]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* -*- linux-c -*- |
2 | * INET 802.1Q VLAN | |
3 | * Ethernet-type device handling. | |
4 | * | |
5 | * Authors: Ben Greear <[email protected]> | |
6 | * Please send support related email to: [email protected] | |
7 | * VLAN Home Page: http://www.candelatech.com/~greear/vlan.html | |
8 | * | |
9 | * Fixes: Mar 22 2001: Martin Bokaemper <[email protected]> | |
10 | * - reset skb->pkt_type on incoming packets when MAC was changed | |
11 | * - see that changed MAC is saddr for outgoing packets | |
12 | * Oct 20, 2001: Ard van Breeman: | |
13 | * - Fix MC-list, finally. | |
14 | * - Flush MC-list on VLAN destroy. | |
15 | * | |
16 | * | |
17 | * This program is free software; you can redistribute it and/or | |
18 | * modify it under the terms of the GNU General Public License | |
19 | * as published by the Free Software Foundation; either version | |
20 | * 2 of the License, or (at your option) any later version. | |
21 | */ | |
22 | ||
23 | #include <linux/module.h> | |
24 | #include <linux/mm.h> | |
25 | #include <linux/in.h> | |
26 | #include <linux/init.h> | |
27 | #include <asm/uaccess.h> /* for copy_from_user */ | |
28 | #include <linux/skbuff.h> | |
29 | #include <linux/netdevice.h> | |
30 | #include <linux/etherdevice.h> | |
31 | #include <net/datalink.h> | |
32 | #include <net/p8022.h> | |
33 | #include <net/arp.h> | |
34 | ||
35 | #include "vlan.h" | |
36 | #include "vlanproc.h" | |
37 | #include <linux/if_vlan.h> | |
38 | #include <net/ip.h> | |
39 | ||
40 | /* | |
41 | * Rebuild the Ethernet MAC header. This is called after an ARP | |
42 | * (or in future other address resolution) has completed on this | |
43 | * sk_buff. We now let ARP fill in the other fields. | |
44 | * | |
45 | * This routine CANNOT use cached dst->neigh! | |
46 | * Really, it is used only when dst->neigh is wrong. | |
47 | * | |
48 | * TODO: This needs a checkup, I'm ignorant here. --BLG | |
49 | */ | |
50 | int vlan_dev_rebuild_header(struct sk_buff *skb) | |
51 | { | |
52 | struct net_device *dev = skb->dev; | |
53 | struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data); | |
54 | ||
55 | switch (veth->h_vlan_encapsulated_proto) { | |
56 | #ifdef CONFIG_INET | |
57 | case __constant_htons(ETH_P_IP): | |
58 | ||
59 | /* TODO: Confirm this will work with VLAN headers... */ | |
60 | return arp_find(veth->h_dest, skb); | |
61 | #endif | |
62 | default: | |
63 | printk(VLAN_DBG | |
64 | "%s: unable to resolve type %X addresses.\n", | |
d136fe72 | 65 | dev->name, ntohs(veth->h_vlan_encapsulated_proto)); |
1da177e4 LT |
66 | |
67 | memcpy(veth->h_source, dev->dev_addr, ETH_ALEN); | |
68 | break; | |
69 | }; | |
70 | ||
71 | return 0; | |
72 | } | |
73 | ||
74 | static inline struct sk_buff *vlan_check_reorder_header(struct sk_buff *skb) | |
75 | { | |
76 | if (VLAN_DEV_INFO(skb->dev)->flags & 1) { | |
77 | if (skb_shared(skb) || skb_cloned(skb)) { | |
78 | struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); | |
79 | kfree_skb(skb); | |
80 | skb = nskb; | |
81 | } | |
82 | if (skb) { | |
83 | /* Lifted from Gleb's VLAN code... */ | |
84 | memmove(skb->data - ETH_HLEN, | |
85 | skb->data - VLAN_ETH_HLEN, 12); | |
86 | skb->mac.raw += VLAN_HLEN; | |
87 | } | |
88 | } | |
89 | ||
90 | return skb; | |
91 | } | |
92 | ||
93 | /* | |
94 | * Determine the packet's protocol ID. The rule here is that we | |
95 | * assume 802.3 if the type field is short enough to be a length. | |
96 | * This is normal practice and works for any 'now in use' protocol. | |
97 | * | |
98 | * Also, at this point we assume that we ARE dealing exclusively with | |
99 | * VLAN packets, or packets that should be made into VLAN packets based | |
100 | * on a default VLAN ID. | |
101 | * | |
102 | * NOTE: Should be similar to ethernet/eth.c. | |
103 | * | |
104 | * SANITY NOTE: This method is called when a packet is moving up the stack | |
105 | * towards userland. To get here, it would have already passed | |
