]> Git Repo - linux.git/blame - mm/compaction.c
mm: compaction: consider the number of scanning compound pages in isolate fail path
[linux.git] / mm / compaction.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
748446bb
MG
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <[email protected]>
10 */
698b1b30 11#include <linux/cpu.h>
748446bb
MG
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
174cd4b1 16#include <linux/sched/signal.h>
748446bb 17#include <linux/backing-dev.h>
76ab0f53 18#include <linux/sysctl.h>
ed4a6d7f 19#include <linux/sysfs.h>
194159fb 20#include <linux/page-isolation.h>
b8c73fc2 21#include <linux/kasan.h>
698b1b30
VB
22#include <linux/kthread.h>
23#include <linux/freezer.h>
83358ece 24#include <linux/page_owner.h>
eb414681 25#include <linux/psi.h>
748446bb
MG
26#include "internal.h"
27
010fc29a 28#ifdef CONFIG_COMPACTION
31ca72fa
CTK
29/*
30 * Fragmentation score check interval for proactive compaction purposes.
31 */
32#define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
33
010fc29a
MK
34static inline void count_compact_event(enum vm_event_item item)
35{
36 count_vm_event(item);
37}
38
39static inline void count_compact_events(enum vm_event_item item, long delta)
40{
41 count_vm_events(item, delta);
42}
43#else
44#define count_compact_event(item) do { } while (0)
45#define count_compact_events(item, delta) do { } while (0)
46#endif
47
ff9543fd
MN
48#if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
b7aba698
MG
50#define CREATE_TRACE_POINTS
51#include <trace/events/compaction.h>
52
06b6640a
VB
53#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
06b6640a 55
facdaa91
NG
56/*
57 * Page order with-respect-to which proactive compaction
58 * calculates external fragmentation, which is used as
59 * the "fragmentation score" of a node/zone.
60 */
61#if defined CONFIG_TRANSPARENT_HUGEPAGE
62#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
25788738 63#elif defined CONFIG_HUGETLBFS
facdaa91
NG
64#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
65#else
66#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
67#endif
68
748446bb
MG
69static unsigned long release_freepages(struct list_head *freelist)
70{
71 struct page *page, *next;
6bace090 72 unsigned long high_pfn = 0;
748446bb
MG
73
74 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 75 unsigned long pfn = page_to_pfn(page);
748446bb
MG
76 list_del(&page->lru);
77 __free_page(page);
6bace090
VB
78 if (pfn > high_pfn)
79 high_pfn = pfn;
748446bb
MG
80 }
81
6bace090 82 return high_pfn;
748446bb
MG
83}
84
4469ab98 85static void split_map_pages(struct list_head *list)
ff9543fd 86{
66c64223
JK
87 unsigned int i, order, nr_pages;
88 struct page *page, *next;
89 LIST_HEAD(tmp_list);
90
91 list_for_each_entry_safe(page, next, list, lru) {
92 list_del(&page->lru);
93
94 order = page_private(page);
95 nr_pages = 1 << order;
66c64223 96
46f24fd8 97 post_alloc_hook(page, order, __GFP_MOVABLE);
66c64223
JK
98 if (order)
99 split_page(page, order);
ff9543fd 100
66c64223
JK
101 for (i = 0; i < nr_pages; i++) {
102 list_add(&page->lru, &tmp_list);
103 page++;
104 }
ff9543fd 105 }
66c64223
JK
106
107 list_splice(&tmp_list, list);
ff9543fd
MN
108}
109
bb13ffeb 110#ifdef CONFIG_COMPACTION
68f2736a 111bool PageMovable(struct page *page)
bda807d4 112{
68f2736a 113 const struct movable_operations *mops;
bda807d4
MK
114
115 VM_BUG_ON_PAGE(!PageLocked(page), page);
116 if (!__PageMovable(page))
68f2736a 117 return false;
bda807d4 118
68f2736a
MWO
119 mops = page_movable_ops(page);
120 if (mops)
121 return true;
bda807d4 122
68f2736a 123 return false;
bda807d4 124}
bda807d4 125
68f2736a 126void __SetPageMovable(struct page *page, const struct movable_operations *mops)
bda807d4
MK
127{
128 VM_BUG_ON_PAGE(!PageLocked(page), page);
68f2736a
MWO
129 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
bda807d4
MK
131}
132EXPORT_SYMBOL(__SetPageMovable);
133
134void __ClearPageMovable(struct page *page)
135{
bda807d4
MK
136 VM_BUG_ON_PAGE(!PageMovable(page), page);
137 /*
68f2736a
MWO
138 * This page still has the type of a movable page, but it's
139 * actually not movable any more.
bda807d4 140 */
68f2736a 141 page->mapping = (void *)PAGE_MAPPING_MOVABLE;
bda807d4
MK
142}
143EXPORT_SYMBOL(__ClearPageMovable);
144
24e2716f
JK
145/* Do not skip compaction more than 64 times */
146#define COMPACT_MAX_DEFER_SHIFT 6
147
148/*
149 * Compaction is deferred when compaction fails to result in a page
860b3272 150 * allocation success. 1 << compact_defer_shift, compactions are skipped up
24e2716f
JK
151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152 */
2271b016 153static void defer_compaction(struct zone *zone, int order)
24e2716f
JK
154{
155 zone->compact_considered = 0;
156 zone->compact_defer_shift++;
157
158 if (order < zone->compact_order_failed)
159 zone->compact_order_failed = order;
160
161 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163
164 trace_mm_compaction_defer_compaction(zone, order);
165}
166
167/* Returns true if compaction should be skipped this time */
2271b016 168static bool compaction_deferred(struct zone *zone, int order)
24e2716f
JK
169{
170 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171
172 if (order < zone->compact_order_failed)
173 return false;
174
175 /* Avoid possible overflow */
62b35fe0 176 if (++zone->compact_considered >= defer_limit) {
24e2716f 177 zone->compact_considered = defer_limit;
24e2716f 178 return false;
62b35fe0 179 }
24e2716f
JK
180
181 trace_mm_compaction_deferred(zone, order);
182
183 return true;
184}
185
186/*
187 * Update defer tracking counters after successful compaction of given order,
188 * which means an allocation either succeeded (alloc_success == true) or is
189 * expected to succeed.
190 */
191void compaction_defer_reset(struct zone *zone, int order,
192 bool alloc_success)
193{
194 if (alloc_success) {
195 zone->compact_considered = 0;
196 zone->compact_defer_shift = 0;
197 }
198 if (order >= zone->compact_order_failed)
199 zone->compact_order_failed = order + 1;
200
201 trace_mm_compaction_defer_reset(zone, order);
202}
203
204/* Returns true if restarting compaction after many failures */
2271b016 205static bool compaction_restarting(struct zone *zone, int order)
24e2716f
JK
206{
207 if (order < zone->compact_order_failed)
208 return false;
209
210 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211 zone->compact_considered >= 1UL << zone->compact_defer_shift;
212}
213
bb13ffeb
MG
214/* Returns true if the pageblock should be scanned for pages to isolate. */
215static inline bool isolation_suitable(struct compact_control *cc,
216 struct page *page)
217{
218 if (cc->ignore_skip_hint)
219 return true;
220
221 return !get_pageblock_skip(page);
222}
223
02333641
VB
224static void reset_cached_positions(struct zone *zone)
225{
226 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 228 zone->compact_cached_free_pfn =
06b6640a 229 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
230}
231
21dc7e02 232/*
2271b016 233 * Compound pages of >= pageblock_order should consistently be skipped until
b527cfe5
VB
234 * released. It is always pointless to compact pages of such order (if they are
235 * migratable), and the pageblocks they occupy cannot contain any free pages.
21dc7e02 236 */
b527cfe5 237static bool pageblock_skip_persistent(struct page *page)
21dc7e02 238{
b527cfe5 239 if (!PageCompound(page))
21dc7e02 240 return false;
b527cfe5
VB
241
242 page = compound_head(page);
243
244 if (compound_order(page) >= pageblock_order)
245 return true;
246
247 return false;
21dc7e02
DR
248}
249
e332f741
MG
250static bool
251__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
252 bool check_target)
253{
254 struct page *page = pfn_to_online_page(pfn);
6b0868c8 255 struct page *block_page;
e332f741
MG
256 struct page *end_page;
257 unsigned long block_pfn;
258
259 if (!page)
260 return false;
261 if (zone != page_zone(page))
262 return false;
263 if (pageblock_skip_persistent(page))
264 return false;
265
266 /*
267 * If skip is already cleared do no further checking once the
268 * restart points have been set.
269 */
270 if (check_source && check_target && !get_pageblock_skip(page))
271 return true;
272
273 /*
274 * If clearing skip for the target scanner, do not select a
275 * non-movable pageblock as the starting point.
276 */
277 if (!check_source && check_target &&
278 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
279 return false;
280
6b0868c8
MG
281 /* Ensure the start of the pageblock or zone is online and valid */
282 block_pfn = pageblock_start_pfn(pfn);
a2e9a5af
VB
283 block_pfn = max(block_pfn, zone->zone_start_pfn);
284 block_page = pfn_to_online_page(block_pfn);
6b0868c8
MG
285 if (block_page) {
286 page = block_page;
287 pfn = block_pfn;
288 }
289
290 /* Ensure the end of the pageblock or zone is online and valid */
a2e9a5af 291 block_pfn = pageblock_end_pfn(pfn) - 1;
6b0868c8
MG
292 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
293 end_page = pfn_to_online_page(block_pfn);
294 if (!end_page)
295 return false;
296
e332f741
MG
297 /*
298 * Only clear the hint if a sample indicates there is either a
299 * free page or an LRU page in the block. One or other condition
300 * is necessary for the block to be a migration source/target.
301 */
e332f741 302 do {
859a85dd
MR
303 if (check_source && PageLRU(page)) {
304 clear_pageblock_skip(page);
305 return true;
306 }
e332f741 307
859a85dd
MR
308 if (check_target && PageBuddy(page)) {
309 clear_pageblock_skip(page);
310 return true;
e332f741
MG
311 }
312
313 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
a2e9a5af 314 } while (page <= end_page);
e332f741
MG
315
316 return false;
317}
318
bb13ffeb
MG
319/*
320 * This function is called to clear all cached information on pageblocks that
321 * should be skipped for page isolation when the migrate and free page scanner
322 * meet.
323 */
62997027 324static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb 325{
e332f741 326 unsigned long migrate_pfn = zone->zone_start_pfn;
6b0868c8 327 unsigned long free_pfn = zone_end_pfn(zone) - 1;
e332f741
MG
328 unsigned long reset_migrate = free_pfn;
329 unsigned long reset_free = migrate_pfn;
330 bool source_set = false;
331 bool free_set = false;
332
333 if (!zone->compact_blockskip_flush)
334 return;
bb13ffeb 335
62997027 336 zone->compact_blockskip_flush = false;
bb13ffeb 337
e332f741
MG
338 /*
339 * Walk the zone and update pageblock skip information. Source looks
340 * for PageLRU while target looks for PageBuddy. When the scanner
341 * is found, both PageBuddy and PageLRU are checked as the pageblock
342 * is suitable as both source and target.
343 */
344 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
345 free_pfn -= pageblock_nr_pages) {
bb13ffeb
MG
346 cond_resched();
347
e332f741
MG
348 /* Update the migrate PFN */
349 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
350 migrate_pfn < reset_migrate) {
351 source_set = true;
352 reset_migrate = migrate_pfn;
353 zone->compact_init_migrate_pfn = reset_migrate;
354 zone->compact_cached_migrate_pfn[0] = reset_migrate;
355 zone->compact_cached_migrate_pfn[1] = reset_migrate;
356 }
bb13ffeb 357
e332f741
MG
358 /* Update the free PFN */
359 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
360 free_pfn > reset_free) {
361 free_set = true;
362 reset_free = free_pfn;
363 zone->compact_init_free_pfn = reset_free;
364 zone->compact_cached_free_pfn = reset_free;
365 }
bb13ffeb 366 }
02333641 367
e332f741
MG
368 /* Leave no distance if no suitable block was reset */
369 if (reset_migrate >= reset_free) {
370 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
371 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
372 zone->compact_cached_free_pfn = free_pfn;
373 }
bb13ffeb
MG
374}
375
62997027
MG
376void reset_isolation_suitable(pg_data_t *pgdat)
377{
378 int zoneid;
379
380 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
381 struct zone *zone = &pgdat->node_zones[zoneid];
382 if (!populated_zone(zone))
383 continue;
384
385 /* Only flush if a full compaction finished recently */
386 if (zone->compact_blockskip_flush)
387 __reset_isolation_suitable(zone);
388 }
389}
390
e380bebe
MG
391/*
392 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
393 * locks are not required for read/writers. Returns true if it was already set.
