]>
Commit | Line | Data |
---|---|---|
16d69265 | 1 | #include <linux/mm.h> |
30992c97 MM |
2 | #include <linux/slab.h> |
3 | #include <linux/string.h> | |
3b32123d | 4 | #include <linux/compiler.h> |
b95f1b31 | 5 | #include <linux/export.h> |
96840aa0 | 6 | #include <linux/err.h> |
3b8f14b4 | 7 | #include <linux/sched.h> |
6e84f315 | 8 | #include <linux/sched/mm.h> |
68db0cf1 | 9 | #include <linux/sched/task_stack.h> |
eb36c587 | 10 | #include <linux/security.h> |
9800339b | 11 | #include <linux/swap.h> |
33806f06 | 12 | #include <linux/swapops.h> |
00619bcc JM |
13 | #include <linux/mman.h> |
14 | #include <linux/hugetlb.h> | |
39f1f78d | 15 | #include <linux/vmalloc.h> |
897ab3e0 | 16 | #include <linux/userfaultfd_k.h> |
00619bcc | 17 | |
7c0f6ba6 | 18 | #include <linux/uaccess.h> |
30992c97 | 19 | |
6038def0 NK |
20 | #include "internal.h" |
21 | ||
a4bb1e43 AH |
22 | /** |
23 | * kfree_const - conditionally free memory | |
24 | * @x: pointer to the memory | |
25 | * | |
26 | * Function calls kfree only if @x is not in .rodata section. | |
27 | */ | |
28 | void kfree_const(const void *x) | |
29 | { | |
30 | if (!is_kernel_rodata((unsigned long)x)) | |
31 | kfree(x); | |
32 | } | |
33 | EXPORT_SYMBOL(kfree_const); | |
34 | ||
30992c97 | 35 | /** |
30992c97 | 36 | * kstrdup - allocate space for and copy an existing string |
30992c97 MM |
37 | * @s: the string to duplicate |
38 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
a862f68a MR |
39 | * |
40 | * Return: newly allocated copy of @s or %NULL in case of error | |
30992c97 MM |
41 | */ |
42 | char *kstrdup(const char *s, gfp_t gfp) | |
43 | { | |
44 | size_t len; | |
45 | char *buf; | |
46 | ||
47 | if (!s) | |
48 | return NULL; | |
49 | ||
50 | len = strlen(s) + 1; | |
1d2c8eea | 51 | buf = kmalloc_track_caller(len, gfp); |
30992c97 MM |
52 | if (buf) |
53 | memcpy(buf, s, len); | |
54 | return buf; | |
55 | } | |
56 | EXPORT_SYMBOL(kstrdup); | |
96840aa0 | 57 | |
a4bb1e43 AH |
58 | /** |
59 | * kstrdup_const - conditionally duplicate an existing const string | |
60 | * @s: the string to duplicate | |
61 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
62 | * | |
a862f68a MR |
63 | * Note: Strings allocated by kstrdup_const should be freed by kfree_const. |
64 | * | |
65 | * Return: source string if it is in .rodata section otherwise | |
66 | * fallback to kstrdup. | |
a4bb1e43 AH |
67 | */ |
68 | const char *kstrdup_const(const char *s, gfp_t gfp) | |
69 | { | |
70 | if (is_kernel_rodata((unsigned long)s)) | |
71 | return s; | |
72 | ||
73 | return kstrdup(s, gfp); | |
74 | } | |
75 | EXPORT_SYMBOL(kstrdup_const); | |
76 | ||
1e66df3e JF |
77 | /** |
78 | * kstrndup - allocate space for and copy an existing string | |
79 | * @s: the string to duplicate | |
80 | * @max: read at most @max chars from @s | |
81 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
f3515741 DH |
82 | * |
83 | * Note: Use kmemdup_nul() instead if the size is known exactly. | |
a862f68a MR |
84 | * |
85 | * Return: newly allocated copy of @s or %NULL in case of error | |
1e66df3e JF |
86 | */ |
87 | char *kstrndup(const char *s, size_t max, gfp_t gfp) | |
88 | { | |
89 | size_t len; | |
90 | char *buf; | |
91 | ||
92 | if (!s) | |
93 | return NULL; | |
94 | ||
95 | len = strnlen(s, max); | |
96 | buf = kmalloc_track_caller(len+1, gfp); | |
97 | if (buf) { | |
98 | memcpy(buf, s, len); | |
99 | buf[len] = '\0'; | |
100 | } | |
101 | return buf; | |
102 | } | |
103 | EXPORT_SYMBOL(kstrndup); | |
104 | ||
1a2f67b4 AD |
105 | /** |
106 | * kmemdup - duplicate region of memory | |
107 | * | |
