]> Git Repo - linux.git/blame - kernel/cgroup/cgroup.c
cgroup: let a symlink too be created with a cftype file
[linux.git] / kernel / cgroup / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
0a268dbd
TH
31#include "cgroup-internal.h"
32
2ce9738b 33#include <linux/cred.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8 36#include <linux/kernel.h>
c9482a5b 37#include <linux/magic.h>
ddbcc7e8
PM
38#include <linux/mutex.h>
39#include <linux/mount.h>
40#include <linux/pagemap.h>
a424316c 41#include <linux/proc_fs.h>
ddbcc7e8
PM
42#include <linux/rcupdate.h>
43#include <linux/sched.h>
29930025 44#include <linux/sched/task.h>
ddbcc7e8 45#include <linux/slab.h>
ddbcc7e8 46#include <linux/spinlock.h>
1ed13287 47#include <linux/percpu-rwsem.h>
ddbcc7e8 48#include <linux/string.h>
0ac801fe 49#include <linux/hashtable.h>
2c6ab6d2 50#include <linux/idr.h>
c4c27fbd 51#include <linux/kthread.h>
60063497 52#include <linux/atomic.h>
e93ad19d 53#include <linux/cpuset.h>
a79a908f
AK
54#include <linux/proc_ns.h>
55#include <linux/nsproxy.h>
1f3fe7eb 56#include <linux/file.h>
e34a98d5 57#include <linux/fs_parser.h>
d4ff749b 58#include <linux/sched/cputime.h>
2ce7135a 59#include <linux/psi.h>
bd1060a1 60#include <net/sock.h>
ddbcc7e8 61
ed1777de
TH
62#define CREATE_TRACE_POINTS
63#include <trace/events/cgroup.h>
64
8d7e6fb0
TH
65#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
66 MAX_CFTYPE_NAME + 2)
b12e3583
TH
67/* let's not notify more than 100 times per second */
68#define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
8d7e6fb0 69
e25e2cbb
TH
70/*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
f0d9a5f1 74 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 75 * objects, and the chain of tasks off each css_set.
e25e2cbb 76 *
0e1d768f
TH
77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78 * cgroup.h can use them for lockdep annotations.
e25e2cbb 79 */
2219449a 80DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 81DEFINE_SPINLOCK(css_set_lock);
0a268dbd
TH
82
83#ifdef CONFIG_PROVE_RCU
0e1d768f 84EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 85EXPORT_SYMBOL_GPL(css_set_lock);
2219449a
TH
86#endif
87
e4f8d81c
SRV
88DEFINE_SPINLOCK(trace_cgroup_path_lock);
89char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
5cf8114d 90bool cgroup_debug __read_mostly;
e4f8d81c 91
6fa4918d 92/*
15a4c835
TH
93 * Protects cgroup_idr and css_idr so that IDs can be released without
94 * grabbing cgroup_mutex.
6fa4918d
TH
95 */
96static DEFINE_SPINLOCK(cgroup_idr_lock);
97
34c06254
TH
98/*
99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
100 * against file removal/re-creation across css hiding.
101 */
102static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103
1ed13287
TH
104struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
105
8353da1f 106#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
108 !lockdep_is_held(&cgroup_mutex), \
8353da1f 109 "cgroup_mutex or RCU read lock required");
780cd8b3 110
e5fca243
TH
111/*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117static struct workqueue_struct *cgroup_destroy_wq;
118
3ed80a62 119/* generate an array of cgroup subsystem pointers */
073219e9 120#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
0a268dbd 121struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
122#include <linux/cgroup_subsys.h>
123};
073219e9
TH
124#undef SUBSYS
125
126/* array of cgroup subsystem names */
127#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
129#include <linux/cgroup_subsys.h>
130};
073219e9 131#undef SUBSYS
ddbcc7e8 132
49d1dc4b
TH
133/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134#define SUBSYS(_x) \
135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139#include <linux/cgroup_subsys.h>
140#undef SUBSYS
141
142#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143static struct static_key_true *cgroup_subsys_enabled_key[] = {
144#include <linux/cgroup_subsys.h>
145};
146#undef SUBSYS
147
148#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150#include <linux/cgroup_subsys.h>
151};
152#undef SUBSYS
153
c58632b3 154static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
041cd640 155
ddbcc7e8 156/*
3dd06ffa 157 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
158 * unattached - it never has more than a single cgroup, and all tasks are
159 * part of that cgroup.
ddbcc7e8 160 */
c58632b3 161struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
d0ec4230 162EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 163
a2dd4247
TH
164/*
165 * The default hierarchy always exists but is hidden until mounted for the
166 * first time. This is for backward compatibility.
167 */
a7165264 168static bool cgrp_dfl_visible;
ddbcc7e8 169
5533e011 170/* some controllers are not supported in the default hierarchy */
a7165264 171static u16 cgrp_dfl_inhibit_ss_mask;
5533e011 172
f6d635ad 173/* some controllers are implicitly enabled on the default hierarchy */
b807421a 174static u16 cgrp_dfl_implicit_ss_mask;
f6d635ad 175
8cfd8147
TH
176/* some controllers can be threaded on the default hierarchy */
177static u16 cgrp_dfl_threaded_ss_mask;
178
ddbcc7e8 179/* The list of hierarchy roots */
0a268dbd 180LIST_HEAD(cgroup_roots);
9871bf95 181static int cgroup_root_count;
ddbcc7e8 182
3417ae1f 183/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 184static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 185
794611a1 186/*
0cb51d71
TH
187 * Assign a monotonically increasing serial number to csses. It guarantees
188 * cgroups with bigger numbers are newer than those with smaller numbers.
189 * Also, as csses are always appended to the parent's ->children list, it
190 * guarantees that sibling csses are always sorted in the ascending serial
191 * number order on the list. Protected by cgroup_mutex.
794611a1 192 */
0cb51d71 193static u64 css_serial_nr_next = 1;
794611a1 194
cb4a3167 195/*
b807421a
TH
196 * These bitmasks identify subsystems with specific features to avoid
197 * having to do iterative checks repeatedly.
ddbcc7e8 198 */
6e5c8307
TH
199static u16 have_fork_callback __read_mostly;
200static u16 have_exit_callback __read_mostly;
51bee5ab 201static u16 have_release_callback __read_mostly;
b807421a 202static u16 have_canfork_callback __read_mostly;
ddbcc7e8 203
a79a908f
AK
204/* cgroup namespace for init task */
205struct cgroup_namespace init_cgroup_ns = {
387ad967 206 .count = REFCOUNT_INIT(2),
a79a908f
AK
207 .user_ns = &init_user_ns,
208 .ns.ops = &cgroupns_operations,
209 .ns.inum = PROC_CGROUP_INIT_INO,
210 .root_cset = &init_css_set,
211};
212
67e9c74b 213static struct file_system_type cgroup2_fs_type;
d62beb7f 214static struct cftype cgroup_base_files[];
628f7cd4 215
334c3679
TH
216static int cgroup_apply_control(struct cgroup *cgrp);
217static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
ed27b9f7 218static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 219static int cgroup_destroy_locked(struct cgroup *cgrp);
6cd0f5bb
TH
220static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
221 struct cgroup_subsys *ss);
9d755d33 222static void css_release(struct percpu_ref *ref);
f8f22e53 223static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
224static int cgroup_addrm_files(struct cgroup_subsys_state *css,
225 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 226 bool is_add);
42809dd4 227
fc5ed1e9
TH
228/**
229 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
230 * @ssid: subsys ID of interest
231 *
232 * cgroup_subsys_enabled() can only be used with literal subsys names which
233 * is fine for individual subsystems but unsuitable for cgroup core. This
234 * is slower static_key_enabled() based test indexed by @ssid.
235 */
0a268dbd 236bool cgroup_ssid_enabled(int ssid)
fc5ed1e9 237{
cfe02a8a
AB
238 if (CGROUP_SUBSYS_COUNT == 0)
239 return false;
240
fc5ed1e9
TH
241 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
242}
243
9e10a130
TH
244/**
245 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
246 * @cgrp: the cgroup of interest
247 *
248 * The default hierarchy is the v2 interface of cgroup and this function
249 * can be used to test whether a cgroup is on the default hierarchy for
250 * cases where a subsystem should behave differnetly depending on the
251 * interface version.
252 *
253 * The set of behaviors which change on the default hierarchy are still
254 * being determined and the mount option is prefixed with __DEVEL__.
255 *
256 * List of changed behaviors:
257 *
258 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
259 * and "name" are disallowed.
260 *
261 * - When mounting an existing superblock, mount options should match.
262 *
263 * - Remount is disallowed.
264 *
265 * - rename(2) is disallowed.
266 *
267 * - "tasks" is removed. Everything should be at process granularity. Use
268 * "cgroup.procs" instead.
269 *
270 * - "cgroup.procs" is not sorted. pids will be unique unless they got
271 * recycled inbetween reads.
272 *
273 * - "release_agent" and "notify_on_release" are removed. Replacement
274 * notification mechanism will be implemented.
275 *
276 * - "cgroup.clone_children" is removed.
277 *
278 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
279 * and its descendants contain no task; otherwise, 1. The file also
280 * generates kernfs notification which can be monitored through poll and
281 * [di]notify when the value of the file changes.
282 *
283 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
284 * take masks of ancestors with non-empty cpus/mems, instead of being
285 * moved to an ancestor.
286 *
287 * - cpuset: a task can be moved into an empty cpuset, and again it takes
288 * masks of ancestors.
289 *
290 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
291 * is not created.
292 *
293 * - blkcg: blk-throttle becomes properly hierarchical.
294 *
295 * - debug: disallowed on the default hierarchy.
296 */
0a268dbd 297bool cgroup_on_dfl(const struct cgroup *cgrp)
9e10a130
TH
298{
299 return cgrp->root == &cgrp_dfl_root;
300}
301
6fa4918d
TH
302/* IDR wrappers which synchronize using cgroup_idr_lock */
303static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
304 gfp_t gfp_mask)
305{
306 int ret;
307
308 idr_preload(gfp_mask);
54504e97 309 spin_lock_bh(&cgroup_idr_lock);
d0164adc 310 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 311 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
312 idr_preload_end();
313 return ret;
314}
315
316static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
317{
318 void *ret;
319
54504e97 320 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 321 ret = idr_replace(idr, ptr, id);
54504e97 322 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
323 return ret;
324}
325
326static void cgroup_idr_remove(struct idr *idr, int id)
327{
54504e97 328 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 329 idr_remove(idr, id);
54504e97 330 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
331}
332
27f26753 333static bool cgroup_has_tasks(struct cgroup *cgrp)
d51f39b0 334{
27f26753
TH
335 return cgrp->nr_populated_csets;
336}
d51f39b0 337
7a0cf0e7 338bool cgroup_is_threaded(struct cgroup *cgrp)
454000ad
TH
339{
340 return cgrp->dom_cgrp != cgrp;
341}
342
8cfd8147
TH
343/* can @cgrp host both domain and threaded children? */
344static bool cgroup_is_mixable(struct cgroup *cgrp)
345{
346 /*
347 * Root isn't under domain level resource control exempting it from
348 * the no-internal-process constraint, so it can serve as a thread
349 * root and a parent of resource domains at the same time.
350 */
351 return !cgroup_parent(cgrp);
352}
353
354/* can @cgrp become a thread root? should always be true for a thread root */
355static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
356{
357 /* mixables don't care */
358 if (cgroup_is_mixable(cgrp))
359 return true;
360
361 /* domain roots can't be nested under threaded */
362 if (cgroup_is_threaded(cgrp))
363 return false;
364
365 /* can only have either domain or threaded children */
366 if (cgrp->nr_populated_domain_children)
367 return false;
368
369 /* and no domain controllers can be enabled */
370 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
371 return false;
372
373 return true;
374}
375
376/* is @cgrp root of a threaded subtree? */
7a0cf0e7 377bool cgroup_is_thread_root(struct cgroup *cgrp)
8cfd8147
TH
378{
379 /* thread root should be a domain */
380 if (cgroup_is_threaded(cgrp))
381 return false;
382
383 /* a domain w/ threaded children is a thread root */
384 if (cgrp->nr_threaded_children)
385 return true;
386
387 /*
388 * A domain which has tasks and explicit threaded controllers
389 * enabled is a thread root.
390 */
391 if (cgroup_has_tasks(cgrp) &&
392 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
393 return true;
394
395 return false;
396}
397
398/* a domain which isn't connected to the root w/o brekage can't be used */
399static bool cgroup_is_valid_domain(struct cgroup *cgrp)
400{
401 /* the cgroup itself can be a thread root */
402 if (cgroup_is_threaded(cgrp))
403 return false;
404
405 /* but the ancestors can't be unless mixable */
406 while ((cgrp = cgroup_parent(cgrp))) {
407 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
408 return false;
409 if (cgroup_is_threaded(cgrp))
410 return false;
411 }
412
413 return true;
d51f39b0
TH
414}
415
5531dc91
TH
416/* subsystems visibly enabled on a cgroup */
417static u16 cgroup_control(struct cgroup *cgrp)
418{
419 struct cgroup *parent = cgroup_parent(cgrp);
420 u16 root_ss_mask = cgrp->root->subsys_mask;
421
8cfd8147
TH
422 if (parent) {
423 u16 ss_mask = parent->subtree_control;
424
425 /* threaded cgroups can only have threaded controllers */
426 if (cgroup_is_threaded(cgrp))
427 ss_mask &= cgrp_dfl_threaded_ss_mask;
428 return ss_mask;
429 }
5531dc91
TH
430
431 if (cgroup_on_dfl(cgrp))
f6d635ad
TH
432 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
433 cgrp_dfl_implicit_ss_mask);
5531dc91
TH
434 return root_ss_mask;
435}
436
437/* subsystems enabled on a cgroup */
438static u16 cgroup_ss_mask(struct cgroup *cgrp)
439{
440 struct cgroup *parent = cgroup_parent(cgrp);
441
8cfd8147
TH
442 if (parent) {
443 u16 ss_mask = parent->subtree_ss_mask;
444
445 /* threaded cgroups can only have threaded controllers */
446 if (cgroup_is_threaded(cgrp))
447 ss_mask &= cgrp_dfl_threaded_ss_mask;
448 return ss_mask;
449 }
5531dc91
TH
450
451 return cgrp->root->subsys_mask;
452}
453
95109b62
TH
454/**
455 * cgroup_css - obtain a cgroup's css for the specified subsystem
456 * @cgrp: the cgroup of interest
9d800df1 457 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 458 *
ca8bdcaf
TH
459 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
460 * function must be called either under cgroup_mutex or rcu_read_lock() and
461 * the caller is responsible for pinning the returned css if it wants to
462 * keep accessing it outside the said locks. This function may return
463 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
464 */
465static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 466 struct cgroup_subsys *ss)
95109b62 467{
ca8bdcaf 468 if (ss)
aec25020 469 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 470 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 471 else
9d800df1 472 return &cgrp->self;
95109b62 473}
42809dd4 474
d41bf8c9
TH
475/**
476 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
477 * @cgrp: the cgroup of interest
478 * @ss: the subsystem of interest
479 *
480 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
481 * or is offline, %NULL is returned.
