]>
Commit | Line | Data |
---|---|---|
4bbd4c77 KS |
1 | #include <linux/kernel.h> |
2 | #include <linux/errno.h> | |
3 | #include <linux/err.h> | |
4 | #include <linux/spinlock.h> | |
5 | ||
4bbd4c77 | 6 | #include <linux/mm.h> |
3565fce3 | 7 | #include <linux/memremap.h> |
4bbd4c77 KS |
8 | #include <linux/pagemap.h> |
9 | #include <linux/rmap.h> | |
10 | #include <linux/swap.h> | |
11 | #include <linux/swapops.h> | |
12 | ||
174cd4b1 | 13 | #include <linux/sched/signal.h> |
2667f50e | 14 | #include <linux/rwsem.h> |
f30c59e9 | 15 | #include <linux/hugetlb.h> |
9a4e9f3b AK |
16 | #include <linux/migrate.h> |
17 | #include <linux/mm_inline.h> | |
18 | #include <linux/sched/mm.h> | |
1027e443 | 19 | |
33a709b2 | 20 | #include <asm/mmu_context.h> |
2667f50e | 21 | #include <asm/pgtable.h> |
1027e443 | 22 | #include <asm/tlbflush.h> |
2667f50e | 23 | |
4bbd4c77 KS |
24 | #include "internal.h" |
25 | ||
df06b37f KB |
26 | struct follow_page_context { |
27 | struct dev_pagemap *pgmap; | |
28 | unsigned int page_mask; | |
29 | }; | |
30 | ||
69e68b4f KS |
31 | static struct page *no_page_table(struct vm_area_struct *vma, |
32 | unsigned int flags) | |
4bbd4c77 | 33 | { |
69e68b4f KS |
34 | /* |
35 | * When core dumping an enormous anonymous area that nobody | |
36 | * has touched so far, we don't want to allocate unnecessary pages or | |
37 | * page tables. Return error instead of NULL to skip handle_mm_fault, | |
38 | * then get_dump_page() will return NULL to leave a hole in the dump. | |
39 | * But we can only make this optimization where a hole would surely | |
40 | * be zero-filled if handle_mm_fault() actually did handle it. | |
41 | */ | |
42 | if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) | |
43 | return ERR_PTR(-EFAULT); | |
44 | return NULL; | |
45 | } | |
4bbd4c77 | 46 | |
1027e443 KS |
47 | static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, |
48 | pte_t *pte, unsigned int flags) | |
49 | { | |
50 | /* No page to get reference */ | |
51 | if (flags & FOLL_GET) | |
52 | return -EFAULT; | |
53 | ||
54 | if (flags & FOLL_TOUCH) { | |
55 | pte_t entry = *pte; | |
56 | ||
57 | if (flags & FOLL_WRITE) | |
58 | entry = pte_mkdirty(entry); | |
59 | entry = pte_mkyoung(entry); | |
60 | ||
61 | if (!pte_same(*pte, entry)) { | |
62 | set_pte_at(vma->vm_mm, address, pte, entry); | |
63 | update_mmu_cache(vma, address, pte); | |
64 | } | |
65 | } | |
66 | ||
67 | /* Proper page table entry exists, but no corresponding struct page */ | |
68 | return -EEXIST; | |
69 | } | |
70 | ||
19be0eaf LT |
71 | /* |
72 | * FOLL_FORCE can write to even unwritable pte's, but only | |
73 | * after we've gone through a COW cycle and they are dirty. | |
74 | */ | |
75 | static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) | |
76 | { | |
f6f37321 | 77 | return pte_write(pte) || |
19be0eaf LT |
78 | ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); |
79 | } | |
80 | ||
69e68b4f | 81 | static struct page *follow_page_pte(struct vm_area_struct *vma, |
df06b37f KB |
82 | unsigned long address, pmd_t *pmd, unsigned int flags, |
83 | struct dev_pagemap **pgmap) | |
69e68b4f KS |
84 | { |
85 | struct mm_struct *mm = vma->vm_mm; | |
86 | struct page *page; | |
87 | spinlock_t *ptl; | |
88 | pte_t *ptep, pte; | |
4bbd4c77 | 89 | |
69e68b4f | 90 | retry: |
4bbd4c77 | 91 | if (unlikely(pmd_bad(*pmd))) |
69e68b4f | 92 | return no_page_table(vma, flags); |
4bbd4c77 KS |
93 | |
94 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | |
4bbd4c77 KS |
95 | pte = *ptep; |
96 | if (!pte_present(pte)) { | |
97 | swp_entry_t entry; | |
98 | /* | |
99 | * KSM's break_ksm() relies upon recognizing a ksm page | |
100 | * even while it is being migrated, so for that case we | |
101 | * need migration_entry_wait(). | |
102 | */ | |
103 | if (likely(!(flags & FOLL_MIGRATION))) | |
104 | goto no_page; | |
0661a336 | 105 | if (pte_none(pte)) |
4bbd4c77 KS |
106 | goto no_page; |
107 | entry = pte_to_swp_entry(pte); | |
108 | if (!is_migration_entry(entry)) | |
109 | goto no_page; | |
110 | pte_unmap_unlock(ptep, ptl); | |
111 | migration_entry_wait(mm, pmd, address); | |
69e68b4f | 112 | goto retry; |
4bbd4c77 | 113 | } |
8a0516ed | 114 | if ((flags & FOLL_NUMA) && pte_protnone(pte)) |
4bbd4c77 | 115 | goto no_page; |
19be0eaf | 116 | if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { |
69e68b4f KS |
117 | pte_unmap_unlock(ptep, ptl); |
118 | return NULL; | |
119 | } | |
4bbd4c77 KS |
120 | |
121 | page = vm_normal_page(vma, address, pte); | |
3565fce3 DW |
122 | if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { |
123 | /* | |
124 | * Only return device mapping pages in the FOLL_GET case since | |
125 | * they are only valid while holding the pgmap reference. | |
126 | */ | |
df06b37f KB |
127 | *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); |
128 | if (*pgmap) | |
3565fce3 DW |
129 | page = pte_page(pte); |
130 | else | |
131 | goto no_page; | |
132 | } else if (unlikely(!page)) { | |
1027e443 KS |
133 | if (flags & FOLL_DUMP) { |
134 | /* Avoid special (like zero) pages in core dumps */ | |
135 | page = ERR_PTR(-EFAULT); | |
136 | goto out; | |
137 | } | |
138 | ||
139 | if (is_zero_pfn(pte_pfn(pte))) { | |
140 | page = pte_page(pte); | |
141 | } else { | |
142 | int ret; | |
143 | ||
144 | ret = follow_pfn_pte(vma, address, ptep, flags); | |
145 | page = ERR_PTR(ret); | |
146 | goto out; | |
147 | } | |
4bbd4c77 KS |
148 | } |
149 | ||
6742d293 KS |
150 | if (flags & FOLL_SPLIT && PageTransCompound(page)) { |
151 | int ret; | |
152 | get_page(page); | |
153 | pte_unmap_unlock(ptep, ptl); | |
154 | lock_page(page); | |
155 | ret = split_huge_page(page); | |
156 | unlock_page(page); | |
157 | put_page(page); | |
158 | if (ret) | |
159 | return ERR_PTR(ret); | |
160 | goto retry; | |
161 | } | |
162 | ||
df06b37f | 163 | if (flags & FOLL_GET) |
ddc58f27 | 164 | get_page(page); |
4bbd4c77 KS |
165 | if (flags & FOLL_TOUCH) { |
166 | if ((flags & FOLL_WRITE) && | |
167 | !pte_dirty(pte) && !PageDirty(page)) | |
168 | set_page_dirty(page); | |
169 | /* | |
170 | * pte_mkyoung() would be more correct here, but atomic care | |
171 | * is needed to avoid losing the dirty bit: it is easier to use | |
172 | * mark_page_accessed(). | |
173 | */ | |
174 | mark_page_accessed(page); | |
175 | } | |
de60f5f1 | 176 | if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { |
e90309c9 KS |
177 | /* Do not mlock pte-mapped THP */ |
178 | if (PageTransCompound(page)) | |
179 | goto out; | |
180 | ||
4bbd4c77 KS |
181 | /* |
182 | * The preliminary mapping check is mainly to avoid the | |
183 | * pointless overhead of lock_page on the ZERO_PAGE | |
184 | * which might bounce very badly if there is contention. | |
185 | * | |
186 | * If the page is already locked, we don't need to | |
187 | * handle it now - vmscan will handle it later if and | |
188 | * when it attempts to reclaim the page. | |
189 | */ | |
190 | if (page->mapping && trylock_page(page)) { | |
191 | lru_add_drain(); /* push cached pages to LRU */ | |
192 | /* | |
193 | * Because we lock page here, and migration is | |
194 | * blocked by the pte's page reference, and we | |
195 | * know the page is still mapped, we don't even | |
196 | * need to check for file-cache page truncation. | |
197 | */ | |
198 | mlock_vma_page(page); | |
199 | unlock_page(page); | |
200 | } | |
201 | } | |
1027e443 | 202 | out: |
4bbd4c77 | 203 | pte_unmap_unlock(ptep, ptl); |
4bbd4c77 | 204 | return page; |
4bbd4c77 KS |
205 | no_page: |
206 | pte_unmap_unlock(ptep, ptl); | |
207 | if (!pte_none(pte)) | |
69e68b4f KS |
208 | return NULL; |
209 | return no_page_table(vma, flags); | |
210 | } | |
211 | ||
080dbb61 AK |
212 | static struct page *follow_pmd_mask(struct vm_area_struct *vma, |
213 | unsigned long address, pud_t *pudp, | |
df06b37f KB |
214 | unsigned int flags, |
215 | struct follow_page_context *ctx) | |
69e68b4f | 216 | { |
68827280 | 217 | pmd_t *pmd, pmdval; |
69e68b4f KS |
218 | spinlock_t *ptl; |
219 | struct page *page; | |
220 | struct mm_struct *mm = vma->vm_mm; | |
221 | ||
080dbb61 | 222 | pmd = pmd_offset(pudp, address); |
68827280 YH |
223 | /* |
224 | * The READ_ONCE() will stabilize the pmdval in a register or | |
225 | * on the stack so that it will stop changing under the code. | |
226 | */ | |
227 | pmdval = READ_ONCE(*pmd); | |
228 | if (pmd_none(pmdval)) | |
69e68b4f | 229 | return no_page_table(vma, flags); |
68827280 | 230 | if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) { |
e66f17ff NH |
231 | page = follow_huge_pmd(mm, address, pmd, flags); |
232 | if (page) | |
233 | return page; | |
234 | return no_page_table(vma, flags); | |
69e68b4f | 235 | } |
68827280 | 236 | if (is_hugepd(__hugepd(pmd_val(pmdval)))) { |
4dc71451 | 237 | page = follow_huge_pd(vma, address, |
68827280 | 238 | __hugepd(pmd_val(pmdval)), flags, |
4dc71451 AK |
239 | PMD_SHIFT); |
240 | if (page) | |
241 | return page; | |
242 | return no_page_table(vma, flags); | |
243 | } | |
84c3fc4e | 244 | retry: |
68827280 | 245 | if (!pmd_present(pmdval)) { |
84c3fc4e ZY |
246 | if (likely(!(flags & FOLL_MIGRATION))) |
247 | return no_page_table(vma, flags); | |
248 | VM_BUG_ON(thp_migration_supported() && | |
68827280 YH |
249 | !is_pmd_migration_entry(pmdval)); |
250 | if (is_pmd_migration_entry(pmdval)) | |
84c3fc4e | 251 | pmd_migration_entry_wait(mm, pmd); |
68827280 YH |
252 | pmdval = READ_ONCE(*pmd); |
253 | /* | |
254 | * MADV_DONTNEED may convert the pmd to null because | |
255 | * mmap_sem is held in read mode | |
256 | */ | |
257 | if (pmd_none(pmdval)) | |
258 | return no_page_table(vma, flags); | |
84c3fc4e ZY |
259 | goto retry; |
260 | } | |
68827280 | 261 | if (pmd_devmap(pmdval)) { |
3565fce3 | 262 | ptl = pmd_lock(mm, pmd); |
df06b37f | 263 | page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); |