106 | * through the ethernet/eth.c eth_type_trans() method. | |
107 | * SANITY NOTE 2: We are referencing to the VLAN_HDR frields, which MAY be | |
108 | * stored UNALIGNED in the memory. RISC systems don't like | |
109 | * such cases very much... | |
110 | * SANITY NOTE 2a: According to Dave Miller & Alexey, it will always be aligned, | |
111 | * so there doesn't need to be any of the unaligned stuff. It has | |
112 | * been commented out now... --Ben | |
113 | * | |
114 | */ | |
115 | int vlan_skb_recv(struct sk_buff *skb, struct net_device *dev, | |
f2ccd8fa | 116 | struct packet_type* ptype, struct net_device *orig_dev) |
1da177e4 LT |
117 | { |
118 | unsigned char *rawp = NULL; | |
119 | struct vlan_hdr *vhdr = (struct vlan_hdr *)(skb->data); | |
120 | unsigned short vid; | |
121 | struct net_device_stats *stats; | |
122 | unsigned short vlan_TCI; | |
3c3f8f25 | 123 | __be16 proto; |
1da177e4 LT |
124 | |
125 | /* vlan_TCI = ntohs(get_unaligned(&vhdr->h_vlan_TCI)); */ | |
126 | vlan_TCI = ntohs(vhdr->h_vlan_TCI); | |
127 | ||
128 | vid = (vlan_TCI & VLAN_VID_MASK); | |
129 | ||
130 | #ifdef VLAN_DEBUG | |
131 | printk(VLAN_DBG "%s: skb: %p vlan_id: %hx\n", | |
132 | __FUNCTION__, skb, vid); | |
133 | #endif | |
134 | ||
135 | /* Ok, we will find the correct VLAN device, strip the header, | |
136 | * and then go on as usual. | |
137 | */ | |
138 | ||
139 | /* We have 12 bits of vlan ID. | |
140 | * | |
141 | * We must not drop allow preempt until we hold a | |
142 | * reference to the device (netif_rx does that) or we | |
143 | * fail. | |
144 | */ | |
145 | ||
146 | rcu_read_lock(); | |
147 | skb->dev = __find_vlan_dev(dev, vid); | |
148 | if (!skb->dev) { | |
149 | rcu_read_unlock(); | |
150 | ||
151 | #ifdef VLAN_DEBUG | |
152 | printk(VLAN_DBG "%s: ERROR: No net_device for VID: %i on dev: %s [%i]\n", | |
153 | __FUNCTION__, (unsigned int)(vid), dev->name, dev->ifindex); | |
154 | #endif | |
155 | kfree_skb(skb); | |
156 | return -1; | |
157 | } | |
158 | ||
159 | skb->dev->last_rx = jiffies; | |
160 | ||
161 | /* Bump the rx counters for the VLAN device. */ | |
162 | stats = vlan_dev_get_stats(skb->dev); | |
163 | stats->rx_packets++; | |
164 | stats->rx_bytes += skb->len; | |
165 | ||
cbb042f9 HX |
166 | /* Take off the VLAN header (4 bytes currently) */ |
167 | skb_pull_rcsum(skb, VLAN_HLEN); | |
a388442c | 168 | |
1da177e4 LT |
169 | /* Ok, lets check to make sure the device (dev) we |
170 | * came in on is what this VLAN is attached to. | |
171 | */ | |
172 | ||
173 | if (dev != VLAN_DEV_INFO(skb->dev)->real_dev) { | |
174 | rcu_read_unlock(); | |
175 | ||
176 | #ifdef VLAN_DEBUG | |
177 | printk(VLAN_DBG "%s: dropping skb: %p because came in on wrong device, dev: %s real_dev: %s, skb_dev: %s\n", | |
178 | __FUNCTION__, skb, dev->name, | |
179 | VLAN_DEV_INFO(skb->dev)->real_dev->name, | |
180 | skb->dev->name); | |
181 | #endif | |
182 | kfree_skb(skb); | |
183 | stats->rx_errors++; | |
184 | return -1; | |
185 | } | |
186 | ||
187 | /* | |
188 | * Deal with ingress priority mapping. | |
189 | */ | |
190 | skb->priority = vlan_get_ingress_priority(skb->dev, ntohs(vhdr->h_vlan_TCI)); | |
191 | ||
192 | #ifdef VLAN_DEBUG | |
193 | printk(VLAN_DBG "%s: priority: %lu for TCI: %hu (hbo)\n", | |
194 | __FUNCTION__, (unsigned long)(skb->priority), | |
195 | ntohs(vhdr->h_vlan_TCI)); | |
196 | #endif | |
197 | ||
198 | /* The ethernet driver already did the pkt_type calculations | |
199 | * for us... | |
200 | */ | |
201 | switch (skb->pkt_type) { | |
202 | case PACKET_BROADCAST: /* Yeah, stats collect these together.. */ | |
203 | // stats->broadcast ++; // no such counter :-( | |
204 | break; | |
205 | ||
206 | case PACKET_MULTICAST: | |
207 | stats->multicast++; | |
208 | break; | |
209 | ||
210 | case PACKET_OTHERHOST: | |
211 | /* Our lower layer thinks this is not local, let's make sure. | |
212 | * This allows the VLAN to have a different MAC than the underlying | |
213 | * device, and still route correctly. | |