108 | * @src: memory region to duplicate | |
109 | * @len: memory region length | |
110 | * @gfp: GFP mask to use | |
a862f68a MR |
111 | * |
112 | * Return: newly allocated copy of @src or %NULL in case of error | |
1a2f67b4 AD |
113 | */ |
114 | void *kmemdup(const void *src, size_t len, gfp_t gfp) | |
115 | { | |
116 | void *p; | |
117 | ||
1d2c8eea | 118 | p = kmalloc_track_caller(len, gfp); |
1a2f67b4 AD |
119 | if (p) |
120 | memcpy(p, src, len); | |
121 | return p; | |
122 | } | |
123 | EXPORT_SYMBOL(kmemdup); | |
124 | ||
f3515741 DH |
125 | /** |
126 | * kmemdup_nul - Create a NUL-terminated string from unterminated data | |
127 | * @s: The data to stringify | |
128 | * @len: The size of the data | |
129 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
a862f68a MR |
130 | * |
131 | * Return: newly allocated copy of @s with NUL-termination or %NULL in | |
132 | * case of error | |
f3515741 DH |
133 | */ |
134 | char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) | |
135 | { | |
136 | char *buf; | |
137 | ||
138 | if (!s) | |
139 | return NULL; | |
140 | ||
141 | buf = kmalloc_track_caller(len + 1, gfp); | |
142 | if (buf) { | |
143 | memcpy(buf, s, len); | |
144 | buf[len] = '\0'; | |
145 | } | |
146 | return buf; | |
147 | } | |
148 | EXPORT_SYMBOL(kmemdup_nul); | |
149 | ||
610a77e0 LZ |
150 | /** |
151 | * memdup_user - duplicate memory region from user space | |
152 | * | |
153 | * @src: source address in user space | |
154 | * @len: number of bytes to copy | |
155 | * | |
a862f68a | 156 | * Return: an ERR_PTR() on failure. Result is physically |
50fd2f29 | 157 | * contiguous, to be freed by kfree(). |
610a77e0 LZ |
158 | */ |
159 | void *memdup_user(const void __user *src, size_t len) | |
160 | { | |
161 | void *p; | |
162 | ||
6c8fcc09 | 163 | p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); |
610a77e0 LZ |
164 | if (!p) |
165 | return ERR_PTR(-ENOMEM); | |
166 | ||
167 | if (copy_from_user(p, src, len)) { | |
168 | kfree(p); | |
169 | return ERR_PTR(-EFAULT); | |
170 | } | |
171 | ||
172 | return p; | |
173 | } | |
174 | EXPORT_SYMBOL(memdup_user); | |
175 | ||
50fd2f29 AV |
176 | /** |
177 | * vmemdup_user - duplicate memory region from user space | |
178 | * | |
179 | * @src: source address in user space | |
180 | * @len: number of bytes to copy | |
181 | * | |
a862f68a | 182 | * Return: an ERR_PTR() on failure. Result may be not |
50fd2f29 AV |
183 | * physically contiguous. Use kvfree() to free. |
184 | */ | |
185 | void *vmemdup_user(const void __user *src, size_t len) | |
186 | { | |
187 | void *p; | |
188 | ||
189 | p = kvmalloc(len, GFP_USER); | |
190 | if (!p) | |
191 | return ERR_PTR(-ENOMEM); | |
192 | ||
193 | if (copy_from_user(p, src, len)) { | |
194 | kvfree(p); | |
195 | return ERR_PTR(-EFAULT); | |
196 | } | |
197 | ||
198 | return p; | |
199 | } | |
200 | EXPORT_SYMBOL(vmemdup_user); | |
201 | ||
b86181f1 | 202 | /** |
96840aa0 | 203 | * strndup_user - duplicate an existing string from user space |
96840aa0 DA |
204 | * @s: The string to duplicate |
205 | * @n: Maximum number of bytes to copy, including the trailing NUL. | |
a862f68a MR |
206 | * |
207 | * Return: newly allocated copy of @s or %NULL in case of error | |
96840aa0 DA |
208 | */ |
209 | char *strndup_user(const char __user *s, long n) | |
210 | { | |
211 | char *p; | |
212 | long length; | |
213 | ||
214 | length = strnlen_user(s, n); | |
215 | ||
216 | if (!length) | |
217 | return ERR_PTR(-EFAULT); | |
218 | ||
219 | if (length > n) | |
220 | return ERR_PTR(-EINVAL); | |
221 | ||
90d74045 | 222 | p = memdup_user(s, length); |
96840aa0 | 223 | |
90d74045 JL |