3565fce3 DW |
264 | spin_unlock(ptl); |
265 | if (page) | |
266 | return page; | |
267 | } | |
68827280 | 268 | if (likely(!pmd_trans_huge(pmdval))) |
df06b37f | 269 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 270 | |
68827280 | 271 | if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) |
db08f203 AK |
272 | return no_page_table(vma, flags); |
273 | ||
84c3fc4e | 274 | retry_locked: |
6742d293 | 275 | ptl = pmd_lock(mm, pmd); |
68827280 YH |
276 | if (unlikely(pmd_none(*pmd))) { |
277 | spin_unlock(ptl); | |
278 | return no_page_table(vma, flags); | |
279 | } | |
84c3fc4e ZY |
280 | if (unlikely(!pmd_present(*pmd))) { |
281 | spin_unlock(ptl); | |
282 | if (likely(!(flags & FOLL_MIGRATION))) | |
283 | return no_page_table(vma, flags); | |
284 | pmd_migration_entry_wait(mm, pmd); | |
285 | goto retry_locked; | |
286 | } | |
6742d293 KS |
287 | if (unlikely(!pmd_trans_huge(*pmd))) { |
288 | spin_unlock(ptl); | |
df06b37f | 289 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 290 | } |
6742d293 KS |
291 | if (flags & FOLL_SPLIT) { |
292 | int ret; | |
293 | page = pmd_page(*pmd); | |
294 | if (is_huge_zero_page(page)) { | |
295 | spin_unlock(ptl); | |
296 | ret = 0; | |
78ddc534 | 297 | split_huge_pmd(vma, pmd, address); |
337d9abf NH |
298 | if (pmd_trans_unstable(pmd)) |
299 | ret = -EBUSY; | |
6742d293 KS |
300 | } else { |
301 | get_page(page); | |
69e68b4f | 302 | spin_unlock(ptl); |
6742d293 KS |
303 | lock_page(page); |
304 | ret = split_huge_page(page); | |
305 | unlock_page(page); | |
306 | put_page(page); | |
baa355fd KS |
307 | if (pmd_none(*pmd)) |
308 | return no_page_table(vma, flags); | |
6742d293 KS |
309 | } |
310 | ||
311 | return ret ? ERR_PTR(ret) : | |
df06b37f | 312 | follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
69e68b4f | 313 | } |
6742d293 KS |
314 | page = follow_trans_huge_pmd(vma, address, pmd, flags); |
315 | spin_unlock(ptl); | |
df06b37f | 316 | ctx->page_mask = HPAGE_PMD_NR - 1; |
6742d293 | 317 | return page; |
4bbd4c77 KS |
318 | } |
319 | ||
080dbb61 AK |
320 | static struct page *follow_pud_mask(struct vm_area_struct *vma, |
321 | unsigned long address, p4d_t *p4dp, | |
df06b37f KB |
322 | unsigned int flags, |
323 | struct follow_page_context *ctx) | |
080dbb61 AK |
324 | { |
325 | pud_t *pud; | |
326 | spinlock_t *ptl; | |
327 | struct page *page; | |
328 | struct mm_struct *mm = vma->vm_mm; | |
329 | ||
330 | pud = pud_offset(p4dp, address); | |
331 | if (pud_none(*pud)) | |
332 | return no_page_table(vma, flags); | |
333 | if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { | |
334 | page = follow_huge_pud(mm, address, pud, flags); | |
335 | if (page) | |
336 | return page; | |
337 | return no_page_table(vma, flags); | |
338 | } | |
4dc71451 AK |
339 | if (is_hugepd(__hugepd(pud_val(*pud)))) { |
340 | page = follow_huge_pd(vma, address, | |
341 | __hugepd(pud_val(*pud)), flags, | |
342 | PUD_SHIFT); | |
343 | if (page) | |
344 | return page; | |
345 | return no_page_table(vma, flags); | |
346 | } | |
080dbb61 AK |
347 | if (pud_devmap(*pud)) { |
348 | ptl = pud_lock(mm, pud); | |
df06b37f | 349 | page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); |
080dbb61 AK |
350 | spin_unlock(ptl); |
351 | if (page) | |
352 | return page; | |
353 | } | |
354 | if (unlikely(pud_bad(*pud))) | |
355 | return no_page_table(vma, flags); | |
356 | ||
df06b37f | 357 | return follow_pmd_mask(vma, address, pud, flags, ctx); |
080dbb61 AK |
358 | } |
359 | ||
080dbb61 AK |
360 | static struct page *follow_p4d_mask(struct vm_area_struct *vma, |
361 | unsigned long address, pgd_t *pgdp, | |
df06b37f KB |
362 | unsigned int flags, |
363 | struct follow_page_context *ctx) | |
080dbb61 AK |
364 | { |
365 | p4d_t *p4d; | |
4dc71451 | 366 | struct page *page; |
080dbb61 AK |
367 | |
368 | p4d = p4d_offset(pgdp, address); | |
369 | if (p4d_none(*p4d)) | |
370 | return no_page_table(vma, flags); | |
371 | BUILD_BUG_ON(p4d_huge(*p4d)); | |
372 | if (unlikely(p4d_bad(*p4d))) | |
373 | return no_page_table(vma, flags); | |
374 | ||
4dc71451 AK |
375 | if (is_hugepd(__hugepd(p4d_val(*p4d)))) { |
376 | page = follow_huge_pd(vma, address, | |
377 | __hugepd(p4d_val(*p4d)), flags, | |
378 | P4D_SHIFT); | |
379 | if (page) | |
380 | return page; | |
381 | return no_page_table(vma, flags); | |
382 | } | |
df06b37f | 383 | return follow_pud_mask(vma, address, p4d, flags, ctx); |
080dbb61 AK |
384 | } |
385 | ||
386 | /** | |
387 | * follow_page_mask - look up a page descriptor from a user-virtual address | |
388 | * @vma: vm_area_struct mapping @address | |
389 | * @address: virtual address to look up | |
390 | * @flags: flags modifying lookup behaviour | |
78179556 MR |
391 | * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a |
392 | * pointer to output page_mask | |
080dbb61 AK |
393 | * |
394 | * @flags can have FOLL_ flags set, defined in <linux/mm.h> | |
395 | * | |
78179556 MR |
396 | * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches |
397 | * the device's dev_pagemap metadata to avoid repeating expensive lookups. | |
398 | * | |
399 | * On output, the @ctx->page_mask is set according to the size of the page. | |
400 | * | |
401 | * Return: the mapped (struct page *), %NULL if no mapping exists, or | |
080dbb61 AK |
402 | * an error pointer if there is a mapping to something not represented |
403 | * by a page descriptor (see also vm_normal_page()). | |
404 | */ | |
405 | struct page *follow_page_mask(struct vm_area_struct *vma, | |
406 | unsigned long address, unsigned int flags, | |
df06b37f | 407 | struct follow_page_context *ctx) |
080dbb61 AK |
408 | { |
409 | pgd_t *pgd; | |
410 | struct page *page; | |
411 | struct mm_struct *mm = vma->vm_mm; | |
412 | ||
df06b37f | 413 | ctx->page_mask = 0; |
080dbb61 AK |
414 | |
415 | /* make this handle hugepd */ | |
416 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); | |
417 | if (!IS_ERR(page)) { | |
418 | BUG_ON(flags & FOLL_GET); | |
419 | return page; | |
420 | } | |
421 | ||
422 | pgd = pgd_offset(mm, address); | |
423 | ||
424 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
425 | return no_page_table(vma, flags); | |
426 | ||
faaa5b62 AK |
427 | if (pgd_huge(*pgd)) { |
428 | page = follow_huge_pgd(mm, address, pgd, flags); | |
429 | if (page) | |
430 | return page; | |
431 | return no_page_table(vma, flags); | |
432 | } | |
4dc71451 AK |
433 | if (is_hugepd(__hugepd(pgd_val(*pgd)))) { |
434 | page = follow_huge_pd(vma, address, | |
435 | __hugepd(pgd_val(*pgd)), flags, | |
436 | PGDIR_SHIFT); | |
437 | if (page) | |
438 | return page; | |
439 | return no_page_table(vma, flags); | |
440 | } | |
faaa5b62 | 441 | |
df06b37f KB |
442 | return follow_p4d_mask(vma, address, pgd, flags, ctx); |
443 | } | |
444 | ||
445 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | |
446 | unsigned int foll_flags) | |
447 | { | |
448 | struct follow_page_context ctx = { NULL }; | |
449 | struct page *page; | |
450 | ||
451 | page = follow_page_mask(vma, address, foll_flags, &ctx); | |
452 | if (ctx.pgmap) | |
453 | put_dev_pagemap(ctx.pgmap); | |
454 | return page; | |
080dbb61 AK |
455 | } |
456 | ||
f2b495ca KS |
457 | static int get_gate_page(struct mm_struct *mm, unsigned long address, |
458 | unsigned int gup_flags, struct vm_area_struct **vma, | |
459 | struct page **page) | |
460 | { | |
461 | pgd_t *pgd; | |
c2febafc | 462 | p4d_t *p4d; |
f2b495ca KS |
463 | pud_t *pud; |
464 | pmd_t *pmd; | |
465 | pte_t *pte; | |
466 | int ret = -EFAULT; | |
467 | ||
468 | /* user gate pages are read-only */ | |
469 | if (gup_flags & FOLL_WRITE) | |
470 | return -EFAULT; | |
471 | if (address > TASK_SIZE) | |
472 | pgd = pgd_offset_k(address); | |
473 | else | |
474 | pgd = pgd_offset_gate(mm, address); | |
475 | BUG_ON(pgd_none(*pgd)); | |
c2febafc KS |
476 | p4d = p4d_offset(pgd, address); |
477 | BUG_ON(p4d_none(*p4d)); | |
478 | pud = pud_offset(p4d, address); | |
f2b495ca KS |
479 | BUG_ON(pud_none(*pud)); |
480 | pmd = pmd_offset(pud, address); | |
84c3fc4e | 481 | if (!pmd_present(*pmd)) |
f2b495ca KS |
482 | return -EFAULT; |
483 | VM_BUG_ON(pmd_trans_huge(*pmd)); | |
484 | pte = pte_offset_map(pmd, address); | |
485 | if (pte_none(*pte)) | |
486 | goto unmap; | |
487 | *vma = get_gate_vma(mm); | |
488 | if (!page) | |
489 | goto out; | |
490 | *page = vm_normal_page(*vma, address, *pte); | |
491 | if (!*page) { | |
492 | if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) | |
493 | goto unmap; | |
494 | *page = pte_page(*pte); | |
df6ad698 JG |
495 | |
496 | /* | |
497 | * This should never happen (a device public page in the gate | |
498 | * area). | |
499 | */ | |
500 | if (is_device_public_page(*page)) | |
501 | goto unmap; | |
f2b495ca KS |
502 | } |
503 | get_page(*page); | |
504 | out: | |
505 | ret = 0; | |
506 | unmap: | |
507 | pte_unmap(pte); | |
508 | return ret; | |
509 | } | |
510 | ||
9a95f3cf PC |
511 | /* |
512 | * mmap_sem must be held on entry. If @nonblocking != NULL and | |
513 | * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. | |
514 | * If it is, *@nonblocking will be set to 0 and -EBUSY returned. | |
515 | */ | |
16744483 KS |
516 | static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, |
517 | unsigned long address, unsigned int *flags, int *nonblocking) | |
518 | { | |
16744483 | 519 | unsigned int fault_flags = 0; |
2b740303 | 520 | vm_fault_t ret; |
16744483 | 521 | |
de60f5f1 EM |
522 | /* mlock all present pages, but do not fault in new pages */ |
523 | if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) | |
524 | return -ENOENT; | |
16744483 KS |
525 | if (*flags & FOLL_WRITE) |
526 | fault_flags |= FAULT_FLAG_WRITE; | |
1b2ee126 DH |
527 | if (*flags & FOLL_REMOTE) |
528 | fault_flags |= FAULT_FLAG_REMOTE; | |
16744483 KS |
529 | if (nonblocking) |
530 | fault_flags |= FAULT_FLAG_ALLOW_RETRY; | |