214 | */ | |
d3f4a687 | 215 | if (!compare_ether_addr(eth_hdr(skb)->h_dest, skb->dev->dev_addr)) { |
1da177e4 LT |
216 | /* It is for our (changed) MAC-address! */ |
217 | skb->pkt_type = PACKET_HOST; | |
218 | } | |
219 | break; | |
220 | default: | |
221 | break; | |
222 | }; | |
223 | ||
224 | /* Was a VLAN packet, grab the encapsulated protocol, which the layer | |
225 | * three protocols care about. | |
226 | */ | |
227 | /* proto = get_unaligned(&vhdr->h_vlan_encapsulated_proto); */ | |
228 | proto = vhdr->h_vlan_encapsulated_proto; | |
229 | ||
230 | skb->protocol = proto; | |
231 | if (ntohs(proto) >= 1536) { | |
232 | /* place it back on the queue to be handled by | |
233 | * true layer 3 protocols. | |
234 | */ | |
235 | ||
236 | /* See if we are configured to re-write the VLAN header | |
237 | * to make it look like ethernet... | |
238 | */ | |
239 | skb = vlan_check_reorder_header(skb); | |
240 | ||
241 | /* Can be null if skb-clone fails when re-ordering */ | |
242 | if (skb) { | |
243 | netif_rx(skb); | |
244 | } else { | |
245 | /* TODO: Add a more specific counter here. */ | |
246 | stats->rx_errors++; | |
247 | } | |
248 | rcu_read_unlock(); | |
249 | return 0; | |
250 | } | |
251 | ||
252 | rawp = skb->data; | |
253 | ||
254 | /* | |
255 | * This is a magic hack to spot IPX packets. Older Novell breaks | |
256 | * the protocol design and runs IPX over 802.3 without an 802.2 LLC | |
257 | * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This | |
258 | * won't work for fault tolerant netware but does for the rest. | |
259 | */ | |
260 | if (*(unsigned short *)rawp == 0xFFFF) { | |
261 | skb->protocol = __constant_htons(ETH_P_802_3); | |
262 | /* place it back on the queue to be handled by true layer 3 protocols. | |
263 | */ | |
264 | ||
265 | /* See if we are configured to re-write the VLAN header | |
266 | * to make it look like ethernet... | |
267 | */ | |
268 | skb = vlan_check_reorder_header(skb); | |
269 | ||
270 | /* Can be null if skb-clone fails when re-ordering */ | |
271 | if (skb) { | |
272 | netif_rx(skb); | |
273 | } else { | |
274 | /* TODO: Add a more specific counter here. */ | |
275 | stats->rx_errors++; | |
276 | } | |
277 | rcu_read_unlock(); | |
278 | return 0; | |
279 | } | |
280 | ||
281 | /* | |
282 | * Real 802.2 LLC | |
283 | */ | |
284 | skb->protocol = __constant_htons(ETH_P_802_2); | |
285 | /* place it back on the queue to be handled by upper layer protocols. | |
286 | */ | |
287 | ||
288 | /* See if we are configured to re-write the VLAN header | |
289 | * to make it look like ethernet... | |
290 | */ | |
291 | skb = vlan_check_reorder_header(skb); | |
292 | ||
293 | /* Can be null if skb-clone fails when re-ordering */ | |
294 | if (skb) { | |
295 | netif_rx(skb); | |
296 | } else { | |
297 | /* TODO: Add a more specific counter here. */ | |
298 | stats->rx_errors++; | |
299 | } | |
300 | rcu_read_unlock(); | |
301 | return 0; | |
302 | } | |
303 | ||
304 | static inline unsigned short vlan_dev_get_egress_qos_mask(struct net_device* dev, | |
305 | struct sk_buff* skb) | |
306 | { | |
307 | struct vlan_priority_tci_mapping *mp = | |
308 | VLAN_DEV_INFO(dev)->egress_priority_map[(skb->priority & 0xF)]; | |
309 | ||
310 | while (mp) { | |
311 | if (mp->priority == skb->priority) { | |
312 | return mp->vlan_qos; /* This should already be shifted to mask | |
313 | * correctly with the VLAN's TCI | |
314 | */ | |
315 | } | |
316 | mp = mp->next; | |
317 | } | |
318 | return 0; | |
319 | } | |
320 | ||
321 | /* | |
322 | * Create the VLAN header for an arbitrary protocol layer | |
323 | * | |
324 | * saddr=NULL means use device source address | |
325 | * daddr=NULL means leave destination address (eg unresolved arp) | |
326 | * | |
327 | * This is called when the SKB is moving down the stack towards the | |
328 | * physical devices. | |
329 | */ | |
330 | int vlan_dev_hard_header(struct sk_buff *skb, struct net_device *dev, | |