394 */
395static bool test_and_set_skip(struct compact_control *cc, struct page *page,
396 unsigned long pfn)
397{
398 bool skip;
399
400 /* Do no update if skip hint is being ignored */
401 if (cc->ignore_skip_hint)
402 return false;
403
ee0913c4 404 if (!pageblock_aligned(pfn))
e380bebe
MG
405 return false;
406
407 skip = get_pageblock_skip(page);
408 if (!skip && !cc->no_set_skip_hint)
409 set_pageblock_skip(page);
410
411 return skip;
412}
413
414static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
415{
416 struct zone *zone = cc->zone;
417
418 pfn = pageblock_end_pfn(pfn);
419
420 /* Set for isolation rather than compaction */
421 if (cc->no_set_skip_hint)
422 return;
423
424 if (pfn > zone->compact_cached_migrate_pfn[0])
425 zone->compact_cached_migrate_pfn[0] = pfn;
426 if (cc->mode != MIGRATE_ASYNC &&
427 pfn > zone->compact_cached_migrate_pfn[1])
428 zone->compact_cached_migrate_pfn[1] = pfn;
429}
430
bb13ffeb
MG
431/*
432 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 433 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 434 */
c89511ab 435static void update_pageblock_skip(struct compact_control *cc,
d097a6f6 436 struct page *page, unsigned long pfn)
bb13ffeb 437{
c89511ab 438 struct zone *zone = cc->zone;
6815bf3f 439
2583d671 440 if (cc->no_set_skip_hint)
6815bf3f
JK
441 return;
442
bb13ffeb
MG
443 if (!page)
444 return;
445
edc2ca61 446 set_pageblock_skip(page);
c89511ab 447
35979ef3 448 /* Update where async and sync compaction should restart */
e380bebe
MG
449 if (pfn < zone->compact_cached_free_pfn)
450 zone->compact_cached_free_pfn = pfn;
bb13ffeb
MG
451}
452#else
453static inline bool isolation_suitable(struct compact_control *cc,
454 struct page *page)
455{
456 return true;
457}
458
b527cfe5 459static inline bool pageblock_skip_persistent(struct page *page)
21dc7e02
DR
460{
461 return false;
462}
463
464static inline void update_pageblock_skip(struct compact_control *cc,
d097a6f6 465 struct page *page, unsigned long pfn)
bb13ffeb
MG
466{
467}
e380bebe
MG
468
469static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
470{
471}
472
473static bool test_and_set_skip(struct compact_control *cc, struct page *page,
474 unsigned long pfn)
475{
476 return false;
477}
bb13ffeb
MG
478#endif /* CONFIG_COMPACTION */
479
8b44d279
VB
480/*
481 * Compaction requires the taking of some coarse locks that are potentially
cb2dcaf0
MG
482 * very heavily contended. For async compaction, trylock and record if the
483 * lock is contended. The lock will still be acquired but compaction will
484 * abort when the current block is finished regardless of success rate.
485 * Sync compaction acquires the lock.
8b44d279 486 *
cb2dcaf0 487 * Always returns true which makes it easier to track lock state in callers.
8b44d279 488 */
cb2dcaf0 489static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
8b44d279 490 struct compact_control *cc)
77337ede 491 __acquires(lock)
2a1402aa 492{
cb2dcaf0
MG
493 /* Track if the lock is contended in async mode */
494 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
495 if (spin_trylock_irqsave(lock, *flags))
496 return true;
497
498 cc->contended = true;
8b44d279 499 }
1f9efdef 500
cb2dcaf0 501 spin_lock_irqsave(lock, *flags);
8b44d279 502 return true;
2a1402aa
MG
503}
504
c67fe375
MG
505/*
506 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
507 * very heavily contended. The lock should be periodically unlocked to avoid
508 * having disabled IRQs for a long time, even when there is nobody waiting on
509 * the lock. It might also be that allowing the IRQs will result in
d56c1584 510 * need_resched() becoming true. If scheduling is needed, compaction schedules.
8b44d279
VB
511 * Either compaction type will also abort if a fatal signal is pending.
512 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 513 *
d56c1584
ML
514 * Returns true if compaction should abort due to fatal signal pending.
515 * Returns false when compaction can continue.
c67fe375 516 */
8b44d279
VB
517static bool compact_unlock_should_abort(spinlock_t *lock,
518 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 519{
8b44d279
VB
520 if (*locked) {
521 spin_unlock_irqrestore(lock, flags);
522 *locked = false;
523 }
1f9efdef 524
8b44d279 525 if (fatal_signal_pending(current)) {
c3486f53 526 cc->contended = true;
8b44d279
VB
527 return true;
528 }
c67fe375 529
cf66f070 530 cond_resched();
be976572
VB
531
532 return false;
533}
534
85aa125f 535/*
9e4be470
JM
536 * Isolate free pages onto a private freelist. If @strict is true, will abort
537 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
538 * (even though it may still end up isolating some pages).
85aa125f 539 */
f40d1e42 540static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 541 unsigned long *start_pfn,
85aa125f
MN
542 unsigned long end_pfn,
543 struct list_head *freelist,
4fca9730 544 unsigned int stride,
85aa125f 545 bool strict)
748446bb 546{
b7aba698 547 int nr_scanned = 0, total_isolated = 0;
d097a6f6 548 struct page *cursor;
b8b2d825 549 unsigned long flags = 0;
f40d1e42 550 bool locked = false;
e14c720e 551 unsigned long blockpfn = *start_pfn;
66c64223 552 unsigned int order;
748446bb 553
4fca9730
MG
554 /* Strict mode is for isolation, speed is secondary */
555 if (strict)
556 stride = 1;
557
748446bb
MG
558 cursor = pfn_to_page(blockpfn);
559
f40d1e42 560 /* Isolate free pages. */
4fca9730 561 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
66c64223 562 int isolated;
748446bb
MG
563 struct page *page = cursor;
564
8b44d279
VB
565 /*
566 * Periodically drop the lock (if held) regardless of its
567 * contention, to give chance to IRQs. Abort if fatal signal
d56c1584 568 * pending.
8b44d279 569 */
c036ddff 570 if (!(blockpfn % COMPACT_CLUSTER_MAX)
8b44d279
VB
571 && compact_unlock_should_abort(&cc->zone->lock, flags,
572 &locked, cc))
573 break;
574
b7aba698 575 nr_scanned++;
2af120bc 576
9fcd6d2e
VB
577 /*
578 * For compound pages such as THP and hugetlbfs, we can save
579 * potentially a lot of iterations if we skip them at once.
580 * The check is racy, but we can consider only valid values
581 * and the only danger is skipping too much.
582 */
583 if (PageCompound(page)) {
21dc7e02
DR
584 const unsigned int order = compound_order(page);
585
23baf831 586 if (likely(order <= MAX_ORDER)) {
21dc7e02
DR
587 blockpfn += (1UL << order) - 1;
588 cursor += (1UL << order) - 1;
56d48d8d 589 nr_scanned += (1UL << order) - 1;
9fcd6d2e 590 }
9fcd6d2e
VB
591 goto isolate_fail;
592 }
593
f40d1e42 594 if (!PageBuddy(page))
2af120bc 595 goto isolate_fail;
f40d1e42 596
85f73e6d 597 /* If we already hold the lock, we can skip some rechecking. */
69b7189f 598 if (!locked) {
cb2dcaf0 599 locked = compact_lock_irqsave(&cc->zone->lock,
8b44d279 600 &flags, cc);
f40d1e42 601
69b7189f
VB
602 /* Recheck this is a buddy page under lock */
603 if (!PageBuddy(page))
604 goto isolate_fail;
605 }
748446bb 606
66c64223 607 /* Found a free page, will break it into order-0 pages */
ab130f91 608 order = buddy_order(page);
66c64223 609 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
610 if (!isolated)
611 break;
66c64223 612 set_page_private(page, order);
a4f04f2c 613
b717d6b9 614 nr_scanned += isolated - 1;
748446bb 615 total_isolated += isolated;
a4f04f2c 616 cc->nr_freepages += isolated;
66c64223
JK
617 list_add_tail(&page->lru, freelist);
618
a4f04f2c
DR
619 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
620 blockpfn += isolated;
621 break;
748446bb 622 }
a4f04f2c
DR
623 /* Advance to the end of split page */
624 blockpfn += isolated - 1;
625 cursor += isolated - 1;
626 continue;
2af120bc
LA
627
628isolate_fail:
629 if (strict)
630 break;
631 else
632 continue;
633
748446bb
MG
634 }
635
a4f04f2c
DR
636 if (locked)
637 spin_unlock_irqrestore(&cc->zone->lock, flags);
638
9fcd6d2e
VB
639 /*
640 * There is a tiny chance that we have read bogus compound_order(),
641 * so be careful to not go outside of the pageblock.
642 */
643 if (unlikely(blockpfn > end_pfn))
644 blockpfn = end_pfn;
645
e34d85f0
JK
646 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
647 nr_scanned, total_isolated);
648
e14c720e
VB
649 /* Record how far we have got within the block */
650 *start_pfn = blockpfn;
651
f40d1e42
MG
652 /*
653 * If strict isolation is requested by CMA then check that all the
654 * pages requested were isolated. If there were any failures, 0 is
655 * returned and CMA will fail.
656 */
2af120bc 657 if (strict && blockpfn < end_pfn)
f40d1e42
MG
658 total_isolated = 0;
659
7f354a54 660 cc->total_free_scanned += nr_scanned;
397487db 661 if (total_isolated)
010fc29a 662 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
663 return total_isolated;
664}
665
85aa125f
MN
666/**
667 * isolate_freepages_range() - isolate free pages.
e8b098fc 668 * @cc: Compaction control structure.
85aa125f
MN
669 * @start_pfn: The first PFN to start isolating.
670 * @end_pfn: The one-past-last PFN.
671 *
672 * Non-free pages, invalid PFNs, or zone boundaries within the
673 * [start_pfn, end_pfn) range are considered errors, cause function to
674 * undo its actions and return zero.
675 *
676 * Otherwise, function returns one-past-the-last PFN of isolated page
677 * (which may be greater then end_pfn if end fell in a middle of
678 * a free page).
679 */
ff9543fd 680unsigned long
bb13ffeb
MG
681isolate_freepages_range(struct compact_control *cc,
682 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 683{
e1409c32 684 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
685 LIST_HEAD(freelist);
686
7d49d886 687 pfn = start_pfn;
06b6640a 688 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
689 if (block_start_pfn < cc->zone->zone_start_pfn)
690 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 691 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
692
693 for (; pfn < end_pfn; pfn += isolated,
e1409c32 694 block_start_pfn = block_end_pfn,
7d49d886 695 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
696 /* Protect pfn from changing by isolate_freepages_block */
697 unsigned long isolate_start_pfn = pfn;
85aa125f 698
85aa125f
MN
699 block_end_pfn = min(block_end_pfn, end_pfn);
700
58420016
JK
701 /*
702 * pfn could pass the block_end_pfn if isolated freepage
703 * is more than pageblock order. In this case, we adjust
704 * scanning range to right one.
705 */
706 if (pfn >= block_end_pfn) {
06b6640a
VB
707 block_start_pfn = pageblock_start_pfn(pfn);
708 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
709 block_end_pfn = min(block_end_pfn, end_pfn);
710 }
711
e1409c32
JK
712 if (!pageblock_pfn_to_page(block_start_pfn,
713 block_end_pfn, cc->zone))
7d49d886
VB
714 break;
715
e14c720e 716 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
4fca9730 717 block_end_pfn, &freelist, 0, true);
85aa125f
MN
718
719 /*
720 * In strict mode, isolate_freepages_block() returns 0 if
721 * there are any holes in the block (ie. invalid PFNs or
722 * non-free pages).
723 */
724 if (!isolated)
725 break;
726
727 /*
728 * If we managed to isolate pages, it is always (1 << n) *
729 * pageblock_nr_pages for some non-negative n. (Max order
730 * page may span two pageblocks).
731 */
732 }
733
66c64223 734 /* __isolate_free_page() does not map the pages */
4469ab98 735 split_map_pages(&freelist);
85aa125f
MN
736
737 if (pfn < end_pfn) {
738 /* Loop terminated early, cleanup. */
739 release_freepages(&freelist);
740 return 0;
741 }
742
743 /* We don't use freelists for anything. */
744 return pfn;
745}
746
748446bb 747/* Similar to reclaim, but different enough that they don't share logic */
5f438eee 748static bool too_many_isolated(pg_data_t *pgdat)
748446bb 749{
d818fca1
MG
750 bool too_many;
751
bc693045 752 unsigned long active, inactive, isolated;
748446bb 753
5f438eee
AR
754 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
755 node_page_state(pgdat, NR_INACTIVE_ANON);
756 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
757 node_page_state(pgdat, NR_ACTIVE_ANON);
758 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
759 node_page_state(pgdat, NR_ISOLATED_ANON);
748446bb 760
d818fca1
MG
761 too_many = isolated > (inactive + active) / 2;
762 if (!too_many)
763 wake_throttle_isolated(pgdat);
764
765 return too_many;
748446bb
MG
766}
767
2fe86e00 768/**
edc2ca61
VB
769 * isolate_migratepages_block() - isolate all migrate-able pages within
770 * a single pageblock
2fe86e00 771 * @cc: Compaction control structure.
edc2ca61
VB
772 * @low_pfn: The first PFN to isolate
773 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
89f6c88a 774 * @mode: Isolation mode to be used.
2fe86e00
MN
775 *
776 * Isolate all pages that can be migrated from the range specified by
edc2ca61 777 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
c2ad7a1f 778 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
369fa227 779 * -ENOMEM in case we could not allocate a page, or 0.
c2ad7a1f 780 * cc->migrate_pfn will contain the next pfn to scan.
2fe86e00 781 *
edc2ca61 782 * The pages are isolated on cc->migratepages list (not required to be empty),
c2ad7a1f 783 * and cc->nr_migratepages is updated accordingly.
748446bb 784 */
c2ad7a1f 785static int
edc2ca61 786isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
89f6c88a 787 unsigned long end_pfn, isolate_mode_t mode)
748446bb 788{
5f438eee 789 pg_data_t *pgdat = cc->zone->zone_pgdat;
b7aba698 790 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 791 struct lruvec *lruvec;
b8b2d825 792 unsigned long flags = 0;
6168d0da 793 struct lruvec *locked = NULL;
bb13ffeb 794 struct page *page = NULL, *valid_page = NULL;
89f6c88a 795 struct address_space *mapping;
e34d85f0 796 unsigned long start_pfn = low_pfn;
fdd048e1
VB
797 bool skip_on_failure = false;
798 unsigned long next_skip_pfn = 0;
e380bebe 799 bool skip_updated = false;
c2ad7a1f
OS
800 int ret = 0;
801
802 cc->migrate_pfn = low_pfn;
748446bb 803
748446bb
MG
804 /*
805 * Ensure that there are not too many pages isolated from the LRU
806 * list by either parallel reclaimers or compaction. If there are,
807 * delay for some time until fewer pages are isolated
808 */
5f438eee 809 while (unlikely(too_many_isolated(pgdat))) {
d20bdd57
ZY
810 /* stop isolation if there are still pages not migrated */
811 if (cc->nr_migratepages)
c2ad7a1f 812 return -EAGAIN;
d20bdd57 813
f9e35b3b 814 /* async migration should just abort */
e0b9daeb 815 if (cc->mode == MIGRATE_ASYNC)
c2ad7a1f 816 return -EAGAIN;
f9e35b3b 817
c3f4a9a2 818 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
748446bb
MG
819
820 if (fatal_signal_pending(current))
c2ad7a1f 821 return -EINTR;
748446bb
MG
822 }
823
cf66f070 824 cond_resched();
aeef4b83 825
fdd048e1
VB
826 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
827 skip_on_failure = true;
828 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
829 }
830
748446bb 831 /* Time to isolate some pages for migration */
748446bb 832 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8 833
fdd048e1
VB
834 if (skip_on_failure && low_pfn >= next_skip_pfn) {
835 /*
836 * We have isolated all migration candidates in the
837 * previous order-aligned block, and did not skip it due
838 * to failure. We should migrate the pages now and
839 * hopefully succeed compaction.