531 | if (*flags & FOLL_NOWAIT) | |
532 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; | |
234b239b ALC |
533 | if (*flags & FOLL_TRIED) { |
534 | VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); | |
535 | fault_flags |= FAULT_FLAG_TRIED; | |
536 | } | |
16744483 | 537 | |
dcddffd4 | 538 | ret = handle_mm_fault(vma, address, fault_flags); |
16744483 | 539 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
540 | int err = vm_fault_to_errno(ret, *flags); |
541 | ||
542 | if (err) | |
543 | return err; | |
16744483 KS |
544 | BUG(); |
545 | } | |
546 | ||
547 | if (tsk) { | |
548 | if (ret & VM_FAULT_MAJOR) | |
549 | tsk->maj_flt++; | |
550 | else | |
551 | tsk->min_flt++; | |
552 | } | |
553 | ||
554 | if (ret & VM_FAULT_RETRY) { | |
96312e61 | 555 | if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) |
16744483 KS |
556 | *nonblocking = 0; |
557 | return -EBUSY; | |
558 | } | |
559 | ||
560 | /* | |
561 | * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when | |
562 | * necessary, even if maybe_mkwrite decided not to set pte_write. We | |
563 | * can thus safely do subsequent page lookups as if they were reads. | |
564 | * But only do so when looping for pte_write is futile: in some cases | |
565 | * userspace may also be wanting to write to the gotten user page, | |
566 | * which a read fault here might prevent (a readonly page might get | |
567 | * reCOWed by userspace write). | |
568 | */ | |
569 | if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) | |
2923117b | 570 | *flags |= FOLL_COW; |
16744483 KS |
571 | return 0; |
572 | } | |
573 | ||
fa5bb209 KS |
574 | static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) |
575 | { | |
576 | vm_flags_t vm_flags = vma->vm_flags; | |
1b2ee126 DH |
577 | int write = (gup_flags & FOLL_WRITE); |
578 | int foreign = (gup_flags & FOLL_REMOTE); | |
fa5bb209 KS |
579 | |
580 | if (vm_flags & (VM_IO | VM_PFNMAP)) | |
581 | return -EFAULT; | |
582 | ||
7f7ccc2c WT |
583 | if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) |
584 | return -EFAULT; | |
585 | ||
1b2ee126 | 586 | if (write) { |
fa5bb209 KS |
587 | if (!(vm_flags & VM_WRITE)) { |
588 | if (!(gup_flags & FOLL_FORCE)) | |
589 | return -EFAULT; | |
590 | /* | |
591 | * We used to let the write,force case do COW in a | |
592 | * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could | |
593 | * set a breakpoint in a read-only mapping of an | |
594 | * executable, without corrupting the file (yet only | |
595 | * when that file had been opened for writing!). | |
596 | * Anon pages in shared mappings are surprising: now | |
597 | * just reject it. | |
598 | */ | |
46435364 | 599 | if (!is_cow_mapping(vm_flags)) |
fa5bb209 | 600 | return -EFAULT; |
fa5bb209 KS |
601 | } |
602 | } else if (!(vm_flags & VM_READ)) { | |
603 | if (!(gup_flags & FOLL_FORCE)) | |
604 | return -EFAULT; | |
605 | /* | |
606 | * Is there actually any vma we can reach here which does not | |
607 | * have VM_MAYREAD set? | |
608 | */ | |
609 | if (!(vm_flags & VM_MAYREAD)) | |
610 | return -EFAULT; | |
611 | } | |
d61172b4 DH |
612 | /* |
613 | * gups are always data accesses, not instruction | |
614 | * fetches, so execute=false here | |
615 | */ | |
616 | if (!arch_vma_access_permitted(vma, write, false, foreign)) | |
33a709b2 | 617 | return -EFAULT; |
fa5bb209 KS |
618 | return 0; |
619 | } | |
620 | ||
4bbd4c77 KS |
621 | /** |
622 | * __get_user_pages() - pin user pages in memory | |
623 | * @tsk: task_struct of target task | |
624 | * @mm: mm_struct of target mm | |
625 | * @start: starting user address | |
626 | * @nr_pages: number of pages from start to pin | |
627 | * @gup_flags: flags modifying pin behaviour | |
628 | * @pages: array that receives pointers to the pages pinned. | |
629 | * Should be at least nr_pages long. Or NULL, if caller | |
630 | * only intends to ensure the pages are faulted in. | |
631 | * @vmas: array of pointers to vmas corresponding to each page. | |
632 | * Or NULL if the caller does not require them. | |
633 | * @nonblocking: whether waiting for disk IO or mmap_sem contention | |
634 | * | |
635 | * Returns number of pages pinned. This may be fewer than the number | |
636 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
637 | * were pinned, returns -errno. Each page returned must be released | |
638 | * with a put_page() call when it is finished with. vmas will only | |
639 | * remain valid while mmap_sem is held. | |
640 | * | |
9a95f3cf | 641 | * Must be called with mmap_sem held. It may be released. See below. |
4bbd4c77 KS |
642 | * |
643 | * __get_user_pages walks a process's page tables and takes a reference to | |
644 | * each struct page that each user address corresponds to at a given | |
645 | * instant. That is, it takes the page that would be accessed if a user | |
646 | * thread accesses the given user virtual address at that instant. | |
647 | * | |
648 | * This does not guarantee that the page exists in the user mappings when | |
649 | * __get_user_pages returns, and there may even be a completely different | |
650 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
651 | * and subsequently re faulted). However it does guarantee that the page | |
652 | * won't be freed completely. And mostly callers simply care that the page | |
653 | * contains data that was valid *at some point in time*. Typically, an IO | |
654 | * or similar operation cannot guarantee anything stronger anyway because | |
655 | * locks can't be held over the syscall boundary. | |
656 | * | |
657 | * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If | |
658 | * the page is written to, set_page_dirty (or set_page_dirty_lock, as | |
659 | * appropriate) must be called after the page is finished with, and | |
660 | * before put_page is called. | |
661 | * | |
662 | * If @nonblocking != NULL, __get_user_pages will not wait for disk IO | |
663 | * or mmap_sem contention, and if waiting is needed to pin all pages, | |
9a95f3cf PC |
664 | * *@nonblocking will be set to 0. Further, if @gup_flags does not |
665 | * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in | |
666 | * this case. | |
667 | * | |
668 | * A caller using such a combination of @nonblocking and @gup_flags | |
669 | * must therefore hold the mmap_sem for reading only, and recognize | |
670 | * when it's been released. Otherwise, it must be held for either | |
671 | * reading or writing and will not be released. | |
4bbd4c77 KS |
672 | * |
673 | * In most cases, get_user_pages or get_user_pages_fast should be used | |
674 | * instead of __get_user_pages. __get_user_pages should be used only if | |
675 | * you need some special @gup_flags. | |
676 | */ | |
0d731759 | 677 | static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
4bbd4c77 KS |
678 | unsigned long start, unsigned long nr_pages, |
679 | unsigned int gup_flags, struct page **pages, | |
680 | struct vm_area_struct **vmas, int *nonblocking) | |
681 | { | |
df06b37f | 682 | long ret = 0, i = 0; |
fa5bb209 | 683 | struct vm_area_struct *vma = NULL; |
df06b37f | 684 | struct follow_page_context ctx = { NULL }; |
4bbd4c77 KS |
685 | |
686 | if (!nr_pages) | |
687 | return 0; | |
688 | ||
689 | VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); | |
690 | ||
691 | /* | |
692 | * If FOLL_FORCE is set then do not force a full fault as the hinting | |
693 | * fault information is unrelated to the reference behaviour of a task | |
694 | * using the address space | |
695 | */ | |
696 | if (!(gup_flags & FOLL_FORCE)) | |
697 | gup_flags |= FOLL_NUMA; | |
698 | ||
4bbd4c77 | 699 | do { |
fa5bb209 KS |
700 | struct page *page; |
701 | unsigned int foll_flags = gup_flags; | |
702 | unsigned int page_increm; | |
703 | ||
704 | /* first iteration or cross vma bound */ | |
705 | if (!vma || start >= vma->vm_end) { | |
706 | vma = find_extend_vma(mm, start); | |
707 | if (!vma && in_gate_area(mm, start)) { | |
fa5bb209 KS |
708 | ret = get_gate_page(mm, start & PAGE_MASK, |
709 | gup_flags, &vma, | |
710 | pages ? &pages[i] : NULL); | |
711 | if (ret) | |
08be37b7 | 712 | goto out; |
df06b37f | 713 | ctx.page_mask = 0; |
fa5bb209 KS |
714 | goto next_page; |
715 | } | |
4bbd4c77 | 716 | |
df06b37f KB |
717 | if (!vma || check_vma_flags(vma, gup_flags)) { |
718 | ret = -EFAULT; | |
719 | goto out; | |
720 | } | |
fa5bb209 KS |
721 | if (is_vm_hugetlb_page(vma)) { |
722 | i = follow_hugetlb_page(mm, vma, pages, vmas, | |
723 | &start, &nr_pages, i, | |
87ffc118 | 724 | gup_flags, nonblocking); |
fa5bb209 | 725 | continue; |
4bbd4c77 | 726 | } |
fa5bb209 KS |
727 | } |
728 | retry: | |
729 | /* | |
730 | * If we have a pending SIGKILL, don't keep faulting pages and | |
731 | * potentially allocating memory. | |
732 | */ | |
fa45f116 | 733 | if (fatal_signal_pending(current)) { |
df06b37f KB |
734 | ret = -ERESTARTSYS; |
735 | goto out; | |
736 | } | |
fa5bb209 | 737 | cond_resched(); |
df06b37f KB |
738 | |
739 | page = follow_page_mask(vma, start, foll_flags, &ctx); | |
fa5bb209 | 740 | if (!page) { |
fa5bb209 KS |
741 | ret = faultin_page(tsk, vma, start, &foll_flags, |
742 | nonblocking); | |
743 | switch (ret) { | |
744 | case 0: | |
745 | goto retry; | |
df06b37f KB |
746 | case -EBUSY: |
747 | ret = 0; | |
748 | /* FALLTHRU */ | |
fa5bb209 KS |
749 | case -EFAULT: |
750 | case -ENOMEM: | |
751 | case -EHWPOISON: | |
df06b37f | 752 | goto out; |
fa5bb209 KS |
753 | case -ENOENT: |
754 | goto next_page; | |
4bbd4c77 | 755 | } |
fa5bb209 | 756 | BUG(); |
1027e443 KS |
757 | } else if (PTR_ERR(page) == -EEXIST) { |
758 | /* | |
759 | * Proper page table entry exists, but no corresponding | |
760 | * struct page. | |
761 | */ | |
762 | goto next_page; | |
763 | } else if (IS_ERR(page)) { | |
df06b37f KB |
764 | ret = PTR_ERR(page); |
765 | goto out; | |
1027e443 | 766 | } |
fa5bb209 KS |