331 | unsigned short type, void *daddr, void *saddr, | |
332 | unsigned len) | |
333 | { | |
334 | struct vlan_hdr *vhdr; | |
335 | unsigned short veth_TCI = 0; | |
336 | int rc = 0; | |
337 | int build_vlan_header = 0; | |
338 | struct net_device *vdev = dev; /* save this for the bottom of the method */ | |
339 | ||
340 | #ifdef VLAN_DEBUG | |
341 | printk(VLAN_DBG "%s: skb: %p type: %hx len: %x vlan_id: %hx, daddr: %p\n", | |
342 | __FUNCTION__, skb, type, len, VLAN_DEV_INFO(dev)->vlan_id, daddr); | |
343 | #endif | |
344 | ||
345 | /* build vlan header only if re_order_header flag is NOT set. This | |
346 | * fixes some programs that get confused when they see a VLAN device | |
347 | * sending a frame that is VLAN encoded (the consensus is that the VLAN | |
348 | * device should look completely like an Ethernet device when the | |
349 | * REORDER_HEADER flag is set) The drawback to this is some extra | |
350 | * header shuffling in the hard_start_xmit. Users can turn off this | |
351 | * REORDER behaviour with the vconfig tool. | |
352 | */ | |
353 | build_vlan_header = ((VLAN_DEV_INFO(dev)->flags & 1) == 0); | |
354 | ||
355 | if (build_vlan_header) { | |
356 | vhdr = (struct vlan_hdr *) skb_push(skb, VLAN_HLEN); | |
357 | ||
358 | /* build the four bytes that make this a VLAN header. */ | |
359 | ||
360 | /* Now, construct the second two bytes. This field looks something | |
361 | * like: | |
362 | * usr_priority: 3 bits (high bits) | |
363 | * CFI 1 bit | |
364 | * VLAN ID 12 bits (low bits) | |
365 | * | |
366 | */ | |
367 | veth_TCI = VLAN_DEV_INFO(dev)->vlan_id; | |
368 | veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb); | |
369 | ||
370 | vhdr->h_vlan_TCI = htons(veth_TCI); | |
371 | ||
372 | /* | |
373 | * Set the protocol type. | |
374 | * For a packet of type ETH_P_802_3 we put the length in here instead. | |
375 | * It is up to the 802.2 layer to carry protocol information. | |
376 | */ | |
377 | ||
378 | if (type != ETH_P_802_3) { | |
379 | vhdr->h_vlan_encapsulated_proto = htons(type); | |
380 | } else { | |
381 | vhdr->h_vlan_encapsulated_proto = htons(len); | |
382 | } | |
383 | } | |
384 | ||
385 | /* Before delegating work to the lower layer, enter our MAC-address */ | |
386 | if (saddr == NULL) | |
387 | saddr = dev->dev_addr; | |
388 | ||
389 | dev = VLAN_DEV_INFO(dev)->real_dev; | |
390 | ||
391 | /* MPLS can send us skbuffs w/out enough space. This check will grow the | |
392 | * skb if it doesn't have enough headroom. Not a beautiful solution, so | |
393 | * I'll tick a counter so that users can know it's happening... If they | |
394 | * care... | |
395 | */ | |
396 | ||
397 | /* NOTE: This may still break if the underlying device is not the final | |
398 | * device (and thus there are more headers to add...) It should work for | |
399 | * good-ole-ethernet though. | |
400 | */ | |
401 | if (skb_headroom(skb) < dev->hard_header_len) { | |
402 | struct sk_buff *sk_tmp = skb; | |
403 | skb = skb_realloc_headroom(sk_tmp, dev->hard_header_len); | |
404 | kfree_skb(sk_tmp); | |
405 | if (skb == NULL) { | |
406 | struct net_device_stats *stats = vlan_dev_get_stats(vdev); | |
407 | stats->tx_dropped++; | |
408 | return -ENOMEM; | |
409 | } | |
410 | VLAN_DEV_INFO(vdev)->cnt_inc_headroom_on_tx++; | |
411 | #ifdef VLAN_DEBUG | |
412 | printk(VLAN_DBG "%s: %s: had to grow skb.\n", __FUNCTION__, vdev->name); | |
413 | #endif | |
414 | } | |
415 | ||
416 | if (build_vlan_header) { | |
417 | /* Now make the underlying real hard header */ | |
418 | rc = dev->hard_header(skb, dev, ETH_P_8021Q, daddr, saddr, len + VLAN_HLEN); | |
419 | ||
420 | if (rc > 0) { | |
421 | rc += VLAN_HLEN; | |
422 | } else if (rc < 0) { | |
423 | rc -= VLAN_HLEN; | |
424 | } | |
425 | } else { | |
426 | /* If here, then we'll just make a normal looking ethernet frame, | |
427 | * but, the hard_start_xmit method will insert the tag (it has to | |
428 | * be able to do this for bridged and other skbs that don't come | |