482 */
483static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
484 struct cgroup_subsys *ss)
485{
486 struct cgroup_subsys_state *css;
487
488 rcu_read_lock();
489 css = cgroup_css(cgrp, ss);
490 if (!css || !css_tryget_online(css))
491 css = NULL;
492 rcu_read_unlock();
493
494 return css;
495}
496
aec3dfcb 497/**
fc5a828b 498 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
aec3dfcb 499 * @cgrp: the cgroup of interest
9d800df1 500 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 501 *
d0f702e6 502 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
503 * as the matching css of the nearest ancestor including self which has @ss
504 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
505 * function is guaranteed to return non-NULL css.
506 */
fc5a828b
DZ
507static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
508 struct cgroup_subsys *ss)
aec3dfcb
TH
509{
510 lockdep_assert_held(&cgroup_mutex);
511
512 if (!ss)
9d800df1 513 return &cgrp->self;
aec3dfcb 514
eeecbd19
TH
515 /*
516 * This function is used while updating css associations and thus
5531dc91 517 * can't test the csses directly. Test ss_mask.
eeecbd19 518 */
5531dc91 519 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
d51f39b0 520 cgrp = cgroup_parent(cgrp);
5531dc91
TH
521 if (!cgrp)
522 return NULL;
523 }
aec3dfcb
TH
524
525 return cgroup_css(cgrp, ss);
95109b62 526}
42809dd4 527
fc5a828b
DZ
528/**
529 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
530 * @cgrp: the cgroup of interest
531 * @ss: the subsystem of interest
532 *
533 * Find and get the effective css of @cgrp for @ss. The effective css is
534 * defined as the matching css of the nearest ancestor including self which
535 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
536 * the root css is returned, so this function always returns a valid css.
537 *
538 * The returned css is not guaranteed to be online, and therefore it is the
539 * callers responsiblity to tryget a reference for it.
540 */
541struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
542 struct cgroup_subsys *ss)
543{
544 struct cgroup_subsys_state *css;
545
546 do {
547 css = cgroup_css(cgrp, ss);
548
549 if (css)
550 return css;
551 cgrp = cgroup_parent(cgrp);
552 } while (cgrp);
553
554 return init_css_set.subsys[ss->id];
555}
556
eeecbd19
TH
557/**
558 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
559 * @cgrp: the cgroup of interest
560 * @ss: the subsystem of interest
561 *
562 * Find and get the effective css of @cgrp for @ss. The effective css is
563 * defined as the matching css of the nearest ancestor including self which
564 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
565 * the root css is returned, so this function always returns a valid css.
566 * The returned css must be put using css_put().
567 */
568struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
569 struct cgroup_subsys *ss)
570{
571 struct cgroup_subsys_state *css;
572
573 rcu_read_lock();
574
575 do {
576 css = cgroup_css(cgrp, ss);
577
578 if (css && css_tryget_online(css))
579 goto out_unlock;
580 cgrp = cgroup_parent(cgrp);
581 } while (cgrp);
582
583 css = init_css_set.subsys[ss->id];
584 css_get(css);
585out_unlock:
586 rcu_read_unlock();
587 return css;
588}
589
a590b90d 590static void cgroup_get_live(struct cgroup *cgrp)
052c3f3a
TH
591{
592 WARN_ON_ONCE(cgroup_is_dead(cgrp));
593 css_get(&cgrp->self);
594}
595
aade7f9e
RG
596/**
597 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
598 * is responsible for taking the css_set_lock.
599 * @cgrp: the cgroup in question
600 */
601int __cgroup_task_count(const struct cgroup *cgrp)
602{
603 int count = 0;
604 struct cgrp_cset_link *link;
605
606 lockdep_assert_held(&css_set_lock);
607
608 list_for_each_entry(link, &cgrp->cset_links, cset_link)
609 count += link->cset->nr_tasks;
610
611 return count;
612}
613
614/**
615 * cgroup_task_count - count the number of tasks in a cgroup.
616 * @cgrp: the cgroup in question
617 */
618int cgroup_task_count(const struct cgroup *cgrp)
619{
620 int count;
621
622 spin_lock_irq(&css_set_lock);
623 count = __cgroup_task_count(cgrp);
624 spin_unlock_irq(&css_set_lock);
625
626 return count;
627}
628
b4168640 629struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 630{
2bd59d48 631 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 632 struct cftype *cft = of_cft(of);
2bd59d48
TH
633
634 /*
635 * This is open and unprotected implementation of cgroup_css().
636 * seq_css() is only called from a kernfs file operation which has
637 * an active reference on the file. Because all the subsystem
638 * files are drained before a css is disassociated with a cgroup,
639 * the matching css from the cgroup's subsys table is guaranteed to
640 * be and stay valid until the enclosing operation is complete.
641 */
642 if (cft->ss)
643 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
644 else
9d800df1 645 return &cgrp->self;
59f5296b 646}
b4168640 647EXPORT_SYMBOL_GPL(of_css);
59f5296b 648
1c6727af
TH
649/**
650 * for_each_css - iterate all css's of a cgroup
651 * @css: the iteration cursor
652 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
653 * @cgrp: the target cgroup to iterate css's of
654 *
aec3dfcb 655 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
656 */
657#define for_each_css(css, ssid, cgrp) \
658 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
659 if (!((css) = rcu_dereference_check( \
660 (cgrp)->subsys[(ssid)], \
661 lockdep_is_held(&cgroup_mutex)))) { } \
662 else
663
aec3dfcb
TH
664/**
665 * for_each_e_css - iterate all effective css's of a cgroup
666 * @css: the iteration cursor
667 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
668 * @cgrp: the target cgroup to iterate css's of
669 *
670 * Should be called under cgroup_[tree_]mutex.
671 */
fc5a828b
DZ
672#define for_each_e_css(css, ssid, cgrp) \
673 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
674 if (!((css) = cgroup_e_css_by_mask(cgrp, \
675 cgroup_subsys[(ssid)]))) \
676 ; \
aec3dfcb
TH
677 else
678
cb4a3167 679/**
b4e0eeaf 680 * do_each_subsys_mask - filter for_each_subsys with a bitmask
cb4a3167
AS
681 * @ss: the iteration cursor
682 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
b4e0eeaf 683 * @ss_mask: the bitmask
cb4a3167
AS
684 *
685 * The block will only run for cases where the ssid-th bit (1 << ssid) of
b4e0eeaf 686 * @ss_mask is set.
cb4a3167 687 */
b4e0eeaf
TH
688#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
689 unsigned long __ss_mask = (ss_mask); \
690 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
4a705c5c 691 (ssid) = 0; \
b4e0eeaf
TH
692 break; \
693 } \
694 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
695 (ss) = cgroup_subsys[ssid]; \
696 {
697
698#define while_each_subsys_mask() \
699 } \
700 } \
701} while (false)
cb4a3167 702
f8f22e53
TH
703/* iterate over child cgrps, lock should be held throughout iteration */
704#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 705 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 706 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
707 cgroup_is_dead(child); })) \
708 ; \
709 else
7ae1bad9 710
ce3f1d9d
TH
711/* walk live descendants in preorder */
712#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
713 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
714 if (({ lockdep_assert_held(&cgroup_mutex); \
715 (dsct) = (d_css)->cgroup; \
716 cgroup_is_dead(dsct); })) \
717 ; \
718 else
719
720/* walk live descendants in postorder */
721#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
722 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
723 if (({ lockdep_assert_held(&cgroup_mutex); \
724 (dsct) = (d_css)->cgroup; \
725 cgroup_is_dead(dsct); })) \
726 ; \
727 else
728
172a2c06
TH
729/*
730 * The default css_set - used by init and its children prior to any
817929ec
PM
731 * hierarchies being mounted. It contains a pointer to the root state
732 * for each subsystem. Also used to anchor the list of css_sets. Not
733 * reference-counted, to improve performance when child cgroups
734 * haven't been created.
735 */
5024ae29 736struct css_set init_css_set = {
4b9502e6 737 .refcount = REFCOUNT_INIT(1),
454000ad 738 .dom_cset = &init_css_set,
172a2c06
TH
739 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
740 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
5f617ebb 741 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
454000ad 742 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
5f617ebb 743 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
172a2c06
TH
744 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
745 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
38683148
TH
746
747 /*
748 * The following field is re-initialized when this cset gets linked
749 * in cgroup_init(). However, let's initialize the field
750 * statically too so that the default cgroup can be accessed safely
751 * early during boot.
752 */
753 .dfl_cgrp = &cgrp_dfl_root.cgrp,
172a2c06 754};
817929ec 755
172a2c06 756static int css_set_count = 1; /* 1 for init_css_set */
817929ec 757
454000ad
TH
758static bool css_set_threaded(struct css_set *cset)
759{
760 return cset->dom_cset != cset;
761}
762
0de0942d
TH
763/**
764 * css_set_populated - does a css_set contain any tasks?
765 * @cset: target css_set
73a7242a
WL
766 *
767 * css_set_populated() should be the same as !!cset->nr_tasks at steady
768 * state. However, css_set_populated() can be called while a task is being
769 * added to or removed from the linked list before the nr_tasks is
770 * properly updated. Hence, we can't just look at ->nr_tasks here.
0de0942d
TH
771 */
772static bool css_set_populated(struct css_set *cset)
773{
f0d9a5f1 774 lockdep_assert_held(&css_set_lock);
0de0942d
TH
775
776 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
777}
778
842b597e 779/**
788b950c 780 * cgroup_update_populated - update the populated count of a cgroup
842b597e
TH
781 * @cgrp: the target cgroup
782 * @populated: inc or dec populated count
783 *
0de0942d 784 * One of the css_sets associated with @cgrp is either getting its first
788b950c
TH
785 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
786 * count is propagated towards root so that a given cgroup's
787 * nr_populated_children is zero iff none of its descendants contain any
788 * tasks.
842b597e 789 *
788b950c
TH
790 * @cgrp's interface file "cgroup.populated" is zero if both
791 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
792 * 1 otherwise. When the sum changes from or to zero, userland is notified
793 * that the content of the interface file has changed. This can be used to
794 * detect when @cgrp and its descendants become populated or empty.
842b597e
TH
795 */
796static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
797{
788b950c
TH
798 struct cgroup *child = NULL;
799 int adj = populated ? 1 : -1;
800
f0d9a5f1 801 lockdep_assert_held(&css_set_lock);
842b597e
TH
802
803 do {
788b950c 804 bool was_populated = cgroup_is_populated(cgrp);
842b597e 805
454000ad 806 if (!child) {
788b950c 807 cgrp->nr_populated_csets += adj;
454000ad
TH
808 } else {
809 if (cgroup_is_threaded(child))
810 cgrp->nr_populated_threaded_children += adj;
811 else
812 cgrp->nr_populated_domain_children += adj;
813 }
842b597e 814
788b950c 815 if (was_populated == cgroup_is_populated(cgrp))
842b597e
TH
816 break;
817
d62beb7f 818 cgroup1_check_for_release(cgrp);
4c476d8c
RG
819 TRACE_CGROUP_PATH(notify_populated, cgrp,
820 cgroup_is_populated(cgrp));
6f60eade
TH
821 cgroup_file_notify(&cgrp->events_file);
822
788b950c 823 child = cgrp;
d51f39b0 824 cgrp = cgroup_parent(cgrp);
842b597e
TH
825 } while (cgrp);
826}
827
0de0942d
TH
828/**
829 * css_set_update_populated - update populated state of a css_set
830 * @cset: target css_set
831 * @populated: whether @cset is populated or depopulated
832 *
833 * @cset is either getting the first task or losing the last. Update the
788b950c 834 * populated counters of all associated cgroups accordingly.
0de0942d
TH
835 */
836static void css_set_update_populated(struct css_set *cset, bool populated)
837{
838 struct cgrp_cset_link *link;
839
f0d9a5f1 840 lockdep_assert_held(&css_set_lock);
0de0942d
TH
841
842 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
843 cgroup_update_populated(link->cgrp, populated);
844}
845
f6d7d049
TH
846/**
847 * css_set_move_task - move a task from one css_set to another
848 * @task: task being moved
849 * @from_cset: css_set @task currently belongs to (may be NULL)
850 * @to_cset: new css_set @task is being moved to (may be NULL)
851 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
852 *
853 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
854 * css_set, @from_cset can be NULL. If @task is being disassociated
855 * instead of moved, @to_cset can be NULL.
856 *
788b950c 857 * This function automatically handles populated counter updates and
ed27b9f7
TH
858 * css_task_iter adjustments but the caller is responsible for managing
859 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
860 */
861static void css_set_move_task(struct task_struct *task,
862 struct css_set *from_cset, struct css_set *to_cset,
863 bool use_mg_tasks)
864{
f0d9a5f1 865 lockdep_assert_held(&css_set_lock);
f6d7d049 866
20b454a6
TH
867 if (to_cset && !css_set_populated(to_cset))
868 css_set_update_populated(to_cset, true);
869
f6d7d049 870 if (from_cset) {
ed27b9f7
TH
871 struct css_task_iter *it, *pos;
872
f6d7d049 873 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
874
875 /*
876 * @task is leaving, advance task iterators which are
877 * pointing to it so that they can resume at the next
878 * position. Advancing an iterator might remove it from
879 * the list, use safe walk. See css_task_iter_advance*()
880 * for details.
881 */
882 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
883 iters_node)
884 if (it->task_pos == &task->cg_list)
885 css_task_iter_advance(it);
886
f6d7d049
TH
887 list_del_init(&task->cg_list);
888 if (!css_set_populated(from_cset))
889 css_set_update_populated(from_cset, false);
890 } else {
891 WARN_ON_ONCE(!list_empty(&task->cg_list));
892 }
893
894 if (to_cset) {
895 /*
896 * We are synchronized through cgroup_threadgroup_rwsem
897 * against PF_EXITING setting such that we can't race
898 * against cgroup_exit() changing the css_set to
899 * init_css_set and dropping the old one.
900 */
901 WARN_ON_ONCE(task->flags & PF_EXITING);
902
2ce7135a 903 cgroup_move_task(task, to_cset);
f6d7d049
TH
904 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
905 &to_cset->tasks);
906 }
907}
908
7717f7ba
PM
909/*
910 * hash table for cgroup groups. This improves the performance to find
911 * an existing css_set. This hash doesn't (currently) take into
912 * account cgroups in empty hierarchies.