767 | if (pages) { |
768 | pages[i] = page; | |
769 | flush_anon_page(vma, page, start); | |
770 | flush_dcache_page(page); | |
df06b37f | 771 | ctx.page_mask = 0; |
4bbd4c77 | 772 | } |
4bbd4c77 | 773 | next_page: |
fa5bb209 KS |
774 | if (vmas) { |
775 | vmas[i] = vma; | |
df06b37f | 776 | ctx.page_mask = 0; |
fa5bb209 | 777 | } |
df06b37f | 778 | page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); |
fa5bb209 KS |
779 | if (page_increm > nr_pages) |
780 | page_increm = nr_pages; | |
781 | i += page_increm; | |
782 | start += page_increm * PAGE_SIZE; | |
783 | nr_pages -= page_increm; | |
4bbd4c77 | 784 | } while (nr_pages); |
df06b37f KB |
785 | out: |
786 | if (ctx.pgmap) | |
787 | put_dev_pagemap(ctx.pgmap); | |
788 | return i ? i : ret; | |
4bbd4c77 | 789 | } |
4bbd4c77 | 790 | |
771ab430 TK |
791 | static bool vma_permits_fault(struct vm_area_struct *vma, |
792 | unsigned int fault_flags) | |
d4925e00 | 793 | { |
1b2ee126 DH |
794 | bool write = !!(fault_flags & FAULT_FLAG_WRITE); |
795 | bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); | |
33a709b2 | 796 | vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; |
d4925e00 DH |
797 | |
798 | if (!(vm_flags & vma->vm_flags)) | |
799 | return false; | |
800 | ||
33a709b2 DH |
801 | /* |
802 | * The architecture might have a hardware protection | |
1b2ee126 | 803 | * mechanism other than read/write that can deny access. |
d61172b4 DH |
804 | * |
805 | * gup always represents data access, not instruction | |
806 | * fetches, so execute=false here: | |
33a709b2 | 807 | */ |
d61172b4 | 808 | if (!arch_vma_access_permitted(vma, write, false, foreign)) |
33a709b2 DH |
809 | return false; |
810 | ||
d4925e00 DH |
811 | return true; |
812 | } | |
813 | ||
4bbd4c77 KS |
814 | /* |
815 | * fixup_user_fault() - manually resolve a user page fault | |
816 | * @tsk: the task_struct to use for page fault accounting, or | |
817 | * NULL if faults are not to be recorded. | |
818 | * @mm: mm_struct of target mm | |
819 | * @address: user address | |
820 | * @fault_flags:flags to pass down to handle_mm_fault() | |
4a9e1cda DD |
821 | * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller |
822 | * does not allow retry | |
4bbd4c77 KS |
823 | * |
824 | * This is meant to be called in the specific scenario where for locking reasons | |
825 | * we try to access user memory in atomic context (within a pagefault_disable() | |
826 | * section), this returns -EFAULT, and we want to resolve the user fault before | |
827 | * trying again. | |
828 | * | |
829 | * Typically this is meant to be used by the futex code. | |
830 | * | |
831 | * The main difference with get_user_pages() is that this function will | |
832 | * unconditionally call handle_mm_fault() which will in turn perform all the | |
833 | * necessary SW fixup of the dirty and young bits in the PTE, while | |
4a9e1cda | 834 | * get_user_pages() only guarantees to update these in the struct page. |
4bbd4c77 KS |
835 | * |
836 | * This is important for some architectures where those bits also gate the | |
837 | * access permission to the page because they are maintained in software. On | |
838 | * such architectures, gup() will not be enough to make a subsequent access | |
839 | * succeed. | |
840 | * | |
4a9e1cda DD |
841 | * This function will not return with an unlocked mmap_sem. So it has not the |
842 | * same semantics wrt the @mm->mmap_sem as does filemap_fault(). | |
4bbd4c77 KS |
843 | */ |
844 | int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, | |
4a9e1cda DD |
845 | unsigned long address, unsigned int fault_flags, |
846 | bool *unlocked) | |
4bbd4c77 KS |
847 | { |
848 | struct vm_area_struct *vma; | |
2b740303 | 849 | vm_fault_t ret, major = 0; |
4a9e1cda DD |
850 | |
851 | if (unlocked) | |
852 | fault_flags |= FAULT_FLAG_ALLOW_RETRY; | |
4bbd4c77 | 853 | |
4a9e1cda | 854 | retry: |
4bbd4c77 KS |
855 | vma = find_extend_vma(mm, address); |
856 | if (!vma || address < vma->vm_start) | |
857 | return -EFAULT; | |
858 | ||
d4925e00 | 859 | if (!vma_permits_fault(vma, fault_flags)) |
4bbd4c77 KS |
860 | return -EFAULT; |
861 | ||
dcddffd4 | 862 | ret = handle_mm_fault(vma, address, fault_flags); |
4a9e1cda | 863 | major |= ret & VM_FAULT_MAJOR; |
4bbd4c77 | 864 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
865 | int err = vm_fault_to_errno(ret, 0); |
866 | ||
867 | if (err) | |
868 | return err; | |
4bbd4c77 KS |
869 | BUG(); |
870 | } | |
4a9e1cda DD |
871 | |
872 | if (ret & VM_FAULT_RETRY) { | |
873 | down_read(&mm->mmap_sem); | |
874 | if (!(fault_flags & FAULT_FLAG_TRIED)) { | |
875 | *unlocked = true; | |
876 | fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; | |
877 | fault_flags |= FAULT_FLAG_TRIED; | |
878 | goto retry; | |
879 | } | |
880 | } | |
881 | ||
4bbd4c77 | 882 | if (tsk) { |
4a9e1cda | 883 | if (major) |
4bbd4c77 KS |
884 | tsk->maj_flt++; |
885 | else | |
886 | tsk->min_flt++; | |
887 | } | |
888 | return 0; | |
889 | } | |
add6a0cd | 890 | EXPORT_SYMBOL_GPL(fixup_user_fault); |
4bbd4c77 | 891 | |
f0818f47 AA |
892 | static __always_inline long __get_user_pages_locked(struct task_struct *tsk, |
893 | struct mm_struct *mm, | |
894 | unsigned long start, | |
895 | unsigned long nr_pages, | |
f0818f47 AA |
896 | struct page **pages, |
897 | struct vm_area_struct **vmas, | |
e716712f | 898 | int *locked, |
0fd71a56 | 899 | unsigned int flags) |
f0818f47 | 900 | { |
f0818f47 AA |
901 | long ret, pages_done; |
902 | bool lock_dropped; | |
903 | ||
904 | if (locked) { | |
905 | /* if VM_FAULT_RETRY can be returned, vmas become invalid */ | |
906 | BUG_ON(vmas); | |
907 | /* check caller initialized locked */ | |
908 | BUG_ON(*locked != 1); | |
909 | } | |
910 | ||
911 | if (pages) | |
912 | flags |= FOLL_GET; | |
f0818f47 AA |
913 | |
914 | pages_done = 0; | |
915 | lock_dropped = false; | |
916 | for (;;) { | |
917 | ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, | |
918 | vmas, locked); | |
919 | if (!locked) | |
920 | /* VM_FAULT_RETRY couldn't trigger, bypass */ | |
921 | return ret; | |
922 | ||
923 | /* VM_FAULT_RETRY cannot return errors */ | |
924 | if (!*locked) { | |
925 | BUG_ON(ret < 0); | |
926 | BUG_ON(ret >= nr_pages); | |
927 | } | |
928 | ||
929 | if (!pages) | |
930 | /* If it's a prefault don't insist harder */ | |
931 | return ret; | |
932 | ||
933 | if (ret > 0) { | |
934 | nr_pages -= ret; | |
935 | pages_done += ret; | |
936 | if (!nr_pages) | |
937 | break; | |
938 | } | |
939 | if (*locked) { | |
96312e61 AA |
940 | /* |
941 | * VM_FAULT_RETRY didn't trigger or it was a | |
942 | * FOLL_NOWAIT. | |
943 | */ | |
f0818f47 AA |
944 | if (!pages_done) |
945 | pages_done = ret; | |
946 | break; | |
947 | } | |
948 | /* VM_FAULT_RETRY triggered, so seek to the faulting offset */ | |
949 | pages += ret; | |
950 | start += ret << PAGE_SHIFT; | |
951 | ||
952 | /* | |
953 | * Repeat on the address that fired VM_FAULT_RETRY | |
954 | * without FAULT_FLAG_ALLOW_RETRY but with | |
955 | * FAULT_FLAG_TRIED. | |
956 | */ | |
957 | *locked = 1; | |
958 | lock_dropped = true; | |
959 | down_read(&mm->mmap_sem); | |
960 | ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, | |
961 | pages, NULL, NULL); | |
962 | if (ret != 1) { | |
963 | BUG_ON(ret > 1); | |
964 | if (!pages_done) | |
965 | pages_done = ret; | |
966 | break; | |
967 | } | |
968 | nr_pages--; | |
969 | pages_done++; | |
970 | if (!nr_pages) | |
971 | break; | |
972 | pages++; | |
973 | start += PAGE_SIZE; | |
974 | } | |
e716712f | 975 | if (lock_dropped && *locked) { |
f0818f47 AA |
976 | /* |
977 | * We must let the caller know we temporarily dropped the lock | |
978 | * and so the critical section protected by it was lost. | |
979 | */ | |
980 | up_read(&mm->mmap_sem); | |
981 | *locked = 0; | |
982 | } | |
983 | return pages_done; | |
984 | } | |
985 | ||
986 | /* | |
987 | * We can leverage the VM_FAULT_RETRY functionality in the page fault | |
988 | * paths better by using either get_user_pages_locked() or | |
989 | * get_user_pages_unlocked(). | |
990 | * | |
991 | * get_user_pages_locked() is suitable to replace the form: | |
992 | * | |
993 | * down_read(&mm->mmap_sem); | |
994 | * do_something() | |
995 | * get_user_pages(tsk, mm, ..., pages, NULL); | |
996 | * up_read(&mm->mmap_sem); | |
997 | * | |
998 | * to: | |
999 | * | |
1000 | * int locked = 1; | |
1001 | * down_read(&mm->mmap_sem); | |
1002 | * do_something() | |
1003 | * get_user_pages_locked(tsk, mm, ..., pages, &locked); | |
1004 | * if (locked) | |
1005 | * up_read(&mm->mmap_sem); | |
1006 | */ | |
c12d2da5 | 1007 | long get_user_pages_locked(unsigned long start, unsigned long nr_pages, |
3b913179 | 1008 | unsigned int gup_flags, struct page **pages, |
f0818f47 AA |
1009 | int *locked) |
1010 | { | |
cde70140 | 1011 | return __get_user_pages_locked(current, current->mm, start, nr_pages, |
e716712f | 1012 | pages, NULL, locked, |
3b913179 | 1013 | gup_flags | FOLL_TOUCH); |
f0818f47 | 1014 | } |
c12d2da5 | 1015 | EXPORT_SYMBOL(get_user_pages_locked); |
f0818f47 AA |
1016 | |
1017 | /* | |
1018 | * get_user_pages_unlocked() is suitable to replace the form: | |
1019 | * | |
1020 | * down_read(&mm->mmap_sem); | |
1021 | * get_user_pages(tsk, mm, ..., pages, NULL); | |
1022 | * up_read(&mm->mmap_sem); | |
1023 | * | |
1024 | * with: | |
1025 | * | |
1026 | * get_user_pages_unlocked(tsk, mm, ..., pages); | |
1027 | * | |
1028 | * It is functionally equivalent to get_user_pages_fast so | |
80a79516 LS |
1029 | * get_user_pages_fast should be used instead if specific gup_flags |
1030 | * (e.g. FOLL_FORCE) are not required. | |
f0818f47 | 1031 | */ |
c12d2da5 | 1032 | long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
c164154f | 1033 | struct page **pages, unsigned int gup_flags) |
f0818f47 | 1034 | { |
c803c9c6 AV |
1035 | struct mm_struct *mm = current->mm; |