429 | * down the protocol stack in an orderly manner. | |
430 | */ | |
431 | rc = dev->hard_header(skb, dev, type, daddr, saddr, len); | |
432 | } | |
433 | ||
434 | return rc; | |
435 | } | |
436 | ||
437 | int vlan_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) | |
438 | { | |
439 | struct net_device_stats *stats = vlan_dev_get_stats(dev); | |
440 | struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data); | |
441 | ||
442 | /* Handle non-VLAN frames if they are sent to us, for example by DHCP. | |
443 | * | |
444 | * NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING | |
445 | * OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs... | |
446 | */ | |
447 | ||
448 | if (veth->h_vlan_proto != __constant_htons(ETH_P_8021Q)) { | |
449 | int orig_headroom = skb_headroom(skb); | |
450 | unsigned short veth_TCI; | |
451 | ||
452 | /* This is not a VLAN frame...but we can fix that! */ | |
453 | VLAN_DEV_INFO(dev)->cnt_encap_on_xmit++; | |
454 | ||
455 | #ifdef VLAN_DEBUG | |
456 | printk(VLAN_DBG "%s: proto to encap: 0x%hx (hbo)\n", | |
457 | __FUNCTION__, htons(veth->h_vlan_proto)); | |
458 | #endif | |
459 | /* Construct the second two bytes. This field looks something | |
460 | * like: | |
461 | * usr_priority: 3 bits (high bits) | |
462 | * CFI 1 bit | |
463 | * VLAN ID 12 bits (low bits) | |
464 | */ | |
465 | veth_TCI = VLAN_DEV_INFO(dev)->vlan_id; | |
466 | veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb); | |
467 | ||
468 | skb = __vlan_put_tag(skb, veth_TCI); | |
469 | if (!skb) { | |
470 | stats->tx_dropped++; | |
471 | return 0; | |
472 | } | |
473 | ||
474 | if (orig_headroom < VLAN_HLEN) { | |
475 | VLAN_DEV_INFO(dev)->cnt_inc_headroom_on_tx++; | |
476 | } | |
477 | } | |
478 | ||
479 | #ifdef VLAN_DEBUG | |
480 | printk(VLAN_DBG "%s: about to send skb: %p to dev: %s\n", | |
481 | __FUNCTION__, skb, skb->dev->name); | |
482 | printk(VLAN_DBG " %2hx.%2hx.%2hx.%2xh.%2hx.%2hx %2hx.%2hx.%2hx.%2hx.%2hx.%2hx %4hx %4hx %4hx\n", | |
483 | veth->h_dest[0], veth->h_dest[1], veth->h_dest[2], veth->h_dest[3], veth->h_dest[4], veth->h_dest[5], | |
484 | veth->h_source[0], veth->h_source[1], veth->h_source[2], veth->h_source[3], veth->h_source[4], veth->h_source[5], | |
485 | veth->h_vlan_proto, veth->h_vlan_TCI, veth->h_vlan_encapsulated_proto); | |
486 | #endif | |
487 | ||
488 | stats->tx_packets++; /* for statics only */ | |
489 | stats->tx_bytes += skb->len; | |
490 | ||
491 | skb->dev = VLAN_DEV_INFO(dev)->real_dev; | |
492 | dev_queue_xmit(skb); | |
493 | ||
494 | return 0; | |
495 | } | |
496 | ||
497 | int vlan_dev_hwaccel_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) | |
498 | { | |
499 | struct net_device_stats *stats = vlan_dev_get_stats(dev); | |
500 | unsigned short veth_TCI; | |
501 | ||
502 | /* Construct the second two bytes. This field looks something | |
503 | * like: | |
504 | * usr_priority: 3 bits (high bits) | |
505 | * CFI 1 bit | |
506 | * VLAN ID 12 bits (low bits) | |
507 | */ | |
508 | veth_TCI = VLAN_DEV_INFO(dev)->vlan_id; | |
509 | veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb); | |
510 | skb = __vlan_hwaccel_put_tag(skb, veth_TCI); | |
511 | ||
512 | stats->tx_packets++; | |
513 | stats->tx_bytes += skb->len; | |
514 | ||
515 | skb->dev = VLAN_DEV_INFO(dev)->real_dev; | |
516 | dev_queue_xmit(skb); | |
517 | ||
518 | return 0; | |
519 | } | |
520 | ||
521 | int vlan_dev_change_mtu(struct net_device *dev, int new_mtu) | |
522 | { | |
523 | /* TODO: gotta make sure the underlying layer can handle it, | |
524 | * maybe an IFF_VLAN_CAPABLE flag for devices? | |
525 | */ | |
526 | if (VLAN_DEV_INFO(dev)->real_dev->mtu < new_mtu) | |
527 | return -ERANGE; | |
528 | ||
529 | dev->mtu = new_mtu; | |
530 | ||
531 | return 0; | |
532 | } | |
533 | ||
534 | int vlan_dev_set_ingress_priority(char *dev_name, __u32 skb_prio, short vlan_prio) | |
535 | { | |
536 | struct net_device *dev = dev_get_by_name(dev_name); | |
537 | ||
538 | if (dev) { | |