840 */
841 if (nr_isolated)
842 break;
843
844 /*
845 * We failed to isolate in the previous order-aligned
846 * block. Set the new boundary to the end of the
847 * current block. Note we can't simply increase
848 * next_skip_pfn by 1 << order, as low_pfn might have
849 * been incremented by a higher number due to skipping
850 * a compound or a high-order buddy page in the
851 * previous loop iteration.
852 */
853 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
854 }
855
8b44d279
VB
856 /*
857 * Periodically drop the lock (if held) regardless of its
670105a2
MG
858 * contention, to give chance to IRQs. Abort completely if
859 * a fatal signal is pending.
8b44d279 860 */
c036ddff 861 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
6168d0da
AS
862 if (locked) {
863 unlock_page_lruvec_irqrestore(locked, flags);
864 locked = NULL;
865 }
866
867 if (fatal_signal_pending(current)) {
868 cc->contended = true;
c2ad7a1f 869 ret = -EINTR;
6168d0da 870
6168d0da
AS
871 goto fatal_pending;
872 }
873
874 cond_resched();
670105a2 875 }
c67fe375 876
b7aba698 877 nr_scanned++;
748446bb 878
748446bb 879 page = pfn_to_page(low_pfn);
dc908600 880
e380bebe
MG
881 /*
882 * Check if the pageblock has already been marked skipped.
883 * Only the aligned PFN is checked as the caller isolates
884 * COMPACT_CLUSTER_MAX at a time so the second call must
885 * not falsely conclude that the block should be skipped.
886 */
ee0913c4 887 if (!valid_page && pageblock_aligned(low_pfn)) {
4af12d04 888 if (!isolation_suitable(cc, page)) {
e380bebe 889 low_pfn = end_pfn;
9df41314 890 page = NULL;
e380bebe
MG
891 goto isolate_abort;
892 }
bb13ffeb 893 valid_page = page;
e380bebe 894 }
bb13ffeb 895
369fa227 896 if (PageHuge(page) && cc->alloc_contig) {
ae37c7ff 897 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
369fa227
OS
898
899 /*
900 * Fail isolation in case isolate_or_dissolve_huge_page()
901 * reports an error. In case of -ENOMEM, abort right away.
902 */
903 if (ret < 0) {
904 /* Do not report -EBUSY down the chain */
905 if (ret == -EBUSY)
906 ret = 0;
66fe1cf7 907 low_pfn += compound_nr(page) - 1;
56d48d8d 908 nr_scanned += compound_nr(page) - 1;
369fa227
OS
909 goto isolate_fail;
910 }
911
ae37c7ff
OS
912 if (PageHuge(page)) {
913 /*
914 * Hugepage was successfully isolated and placed
915 * on the cc->migratepages list.
916 */
917 low_pfn += compound_nr(page) - 1;
918 goto isolate_success_no_list;
919 }
920
369fa227
OS
921 /*
922 * Ok, the hugepage was dissolved. Now these pages are
923 * Buddy and cannot be re-allocated because they are
924 * isolated. Fall-through as the check below handles
925 * Buddy pages.
926 */
927 }
928
6c14466c 929 /*
99c0fd5e
VB
930 * Skip if free. We read page order here without zone lock
931 * which is generally unsafe, but the race window is small and
932 * the worst thing that can happen is that we skip some
933 * potential isolation targets.
6c14466c 934 */
99c0fd5e 935 if (PageBuddy(page)) {
ab130f91 936 unsigned long freepage_order = buddy_order_unsafe(page);
99c0fd5e
VB
937
938 /*
939 * Without lock, we cannot be sure that what we got is
940 * a valid page order. Consider only values in the
941 * valid order range to prevent low_pfn overflow.
942 */
56d48d8d 943 if (freepage_order > 0 && freepage_order <= MAX_ORDER) {
99c0fd5e 944 low_pfn += (1UL << freepage_order) - 1;
56d48d8d
BW
945 nr_scanned += (1UL << freepage_order) - 1;
946 }
748446bb 947 continue;
99c0fd5e 948 }
748446bb 949
bc835011 950 /*
29c0dde8 951 * Regardless of being on LRU, compound pages such as THP and
1da2f328
RR
952 * hugetlbfs are not to be compacted unless we are attempting
953 * an allocation much larger than the huge page size (eg CMA).
954 * We can potentially save a lot of iterations if we skip them
955 * at once. The check is racy, but we can consider only valid
956 * values and the only danger is skipping too much.
bc835011 957 */
1da2f328 958 if (PageCompound(page) && !cc->alloc_contig) {
21dc7e02 959 const unsigned int order = compound_order(page);
edc2ca61 960
56d48d8d 961 if (likely(order <= MAX_ORDER)) {
21dc7e02 962 low_pfn += (1UL << order) - 1;
56d48d8d
BW
963 nr_scanned += (1UL << order) - 1;
964 }
fdd048e1 965 goto isolate_fail;
2a1402aa
MG
966 }
967
bda807d4
MK
968 /*
969 * Check may be lockless but that's ok as we recheck later.
970 * It's possible to migrate LRU and non-lru movable pages.
971 * Skip any other type of page
972 */
973 if (!PageLRU(page)) {
bda807d4
MK
974 /*
975 * __PageMovable can return false positive so we need
976 * to verify it under page_lock.
977 */
978 if (unlikely(__PageMovable(page)) &&
979 !PageIsolated(page)) {
980 if (locked) {
6168d0da
AS
981 unlock_page_lruvec_irqrestore(locked, flags);
982 locked = NULL;
bda807d4
MK
983 }
984
cd775580 985 if (isolate_movable_page(page, mode))
bda807d4
MK
986 goto isolate_success;
987 }
988
fdd048e1 989 goto isolate_fail;
bda807d4 990 }
29c0dde8 991
829ae0f8
GS
992 /*
993 * Be careful not to clear PageLRU until after we're
994 * sure the page is not being freed elsewhere -- the
995 * page release code relies on it.
996 */
997 if (unlikely(!get_page_unless_zero(page)))
998 goto isolate_fail;
999
119d6d59
DR
1000 /*
1001 * Migration will fail if an anonymous page is pinned in memory,
1002 * so avoid taking lru_lock and isolating it unnecessarily in an
1003 * admittedly racy check.
1004 */
89f6c88a 1005 mapping = page_mapping(page);
829ae0f8
GS
1006 if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1007 goto isolate_fail_put;
119d6d59 1008
73e64c51
MH
1009 /*
1010 * Only allow to migrate anonymous pages in GFP_NOFS context
1011 * because those do not depend on fs locks.
1012 */
89f6c88a 1013 if (!(cc->gfp_mask & __GFP_FS) && mapping)
829ae0f8 1014 goto isolate_fail_put;
9df41314 1015
89f6c88a
HD
1016 /* Only take pages on LRU: a check now makes later tests safe */
1017 if (!PageLRU(page))
1018 goto isolate_fail_put;
1019
1020 /* Compaction might skip unevictable pages but CMA takes them */
1021 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1022 goto isolate_fail_put;
1023
1024 /*
1025 * To minimise LRU disruption, the caller can indicate with
1026 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1027 * it will be able to migrate without blocking - clean pages
1028 * for the most part. PageWriteback would require blocking.
1029 */
1030 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
9df41314
AS
1031 goto isolate_fail_put;
1032
89f6c88a
HD
1033 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1034 bool migrate_dirty;
1035
1036 /*
1037 * Only pages without mappings or that have a
9d0ddc0c 1038 * ->migrate_folio callback are possible to migrate
89f6c88a
HD
1039 * without blocking. However, we can be racing with
1040 * truncation so it's necessary to lock the page
1041 * to stabilise the mapping as truncation holds
1042 * the page lock until after the page is removed
1043 * from the page cache.
1044 */
1045 if (!trylock_page(page))
1046 goto isolate_fail_put;
1047
1048 mapping = page_mapping(page);
5490da4f 1049 migrate_dirty = !mapping ||
9d0ddc0c 1050 mapping->a_ops->migrate_folio;
89f6c88a
HD
1051 unlock_page(page);
1052 if (!migrate_dirty)
1053 goto isolate_fail_put;
1054 }
1055
9df41314
AS
1056 /* Try isolate the page */
1057 if (!TestClearPageLRU(page))
1058 goto isolate_fail_put;
1059
b1baabd9 1060 lruvec = folio_lruvec(page_folio(page));
6168d0da 1061
69b7189f 1062 /* If we already hold the lock, we can skip some rechecking */
6168d0da
AS
1063 if (lruvec != locked) {
1064 if (locked)
1065 unlock_page_lruvec_irqrestore(locked, flags);
1066
1067 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1068 locked = lruvec;
6168d0da 1069
e809c3fe 1070 lruvec_memcg_debug(lruvec, page_folio(page));
e380bebe 1071
e380bebe
MG
1072 /* Try get exclusive access under lock */
1073 if (!skip_updated) {
1074 skip_updated = true;
1075 if (test_and_set_skip(cc, page, low_pfn))
1076 goto isolate_abort;
1077 }
2a1402aa 1078
29c0dde8
VB
1079 /*
1080 * Page become compound since the non-locked check,
1081 * and it's on LRU. It can only be a THP so the order
1082 * is safe to read and it's 0 for tail pages.
1083 */
1da2f328 1084 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
d8c6546b 1085 low_pfn += compound_nr(page) - 1;
56d48d8d 1086 nr_scanned += compound_nr(page) - 1;
9df41314
AS
1087 SetPageLRU(page);
1088 goto isolate_fail_put;
69b7189f 1089 }
d99fd5fe 1090 }
fa9add64 1091
1da2f328
RR
1092 /* The whole page is taken off the LRU; skip the tail pages. */
1093 if (PageCompound(page))
1094 low_pfn += compound_nr(page) - 1;
bc835011 1095
748446bb 1096 /* Successfully isolated */
46ae6b2c 1097 del_page_from_lru_list(page, lruvec);
1da2f328 1098 mod_node_page_state(page_pgdat(page),
9de4f22a 1099 NR_ISOLATED_ANON + page_is_file_lru(page),
6c357848 1100 thp_nr_pages(page));
b6c75016
JK
1101
1102isolate_success:
fdd048e1 1103 list_add(&page->lru, &cc->migratepages);
ae37c7ff 1104isolate_success_no_list:
38935861
ZY
1105 cc->nr_migratepages += compound_nr(page);
1106 nr_isolated += compound_nr(page);
b717d6b9 1107 nr_scanned += compound_nr(page) - 1;
748446bb 1108
804d3121
MG
1109 /*
1110 * Avoid isolating too much unless this block is being
48731c84 1111 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
cb2dcaf0
MG
1112 * or a lock is contended. For contention, isolate quickly to
1113 * potentially remove one source of contention.
804d3121 1114 */
38935861 1115 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
48731c84 1116 !cc->finish_pageblock && !cc->contended) {
31b8384a 1117 ++low_pfn;
748446bb 1118 break;
31b8384a 1119 }
fdd048e1
VB
1120
1121 continue;
9df41314
AS
1122
1123isolate_fail_put:
1124 /* Avoid potential deadlock in freeing page under lru_lock */
1125 if (locked) {
6168d0da
AS
1126 unlock_page_lruvec_irqrestore(locked, flags);
1127 locked = NULL;
9df41314
AS
1128 }
1129 put_page(page);
1130
fdd048e1 1131isolate_fail:
369fa227 1132 if (!skip_on_failure && ret != -ENOMEM)
fdd048e1
VB
1133 continue;
1134
1135 /*
1136 * We have isolated some pages, but then failed. Release them
1137 * instead of migrating, as we cannot form the cc->order buddy
1138 * page anyway.
1139 */
1140 if (nr_isolated) {
1141 if (locked) {
6168d0da
AS
1142 unlock_page_lruvec_irqrestore(locked, flags);
1143 locked = NULL;
fdd048e1 1144 }
fdd048e1
VB
1145 putback_movable_pages(&cc->migratepages);
1146 cc->nr_migratepages = 0;
fdd048e1
VB
1147 nr_isolated = 0;
1148 }
1149
1150 if (low_pfn < next_skip_pfn) {
1151 low_pfn = next_skip_pfn - 1;
1152 /*
1153 * The check near the loop beginning would have updated
1154 * next_skip_pfn too, but this is a bit simpler.
1155 */
1156 next_skip_pfn += 1UL << cc->order;
1157 }
369fa227
OS
1158
1159 if (ret == -ENOMEM)
1160 break;
748446bb
MG
1161 }
1162
99c0fd5e
VB
1163 /*
1164 * The PageBuddy() check could have potentially brought us outside
1165 * the range to be scanned.
1166 */
1167 if (unlikely(low_pfn > end_pfn))
1168 low_pfn = end_pfn;
1169
9df41314
AS
1170 page = NULL;
1171
e380bebe 1172isolate_abort:
c67fe375 1173 if (locked)
6168d0da 1174 unlock_page_lruvec_irqrestore(locked, flags);
9df41314
AS
1175 if (page) {
1176 SetPageLRU(page);
1177 put_page(page);
1178 }
748446bb 1179
50b5b094 1180 /*
48731c84 1181 * Update the cached scanner pfn once the pageblock has been scanned.
804d3121
MG
1182 * Pages will either be migrated in which case there is no point
1183 * scanning in the near future or migration failed in which case the
1184 * failure reason may persist. The block is marked for skipping if
1185 * there were no pages isolated in the block or if the block is
1186 * rescanned twice in a row.