1036 | int locked = 1; | |
1037 | long ret; | |
1038 | ||
1039 | down_read(&mm->mmap_sem); | |
1040 | ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, | |
e716712f | 1041 | &locked, gup_flags | FOLL_TOUCH); |
c803c9c6 AV |
1042 | if (locked) |
1043 | up_read(&mm->mmap_sem); | |
1044 | return ret; | |
f0818f47 | 1045 | } |
c12d2da5 | 1046 | EXPORT_SYMBOL(get_user_pages_unlocked); |
f0818f47 | 1047 | |
4bbd4c77 | 1048 | /* |
1e987790 | 1049 | * get_user_pages_remote() - pin user pages in memory |
4bbd4c77 KS |
1050 | * @tsk: the task_struct to use for page fault accounting, or |
1051 | * NULL if faults are not to be recorded. | |
1052 | * @mm: mm_struct of target mm | |
1053 | * @start: starting user address | |
1054 | * @nr_pages: number of pages from start to pin | |
9beae1ea | 1055 | * @gup_flags: flags modifying lookup behaviour |
4bbd4c77 KS |
1056 | * @pages: array that receives pointers to the pages pinned. |
1057 | * Should be at least nr_pages long. Or NULL, if caller | |
1058 | * only intends to ensure the pages are faulted in. | |
1059 | * @vmas: array of pointers to vmas corresponding to each page. | |
1060 | * Or NULL if the caller does not require them. | |
5b56d49f LS |
1061 | * @locked: pointer to lock flag indicating whether lock is held and |
1062 | * subsequently whether VM_FAULT_RETRY functionality can be | |
1063 | * utilised. Lock must initially be held. | |
4bbd4c77 KS |
1064 | * |
1065 | * Returns number of pages pinned. This may be fewer than the number | |
1066 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
1067 | * were pinned, returns -errno. Each page returned must be released | |
1068 | * with a put_page() call when it is finished with. vmas will only | |
1069 | * remain valid while mmap_sem is held. | |
1070 | * | |
1071 | * Must be called with mmap_sem held for read or write. | |
1072 | * | |
1073 | * get_user_pages walks a process's page tables and takes a reference to | |
1074 | * each struct page that each user address corresponds to at a given | |
1075 | * instant. That is, it takes the page that would be accessed if a user | |
1076 | * thread accesses the given user virtual address at that instant. | |
1077 | * | |
1078 | * This does not guarantee that the page exists in the user mappings when | |
1079 | * get_user_pages returns, and there may even be a completely different | |
1080 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
1081 | * and subsequently re faulted). However it does guarantee that the page | |
1082 | * won't be freed completely. And mostly callers simply care that the page | |
1083 | * contains data that was valid *at some point in time*. Typically, an IO | |
1084 | * or similar operation cannot guarantee anything stronger anyway because | |
1085 | * locks can't be held over the syscall boundary. | |
1086 | * | |
9beae1ea LS |
1087 | * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page |
1088 | * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must | |
1089 | * be called after the page is finished with, and before put_page is called. | |
4bbd4c77 KS |
1090 | * |
1091 | * get_user_pages is typically used for fewer-copy IO operations, to get a | |
1092 | * handle on the memory by some means other than accesses via the user virtual | |
1093 | * addresses. The pages may be submitted for DMA to devices or accessed via | |
1094 | * their kernel linear mapping (via the kmap APIs). Care should be taken to | |
1095 | * use the correct cache flushing APIs. | |
1096 | * | |
1097 | * See also get_user_pages_fast, for performance critical applications. | |
f0818f47 AA |
1098 | * |
1099 | * get_user_pages should be phased out in favor of | |
1100 | * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing | |
1101 | * should use get_user_pages because it cannot pass | |
1102 | * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. | |
4bbd4c77 | 1103 | */ |
1e987790 DH |
1104 | long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, |
1105 | unsigned long start, unsigned long nr_pages, | |
9beae1ea | 1106 | unsigned int gup_flags, struct page **pages, |
5b56d49f | 1107 | struct vm_area_struct **vmas, int *locked) |
4bbd4c77 | 1108 | { |
859110d7 | 1109 | return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, |
e716712f | 1110 | locked, |
9beae1ea | 1111 | gup_flags | FOLL_TOUCH | FOLL_REMOTE); |
1e987790 DH |
1112 | } |
1113 | EXPORT_SYMBOL(get_user_pages_remote); | |
1114 | ||
1115 | /* | |
d4edcf0d DH |
1116 | * This is the same as get_user_pages_remote(), just with a |
1117 | * less-flexible calling convention where we assume that the task | |
5b56d49f LS |
1118 | * and mm being operated on are the current task's and don't allow |
1119 | * passing of a locked parameter. We also obviously don't pass | |
1120 | * FOLL_REMOTE in here. | |
1e987790 | 1121 | */ |
c12d2da5 | 1122 | long get_user_pages(unsigned long start, unsigned long nr_pages, |
768ae309 | 1123 | unsigned int gup_flags, struct page **pages, |
1e987790 DH |
1124 | struct vm_area_struct **vmas) |
1125 | { | |
cde70140 | 1126 | return __get_user_pages_locked(current, current->mm, start, nr_pages, |
e716712f | 1127 | pages, vmas, NULL, |
768ae309 | 1128 | gup_flags | FOLL_TOUCH); |
4bbd4c77 | 1129 | } |
c12d2da5 | 1130 | EXPORT_SYMBOL(get_user_pages); |
4bbd4c77 | 1131 | |
9a4e9f3b AK |
1132 | #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) |
1133 | ||
2bb6d283 | 1134 | #ifdef CONFIG_FS_DAX |
9a4e9f3b AK |
1135 | static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) |
1136 | { | |
1137 | long i; | |
1138 | struct vm_area_struct *vma_prev = NULL; | |
1139 | ||
1140 | for (i = 0; i < nr_pages; i++) { | |
1141 | struct vm_area_struct *vma = vmas[i]; | |
1142 | ||
1143 | if (vma == vma_prev) | |
1144 | continue; | |
1145 | ||
1146 | vma_prev = vma; | |
1147 | ||
1148 | if (vma_is_fsdax(vma)) | |
1149 | return true; | |
1150 | } | |
1151 | return false; | |
1152 | } | |
1153 | #else | |
1154 | static inline bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) | |
1155 | { | |
1156 | return false; | |
1157 | } | |
1158 | #endif | |
1159 | ||
1160 | #ifdef CONFIG_CMA | |
1161 | static struct page *new_non_cma_page(struct page *page, unsigned long private) | |
1162 | { | |
1163 | /* | |
1164 | * We want to make sure we allocate the new page from the same node | |
1165 | * as the source page. | |
1166 | */ | |
1167 | int nid = page_to_nid(page); | |
1168 | /* | |
1169 | * Trying to allocate a page for migration. Ignore allocation | |
1170 | * failure warnings. We don't force __GFP_THISNODE here because | |
1171 | * this node here is the node where we have CMA reservation and | |
1172 | * in some case these nodes will have really less non movable | |
1173 | * allocation memory. | |
1174 | */ | |
1175 | gfp_t gfp_mask = GFP_USER | __GFP_NOWARN; | |
1176 | ||
1177 | if (PageHighMem(page)) | |
1178 | gfp_mask |= __GFP_HIGHMEM; | |
1179 | ||
1180 | #ifdef CONFIG_HUGETLB_PAGE | |
1181 | if (PageHuge(page)) { | |
1182 | struct hstate *h = page_hstate(page); | |
1183 | /* | |
1184 | * We don't want to dequeue from the pool because pool pages will | |
1185 | * mostly be from the CMA region. | |
1186 | */ | |
1187 | return alloc_migrate_huge_page(h, gfp_mask, nid, NULL); | |
1188 | } | |
1189 | #endif | |
1190 | if (PageTransHuge(page)) { | |
1191 | struct page *thp; | |
1192 | /* | |
1193 | * ignore allocation failure warnings | |
1194 | */ | |
1195 | gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN; | |
1196 | ||
1197 | /* | |
1198 | * Remove the movable mask so that we don't allocate from | |
1199 | * CMA area again. | |
1200 | */ | |
1201 | thp_gfpmask &= ~__GFP_MOVABLE; | |
1202 | thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER); | |
1203 | if (!thp) | |
1204 | return NULL; | |
1205 | prep_transhuge_page(thp); | |
1206 | return thp; | |
1207 | } | |
1208 | ||
1209 | return __alloc_pages_node(nid, gfp_mask, 0); | |
1210 | } | |
1211 | ||
1212 | static long check_and_migrate_cma_pages(unsigned long start, long nr_pages, | |
1213 | unsigned int gup_flags, | |
1214 | struct page **pages, | |
1215 | struct vm_area_struct **vmas) | |
1216 | { | |
1217 | long i; | |
1218 | bool drain_allow = true; | |
1219 | bool migrate_allow = true; | |
1220 | LIST_HEAD(cma_page_list); | |
1221 | ||
1222 | check_again: | |
1223 | for (i = 0; i < nr_pages; i++) { | |
1224 | /* | |
1225 | * If we get a page from the CMA zone, since we are going to | |
1226 | * be pinning these entries, we might as well move them out | |
1227 | * of the CMA zone if possible. | |
1228 | */ | |
1229 | if (is_migrate_cma_page(pages[i])) { | |
1230 | ||
1231 | struct page *head = compound_head(pages[i]); | |
1232 | ||
1233 | if (PageHuge(head)) { | |
1234 | isolate_huge_page(head, &cma_page_list); | |
1235 | } else { | |
1236 | if (!PageLRU(head) && drain_allow) { | |
1237 | lru_add_drain_all(); | |
1238 | drain_allow = false; | |
1239 | } | |
1240 | ||
1241 | if (!isolate_lru_page(head)) { | |
1242 | list_add_tail(&head->lru, &cma_page_list); | |
1243 | mod_node_page_state(page_pgdat(head), | |
1244 | NR_ISOLATED_ANON + | |
1245 | page_is_file_cache(head), | |
1246 | hpage_nr_pages(head)); | |
1247 | } | |
1248 | } | |
1249 | } | |
1250 | } | |
1251 | ||
1252 | if (!list_empty(&cma_page_list)) { | |
1253 | /* | |
1254 | * drop the above get_user_pages reference. | |
1255 | */ | |
1256 | for (i = 0; i < nr_pages; i++) | |
1257 | put_page(pages[i]); | |
1258 | ||
1259 | if (migrate_pages(&cma_page_list, new_non_cma_page, | |
1260 | NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) { | |
1261 | /* | |
1262 | * some of the pages failed migration. Do get_user_pages | |
1263 | * without migration. | |
1264 | */ | |
1265 | migrate_allow = false; | |
1266 | ||
1267 | if (!list_empty(&cma_page_list)) | |
1268 | putback_movable_pages(&cma_page_list); | |