224 | if (IS_ERR(p)) |
225 | return p; | |
96840aa0 DA |
226 | |
227 | p[length - 1] = '\0'; | |
228 | ||
229 | return p; | |
230 | } | |
231 | EXPORT_SYMBOL(strndup_user); | |
16d69265 | 232 | |
e9d408e1 AV |
233 | /** |
234 | * memdup_user_nul - duplicate memory region from user space and NUL-terminate | |
235 | * | |
236 | * @src: source address in user space | |
237 | * @len: number of bytes to copy | |
238 | * | |
a862f68a | 239 | * Return: an ERR_PTR() on failure. |
e9d408e1 AV |
240 | */ |
241 | void *memdup_user_nul(const void __user *src, size_t len) | |
242 | { | |
243 | char *p; | |
244 | ||
245 | /* | |
246 | * Always use GFP_KERNEL, since copy_from_user() can sleep and | |
247 | * cause pagefault, which makes it pointless to use GFP_NOFS | |
248 | * or GFP_ATOMIC. | |
249 | */ | |
250 | p = kmalloc_track_caller(len + 1, GFP_KERNEL); | |
251 | if (!p) | |
252 | return ERR_PTR(-ENOMEM); | |
253 | ||
254 | if (copy_from_user(p, src, len)) { | |
255 | kfree(p); | |
256 | return ERR_PTR(-EFAULT); | |
257 | } | |
258 | p[len] = '\0'; | |
259 | ||
260 | return p; | |
261 | } | |
262 | EXPORT_SYMBOL(memdup_user_nul); | |
263 | ||
6038def0 NK |
264 | void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, |
265 | struct vm_area_struct *prev, struct rb_node *rb_parent) | |
266 | { | |
267 | struct vm_area_struct *next; | |
268 | ||
269 | vma->vm_prev = prev; | |
270 | if (prev) { | |
271 | next = prev->vm_next; | |
272 | prev->vm_next = vma; | |
273 | } else { | |
274 | mm->mmap = vma; | |
275 | if (rb_parent) | |
276 | next = rb_entry(rb_parent, | |
277 | struct vm_area_struct, vm_rb); | |
278 | else | |
279 | next = NULL; | |
280 | } | |
281 | vma->vm_next = next; | |
282 | if (next) | |
283 | next->vm_prev = vma; | |
284 | } | |
285 | ||
b7643757 | 286 | /* Check if the vma is being used as a stack by this task */ |
d17af505 | 287 | int vma_is_stack_for_current(struct vm_area_struct *vma) |
b7643757 | 288 | { |
d17af505 AL |
289 | struct task_struct * __maybe_unused t = current; |
290 | ||
b7643757 SP |
291 | return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); |
292 | } | |
293 | ||
efc1a3b1 | 294 | #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) |
8f2af155 | 295 | void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) |
16d69265 AM |
296 | { |
297 | mm->mmap_base = TASK_UNMAPPED_BASE; | |
298 | mm->get_unmapped_area = arch_get_unmapped_area; | |
16d69265 AM |
299 | } |
300 | #endif | |
912985dc | 301 | |
45888a0c XG |
302 | /* |
303 | * Like get_user_pages_fast() except its IRQ-safe in that it won't fall | |
304 | * back to the regular GUP. | |
d0811078 MT |
305 | * Note a difference with get_user_pages_fast: this always returns the |
306 | * number of pages pinned, 0 if no pages were pinned. | |
307 | * If the architecture does not support this function, simply return with no | |
308 | * pages pinned. | |
45888a0c | 309 | */ |
3b32123d | 310 | int __weak __get_user_pages_fast(unsigned long start, |
45888a0c XG |
311 | int nr_pages, int write, struct page **pages) |
312 | { | |
313 | return 0; | |
314 | } | |
315 | EXPORT_SYMBOL_GPL(__get_user_pages_fast); | |
316 | ||
9de100d0 AG |
317 | /** |
318 | * get_user_pages_fast() - pin user pages in memory | |
319 | * @start: starting user address | |
320 | * @nr_pages: number of pages from start to pin | |
321 | * @write: whether pages will be written to | |
322 | * @pages: array that receives pointers to the pages pinned. | |
323 | * Should be at least nr_pages long. | |
324 | * | |
d2bf6be8 NP |
325 | * get_user_pages_fast provides equivalent functionality to get_user_pages, |