913 */
472b1053 914#define CSS_SET_HASH_BITS 7
0ac801fe 915static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 916
0ac801fe 917static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 918{
0ac801fe 919 unsigned long key = 0UL;
30159ec7
TH
920 struct cgroup_subsys *ss;
921 int i;
472b1053 922
30159ec7 923 for_each_subsys(ss, i)
0ac801fe
LZ
924 key += (unsigned long)css[i];
925 key = (key >> 16) ^ key;
472b1053 926
0ac801fe 927 return key;
472b1053
LZ
928}
929
dcfe149b 930void put_css_set_locked(struct css_set *cset)
b4f48b63 931{
69d0206c 932 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
933 struct cgroup_subsys *ss;
934 int ssid;
5abb8855 935
f0d9a5f1 936 lockdep_assert_held(&css_set_lock);
89c5509b 937
4b9502e6 938 if (!refcount_dec_and_test(&cset->refcount))
146aa1bd 939 return;
81a6a5cd 940
454000ad
TH
941 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
942
53254f90
TH
943 /* This css_set is dead. unlink it and release cgroup and css refs */
944 for_each_subsys(ss, ssid) {
2d8f243a 945 list_del(&cset->e_cset_node[ssid]);
53254f90
TH
946 css_put(cset->subsys[ssid]);
947 }
5abb8855 948 hash_del(&cset->hlist);
2c6ab6d2
PM
949 css_set_count--;
950
69d0206c 951 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
952 list_del(&link->cset_link);
953 list_del(&link->cgrp_link);
2ceb231b
TH
954 if (cgroup_parent(link->cgrp))
955 cgroup_put(link->cgrp);
2c6ab6d2 956 kfree(link);
81a6a5cd 957 }
2c6ab6d2 958
454000ad
TH
959 if (css_set_threaded(cset)) {
960 list_del(&cset->threaded_csets_node);
961 put_css_set_locked(cset->dom_cset);
962 }
963
5abb8855 964 kfree_rcu(cset, rcu_head);
b4f48b63
PM
965}
966
b326f9d0 967/**
7717f7ba 968 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
969 * @cset: candidate css_set being tested
970 * @old_cset: existing css_set for a task
7717f7ba
PM
971 * @new_cgrp: cgroup that's being entered by the task
972 * @template: desired set of css pointers in css_set (pre-calculated)
973 *
6f4b7e63 974 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
975 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
976 */
5abb8855
TH
977static bool compare_css_sets(struct css_set *cset,
978 struct css_set *old_cset,
7717f7ba
PM
979 struct cgroup *new_cgrp,
980 struct cgroup_subsys_state *template[])
981{
454000ad 982 struct cgroup *new_dfl_cgrp;
7717f7ba
PM
983 struct list_head *l1, *l2;
984
aec3dfcb
TH
985 /*
986 * On the default hierarchy, there can be csets which are
987 * associated with the same set of cgroups but different csses.
988 * Let's first ensure that csses match.
989 */
990 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 991 return false;
7717f7ba 992
454000ad
TH
993
994 /* @cset's domain should match the default cgroup's */
995 if (cgroup_on_dfl(new_cgrp))
996 new_dfl_cgrp = new_cgrp;
997 else
998 new_dfl_cgrp = old_cset->dfl_cgrp;
999
1000 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1001 return false;
1002
7717f7ba
PM
1003 /*
1004 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
1005 * different cgroups in hierarchies. As different cgroups may
1006 * share the same effective css, this comparison is always
1007 * necessary.
7717f7ba 1008 */
69d0206c
TH
1009 l1 = &cset->cgrp_links;
1010 l2 = &old_cset->cgrp_links;
7717f7ba 1011 while (1) {
69d0206c 1012 struct cgrp_cset_link *link1, *link2;
5abb8855 1013 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
1014
1015 l1 = l1->next;
1016 l2 = l2->next;
1017 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
1018 if (l1 == &cset->cgrp_links) {
1019 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
1020 break;
1021 } else {
69d0206c 1022 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
1023 }
1024 /* Locate the cgroups associated with these links. */
69d0206c
TH
1025 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1026 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1027 cgrp1 = link1->cgrp;
1028 cgrp2 = link2->cgrp;
7717f7ba 1029 /* Hierarchies should be linked in the same order. */
5abb8855 1030 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
1031
1032 /*
1033 * If this hierarchy is the hierarchy of the cgroup
1034 * that's changing, then we need to check that this
1035 * css_set points to the new cgroup; if it's any other
1036 * hierarchy, then this css_set should point to the
1037 * same cgroup as the old css_set.
1038 */
5abb8855
TH
1039 if (cgrp1->root == new_cgrp->root) {
1040 if (cgrp1 != new_cgrp)
7717f7ba
PM
1041 return false;
1042 } else {
5abb8855 1043 if (cgrp1 != cgrp2)
7717f7ba
PM
1044 return false;
1045 }
1046 }
1047 return true;
1048}
1049
b326f9d0
TH
1050/**
1051 * find_existing_css_set - init css array and find the matching css_set
1052 * @old_cset: the css_set that we're using before the cgroup transition
1053 * @cgrp: the cgroup that we're moving into
1054 * @template: out param for the new set of csses, should be clear on entry
817929ec 1055 */
5abb8855
TH
1056static struct css_set *find_existing_css_set(struct css_set *old_cset,
1057 struct cgroup *cgrp,
1058 struct cgroup_subsys_state *template[])
b4f48b63 1059{
3dd06ffa 1060 struct cgroup_root *root = cgrp->root;
30159ec7 1061 struct cgroup_subsys *ss;
5abb8855 1062 struct css_set *cset;
0ac801fe 1063 unsigned long key;
b326f9d0 1064 int i;
817929ec 1065
aae8aab4
BB
1066 /*
1067 * Build the set of subsystem state objects that we want to see in the
1068 * new css_set. while subsystems can change globally, the entries here
1069 * won't change, so no need for locking.
1070 */
30159ec7 1071 for_each_subsys(ss, i) {
f392e51c 1072 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
1073 /*
1074 * @ss is in this hierarchy, so we want the
1075 * effective css from @cgrp.
1076 */
fc5a828b 1077 template[i] = cgroup_e_css_by_mask(cgrp, ss);
817929ec 1078 } else {
aec3dfcb
TH
1079 /*
1080 * @ss is not in this hierarchy, so we don't want
1081 * to change the css.
1082 */
5abb8855 1083 template[i] = old_cset->subsys[i];
817929ec
PM
1084 }
1085 }
1086
0ac801fe 1087 key = css_set_hash(template);
5abb8855
TH
1088 hash_for_each_possible(css_set_table, cset, hlist, key) {
1089 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
1090 continue;
1091
1092 /* This css_set matches what we need */
5abb8855 1093 return cset;
472b1053 1094 }
817929ec
PM
1095
1096 /* No existing cgroup group matched */
1097 return NULL;
1098}
1099
69d0206c 1100static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 1101{
69d0206c 1102 struct cgrp_cset_link *link, *tmp_link;
36553434 1103
69d0206c
TH
1104 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1105 list_del(&link->cset_link);
36553434
LZ
1106 kfree(link);
1107 }
1108}
1109
69d0206c
TH
1110/**
1111 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1112 * @count: the number of links to allocate
1113 * @tmp_links: list_head the allocated links are put on
1114 *
1115 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1116 * through ->cset_link. Returns 0 on success or -errno.
817929ec 1117 */
69d0206c 1118static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 1119{
69d0206c 1120 struct cgrp_cset_link *link;
817929ec 1121 int i;
69d0206c
TH
1122
1123 INIT_LIST_HEAD(tmp_links);
1124
817929ec 1125 for (i = 0; i < count; i++) {
f4f4be2b 1126 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 1127 if (!link) {
69d0206c 1128 free_cgrp_cset_links(tmp_links);
817929ec
PM
1129 return -ENOMEM;
1130 }
69d0206c 1131 list_add(&link->cset_link, tmp_links);
817929ec
PM
1132 }
1133 return 0;
1134}
1135
c12f65d4
LZ
1136/**
1137 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 1138 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 1139 * @cset: the css_set to be linked
c12f65d4
LZ
1140 * @cgrp: the destination cgroup
1141 */
69d0206c
TH
1142static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1143 struct cgroup *cgrp)
c12f65d4 1144{
69d0206c 1145 struct cgrp_cset_link *link;
c12f65d4 1146
69d0206c 1147 BUG_ON(list_empty(tmp_links));
6803c006
TH
1148
1149 if (cgroup_on_dfl(cgrp))
1150 cset->dfl_cgrp = cgrp;
1151
69d0206c
TH
1152 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1153 link->cset = cset;
7717f7ba 1154 link->cgrp = cgrp;
842b597e 1155
7717f7ba 1156 /*
389b9c1b
TH
1157 * Always add links to the tail of the lists so that the lists are
1158 * in choronological order.
7717f7ba 1159 */
389b9c1b 1160 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 1161 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
1162
1163 if (cgroup_parent(cgrp))
a590b90d 1164 cgroup_get_live(cgrp);
c12f65d4
LZ
1165}
1166
b326f9d0
TH
1167/**
1168 * find_css_set - return a new css_set with one cgroup updated
1169 * @old_cset: the baseline css_set
1170 * @cgrp: the cgroup to be updated
1171 *
1172 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1173 * substituted into the appropriate hierarchy.
817929ec 1174 */
5abb8855
TH
1175static struct css_set *find_css_set(struct css_set *old_cset,
1176 struct cgroup *cgrp)
817929ec 1177{
b326f9d0 1178 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 1179 struct css_set *cset;
69d0206c
TH
1180 struct list_head tmp_links;
1181 struct cgrp_cset_link *link;
2d8f243a 1182 struct cgroup_subsys *ss;
0ac801fe 1183 unsigned long key;
2d8f243a 1184 int ssid;
472b1053 1185
b326f9d0
TH
1186 lockdep_assert_held(&cgroup_mutex);
1187
817929ec
PM
1188 /* First see if we already have a cgroup group that matches
1189 * the desired set */
82d6489d 1190 spin_lock_irq(&css_set_lock);
5abb8855
TH
1191 cset = find_existing_css_set(old_cset, cgrp, template);
1192 if (cset)
1193 get_css_set(cset);
82d6489d 1194 spin_unlock_irq(&css_set_lock);
817929ec 1195
5abb8855
TH
1196 if (cset)
1197 return cset;
817929ec 1198
f4f4be2b 1199 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1200 if (!cset)
817929ec
PM
1201 return NULL;
1202
69d0206c 1203 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1204 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1205 kfree(cset);
817929ec
PM
1206 return NULL;
1207 }
1208
4b9502e6 1209 refcount_set(&cset->refcount, 1);
454000ad 1210 cset->dom_cset = cset;
5abb8855 1211 INIT_LIST_HEAD(&cset->tasks);
c7561128 1212 INIT_LIST_HEAD(&cset->mg_tasks);
ed27b9f7 1213 INIT_LIST_HEAD(&cset->task_iters);
454000ad 1214 INIT_LIST_HEAD(&cset->threaded_csets);
5abb8855 1215 INIT_HLIST_NODE(&cset->hlist);
5f617ebb
TH
1216 INIT_LIST_HEAD(&cset->cgrp_links);
1217 INIT_LIST_HEAD(&cset->mg_preload_node);
1218 INIT_LIST_HEAD(&cset->mg_node);
817929ec
PM
1219
1220 /* Copy the set of subsystem state objects generated in
1221 * find_existing_css_set() */
5abb8855 1222 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1223
82d6489d 1224 spin_lock_irq(&css_set_lock);
817929ec 1225 /* Add reference counts and links from the new css_set. */
69d0206c 1226 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1227 struct cgroup *c = link->cgrp;
69d0206c 1228
7717f7ba
PM
1229 if (c->root == cgrp->root)
1230 c = cgrp;
69d0206c 1231 link_css_set(&tmp_links, cset, c);
7717f7ba 1232 }
817929ec 1233
69d0206c 1234 BUG_ON(!list_empty(&tmp_links));
817929ec 1235
817929ec 1236 css_set_count++;
472b1053 1237
2d8f243a 1238 /* Add @cset to the hash table */
5abb8855
TH
1239 key = css_set_hash(cset->subsys);
1240 hash_add(css_set_table, &cset->hlist, key);
472b1053 1241
53254f90
TH
1242 for_each_subsys(ss, ssid) {
1243 struct cgroup_subsys_state *css = cset->subsys[ssid];
1244
2d8f243a 1245 list_add_tail(&cset->e_cset_node[ssid],
53254f90
TH
1246 &css->cgroup->e_csets[ssid]);
1247 css_get(css);
1248 }
2d8f243a 1249
82d6489d 1250 spin_unlock_irq(&css_set_lock);
817929ec 1251
454000ad
TH
1252 /*
1253 * If @cset should be threaded, look up the matching dom_cset and
1254 * link them up. We first fully initialize @cset then look for the
1255 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1256 * to stay empty until we return.
1257 */
1258 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1259 struct css_set *dcset;
1260
1261 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1262 if (!dcset) {
1263 put_css_set(cset);
1264 return NULL;
1265 }
1266
1267 spin_lock_irq(&css_set_lock);
1268 cset->dom_cset = dcset;
1269 list_add_tail(&cset->threaded_csets_node,
1270 &dcset->threaded_csets);
1271 spin_unlock_irq(&css_set_lock);
1272 }
1273
5abb8855 1274 return cset;
b4f48b63
PM
1275}
1276
0a268dbd 1277struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1278{
3dd06ffa 1279 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1280
3dd06ffa 1281 return root_cgrp->root;
2bd59d48
TH
1282}
1283
3dd06ffa 1284static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1285{
1286 int id;
1287
1288 lockdep_assert_held(&cgroup_mutex);
1289
985ed670 1290 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1291 if (id < 0)
1292 return id;
1293
1294 root->hierarchy_id = id;
1295 return 0;
1296}
1297
3dd06ffa 1298static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1299{
1300 lockdep_assert_held(&cgroup_mutex);
1301
8c8a5502 1302 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
f2e85d57
TH
1303}
1304
1592c9b2 1305void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1306{
1307 if (root) {
f2e85d57
TH
1308 idr_destroy(&root->cgroup_idr);
1309 kfree(root);
1310 }
1311}
1312
3dd06ffa 1313static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1314{
3dd06ffa 1315 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1316 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1317
ed1777de
TH
1318 trace_cgroup_destroy_root(root);
1319
334c3679 1320 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
f2e85d57 1321
776f02fa 1322 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1323 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1324
f2e85d57 1325 /* Rebind all subsystems back to the default hierarchy */
334c3679 1326 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
7717f7ba 1327
7717f7ba 1328 /*
f2e85d57
TH
1329 * Release all the links from cset_links to this hierarchy's
1330 * root cgroup
7717f7ba 1331 */
82d6489d 1332 spin_lock_irq(&css_set_lock);
f2e85d57
TH
1333
1334 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1335 list_del(&link->cset_link);
1336 list_del(&link->cgrp_link);
1337 kfree(link);
1338 }
f0d9a5f1 1339
82d6489d 1340 spin_unlock_irq(&css_set_lock);
f2e85d57
TH
1341
1342 if (!list_empty(&root->root_list)) {
1343 list_del(&root->root_list);
1344 cgroup_root_count--;
1345 }
1346
1347 cgroup_exit_root_id(root);
1348
1349 mutex_unlock(&cgroup_mutex);
f2e85d57 1350
2bd59d48 1351 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1352 cgroup_free_root(root);
1353}
1354
4f41fc59
SH
1355/*
1356 * look up cgroup associated with current task's cgroup namespace on the
1357 * specified hierarchy
1358 */
1359static struct cgroup *
1360current_cgns_cgroup_from_root(struct cgroup_root *root)
1361{
1362 struct cgroup *res = NULL;
1363 struct css_set *cset;
1364
1365 lockdep_assert_held(&css_set_lock);
1366
1367 rcu_read_lock();
1368
1369 cset = current->nsproxy->cgroup_ns->root_cset;
1370 if (cset == &init_css_set) {
1371 res = &root->cgrp;
1372 } else {
1373 struct cgrp_cset_link *link;
1374
1375 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1376 struct cgroup *c = link->cgrp;
1377
1378 if (c->root == root) {
1379 res = c;
1380 break;
1381 }
1382 }
1383 }
1384 rcu_read_unlock();
1385
1386 BUG_ON(!res);
1387 return res;
1388}
1389
ceb6a081
TH
1390/* look up cgroup associated with given css_set on the specified hierarchy */
1391static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1392 struct cgroup_root *root)
7717f7ba 1393{
7717f7ba
PM
1394 struct cgroup *res = NULL;
1395
96d365e0 1396 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1397 lockdep_assert_held(&css_set_lock);
96d365e0 1398
5abb8855 1399 if (cset == &init_css_set) {
3dd06ffa 1400 res = &root->cgrp;
13d82fb7
TH
1401 } else if (root == &cgrp_dfl_root) {
1402 res = cset->dfl_cgrp;
7717f7ba 1403 } else {
69d0206c
TH
1404 struct cgrp_cset_link *link;
1405
1406 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1407 struct cgroup *c = link->cgrp;
69d0206c 1408
7717f7ba
PM
1409 if (c->root == root) {
1410 res = c;
1411 break;
1412 }
1413 }
1414 }
96d365e0 1415
7717f7ba
PM
1416 BUG_ON(!res);
1417 return res;
1418}
1419
ddbcc7e8 1420/*
ceb6a081 1421 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1422 * called with cgroup_mutex and css_set_lock held.