1269 | } | |
1270 | /* | |
1271 | * We did migrate all the pages, Try to get the page references again | |
1272 | * migrating any new CMA pages which we failed to isolate earlier. | |
1273 | */ | |
1274 | nr_pages = get_user_pages(start, nr_pages, gup_flags, pages, vmas); | |
1275 | if ((nr_pages > 0) && migrate_allow) { | |
1276 | drain_allow = true; | |
1277 | goto check_again; | |
1278 | } | |
1279 | } | |
1280 | ||
1281 | return nr_pages; | |
1282 | } | |
1283 | #else | |
1284 | static inline long check_and_migrate_cma_pages(unsigned long start, long nr_pages, | |
1285 | unsigned int gup_flags, | |
1286 | struct page **pages, | |
1287 | struct vm_area_struct **vmas) | |
1288 | { | |
1289 | return nr_pages; | |
1290 | } | |
1291 | #endif | |
1292 | ||
2bb6d283 DW |
1293 | /* |
1294 | * This is the same as get_user_pages() in that it assumes we are | |
1295 | * operating on the current task's mm, but it goes further to validate | |
1296 | * that the vmas associated with the address range are suitable for | |
1297 | * longterm elevated page reference counts. For example, filesystem-dax | |
1298 | * mappings are subject to the lifetime enforced by the filesystem and | |
1299 | * we need guarantees that longterm users like RDMA and V4L2 only | |
1300 | * establish mappings that have a kernel enforced revocation mechanism. | |
1301 | * | |
1302 | * "longterm" == userspace controlled elevated page count lifetime. | |
1303 | * Contrast this to iov_iter_get_pages() usages which are transient. | |
1304 | */ | |
1305 | long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, | |
9a4e9f3b AK |
1306 | unsigned int gup_flags, struct page **pages, |
1307 | struct vm_area_struct **vmas_arg) | |
2bb6d283 DW |
1308 | { |
1309 | struct vm_area_struct **vmas = vmas_arg; | |
9a4e9f3b | 1310 | unsigned long flags; |
2bb6d283 DW |
1311 | long rc, i; |
1312 | ||
1313 | if (!pages) | |
1314 | return -EINVAL; | |
1315 | ||
1316 | if (!vmas) { | |
1317 | vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *), | |
1318 | GFP_KERNEL); | |
1319 | if (!vmas) | |
1320 | return -ENOMEM; | |
1321 | } | |
1322 | ||
9a4e9f3b | 1323 | flags = memalloc_nocma_save(); |
2bb6d283 | 1324 | rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas); |
9a4e9f3b AK |
1325 | memalloc_nocma_restore(flags); |
1326 | if (rc < 0) | |
1327 | goto out; | |
2bb6d283 | 1328 | |
9a4e9f3b AK |
1329 | if (check_dax_vmas(vmas, rc)) { |
1330 | for (i = 0; i < rc; i++) | |
1331 | put_page(pages[i]); | |
1332 | rc = -EOPNOTSUPP; | |
2bb6d283 | 1333 | goto out; |
9a4e9f3b | 1334 | } |
2bb6d283 | 1335 | |
9a4e9f3b | 1336 | rc = check_and_migrate_cma_pages(start, rc, gup_flags, pages, vmas); |
2bb6d283 DW |
1337 | out: |
1338 | if (vmas != vmas_arg) | |
1339 | kfree(vmas); | |
1340 | return rc; | |
1341 | } | |
1342 | EXPORT_SYMBOL(get_user_pages_longterm); | |
1343 | #endif /* CONFIG_FS_DAX */ | |
1344 | ||
acc3c8d1 KS |
1345 | /** |
1346 | * populate_vma_page_range() - populate a range of pages in the vma. | |
1347 | * @vma: target vma | |
1348 | * @start: start address | |
1349 | * @end: end address | |
1350 | * @nonblocking: | |
1351 | * | |
1352 | * This takes care of mlocking the pages too if VM_LOCKED is set. | |
1353 | * | |
1354 | * return 0 on success, negative error code on error. | |
1355 | * | |
1356 | * vma->vm_mm->mmap_sem must be held. | |
1357 | * | |
1358 | * If @nonblocking is NULL, it may be held for read or write and will | |
1359 | * be unperturbed. | |
1360 | * | |
1361 | * If @nonblocking is non-NULL, it must held for read only and may be | |
1362 | * released. If it's released, *@nonblocking will be set to 0. | |
1363 | */ | |
1364 | long populate_vma_page_range(struct vm_area_struct *vma, | |
1365 | unsigned long start, unsigned long end, int *nonblocking) | |
1366 | { | |
1367 | struct mm_struct *mm = vma->vm_mm; | |
1368 | unsigned long nr_pages = (end - start) / PAGE_SIZE; | |
1369 | int gup_flags; | |
1370 | ||
1371 | VM_BUG_ON(start & ~PAGE_MASK); | |
1372 | VM_BUG_ON(end & ~PAGE_MASK); | |
1373 | VM_BUG_ON_VMA(start < vma->vm_start, vma); | |
1374 | VM_BUG_ON_VMA(end > vma->vm_end, vma); | |
1375 | VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); | |
1376 | ||
de60f5f1 EM |
1377 | gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; |
1378 | if (vma->vm_flags & VM_LOCKONFAULT) | |
1379 | gup_flags &= ~FOLL_POPULATE; | |
acc3c8d1 KS |
1380 | /* |
1381 | * We want to touch writable mappings with a write fault in order | |
1382 | * to break COW, except for shared mappings because these don't COW | |
1383 | * and we would not want to dirty them for nothing. | |
1384 | */ | |
1385 | if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) | |
1386 | gup_flags |= FOLL_WRITE; | |
1387 | ||
1388 | /* | |
1389 | * We want mlock to succeed for regions that have any permissions | |
1390 | * other than PROT_NONE. | |
1391 | */ | |
1392 | if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) | |
1393 | gup_flags |= FOLL_FORCE; | |
1394 | ||
1395 | /* | |
1396 | * We made sure addr is within a VMA, so the following will | |
1397 | * not result in a stack expansion that recurses back here. | |
1398 | */ | |
1399 | return __get_user_pages(current, mm, start, nr_pages, gup_flags, | |
1400 | NULL, NULL, nonblocking); | |
1401 | } | |
1402 | ||
1403 | /* | |
1404 | * __mm_populate - populate and/or mlock pages within a range of address space. | |
1405 | * | |
1406 | * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap | |
1407 | * flags. VMAs must be already marked with the desired vm_flags, and | |
1408 | * mmap_sem must not be held. | |
1409 | */ | |
1410 | int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) | |
1411 | { | |
1412 | struct mm_struct *mm = current->mm; | |
1413 | unsigned long end, nstart, nend; | |
1414 | struct vm_area_struct *vma = NULL; | |
1415 | int locked = 0; | |
1416 | long ret = 0; | |
1417 | ||
acc3c8d1 KS |
1418 | end = start + len; |
1419 | ||
1420 | for (nstart = start; nstart < end; nstart = nend) { | |
1421 | /* | |
1422 | * We want to fault in pages for [nstart; end) address range. | |
1423 | * Find first corresponding VMA. | |
1424 | */ | |
1425 | if (!locked) { | |
1426 | locked = 1; | |
1427 | down_read(&mm->mmap_sem); | |
1428 | vma = find_vma(mm, nstart); | |
1429 | } else if (nstart >= vma->vm_end) | |
1430 | vma = vma->vm_next; | |
1431 | if (!vma || vma->vm_start >= end) | |
1432 | break; | |
1433 | /* | |
1434 | * Set [nstart; nend) to intersection of desired address | |
1435 | * range with the first VMA. Also, skip undesirable VMA types. | |
1436 | */ | |
1437 | nend = min(end, vma->vm_end); | |
1438 | if (vma->vm_flags & (VM_IO | VM_PFNMAP)) | |
1439 | continue; | |
1440 | if (nstart < vma->vm_start) | |
1441 | nstart = vma->vm_start; | |
1442 | /* | |
1443 | * Now fault in a range of pages. populate_vma_page_range() | |
1444 | * double checks the vma flags, so that it won't mlock pages | |
1445 | * if the vma was already munlocked. | |
1446 | */ | |
1447 | ret = populate_vma_page_range(vma, nstart, nend, &locked); | |
1448 | if (ret < 0) { | |
1449 | if (ignore_errors) { | |
1450 | ret = 0; | |
1451 | continue; /* continue at next VMA */ | |
1452 | } | |
1453 | break; | |
1454 | } | |
1455 | nend = nstart + ret * PAGE_SIZE; | |
1456 | ret = 0; | |
1457 | } | |
1458 | if (locked) | |
1459 | up_read(&mm->mmap_sem); | |
1460 | return ret; /* 0 or negative error code */ | |
1461 | } | |
1462 | ||
4bbd4c77 KS |
1463 | /** |
1464 | * get_dump_page() - pin user page in memory while writing it to core dump | |
1465 | * @addr: user address | |
1466 | * | |
1467 | * Returns struct page pointer of user page pinned for dump, | |
ea1754a0 | 1468 | * to be freed afterwards by put_page(). |
4bbd4c77 KS |
1469 | * |
1470 | * Returns NULL on any kind of failure - a hole must then be inserted into | |
1471 | * the corefile, to preserve alignment with its headers; and also returns | |
1472 | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - | |
1473 | * allowing a hole to be left in the corefile to save diskspace. | |
1474 | * | |
1475 | * Called without mmap_sem, but after all other threads have been killed. | |
1476 | */ | |
1477 | #ifdef CONFIG_ELF_CORE | |
1478 | struct page *get_dump_page(unsigned long addr) | |
1479 | { | |
1480 | struct vm_area_struct *vma; | |
1481 | struct page *page; | |
1482 | ||
1483 | if (__get_user_pages(current, current->mm, addr, 1, | |
1484 | FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, | |
1485 | NULL) < 1) | |
1486 | return NULL; | |
1487 | flush_cache_page(vma, addr, page_to_pfn(page)); | |
1488 | return page; | |
1489 | } | |
1490 | #endif /* CONFIG_ELF_CORE */ | |
2667f50e SC |
1491 | |
1492 | /* | |
e585513b | 1493 | * Generic Fast GUP |
2667f50e SC |
1494 | * |
1495 | * get_user_pages_fast attempts to pin user pages by walking the page | |
1496 | * tables directly and avoids taking locks. Thus the walker needs to be | |
1497 | * protected from page table pages being freed from under it, and should | |
1498 | * block any THP splits. | |
1499 | * | |
1500 | * One way to achieve this is to have the walker disable interrupts, and | |
1501 | * rely on IPIs from the TLB flushing code blocking before the page table | |
1502 | * pages are freed. This is unsuitable for architectures that do not need | |
1503 | * to broadcast an IPI when invalidating TLBs. | |
1504 | * | |
1505 | * Another way to achieve this is to batch up page table containing pages | |
1506 | * belonging to more than one mm_user, then rcu_sched a callback to free those | |
1507 | * pages. Disabling interrupts will allow the fast_gup walker to both block | |
1508 | * the rcu_sched callback, and an IPI that we broadcast for splitting THPs | |
1509 | * (which is a relatively rare event). The code below adopts this strategy. | |