326 | * operating on current and current->mm, with force=0 and vma=NULL. However | |
327 | * unlike get_user_pages, it must be called without mmap_sem held. | |
328 | * | |
329 | * get_user_pages_fast may take mmap_sem and page table locks, so no | |
330 | * assumptions can be made about lack of locking. get_user_pages_fast is to be | |
331 | * implemented in a way that is advantageous (vs get_user_pages()) when the | |
332 | * user memory area is already faulted in and present in ptes. However if the | |
333 | * pages have to be faulted in, it may turn out to be slightly slower so | |
334 | * callers need to carefully consider what to use. On many architectures, | |
335 | * get_user_pages_fast simply falls back to get_user_pages. | |
a862f68a MR |
336 | * |
337 | * Return: number of pages pinned. This may be fewer than the number | |
338 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
339 | * were pinned, returns -errno. | |
9de100d0 | 340 | */ |
3b32123d | 341 | int __weak get_user_pages_fast(unsigned long start, |
912985dc RR |
342 | int nr_pages, int write, struct page **pages) |
343 | { | |
c164154f LS |
344 | return get_user_pages_unlocked(start, nr_pages, pages, |
345 | write ? FOLL_WRITE : 0); | |
912985dc RR |
346 | } |
347 | EXPORT_SYMBOL_GPL(get_user_pages_fast); | |
ca2b84cb | 348 | |
eb36c587 AV |
349 | unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, |
350 | unsigned long len, unsigned long prot, | |
9fbeb5ab | 351 | unsigned long flag, unsigned long pgoff) |
eb36c587 AV |
352 | { |
353 | unsigned long ret; | |
354 | struct mm_struct *mm = current->mm; | |
41badc15 | 355 | unsigned long populate; |
897ab3e0 | 356 | LIST_HEAD(uf); |
eb36c587 AV |
357 | |
358 | ret = security_mmap_file(file, prot, flag); | |
359 | if (!ret) { | |
9fbeb5ab MH |
360 | if (down_write_killable(&mm->mmap_sem)) |
361 | return -EINTR; | |
bebeb3d6 | 362 | ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff, |
897ab3e0 | 363 | &populate, &uf); |
eb36c587 | 364 | up_write(&mm->mmap_sem); |
897ab3e0 | 365 | userfaultfd_unmap_complete(mm, &uf); |
41badc15 ML |
366 | if (populate) |
367 | mm_populate(ret, populate); | |
eb36c587 AV |
368 | } |
369 | return ret; | |
370 | } | |
371 | ||
372 | unsigned long vm_mmap(struct file *file, unsigned long addr, | |
373 | unsigned long len, unsigned long prot, | |
374 | unsigned long flag, unsigned long offset) | |
375 | { | |
376 | if (unlikely(offset + PAGE_ALIGN(len) < offset)) | |
377 | return -EINVAL; | |
ea53cde0 | 378 | if (unlikely(offset_in_page(offset))) |
eb36c587 AV |
379 | return -EINVAL; |
380 | ||
9fbeb5ab | 381 | return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); |
eb36c587 AV |
382 | } |
383 | EXPORT_SYMBOL(vm_mmap); | |
384 | ||
a7c3e901 MH |
385 | /** |
386 | * kvmalloc_node - attempt to allocate physically contiguous memory, but upon | |
387 | * failure, fall back to non-contiguous (vmalloc) allocation. | |
388 | * @size: size of the request. | |
389 | * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. | |
390 | * @node: numa node to allocate from | |
391 | * | |
392 | * Uses kmalloc to get the memory but if the allocation fails then falls back | |
393 | * to the vmalloc allocator. Use kvfree for freeing the memory. | |
394 | * | |
cc965a29 MH |
395 | * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported. |
396 | * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is | |
397 | * preferable to the vmalloc fallback, due to visible performance drawbacks. | |
a7c3e901 | 398 | * |
ce91f6ee MH |
399 | * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not |
