTR(_name, _mode, _show, _store)
1604#define VMBUS_CHAN_ATTR_RW(_name) \
1605 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1606#define VMBUS_CHAN_ATTR_RO(_name) \
1607 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1608#define VMBUS_CHAN_ATTR_WO(_name) \
1609 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1610
1611static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1612 struct attribute *attr, char *buf)
1613{
1614 const struct vmbus_chan_attribute *attribute
1615 = container_of(attr, struct vmbus_chan_attribute, attr);
14948e39 1616 struct vmbus_channel *chan
c2e5df61
SH
1617 = container_of(kobj, struct vmbus_channel, kobj);
1618
1619 if (!attribute->show)
1620 return -EIO;
1621
1622 return attribute->show(chan, buf);
1623}
1624
75278105
APM
1625static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1626 struct attribute *attr, const char *buf,
1627 size_t count)
1628{
1629 const struct vmbus_chan_attribute *attribute
1630 = container_of(attr, struct vmbus_chan_attribute, attr);
1631 struct vmbus_channel *chan
1632 = container_of(kobj, struct vmbus_channel, kobj);
1633
1634 if (!attribute->store)
1635 return -EIO;
1636
1637 return attribute->store(chan, buf, count);
1638}
1639
c2e5df61
SH
1640static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1641 .show = vmbus_chan_attr_show,
75278105 1642 .store = vmbus_chan_attr_store,
c2e5df61
SH
1643};
1644
14948e39 1645static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
c2e5df61 1646{
14948e39
KB
1647 struct hv_ring_buffer_info *rbi = &channel->outbound;
1648 ssize_t ret;
c2e5df61 1649
14948e39
KB
1650 mutex_lock(&rbi->ring_buffer_mutex);
1651 if (!rbi->ring_buffer) {
1652 mutex_unlock(&rbi->ring_buffer_mutex);
fcedbb29 1653 return -EINVAL;
14948e39 1654 }
fcedbb29 1655
14948e39
KB
1656 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1657 mutex_unlock(&rbi->ring_buffer_mutex);
1658 return ret;
c2e5df61 1659}
875c362b 1660static VMBUS_CHAN_ATTR_RO(out_mask);
c2e5df61 1661
14948e39 1662static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
c2e5df61 1663{
14948e39
KB
1664 struct hv_ring_buffer_info *rbi = &channel->inbound;
1665 ssize_t ret;
c2e5df61 1666
14948e39
KB
1667 mutex_lock(&rbi->ring_buffer_mutex);
1668 if (!rbi->ring_buffer) {
1669 mutex_unlock(&rbi->ring_buffer_mutex);
fcedbb29 1670 return -EINVAL;
14948e39 1671 }
fcedbb29 1672
14948e39
KB
1673 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1674 mutex_unlock(&rbi->ring_buffer_mutex);
1675 return ret;
c2e5df61 1676}
875c362b 1677static VMBUS_CHAN_ATTR_RO(in_mask);
c2e5df61 1678
14948e39 1679static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
c2e5df61 1680{
14948e39
KB
1681 struct hv_ring_buffer_info *rbi = &channel->inbound;
1682 ssize_t ret;
c2e5df61 1683
14948e39
KB
1684 mutex_lock(&rbi->ring_buffer_mutex);
1685 if (!rbi->ring_buffer) {
1686 mutex_unlock(&rbi->ring_buffer_mutex);
fcedbb29 1687 return -EINVAL;
14948e39 1688 }
fcedbb29 1689
14948e39
KB
1690 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1691 mutex_unlock(&rbi->ring_buffer_mutex);
1692 return ret;
c2e5df61 1693}
875c362b 1694static VMBUS_CHAN_ATTR_RO(read_avail);
c2e5df61 1695
14948e39 1696static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
c2e5df61 1697{
14948e39
KB
1698 struct hv_ring_buffer_info *rbi = &channel->outbound;
1699 ssize_t ret;
c2e5df61 1700
14948e39
KB
1701 mutex_lock(&rbi->ring_buffer_mutex);
1702 if (!rbi->ring_buffer) {
1703 mutex_unlock(&rbi->ring_buffer_mutex);
fcedbb29 1704 return -EINVAL;
14948e39 1705 }
fcedbb29 1706
14948e39
KB
1707 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1708 mutex_unlock(&rbi->ring_buffer_mutex);
1709 return ret;
c2e5df61 1710}
875c362b 1711static VMBUS_CHAN_ATTR_RO(write_avail);
c2e5df61 1712
75278105 1713static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
c2e5df61
SH
1714{
1715 return sprintf(buf, "%u\n", channel->target_cpu);
1716}
75278105
APM
1717static ssize_t target_cpu_store(struct vmbus_channel *channel,
1718 const char *buf, size_t count)
1719{
afaa33da 1720 u32 target_cpu, origin_cpu;
75278105 1721 ssize_t ret = count;
75278105
APM
1722
1723 if (vmbus_proto_version < VERSION_WIN10_V4_1)
1724 return -EIO;
1725
1726 if (sscanf(buf, "%uu", &target_cpu) != 1)
1727 return -EIO;
1728
1729 /* Validate target_cpu for the cpumask_test_cpu() operation below. */
1730 if (target_cpu >= nr_cpumask_bits)
1731 return -EINVAL;
1732
1733 /* No CPUs should come up or down during this. */
1734 cpus_read_lock();
1735
0a968209 1736 if (!cpu_online(target_cpu)) {
75278105
APM
1737 cpus_read_unlock();
1738 return -EINVAL;
1739 }
1740
1741 /*
1742 * Synchronizes target_cpu_store() and channel closure:
1743 *
1744 * { Initially: state = CHANNEL_OPENED }
1745 *
1746 * CPU1 CPU2
1747 *
1748 * [target_cpu_store()] [vmbus_disconnect_ring()]
1749 *
1750 * LOCK channel_mutex LOCK channel_mutex
1751 * LOAD r1 = state LOAD r2 = state
1752 * IF (r1 == CHANNEL_OPENED) IF (r2 == CHANNEL_OPENED)
1753 * SEND MODIFYCHANNEL STORE state = CHANNEL_OPEN
1754 * [...] SEND CLOSECHANNEL
1755 * UNLOCK channel_mutex UNLOCK channel_mutex
1756 *
1757 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1758 * CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1759 *
1760 * Note. The host processes the channel messages "sequentially", in
1761 * the order in which they are received on a per-partition basis.