50b5b094 1187 */
48731c84 1188 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
e380bebe
MG
1189 if (valid_page && !skip_updated)
1190 set_pageblock_skip(valid_page);
1191 update_cached_migrate(cc, low_pfn);
1192 }
bb13ffeb 1193
e34d85f0
JK
1194 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1195 nr_scanned, nr_isolated);
b7aba698 1196
670105a2 1197fatal_pending:
7f354a54 1198 cc->total_migrate_scanned += nr_scanned;
397487db 1199 if (nr_isolated)
010fc29a 1200 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 1201
c2ad7a1f
OS
1202 cc->migrate_pfn = low_pfn;
1203
1204 return ret;
2fe86e00
MN
1205}
1206
edc2ca61
VB
1207/**
1208 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1209 * @cc: Compaction control structure.
1210 * @start_pfn: The first PFN to start isolating.
1211 * @end_pfn: The one-past-last PFN.
1212 *
369fa227
OS
1213 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1214 * in case we could not allocate a page, or 0.
edc2ca61 1215 */
c2ad7a1f 1216int
edc2ca61
VB
1217isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1218 unsigned long end_pfn)
1219{
e1409c32 1220 unsigned long pfn, block_start_pfn, block_end_pfn;
c2ad7a1f 1221 int ret = 0;
edc2ca61
VB
1222
1223 /* Scan block by block. First and last block may be incomplete */
1224 pfn = start_pfn;
06b6640a 1225 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
1226 if (block_start_pfn < cc->zone->zone_start_pfn)
1227 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 1228 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
1229
1230 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 1231 block_start_pfn = block_end_pfn,
edc2ca61
VB
1232 block_end_pfn += pageblock_nr_pages) {
1233
1234 block_end_pfn = min(block_end_pfn, end_pfn);
1235
e1409c32
JK
1236 if (!pageblock_pfn_to_page(block_start_pfn,
1237 block_end_pfn, cc->zone))
edc2ca61
VB
1238 continue;
1239
c2ad7a1f
OS
1240 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1241 ISOLATE_UNEVICTABLE);
edc2ca61 1242
c2ad7a1f 1243 if (ret)
edc2ca61 1244 break;
6ea41c0c 1245
38935861 1246 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
6ea41c0c 1247 break;
edc2ca61 1248 }
edc2ca61 1249
c2ad7a1f 1250 return ret;
edc2ca61
VB
1251}
1252
ff9543fd
MN
1253#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1254#ifdef CONFIG_COMPACTION
018e9a49 1255
b682debd
VB
1256static bool suitable_migration_source(struct compact_control *cc,
1257 struct page *page)
1258{
282722b0
VB
1259 int block_mt;
1260
9bebefd5
MG
1261 if (pageblock_skip_persistent(page))
1262 return false;
1263
282722b0 1264 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
b682debd
VB
1265 return true;
1266
282722b0
VB
1267 block_mt = get_pageblock_migratetype(page);
1268
1269 if (cc->migratetype == MIGRATE_MOVABLE)
1270 return is_migrate_movable(block_mt);
1271 else
1272 return block_mt == cc->migratetype;
b682debd
VB
1273}
1274
018e9a49 1275/* Returns true if the page is within a block suitable for migration to */
9f7e3387
VB
1276static bool suitable_migration_target(struct compact_control *cc,
1277 struct page *page)
018e9a49
AM
1278{
1279 /* If the page is a large free page, then disallow migration */
1280 if (PageBuddy(page)) {
1281 /*
1282 * We are checking page_order without zone->lock taken. But
1283 * the only small danger is that we skip a potentially suitable
1284 * pageblock, so it's not worth to check order for valid range.
1285 */
ab130f91 1286 if (buddy_order_unsafe(page) >= pageblock_order)
018e9a49
AM
1287 return false;
1288 }
1289
1ef36db2
YX
1290 if (cc->ignore_block_suitable)
1291 return true;
1292
018e9a49 1293 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
b682debd 1294 if (is_migrate_movable(get_pageblock_migratetype(page)))
018e9a49
AM
1295 return true;
1296
1297 /* Otherwise skip the block */
1298 return false;
1299}
1300
70b44595
MG
1301static inline unsigned int
1302freelist_scan_limit(struct compact_control *cc)
1303{
dd7ef7bd
QC
1304 unsigned short shift = BITS_PER_LONG - 1;
1305
1306 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
70b44595
MG
1307}
1308
f2849aa0
VB
1309/*
1310 * Test whether the free scanner has reached the same or lower pageblock than
1311 * the migration scanner, and compaction should thus terminate.
1312 */
1313static inline bool compact_scanners_met(struct compact_control *cc)
1314{
1315 return (cc->free_pfn >> pageblock_order)
1316 <= (cc->migrate_pfn >> pageblock_order);
1317}
1318
5a811889
MG
1319/*
1320 * Used when scanning for a suitable migration target which scans freelists
1321 * in reverse. Reorders the list such as the unscanned pages are scanned
1322 * first on the next iteration of the free scanner
1323 */
1324static void
1325move_freelist_head(struct list_head *freelist, struct page *freepage)
1326{
1327 LIST_HEAD(sublist);
1328
1329 if (!list_is_last(freelist, &freepage->lru)) {
1330 list_cut_before(&sublist, freelist, &freepage->lru);
d2155fe5 1331 list_splice_tail(&sublist, freelist);
5a811889
MG
1332 }
1333}
1334
1335/*
1336 * Similar to move_freelist_head except used by the migration scanner
1337 * when scanning forward. It's possible for these list operations to
1338 * move against each other if they search the free list exactly in
1339 * lockstep.
1340 */
70b44595
MG
1341static void
1342move_freelist_tail(struct list_head *freelist, struct page *freepage)
1343{
1344 LIST_HEAD(sublist);
1345
1346 if (!list_is_first(freelist, &freepage->lru)) {
1347 list_cut_position(&sublist, freelist, &freepage->lru);
d2155fe5 1348 list_splice_tail(&sublist, freelist);
70b44595
MG
1349 }
1350}
1351
5a811889 1352static void
be21b32a 1353fast_isolate_around(struct compact_control *cc, unsigned long pfn)
5a811889
MG
1354{
1355 unsigned long start_pfn, end_pfn;
6e2b7044 1356 struct page *page;
5a811889
MG
1357
1358 /* Do not search around if there are enough pages already */
1359 if (cc->nr_freepages >= cc->nr_migratepages)
1360 return;
1361
1362 /* Minimise scanning during async compaction */
1363 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1364 return;
1365
1366 /* Pageblock boundaries */
6e2b7044
VB
1367 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1368 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1369
1370 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1371 if (!page)
1372 return;
5a811889 1373
be21b32a 1374 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
5a811889
MG
1375
1376 /* Skip this pageblock in the future as it's full or nearly full */
1377 if (cc->nr_freepages < cc->nr_migratepages)
1378 set_pageblock_skip(page);
be21b32a
NA
1379
1380 return;
5a811889
MG
1381}
1382
dbe2d4e4
MG
1383/* Search orders in round-robin fashion */
1384static int next_search_order(struct compact_control *cc, int order)
1385{
1386 order--;
1387 if (order < 0)
1388 order = cc->order - 1;
1389
1390 /* Search wrapped around? */
1391 if (order == cc->search_order) {
1392 cc->search_order--;
1393 if (cc->search_order < 0)
1394 cc->search_order = cc->order - 1;
1395 return -1;
1396 }
1397
1398 return order;
1399}
1400
5a811889
MG
1401static unsigned long
1402fast_isolate_freepages(struct compact_control *cc)
1403{
b55ca526 1404 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
5a811889 1405 unsigned int nr_scanned = 0;
74e21484 1406 unsigned long low_pfn, min_pfn, highest = 0;
5a811889
MG
1407 unsigned long nr_isolated = 0;
1408 unsigned long distance;
1409 struct page *page = NULL;
1410 bool scan_start = false;
1411 int order;
1412
1413 /* Full compaction passes in a negative order */
1414 if (cc->order <= 0)
1415 return cc->free_pfn;
1416
1417 /*
1418 * If starting the scan, use a deeper search and use the highest
1419 * PFN found if a suitable one is not found.
1420 */
e332f741 1421 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
5a811889
MG
1422 limit = pageblock_nr_pages >> 1;
1423 scan_start = true;
1424 }
1425
1426 /*
1427 * Preferred point is in the top quarter of the scan space but take
1428 * a pfn from the top half if the search is problematic.
1429 */
1430 distance = (cc->free_pfn - cc->migrate_pfn);
1431 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1432 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1433
1434 if (WARN_ON_ONCE(min_pfn > low_pfn))
1435 low_pfn = min_pfn;
1436
dbe2d4e4
MG
1437 /*
1438 * Search starts from the last successful isolation order or the next
1439 * order to search after a previous failure
1440 */
1441 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1442
1443 for (order = cc->search_order;
1444 !page && order >= 0;
1445 order = next_search_order(cc, order)) {
5a811889
MG
1446 struct free_area *area = &cc->zone->free_area[order];
1447 struct list_head *freelist;
1448 struct page *freepage;
1449 unsigned long flags;
1450 unsigned int order_scanned = 0;
74e21484 1451 unsigned long high_pfn = 0;
5a811889
MG
1452
1453 if (!area->nr_free)
1454 continue;
1455
1456 spin_lock_irqsave(&cc->zone->lock, flags);
1457 freelist = &area->free_list[MIGRATE_MOVABLE];
1458 list_for_each_entry_reverse(freepage, freelist, lru) {
1459 unsigned long pfn;
1460
1461 order_scanned++;
1462 nr_scanned++;
1463 pfn = page_to_pfn(freepage);
1464
1465 if (pfn >= highest)
6e2b7044
VB
1466 highest = max(pageblock_start_pfn(pfn),
1467 cc->zone->zone_start_pfn);
5a811889
MG
1468
1469 if (pfn >= low_pfn) {
1470 cc->fast_search_fail = 0;
dbe2d4e4 1471 cc->search_order = order;
5a811889
MG
1472 page = freepage;
1473 break;
1474 }
1475
1476 if (pfn >= min_pfn && pfn > high_pfn) {
1477 high_pfn = pfn;
1478
1479 /* Shorten the scan if a candidate is found */
1480 limit >>= 1;
1481 }
1482
1483 if (order_scanned >= limit)
1484 break;
1485 }
1486
1487 /* Use a minimum pfn if a preferred one was not found */
1488 if (!page && high_pfn) {
1489 page = pfn_to_page(high_pfn);
1490
1491 /* Update freepage for the list reorder below */
1492 freepage = page;
1493 }
1494
1495 /* Reorder to so a future search skips recent pages */
1496 move_freelist_head(freelist, freepage);
1497
1498 /* Isolate the page if available */
1499 if (page) {
1500 if (__isolate_free_page(page, order)) {
1501 set_page_private(page, order);
1502 nr_isolated = 1 << order;
b717d6b9 1503 nr_scanned += nr_isolated - 1;
5a811889
MG
1504 cc->nr_freepages += nr_isolated;
1505 list_add_tail(&page->lru, &cc->freepages);
1506 count_compact_events(COMPACTISOLATED, nr_isolated);
1507 } else {
1508 /* If isolation fails, abort the search */
5b56d996 1509 order = cc->search_order + 1;
5a811889
MG
1510 page = NULL;
1511 }
1512 }
1513
1514 spin_unlock_irqrestore(&cc->zone->lock, flags);
1515
1516 /*
b55ca526 1517 * Smaller scan on next order so the total scan is related
5a811889
MG
1518 * to freelist_scan_limit.
1519 */
1520 if (order_scanned >= limit)
b55ca526 1521 limit = max(1U, limit >> 1);
5a811889
MG
1522 }
1523
1524 if (!page) {
1525 cc->fast_search_fail++;
1526 if (scan_start) {
1527 /*
1528 * Use the highest PFN found above min. If one was
f3867755 1529 * not found, be pessimistic for direct compaction
5a811889
MG
1530 * and use the min mark.
1531 */
ca2864e5 1532 if (highest >= min_pfn) {
5a811889
MG
1533 page = pfn_to_page(highest);
1534 cc->free_pfn = highest;
1535 } else {
e577c8b6 1536 if (cc->direct_compaction && pfn_valid(min_pfn)) {
73a6e474 1537 page = pageblock_pfn_to_page(min_pfn,
6e2b7044
VB
1538 min(pageblock_end_pfn(min_pfn),
1539 zone_end_pfn(cc->zone)),
73a6e474 1540 cc->zone);
5a811889
MG
1541 cc->free_pfn = min_pfn;
1542 }
1543 }
1544 }
1545 }
1546
d097a6f6
MG
1547 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1548 highest -= pageblock_nr_pages;
5a811889 1549 cc->zone->compact_cached_free_pfn = highest;
d097a6f6 1550 }
5a811889
MG
1551
1552 cc->total_free_scanned += nr_scanned;
1553 if (!page)
1554 return cc->free_pfn;
1555
1556 low_pfn = page_to_pfn(page);
be21b32a 1557 fast_isolate_around(cc, low_pfn);
5a811889
MG
1558 return low_pfn;
1559}
1560
2fe86e00 1561/*
ff9543fd
MN
1562 * Based on information in the current compact_control, find blocks
1563 * suitable for isolating free pages from and then isolate them.
2fe86e00 1564 */
edc2ca61 1565static void isolate_freepages(struct compact_control *cc)
2fe86e00 1566{
edc2ca61 1567 struct zone *zone = cc->zone;
ff9543fd 1568 struct page *page;
c96b9e50 1569 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1570 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1571 unsigned long block_end_pfn; /* end of current pageblock */
1572 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1573 struct list_head *freelist = &cc->freepages;
4fca9730 1574 unsigned int stride;
2fe86e00 1575
5a811889 1576 /* Try a small search of the free lists for a candidate */
00bc102f 1577 fast_isolate_freepages(cc);
5a811889
MG
1578 if (cc->nr_freepages)
1579 goto splitmap;
1580
ff9543fd
MN
1581 /*
1582 * Initialise the free scanner. The starting point is where we last
49e068f0 1583 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1584 * zone when isolating for the first time. For looping we also need
1585 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1586 * block_start_pfn -= pageblock_nr_pages in the for loop.