400 | * fall back to vmalloc. | |
a862f68a MR |
401 | * |
402 | * Return: pointer to the allocated memory of %NULL in case of failure | |
a7c3e901 MH |
403 | */ |
404 | void *kvmalloc_node(size_t size, gfp_t flags, int node) | |
405 | { | |
406 | gfp_t kmalloc_flags = flags; | |
407 | void *ret; | |
408 | ||
409 | /* | |
410 | * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables) | |
411 | * so the given set of flags has to be compatible. | |
412 | */ | |
ce91f6ee MH |
413 | if ((flags & GFP_KERNEL) != GFP_KERNEL) |
414 | return kmalloc_node(size, flags, node); | |
a7c3e901 MH |
415 | |
416 | /* | |
4f4f2ba9 MH |
417 | * We want to attempt a large physically contiguous block first because |
418 | * it is less likely to fragment multiple larger blocks and therefore | |
419 | * contribute to a long term fragmentation less than vmalloc fallback. | |
420 | * However make sure that larger requests are not too disruptive - no | |
421 | * OOM killer and no allocation failure warnings as we have a fallback. | |
a7c3e901 | 422 | */ |
6c5ab651 MH |
423 | if (size > PAGE_SIZE) { |
424 | kmalloc_flags |= __GFP_NOWARN; | |
425 | ||
cc965a29 | 426 | if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) |
6c5ab651 MH |
427 | kmalloc_flags |= __GFP_NORETRY; |
428 | } | |
a7c3e901 MH |
429 | |
430 | ret = kmalloc_node(size, kmalloc_flags, node); | |
431 | ||
432 | /* | |
433 | * It doesn't really make sense to fallback to vmalloc for sub page | |
434 | * requests | |
435 | */ | |
436 | if (ret || size <= PAGE_SIZE) | |
437 | return ret; | |
438 | ||
8594a21c MH |
439 | return __vmalloc_node_flags_caller(size, node, flags, |
440 | __builtin_return_address(0)); | |
a7c3e901 MH |
441 | } |
442 | EXPORT_SYMBOL(kvmalloc_node); | |
443 | ||
ff4dc772 | 444 | /** |
04b8e946 AM |
445 | * kvfree() - Free memory. |
446 | * @addr: Pointer to allocated memory. | |
ff4dc772 | 447 | * |
04b8e946 AM |
448 | * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). |
449 | * It is slightly more efficient to use kfree() or vfree() if you are certain | |
450 | * that you know which one to use. | |
451 | * | |
52414d33 | 452 | * Context: Either preemptible task context or not-NMI interrupt. |
ff4dc772 | 453 | */ |
39f1f78d AV |
454 | void kvfree(const void *addr) |
455 | { | |
456 | if (is_vmalloc_addr(addr)) | |
457 | vfree(addr); | |
458 | else | |
459 | kfree(addr); | |
460 | } | |
461 | EXPORT_SYMBOL(kvfree); | |
462 | ||
e39155ea KS |
463 | static inline void *__page_rmapping(struct page *page) |
464 | { | |
465 | unsigned long mapping; | |
466 | ||
467 | mapping = (unsigned long)page->mapping; | |
468 | mapping &= ~PAGE_MAPPING_FLAGS; | |
469 | ||
470 | return (void *)mapping; | |
471 | } | |
472 | ||
473 | /* Neutral page->mapping pointer to address_space or anon_vma or other */ | |
474 | void *page_rmapping(struct page *page) | |
475 | { | |
476 | page = compound_head(page); | |
477 | return __page_rmapping(page); | |
478 | } | |
479 | ||
1aa8aea5 AM |
480 | /* |
481 | * Return true if this page is mapped into pagetables. | |
482 | * For compound page it returns true if any subpage of compound page is mapped. | |
483 | */ | |
484 | bool page_mapped(struct page *page) | |
485 | { | |
486 | int i; | |
487 | ||
488 | if (likely(!PageCompound(page))) | |
489 | return atomic_read(&page->_mapcount) >= 0; | |
490 | page = compound_head(page); | |
491 | if (atomic_read(compound_mapcount_ptr(page)) >= 0) | |
492 | return true; | |
493 | if (PageHuge(page)) | |
494 | return false; | |
8ab88c71 | 495 | for (i = 0; i < (1 << compound_order(page)); i++) { |
1aa8aea5 AM |
496 | if (atomic_read(&page[i]._mapcount) >= 0) |