1762 */
1763 mutex_lock(&vmbus_connection.channel_mutex);
1764
1765 /*
1766 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1767 * avoid sending the message and fail here for such channels.
1768 */
1769 if (channel->state != CHANNEL_OPENED_STATE) {
1770 ret = -EIO;
1771 goto cpu_store_unlock;
1772 }
1773
afaa33da
APM
1774 origin_cpu = channel->target_cpu;
1775 if (target_cpu == origin_cpu)
75278105
APM
1776 goto cpu_store_unlock;
1777
1778 if (vmbus_send_modifychannel(channel->offermsg.child_relid,
1779 hv_cpu_number_to_vp_number(target_cpu))) {
1780 ret = -EIO;
1781 goto cpu_store_unlock;
1782 }
1783
1784 /*
1785 * Warning. At this point, there is *no* guarantee that the host will
1786 * have successfully processed the vmbus_send_modifychannel() request.
1787 * See the header comment of vmbus_send_modifychannel() for more info.
1788 *
1789 * Lags in the processing of the above vmbus_send_modifychannel() can
1790 * result in missed interrupts if the "old" target CPU is taken offline
1791 * before Hyper-V starts sending interrupts to the "new" target CPU.
1792 * But apart from this offlining scenario, the code tolerates such
1793 * lags. It will function correctly even if a channel interrupt comes
1794 * in on a CPU that is different from the channel target_cpu value.
1795 */
1796
1797 channel->target_cpu = target_cpu;
75278105 1798
afaa33da
APM
1799 /* See init_vp_index(). */
1800 if (hv_is_perf_channel(channel))
1801 hv_update_alloced_cpus(origin_cpu, target_cpu);
1802
1803 /* Currently set only for storvsc channels. */
1804 if (channel->change_target_cpu_callback) {
1805 (*channel->change_target_cpu_callback)(channel,
1806 origin_cpu, target_cpu);
1807 }
1808
75278105
APM
1809cpu_store_unlock:
1810 mutex_unlock(&vmbus_connection.channel_mutex);
1811 cpus_read_unlock();
1812 return ret;
1813}
1814static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
c2e5df61 1815
14948e39 1816static ssize_t channel_pending_show(struct vmbus_channel *channel,
c2e5df61
SH
1817 char *buf)
1818{
1819 return sprintf(buf, "%d\n",
1820 channel_pending(channel,
1821 vmbus_connection.monitor_pages[1]));
1822}
f0434de4 1823static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
c2e5df61 1824
14948e39 1825static ssize_t channel_latency_show(struct vmbus_channel *channel,
c2e5df61
SH
1826 char *buf)
1827{
1828 return sprintf(buf, "%d\n",
1829 channel_latency(channel,
1830 vmbus_connection.monitor_pages[1]));
1831}
f0434de4 1832static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
c2e5df61 1833
14948e39 1834static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
6981fbf3
SH
1835{
1836 return sprintf(buf, "%llu\n", channel->interrupts);
1837}
f0434de4 1838static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
6981fbf3 1839
14948e39 1840static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
6981fbf3
SH
1841{
1842 return sprintf(buf, "%llu\n", channel->sig_events);
1843}
f0434de4 1844static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
6981fbf3 1845
14948e39 1846static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
396ae57e
KB
1847 char *buf)
1848{
1849 return sprintf(buf, "%llu\n",
1850 (unsigned long long)channel->intr_in_full);
1851}
1852static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1853
14948e39 1854static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
396ae57e
KB
1855 char *buf)
1856{
1857 return sprintf(buf, "%llu\n",
1858 (unsigned long long)channel->intr_out_empty);
1859}
1860static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1861
14948e39 1862static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
396ae57e
KB
1863 char *buf)
1864{
1865 return sprintf(buf, "%llu\n",
1866 (unsigned long long)channel->out_full_first);