1587 * For ending point, take care when isolating in last pageblock of a
a1c1dbeb 1588 * zone which ends in the middle of a pageblock.
49e068f0
VB
1589 * The low boundary is the end of the pageblock the migration scanner
1590 * is using.
ff9543fd 1591 */
e14c720e 1592 isolate_start_pfn = cc->free_pfn;
5a811889 1593 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
c96b9e50
VB
1594 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1595 zone_end_pfn(zone));
06b6640a 1596 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
4fca9730 1597 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
2fe86e00 1598
ff9543fd
MN
1599 /*
1600 * Isolate free pages until enough are available to migrate the
1601 * pages on cc->migratepages. We stop searching if the migrate
1602 * and free page scanners meet or enough free pages are isolated.
1603 */
f5f61a32 1604 for (; block_start_pfn >= low_pfn;
c96b9e50 1605 block_end_pfn = block_start_pfn,
e14c720e
VB
1606 block_start_pfn -= pageblock_nr_pages,
1607 isolate_start_pfn = block_start_pfn) {
4fca9730
MG
1608 unsigned long nr_isolated;
1609
f6ea3adb
DR
1610 /*
1611 * This can iterate a massively long zone without finding any
cb810ad2 1612 * suitable migration targets, so periodically check resched.
f6ea3adb 1613 */
c036ddff 1614 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1615 cond_resched();
f6ea3adb 1616
7d49d886
VB
1617 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1618 zone);
1619 if (!page)
ff9543fd
MN
1620 continue;
1621
1622 /* Check the block is suitable for migration */
9f7e3387 1623 if (!suitable_migration_target(cc, page))
ff9543fd 1624 continue;
68e3e926 1625
bb13ffeb
MG
1626 /* If isolation recently failed, do not retry */
1627 if (!isolation_suitable(cc, page))
1628 continue;
1629
e14c720e 1630 /* Found a block suitable for isolating free pages from. */
4fca9730
MG
1631 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1632 block_end_pfn, freelist, stride, false);
ff9543fd 1633
d097a6f6
MG
1634 /* Update the skip hint if the full pageblock was scanned */
1635 if (isolate_start_pfn == block_end_pfn)
1636 update_pageblock_skip(cc, page, block_start_pfn);
1637
cb2dcaf0
MG
1638 /* Are enough freepages isolated? */
1639 if (cc->nr_freepages >= cc->nr_migratepages) {
a46cbf3b
DR
1640 if (isolate_start_pfn >= block_end_pfn) {
1641 /*
1642 * Restart at previous pageblock if more
1643 * freepages can be isolated next time.
1644 */
f5f61a32
VB
1645 isolate_start_pfn =
1646 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1647 }
be976572 1648 break;
a46cbf3b 1649 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1650 /*
a46cbf3b
DR
1651 * If isolation failed early, do not continue
1652 * needlessly.
f5f61a32 1653 */
a46cbf3b 1654 break;
f5f61a32 1655 }
4fca9730
MG
1656
1657 /* Adjust stride depending on isolation */
1658 if (nr_isolated) {
1659 stride = 1;
1660 continue;
1661 }
1662 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
ff9543fd
MN
1663 }
1664
7ed695e0 1665 /*
f5f61a32
VB
1666 * Record where the free scanner will restart next time. Either we
1667 * broke from the loop and set isolate_start_pfn based on the last
1668 * call to isolate_freepages_block(), or we met the migration scanner
1669 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1670 */
f5f61a32 1671 cc->free_pfn = isolate_start_pfn;
5a811889
MG
1672
1673splitmap:
1674 /* __isolate_free_page() does not map the pages */
1675 split_map_pages(freelist);
748446bb
MG
1676}
1677
1678/*
1679 * This is a migrate-callback that "allocates" freepages by taking pages
1680 * from the isolated freelists in the block we are migrating to.
1681 */
1682static struct page *compaction_alloc(struct page *migratepage,
666feb21 1683 unsigned long data)
748446bb
MG
1684{
1685 struct compact_control *cc = (struct compact_control *)data;
1686 struct page *freepage;
1687
748446bb 1688 if (list_empty(&cc->freepages)) {
cb2dcaf0 1689 isolate_freepages(cc);
748446bb
MG
1690
1691 if (list_empty(&cc->freepages))
1692 return NULL;
1693 }
1694
1695 freepage = list_entry(cc->freepages.next, struct page, lru);
1696 list_del(&freepage->lru);
1697 cc->nr_freepages--;
1698
1699 return freepage;
1700}
1701
1702/*
d53aea3d
DR
1703 * This is a migrate-callback that "frees" freepages back to the isolated
1704 * freelist. All pages on the freelist are from the same zone, so there is no
1705 * special handling needed for NUMA.
1706 */
1707static void compaction_free(struct page *page, unsigned long data)
1708{
1709 struct compact_control *cc = (struct compact_control *)data;
1710
1711 list_add(&page->lru, &cc->freepages);
1712 cc->nr_freepages++;
1713}
1714
ff9543fd
MN
1715/* possible outcome of isolate_migratepages */
1716typedef enum {
1717 ISOLATE_ABORT, /* Abort compaction now */
1718 ISOLATE_NONE, /* No pages isolated, continue scanning */
1719 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1720} isolate_migrate_t;
1721
5bbe3547
EM
1722/*
1723 * Allow userspace to control policy on scanning the unevictable LRU for
1724 * compactable pages.
1725 */
c7e0b3d0 1726int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
5bbe3547 1727
70b44595
MG
1728static inline void
1729update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1730{
1731 if (cc->fast_start_pfn == ULONG_MAX)
1732 return;
1733
1734 if (!cc->fast_start_pfn)
1735 cc->fast_start_pfn = pfn;
1736
1737 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1738}
1739
1740static inline unsigned long
1741reinit_migrate_pfn(struct compact_control *cc)
1742{
1743 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1744 return cc->migrate_pfn;
1745
1746 cc->migrate_pfn = cc->fast_start_pfn;
1747 cc->fast_start_pfn = ULONG_MAX;
1748
1749 return cc->migrate_pfn;
1750}
1751
1752/*
1753 * Briefly search the free lists for a migration source that already has
1754 * some free pages to reduce the number of pages that need migration
1755 * before a pageblock is free.
1756 */
1757static unsigned long fast_find_migrateblock(struct compact_control *cc)
1758{
1759 unsigned int limit = freelist_scan_limit(cc);
1760 unsigned int nr_scanned = 0;
1761 unsigned long distance;
1762 unsigned long pfn = cc->migrate_pfn;
1763 unsigned long high_pfn;
1764 int order;
15d28d0d 1765 bool found_block = false;
70b44595
MG
1766
1767 /* Skip hints are relied on to avoid repeats on the fast search */
1768 if (cc->ignore_skip_hint)
1769 return pfn;
1770
f9d7fc1a
MG
1771 /*
1772 * If the pageblock should be finished then do not select a different
1773 * pageblock.
1774 */
1775 if (cc->finish_pageblock)
1776 return pfn;
1777
70b44595
MG
1778 /*
1779 * If the migrate_pfn is not at the start of a zone or the start
1780 * of a pageblock then assume this is a continuation of a previous
1781 * scan restarted due to COMPACT_CLUSTER_MAX.
1782 */
1783 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1784 return pfn;
1785
1786 /*
1787 * For smaller orders, just linearly scan as the number of pages
1788 * to migrate should be relatively small and does not necessarily
1789 * justify freeing up a large block for a small allocation.
1790 */
1791 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1792 return pfn;
1793
1794 /*
1795 * Only allow kcompactd and direct requests for movable pages to
1796 * quickly clear out a MOVABLE pageblock for allocation. This
1797 * reduces the risk that a large movable pageblock is freed for
1798 * an unmovable/reclaimable small allocation.
1799 */
1800 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1801 return pfn;
1802
1803 /*
1804 * When starting the migration scanner, pick any pageblock within the
1805 * first half of the search space. Otherwise try and pick a pageblock
1806 * within the first eighth to reduce the chances that a migration
1807 * target later becomes a source.
1808 */
1809 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1810 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1811 distance >>= 2;
1812 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1813
1814 for (order = cc->order - 1;
15d28d0d 1815 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
70b44595
MG
1816 order--) {
1817 struct free_area *area = &cc->zone->free_area[order];
1818 struct list_head *freelist;
1819 unsigned long flags;
1820 struct page *freepage;
1821
1822 if (!area->nr_free)
1823 continue;
1824
1825 spin_lock_irqsave(&cc->zone->lock, flags);
1826 freelist = &area->free_list[MIGRATE_MOVABLE];
1827 list_for_each_entry(freepage, freelist, lru) {
1828 unsigned long free_pfn;
1829
15d28d0d
WY
1830 if (nr_scanned++ >= limit) {
1831 move_freelist_tail(freelist, freepage);
1832 break;
1833 }
1834
70b44595
MG
1835 free_pfn = page_to_pfn(freepage);
1836 if (free_pfn < high_pfn) {
70b44595
MG
1837 /*
1838 * Avoid if skipped recently. Ideally it would
1839 * move to the tail but even safe iteration of
1840 * the list assumes an entry is deleted, not
1841 * reordered.
1842 */
15d28d0d 1843 if (get_pageblock_skip(freepage))
70b44595 1844 continue;
70b44595
MG
1845
1846 /* Reorder to so a future search skips recent pages */
1847 move_freelist_tail(freelist, freepage);
1848
e380bebe 1849 update_fast_start_pfn(cc, free_pfn);
70b44595 1850 pfn = pageblock_start_pfn(free_pfn);
bbe832b9
RY
1851 if (pfn < cc->zone->zone_start_pfn)
1852 pfn = cc->zone->zone_start_pfn;
70b44595 1853 cc->fast_search_fail = 0;
15d28d0d 1854 found_block = true;
95e7a450 1855 set_pageblock_skip(freepage);
70b44595
MG
1856 break;
1857 }
70b44595
MG
1858 }
1859 spin_unlock_irqrestore(&cc->zone->lock, flags);
1860 }
1861
1862 cc->total_migrate_scanned += nr_scanned;
1863
1864 /*
1865 * If fast scanning failed then use a cached entry for a page block
1866 * that had free pages as the basis for starting a linear scan.
1867 */
15d28d0d
WY
1868 if (!found_block) {
1869 cc->fast_search_fail++;
70b44595 1870 pfn = reinit_migrate_pfn(cc);
15d28d0d 1871 }
70b44595
MG
1872 return pfn;
1873}
1874
ff9543fd 1875/*
edc2ca61
VB
1876 * Isolate all pages that can be migrated from the first suitable block,
1877 * starting at the block pointed to by the migrate scanner pfn within
1878 * compact_control.
ff9543fd 1879 */
32aaf055 1880static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
ff9543fd 1881{
e1409c32
JK
1882 unsigned long block_start_pfn;
1883 unsigned long block_end_pfn;
1884 unsigned long low_pfn;
edc2ca61
VB
1885 struct page *page;
1886 const isolate_mode_t isolate_mode =
5bbe3547 1887 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1d2047fe 1888 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
70b44595 1889 bool fast_find_block;
ff9543fd 1890
edc2ca61
VB
1891 /*
1892 * Start at where we last stopped, or beginning of the zone as
70b44595
MG
1893 * initialized by compact_zone(). The first failure will use
1894 * the lowest PFN as the starting point for linear scanning.
edc2ca61 1895 */
70b44595 1896 low_pfn = fast_find_migrateblock(cc);
06b6640a 1897 block_start_pfn = pageblock_start_pfn(low_pfn);
32aaf055
PL
1898 if (block_start_pfn < cc->zone->zone_start_pfn)
1899 block_start_pfn = cc->zone->zone_start_pfn;
ff9543fd 1900
70b44595
MG
1901 /*
1902 * fast_find_migrateblock marks a pageblock skipped so to avoid
1903 * the isolation_suitable check below, check whether the fast
1904 * search was successful.
1905 */
1906 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1907
ff9543fd 1908 /* Only scan within a pageblock boundary */
06b6640a 1909 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1910
edc2ca61
VB
1911 /*
1912 * Iterate over whole pageblocks until we find the first suitable.
1913 * Do not cross the free scanner.
1914 */
e1409c32 1915 for (; block_end_pfn <= cc->free_pfn;
70b44595 1916 fast_find_block = false,
c2ad7a1f 1917 cc->migrate_pfn = low_pfn = block_end_pfn,
e1409c32
JK
1918 block_start_pfn = block_end_pfn,
1919 block_end_pfn += pageblock_nr_pages) {
ff9543fd 1920
edc2ca61
VB
1921 /*
1922 * This can potentially iterate a massively long zone with
1923 * many pageblocks unsuitable, so periodically check if we
cb810ad2 1924 * need to schedule.
edc2ca61 1925 */
c036ddff 1926 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1927 cond_resched();
ff9543fd 1928
32aaf055
PL
1929 page = pageblock_pfn_to_page(block_start_pfn,
1930 block_end_pfn, cc->zone);
7d49d886 1931 if (!page)
edc2ca61
VB
1932 continue;
1933
e380bebe
MG
1934 /*
1935 * If isolation recently failed, do not retry. Only check the
1936 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1937 * to be visited multiple times. Assume skip was checked
1938 * before making it "skip" so other compaction instances do
1939 * not scan the same block.
1940 */
ee0913c4 1941 if (pageblock_aligned(low_pfn) &&
e380bebe 1942 !fast_find_block && !isolation_suitable(cc, page))
edc2ca61
VB
1943 continue;
1944
1945 /*
556162bf
ML
1946 * For async direct compaction, only scan the pageblocks of the
1947 * same migratetype without huge pages. Async direct compaction
1948 * is optimistic to see if the minimum amount of work satisfies
1949 * the allocation. The cached PFN is updated as it's possible
1950 * that all remaining blocks between source and target are
1951 * unsuitable and the compaction scanners fail to meet.
edc2ca61 1952 */
9bebefd5
MG
1953 if (!suitable_migration_source(cc, page)) {
1954 update_cached_migrate(cc, block_end_pfn);
edc2ca61 1955 continue;
9bebefd5 1956 }
edc2ca61
VB
1957
1958 /* Perform the isolation */
c2ad7a1f
OS
1959 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1960 isolate_mode))
edc2ca61
VB
1961 return ISOLATE_ABORT;
1962
1963 /*
1964 * Either we isolated something and proceed with migration. Or
1965 * we failed and compact_zone should decide if we should
1966 * continue or not.