ceb6a081 1423 */
0a268dbd
TH
1424struct cgroup *task_cgroup_from_root(struct task_struct *task,
1425 struct cgroup_root *root)
ceb6a081
TH
1426{
1427 /*
1428 * No need to lock the task - since we hold cgroup_mutex the
1429 * task can't change groups, so the only thing that can happen
1430 * is that it exits and its css is set back to init_css_set.
1431 */
1432 return cset_cgroup_from_root(task_css_set(task), root);
1433}
1434
ddbcc7e8 1435/*
ddbcc7e8
PM
1436 * A task must hold cgroup_mutex to modify cgroups.
1437 *
1438 * Any task can increment and decrement the count field without lock.
1439 * So in general, code holding cgroup_mutex can't rely on the count
1440 * field not changing. However, if the count goes to zero, then only
956db3ca 1441 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1442 * means that no tasks are currently attached, therefore there is no
1443 * way a task attached to that cgroup can fork (the other way to
1444 * increment the count). So code holding cgroup_mutex can safely
1445 * assume that if the count is zero, it will stay zero. Similarly, if
1446 * a task holds cgroup_mutex on a cgroup with zero count, it
1447 * knows that the cgroup won't be removed, as cgroup_rmdir()
1448 * needs that mutex.
1449 *
ddbcc7e8
PM
1450 * A cgroup can only be deleted if both its 'count' of using tasks
1451 * is zero, and its list of 'children' cgroups is empty. Since all
1452 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1453 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1454 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1455 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1456 *
1457 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1458 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1459 */
1460
2bd59d48 1461static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
a424316c 1462
54b7b868
AR
1463static char *cgroup_fill_name(struct cgroup *cgrp, const struct cftype *cft,
1464 char *buf, bool write_link_name)
ddbcc7e8 1465{
3e1d2eed
TH
1466 struct cgroup_subsys *ss = cft->ss;
1467
8d7e6fb0 1468 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
c1bbd933
TH
1469 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1470 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1471
1472 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1473 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
54b7b868 1474 write_link_name ? cft->link_name : cft->name);
c1bbd933 1475 } else {
54b7b868
AR
1476 strscpy(buf, write_link_name ? cft->link_name : cft->name,
1477 CGROUP_FILE_NAME_MAX);
c1bbd933 1478 }
8d7e6fb0 1479 return buf;
ddbcc7e8
PM
1480}
1481
54b7b868
AR
1482static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1483 char *buf)
1484{
1485 return cgroup_fill_name(cgrp, cft, buf, false);
1486}
1487
1488static char *cgroup_link_name(struct cgroup *cgrp, const struct cftype *cft,
1489 char *buf)
1490{
1491 return cgroup_fill_name(cgrp, cft, buf, true);
1492}
1493
f2e85d57
TH
1494/**
1495 * cgroup_file_mode - deduce file mode of a control file
1496 * @cft: the control file in question
1497 *
7dbdb199 1498 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1499 */
1500static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1501{
f2e85d57 1502 umode_t mode = 0;
65dff759 1503
f2e85d57
TH
1504 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1505 mode |= S_IRUGO;
1506
7dbdb199
TH
1507 if (cft->write_u64 || cft->write_s64 || cft->write) {
1508 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1509 mode |= S_IWUGO;
1510 else
1511 mode |= S_IWUSR;
1512 }
f2e85d57
TH
1513
1514 return mode;
65dff759
LZ
1515}
1516
af0ba678 1517/**
8699b776 1518 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
0f060deb 1519 * @subtree_control: the new subtree_control mask to consider
5ced2518 1520 * @this_ss_mask: available subsystems
af0ba678
TH
1521 *
1522 * On the default hierarchy, a subsystem may request other subsystems to be
1523 * enabled together through its ->depends_on mask. In such cases, more
1524 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1525 *
0f060deb 1526 * This function calculates which subsystems need to be enabled if
5ced2518 1527 * @subtree_control is to be applied while restricted to @this_ss_mask.
af0ba678 1528 */
5ced2518 1529static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
667c2491 1530{
6e5c8307 1531 u16 cur_ss_mask = subtree_control;
af0ba678
TH
1532 struct cgroup_subsys *ss;
1533 int ssid;
1534
1535 lockdep_assert_held(&cgroup_mutex);
1536
f6d635ad
TH
1537 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1538
af0ba678 1539 while (true) {
6e5c8307 1540 u16 new_ss_mask = cur_ss_mask;
af0ba678 1541
b4e0eeaf 1542 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
a966a4ed 1543 new_ss_mask |= ss->depends_on;
b4e0eeaf 1544 } while_each_subsys_mask();
af0ba678
TH
1545
1546 /*
1547 * Mask out subsystems which aren't available. This can
1548 * happen only if some depended-upon subsystems were bound
1549 * to non-default hierarchies.
1550 */
5ced2518 1551 new_ss_mask &= this_ss_mask;
af0ba678
TH
1552
1553 if (new_ss_mask == cur_ss_mask)
1554 break;
1555 cur_ss_mask = new_ss_mask;
1556 }
1557
0f060deb
TH
1558 return cur_ss_mask;
1559}
1560
a9746d8d
TH
1561/**
1562 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1563 * @kn: the kernfs_node being serviced
1564 *
1565 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1566 * the method finishes if locking succeeded. Note that once this function
1567 * returns the cgroup returned by cgroup_kn_lock_live() may become
1568 * inaccessible any time. If the caller intends to continue to access the
1569 * cgroup, it should pin it before invoking this function.
1570 */
0a268dbd 1571void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1572{
a9746d8d
TH
1573 struct cgroup *cgrp;
1574
1575 if (kernfs_type(kn) == KERNFS_DIR)
1576 cgrp = kn->priv;
1577 else
1578 cgrp = kn->parent->priv;
1579
1580 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1581
1582 kernfs_unbreak_active_protection(kn);
1583 cgroup_put(cgrp);
ddbcc7e8
PM
1584}
1585
a9746d8d
TH
1586/**
1587 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1588 * @kn: the kernfs_node being serviced
945ba199 1589 * @drain_offline: perform offline draining on the cgroup
a9746d8d
TH
1590 *
1591 * This helper is to be used by a cgroup kernfs method currently servicing
1592 * @kn. It breaks the active protection, performs cgroup locking and
1593 * verifies that the associated cgroup is alive. Returns the cgroup if
1594 * alive; otherwise, %NULL. A successful return should be undone by a
945ba199
TH
1595 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1596 * cgroup is drained of offlining csses before return.
a9746d8d
TH
1597 *
1598 * Any cgroup kernfs method implementation which requires locking the
1599 * associated cgroup should use this helper. It avoids nesting cgroup
1600 * locking under kernfs active protection and allows all kernfs operations
1601 * including self-removal.
1602 */
0a268dbd 1603struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
05ef1d7c 1604{
a9746d8d
TH
1605 struct cgroup *cgrp;
1606
1607 if (kernfs_type(kn) == KERNFS_DIR)
1608 cgrp = kn->priv;
1609 else
1610 cgrp = kn->parent->priv;
05ef1d7c 1611
2739d3cc 1612 /*
01f6474c 1613 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1614 * active_ref. cgroup liveliness check alone provides enough
1615 * protection against removal. Ensure @cgrp stays accessible and
1616 * break the active_ref protection.
2739d3cc 1617 */
aa32362f
LZ
1618 if (!cgroup_tryget(cgrp))
1619 return NULL;
a9746d8d
TH
1620 kernfs_break_active_protection(kn);
1621
945ba199
TH
1622 if (drain_offline)
1623 cgroup_lock_and_drain_offline(cgrp);
1624 else
1625 mutex_lock(&cgroup_mutex);
05ef1d7c 1626
a9746d8d
TH
1627 if (!cgroup_is_dead(cgrp))
1628 return cgrp;
1629
1630 cgroup_kn_unlock(kn);
1631 return NULL;
ddbcc7e8 1632}
05ef1d7c 1633
2739d3cc 1634static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1635{
2bd59d48 1636 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1637
01f6474c 1638 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1639
1640 if (cft->file_offset) {
1641 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1642 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1643
1644 spin_lock_irq(&cgroup_file_kn_lock);
1645 cfile->kn = NULL;
1646 spin_unlock_irq(&cgroup_file_kn_lock);
b12e3583
TH
1647
1648 del_timer_sync(&cfile->notify_timer);
34c06254
TH
1649 }
1650
2bd59d48 1651 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
54b7b868
AR
1652 if (cft->flags & CFTYPE_SYMLINKED)
1653 kernfs_remove_by_name(cgrp->kn,
1654 cgroup_link_name(cgrp, cft, name));
05ef1d7c
TH
1655}
1656
13af07df 1657/**
4df8dc90
TH
1658 * css_clear_dir - remove subsys files in a cgroup directory
1659 * @css: taget css
13af07df 1660 */
334c3679 1661static void css_clear_dir(struct cgroup_subsys_state *css)
05ef1d7c 1662{
334c3679 1663 struct cgroup *cgrp = css->cgroup;
4df8dc90 1664 struct cftype *cfts;
05ef1d7c 1665
88cb04b9
TH
1666 if (!(css->flags & CSS_VISIBLE))
1667 return;
1668
1669 css->flags &= ~CSS_VISIBLE;
1670
5faaf05f
TH
1671 if (!css->ss) {
1672 if (cgroup_on_dfl(cgrp))
1673 cfts = cgroup_base_files;
1674 else
1675 cfts = cgroup1_base_files;
1676
4df8dc90 1677 cgroup_addrm_files(css, cgrp, cfts, false);
5faaf05f
TH
1678 } else {
1679 list_for_each_entry(cfts, &css->ss->cfts, node)
1680 cgroup_addrm_files(css, cgrp, cfts, false);
1681 }
ddbcc7e8
PM
1682}
1683
ccdca218 1684/**
4df8dc90
TH
1685 * css_populate_dir - create subsys files in a cgroup directory
1686 * @css: target css
ccdca218
TH
1687 *
1688 * On failure, no file is added.
1689 */
334c3679 1690static int css_populate_dir(struct cgroup_subsys_state *css)
ccdca218 1691{
334c3679 1692 struct cgroup *cgrp = css->cgroup;
4df8dc90
TH
1693 struct cftype *cfts, *failed_cfts;
1694 int ret;
ccdca218 1695
03970d3c 1696 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
88cb04b9
TH
1697 return 0;
1698
4df8dc90
TH
1699 if (!css->ss) {
1700 if (cgroup_on_dfl(cgrp))
d62beb7f 1701 cfts = cgroup_base_files;
4df8dc90 1702 else
d62beb7f 1703 cfts = cgroup1_base_files;
ccdca218 1704
5faaf05f
TH
1705 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1706 if (ret < 0)
1707 return ret;
1708 } else {
1709 list_for_each_entry(cfts, &css->ss->cfts, node) {
1710 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1711 if (ret < 0) {
1712 failed_cfts = cfts;
1713 goto err;
1714 }
ccdca218
TH
1715 }
1716 }
88cb04b9
TH
1717
1718 css->flags |= CSS_VISIBLE;
1719
ccdca218
TH
1720 return 0;
1721err:
4df8dc90
TH
1722 list_for_each_entry(cfts, &css->ss->cfts, node) {
1723 if (cfts == failed_cfts)
1724 break;
1725 cgroup_addrm_files(css, cgrp, cfts, false);
1726 }
ccdca218
TH
1727 return ret;
1728}
1729
0a268dbd 1730int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
ddbcc7e8 1731{
1ada4838 1732 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1733 struct cgroup_subsys *ss;
2d8f243a 1734 int ssid, i, ret;
ddbcc7e8 1735
ace2bee8 1736 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1737
b4e0eeaf 1738 do_each_subsys_mask(ss, ssid, ss_mask) {
f6d635ad
TH
1739 /*
1740 * If @ss has non-root csses attached to it, can't move.
1741 * If @ss is an implicit controller, it is exempt from this
1742 * rule and can be stolen.