1867}
1868static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1869
14948e39 1870static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
396ae57e
KB
1871 char *buf)
1872{
1873 return sprintf(buf, "%llu\n",
1874 (unsigned long long)channel->out_full_total);
1875}
1876static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1877
14948e39 1878static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
f0fa2974
SH
1879 char *buf)
1880{
1881 return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1882}
f0434de4 1883static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
f0fa2974 1884
14948e39 1885static ssize_t subchannel_id_show(struct vmbus_channel *channel,
f0fa2974
SH
1886 char *buf)
1887{
1888 return sprintf(buf, "%u\n",
1889 channel->offermsg.offer.sub_channel_index);
1890}
1891static VMBUS_CHAN_ATTR_RO(subchannel_id);
1892
c2e5df61
SH
1893static struct attribute *vmbus_chan_attrs[] = {
1894 &chan_attr_out_mask.attr,
1895 &chan_attr_in_mask.attr,
1896 &chan_attr_read_avail.attr,
1897 &chan_attr_write_avail.attr,
1898 &chan_attr_cpu.attr,
1899 &chan_attr_pending.attr,
1900 &chan_attr_latency.attr,
6981fbf3
SH
1901 &chan_attr_interrupts.attr,
1902 &chan_attr_events.attr,
396ae57e
KB
1903 &chan_attr_intr_in_full.attr,
1904 &chan_attr_intr_out_empty.attr,
1905 &chan_attr_out_full_first.attr,
1906 &chan_attr_out_full_total.attr,
f0fa2974
SH
1907 &chan_attr_monitor_id.attr,
1908 &chan_attr_subchannel_id.attr,
c2e5df61
SH
1909 NULL
1910};
1911
46fc1548
KB
1912/*
1913 * Channel-level attribute_group callback function. Returns the permission for
1914 * each attribute, and returns 0 if an attribute is not visible.
1915 */
1916static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1917 struct attribute *attr, int idx)
1918{
1919 const struct vmbus_channel *channel =
1920 container_of(kobj, struct vmbus_channel, kobj);
1921
1922 /* Hide the monitor attributes if the monitor mechanism is not used. */
1923 if (!channel->offermsg.monitor_allocated &&
1924 (attr == &chan_attr_pending.attr ||
1925 attr == &chan_attr_latency.attr ||
1926 attr == &chan_attr_monitor_id.attr))
1927 return 0;
1928
1929 return attr->mode;
1930}
1931
1932static struct attribute_group vmbus_chan_group = {
1933 .attrs = vmbus_chan_attrs,
1934 .is_visible = vmbus_chan_attr_is_visible
1935};
1936
c2e5df61
SH
1937static struct kobj_type vmbus_chan_ktype = {
1938 .sysfs_ops = &vmbus_chan_sysfs_ops,
1939 .release = vmbus_chan_release,
c2e5df61
SH
1940};
1941
1942/*
1943 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1944 */
1945int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1946{
46fc1548 1947 const struct device *device = &dev->device;
c2e5df61
SH
1948 struct kobject *kobj = &channel->kobj;
1949 u32 relid = channel->offermsg.child_relid;
1950 int ret;
1951
1952 kobj->kset = dev->channels_kset;
1953 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1954 "%u", relid);
1955 if (ret)
1956 return ret;
1957
46fc1548
KB
1958 ret = sysfs_create_group(kobj, &vmbus_chan_group);
1959
1960 if (ret) {
1961 /*
1962 * The calling functions' error handling paths will cleanup the
1963 * empty channel directory.
1964 */
1965 dev_err(device, "Unable to set up channel sysfs files\n");
1966 return ret;
1967 }
1968
c2e5df61
SH
1969 kobject_uevent(kobj, KOBJ_ADD);
1970
1971 return 0;
1972}
1973
46fc1548
KB
1974/*
1975 * vmbus_remove_channel_attr_group - remove the channel's attribute group
1976 */
1977void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1978{
1979 sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1980}
1981
3e189519 1982/*
f2c73011 1983 * vmbus_device_create - Creates and registers a new child device
3e189519 1984 * on the vmbus.