497 | return true; | |
498 | } | |
499 | return false; | |
500 | } | |
501 | EXPORT_SYMBOL(page_mapped); | |
502 | ||
e39155ea KS |
503 | struct anon_vma *page_anon_vma(struct page *page) |
504 | { | |
505 | unsigned long mapping; | |
506 | ||
507 | page = compound_head(page); | |
508 | mapping = (unsigned long)page->mapping; | |
509 | if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) | |
510 | return NULL; | |
511 | return __page_rmapping(page); | |
512 | } | |
513 | ||
9800339b SL |
514 | struct address_space *page_mapping(struct page *page) |
515 | { | |
1c290f64 KS |
516 | struct address_space *mapping; |
517 | ||
518 | page = compound_head(page); | |
9800339b | 519 | |
03e5ac2f MP |
520 | /* This happens if someone calls flush_dcache_page on slab page */ |
521 | if (unlikely(PageSlab(page))) | |
522 | return NULL; | |
523 | ||
33806f06 SL |
524 | if (unlikely(PageSwapCache(page))) { |
525 | swp_entry_t entry; | |
526 | ||
527 | entry.val = page_private(page); | |
e39155ea KS |
528 | return swap_address_space(entry); |
529 | } | |
530 | ||
1c290f64 | 531 | mapping = page->mapping; |
bda807d4 | 532 | if ((unsigned long)mapping & PAGE_MAPPING_ANON) |
e39155ea | 533 | return NULL; |
bda807d4 MK |
534 | |
535 | return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS); | |
9800339b | 536 | } |
bda807d4 | 537 | EXPORT_SYMBOL(page_mapping); |
9800339b | 538 | |
cb9f753a YH |
539 | /* |
540 | * For file cache pages, return the address_space, otherwise return NULL | |
541 | */ | |
542 | struct address_space *page_mapping_file(struct page *page) | |
543 | { | |
544 | if (unlikely(PageSwapCache(page))) | |
545 | return NULL; | |
546 | return page_mapping(page); | |
547 | } | |
548 | ||
b20ce5e0 KS |
549 | /* Slow path of page_mapcount() for compound pages */ |
550 | int __page_mapcount(struct page *page) | |
551 | { | |
552 | int ret; | |
553 | ||
554 | ret = atomic_read(&page->_mapcount) + 1; | |
dd78fedd KS |
555 | /* |
556 | * For file THP page->_mapcount contains total number of mapping | |
557 | * of the page: no need to look into compound_mapcount. | |
558 | */ | |
559 | if (!PageAnon(page) && !PageHuge(page)) | |
560 | return ret; | |
b20ce5e0 KS |
561 | page = compound_head(page); |
562 | ret += atomic_read(compound_mapcount_ptr(page)) + 1; | |
563 | if (PageDoubleMap(page)) | |
564 | ret--; | |
565 | return ret; | |
566 | } | |
567 | EXPORT_SYMBOL_GPL(__page_mapcount); | |
568 | ||
39a1aa8e AR |
569 | int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; |
570 | int sysctl_overcommit_ratio __read_mostly = 50; | |
571 | unsigned long sysctl_overcommit_kbytes __read_mostly; | |
572 | int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; | |
573 | unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ | |
574 | unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ | |
575 | ||
49f0ce5f JM |
576 | int overcommit_ratio_handler(struct ctl_table *table, int write, |
577 | void __user *buffer, size_t *lenp, | |
578 | loff_t *ppos) | |
579 | { | |
580 | int ret; | |
581 | ||
582 | ret = proc_dointvec(table, write, buffer, lenp, ppos); | |
583 | if (ret == 0 && write) | |
584 | sysctl_overcommit_kbytes = 0; | |
585 | return ret; | |
586 | } | |
587 | ||
588 | int overcommit_kbytes_handler(struct ctl_table *table, int write, | |
589 | void __user *buffer, size_t *lenp, | |
590 | loff_t *ppos) | |
591 | { | |
592 | int ret; | |
593 | ||
594 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); | |
595 | if (ret == 0 && write) | |
596 | sysctl_overcommit_ratio = 0; | |
597 | return ret; | |
598 | } | |
599 | ||