1743 */
1744 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1745 !ss->implicit_on_dfl)
3ed80a62 1746 return -EBUSY;
1d5be6b2 1747
5df36032 1748 /* can't move between two non-dummy roots either */
7fd8c565 1749 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1750 return -EBUSY;
b4e0eeaf 1751 } while_each_subsys_mask();
ddbcc7e8 1752
b4e0eeaf 1753 do_each_subsys_mask(ss, ssid, ss_mask) {
1ada4838
TH
1754 struct cgroup_root *src_root = ss->root;
1755 struct cgroup *scgrp = &src_root->cgrp;
1756 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1757 struct css_set *cset;
a8a648c4 1758
1ada4838 1759 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1760
334c3679
TH
1761 /* disable from the source */
1762 src_root->subsys_mask &= ~(1 << ssid);
1763 WARN_ON(cgroup_apply_control(scgrp));
1764 cgroup_finalize_control(scgrp, 0);
4df8dc90 1765
334c3679 1766 /* rebind */
1ada4838
TH
1767 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1768 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1769 ss->root = dst_root;
1ada4838 1770 css->cgroup = dcgrp;
73e80ed8 1771
82d6489d 1772 spin_lock_irq(&css_set_lock);
2d8f243a
TH
1773 hash_for_each(css_set_table, i, cset, hlist)
1774 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1775 &dcgrp->e_csets[ss->id]);
82d6489d 1776 spin_unlock_irq(&css_set_lock);
2d8f243a 1777
bd53d617 1778 /* default hierarchy doesn't enable controllers by default */
f392e51c 1779 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1780 if (dst_root == &cgrp_dfl_root) {
1781 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1782 } else {
1ada4838 1783 dcgrp->subtree_control |= 1 << ssid;
49d1dc4b 1784 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1785 }
a8a648c4 1786
334c3679
TH
1787 ret = cgroup_apply_control(dcgrp);
1788 if (ret)
1789 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1790 ss->name, ret);
1791
5df36032
TH
1792 if (ss->bind)
1793 ss->bind(css);
b4e0eeaf 1794 } while_each_subsys_mask();
ddbcc7e8 1795
1ada4838 1796 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1797 return 0;
1798}
1799
1592c9b2
TH
1800int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1801 struct kernfs_root *kf_root)
4f41fc59 1802{
09be4c82 1803 int len = 0;
4f41fc59
SH
1804 char *buf = NULL;
1805 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1806 struct cgroup *ns_cgroup;
1807
1808 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1809 if (!buf)
1810 return -ENOMEM;
1811
82d6489d 1812 spin_lock_irq(&css_set_lock);
4f41fc59
SH
1813 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1814 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
82d6489d 1815 spin_unlock_irq(&css_set_lock);
4f41fc59
SH
1816
1817 if (len >= PATH_MAX)
1818 len = -ERANGE;
1819 else if (len > 0) {
1820 seq_escape(sf, buf, " \t\n\\");
1821 len = 0;
1822 }
1823 kfree(buf);
1824 return len;
1825}
1826
e34a98d5
AV
1827enum cgroup2_param {
1828 Opt_nsdelegate,
9852ae3f 1829 Opt_memory_localevents,
e34a98d5
AV
1830 nr__cgroup2_params
1831};
5136f636 1832
e34a98d5 1833static const struct fs_parameter_spec cgroup2_param_specs[] = {
9852ae3f
CD
1834 fsparam_flag("nsdelegate", Opt_nsdelegate),
1835 fsparam_flag("memory_localevents", Opt_memory_localevents),
e34a98d5
AV
1836 {}
1837};
5136f636 1838
e34a98d5
AV
1839static const struct fs_parameter_description cgroup2_fs_parameters = {
1840 .name = "cgroup2",
1841 .specs = cgroup2_param_specs,
1842};
5136f636 1843
e34a98d5
AV
1844static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1845{
1846 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1847 struct fs_parse_result result;
1848 int opt;
5136f636 1849
e34a98d5
AV
1850 opt = fs_parse(fc, &cgroup2_fs_parameters, param, &result);
1851 if (opt < 0)
1852 return opt;
5136f636 1853
e34a98d5
AV
1854 switch (opt) {
1855 case Opt_nsdelegate:
1856 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1857 return 0;
9852ae3f
CD
1858 case Opt_memory_localevents:
1859 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1860 return 0;
e34a98d5
AV
1861 }
1862 return -EINVAL;
5136f636
TH
1863}
1864
1865static void apply_cgroup_root_flags(unsigned int root_flags)
1866{
1867 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1868 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1869 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1870 else
1871 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
9852ae3f
CD
1872
1873 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1874 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1875 else
1876 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
5136f636
TH
1877 }
1878}
1879
1880static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1881{
1882 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1883 seq_puts(seq, ",nsdelegate");
9852ae3f
CD
1884 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1885 seq_puts(seq, ",memory_localevents");
5136f636
TH
1886 return 0;
1887}
1888
90129625 1889static int cgroup_reconfigure(struct fs_context *fc)
ddbcc7e8 1890{
90129625 1891 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
5136f636 1892
f5dfb531 1893 apply_cgroup_root_flags(ctx->flags);
5136f636 1894 return 0;
ddbcc7e8
PM
1895}
1896
afeb0f9f
TH
1897/*
1898 * To reduce the fork() overhead for systems that are not actually using
1899 * their cgroups capability, we don't maintain the lists running through
1900 * each css_set to its tasks until we see the list actually used - in other
1901 * words after the first mount.
1902 */
1903static bool use_task_css_set_links __read_mostly;
1904
1905static void cgroup_enable_task_cg_lists(void)
1906{
1907 struct task_struct *p, *g;
1908
afeb0f9f
TH
1909 /*
1910 * We need tasklist_lock because RCU is not safe against
1911 * while_each_thread(). Besides, a forking task that has passed
1912 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1913 * is not guaranteed to have its child immediately visible in the
1914 * tasklist if we walk through it with RCU.
1915 */
1916 read_lock(&tasklist_lock);
d8742e22
TH
1917 spin_lock_irq(&css_set_lock);
1918
1919 if (use_task_css_set_links)
1920 goto out_unlock;
1921
1922 use_task_css_set_links = true;
1923
afeb0f9f 1924 do_each_thread(g, p) {
afeb0f9f
TH
1925 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1926 task_css_set(p) != &init_css_set);
1927
1928 /*
1929 * We should check if the process is exiting, otherwise
1930 * it will race with cgroup_exit() in that the list
1931 * entry won't be deleted though the process has exited.
f153ad11
TH
1932 * Do it while holding siglock so that we don't end up
1933 * racing against cgroup_exit().
82d6489d
DBO
1934 *
1935 * Interrupts were already disabled while acquiring
1936 * the css_set_lock, so we do not need to disable it
1937 * again when acquiring the sighand->siglock here.
afeb0f9f 1938 */
82d6489d 1939 spin_lock(&p->sighand->siglock);
eaf797ab
TH
1940 if (!(p->flags & PF_EXITING)) {
1941 struct css_set *cset = task_css_set(p);
1942
0de0942d
TH
1943 if (!css_set_populated(cset))
1944 css_set_update_populated(cset, true);
389b9c1b 1945 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab 1946 get_css_set(cset);
73a7242a 1947 cset->nr_tasks++;
eaf797ab 1948 }
82d6489d 1949 spin_unlock(&p->sighand->siglock);
afeb0f9f 1950 } while_each_thread(g, p);
afeb0f9f 1951out_unlock:
82d6489d 1952 spin_unlock_irq(&css_set_lock);
d8742e22 1953 read_unlock(&tasklist_lock);
afeb0f9f 1954}
ddbcc7e8 1955
cc31edce
PM
1956static void init_cgroup_housekeeping(struct cgroup *cgrp)
1957{
2d8f243a
TH
1958 struct cgroup_subsys *ss;
1959 int ssid;
1960
d5c419b6
TH
1961 INIT_LIST_HEAD(&cgrp->self.sibling);
1962 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1963 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1964 INIT_LIST_HEAD(&cgrp->pidlists);
1965 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1966 cgrp->self.cgroup = cgrp;
184faf32 1967 cgrp->self.flags |= CSS_ONLINE;
454000ad 1968 cgrp->dom_cgrp = cgrp;
1a926e0b
RG
1969 cgrp->max_descendants = INT_MAX;
1970 cgrp->max_depth = INT_MAX;
8f53470b 1971 INIT_LIST_HEAD(&cgrp->rstat_css_list);
d4ff749b 1972 prev_cputime_init(&cgrp->prev_cputime);
2d8f243a
TH
1973
1974 for_each_subsys(ss, ssid)
1975 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1976
1977 init_waitqueue_head(&cgrp->offline_waitq);
d62beb7f 1978 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
cc31edce 1979}
c6d57f33 1980
cf6299b1 1981void init_cgroup_root(struct cgroup_fs_context *ctx)
ddbcc7e8 1982{
cf6299b1 1983 struct cgroup_root *root = ctx->root;
3dd06ffa 1984 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1985
ddbcc7e8 1986 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1987 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1988 cgrp->root = root;
cc31edce 1989 init_cgroup_housekeeping(cgrp);
4e96ee8e 1990 idr_init(&root->cgroup_idr);
c6d57f33 1991
f5dfb531
AV
1992 root->flags = ctx->flags;
1993 if (ctx->release_agent)
1994 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1995 if (ctx->name)
1996 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1997 if (ctx->cpuset_clone_children)
3dd06ffa 1998 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1999}
2000
35ac1184 2001int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2c6ab6d2 2002{
d427dfeb 2003 LIST_HEAD(tmp_links);
3dd06ffa 2004 struct cgroup *root_cgrp = &root->cgrp;
fa069904 2005 struct kernfs_syscall_ops *kf_sops;
d427dfeb 2006 struct css_set *cset;
d427dfeb 2007 int i, ret;
2c6ab6d2 2008
d427dfeb 2009 lockdep_assert_held(&cgroup_mutex);
c6d57f33 2010
cf780b7d 2011 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 2012 if (ret < 0)
2bd59d48 2013 goto out;
d427dfeb 2014 root_cgrp->id = ret;
b11cfb58 2015 root_cgrp->ancestor_ids[0] = ret;
c6d57f33 2016
9732adc5 2017 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
35ac1184 2018 0, GFP_KERNEL);
9d755d33
TH
2019 if (ret)
2020 goto out;
2021
d427dfeb 2022 /*
f0d9a5f1 2023 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb 2024 * but that's OK - it can only be increased by someone holding
04313591
TH
2025 * cgroup_lock, and that's us. Later rebinding may disable
2026 * controllers on the default hierarchy and thus create new csets,
2027 * which can't be more than the existing ones. Allocate 2x.
d427dfeb 2028 */
04313591 2029 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
d427dfeb 2030 if (ret)
9d755d33 2031 goto cancel_ref;
ddbcc7e8 2032
985ed670 2033 ret = cgroup_init_root_id(root);
ddbcc7e8 2034 if (ret)
9d755d33 2035 goto cancel_ref;
ddbcc7e8 2036
fa069904
TH
2037 kf_sops = root == &cgrp_dfl_root ?
2038 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2039
2040 root->kf_root = kernfs_create_root(kf_sops,
aa818825
SL
2041 KERNFS_ROOT_CREATE_DEACTIVATED |
2042 KERNFS_ROOT_SUPPORT_EXPORTOP,
2bd59d48
TH
2043 root_cgrp);
2044 if (IS_ERR(root->kf_root)) {
2045 ret = PTR_ERR(root->kf_root);
2046 goto exit_root_id;
2047 }
2048 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 2049
334c3679 2050 ret = css_populate_dir(&root_cgrp->self);
d427dfeb 2051 if (ret)
2bd59d48 2052 goto destroy_root;
ddbcc7e8 2053
5df36032 2054 ret = rebind_subsystems(root, ss_mask);
d427dfeb 2055 if (ret)
2bd59d48 2056 goto destroy_root;
ddbcc7e8 2057
324bda9e
AS
2058 ret = cgroup_bpf_inherit(root_cgrp);
2059 WARN_ON_ONCE(ret);
2060
ed1777de
TH
2061 trace_cgroup_setup_root(root);
2062
d427dfeb
TH
2063 /*
2064 * There must be no failure case after here, since rebinding takes
2065 * care of subsystems' refcounts, which are explicitly dropped in
2066 * the failure exit path.
2067 */
2068 list_add(&root->root_list, &cgroup_roots);
2069 cgroup_root_count++;
0df6a63f 2070
d427dfeb 2071 /*
3dd06ffa 2072 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
2073 * objects.
2074 */
82d6489d 2075 spin_lock_irq(&css_set_lock);
0de0942d 2076 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 2077 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
2078 if (css_set_populated(cset))
2079 cgroup_update_populated(root_cgrp, true);
2080 }
82d6489d 2081 spin_unlock_irq(&css_set_lock);
ddbcc7e8 2082
d5c419b6 2083 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 2084 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 2085
2bd59d48 2086 kernfs_activate(root_cgrp->kn);
d427dfeb 2087 ret = 0;
2bd59d48 2088 goto out;
d427dfeb 2089
2bd59d48
TH
2090destroy_root:
2091 kernfs_destroy_root(root->kf_root);
2092 root->kf_root = NULL;
2093exit_root_id:
d427dfeb 2094 cgroup_exit_root_id(root);
9d755d33 2095cancel_ref:
9a1049da 2096 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 2097out:
d427dfeb
TH
2098 free_cgrp_cset_links(&tmp_links);
2099 return ret;
ddbcc7e8
PM
2100}
2101
cca8f327 2102int cgroup_do_get_tree(struct fs_context *fc)
ddbcc7e8 2103{
71d883c3 2104 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
23bf1b6b 2105 int ret;
ddbcc7e8 2106
23bf1b6b 2107 ctx->kfc.root = ctx->root->kf_root;
cca8f327 2108 if (fc->fs_type == &cgroup2_fs_type)
23bf1b6b 2109 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
cca8f327 2110 else
23bf1b6b
DH
2111 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2112 ret = kernfs_get_tree(fc);
ed82571b 2113
56fde9e0 2114 /*
633feee3
TH
2115 * In non-init cgroup namespace, instead of root cgroup's dentry,
2116 * we return the dentry corresponding to the cgroupns->root_cgrp.
56fde9e0 2117 */
cca8f327 2118 if (!ret && ctx->ns != &init_cgroup_ns) {
633feee3 2119 struct dentry *nsdentry;
71d883c3 2120 struct super_block *sb = fc->root->d_sb;
633feee3 2121 struct cgroup *cgrp;
e37a06f1 2122
633feee3
TH
2123 mutex_lock(&cgroup_mutex);
2124 spin_lock_irq(&css_set_lock);
2125
cca8f327 2126 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
633feee3
TH
2127
2128 spin_unlock_irq(&css_set_lock);
2129 mutex_unlock(&cgroup_mutex);
2130
399504e2 2131 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
71d883c3
AV
2132 dput(fc->root);
2133 fc->root = nsdentry;
2134 if (IS_ERR(nsdentry)) {
2135 ret = PTR_ERR(nsdentry);
399504e2 2136 deactivate_locked_super(sb);
71d883c3 2137 }
67e9c74b
TH
2138 }
2139
23bf1b6b 2140 if (!ctx->kfc.new_sb_created)
71d883c3 2141 cgroup_put(&ctx->root->cgrp);
633feee3 2142
71d883c3 2143 return ret;
633feee3
TH
2144}
2145
90129625
AV
2146/*
2147 * Destroy a cgroup filesystem context.