1967 */
1968 break;
1969 }
1970
edc2ca61 1971 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
1972}
1973
21c527a3
YB
1974/*
1975 * order == -1 is expected when compacting via
1976 * /proc/sys/vm/compact_memory
1977 */
1978static inline bool is_via_compact_memory(int order)
1979{
1980 return order == -1;
1981}
1982
b4a0215e
KW
1983/*
1984 * Determine whether kswapd is (or recently was!) running on this node.
1985 *
1986 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
1987 * zero it.
1988 */
facdaa91
NG
1989static bool kswapd_is_running(pg_data_t *pgdat)
1990{
b4a0215e
KW
1991 bool running;
1992
1993 pgdat_kswapd_lock(pgdat);
1994 running = pgdat->kswapd && task_is_running(pgdat->kswapd);
1995 pgdat_kswapd_unlock(pgdat);
1996
1997 return running;
facdaa91
NG
1998}
1999
2000/*
2001 * A zone's fragmentation score is the external fragmentation wrt to the
40d7e203
CTR
2002 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2003 */
2004static unsigned int fragmentation_score_zone(struct zone *zone)
2005{
2006 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2007}
2008
2009/*
2010 * A weighted zone's fragmentation score is the external fragmentation
2011 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2012 * returns a value in the range [0, 100].
facdaa91
NG
2013 *
2014 * The scaling factor ensures that proactive compaction focuses on larger
2015 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2016 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2017 * and thus never exceeds the high threshold for proactive compaction.
2018 */
40d7e203 2019static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
facdaa91
NG
2020{
2021 unsigned long score;
2022
40d7e203 2023 score = zone->present_pages * fragmentation_score_zone(zone);
facdaa91
NG
2024 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2025}
2026
2027/*
2028 * The per-node proactive (background) compaction process is started by its
2029 * corresponding kcompactd thread when the node's fragmentation score
2030 * exceeds the high threshold. The compaction process remains active till
2031 * the node's score falls below the low threshold, or one of the back-off
2032 * conditions is met.
2033 */
d34c0a75 2034static unsigned int fragmentation_score_node(pg_data_t *pgdat)
facdaa91 2035{
d34c0a75 2036 unsigned int score = 0;
facdaa91
NG
2037 int zoneid;
2038
2039 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2040 struct zone *zone;
2041
2042 zone = &pgdat->node_zones[zoneid];
9e552271
BW
2043 if (!populated_zone(zone))
2044 continue;
40d7e203 2045 score += fragmentation_score_zone_weighted(zone);
facdaa91
NG
2046 }
2047
2048 return score;
2049}
2050
d34c0a75 2051static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
facdaa91 2052{
d34c0a75 2053 unsigned int wmark_low;
facdaa91
NG
2054
2055 /*
f0953a1b
IM
2056 * Cap the low watermark to avoid excessive compaction
2057 * activity in case a user sets the proactiveness tunable
facdaa91
NG
2058 * close to 100 (maximum).
2059 */
d34c0a75
NG
2060 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2061 return low ? wmark_low : min(wmark_low + 10, 100U);
facdaa91
NG
2062}
2063
2064static bool should_proactive_compact_node(pg_data_t *pgdat)
2065{
2066 int wmark_high;
2067
2068 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2069 return false;
2070
2071 wmark_high = fragmentation_score_wmark(pgdat, false);
2072 return fragmentation_score_node(pgdat) > wmark_high;
2073}
2074
40cacbcb 2075static enum compact_result __compact_finished(struct compact_control *cc)
748446bb 2076{
8fb74b9f 2077 unsigned int order;
d39773a0 2078 const int migratetype = cc->migratetype;
cb2dcaf0 2079 int ret;
748446bb 2080
753341a4 2081 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 2082 if (compact_scanners_met(cc)) {
55b7c4c9 2083 /* Let the next compaction start anew. */
40cacbcb 2084 reset_cached_positions(cc->zone);
55b7c4c9 2085
62997027
MG
2086 /*
2087 * Mark that the PG_migrate_skip information should be cleared
accf6242 2088 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
2089 * flag itself as the decision to be clear should be directly
2090 * based on an allocation request.
2091 */
accf6242 2092 if (cc->direct_compaction)
40cacbcb 2093 cc->zone->compact_blockskip_flush = true;
62997027 2094
c8f7de0b
MH
2095 if (cc->whole_zone)
2096 return COMPACT_COMPLETE;
2097 else
2098 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 2099 }
748446bb 2100
facdaa91
NG
2101 if (cc->proactive_compaction) {
2102 int score, wmark_low;
2103 pg_data_t *pgdat;
2104
2105 pgdat = cc->zone->zone_pgdat;
2106 if (kswapd_is_running(pgdat))
2107 return COMPACT_PARTIAL_SKIPPED;
2108
2109 score = fragmentation_score_zone(cc->zone);
2110 wmark_low = fragmentation_score_wmark(pgdat, true);
2111
2112 if (score > wmark_low)
2113 ret = COMPACT_CONTINUE;
2114 else
2115 ret = COMPACT_SUCCESS;
2116
2117 goto out;
2118 }
2119
21c527a3 2120 if (is_via_compact_memory(cc->order))
56de7263
MG
2121 return COMPACT_CONTINUE;
2122
efe771c7
MG
2123 /*
2124 * Always finish scanning a pageblock to reduce the possibility of
2125 * fallbacks in the future. This is particularly important when
2126 * migration source is unmovable/reclaimable but it's not worth
2127 * special casing.
2128 */
ee0913c4 2129 if (!pageblock_aligned(cc->migrate_pfn))
efe771c7 2130 return COMPACT_CONTINUE;
baf6a9a1 2131
56de7263 2132 /* Direct compactor: Is a suitable page free? */
cb2dcaf0 2133 ret = COMPACT_NO_SUITABLE_PAGE;
23baf831 2134 for (order = cc->order; order <= MAX_ORDER; order++) {
40cacbcb 2135 struct free_area *area = &cc->zone->free_area[order];
2149cdae 2136 bool can_steal;
8fb74b9f
MG
2137
2138 /* Job done if page is free of the right migratetype */
b03641af 2139 if (!free_area_empty(area, migratetype))
cf378319 2140 return COMPACT_SUCCESS;
8fb74b9f 2141
2149cdae
JK
2142#ifdef CONFIG_CMA
2143 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2144 if (migratetype == MIGRATE_MOVABLE &&
b03641af 2145 !free_area_empty(area, MIGRATE_CMA))
cf378319 2146 return COMPACT_SUCCESS;
2149cdae
JK
2147#endif
2148 /*
2149 * Job done if allocation would steal freepages from
2150 * other migratetype buddy lists.
2151 */
2152 if (find_suitable_fallback(area, order, migratetype,
fa599c44 2153 true, &can_steal) != -1)
baf6a9a1 2154 /*
fa599c44
ML
2155 * Movable pages are OK in any pageblock. If we are
2156 * stealing for a non-movable allocation, make sure
2157 * we finish compacting the current pageblock first
2158 * (which is assured by the above migrate_pfn align
2159 * check) so it is as free as possible and we won't
2160 * have to steal another one soon.
baf6a9a1 2161 */
fa599c44 2162 return COMPACT_SUCCESS;
56de7263
MG
2163 }
2164
facdaa91 2165out:
cb2dcaf0
MG
2166 if (cc->contended || fatal_signal_pending(current))
2167 ret = COMPACT_CONTENDED;
2168
2169 return ret;
837d026d
JK
2170}
2171
40cacbcb 2172static enum compact_result compact_finished(struct compact_control *cc)
837d026d
JK
2173{
2174 int ret;
2175
40cacbcb
MG
2176 ret = __compact_finished(cc);
2177 trace_mm_compaction_finished(cc->zone, cc->order, ret);
837d026d
JK
2178 if (ret == COMPACT_NO_SUITABLE_PAGE)
2179 ret = COMPACT_CONTINUE;
2180
2181 return ret;
748446bb
MG
2182}
2183
ea7ab982 2184static enum compact_result __compaction_suitable(struct zone *zone, int order,
c603844b 2185 unsigned int alloc_flags,
97a225e6 2186 int highest_zoneidx,
86a294a8 2187 unsigned long wmark_target)
3e7d3449 2188{
3e7d3449
MG
2189 unsigned long watermark;
2190
21c527a3 2191 if (is_via_compact_memory(order))
3957c776
MH
2192 return COMPACT_CONTINUE;
2193
a9214443 2194 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
ebff3980
VB
2195 /*
2196 * If watermarks for high-order allocation are already met, there
2197 * should be no need for compaction at all.
2198 */
97a225e6 2199 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
ebff3980 2200 alloc_flags))
cf378319 2201 return COMPACT_SUCCESS;
ebff3980 2202
3e7d3449 2203 /*
9861a62c 2204 * Watermarks for order-0 must be met for compaction to be able to
984fdba6
VB
2205 * isolate free pages for migration targets. This means that the
2206 * watermark and alloc_flags have to match, or be more pessimistic than
2207 * the check in __isolate_free_page(). We don't use the direct
2208 * compactor's alloc_flags, as they are not relevant for freepage
97a225e6
JK
2209 * isolation. We however do use the direct compactor's highest_zoneidx
2210 * to skip over zones where lowmem reserves would prevent allocation
2211 * even if compaction succeeds.
8348faf9
VB
2212 * For costly orders, we require low watermark instead of min for
2213 * compaction to proceed to increase its chances.
d883c6cf
JK
2214 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2215 * suitable migration targets
3e7d3449 2216 */
8348faf9
VB
2217 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2218 low_wmark_pages(zone) : min_wmark_pages(zone);
2219 watermark += compact_gap(order);
97a225e6 2220 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
d883c6cf 2221 ALLOC_CMA, wmark_target))
3e7d3449
MG
2222 return COMPACT_SKIPPED;
2223
cc5c9f09
VB
2224 return COMPACT_CONTINUE;
2225}
2226
2b1a20c3
HS
2227/*
2228 * compaction_suitable: Is this suitable to run compaction on this zone now?
2229 * Returns
2230 * COMPACT_SKIPPED - If there are too few free pages for compaction
2231 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2232 * COMPACT_CONTINUE - If compaction should run now
2233 */
cc5c9f09
VB
2234enum compact_result compaction_suitable(struct zone *zone, int order,
2235 unsigned int alloc_flags,
97a225e6 2236 int highest_zoneidx)
cc5c9f09
VB
2237{
2238 enum compact_result ret;
2239 int fragindex;
2240
97a225e6 2241 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
cc5c9f09 2242 zone_page_state(zone, NR_FREE_PAGES));
3e7d3449
MG
2243 /*
2244 * fragmentation index determines if allocation failures are due to
2245 * low memory or external fragmentation
2246 *
ebff3980
VB
2247 * index of -1000 would imply allocations might succeed depending on
2248 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
2249 * index towards 0 implies failure is due to lack of memory
2250 * index towards 1000 implies failure is due to fragmentation
2251 *
20311420
VB
2252 * Only compact if a failure would be due to fragmentation. Also
2253 * ignore fragindex for non-costly orders where the alternative to
2254 * a successful reclaim/compaction is OOM. Fragindex and the
2255 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2256 * excessive compaction for costly orders, but it should not be at the
2257 * expense of system stability.
3e7d3449 2258 */
20311420 2259 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
cc5c9f09
VB
2260 fragindex = fragmentation_index(zone, order);
2261 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2262 ret = COMPACT_NOT_SUITABLE_ZONE;
2263 }
837d026d 2264
837d026d
JK
2265 trace_mm_compaction_suitable(zone, order, ret);
2266 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2267 ret = COMPACT_SKIPPED;
2268
2269 return ret;
2270}
2271
86a294a8
MH
2272bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2273 int alloc_flags)
2274{
2275 struct zone *zone;
2276 struct zoneref *z;
2277
2278 /*
2279 * Make sure at least one zone would pass __compaction_suitable if we continue
2280 * retrying the reclaim.
2281 */
97a225e6
JK
2282 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2283 ac->highest_zoneidx, ac->nodemask) {
86a294a8
MH
2284 unsigned long available;
2285 enum compact_result compact_result;
2286
2287 /*
2288 * Do not consider all the reclaimable memory because we do not
2289 * want to trash just for a single high order allocation which
2290 * is even not guaranteed to appear even if __compaction_suitable
2291 * is happy about the watermark check.
2292 */
5a1c84b4 2293 available = zone_reclaimable_pages(zone) / order;
86a294a8
MH
2294 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2295 compact_result = __compaction_suitable(zone, order, alloc_flags,
97a225e6 2296 ac->highest_zoneidx, available);
cff387d6 2297 if (compact_result == COMPACT_CONTINUE)
86a294a8
MH
2298 return true;
2299 }
2300
2301 return false;
2302}
2303
5e1f0f09
MG
2304static enum compact_result
2305compact_zone(struct compact_control *cc, struct capture_control *capc)
748446bb 2306{
ea7ab982 2307 enum compact_result ret;
40cacbcb
MG
2308 unsigned long start_pfn = cc->zone->zone_start_pfn;
2309 unsigned long end_pfn = zone_end_pfn(cc->zone);
566e54e1 2310 unsigned long last_migrated_pfn;
e0b9daeb 2311 const bool sync = cc->mode != MIGRATE_ASYNC;
8854c55f 2312 bool update_cached;
84b328aa 2313 unsigned int nr_succeeded = 0;
748446bb 2314
a94b5252
YS
2315 /*
2316 * These counters track activities during zone compaction. Initialize
2317 * them before compacting a new zone.