90c9960e 1985 */
593db803
AS
1986struct hv_device *vmbus_device_create(const guid_t *type,
1987 const guid_t *instance,
1b9d48f2 1988 struct vmbus_channel *channel)
3e7ee490 1989{
3d3b5518 1990 struct hv_device *child_device_obj;
3e7ee490 1991
6bad88da
S
1992 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1993 if (!child_device_obj) {
0a46618d 1994 pr_err("Unable to allocate device object for child device\n");
3e7ee490
HJ
1995 return NULL;
1996 }
1997
cae5b843 1998 child_device_obj->channel = channel;
593db803
AS
1999 guid_copy(&child_device_obj->dev_type, type);
2000 guid_copy(&child_device_obj->dev_instance, instance);
7047f17d 2001 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
3e7ee490 2002
3e7ee490
HJ
2003 return child_device_obj;
2004}
2005
3e189519 2006/*
22794281 2007 * vmbus_device_register - Register the child device
90c9960e 2008 */
22794281 2009int vmbus_device_register(struct hv_device *child_device_obj)
3e7ee490 2010{
c2e5df61
SH
2011 struct kobject *kobj = &child_device_obj->device.kobj;
2012 int ret;
6bad88da 2013
f6b2db08 2014 dev_set_name(&child_device_obj->device, "%pUl",
458c4475 2015 &child_device_obj->channel->offermsg.offer.if_instance);
3e7ee490 2016
0bce28b6 2017 child_device_obj->device.bus = &hv_bus;
607c1a11 2018 child_device_obj->device.parent = &hv_acpi_dev->dev;
6bad88da 2019 child_device_obj->device.release = vmbus_device_release;
3e7ee490 2020
90c9960e
GKH
2021 /*
2022 * Register with the LDM. This will kick off the driver/device
2023 * binding...which will eventually call vmbus_match() and vmbus_probe()
2024 */
6bad88da 2025 ret = device_register(&child_device_obj->device);
c2e5df61 2026 if (ret) {
0a46618d 2027 pr_err("Unable to register child device\n");
c2e5df61
SH
2028 return ret;
2029 }
2030
2031 child_device_obj->channels_kset = kset_create_and_add("channels",
2032 NULL, kobj);
2033 if (!child_device_obj->channels_kset) {
2034 ret = -ENOMEM;
2035 goto err_dev_unregister;
2036 }
2037
2038 ret = vmbus_add_channel_kobj(child_device_obj,
2039 child_device_obj->channel);
2040 if (ret) {
2041 pr_err("Unable to register primary channeln");
2042 goto err_kset_unregister;
2043 }
af9ca6f9 2044 hv_debug_add_dev_dir(child_device_obj);
c2e5df61
SH
2045
2046 return 0;
2047
2048err_kset_unregister:
2049 kset_unregister(child_device_obj->channels_kset);
3e7ee490 2050
c2e5df61
SH
2051err_dev_unregister:
2052 device_unregister(&child_device_obj->device);
3e7ee490
HJ
2053 return ret;
2054}
2055
3e189519 2056/*
696453ba 2057 * vmbus_device_unregister - Remove the specified child device
3e189519 2058 * from the vmbus.
90c9960e 2059 */
696453ba 2060void vmbus_device_unregister(struct hv_device *device_obj)
3e7ee490 2061{
84672369
FS
2062 pr_debug("child device %s unregistered\n",
2063 dev_name(&device_obj->device));
2064
869b5567
DC
2065 kset_unregister(device_obj->channels_kset);
2066
90c9960e
GKH
2067 /*
2068 * Kick off the process of unregistering the device.
2069 * This will call vmbus_remove() and eventually vmbus_device_release()
2070 */
6bad88da 2071 device_unregister(&device_obj->device);
3e7ee490
HJ
2072}
2073
3e7ee490 2074
b0069f43 2075/*
7f163a6f 2076 * VMBUS is an acpi enumerated device. Get the information we
90f34535 2077 * need from DSDT.
b0069f43 2078 */
7f163a6f 2079#define VTPM_BASE_ADDRESS 0xfed40000
90f34535 2080static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
b0069f43 2081{
7f163a6f
JO
2082 resource_size_t start = 0;
2083 resource_size_t end = 0;
2084 struct resource *new_res;
2085 struct resource **old_res = &hyperv_mmio;
2086 struct resource **prev_res = NULL;
626b901f 2087 struct resource r;
7f163a6f 2088
90f34535 2089 switch (res->type) {
7f163a6f
JO
2090
2091 /*
2092 * "Address" descriptors are for bus windows. Ignore
2093 * "memory" descriptors, which are for registers on
2094 * devices.
2095 */
2096 case ACPI_RESOURCE_TYPE_ADDRESS32:
2097 start = res->data.address32.address.minimum;
2098 end = res->data.address32.address.maximum;
4eb923f8 2099 break;
b0069f43 2100
90f34535 2101 case ACPI_RESOURCE_TYPE_ADDRESS64:
7f163a6f
JO
2102 start = res->data.address64.address.minimum;
2103 end = res->data.address64.address.maximum;
4eb923f8 2104 break;
7f163a6f 2105
626b901f
MK
2106 /*
2107 * The IRQ information is needed only on ARM64, which Hyper-V
2108 * sets up in the extended format. IRQ information is present
2109 * on x86/x64 in the non-extended format but it is not used by
2110 * Linux. So don't bother checking for the non-extended format.
2111 */
2112 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
2113 if (!acpi_dev_resource_interrupt(res, 0, &r)) {
2114 pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2115 return AE_ERROR;
2116 }
2117 /* ARM64 INTID for VMbus */
2118 vmbus_interrupt = res->data.extended_irq.interrupts[0];
2119 /* Linux IRQ number */
2120 vmbus_irq = r.start;
2121 return AE_OK;
2122
7f163a6f
JO
2123 default:
2124 /* Unused resource type */
2125 return AE_OK;
2126
b0069f43 2127 }
7f163a6f
JO
2128 /*
2129 * Ignore ranges that are below 1MB, as they're not
2130 * necessary or useful here.
2131 */
2132 if (end < 0x100000)
2133 return AE_OK;
2134
2135 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2136 if (!new_res)
2137 return AE_NO_MEMORY;
2138
2139 /* If this range overlaps the virtual TPM, truncate it. */
2140 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2141 end = VTPM_BASE_ADDRESS;
2142
2143 new_res->name = "hyperv mmio";
2144 new_res->flags = IORESOURCE_MEM;
2145 new_res->start = start;
2146 new_res->end = end;
2147
40f26f31 2148 /*
40f26f31
JO
2149 * If two ranges are adjacent, merge them.