00619bcc JM |
600 | /* |
601 | * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used | |
602 | */ | |
603 | unsigned long vm_commit_limit(void) | |
604 | { | |
49f0ce5f JM |
605 | unsigned long allowed; |
606 | ||
607 | if (sysctl_overcommit_kbytes) | |
608 | allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); | |
609 | else | |
ca79b0c2 | 610 | allowed = ((totalram_pages() - hugetlb_total_pages()) |
49f0ce5f JM |
611 | * sysctl_overcommit_ratio / 100); |
612 | allowed += total_swap_pages; | |
613 | ||
614 | return allowed; | |
00619bcc JM |
615 | } |
616 | ||
39a1aa8e AR |
617 | /* |
618 | * Make sure vm_committed_as in one cacheline and not cacheline shared with | |
619 | * other variables. It can be updated by several CPUs frequently. | |
620 | */ | |
621 | struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; | |
622 | ||
623 | /* | |
624 | * The global memory commitment made in the system can be a metric | |
625 | * that can be used to drive ballooning decisions when Linux is hosted | |
626 | * as a guest. On Hyper-V, the host implements a policy engine for dynamically | |
627 | * balancing memory across competing virtual machines that are hosted. | |
628 | * Several metrics drive this policy engine including the guest reported | |
629 | * memory commitment. | |
630 | */ | |
631 | unsigned long vm_memory_committed(void) | |
632 | { | |
633 | return percpu_counter_read_positive(&vm_committed_as); | |
634 | } | |
635 | EXPORT_SYMBOL_GPL(vm_memory_committed); | |
636 | ||
637 | /* | |
638 | * Check that a process has enough memory to allocate a new virtual | |
639 | * mapping. 0 means there is enough memory for the allocation to | |
640 | * succeed and -ENOMEM implies there is not. | |
641 | * | |
642 | * We currently support three overcommit policies, which are set via the | |
ad56b738 | 643 | * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst |
39a1aa8e AR |
644 | * |
645 | * Strict overcommit modes added 2002 Feb 26 by Alan Cox. | |
646 | * Additional code 2002 Jul 20 by Robert Love. | |
647 | * | |
648 | * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. | |
649 | * | |
650 | * Note this is a helper function intended to be used by LSMs which | |
651 | * wish to use this logic. | |
652 | */ | |
653 | int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) | |
654 | { | |
655 | long free, allowed, reserve; | |
656 | ||
657 | VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < | |
658 | -(s64)vm_committed_as_batch * num_online_cpus(), | |
659 | "memory commitment underflow"); | |
660 | ||
661 | vm_acct_memory(pages); | |
662 | ||
663 | /* | |
664 | * Sometimes we want to use more memory than we have | |
665 | */ | |
666 | if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) | |
667 | return 0; | |
668 | ||
669 | if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { | |
c41f012a | 670 | free = global_zone_page_state(NR_FREE_PAGES); |
11fb9989 | 671 | free += global_node_page_state(NR_FILE_PAGES); |
39a1aa8e AR |
672 | |
673 | /* | |
674 | * shmem pages shouldn't be counted as free in this | |
675 | * case, they can't be purged, only swapped out, and | |
676 | * that won't affect the overall amount of available | |
677 | * memory in the system. | |
678 | */ | |
11fb9989 | 679 | free -= global_node_page_state(NR_SHMEM); |
39a1aa8e AR |
680 | |
681 | free += get_nr_swap_pages(); | |
682 | ||
683 | /* | |
684 | * Any slabs which are created with the | |
685 | * SLAB_RECLAIM_ACCOUNT flag claim to have contents | |
686 | * which are reclaimable, under pressure. The dentry | |
687 | * cache and most inode caches should fall into this | |