539 | if (dev->priv_flags & IFF_802_1Q_VLAN) { | |
540 | /* see if a priority mapping exists.. */ | |
541 | VLAN_DEV_INFO(dev)->ingress_priority_map[vlan_prio & 0x7] = skb_prio; | |
542 | dev_put(dev); | |
543 | return 0; | |
544 | } | |
545 | ||
546 | dev_put(dev); | |
547 | } | |
548 | return -EINVAL; | |
549 | } | |
550 | ||
551 | int vlan_dev_set_egress_priority(char *dev_name, __u32 skb_prio, short vlan_prio) | |
552 | { | |
553 | struct net_device *dev = dev_get_by_name(dev_name); | |
554 | struct vlan_priority_tci_mapping *mp = NULL; | |
555 | struct vlan_priority_tci_mapping *np; | |
556 | ||
557 | if (dev) { | |
558 | if (dev->priv_flags & IFF_802_1Q_VLAN) { | |
559 | /* See if a priority mapping exists.. */ | |
560 | mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF]; | |
561 | while (mp) { | |
562 | if (mp->priority == skb_prio) { | |
563 | mp->vlan_qos = ((vlan_prio << 13) & 0xE000); | |
564 | dev_put(dev); | |
565 | return 0; | |
566 | } | |
567 | mp = mp->next; | |
568 | } | |
569 | ||
570 | /* Create a new mapping then. */ | |
571 | mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF]; | |
572 | np = kmalloc(sizeof(struct vlan_priority_tci_mapping), GFP_KERNEL); | |
573 | if (np) { | |
574 | np->next = mp; | |
575 | np->priority = skb_prio; | |
576 | np->vlan_qos = ((vlan_prio << 13) & 0xE000); | |
577 | VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF] = np; | |
578 | dev_put(dev); | |
579 | return 0; | |
580 | } else { | |
581 | dev_put(dev); | |
582 | return -ENOBUFS; | |
583 | } | |
584 | } | |
585 | dev_put(dev); | |
586 | } | |
587 | return -EINVAL; | |
588 | } | |
589 | ||
590 | /* Flags are defined in the vlan_dev_info class in include/linux/if_vlan.h file. */ | |
591 | int vlan_dev_set_vlan_flag(char *dev_name, __u32 flag, short flag_val) | |
592 | { | |
593 | struct net_device *dev = dev_get_by_name(dev_name); | |
594 | ||
595 | if (dev) { | |
596 | if (dev->priv_flags & IFF_802_1Q_VLAN) { | |
597 | /* verify flag is supported */ | |
598 | if (flag == 1) { | |
599 | if (flag_val) { | |
600 | VLAN_DEV_INFO(dev)->flags |= 1; | |
601 | } else { | |
602 | VLAN_DEV_INFO(dev)->flags &= ~1; | |
603 | } | |
604 | dev_put(dev); | |
605 | return 0; | |
606 | } else { | |
607 | printk(KERN_ERR "%s: flag %i is not valid.\n", | |
608 | __FUNCTION__, (int)(flag)); | |
609 | dev_put(dev); | |
610 | return -EINVAL; | |
611 | } | |
612 | } else { | |
613 | printk(KERN_ERR | |
614 | "%s: %s is not a vlan device, priv_flags: %hX.\n", | |
615 | __FUNCTION__, dev->name, dev->priv_flags); | |
616 | dev_put(dev); | |
617 | } | |
618 | } else { | |
619 | printk(KERN_ERR "%s: Could not find device: %s\n", | |
620 | __FUNCTION__, dev_name); | |
621 | } | |
622 | ||
623 | return -EINVAL; | |
624 | } | |
625 | ||
626 | ||
627 | int vlan_dev_get_realdev_name(const char *dev_name, char* result) | |
628 | { | |
629 | struct net_device *dev = dev_get_by_name(dev_name); | |
630 | int rv = 0; | |
631 | if (dev) { | |
632 | if (dev->priv_flags & IFF_802_1Q_VLAN) { | |
633 | strncpy(result, VLAN_DEV_INFO(dev)->real_dev->name, 23); | |
634 | rv = 0; | |
635 | } else { | |
636 | rv = -EINVAL; | |
637 | } | |
638 | dev_put(dev); | |
639 | } else { | |
640 | rv = -ENODEV; | |
641 | } | |
642 | return rv; | |
643 | } | |
644 | ||
645 | int vlan_dev_get_vid(const char *dev_name, unsigned short* result) | |
646 | { | |
647 | struct net_device *dev = dev_get_by_name(dev_name); | |
648 | int rv = 0; | |
649 | if (dev) { | |
650 | if (dev->priv_flags & IFF_802_1Q_VLAN) { | |
651 | *result = VLAN_DEV_INFO(dev)->vlan_id; | |
652 | rv = 0; | |
653 | } else { | |
654 | rv = -EINVAL; | |
655 | } | |
656 | dev_put(dev); | |
657 | } else { | |
658 | rv = -ENODEV; | |
659 | } | |
660 | return rv; | |
661 | } | |
662 | ||
663 | ||
664 | int vlan_dev_set_mac_address(struct net_device *dev, void *addr_struct_p) | |
665 | { | |
666 | struct sockaddr *addr = (struct sockaddr *)(addr_struct_p); | |
667 | int i; | |
668 | ||
669 | if (netif_running(dev)) | |