1510 | * | |
1511 | * Before activating this code, please be aware that the following assumptions | |
1512 | * are currently made: | |
1513 | * | |
e585513b KS |
1514 | * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to |
1515 | * free pages containing page tables or TLB flushing requires IPI broadcast. | |
2667f50e | 1516 | * |
2667f50e SC |
1517 | * *) ptes can be read atomically by the architecture. |
1518 | * | |
1519 | * *) access_ok is sufficient to validate userspace address ranges. | |
1520 | * | |
1521 | * The last two assumptions can be relaxed by the addition of helper functions. | |
1522 | * | |
1523 | * This code is based heavily on the PowerPC implementation by Nick Piggin. | |
1524 | */ | |
e585513b | 1525 | #ifdef CONFIG_HAVE_GENERIC_GUP |
2667f50e | 1526 | |
0005d20b KS |
1527 | #ifndef gup_get_pte |
1528 | /* | |
1529 | * We assume that the PTE can be read atomically. If this is not the case for | |
1530 | * your architecture, please provide the helper. | |
1531 | */ | |
1532 | static inline pte_t gup_get_pte(pte_t *ptep) | |
1533 | { | |
1534 | return READ_ONCE(*ptep); | |
1535 | } | |
1536 | #endif | |
1537 | ||
b59f65fa KS |
1538 | static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages) |
1539 | { | |
1540 | while ((*nr) - nr_start) { | |
1541 | struct page *page = pages[--(*nr)]; | |
1542 | ||
1543 | ClearPageReferenced(page); | |
1544 | put_page(page); | |
1545 | } | |
1546 | } | |
1547 | ||
3010a5ea | 1548 | #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL |
2667f50e SC |
1549 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, |
1550 | int write, struct page **pages, int *nr) | |
1551 | { | |
b59f65fa KS |
1552 | struct dev_pagemap *pgmap = NULL; |
1553 | int nr_start = *nr, ret = 0; | |
2667f50e | 1554 | pte_t *ptep, *ptem; |
2667f50e SC |
1555 | |
1556 | ptem = ptep = pte_offset_map(&pmd, addr); | |
1557 | do { | |
0005d20b | 1558 | pte_t pte = gup_get_pte(ptep); |
7aef4172 | 1559 | struct page *head, *page; |
2667f50e SC |
1560 | |
1561 | /* | |
1562 | * Similar to the PMD case below, NUMA hinting must take slow | |
8a0516ed | 1563 | * path using the pte_protnone check. |
2667f50e | 1564 | */ |
e7884f8e KS |
1565 | if (pte_protnone(pte)) |
1566 | goto pte_unmap; | |
1567 | ||
1568 | if (!pte_access_permitted(pte, write)) | |
1569 | goto pte_unmap; | |
1570 | ||
b59f65fa KS |
1571 | if (pte_devmap(pte)) { |
1572 | pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); | |
1573 | if (unlikely(!pgmap)) { | |
1574 | undo_dev_pagemap(nr, nr_start, pages); | |
1575 | goto pte_unmap; | |
1576 | } | |
1577 | } else if (pte_special(pte)) | |
2667f50e SC |
1578 | goto pte_unmap; |
1579 | ||
1580 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
1581 | page = pte_page(pte); | |
7aef4172 | 1582 | head = compound_head(page); |
2667f50e | 1583 | |
7aef4172 | 1584 | if (!page_cache_get_speculative(head)) |
2667f50e SC |
1585 | goto pte_unmap; |
1586 | ||
1587 | if (unlikely(pte_val(pte) != pte_val(*ptep))) { | |
7aef4172 | 1588 | put_page(head); |
2667f50e SC |
1589 | goto pte_unmap; |
1590 | } | |
1591 | ||
7aef4172 | 1592 | VM_BUG_ON_PAGE(compound_head(page) != head, page); |
e9348053 KS |
1593 | |
1594 | SetPageReferenced(page); | |
2667f50e SC |
1595 | pages[*nr] = page; |
1596 | (*nr)++; | |
1597 | ||
1598 | } while (ptep++, addr += PAGE_SIZE, addr != end); | |
1599 | ||
1600 | ret = 1; | |
1601 | ||
1602 | pte_unmap: | |
832d7aa0 CH |
1603 | if (pgmap) |
1604 | put_dev_pagemap(pgmap); | |
2667f50e SC |
1605 | pte_unmap(ptem); |
1606 | return ret; | |
1607 | } | |
1608 | #else | |
1609 | ||
1610 | /* | |
1611 | * If we can't determine whether or not a pte is special, then fail immediately | |
1612 | * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not | |
1613 | * to be special. | |
1614 | * | |
1615 | * For a futex to be placed on a THP tail page, get_futex_key requires a | |
1616 | * __get_user_pages_fast implementation that can pin pages. Thus it's still | |
1617 | * useful to have gup_huge_pmd even if we can't operate on ptes. | |
1618 | */ | |
1619 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, | |
1620 | int write, struct page **pages, int *nr) | |
1621 | { | |
1622 | return 0; | |
1623 | } | |
3010a5ea | 1624 | #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ |
2667f50e | 1625 | |
09180ca4 | 1626 | #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) |
b59f65fa KS |
1627 | static int __gup_device_huge(unsigned long pfn, unsigned long addr, |
1628 | unsigned long end, struct page **pages, int *nr) | |
1629 | { | |
1630 | int nr_start = *nr; | |
1631 | struct dev_pagemap *pgmap = NULL; | |
1632 | ||
1633 | do { | |
1634 | struct page *page = pfn_to_page(pfn); | |
1635 | ||
1636 | pgmap = get_dev_pagemap(pfn, pgmap); | |
1637 | if (unlikely(!pgmap)) { | |
1638 | undo_dev_pagemap(nr, nr_start, pages); | |
1639 | return 0; | |
1640 | } | |
1641 | SetPageReferenced(page); | |
1642 | pages[*nr] = page; | |
1643 | get_page(page); | |
b59f65fa KS |
1644 | (*nr)++; |
1645 | pfn++; | |
1646 | } while (addr += PAGE_SIZE, addr != end); | |
832d7aa0 CH |
1647 | |
1648 | if (pgmap) | |
1649 | put_dev_pagemap(pgmap); | |
b59f65fa KS |
1650 | return 1; |
1651 | } | |
1652 | ||
a9b6de77 | 1653 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
b59f65fa KS |
1654 | unsigned long end, struct page **pages, int *nr) |
1655 | { | |
1656 | unsigned long fault_pfn; | |
a9b6de77 DW |
1657 | int nr_start = *nr; |
1658 | ||
1659 | fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | |
1660 | if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) | |
1661 | return 0; | |
b59f65fa | 1662 | |
a9b6de77 DW |
1663 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { |
1664 | undo_dev_pagemap(nr, nr_start, pages); | |
1665 | return 0; | |
1666 | } | |
1667 | return 1; | |
b59f65fa KS |
1668 | } |
1669 | ||
a9b6de77 | 1670 | static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, |
b59f65fa KS |
1671 | unsigned long end, struct page **pages, int *nr) |
1672 | { | |
1673 | unsigned long fault_pfn; | |
a9b6de77 DW |
1674 | int nr_start = *nr; |
1675 | ||
1676 | fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | |
1677 | if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) | |
1678 | return 0; | |
b59f65fa | 1679 | |
a9b6de77 DW |
1680 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { |
1681 | undo_dev_pagemap(nr, nr_start, pages); | |
1682 | return 0; | |
1683 | } | |
1684 | return 1; | |
b59f65fa KS |
1685 | } |
1686 | #else | |
a9b6de77 | 1687 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
b59f65fa KS |
1688 | unsigned long end, struct page **pages, int *nr) |
1689 | { | |
1690 | BUILD_BUG(); | |
1691 | return 0; | |
1692 | } | |
1693 | ||
a9b6de77 | 1694 | static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, |
b59f65fa KS |
1695 | unsigned long end, struct page **pages, int *nr) |
1696 | { | |
1697 | BUILD_BUG(); | |
1698 | return 0; | |
1699 | } | |
1700 | #endif | |
1701 | ||
2667f50e SC |
1702 | static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
1703 | unsigned long end, int write, struct page **pages, int *nr) | |
1704 | { | |
ddc58f27 | 1705 | struct page *head, *page; |
2667f50e SC |
1706 | int refs; |
1707 | ||
e7884f8e | 1708 | if (!pmd_access_permitted(orig, write)) |
2667f50e SC |
1709 | return 0; |
1710 | ||
b59f65fa | 1711 | if (pmd_devmap(orig)) |
a9b6de77 | 1712 | return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr); |
b59f65fa | 1713 | |
2667f50e | 1714 | refs = 0; |
d63206ee | 1715 | page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); |
2667f50e | 1716 | do { |
2667f50e SC |
1717 | pages[*nr] = page; |
1718 | (*nr)++; | |
1719 | page++; | |
1720 | refs++; | |
1721 | } while (addr += PAGE_SIZE, addr != end); | |
1722 | ||
d63206ee | 1723 | head = compound_head(pmd_page(orig)); |
2667f50e SC |
1724 | if (!page_cache_add_speculative(head, refs)) { |
1725 | *nr -= refs; | |
1726 | return 0; | |
1727 | } | |
1728 | ||
1729 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { | |
1730 | *nr -= refs; | |
1731 | while (refs--) | |
1732 | put_page(head); | |
1733 | return 0; | |
1734 | } | |
1735 | ||
e9348053 | 1736 | SetPageReferenced(head); |
2667f50e SC |
1737 | return 1; |
1738 | } | |
1739 | ||
1740 | static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, | |
1741 | unsigned long end, int write, struct page **pages, int *nr) | |
1742 | { | |
ddc58f27 | 1743 | struct page *head, *page; |
2667f50e SC |
1744 | int refs; |
1745 | ||
e7884f8e | 1746 | if (!pud_access_permitted(orig, write)) |
2667f50e SC |
1747 | return 0; |
1748 | ||
b59f65fa | 1749 | if (pud_devmap(orig)) |
a9b6de77 | 1750 | return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr); |
b59f65fa | 1751 | |
2667f50e | 1752 | refs = 0; |
d63206ee | 1753 | page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); |
2667f50e | 1754 | do { |
2667f50e SC |
1755 | pages[*nr] = page; |
1756 | (*nr)++; | |
1757 | page++; | |
1758 | refs++; | |
1759 | } while (addr += PAGE_SIZE, addr != end); | |
1760 | ||
d63206ee | 1761 | head = compound_head(pud_page(orig)); |
2667f50e SC |
1762 | if (!page_cache_add_speculative(head, refs)) { |
1763 | *nr -= refs; | |
1764 | return 0; | |
1765 | } | |
1766 | ||
1767 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { | |
1768 | *nr -= refs; | |
1769 | while (refs--) | |
1770 | put_page(head); | |
1771 | return 0; | |
1772 | } | |
1773 | ||
e9348053 | 1774 | SetPageReferenced(head); |
2667f50e SC |
1775 | return 1; |
1776 | } | |
1777 | ||
f30c59e9 AK |
1778 | static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, |
1779 | unsigned long end, int write, | |
1780 | struct page **pages, int *nr) | |
1781 | { | |
1782 | int refs; | |
ddc58f27 | 1783 | struct page *head, *page; |
f30c59e9 | 1784 | |