2318 */
2319 cc->total_migrate_scanned = 0;
2320 cc->total_free_scanned = 0;
2321 cc->nr_migratepages = 0;
2322 cc->nr_freepages = 0;
2323 INIT_LIST_HEAD(&cc->freepages);
2324 INIT_LIST_HEAD(&cc->migratepages);
2325
01c0bfe0 2326 cc->migratetype = gfp_migratetype(cc->gfp_mask);
40cacbcb 2327 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
97a225e6 2328 cc->highest_zoneidx);
c46649de 2329 /* Compaction is likely to fail */
cf378319 2330 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
3e7d3449 2331 return ret;
c46649de 2332
d3132e4b
VB
2333 /*
2334 * Clear pageblock skip if there were failures recently and compaction
accf6242 2335 * is about to be retried after being deferred.
d3132e4b 2336 */
40cacbcb
MG
2337 if (compaction_restarting(cc->zone, cc->order))
2338 __reset_isolation_suitable(cc->zone);
d3132e4b 2339
c89511ab
MG
2340 /*
2341 * Setup to move all movable pages to the end of the zone. Used cached
06ed2998
VB
2342 * information on where the scanners should start (unless we explicitly
2343 * want to compact the whole zone), but check that it is initialised
2344 * by ensuring the values are within zone boundaries.
c89511ab 2345 */
70b44595 2346 cc->fast_start_pfn = 0;
06ed2998 2347 if (cc->whole_zone) {
c89511ab 2348 cc->migrate_pfn = start_pfn;
06ed2998
VB
2349 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2350 } else {
40cacbcb
MG
2351 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2352 cc->free_pfn = cc->zone->compact_cached_free_pfn;
06ed2998
VB
2353 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2354 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
40cacbcb 2355 cc->zone->compact_cached_free_pfn = cc->free_pfn;
06ed2998
VB
2356 }
2357 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2358 cc->migrate_pfn = start_pfn;
40cacbcb
MG
2359 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2360 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
06ed2998 2361 }
c8f7de0b 2362
e332f741 2363 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
06ed2998
VB
2364 cc->whole_zone = true;
2365 }
c8f7de0b 2366
566e54e1 2367 last_migrated_pfn = 0;
748446bb 2368
8854c55f
MG
2369 /*
2370 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2371 * the basis that some migrations will fail in ASYNC mode. However,
2372 * if the cached PFNs match and pageblocks are skipped due to having
2373 * no isolation candidates, then the sync state does not matter.
2374 * Until a pageblock with isolation candidates is found, keep the
2375 * cached PFNs in sync to avoid revisiting the same blocks.
2376 */
2377 update_cached = !sync &&
2378 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2379
abd4349f 2380 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
0eb927c0 2381
361a2a22
MK
2382 /* lru_add_drain_all could be expensive with involving other CPUs */
2383 lru_add_drain();
748446bb 2384
40cacbcb 2385 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
9d502c1c 2386 int err;
19d3cf9d 2387 unsigned long iteration_start_pfn = cc->migrate_pfn;
748446bb 2388
804d3121 2389 /*
48731c84
MG
2390 * Avoid multiple rescans of the same pageblock which can
2391 * happen if a page cannot be isolated (dirty/writeback in
2392 * async mode) or if the migrated pages are being allocated
2393 * before the pageblock is cleared. The first rescan will
2394 * capture the entire pageblock for migration. If it fails,
2395 * it'll be marked skip and scanning will proceed as normal.
804d3121 2396 */
48731c84 2397 cc->finish_pageblock = false;
804d3121 2398 if (pageblock_start_pfn(last_migrated_pfn) ==
19d3cf9d 2399 pageblock_start_pfn(iteration_start_pfn)) {
48731c84 2400 cc->finish_pageblock = true;
804d3121
MG
2401 }
2402
cfccd2e6 2403rescan:
32aaf055 2404 switch (isolate_migratepages(cc)) {
f9e35b3b 2405 case ISOLATE_ABORT:
2d1e1041 2406 ret = COMPACT_CONTENDED;
5733c7d1 2407 putback_movable_pages(&cc->migratepages);
e64c5237 2408 cc->nr_migratepages = 0;
f9e35b3b
MG
2409 goto out;
2410 case ISOLATE_NONE:
8854c55f
MG
2411 if (update_cached) {
2412 cc->zone->compact_cached_migrate_pfn[1] =
2413 cc->zone->compact_cached_migrate_pfn[0];
2414 }
2415
fdaf7f5c
VB
2416 /*
2417 * We haven't isolated and migrated anything, but
2418 * there might still be unflushed migrations from
2419 * previous cc->order aligned block.
2420 */
2421 goto check_drain;
f9e35b3b 2422 case ISOLATE_SUCCESS:
8854c55f 2423 update_cached = false;
19d3cf9d 2424 last_migrated_pfn = iteration_start_pfn;
f9e35b3b 2425 }
748446bb 2426
d53aea3d 2427 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 2428 compaction_free, (unsigned long)cc, cc->mode,
84b328aa 2429 MR_COMPACTION, &nr_succeeded);
748446bb 2430
abd4349f 2431 trace_mm_compaction_migratepages(cc, nr_succeeded);
748446bb 2432
f8c9301f
VB
2433 /* All pages were either migrated or will be released */
2434 cc->nr_migratepages = 0;
9d502c1c 2435 if (err) {
5733c7d1 2436 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
2437 /*
2438 * migrate_pages() may return -ENOMEM when scanners meet
2439 * and we want compact_finished() to detect it
2440 */
f2849aa0 2441 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 2442 ret = COMPACT_CONTENDED;
4bf2bba3
DR
2443 goto out;
2444 }
fdd048e1 2445 /*
cfccd2e6
MG
2446 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2447 * within the current order-aligned block, scan the
2448 * remainder of the pageblock. This will mark the
2449 * pageblock "skip" to avoid rescanning in the near
2450 * future. This will isolate more pages than necessary
2451 * for the request but avoid loops due to
2452 * fast_find_migrateblock revisiting blocks that were
2453 * recently partially scanned.
fdd048e1 2454 */
cfccd2e6
MG
2455 if (cc->direct_compaction && !cc->finish_pageblock &&
2456 (cc->mode < MIGRATE_SYNC)) {
2457 cc->finish_pageblock = true;
2458
2459 /*
2460 * Draining pcplists does not help THP if
2461 * any page failed to migrate. Even after
2462 * drain, the pageblock will not be free.
2463 */
2464 if (cc->order == COMPACTION_HPAGE_ORDER)
2465 last_migrated_pfn = 0;
2466
2467 goto rescan;
fdd048e1 2468 }
748446bb 2469 }
fdaf7f5c 2470
16b3be40
MG
2471 /* Stop if a page has been captured */
2472 if (capc && capc->page) {
2473 ret = COMPACT_SUCCESS;
2474 break;
2475 }
2476
fdaf7f5c
VB
2477check_drain:
2478 /*
2479 * Has the migration scanner moved away from the previous
2480 * cc->order aligned block where we migrated from? If yes,
2481 * flush the pages that were freed, so that they can merge and
2482 * compact_finished() can detect immediately if allocation
2483 * would succeed.
2484 */
566e54e1 2485 if (cc->order > 0 && last_migrated_pfn) {
fdaf7f5c 2486 unsigned long current_block_start =
06b6640a 2487 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 2488
566e54e1 2489 if (last_migrated_pfn < current_block_start) {
b01b2141 2490 lru_add_drain_cpu_zone(cc->zone);
fdaf7f5c 2491 /* No more flushing until we migrate again */
566e54e1 2492 last_migrated_pfn = 0;
fdaf7f5c
VB
2493 }
2494 }
748446bb
MG
2495 }
2496
f9e35b3b 2497out:
6bace090
VB
2498 /*
2499 * Release free pages and update where the free scanner should restart,
2500 * so we don't leave any returned pages behind in the next attempt.
2501 */
2502 if (cc->nr_freepages > 0) {
2503 unsigned long free_pfn = release_freepages(&cc->freepages);
2504
2505 cc->nr_freepages = 0;
2506 VM_BUG_ON(free_pfn == 0);
2507 /* The cached pfn is always the first in a pageblock */
06b6640a 2508 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
2509 /*
2510 * Only go back, not forward. The cached pfn might have been
2511 * already reset to zone end in compact_finished()
2512 */
40cacbcb
MG
2513 if (free_pfn > cc->zone->compact_cached_free_pfn)
2514 cc->zone->compact_cached_free_pfn = free_pfn;
6bace090 2515 }
748446bb 2516
7f354a54
DR
2517 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2518 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2519
abd4349f 2520 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
0eb927c0 2521
753ec50d
BW
2522 VM_BUG_ON(!list_empty(&cc->freepages));
2523 VM_BUG_ON(!list_empty(&cc->migratepages));
2524
748446bb
MG
2525 return ret;
2526}
76ab0f53 2527
ea7ab982 2528static enum compact_result compact_zone_order(struct zone *zone, int order,
c3486f53 2529 gfp_t gfp_mask, enum compact_priority prio,
97a225e6 2530 unsigned int alloc_flags, int highest_zoneidx,
5e1f0f09 2531 struct page **capture)
56de7263 2532{
ea7ab982 2533 enum compact_result ret;
56de7263 2534 struct compact_control cc = {
56de7263 2535 .order = order,
dbe2d4e4 2536 .search_order = order,
6d7ce559 2537 .gfp_mask = gfp_mask,
56de7263 2538 .zone = zone,
a5508cd8
VB
2539 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2540 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
ebff3980 2541 .alloc_flags = alloc_flags,
97a225e6 2542 .highest_zoneidx = highest_zoneidx,
accf6242 2543 .direct_compaction = true,
a8e025e5 2544 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
9f7e3387
VB
2545 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2546 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
56de7263 2547 };
5e1f0f09
MG
2548 struct capture_control capc = {
2549 .cc = &cc,
2550 .page = NULL,
2551 };
2552
b9e20f0d
VB
2553 /*
2554 * Make sure the structs are really initialized before we expose the
2555 * capture control, in case we are interrupted and the interrupt handler
2556 * frees a page.
2557 */
2558 barrier();
2559 WRITE_ONCE(current->capture_control, &capc);
56de7263 2560
5e1f0f09 2561 ret = compact_zone(&cc, &capc);
e64c5237 2562
b9e20f0d
VB
2563 /*
2564 * Make sure we hide capture control first before we read the captured
2565 * page pointer, otherwise an interrupt could free and capture a page
2566 * and we would leak it.
2567 */
2568 WRITE_ONCE(current->capture_control, NULL);
2569 *capture = READ_ONCE(capc.page);
06dac2f4
CTR
2570 /*
2571 * Technically, it is also possible that compaction is skipped but
2572 * the page is still captured out of luck(IRQ came and freed the page).
2573 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2574 * the COMPACT[STALL|FAIL] when compaction is skipped.
2575 */
2576 if (*capture)
2577 ret = COMPACT_SUCCESS;
5e1f0f09 2578
e64c5237 2579 return ret;
56de7263
MG
2580}
2581
5e771905
MG
2582int sysctl_extfrag_threshold = 500;
2583
56de7263
MG
2584/**
2585 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 2586 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
2587 * @order: The order of the current allocation
2588 * @alloc_flags: The allocation flags of the current allocation
2589 * @ac: The context of current allocation
112d2d29 2590 * @prio: Determines how hard direct compaction should try to succeed
6467552c 2591 * @capture: Pointer to free page created by compaction will be stored here
56de7263
MG
2592 *
2593 * This is the main entry point for direct page compaction.
2594 */
ea7ab982 2595enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b 2596 unsigned int alloc_flags, const struct alloc_context *ac,
5e1f0f09 2597 enum compact_priority prio, struct page **capture)
56de7263 2598{
fe573327 2599 int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
56de7263
MG
2600 struct zoneref *z;
2601 struct zone *zone;
1d4746d3 2602 enum compact_result rc = COMPACT_SKIPPED;
56de7263 2603
73e64c51
MH
2604 /*
2605 * Check if the GFP flags allow compaction - GFP_NOIO is really
2606 * tricky context because the migration might require IO
2607 */
2608 if (!may_perform_io)
53853e2d 2609 return COMPACT_SKIPPED;
56de7263 2610
a5508cd8 2611 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
837d026d 2612
56de7263 2613 /* Compact each zone in the list */
97a225e6
JK
2614 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2615 ac->highest_zoneidx, ac->nodemask) {
ea7ab982 2616 enum compact_result status;
56de7263 2617
a8e025e5
VB
2618 if (prio > MIN_COMPACT_PRIORITY
2619 && compaction_deferred(zone, order)) {
1d4746d3 2620 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 2621 continue;
1d4746d3 2622 }
53853e2d 2623
a5508cd8 2624 status = compact_zone_order(zone, order, gfp_mask, prio,
97a225e6 2625 alloc_flags, ac->highest_zoneidx, capture);
56de7263
MG
2626 rc = max(status, rc);
2627
7ceb009a
VB
2628 /* The allocation should succeed, stop compacting */
2629 if (status == COMPACT_SUCCESS) {
53853e2d
VB
2630 /*
2631 * We think the allocation will succeed in this zone,
2632 * but it is not certain, hence the false. The caller
2633 * will repeat this with true if allocation indeed
2634 * succeeds in this zone.
2635 */
2636 compaction_defer_reset(zone, order, false);
1f9efdef 2637
c3486f53 2638 break;
1f9efdef
VB
2639 }
2640
a5508cd8 2641 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
c3486f53 2642 status == COMPACT_PARTIAL_SKIPPED))
53853e2d
VB
2643 /*
2644 * We think that allocation won't succeed in this zone
2645 * so we defer compaction there. If it ends up
2646 * succeeding after all, it will be reset.
2647 */
2648 defer_compaction(zone, order);
1f9efdef
VB
2649
2650 /*
2651 * We might have stopped compacting due to need_resched() in
2652 * async compaction, or due to a fatal signal detected. In that
c3486f53 2653 * case do not try further zones
1f9efdef 2654 */
c3486f53
VB
2655 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2656 || fatal_signal_pending(current))
2657 break;
56de7263
MG
2658 }
2659
2660 return rc;
2661}
2662
facdaa91
NG
2663/*
2664 * Compact all zones within a node till each zone's fragmentation score
2665 * reaches within proactive compaction thresholds (as determined by the
2666 * proactiveness tunable).
2667 *
2668 * It is possible that the function returns before reaching score targets
2669 * due to various back-off conditions, such as, contention on per-node or
2670 * per-zone locks.