670 | return -EBUSY; | |
671 | ||
672 | memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); | |
673 | ||
674 | printk("%s: Setting MAC address to ", dev->name); | |
675 | for (i = 0; i < 6; i++) | |
676 | printk(" %2.2x", dev->dev_addr[i]); | |
677 | printk(".\n"); | |
678 | ||
679 | if (memcmp(VLAN_DEV_INFO(dev)->real_dev->dev_addr, | |
680 | dev->dev_addr, | |
681 | dev->addr_len) != 0) { | |
682 | if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_PROMISC)) { | |
683 | int flgs = VLAN_DEV_INFO(dev)->real_dev->flags; | |
684 | ||
685 | /* Increment our in-use promiscuity counter */ | |
686 | dev_set_promiscuity(VLAN_DEV_INFO(dev)->real_dev, 1); | |
687 | ||
688 | /* Make PROMISC visible to the user. */ | |
689 | flgs |= IFF_PROMISC; | |
690 | printk("VLAN (%s): Setting underlying device (%s) to promiscious mode.\n", | |
691 | dev->name, VLAN_DEV_INFO(dev)->real_dev->name); | |
692 | dev_change_flags(VLAN_DEV_INFO(dev)->real_dev, flgs); | |
693 | } | |
694 | } else { | |
695 | printk("VLAN (%s): Underlying device (%s) has same MAC, not checking promiscious mode.\n", | |
696 | dev->name, VLAN_DEV_INFO(dev)->real_dev->name); | |
697 | } | |
698 | ||
699 | return 0; | |
700 | } | |
701 | ||
702 | static inline int vlan_dmi_equals(struct dev_mc_list *dmi1, | |
703 | struct dev_mc_list *dmi2) | |
704 | { | |
705 | return ((dmi1->dmi_addrlen == dmi2->dmi_addrlen) && | |
706 | (memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0)); | |
707 | } | |
708 | ||
709 | /** dmi is a single entry into a dev_mc_list, a single node. mc_list is | |
710 | * an entire list, and we'll iterate through it. | |
711 | */ | |
712 | static int vlan_should_add_mc(struct dev_mc_list *dmi, struct dev_mc_list *mc_list) | |
713 | { | |
714 | struct dev_mc_list *idmi; | |
715 | ||
716 | for (idmi = mc_list; idmi != NULL; ) { | |
717 | if (vlan_dmi_equals(dmi, idmi)) { | |
718 | if (dmi->dmi_users > idmi->dmi_users) | |
719 | return 1; | |
720 | else | |
721 | return 0; | |
722 | } else { | |
723 | idmi = idmi->next; | |
724 | } | |
725 | } | |
726 | ||
727 | return 1; | |
728 | } | |
729 | ||
730 | static inline void vlan_destroy_mc_list(struct dev_mc_list *mc_list) | |
731 | { | |
732 | struct dev_mc_list *dmi = mc_list; | |
733 | struct dev_mc_list *next; | |
734 | ||
735 | while(dmi) { | |
736 | next = dmi->next; | |
737 | kfree(dmi); | |
738 | dmi = next; | |
739 | } | |
740 | } | |
741 | ||
742 | static void vlan_copy_mc_list(struct dev_mc_list *mc_list, struct vlan_dev_info *vlan_info) | |
743 | { | |
744 | struct dev_mc_list *dmi, *new_dmi; | |
745 | ||
746 | vlan_destroy_mc_list(vlan_info->old_mc_list); | |
747 | vlan_info->old_mc_list = NULL; | |
748 | ||
749 | for (dmi = mc_list; dmi != NULL; dmi = dmi->next) { | |
750 | new_dmi = kmalloc(sizeof(*new_dmi), GFP_ATOMIC); | |
751 | if (new_dmi == NULL) { | |
752 | printk(KERN_ERR "vlan: cannot allocate memory. " | |
753 | "Multicast may not work properly from now.\n"); | |
754 | return; | |
755 | } | |
756 | ||
757 | /* Copy whole structure, then make new 'next' pointer */ | |
758 | *new_dmi = *dmi; | |
759 | new_dmi->next = vlan_info->old_mc_list; | |
760 | vlan_info->old_mc_list = new_dmi; | |
761 | } | |
762 | } | |
763 | ||
764 | static void vlan_flush_mc_list(struct net_device *dev) | |
765 | { | |
766 | struct dev_mc_list *dmi = dev->mc_list; | |
767 | ||
768 | while (dmi) { | |
769 | printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from vlan interface\n", | |
770 | dev->name, | |
771 | dmi->dmi_addr[0], | |
772 | dmi->dmi_addr[1], | |
773 | dmi->dmi_addr[2], | |
774 | dmi->dmi_addr[3], | |
775 | dmi->dmi_addr[4], | |
776 | dmi->dmi_addr[5]); | |
777 | dev_mc_delete(dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); | |
778 | dmi = dev->mc_list; | |
779 | } | |
780 | ||
781 | /* dev->mc_list is NULL by the time we get here. */ | |
782 | vlan_destroy_mc_list(VLAN_DEV_INFO(dev)->old_mc_list); | |
783 | VLAN_DEV_INFO(dev)->old_mc_list = NULL; | |