e7884f8e | 1785 | if (!pgd_access_permitted(orig, write)) |
f30c59e9 AK |
1786 | return 0; |
1787 | ||
b59f65fa | 1788 | BUILD_BUG_ON(pgd_devmap(orig)); |
f30c59e9 | 1789 | refs = 0; |
d63206ee | 1790 | page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); |
f30c59e9 | 1791 | do { |
f30c59e9 AK |
1792 | pages[*nr] = page; |
1793 | (*nr)++; | |
1794 | page++; | |
1795 | refs++; | |
1796 | } while (addr += PAGE_SIZE, addr != end); | |
1797 | ||
d63206ee | 1798 | head = compound_head(pgd_page(orig)); |
f30c59e9 AK |
1799 | if (!page_cache_add_speculative(head, refs)) { |
1800 | *nr -= refs; | |
1801 | return 0; | |
1802 | } | |
1803 | ||
1804 | if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { | |
1805 | *nr -= refs; | |
1806 | while (refs--) | |
1807 | put_page(head); | |
1808 | return 0; | |
1809 | } | |
1810 | ||
e9348053 | 1811 | SetPageReferenced(head); |
f30c59e9 AK |
1812 | return 1; |
1813 | } | |
1814 | ||
2667f50e SC |
1815 | static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, |
1816 | int write, struct page **pages, int *nr) | |
1817 | { | |
1818 | unsigned long next; | |
1819 | pmd_t *pmdp; | |
1820 | ||
1821 | pmdp = pmd_offset(&pud, addr); | |
1822 | do { | |
38c5ce93 | 1823 | pmd_t pmd = READ_ONCE(*pmdp); |
2667f50e SC |
1824 | |
1825 | next = pmd_addr_end(addr, end); | |
84c3fc4e | 1826 | if (!pmd_present(pmd)) |
2667f50e SC |
1827 | return 0; |
1828 | ||
414fd080 YZ |
1829 | if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || |
1830 | pmd_devmap(pmd))) { | |
2667f50e SC |
1831 | /* |
1832 | * NUMA hinting faults need to be handled in the GUP | |
1833 | * slowpath for accounting purposes and so that they | |
1834 | * can be serialised against THP migration. | |
1835 | */ | |
8a0516ed | 1836 | if (pmd_protnone(pmd)) |
2667f50e SC |
1837 | return 0; |
1838 | ||
1839 | if (!gup_huge_pmd(pmd, pmdp, addr, next, write, | |
1840 | pages, nr)) | |
1841 | return 0; | |
1842 | ||
f30c59e9 AK |
1843 | } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { |
1844 | /* | |
1845 | * architecture have different format for hugetlbfs | |
1846 | * pmd format and THP pmd format | |
1847 | */ | |
1848 | if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, | |
1849 | PMD_SHIFT, next, write, pages, nr)) | |
1850 | return 0; | |
2667f50e | 1851 | } else if (!gup_pte_range(pmd, addr, next, write, pages, nr)) |
2923117b | 1852 | return 0; |
2667f50e SC |
1853 | } while (pmdp++, addr = next, addr != end); |
1854 | ||
1855 | return 1; | |
1856 | } | |
1857 | ||
c2febafc | 1858 | static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, |
f30c59e9 | 1859 | int write, struct page **pages, int *nr) |
2667f50e SC |
1860 | { |
1861 | unsigned long next; | |
1862 | pud_t *pudp; | |
1863 | ||
c2febafc | 1864 | pudp = pud_offset(&p4d, addr); |
2667f50e | 1865 | do { |
e37c6982 | 1866 | pud_t pud = READ_ONCE(*pudp); |
2667f50e SC |
1867 | |
1868 | next = pud_addr_end(addr, end); | |
1869 | if (pud_none(pud)) | |
1870 | return 0; | |
f30c59e9 | 1871 | if (unlikely(pud_huge(pud))) { |
2667f50e | 1872 | if (!gup_huge_pud(pud, pudp, addr, next, write, |
f30c59e9 AK |
1873 | pages, nr)) |
1874 | return 0; | |
1875 | } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { | |
1876 | if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, | |
1877 | PUD_SHIFT, next, write, pages, nr)) | |
2667f50e SC |
1878 | return 0; |
1879 | } else if (!gup_pmd_range(pud, addr, next, write, pages, nr)) | |
1880 | return 0; | |
1881 | } while (pudp++, addr = next, addr != end); | |
1882 | ||
1883 | return 1; | |
1884 | } | |
1885 | ||
c2febafc KS |
1886 | static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, |
1887 | int write, struct page **pages, int *nr) | |
1888 | { | |
1889 | unsigned long next; | |
1890 | p4d_t *p4dp; | |
1891 | ||
1892 | p4dp = p4d_offset(&pgd, addr); | |
1893 | do { | |
1894 | p4d_t p4d = READ_ONCE(*p4dp); | |
1895 | ||
1896 | next = p4d_addr_end(addr, end); | |
1897 | if (p4d_none(p4d)) | |
1898 | return 0; | |
1899 | BUILD_BUG_ON(p4d_huge(p4d)); | |
1900 | if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { | |
1901 | if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, | |
1902 | P4D_SHIFT, next, write, pages, nr)) | |
1903 | return 0; | |
ce70df08 | 1904 | } else if (!gup_pud_range(p4d, addr, next, write, pages, nr)) |
c2febafc KS |
1905 | return 0; |
1906 | } while (p4dp++, addr = next, addr != end); | |
1907 | ||
1908 | return 1; | |
1909 | } | |
1910 | ||
5b65c467 KS |
1911 | static void gup_pgd_range(unsigned long addr, unsigned long end, |
1912 | int write, struct page **pages, int *nr) | |
1913 | { | |
1914 | unsigned long next; | |
1915 | pgd_t *pgdp; | |
1916 | ||
1917 | pgdp = pgd_offset(current->mm, addr); | |
1918 | do { | |
1919 | pgd_t pgd = READ_ONCE(*pgdp); | |
1920 | ||
1921 | next = pgd_addr_end(addr, end); | |
1922 | if (pgd_none(pgd)) | |
1923 | return; | |
1924 | if (unlikely(pgd_huge(pgd))) { | |
1925 | if (!gup_huge_pgd(pgd, pgdp, addr, next, write, | |
1926 | pages, nr)) | |
1927 | return; | |
1928 | } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { | |
1929 | if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, | |
1930 | PGDIR_SHIFT, next, write, pages, nr)) | |
1931 | return; | |
1932 | } else if (!gup_p4d_range(pgd, addr, next, write, pages, nr)) | |
1933 | return; | |
1934 | } while (pgdp++, addr = next, addr != end); | |
1935 | } | |
1936 | ||
1937 | #ifndef gup_fast_permitted | |
1938 | /* | |
1939 | * Check if it's allowed to use __get_user_pages_fast() for the range, or | |
1940 | * we need to fall back to the slow version: | |
1941 | */ | |
ad8cfb9c | 1942 | bool gup_fast_permitted(unsigned long start, int nr_pages) |
5b65c467 KS |
1943 | { |
1944 | unsigned long len, end; | |
1945 | ||
1946 | len = (unsigned long) nr_pages << PAGE_SHIFT; | |
1947 | end = start + len; | |
1948 | return end >= start; | |
1949 | } | |
1950 | #endif | |
1951 | ||
2667f50e SC |
1952 | /* |
1953 | * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to | |
d0811078 MT |
1954 | * the regular GUP. |
1955 | * Note a difference with get_user_pages_fast: this always returns the | |
1956 | * number of pages pinned, 0 if no pages were pinned. | |
2667f50e SC |
1957 | */ |
1958 | int __get_user_pages_fast(unsigned long start, int nr_pages, int write, | |
1959 | struct page **pages) | |
1960 | { | |
d4faa402 | 1961 | unsigned long len, end; |
5b65c467 | 1962 | unsigned long flags; |
2667f50e SC |
1963 | int nr = 0; |
1964 | ||
1965 | start &= PAGE_MASK; | |
2667f50e SC |
1966 | len = (unsigned long) nr_pages << PAGE_SHIFT; |
1967 | end = start + len; | |
1968 | ||
96d4f267 | 1969 | if (unlikely(!access_ok((void __user *)start, len))) |
2667f50e SC |
1970 | return 0; |
1971 | ||
1972 | /* | |
1973 | * Disable interrupts. We use the nested form as we can already have | |
1974 | * interrupts disabled by get_futex_key. | |
1975 | * | |
1976 | * With interrupts disabled, we block page table pages from being | |
2ebe8228 FW |
1977 | * freed from under us. See struct mmu_table_batch comments in |
1978 | * include/asm-generic/tlb.h for more details. | |
2667f50e SC |
1979 | * |
1980 | * We do not adopt an rcu_read_lock(.) here as we also want to | |
1981 | * block IPIs that come from THPs splitting. | |
1982 | */ | |
1983 | ||
ad8cfb9c | 1984 | if (gup_fast_permitted(start, nr_pages)) { |
5b65c467 | 1985 | local_irq_save(flags); |
d4faa402 | 1986 | gup_pgd_range(start, end, write, pages, &nr); |
5b65c467 KS |
1987 | local_irq_restore(flags); |
1988 | } | |
2667f50e SC |
1989 | |
1990 | return nr; | |
1991 | } | |
1992 | ||
1993 | /** | |
1994 | * get_user_pages_fast() - pin user pages in memory | |
1995 | * @start: starting user address | |
1996 | * @nr_pages: number of pages from start to pin | |
1997 | * @write: whether pages will be written to | |
1998 | * @pages: array that receives pointers to the pages pinned. | |
1999 | * Should be at least nr_pages long. | |
2000 | * | |
2001 | * Attempt to pin user pages in memory without taking mm->mmap_sem. | |
2002 | * If not successful, it will fall back to taking the lock and | |
2003 | * calling get_user_pages(). | |
2004 | * | |
2005 | * Returns number of pages pinned. This may be fewer than the number | |
2006 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
2007 | * were pinned, returns -errno. | |
2008 | */ | |
2009 | int get_user_pages_fast(unsigned long start, int nr_pages, int write, | |
2010 | struct page **pages) | |
2011 | { | |
5b65c467 | 2012 | unsigned long addr, len, end; |
73e10a61 | 2013 | int nr = 0, ret = 0; |
2667f50e SC |
2014 | |
2015 | start &= PAGE_MASK; | |
5b65c467 KS |
2016 | addr = start; |
2017 | len = (unsigned long) nr_pages << PAGE_SHIFT; | |
2018 | end = start + len; | |
2019 | ||
c61611f7 MT |
2020 | if (nr_pages <= 0) |
2021 | return 0; | |
2022 | ||
96d4f267 | 2023 | if (unlikely(!access_ok((void __user *)start, len))) |
c61611f7 | 2024 | return -EFAULT; |
73e10a61 | 2025 | |
ad8cfb9c | 2026 | if (gup_fast_permitted(start, nr_pages)) { |
5b65c467 KS |
2027 | local_irq_disable(); |
2028 | gup_pgd_range(addr, end, write, pages, &nr); | |
2029 | local_irq_enable(); | |
73e10a61 KS |
2030 | ret = nr; |
2031 | } | |
2667f50e SC |
2032 | |
2033 | if (nr < nr_pages) { | |
2034 | /* Try to get the remaining pages with get_user_pages */ | |
2035 | start += nr << PAGE_SHIFT; | |
2036 | pages += nr; | |
2037 | ||
c164154f LS |
2038 | ret = get_user_pages_unlocked(start, nr_pages - nr, pages, |
2039 | write ? FOLL_WRITE : 0); | |
2667f50e SC |
2040 | |
2041 | /* Have to be a bit careful with return values */ | |
2042 | if (nr > 0) { | |
2043 | if (ret < 0) | |
2044 | ret = nr; | |
2045 | else | |
2046 | ret += nr; | |
2047 | } | |
2048 | } | |
2049 | ||
2050 | return ret; | |
2051 | } | |
2052 | ||
e585513b | 2053 | #endif /* CONFIG_HAVE_GENERIC_GUP */ |