2671 */
2672static void proactive_compact_node(pg_data_t *pgdat)
2673{
2674 int zoneid;
2675 struct zone *zone;
2676 struct compact_control cc = {
2677 .order = -1,
2678 .mode = MIGRATE_SYNC_LIGHT,
2679 .ignore_skip_hint = true,
2680 .whole_zone = true,
2681 .gfp_mask = GFP_KERNEL,
2682 .proactive_compaction = true,
2683 };
2684
2685 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2686 zone = &pgdat->node_zones[zoneid];
2687 if (!populated_zone(zone))
2688 continue;
2689
2690 cc.zone = zone;
2691
2692 compact_zone(&cc, NULL);
2693
1bfb7684
BW
2694 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2695 cc.total_migrate_scanned);
2696 count_compact_events(KCOMPACTD_FREE_SCANNED,
2697 cc.total_free_scanned);
facdaa91
NG
2698 }
2699}
56de7263 2700
76ab0f53 2701/* Compact all zones within a node */
791cae96 2702static void compact_node(int nid)
76ab0f53 2703{
791cae96 2704 pg_data_t *pgdat = NODE_DATA(nid);
76ab0f53 2705 int zoneid;
76ab0f53 2706 struct zone *zone;
791cae96
VB
2707 struct compact_control cc = {
2708 .order = -1,
2709 .mode = MIGRATE_SYNC,
2710 .ignore_skip_hint = true,
2711 .whole_zone = true,
73e64c51 2712 .gfp_mask = GFP_KERNEL,
791cae96
VB
2713 };
2714
76ab0f53 2715
76ab0f53 2716 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
2717
2718 zone = &pgdat->node_zones[zoneid];
2719 if (!populated_zone(zone))
2720 continue;
2721
791cae96 2722 cc.zone = zone;
76ab0f53 2723
5e1f0f09 2724 compact_zone(&cc, NULL);
76ab0f53 2725 }
76ab0f53
MG
2726}
2727
2728/* Compact all nodes in the system */
7964c06d 2729static void compact_nodes(void)
76ab0f53
MG
2730{
2731 int nid;
2732
8575ec29
HD
2733 /* Flush pending updates to the LRU lists */
2734 lru_add_drain_all();
2735
76ab0f53
MG
2736 for_each_online_node(nid)
2737 compact_node(nid);
76ab0f53
MG
2738}
2739
facdaa91
NG
2740/*
2741 * Tunable for proactive compaction. It determines how
2742 * aggressively the kernel should compact memory in the
2743 * background. It takes values in the range [0, 100].
2744 */
d34c0a75 2745unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
facdaa91 2746
65d759c8
CTR
2747int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2748 void *buffer, size_t *length, loff_t *ppos)
2749{
2750 int rc, nid;
2751
2752 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2753 if (rc)
2754 return rc;
2755
2756 if (write && sysctl_compaction_proactiveness) {
2757 for_each_online_node(nid) {
2758 pg_data_t *pgdat = NODE_DATA(nid);
2759
2760 if (pgdat->proactive_compact_trigger)
2761 continue;
2762
2763 pgdat->proactive_compact_trigger = true;
8fff8b6f
BW
2764 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2765 pgdat->nr_zones - 1);
65d759c8
CTR
2766 wake_up_interruptible(&pgdat->kcompactd_wait);
2767 }
2768 }
2769
2770 return 0;
2771}
2772
fec4eb2c
YB
2773/*
2774 * This is the entry point for compacting all nodes via
2775 * /proc/sys/vm/compact_memory
2776 */
76ab0f53 2777int sysctl_compaction_handler(struct ctl_table *table, int write,
32927393 2778 void *buffer, size_t *length, loff_t *ppos)
76ab0f53
MG
2779{
2780 if (write)
7964c06d 2781 compact_nodes();
76ab0f53
MG
2782
2783 return 0;
2784}
ed4a6d7f
MG
2785
2786#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
17adb230
Y
2787static ssize_t compact_store(struct device *dev,
2788 struct device_attribute *attr,
2789 const char *buf, size_t count)
ed4a6d7f 2790{
8575ec29
HD
2791 int nid = dev->id;
2792
2793 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2794 /* Flush pending updates to the LRU lists */
2795 lru_add_drain_all();
2796
2797 compact_node(nid);
2798 }
ed4a6d7f
MG
2799
2800 return count;
2801}
17adb230 2802static DEVICE_ATTR_WO(compact);
ed4a6d7f
MG
2803
2804int compaction_register_node(struct node *node)
2805{
10fbcf4c 2806 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2807}
2808
2809void compaction_unregister_node(struct node *node)
2810{
10fbcf4c 2811 return device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2812}
2813#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 2814
698b1b30
VB
2815static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2816{
65d759c8
CTR
2817 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2818 pgdat->proactive_compact_trigger;
698b1b30
VB
2819}
2820
2821static bool kcompactd_node_suitable(pg_data_t *pgdat)
2822{
2823 int zoneid;
2824 struct zone *zone;
97a225e6 2825 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
698b1b30 2826
97a225e6 2827 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
698b1b30
VB
2828 zone = &pgdat->node_zones[zoneid];
2829
2830 if (!populated_zone(zone))
2831 continue;
2832
2833 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
97a225e6 2834 highest_zoneidx) == COMPACT_CONTINUE)
698b1b30
VB
2835 return true;
2836 }
2837
2838 return false;
2839}
2840
2841static void kcompactd_do_work(pg_data_t *pgdat)
2842{
2843 /*
2844 * With no special task, compact all zones so that a page of requested
2845 * order is allocatable.
2846 */
2847 int zoneid;
2848 struct zone *zone;
2849 struct compact_control cc = {
2850 .order = pgdat->kcompactd_max_order,
dbe2d4e4 2851 .search_order = pgdat->kcompactd_max_order,
97a225e6 2852 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
698b1b30 2853 .mode = MIGRATE_SYNC_LIGHT,
a0647dc9 2854 .ignore_skip_hint = false,
73e64c51 2855 .gfp_mask = GFP_KERNEL,
698b1b30 2856 };
698b1b30 2857 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
97a225e6 2858 cc.highest_zoneidx);
7f354a54 2859 count_compact_event(KCOMPACTD_WAKE);
698b1b30 2860
97a225e6 2861 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
698b1b30
VB
2862 int status;
2863
2864 zone = &pgdat->node_zones[zoneid];
2865 if (!populated_zone(zone))
2866 continue;
2867
2868 if (compaction_deferred(zone, cc.order))
2869 continue;
2870
2871 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2872 COMPACT_CONTINUE)
2873 continue;
2874
172400c6
VB
2875 if (kthread_should_stop())
2876 return;
a94b5252
YS
2877
2878 cc.zone = zone;
5e1f0f09 2879 status = compact_zone(&cc, NULL);
698b1b30 2880
7ceb009a 2881 if (status == COMPACT_SUCCESS) {
698b1b30 2882 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 2883 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
bc3106b2
DR
2884 /*
2885 * Buddy pages may become stranded on pcps that could
2886 * otherwise coalesce on the zone's free area for
2887 * order >= cc.order. This is ratelimited by the
2888 * upcoming deferral.
2889 */
2890 drain_all_pages(zone);
2891
698b1b30
VB
2892 /*
2893 * We use sync migration mode here, so we defer like
2894 * sync direct compaction does.
2895 */
2896 defer_compaction(zone, cc.order);
2897 }
2898
7f354a54
DR
2899 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2900 cc.total_migrate_scanned);
2901 count_compact_events(KCOMPACTD_FREE_SCANNED,
2902 cc.total_free_scanned);
698b1b30
VB
2903 }
2904
2905 /*
2906 * Regardless of success, we are done until woken up next. But remember
97a225e6
JK
2907 * the requested order/highest_zoneidx in case it was higher/tighter
2908 * than our current ones
698b1b30
VB
2909 */
2910 if (pgdat->kcompactd_max_order <= cc.order)
2911 pgdat->kcompactd_max_order = 0;
97a225e6
JK
2912 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2913 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2914}
2915
97a225e6 2916void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
698b1b30
VB
2917{
2918 if (!order)
2919 return;
2920
2921 if (pgdat->kcompactd_max_order < order)
2922 pgdat->kcompactd_max_order = order;
2923
97a225e6
JK
2924 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2925 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
698b1b30 2926
6818600f
DB
2927 /*
2928 * Pairs with implicit barrier in wait_event_freezable()
2929 * such that wakeups are not missed.
2930 */
2931 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
698b1b30
VB
2932 return;
2933
2934 if (!kcompactd_node_suitable(pgdat))
2935 return;
2936
2937 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
97a225e6 2938 highest_zoneidx);
698b1b30
VB
2939 wake_up_interruptible(&pgdat->kcompactd_wait);
2940}
2941
2942/*
2943 * The background compaction daemon, started as a kernel thread
2944 * from the init process.
2945 */
2946static int kcompactd(void *p)
2947{
68d68ff6 2948 pg_data_t *pgdat = (pg_data_t *)p;
698b1b30 2949 struct task_struct *tsk = current;
e1e92bfa
CTR
2950 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2951 long timeout = default_timeout;
698b1b30
VB
2952
2953 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2954
2955 if (!cpumask_empty(cpumask))
2956 set_cpus_allowed_ptr(tsk, cpumask);
2957
2958 set_freezable();
2959
2960 pgdat->kcompactd_max_order = 0;
97a225e6 2961 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2962
2963 while (!kthread_should_stop()) {
eb414681
JW
2964 unsigned long pflags;
2965
65d759c8
CTR
2966 /*
2967 * Avoid the unnecessary wakeup for proactive compaction
2968 * when it is disabled.
2969 */
2970 if (!sysctl_compaction_proactiveness)
2971 timeout = MAX_SCHEDULE_TIMEOUT;
698b1b30 2972 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
facdaa91 2973 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
65d759c8
CTR
2974 kcompactd_work_requested(pgdat), timeout) &&
2975 !pgdat->proactive_compact_trigger) {
facdaa91
NG
2976
2977 psi_memstall_enter(&pflags);
2978 kcompactd_do_work(pgdat);
2979 psi_memstall_leave(&pflags);
e1e92bfa
CTR
2980 /*
2981 * Reset the timeout value. The defer timeout from
2982 * proactive compaction is lost here but that is fine
2983 * as the condition of the zone changing substantionally
2984 * then carrying on with the previous defer interval is
2985 * not useful.
2986 */
2987 timeout = default_timeout;
facdaa91
NG
2988 continue;
2989 }
698b1b30 2990
e1e92bfa
CTR
2991 /*
2992 * Start the proactive work with default timeout. Based
2993 * on the fragmentation score, this timeout is updated.
2994 */
2995 timeout = default_timeout;
facdaa91
NG
2996 if (should_proactive_compact_node(pgdat)) {
2997 unsigned int prev_score, score;
2998
facdaa91
NG
2999 prev_score = fragmentation_score_node(pgdat);
3000 proactive_compact_node(pgdat);
3001 score = fragmentation_score_node(pgdat);
3002 /*
3003 * Defer proactive compaction if the fragmentation
3004 * score did not go down i.e. no progress made.
3005 */
e1e92bfa
CTR
3006 if (unlikely(score >= prev_score))
3007 timeout =
3008 default_timeout << COMPACT_MAX_DEFER_SHIFT;
facdaa91 3009 }
65d759c8
CTR
3010 if (unlikely(pgdat->proactive_compact_trigger))
3011 pgdat->proactive_compact_trigger = false;
698b1b30
VB
3012 }
3013
3014 return 0;
3015}
3016
3017/*
3018 * This kcompactd start function will be called by init and node-hot-add.
3019 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3020 */
024c61ea 3021void kcompactd_run(int nid)
698b1b30
VB
3022{
3023 pg_data_t *pgdat = NODE_DATA(nid);
698b1b30
VB
3024
3025 if (pgdat->kcompactd)
024c61ea 3026 return;
698b1b30
VB
3027
3028 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3029 if (IS_ERR(pgdat->kcompactd)) {
3030 pr_err("Failed to start kcompactd on node %d\n", nid);
698b1b30
VB
3031 pgdat->kcompactd = NULL;
3032 }
698b1b30
VB
3033}
3034
3035/*
3036 * Called by memory hotplug when all memory in a node is offlined. Caller must
e8da368a 3037 * be holding mem_hotplug_begin/done().
698b1b30
VB
3038 */
3039void kcompactd_stop(int nid)
3040{
3041 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3042
3043 if (kcompactd) {
3044 kthread_stop(kcompactd);
3045 NODE_DATA(nid)->kcompactd = NULL;
3046 }
3047}
3048
3049/*
3050 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3051 * not required for correctness. So if the last cpu in a node goes
3052 * away, we get changed to run anywhere: as the first one comes back,
3053 * restore their cpu bindings.
3054 */
e46b1db2 3055static int kcompactd_cpu_online(unsigned int cpu)
698b1b30
VB
3056{
3057 int nid;
3058
e46b1db2
AMG
3059 for_each_node_state(nid, N_MEMORY) {
3060 pg_data_t *pgdat = NODE_DATA(nid);
3061 const struct cpumask *mask;
698b1b30 3062
e46b1db2 3063 mask = cpumask_of_node(pgdat->node_id);
698b1b30 3064
e46b1db2
AMG
3065 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3066 /* One of our CPUs online: restore mask */
3109de30
ML
3067 if (pgdat->kcompactd)
3068 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
698b1b30 3069 }
e46b1db2 3070 return 0;
698b1b30
VB
3071}
3072
3073static int __init kcompactd_init(void)
3074{
3075 int nid;
e46b1db2
AMG
3076 int ret;
3077
3078 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3079 "mm/compaction:online",
3080 kcompactd_cpu_online, NULL);
3081 if (ret < 0) {
3082 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3083 return ret;
3084 }
698b1b30
VB
3085
3086 for_each_node_state(nid, N_MEMORY)
3087 kcompactd_run(nid);
698b1b30
VB
3088 return 0;
3089}
3090subsys_initcall(kcompactd_init)
3091
ff9543fd 3092#endif /* CONFIG_COMPACTION */
This page took 1.376058 seconds and 4 git commands to generate.