784 | } | |
785 | ||
786 | int vlan_dev_open(struct net_device *dev) | |
787 | { | |
788 | if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_UP)) | |
789 | return -ENETDOWN; | |
790 | ||
791 | return 0; | |
792 | } | |
793 | ||
794 | int vlan_dev_stop(struct net_device *dev) | |
795 | { | |
796 | vlan_flush_mc_list(dev); | |
797 | return 0; | |
798 | } | |
799 | ||
800 | int vlan_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) | |
801 | { | |
802 | struct net_device *real_dev = VLAN_DEV_INFO(dev)->real_dev; | |
803 | struct ifreq ifrr; | |
804 | int err = -EOPNOTSUPP; | |
805 | ||
806 | strncpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ); | |
807 | ifrr.ifr_ifru = ifr->ifr_ifru; | |
808 | ||
809 | switch(cmd) { | |
810 | case SIOCGMIIPHY: | |
811 | case SIOCGMIIREG: | |
812 | case SIOCSMIIREG: | |
813 | if (real_dev->do_ioctl && netif_device_present(real_dev)) | |
814 | err = real_dev->do_ioctl(real_dev, &ifrr, cmd); | |
815 | break; | |
816 | ||
817 | case SIOCETHTOOL: | |
818 | err = dev_ethtool(&ifrr); | |
819 | } | |
820 | ||
821 | if (!err) | |
822 | ifr->ifr_ifru = ifrr.ifr_ifru; | |
823 | ||
824 | return err; | |
825 | } | |
826 | ||
827 | /** Taken from Gleb + Lennert's VLAN code, and modified... */ | |
828 | void vlan_dev_set_multicast_list(struct net_device *vlan_dev) | |
829 | { | |
830 | struct dev_mc_list *dmi; | |
831 | struct net_device *real_dev; | |
832 | int inc; | |
833 | ||
834 | if (vlan_dev && (vlan_dev->priv_flags & IFF_802_1Q_VLAN)) { | |
835 | /* Then it's a real vlan device, as far as we can tell.. */ | |
836 | real_dev = VLAN_DEV_INFO(vlan_dev)->real_dev; | |
837 | ||
838 | /* compare the current promiscuity to the last promisc we had.. */ | |
839 | inc = vlan_dev->promiscuity - VLAN_DEV_INFO(vlan_dev)->old_promiscuity; | |
840 | if (inc) { | |
841 | printk(KERN_INFO "%s: dev_set_promiscuity(master, %d)\n", | |
842 | vlan_dev->name, inc); | |
843 | dev_set_promiscuity(real_dev, inc); /* found in dev.c */ | |
844 | VLAN_DEV_INFO(vlan_dev)->old_promiscuity = vlan_dev->promiscuity; | |
845 | } | |
846 | ||
847 | inc = vlan_dev->allmulti - VLAN_DEV_INFO(vlan_dev)->old_allmulti; | |
848 | if (inc) { | |
849 | printk(KERN_INFO "%s: dev_set_allmulti(master, %d)\n", | |
850 | vlan_dev->name, inc); | |
851 | dev_set_allmulti(real_dev, inc); /* dev.c */ | |
852 | VLAN_DEV_INFO(vlan_dev)->old_allmulti = vlan_dev->allmulti; | |
853 | } | |
854 | ||
855 | /* looking for addresses to add to master's list */ | |
856 | for (dmi = vlan_dev->mc_list; dmi != NULL; dmi = dmi->next) { | |
857 | if (vlan_should_add_mc(dmi, VLAN_DEV_INFO(vlan_dev)->old_mc_list)) { | |
858 | dev_mc_add(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); | |
859 | printk(KERN_DEBUG "%s: add %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address to master interface\n", | |
860 | vlan_dev->name, | |
861 | dmi->dmi_addr[0], | |
862 | dmi->dmi_addr[1], | |
863 | dmi->dmi_addr[2], | |
864 | dmi->dmi_addr[3], | |
865 | dmi->dmi_addr[4], | |
866 | dmi->dmi_addr[5]); | |
867 | } | |
868 | } | |
869 | ||
870 | /* looking for addresses to delete from master's list */ | |
871 | for (dmi = VLAN_DEV_INFO(vlan_dev)->old_mc_list; dmi != NULL; dmi = dmi->next) { | |
872 | if (vlan_should_add_mc(dmi, vlan_dev->mc_list)) { | |
873 | /* if we think we should add it to the new list, then we should really | |
874 | * delete it from the real list on the underlying device. | |
875 | */ | |
876 | dev_mc_delete(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); | |
877 | printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from master interface\n", | |
878 | vlan_dev->name, | |
879 | dmi->dmi_addr[0], | |
880 | dmi->dmi_addr[1], | |
881 | dmi->dmi_addr[2], | |
882 | dmi->dmi_addr[3], | |
883 | dmi->dmi_addr[4], | |
884 | dmi->dmi_addr[5]); | |
885 | } | |
886 | } | |
887 | ||
888 | /* save multicast list */ | |
889 | vlan_copy_mc_list(vlan_dev->mc_list, VLAN_DEV_INFO(vlan_dev)); | |
890 | } | |
891 | } |