2148 */
2149static void cgroup_fs_context_free(struct fs_context *fc)
ddbcc7e8 2150{
90129625
AV
2151 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2152
f5dfb531
AV
2153 kfree(ctx->name);
2154 kfree(ctx->release_agent);
cca8f327 2155 put_cgroup_ns(ctx->ns);
23bf1b6b 2156 kernfs_free_fs_context(fc);
90129625
AV
2157 kfree(ctx);
2158}
2159
90129625 2160static int cgroup_get_tree(struct fs_context *fc)
ddbcc7e8 2161{
90129625 2162 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
5136f636 2163 int ret;
ddbcc7e8 2164
90129625
AV
2165 cgrp_dfl_visible = true;
2166 cgroup_get_live(&cgrp_dfl_root.cgrp);
cf6299b1 2167 ctx->root = &cgrp_dfl_root;
ed82571b 2168
cca8f327 2169 ret = cgroup_do_get_tree(fc);
71d883c3
AV
2170 if (!ret)
2171 apply_cgroup_root_flags(ctx->flags);
2172 return ret;
90129625
AV
2173}
2174
90129625
AV
2175static const struct fs_context_operations cgroup_fs_context_ops = {
2176 .free = cgroup_fs_context_free,
e34a98d5 2177 .parse_param = cgroup2_parse_param,
90129625
AV
2178 .get_tree = cgroup_get_tree,
2179 .reconfigure = cgroup_reconfigure,
2180};
2181
2182static const struct fs_context_operations cgroup1_fs_context_ops = {
2183 .free = cgroup_fs_context_free,
8d2451f4 2184 .parse_param = cgroup1_parse_param,
90129625
AV
2185 .get_tree = cgroup1_get_tree,
2186 .reconfigure = cgroup1_reconfigure,
2187};
2188
2189/*
23bf1b6b
DH
2190 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2191 * we select the namespace we're going to use.
90129625
AV
2192 */
2193static int cgroup_init_fs_context(struct fs_context *fc)
2194{
2195 struct cgroup_fs_context *ctx;
2196
2197 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2198 if (!ctx)
2199 return -ENOMEM;
ed82571b 2200
56fde9e0
TH
2201 /*
2202 * The first time anyone tries to mount a cgroup, enable the list
2203 * linking each css_set to its tasks and fix up all existing tasks.
2204 */
2205 if (!use_task_css_set_links)
2206 cgroup_enable_task_cg_lists();
e37a06f1 2207
cca8f327
AV
2208 ctx->ns = current->nsproxy->cgroup_ns;
2209 get_cgroup_ns(ctx->ns);
23bf1b6b 2210 fc->fs_private = &ctx->kfc;
90129625
AV
2211 if (fc->fs_type == &cgroup2_fs_type)
2212 fc->ops = &cgroup_fs_context_ops;
2213 else
2214 fc->ops = &cgroup1_fs_context_ops;
23bf1b6b
DH
2215 if (fc->user_ns)
2216 put_user_ns(fc->user_ns);
2217 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2218 fc->global = true;
90129625 2219 return 0;
2bd59d48 2220}
8e30e2b8 2221
2bd59d48
TH
2222static void cgroup_kill_sb(struct super_block *sb)
2223{
2224 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2225 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
a015edd2 2226
970317aa 2227 /*
35ac1184 2228 * If @root doesn't have any children, start killing it.
9d755d33
TH
2229 * This prevents new mounts by disabling percpu_ref_tryget_live().
2230 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2231 *
2232 * And don't kill the default root.
970317aa 2233 */
35ac1184
AV
2234 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2235 !percpu_ref_is_dying(&root->cgrp.self.refcnt))
9d755d33 2236 percpu_ref_kill(&root->cgrp.self.refcnt);
35ac1184 2237 cgroup_put(&root->cgrp);
2bd59d48 2238 kernfs_kill_sb(sb);
ddbcc7e8 2239}
970317aa 2240
0a268dbd 2241struct file_system_type cgroup_fs_type = {
8d2451f4
AV
2242 .name = "cgroup",
2243 .init_fs_context = cgroup_init_fs_context,
2244 .parameters = &cgroup1_fs_parameters,
2245 .kill_sb = cgroup_kill_sb,
2246 .fs_flags = FS_USERNS_MOUNT,
ddbcc7e8 2247};
3126121f 2248
67e9c74b 2249static struct file_system_type cgroup2_fs_type = {
e34a98d5
AV
2250 .name = "cgroup2",
2251 .init_fs_context = cgroup_init_fs_context,
2252 .parameters = &cgroup2_fs_parameters,
2253 .kill_sb = cgroup_kill_sb,
2254 .fs_flags = FS_USERNS_MOUNT,
67e9c74b 2255};
3126121f 2256
0a268dbd
TH
2257int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2258 struct cgroup_namespace *ns)
a79a908f
AK
2259{
2260 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
a79a908f 2261
4c737b41 2262 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
a79a908f
AK
2263}
2264
4c737b41
TH
2265int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2266 struct cgroup_namespace *ns)
a79a908f 2267{
4c737b41 2268 int ret;
a79a908f
AK
2269
2270 mutex_lock(&cgroup_mutex);
82d6489d 2271 spin_lock_irq(&css_set_lock);
a79a908f
AK
2272
2273 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2274
82d6489d 2275 spin_unlock_irq(&css_set_lock);
a79a908f
AK
2276 mutex_unlock(&cgroup_mutex);
2277
2278 return ret;
2279}
2280EXPORT_SYMBOL_GPL(cgroup_path_ns);
2281
857a2beb 2282/**
913ffdb5 2283 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2284 * @task: target task
857a2beb
TH
2285 * @buf: the buffer to write the path into
2286 * @buflen: the length of the buffer
2287 *
913ffdb5
TH
2288 * Determine @task's cgroup on the first (the one with the lowest non-zero
2289 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2290 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2291 * cgroup controller callbacks.
2292 *
e61734c5 2293 * Return value is the same as kernfs_path().
857a2beb 2294 */
4c737b41 2295int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2296{
3dd06ffa 2297 struct cgroup_root *root;
913ffdb5 2298 struct cgroup *cgrp;
e61734c5 2299 int hierarchy_id = 1;
4c737b41 2300 int ret;
857a2beb
TH
2301
2302 mutex_lock(&cgroup_mutex);
82d6489d 2303 spin_lock_irq(&css_set_lock);
857a2beb 2304
913ffdb5
TH
2305 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2306
857a2beb
TH
2307 if (root) {
2308 cgrp = task_cgroup_from_root(task, root);
4c737b41 2309 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
913ffdb5
TH
2310 } else {
2311 /* if no hierarchy exists, everyone is in "/" */
4c737b41 2312 ret = strlcpy(buf, "/", buflen);
857a2beb
TH
2313 }
2314
82d6489d 2315 spin_unlock_irq(&css_set_lock);
857a2beb 2316 mutex_unlock(&cgroup_mutex);
4c737b41 2317 return ret;
857a2beb 2318}
913ffdb5 2319EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2320
adaae5dc 2321/**
e595cd70 2322 * cgroup_migrate_add_task - add a migration target task to a migration context
adaae5dc 2323 * @task: target task
e595cd70 2324 * @mgctx: target migration context
adaae5dc 2325 *
e595cd70
TH
2326 * Add @task, which is a migration target, to @mgctx->tset. This function
2327 * becomes noop if @task doesn't need to be migrated. @task's css_set
2328 * should have been added as a migration source and @task->cg_list will be
2329 * moved from the css_set's tasks list to mg_tasks one.
adaae5dc 2330 */
e595cd70
TH
2331static void cgroup_migrate_add_task(struct task_struct *task,
2332 struct cgroup_mgctx *mgctx)
adaae5dc
TH
2333{
2334 struct css_set *cset;
2335
f0d9a5f1 2336 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2337
2338 /* @task either already exited or can't exit until the end */
2339 if (task->flags & PF_EXITING)
2340 return;
2341
2342 /* leave @task alone if post_fork() hasn't linked it yet */
2343 if (list_empty(&task->cg_list))
2344 return;
2345
2346 cset = task_css_set(task);
2347 if (!cset->mg_src_cgrp)
2348 return;
2349
61046727
TH
2350 mgctx->tset.nr_tasks++;
2351
adaae5dc
TH
2352 list_move_tail(&task->cg_list, &cset->mg_tasks);
2353 if (list_empty(&cset->mg_node))
e595cd70
TH
2354 list_add_tail(&cset->mg_node,
2355 &mgctx->tset.src_csets);
adaae5dc 2356 if (list_empty(&cset->mg_dst_cset->mg_node))
d8ebf519 2357 list_add_tail(&cset->mg_dst_cset->mg_node,
e595cd70 2358 &mgctx->tset.dst_csets);
adaae5dc
TH
2359}
2360
2f7ee569
TH
2361/**
2362 * cgroup_taskset_first - reset taskset and return the first task
2363 * @tset: taskset of interest
1f7dd3e5 2364 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2365 *
2366 * @tset iteration is initialized and the first task is returned.
2367 */
1f7dd3e5
TH
2368struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2369 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2370{
b3dc094e
TH
2371 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2372 tset->cur_task = NULL;
2373
1f7dd3e5 2374 return cgroup_taskset_next(tset, dst_cssp);
2f7ee569 2375}
2f7ee569
TH
2376
2377/**
2378 * cgroup_taskset_next - iterate to the next task in taskset
2379 * @tset: taskset of interest
1f7dd3e5 2380 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2381 *
2382 * Return the next task in @tset. Iteration must have been initialized
2383 * with cgroup_taskset_first().
2384 */
1f7dd3e5
TH
2385struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2386 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2387{
b3dc094e
TH
2388 struct css_set *cset = tset->cur_cset;
2389 struct task_struct *task = tset->cur_task;
2f7ee569 2390
b3dc094e
TH
2391 while (&cset->mg_node != tset->csets) {
2392 if (!task)
2393 task = list_first_entry(&cset->mg_tasks,
2394 struct task_struct, cg_list);
2395 else
2396 task = list_next_entry(task, cg_list);
2f7ee569 2397
b3dc094e
TH
2398 if (&task->cg_list != &cset->mg_tasks) {
2399 tset->cur_cset = cset;
2400 tset->cur_task = task;
1f7dd3e5
TH
2401
2402 /*
2403 * This function may be called both before and
2404 * after cgroup_taskset_migrate(). The two cases
2405 * can be distinguished by looking at whether @cset
2406 * has its ->mg_dst_cset set.
2407 */
2408 if (cset->mg_dst_cset)
2409 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2410 else
2411 *dst_cssp = cset->subsys[tset->ssid];
2412
b3dc094e
TH
2413 return task;
2414 }
2f7ee569 2415
b3dc094e
TH
2416 cset = list_next_entry(cset, mg_node);
2417 task = NULL;
2418 }
2f7ee569 2419
b3dc094e 2420 return NULL;
2f7ee569 2421}
2f7ee569 2422
adaae5dc 2423/**
37ff9f8f 2424 * cgroup_taskset_migrate - migrate a taskset
e595cd70 2425 * @mgctx: migration context
adaae5dc 2426 *
e595cd70 2427 * Migrate tasks in @mgctx as setup by migration preparation functions.
37ff9f8f 2428 * This function fails iff one of the ->can_attach callbacks fails and
e595cd70
TH
2429 * guarantees that either all or none of the tasks in @mgctx are migrated.
2430 * @mgctx is consumed regardless of success.
adaae5dc 2431 */
bfc2cf6f 2432static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
adaae5dc 2433{
e595cd70 2434 struct cgroup_taskset *tset = &mgctx->tset;
37ff9f8f 2435 struct cgroup_subsys *ss;
adaae5dc
TH
2436 struct task_struct *task, *tmp_task;
2437 struct css_set *cset, *tmp_cset;
37ff9f8f 2438 int ssid, failed_ssid, ret;
adaae5dc 2439
adaae5dc 2440 /* check that we can legitimately attach to the cgroup */
61046727
TH
2441 if (tset->nr_tasks) {
2442 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2443 if (ss->can_attach) {
2444 tset->ssid = ssid;
2445 ret = ss->can_attach(tset);
2446 if (ret) {
2447 failed_ssid = ssid;
2448 goto out_cancel_attach;
2449 }
adaae5dc 2450 }
61046727
TH
2451 } while_each_subsys_mask();
2452 }
adaae5dc
TH
2453
2454 /*
2455 * Now that we're guaranteed success, proceed to move all tasks to
2456 * the new cgroup. There are no failure cases after here, so this
2457 * is the commit point.
2458 */
82d6489d 2459 spin_lock_irq(&css_set_lock);
adaae5dc 2460 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2461 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2462 struct css_set *from_cset = task_css_set(task);
2463 struct css_set *to_cset = cset->mg_dst_cset;
2464
2465 get_css_set(to_cset);
73a7242a 2466 to_cset->nr_tasks++;
f6d7d049 2467 css_set_move_task(task, from_cset, to_cset, true);
73a7242a 2468 from_cset->nr_tasks--;
76f969e8
RG
2469 /*
2470 * If the source or destination cgroup is frozen,
2471 * the task might require to change its state.
2472 */
2473 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2474 to_cset->dfl_cgrp);
2475 put_css_set_locked(from_cset);
2476
f6d7d049 2477 }
adaae5dc 2478 }
82d6489d 2479 spin_unlock_irq(&css_set_lock);
adaae5dc
TH
2480
2481 /*
2482 * Migration is committed, all target tasks are now on dst_csets.
2483 * Nothing is sensitive to fork() after this point. Notify
2484 * controllers that migration is complete.
2485 */
2486 tset->csets = &tset->dst_csets;
2487
61046727
TH
2488 if (tset->nr_tasks) {
2489 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2490 if (ss->attach) {
2491 tset->ssid = ssid;
2492 ss->attach(tset);
2493 }
2494 } while_each_subsys_mask();
2495 }
adaae5dc
TH
2496
2497 ret = 0;
2498 goto out_release_tset;
2499
2500out_cancel_attach:
61046727
TH
2501 if (tset->nr_tasks) {
2502 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2503 if (ssid == failed_ssid)
2504 break;
2505 if (ss->cancel_attach) {
2506 tset->ssid = ssid;
2507 ss->cancel_attach(tset);
2508 }
2509 } while_each_subsys_mask();
2510 }
adaae5dc 2511out_release_tset:
82d6489d 2512 spin_lock_irq(&css_set_lock);
adaae5dc
TH
2513 list_splice_init(&tset->dst_csets, &tset->src_csets);
2514 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2515 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2516 list_del_init(&cset->mg_node);
2517 }
82d6489d 2518 spin_unlock_irq(&css_set_lock);
c4fa6c43
WL
2519
2520 /*
2521 * Re-initialize the cgroup_taskset structure in case it is reused
2522 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2523 * iteration.
2524 */
2525 tset->nr_tasks = 0;
2526 tset->csets = &tset->src_csets;
adaae5dc
TH
2527 return ret;
2528}
2529
6c694c88 2530/**
8cfd8147 2531 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
6c694c88
TH
2532 * @dst_cgrp: destination cgroup to test
2533 *
8cfd8147
TH
2534 * On the default hierarchy, except for the mixable, (possible) thread root
2535 * and threaded cgroups, subtree_control must be zero for migration
2536 * destination cgroups with tasks so that child cgroups don't compete
2537 * against tasks.
6c694c88 2538 */
8cfd8147 2539int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
6c694c88 2540{
8cfd8147
TH
2541 /* v1 doesn't have any restriction */
2542 if (!cgroup_on_dfl(dst_cgrp))
2543 return 0;
2544
2545 /* verify @dst_cgrp can host resources */
2546 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2547 return -EOPNOTSUPP;
2548
2549 /* mixables don't care */
2550 if (cgroup_is_mixable(dst_cgrp))
2551 return 0;
2552
2553 /*
2554 * If @dst_cgrp is already or can become a thread root or is
2555 * threaded, it doesn't matter.