2150 */
7f163a6f
JO
2151 do {
2152 if (!*old_res) {
2153 *old_res = new_res;
2154 break;
2155 }
2156
40f26f31
JO
2157 if (((*old_res)->end + 1) == new_res->start) {
2158 (*old_res)->end = new_res->end;
2159 kfree(new_res);
2160 break;
2161 }
2162
2163 if ((*old_res)->start == new_res->end + 1) {
2164 (*old_res)->start = new_res->start;
2165 kfree(new_res);
2166 break;
2167 }
2168
23a06831 2169 if ((*old_res)->start > new_res->end) {
7f163a6f
JO
2170 new_res->sibling = *old_res;
2171 if (prev_res)
2172 (*prev_res)->sibling = new_res;
2173 *old_res = new_res;
2174 break;
2175 }
2176
2177 prev_res = old_res;
2178 old_res = &(*old_res)->sibling;
2179
2180 } while (1);
b0069f43
S
2181
2182 return AE_OK;
2183}
2184
7f163a6f
JO
2185static int vmbus_acpi_remove(struct acpi_device *device)
2186{
2187 struct resource *cur_res;
2188 struct resource *next_res;
2189
2190 if (hyperv_mmio) {
6d146aef
JO
2191 if (fb_mmio) {
2192 __release_region(hyperv_mmio, fb_mmio->start,
2193 resource_size(fb_mmio));
2194 fb_mmio = NULL;
2195 }
2196
7f163a6f
JO
2197 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2198 next_res = cur_res->sibling;
2199 kfree(cur_res);
2200 }
2201 }
2202
2203 return 0;
2204}
2205
6d146aef
JO
2206static void vmbus_reserve_fb(void)
2207{
2208 int size;
2209 /*
2210 * Make a claim for the frame buffer in the resource tree under the
2211 * first node, which will be the one below 4GB. The length seems to
2212 * be underreported, particularly in a Generation 1 VM. So start out
2213 * reserving a larger area and make it smaller until it succeeds.
2214 */
2215
2216 if (screen_info.lfb_base) {
2217 if (efi_enabled(EFI_BOOT))
2218 size = max_t(__u32, screen_info.lfb_size, 0x800000);
2219 else
2220 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
2221
2222 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
2223 fb_mmio = __request_region(hyperv_mmio,
2224 screen_info.lfb_base, size,
2225 fb_mmio_name, 0);
2226 }
2227 }
2228}
2229
35464483
JO
2230/**
2231 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2232 * @new: If successful, supplied a pointer to the
2233 * allocated MMIO space.
2234 * @device_obj: Identifies the caller
2235 * @min: Minimum guest physical address of the
2236 * allocation
2237 * @max: Maximum guest physical address
2238 * @size: Size of the range to be allocated
2239 * @align: Alignment of the range to be allocated
2240 * @fb_overlap_ok: Whether this allocation can be allowed
2241 * to overlap the video frame buffer.
2242 *
2243 * This function walks the resources granted to VMBus by the
2244 * _CRS object in the ACPI namespace underneath the parent
2245 * "bridge" whether that's a root PCI bus in the Generation 1
2246 * case or a Module Device in the Generation 2 case. It then
2247 * attempts to allocate from the global MMIO pool in a way that
2248 * matches the constraints supplied in these parameters and by
2249 * that _CRS.
2250 *
2251 * Return: 0 on success, -errno on failure
2252 */
2253int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2254 resource_size_t min, resource_size_t max,
2255 resource_size_t size, resource_size_t align,
2256 bool fb_overlap_ok)
2257{
be000f93 2258 struct resource *iter, *shadow;
ea37a6b8 2259 resource_size_t range_min, range_max, start;
35464483 2260 const char *dev_n = dev_name(&device_obj->device);
ea37a6b8 2261 int retval;
e16dad6b
JO
2262
2263 retval = -ENXIO;
8aea7f82 2264 mutex_lock(&hyperv_mmio_lock);
35464483 2265
ea37a6b8
JO
2266 /*
2267 * If overlaps with frame buffers are allowed, then first attempt to
2268 * make the allocation from within the reserved region. Because it
2269 * is already reserved, no shadow allocation is necessary.
2270 */
2271 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2272 !(max < fb_mmio->start)) {
2273
2274 range_min = fb_mmio->start;
2275 range_max = fb_mmio->end;
2276 start = (range_min + align - 1) & ~(align - 1);
2277 for (; start + size - 1 <= range_max; start += align) {
2278 *new = request_mem_region_exclusive(start, size, dev_n);
2279 if (*new) {
2280 retval = 0;
2281 goto exit;
2282 }
2283 }
2284 }
2285
35464483
JO
2286 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2287 if ((iter->start >= max) || (iter->end <= min))
2288 continue;
2289
2290 range_min = iter->start;
2291 range_max = iter->end;
ea37a6b8
JO
2292 start = (range_min + align - 1) & ~(align - 1);
2293 for (; start + size - 1 <= range_max; start += align) {
2294 shadow = __request_region(iter, start, size, NULL,
2295 IORESOURCE_BUSY);
2296 if (!shadow)
2297 continue;
2298
2299 *new = request_mem_region_exclusive(start, size, dev_n);
2300 if (*new) {
2301 shadow->name = (char *)*new;
2302 retval = 0;
2303 goto exit;
35464483
JO
2304 }
2305
ea37a6b8 2306 __release_region(iter, start, size);
35464483
JO
2307 }
2308 }
2309
e16dad6b 2310exit:
8aea7f82 2311 mutex_unlock(&hyperv_mmio_lock);
e16dad6b 2312 return retval;
35464483
JO
2313}
2314EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2315
97fb77dc
JO
2316/**
2317 * vmbus_free_mmio() - Free a memory-mapped I/O range.