688 | */ | |
d507e2eb | 689 | free += global_node_page_state(NR_SLAB_RECLAIMABLE); |
39a1aa8e | 690 | |
d79f7aa4 RG |
691 | /* |
692 | * Part of the kernel memory, which can be released | |
693 | * under memory pressure. | |
694 | */ | |
b29940c1 | 695 | free += global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); |
d79f7aa4 | 696 | |
39a1aa8e AR |
697 | /* |
698 | * Leave reserved pages. The pages are not for anonymous pages. | |
699 | */ | |
700 | if (free <= totalreserve_pages) | |
701 | goto error; | |
702 | else | |
703 | free -= totalreserve_pages; | |
704 | ||
705 | /* | |
706 | * Reserve some for root | |
707 | */ | |
708 | if (!cap_sys_admin) | |
709 | free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); | |
710 | ||
711 | if (free > pages) | |
712 | return 0; | |
713 | ||
714 | goto error; | |
715 | } | |
716 | ||
717 | allowed = vm_commit_limit(); | |
718 | /* | |
719 | * Reserve some for root | |
720 | */ | |
721 | if (!cap_sys_admin) | |
722 | allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); | |
723 | ||
724 | /* | |
725 | * Don't let a single process grow so big a user can't recover | |
726 | */ | |
727 | if (mm) { | |
728 | reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); | |
729 | allowed -= min_t(long, mm->total_vm / 32, reserve); | |
730 | } | |
731 | ||
732 | if (percpu_counter_read_positive(&vm_committed_as) < allowed) | |
733 | return 0; | |
734 | error: | |
735 | vm_unacct_memory(pages); | |
736 | ||
737 | return -ENOMEM; | |
738 | } | |
739 | ||
a9090253 WR |
740 | /** |
741 | * get_cmdline() - copy the cmdline value to a buffer. | |
742 | * @task: the task whose cmdline value to copy. | |
743 | * @buffer: the buffer to copy to. | |
744 | * @buflen: the length of the buffer. Larger cmdline values are truncated | |
745 | * to this length. | |
a862f68a MR |
746 | * |
747 | * Return: the size of the cmdline field copied. Note that the copy does | |
a9090253 WR |
748 | * not guarantee an ending NULL byte. |
749 | */ | |
750 | int get_cmdline(struct task_struct *task, char *buffer, int buflen) | |
751 | { | |
752 | int res = 0; | |
753 | unsigned int len; | |
754 | struct mm_struct *mm = get_task_mm(task); | |
a3b609ef | 755 | unsigned long arg_start, arg_end, env_start, env_end; |
a9090253 WR |
756 | if (!mm) |
757 | goto out; | |
758 | if (!mm->arg_end) | |
759 | goto out_mm; /* Shh! No looking before we're done */ | |
760 | ||
a3b609ef MG |
761 | down_read(&mm->mmap_sem); |
762 | arg_start = mm->arg_start; | |
763 | arg_end = mm->arg_end; | |
764 | env_start = mm->env_start; | |
765 | env_end = mm->env_end; | |
766 | up_read(&mm->mmap_sem); | |
767 | ||
768 | len = arg_end - arg_start; | |
a9090253 WR |
769 | |
770 | if (len > buflen) | |
771 | len = buflen; | |
772 | ||
f307ab6d | 773 | res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); |
a9090253 WR |
774 | |
775 | /* | |
776 | * If the nul at the end of args has been overwritten, then | |
777 | * assume application is using setproctitle(3). | |
778 | */ | |
779 | if (res > 0 && buffer[res-1] != '\0' && len < buflen) { | |
780 | len = strnlen(buffer, res); | |
781 | if (len < res) { | |
782 | res = len; | |
783 | } else { | |
a3b609ef | 784 | len = env_end - env_start; |
a9090253 WR |
785 | if (len > buflen - res) |
786 | len = buflen - res; | |
a3b609ef | 787 | res += access_process_vm(task, env_start, |
f307ab6d LS |
788 | buffer+res, len, |
789 | FOLL_FORCE); | |
a9090253 WR |
790 | res = strnlen(buffer, res); |
791 | } | |
792 | } | |
793 | out_mm: | |
794 | mmput(mm); | |
795 | out: | |
796 | return res; | |
797 | } |