2556 */
2557 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2558 return 0;
2559
2560 /* apply no-internal-process constraint */
2561 if (dst_cgrp->subtree_control)
2562 return -EBUSY;
2563
2564 return 0;
6c694c88
TH
2565}
2566
a043e3b2 2567/**
1958d2d5 2568 * cgroup_migrate_finish - cleanup after attach
e595cd70 2569 * @mgctx: migration context
74a1166d 2570 *
1958d2d5
TH
2571 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2572 * those functions for details.
74a1166d 2573 */
e595cd70 2574void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
74a1166d 2575{
e595cd70 2576 LIST_HEAD(preloaded);
1958d2d5 2577 struct css_set *cset, *tmp_cset;
74a1166d 2578
1958d2d5
TH
2579 lockdep_assert_held(&cgroup_mutex);
2580
82d6489d 2581 spin_lock_irq(&css_set_lock);
e595cd70
TH
2582
2583 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2584 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2585
2586 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
1958d2d5 2587 cset->mg_src_cgrp = NULL;
e4857982 2588 cset->mg_dst_cgrp = NULL;
1958d2d5
TH
2589 cset->mg_dst_cset = NULL;
2590 list_del_init(&cset->mg_preload_node);
a25eb52e 2591 put_css_set_locked(cset);
1958d2d5 2592 }
e595cd70 2593
82d6489d 2594 spin_unlock_irq(&css_set_lock);
1958d2d5
TH
2595}
2596
2597/**
2598 * cgroup_migrate_add_src - add a migration source css_set
2599 * @src_cset: the source css_set to add
2600 * @dst_cgrp: the destination cgroup
e595cd70 2601 * @mgctx: migration context
1958d2d5
TH
2602 *
2603 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
e595cd70 2604 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
1958d2d5
TH
2605 * up by cgroup_migrate_finish().
2606 *
1ed13287
TH
2607 * This function may be called without holding cgroup_threadgroup_rwsem
2608 * even if the target is a process. Threads may be created and destroyed
2609 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2610 * into play and the preloaded css_sets are guaranteed to cover all
2611 * migrations.
1958d2d5 2612 */
0a268dbd
TH
2613void cgroup_migrate_add_src(struct css_set *src_cset,
2614 struct cgroup *dst_cgrp,
e595cd70 2615 struct cgroup_mgctx *mgctx)
1958d2d5
TH
2616{
2617 struct cgroup *src_cgrp;
2618
2619 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2620 lockdep_assert_held(&css_set_lock);
1958d2d5 2621
2b021cbf
TH
2622 /*
2623 * If ->dead, @src_set is associated with one or more dead cgroups
2624 * and doesn't contain any migratable tasks. Ignore it early so
2625 * that the rest of migration path doesn't get confused by it.
2626 */
2627 if (src_cset->dead)
2628 return;
2629
1958d2d5
TH
2630 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2631
1958d2d5
TH
2632 if (!list_empty(&src_cset->mg_preload_node))
2633 return;
2634
2635 WARN_ON(src_cset->mg_src_cgrp);
e4857982 2636 WARN_ON(src_cset->mg_dst_cgrp);
1958d2d5
TH
2637 WARN_ON(!list_empty(&src_cset->mg_tasks));
2638 WARN_ON(!list_empty(&src_cset->mg_node));
2639
2640 src_cset->mg_src_cgrp = src_cgrp;
e4857982 2641 src_cset->mg_dst_cgrp = dst_cgrp;
1958d2d5 2642 get_css_set(src_cset);
e595cd70 2643 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
1958d2d5
TH
2644}
2645
2646/**
2647 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
e595cd70 2648 * @mgctx: migration context
1958d2d5 2649 *
e4857982 2650 * Tasks are about to be moved and all the source css_sets have been
e595cd70
TH
2651 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2652 * pins all destination css_sets, links each to its source, and append them
2653 * to @mgctx->preloaded_dst_csets.
1958d2d5
TH
2654 *
2655 * This function must be called after cgroup_migrate_add_src() has been
2656 * called on each migration source css_set. After migration is performed
2657 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
e595cd70 2658 * @mgctx.
1958d2d5 2659 */
e595cd70 2660int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
1958d2d5 2661{
f817de98 2662 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2663
2664 lockdep_assert_held(&cgroup_mutex);
2665
2666 /* look up the dst cset for each src cset and link it to src */
e595cd70
TH
2667 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2668 mg_preload_node) {
1958d2d5 2669 struct css_set *dst_cset;
bfc2cf6f
TH
2670 struct cgroup_subsys *ss;
2671 int ssid;
1958d2d5 2672
e4857982 2673 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
1958d2d5 2674 if (!dst_cset)
d6e486ee 2675 return -ENOMEM;
1958d2d5
TH
2676
2677 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2678
2679 /*
2680 * If src cset equals dst, it's noop. Drop the src.
2681 * cgroup_migrate() will skip the cset too. Note that we
2682 * can't handle src == dst as some nodes are used by both.
2683 */
2684 if (src_cset == dst_cset) {
2685 src_cset->mg_src_cgrp = NULL;
e4857982 2686 src_cset->mg_dst_cgrp = NULL;
f817de98 2687 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2688 put_css_set(src_cset);
2689 put_css_set(dst_cset);
f817de98
TH
2690 continue;
2691 }
2692
1958d2d5
TH
2693 src_cset->mg_dst_cset = dst_cset;
2694
2695 if (list_empty(&dst_cset->mg_preload_node))
e595cd70
TH
2696 list_add_tail(&dst_cset->mg_preload_node,
2697 &mgctx->preloaded_dst_csets);
1958d2d5 2698 else
a25eb52e 2699 put_css_set(dst_cset);
bfc2cf6f
TH
2700
2701 for_each_subsys(ss, ssid)
2702 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2703 mgctx->ss_mask |= 1 << ssid;
1958d2d5
TH
2704 }
2705
1958d2d5 2706 return 0;
1958d2d5
TH
2707}
2708
2709/**
2710 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2711 * @leader: the leader of the process or the task to migrate
2712 * @threadgroup: whether @leader points to the whole process or a single task
e595cd70 2713 * @mgctx: migration context
1958d2d5 2714 *
37ff9f8f
TH
2715 * Migrate a process or task denoted by @leader. If migrating a process,
2716 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2717 * responsible for invoking cgroup_migrate_add_src() and
1958d2d5
TH
2718 * cgroup_migrate_prepare_dst() on the targets before invoking this
2719 * function and following up with cgroup_migrate_finish().
2720 *
2721 * As long as a controller's ->can_attach() doesn't fail, this function is
2722 * guaranteed to succeed. This means that, excluding ->can_attach()
2723 * failure, when migrating multiple targets, the success or failure can be
2724 * decided for all targets by invoking group_migrate_prepare_dst() before
2725 * actually starting migrating.
2726 */
0a268dbd 2727int cgroup_migrate(struct task_struct *leader, bool threadgroup,
bfc2cf6f 2728 struct cgroup_mgctx *mgctx)
74a1166d 2729{
adaae5dc 2730 struct task_struct *task;
74a1166d 2731
fb5d2b4c
MSB
2732 /*
2733 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2734 * already PF_EXITING could be freed from underneath us unless we
2735 * take an rcu_read_lock.
2736 */
82d6489d 2737 spin_lock_irq(&css_set_lock);
fb5d2b4c 2738 rcu_read_lock();
9db8de37 2739 task = leader;
74a1166d 2740 do {
e595cd70 2741 cgroup_migrate_add_task(task, mgctx);
081aa458
LZ
2742 if (!threadgroup)
2743 break;
9db8de37 2744 } while_each_thread(leader, task);
fb5d2b4c 2745 rcu_read_unlock();
82d6489d 2746 spin_unlock_irq(&css_set_lock);
74a1166d 2747
bfc2cf6f 2748 return cgroup_migrate_execute(mgctx);
74a1166d
BB
2749}
2750
1958d2d5
TH
2751/**
2752 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2753 * @dst_cgrp: the cgroup to attach to
2754 * @leader: the task or the leader of the threadgroup to be attached
2755 * @threadgroup: attach the whole threadgroup?
2756 *
1ed13287 2757 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5 2758 */
0a268dbd
TH
2759int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2760 bool threadgroup)
1958d2d5 2761{
e595cd70 2762 DEFINE_CGROUP_MGCTX(mgctx);
1958d2d5
TH
2763 struct task_struct *task;
2764 int ret;
2765
8cfd8147
TH
2766 ret = cgroup_migrate_vet_dst(dst_cgrp);
2767 if (ret)
2768 return ret;
6c694c88 2769
1958d2d5 2770 /* look up all src csets */
82d6489d 2771 spin_lock_irq(&css_set_lock);
1958d2d5
TH
2772 rcu_read_lock();
2773 task = leader;
2774 do {
e595cd70 2775 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
1958d2d5
TH
2776 if (!threadgroup)
2777 break;
2778 } while_each_thread(leader, task);
2779 rcu_read_unlock();
82d6489d 2780 spin_unlock_irq(&css_set_lock);
1958d2d5
TH
2781
2782 /* prepare dst csets and commit */
e595cd70 2783 ret = cgroup_migrate_prepare_dst(&mgctx);
1958d2d5 2784 if (!ret)
bfc2cf6f 2785 ret = cgroup_migrate(leader, threadgroup, &mgctx);
1958d2d5 2786
e595cd70 2787 cgroup_migrate_finish(&mgctx);
ed1777de
TH
2788
2789 if (!ret)
e4f8d81c 2790 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
ed1777de 2791
1958d2d5 2792 return ret;
74a1166d
BB
2793}
2794
715c809d
TH
2795struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2796 __acquires(&cgroup_threadgroup_rwsem)
bbcb81d0 2797{
bbcb81d0 2798 struct task_struct *tsk;
acbef755 2799 pid_t pid;
bbcb81d0 2800
acbef755 2801 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
715c809d 2802 return ERR_PTR(-EINVAL);
74a1166d 2803
3014dde7 2804 percpu_down_write(&cgroup_threadgroup_rwsem);
715c809d 2805
b78949eb 2806 rcu_read_lock();
bbcb81d0 2807 if (pid) {
73507f33 2808 tsk = find_task_by_vpid(pid);
74a1166d 2809 if (!tsk) {
715c809d
TH
2810 tsk = ERR_PTR(-ESRCH);
2811 goto out_unlock_threadgroup;
bbcb81d0 2812 }
dedf22e9 2813 } else {
b78949eb 2814 tsk = current;
dedf22e9 2815 }
cd3d0952
TH
2816
2817 if (threadgroup)
b78949eb 2818 tsk = tsk->group_leader;
c4c27fbd
MG
2819
2820 /*
77f88796
TH
2821 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2822 * If userland migrates such a kthread to a non-root cgroup, it can
2823 * become trapped in a cpuset, or RT kthread may be born in a
2824 * cgroup with no rt_runtime allocated. Just say no.
c4c27fbd 2825 */
77f88796 2826 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
715c809d
TH
2827 tsk = ERR_PTR(-EINVAL);
2828 goto out_unlock_threadgroup;
c4c27fbd
MG
2829 }
2830
b78949eb 2831 get_task_struct(tsk);
715c809d
TH
2832 goto out_unlock_rcu;
2833
2834out_unlock_threadgroup:
2835 percpu_up_write(&cgroup_threadgroup_rwsem);
2836out_unlock_rcu:
b78949eb 2837 rcu_read_unlock();
715c809d
TH
2838 return tsk;
2839}
b78949eb 2840
715c809d
TH
2841void cgroup_procs_write_finish(struct task_struct *task)
2842 __releases(&cgroup_threadgroup_rwsem)
2843{
2844 struct cgroup_subsys *ss;
2845 int ssid;
081aa458 2846
715c809d
TH
2847 /* release reference from cgroup_procs_write_start() */
2848 put_task_struct(task);
3014dde7 2849
3014dde7 2850 percpu_up_write(&cgroup_threadgroup_rwsem);
5cf1cacb
TH
2851 for_each_subsys(ss, ssid)
2852 if (ss->post_attach)
2853 ss->post_attach();
af351026
PM
2854}
2855
6e5c8307 2856static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
355e0c48 2857{
f8f22e53
TH
2858 struct cgroup_subsys *ss;
2859 bool printed = false;
2860 int ssid;
a742c59d 2861
b4e0eeaf 2862 do_each_subsys_mask(ss, ssid, ss_mask) {
a966a4ed
AS
2863 if (printed)
2864 seq_putc(seq, ' ');
2865 seq_printf(seq, "%s", ss->name);
2866 printed = true;
b4e0eeaf 2867 } while_each_subsys_mask();
f8f22e53
TH
2868 if (printed)
2869 seq_putc(seq, '\n');
355e0c48
PM
2870}
2871
f8f22e53
TH
2872/* show controllers which are enabled from the parent */
2873static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2874{
f8f22e53
TH
2875 struct cgroup *cgrp = seq_css(seq)->cgroup;
2876
5531dc91 2877 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
f8f22e53 2878 return 0;
ddbcc7e8
PM
2879}
2880
f8f22e53
TH
2881/* show controllers which are enabled for a given cgroup's children */
2882static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2883{
f8f22e53
TH
2884 struct cgroup *cgrp = seq_css(seq)->cgroup;
2885
667c2491 2886 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2887 return 0;
2888}
2889
2890/**
2891 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2892 * @cgrp: root of the subtree to update csses for
2893 *
54962604
TH
2894 * @cgrp's control masks have changed and its subtree's css associations
2895 * need to be updated accordingly. This function looks up all css_sets
2896 * which are attached to the subtree, creates the matching updated css_sets
2897 * and migrates the tasks to the new ones.