2318 * @start: Base address of region to release.
2319 * @size: Size of the range to be allocated
2320 *
2321 * This function releases anything requested by
2322 * vmbus_mmio_allocate().
2323 */
2324void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2325{
be000f93
JO
2326 struct resource *iter;
2327
8aea7f82 2328 mutex_lock(&hyperv_mmio_lock);
be000f93
JO
2329 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2330 if ((iter->start >= start + size) || (iter->end <= start))
2331 continue;
2332
2333 __release_region(iter, start, size);
2334 }
97fb77dc 2335 release_mem_region(start, size);
8aea7f82 2336 mutex_unlock(&hyperv_mmio_lock);
97fb77dc
JO
2337
2338}
2339EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2340
b0069f43
S
2341static int vmbus_acpi_add(struct acpi_device *device)
2342{
2343 acpi_status result;
90f34535 2344 int ret_val = -ENODEV;
7f163a6f 2345 struct acpi_device *ancestor;
b0069f43 2346
607c1a11
S
2347 hv_acpi_dev = device;
2348
0a4425b6 2349 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
90f34535 2350 vmbus_walk_resources, NULL);
b0069f43 2351
90f34535
S
2352 if (ACPI_FAILURE(result))
2353 goto acpi_walk_err;
2354 /*
7f163a6f
JO
2355 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2356 * firmware) is the VMOD that has the mmio ranges. Get that.
90f34535 2357 */
7f163a6f
JO
2358 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2359 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2360 vmbus_walk_resources, NULL);
90f34535
S
2361
2362 if (ACPI_FAILURE(result))
7f163a6f 2363 continue;
6d146aef
JO
2364 if (hyperv_mmio) {
2365 vmbus_reserve_fb();
7f163a6f 2366 break;
6d146aef 2367 }
b0069f43 2368 }
90f34535
S
2369 ret_val = 0;
2370
2371acpi_walk_err:
b0069f43 2372 complete(&probe_event);
7f163a6f
JO
2373 if (ret_val)
2374 vmbus_acpi_remove(device);
90f34535 2375 return ret_val;
b0069f43
S
2376}
2377
83b50f83 2378#ifdef CONFIG_PM_SLEEP
f53335e3
DC
2379static int vmbus_bus_suspend(struct device *dev)
2380{
b307b389 2381 struct vmbus_channel *channel, *sc;
1f48dcf1
DC
2382
2383 while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
2384 /*
2385 * We wait here until the completion of any channel
2386 * offers that are currently in progress.
2387 */
14c685d9 2388 usleep_range(1000, 2000);
1f48dcf1
DC
2389 }
2390
2391 mutex_lock(&vmbus_connection.channel_mutex);
2392 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2393 if (!is_hvsock_channel(channel))
2394 continue;
2395
2396 vmbus_force_channel_rescinded(channel);
2397 }
2398 mutex_unlock(&vmbus_connection.channel_mutex);
2399
b307b389
DC
2400 /*
2401 * Wait until all the sub-channels and hv_sock channels have been
2402 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2403 * they would conflict with the new sub-channels that will be created
2404 * in the resume path. hv_sock channels should also be destroyed, but
2405 * a hv_sock channel of an established hv_sock connection can not be
2406 * really destroyed since it may still be referenced by the userspace
2407 * application, so we just force the hv_sock channel to be rescinded
2408 * by vmbus_force_channel_rescinded(), and the userspace application
2409 * will thoroughly destroy the channel after hibernation.
2410 *
2411 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2412 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2413 */
2414 if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2415 wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2416
19873eec
DC
2417 if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2418 pr_err("Can not suspend due to a previous failed resuming\n");
2419 return -EBUSY;
2420 }
d8bd2d44 2421
b307b389
DC
2422 mutex_lock(&vmbus_connection.channel_mutex);
2423
2424 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
d8bd2d44 2425 /*
8b6a877c
APM
2426 * Remove the channel from the array of channels and invalidate
2427 * the channel's relid. Upon resume, vmbus_onoffer() will fix
2428 * up the relid (and other fields, if necessary) and add the
2429 * channel back to the array.
d8bd2d44 2430 */
8b6a877c 2431 vmbus_channel_unmap_relid(channel);
d8bd2d44
DC
2432 channel->offermsg.child_relid = INVALID_RELID;
2433
b307b389
DC
2434 if (is_hvsock_channel(channel)) {
2435 if (!channel->rescind) {
2436 pr_err("hv_sock channel not rescinded!\n");
2437 WARN_ON_ONCE(1);
2438 }
2439 continue;
2440 }
2441
b307b389
DC
2442 list_for_each_entry(sc, &channel->sc_list, sc_list) {
2443 pr_err("Sub-channel not deleted!\n");
2444 WARN_ON_ONCE(1);
2445 }
d8bd2d44
DC
2446
2447 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
b307b389
DC
2448 }
2449
2450 mutex_unlock(&vmbus_connection.channel_mutex);
2451
f53335e3
DC
2452 vmbus_initiate_unload(false);
2453
d8bd2d44
DC
2454 /* Reset the event for the next resume. */
2455 reinit_completion(&vmbus_connection.ready_for_resume_event);
2456
f53335e3
DC
2457 return 0;
2458}
2459
2460static int vmbus_bus_resume(struct device *dev)
2461{
2462 struct vmbus_channel_msginfo *msginfo;
2463 size_t msgsize;
2464 int ret;
2465
2466 /*
2467 * We only use the 'vmbus_proto_version', which was in use before
2468 * hibernation, to re-negotiate with the host.
2469 */
bedc61a9 2470 if (!vmbus_proto_version) {
f53335e3
DC
2471 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2472 return -EINVAL;
2473 }
2474
2475 msgsize = sizeof(*msginfo) +
2476 sizeof(struct vmbus_channel_initiate_contact);
2477
2478 msginfo = kzalloc(msgsize, GFP_KERNEL);
2479
2480 if (msginfo == NULL)
2481 return -ENOMEM;
2482
2483 ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2484
2485 kfree(msginfo);
2486
2487 if (ret != 0)
2488 return ret;
2489
d8bd2d44
DC
2490 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2491
f53335e3
DC
2492 vmbus_request_offers();
2493
19873eec
DC
2494 if (wait_for_completion_timeout(
2495 &vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2496 pr_err("Some vmbus device is missing after suspending?\n");
d8bd2d44 2497
b307b389
DC
2498 /* Reset the event for the next suspend. */
2499 reinit_completion(&vmbus_connection.ready_for_suspend_event);
2500
f53335e3
DC
2501 return 0;
2502}
1a06d017
DC
2503#else
2504#define vmbus_bus_suspend NULL
2505#define vmbus_bus_resume NULL
83b50f83 2506#endif /* CONFIG_PM_SLEEP */
f53335e3 2507
b0069f43
S
2508static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2509 {"VMBUS", 0},
9d7b18d1 2510 {"VMBus", 0},
b0069f43
S
2511 {"", 0},
2512};
2513MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2514
f53335e3 2515/*
1a06d017
DC
2516 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2517 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2518 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
f53335e3
DC
2519 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2520 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
1a06d017
DC
2521 * resume callback must also run via the "noirq" ops.
2522 *
2523 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2524 * earlier in this file before vmbus_pm.
f53335e3 2525 */
1a06d017 2526
f53335e3 2527static const struct dev_pm_ops vmbus_bus_pm = {
1a06d017
DC
2528 .suspend_noirq = NULL,
2529 .resume_noirq = NULL,
2530 .freeze_noirq = vmbus_bus_suspend,
2531 .thaw_noirq = vmbus_bus_resume,
2532 .poweroff_noirq = vmbus_bus_suspend,
2533 .restore_noirq = vmbus_bus_resume
f53335e3
DC
2534};
2535
b0069f43
S
2536static struct acpi_driver vmbus_acpi_driver = {
2537 .name = "vmbus",
2538 .ids = vmbus_acpi_device_ids,
2539 .ops = {
2540 .add = vmbus_acpi_add,
e4ecb41c 2541 .remove = vmbus_acpi_remove,
b0069f43 2542 },
f53335e3 2543 .drv.pm = &vmbus_bus_pm,
b0069f43
S
2544};
2545
2517281d
VK
2546static void hv_kexec_handler(void)
2547{
fd1fea68 2548 hv_stimer_global_cleanup();
75ff3a8a 2549 vmbus_initiate_unload(false);
523b9408
VK
2550 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
2551 mb();
76d36ab7 2552 cpuhp_remove_state(hyperv_cpuhp_online);
d6f3609d 2553 hyperv_cleanup();
2517281d
VK
2554};
2555
b4370df2
VK
2556static void hv_crash_handler(struct pt_regs *regs)
2557{
fd1fea68
MK
2558 int cpu;
2559
75ff3a8a 2560 vmbus_initiate_unload(true);
b4370df2
VK
2561 /*
2562 * In crash handler we can't schedule synic cleanup for all CPUs,
2563 * doing the cleanup for current CPU only. This should be sufficient
2564 * for kdump.
2565 */
fd1fea68
MK
2566 cpu = smp_processor_id();
2567 hv_stimer_cleanup(cpu);
7a1323b5 2568 hv_synic_disable_regs(cpu);
d6f3609d 2569 hyperv_cleanup();
b4370df2
VK
2570};
2571
63ecc6d2
DC
2572static int hv_synic_suspend(void)
2573{
2574 /*
4df4cb9e
MK
2575 * When we reach here, all the non-boot CPUs have been offlined.
2576 * If we're in a legacy configuration where stimer Direct Mode is
2577 * not enabled, the stimers on the non-boot CPUs have been unbound
2578 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
63ecc6d2
DC
2579 * hv_stimer_cleanup() -> clockevents_unbind_device().
2580 *
4df4cb9e
MK
2581 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2582 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2583 * 1) it's unnecessary as interrupts remain disabled between
2584 * syscore_suspend() and syscore_resume(): see create_image() and
2585 * resume_target_kernel()
63ecc6d2
DC
2586 * 2) the stimer on CPU0 is automatically disabled later by
2587 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
4df4cb9e
MK
2588 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2589 * 3) a warning would be triggered if we call
2590 * clockevents_unbind_device(), which may sleep, in an
2591 * interrupts-disabled context.
63ecc6d2
DC
2592 */
2593
2594 hv_synic_disable_regs(0);
2595
2596 return 0;
2597}
2598
2599static void hv_synic_resume(void)
2600{
2601 hv_synic_enable_regs(0);
2602
2603 /*
2604 * Note: we don't need to call hv_stimer_init(0), because the timer
2605 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2606 * automatically re-enabled in timekeeping_resume().
2607 */
2608}
2609
2610/* The callbacks run only on CPU0, with irqs_disabled. */
2611static struct syscore_ops hv_synic_syscore_ops = {
2612 .suspend = hv_synic_suspend,
2613 .resume = hv_synic_resume,
2614};
2615
607c1a11 2616static int __init hv_acpi_init(void)
1168ac22 2617{
2dda95f8 2618 int ret, t;
b0069f43 2619
4a5f3cde 2620 if (!hv_is_hyperv_initialized())
0592969e
JW
2621 return -ENODEV;
2622
b0069f43
S
2623 init_completion(&probe_event);
2624
2625 /*
efc26722 2626 * Get ACPI resources first.
b0069f43 2627 */
0246604c
S
2628 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2629
b0069f43
S
2630 if (ret)
2631 return ret;
2632
2dda95f8
S
2633 t = wait_for_completion_timeout(&probe_event, 5*HZ);
2634 if (t == 0) {
2635 ret = -ETIMEDOUT;
2636 goto cleanup;
2637 }
af9ca6f9 2638 hv_debug_init();
b0069f43 2639
efc26722 2640 ret = vmbus_bus_init();
91fd799e 2641 if (ret)
2dda95f8
S
2642 goto cleanup;
2643
2517281d 2644 hv_setup_kexec_handler(hv_kexec_handler);
b4370df2 2645 hv_setup_crash_handler(hv_crash_handler);
2517281d 2646
63ecc6d2
DC
2647 register_syscore_ops(&hv_synic_syscore_ops);
2648
2dda95f8
S
2649 return 0;
2650
2651cleanup:
2652 acpi_bus_unregister_driver(&vmbus_acpi_driver);
cf6a2eac 2653 hv_acpi_dev = NULL;
91fd799e 2654 return ret;
1168ac22
S
2655}
2656
93e5bd06
S
2657static void __exit vmbus_exit(void)
2658{
e72e7ac5
VK
2659 int cpu;
2660
63ecc6d2
DC
2661 unregister_syscore_ops(&hv_synic_syscore_ops);
2662
2517281d 2663 hv_remove_kexec_handler();
b4370df2 2664 hv_remove_crash_handler();
09a19628 2665 vmbus_connection.conn_state = DISCONNECTED;
fd1fea68 2666 hv_stimer_global_cleanup();
2db84eff 2667 vmbus_disconnect();
76d388cd 2668 hv_remove_vmbus_irq();
37cdd991
SH
2669 for_each_online_cpu(cpu) {
2670 struct hv_per_cpu_context *hv_cpu
2671 = per_cpu_ptr(hv_context.cpu_context, cpu);
2672
2673 tasklet_kill(&hv_cpu->msg_dpc);
2674 }
af9ca6f9
BB
2675 hv_debug_rm_all_dir();
2676
93e5bd06 2677 vmbus_free_channels();
8b6a877c 2678 kfree(vmbus_connection.channels);
37cdd991 2679
cc2dd402 2680 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
81b18bce 2681 kmsg_dump_unregister(&hv_kmsg_dumper);
510f7aef 2682 unregister_die_notifier(&hyperv_die_block);
096c605f
VK
2683 atomic_notifier_chain_unregister(&panic_notifier_list,
2684 &hyperv_panic_block);
2685 }
81b18bce
SM
2686
2687 free_page((unsigned long)hv_panic_page);
8afc06dd
SM
2688 unregister_sysctl_table(hv_ctl_table_hdr);
2689 hv_ctl_table_hdr = NULL;
93e5bd06 2690 bus_unregister(&hv_bus);
37cdd991 2691
76d36ab7 2692 cpuhp_remove_state(hyperv_cpuhp_online);
06210b42 2693 hv_synic_free();
93e5bd06
S
2694 acpi_bus_unregister_driver(&vmbus_acpi_driver);
2695}
2696
1168ac22 2697
90c9960e 2698MODULE_LICENSE("GPL");
674eecb3 2699MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
3e7ee490 2700
43d4e119 2701subsys_initcall(hv_acpi_init);
93e5bd06 2702module_exit(vmbus_exit);
This page took 1.280325 seconds and 4 git commands to generate.