f8f22e53
TH
2898 */
2899static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2900{
e595cd70 2901 DEFINE_CGROUP_MGCTX(mgctx);
54962604
TH
2902 struct cgroup_subsys_state *d_css;
2903 struct cgroup *dsct;
f8f22e53
TH
2904 struct css_set *src_cset;
2905 int ret;
2906
f8f22e53
TH
2907 lockdep_assert_held(&cgroup_mutex);
2908
3014dde7
TH
2909 percpu_down_write(&cgroup_threadgroup_rwsem);
2910
f8f22e53 2911 /* look up all csses currently attached to @cgrp's subtree */
82d6489d 2912 spin_lock_irq(&css_set_lock);
54962604 2913 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
f8f22e53
TH
2914 struct cgrp_cset_link *link;
2915
54962604 2916 list_for_each_entry(link, &dsct->cset_links, cset_link)
e595cd70 2917 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
f8f22e53 2918 }
82d6489d 2919 spin_unlock_irq(&css_set_lock);
f8f22e53
TH
2920
2921 /* NULL dst indicates self on default hierarchy */
e595cd70 2922 ret = cgroup_migrate_prepare_dst(&mgctx);
f8f22e53
TH
2923 if (ret)
2924 goto out_finish;
2925
82d6489d 2926 spin_lock_irq(&css_set_lock);
e595cd70 2927 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
10265075 2928 struct task_struct *task, *ntask;
f8f22e53 2929
10265075
TH
2930 /* all tasks in src_csets need to be migrated */
2931 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
e595cd70 2932 cgroup_migrate_add_task(task, &mgctx);
f8f22e53 2933 }
82d6489d 2934 spin_unlock_irq(&css_set_lock);
f8f22e53 2935
bfc2cf6f 2936 ret = cgroup_migrate_execute(&mgctx);
f8f22e53 2937out_finish:
e595cd70 2938 cgroup_migrate_finish(&mgctx);
3014dde7 2939 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2940 return ret;
2941}
2942
1b9b96a1 2943/**
945ba199 2944 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
ce3f1d9d 2945 * @cgrp: root of the target subtree
1b9b96a1
TH
2946 *
2947 * Because css offlining is asynchronous, userland may try to re-enable a
945ba199
TH
2948 * controller while the previous css is still around. This function grabs
2949 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
1b9b96a1 2950 */
0a268dbd 2951void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
945ba199 2952 __acquires(&cgroup_mutex)
1b9b96a1
TH
2953{
2954 struct cgroup *dsct;
ce3f1d9d 2955 struct cgroup_subsys_state *d_css;
1b9b96a1
TH
2956 struct cgroup_subsys *ss;
2957 int ssid;
2958
945ba199
TH
2959restart:
2960 mutex_lock(&cgroup_mutex);
1b9b96a1 2961
ce3f1d9d 2962 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
1b9b96a1
TH
2963 for_each_subsys(ss, ssid) {
2964 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2965 DEFINE_WAIT(wait);
2966
ce3f1d9d 2967 if (!css || !percpu_ref_is_dying(&css->refcnt))
1b9b96a1
TH
2968 continue;
2969
a590b90d 2970 cgroup_get_live(dsct);
1b9b96a1
TH
2971 prepare_to_wait(&dsct->offline_waitq, &wait,
2972 TASK_UNINTERRUPTIBLE);
2973
2974 mutex_unlock(&cgroup_mutex);
2975 schedule();
2976 finish_wait(&dsct->offline_waitq, &wait);
1b9b96a1
TH
2977
2978 cgroup_put(dsct);
945ba199 2979 goto restart;
1b9b96a1
TH
2980 }
2981 }
1b9b96a1
TH
2982}
2983
15a27c36 2984/**
479adb89 2985 * cgroup_save_control - save control masks and dom_cgrp of a subtree
15a27c36
TH
2986 * @cgrp: root of the target subtree
2987 *
479adb89
TH
2988 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2989 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2990 * itself.
15a27c36
TH
2991 */
2992static void cgroup_save_control(struct cgroup *cgrp)
2993{
2994 struct cgroup *dsct;
2995 struct cgroup_subsys_state *d_css;
2996
2997 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2998 dsct->old_subtree_control = dsct->subtree_control;
2999 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
479adb89 3000 dsct->old_dom_cgrp = dsct->dom_cgrp;
15a27c36
TH
3001 }
3002}
3003
3004/**
3005 * cgroup_propagate_control - refresh control masks of a subtree
3006 * @cgrp: root of the target subtree
3007 *
3008 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3009 * ->subtree_control and propagate controller availability through the
3010 * subtree so that descendants don't have unavailable controllers enabled.
3011 */
3012static void cgroup_propagate_control(struct cgroup *cgrp)
3013{
3014 struct cgroup *dsct;
3015 struct cgroup_subsys_state *d_css;
3016
3017 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3018 dsct->subtree_control &= cgroup_control(dsct);
5ced2518
TH
3019 dsct->subtree_ss_mask =
3020 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3021 cgroup_ss_mask(dsct));
15a27c36
TH
3022 }
3023}
3024
3025/**
479adb89 3026 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
15a27c36
TH
3027 * @cgrp: root of the target subtree
3028 *
479adb89
TH
3029 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3030 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3031 * itself.
15a27c36
TH
3032 */
3033static void cgroup_restore_control(struct cgroup *cgrp)
3034{
3035 struct cgroup *dsct;
3036 struct cgroup_subsys_state *d_css;
3037
3038 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3039 dsct->subtree_control = dsct->old_subtree_control;
3040 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
479adb89 3041 dsct->dom_cgrp = dsct->old_dom_cgrp;
15a27c36
TH
3042 }
3043}
3044
f6d635ad
TH
3045static bool css_visible(struct cgroup_subsys_state *css)
3046{
3047 struct cgroup_subsys *ss = css->ss;
3048 struct cgroup *cgrp = css->cgroup;
3049
3050 if (cgroup_control(cgrp) & (1 << ss->id))
3051 return true;
3052 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3053 return false;
3054 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3055}
3056
bdb53bd7
TH
3057/**
3058 * cgroup_apply_control_enable - enable or show csses according to control
ce3f1d9d 3059 * @cgrp: root of the target subtree
bdb53bd7 3060 *
ce3f1d9d 3061 * Walk @cgrp's subtree and create new csses or make the existing ones
bdb53bd7
TH
3062 * visible. A css is created invisible if it's being implicitly enabled
3063 * through dependency. An invisible css is made visible when the userland
3064 * explicitly enables it.
3065 *
3066 * Returns 0 on success, -errno on failure. On failure, csses which have
3067 * been processed already aren't cleaned up. The caller is responsible for
8a1115ff 3068 * cleaning up with cgroup_apply_control_disable().
bdb53bd7
TH
3069 */
3070static int cgroup_apply_control_enable(struct cgroup *cgrp)
3071{
3072 struct cgroup *dsct;
ce3f1d9d 3073 struct cgroup_subsys_state *d_css;
bdb53bd7
TH
3074 struct cgroup_subsys *ss;
3075 int ssid, ret;
3076
ce3f1d9d 3077 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
bdb53bd7
TH
3078 for_each_subsys(ss, ssid) {
3079 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3080
945ba199
TH
3081 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3082
bdb53bd7
TH
3083 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3084 continue;
3085
3086 if (!css) {
3087 css = css_create(dsct, ss);
3088 if (IS_ERR(css))
3089 return PTR_ERR(css);
3090 }
3091
f6d635ad 3092 if (css_visible(css)) {
334c3679 3093 ret = css_populate_dir(css);
bdb53bd7
TH
3094 if (ret)
3095 return ret;
3096 }
3097 }
3098 }
3099
3100 return 0;
3101}
3102
12b3bb6a
TH
3103/**
3104 * cgroup_apply_control_disable - kill or hide csses according to control
ce3f1d9d 3105 * @cgrp: root of the target subtree
12b3bb6a 3106 *
ce3f1d9d 3107 * Walk @cgrp's subtree and kill and hide csses so that they match
12b3bb6a
TH
3108 * cgroup_ss_mask() and cgroup_visible_mask().
3109 *
3110 * A css is hidden when the userland requests it to be disabled while other
3111 * subsystems are still depending on it. The css must not actively control
3112 * resources and be in the vanilla state if it's made visible again later.
3113 * Controllers which may be depended upon should provide ->css_reset() for
3114 * this purpose.
3115 */
3116static void cgroup_apply_control_disable(struct cgroup *cgrp)
3117{
3118 struct cgroup *dsct;
ce3f1d9d 3119 struct cgroup_subsys_state *d_css;
12b3bb6a
TH
3120 struct cgroup_subsys *ss;
3121 int ssid;
3122
ce3f1d9d 3123 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
12b3bb6a
TH
3124 for_each_subsys(ss, ssid) {
3125 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3126
945ba199
TH
3127 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3128
12b3bb6a
TH
3129 if (!css)
3130 continue;
3131
334c3679
TH
3132 if (css->parent &&
3133 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
12b3bb6a 3134 kill_css(css);
f6d635ad 3135 } else if (!css_visible(css)) {
334c3679 3136 css_clear_dir(css);
12b3bb6a
TH
3137 if (ss->css_reset)
3138 ss->css_reset(css);
3139 }
3140 }
3141 }
3142}
3143
f7b2814b
TH
3144/**
3145 * cgroup_apply_control - apply control mask updates to the subtree
3146 * @cgrp: root of the target subtree
3147 *
3148 * subsystems can be enabled and disabled in a subtree using the following
3149 * steps.
3150 *
3151 * 1. Call cgroup_save_control() to stash the current state.
3152 * 2. Update ->subtree_control masks in the subtree as desired.
3153 * 3. Call cgroup_apply_control() to apply the changes.
3154 * 4. Optionally perform other related operations.
3155 * 5. Call cgroup_finalize_control() to finish up.
3156 *
3157 * This function implements step 3 and propagates the mask changes
3158 * throughout @cgrp's subtree, updates csses accordingly and perform
3159 * process migrations.
3160 */
3161static int cgroup_apply_control(struct cgroup *cgrp)
3162{
3163 int ret;
3164
3165 cgroup_propagate_control(cgrp);
3166
3167 ret = cgroup_apply_control_enable(cgrp);
3168 if (ret)
3169 return ret;
3170
3171 /*
fc5a828b 3172 * At this point, cgroup_e_css_by_mask() results reflect the new csses
f7b2814b
TH
3173 * making the following cgroup_update_dfl_csses() properly update
3174 * css associations of all tasks in the subtree.
3175 */
3176 ret = cgroup_update_dfl_csses(cgrp);
3177 if (ret)
3178 return ret;
3179
3180 return 0;
3181}
3182
3183/**
3184 * cgroup_finalize_control - finalize control mask update
3185 * @cgrp: root of the target subtree
3186 * @ret: the result of the update
3187 *
3188 * Finalize control mask update. See cgroup_apply_control() for more info.
3189 */
3190static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3191{
3192 if (ret) {
3193 cgroup_restore_control(cgrp);
3194 cgroup_propagate_control(cgrp);
3195 }
3196
3197 cgroup_apply_control_disable(cgrp);
3198}
3199
8cfd8147
TH
3200static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3201{
3202 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3203
3204 /* if nothing is getting enabled, nothing to worry about */
3205 if (!enable)
3206 return 0;
3207
3208 /* can @cgrp host any resources? */
3209 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3210 return -EOPNOTSUPP;
3211
3212 /* mixables don't care */
3213 if (cgroup_is_mixable(cgrp))
3214 return 0;
3215
3216 if (domain_enable) {
3217 /* can't enable domain controllers inside a thread subtree */
3218 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3219 return -EOPNOTSUPP;
3220 } else {
3221 /*
3222 * Threaded controllers can handle internal competitions
3223 * and are always allowed inside a (prospective) thread
3224 * subtree.
3225 */
3226 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3227 return 0;
3228 }
3229
3230 /*
3231 * Controllers can't be enabled for a cgroup with tasks to avoid
3232 * child cgroups competing against tasks.
3233 */
3234 if (cgroup_has_tasks(cgrp))
3235 return -EBUSY;
3236
3237 return 0;
3238}
3239
f8f22e53 3240/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
3241static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3242 char *buf, size_t nbytes,
3243 loff_t off)
f8f22e53 3244{
6e5c8307 3245 u16 enable = 0, disable = 0;
a9746d8d 3246 struct cgroup *cgrp, *child;
f8f22e53 3247 struct cgroup_subsys *ss;
451af504 3248 char *tok;
f8f22e53
TH
3249 int ssid, ret;
3250
3251 /*
d37167ab
TH
3252 * Parse input - space separated list of subsystem names prefixed
3253 * with either + or -.
f8f22e53 3254 */
451af504
TH
3255 buf = strstrip(buf);
3256 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
3257 if (tok[0] == '\0')
3258 continue;
a7165264 3259 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
fc5ed1e9
TH
3260 if (!cgroup_ssid_enabled(ssid) ||
3261 strcmp(tok + 1, ss->name))
f8f22e53
TH
3262 continue;
3263
3264 if (*tok == '+') {
7d331fa9
TH
3265 enable |= 1 << ssid;
3266 disable &= ~(1 << ssid);
f8f22e53 3267 } else if (*tok == '-') {
7d331fa9
TH
3268 disable |= 1 << ssid;
3269 enable &= ~(1 << ssid);
f8f22e53
TH
3270 } else {
3271 return -EINVAL;
3272 }
3273 break;
b4e0eeaf 3274 } while_each_subsys_mask();
f8f22e53
TH
3275 if (ssid == CGROUP_SUBSYS_COUNT)
3276 return -EINVAL;
3277 }
3278
945ba199 3279 cgrp = cgroup_kn_lock_live(of->kn, true);
a9746d8d
TH
3280 if (!cgrp)
3281 return -ENODEV;
f8f22e53
TH
3282
3283 for_each_subsys(ss, ssid) {
3284 if (enable & (1 << ssid)) {
667c2491 3285 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
3286 enable &= ~(1 << ssid);
3287 continue;
3288 }
3289
5531dc91 3290 if (!(cgroup_control(cgrp) & (1 << ssid))) {
c29adf24
TH
3291 ret = -ENOENT;
3292 goto out_unlock;
3293 }
f8f22e53 3294 } else if (disable & (1 << ssid)) {
667c2491 3295 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
3296 disable &= ~(1 << ssid);
3297 continue;
3298 }
3299
3300 /* a child has it enabled? */
3301 cgroup_for_each_live_child(child, cgrp) {
667c2491 3302 if (child->subtree_control & (1 << ssid)) {
f8f22e53 3303 ret = -EBUSY;
ddab2b6e 3304 goto out_unlock;
f8f22e53
TH
3305 }
3306 }
3307 }
3308 }
3309
3310 if (!enable && !disable) {
3311 ret = 0;
ddab2b6e 3312 goto out_unlock;
f8f22e53
TH
3313 }
3314
8cfd8147
TH
3315 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3316 if (ret)
27f26753 3317 goto out_unlock;
f8f22e53 3318
15a27c36
TH
3319 /* save and update control masks and prepare csses */
3320 cgroup_save_control(cgrp);
f63070d3 3321
15a27c36
TH
3322 cgrp->subtree_control |= enable;
3323 cgrp->subtree_control &= ~disable;
c29adf24 3324
f7b2814b 3325 ret = cgroup_apply_control(cgrp);
f7b2814b 3326 cgroup_finalize_control(cgrp, ret);
3c745417
TH
3327 if (ret)
3328 goto out_unlock;
f8f22e53
TH
3329
3330 kernfs_activate(cgrp->kn);
f8f22e53 3331out_unlock:
a9746d8d 3332 cgroup_kn_unlock(of->kn);
451af504 3333 return ret ?: nbytes;
f8f22e53
TH
3334}
3335
c705a00d
TH
3336/**
3337 * cgroup_enable_threaded - make @cgrp threaded
3338 * @cgrp: the target cgroup
3339 *
3340 * Called when "threaded" is written to the cgroup.type interface file and
3341 * tries to make @cgrp threaded and join the parent's resource domain.
3342 * This function is never called on the root cgroup as cgroup.type doesn't
3343 * exist on it.
3344 */
8cfd8147
TH
3345static int cgroup_enable_threaded(struct cgroup *cgrp)
3346{
3347 struct cgroup *parent = cgroup_parent(cgrp);
3348 struct cgroup *dom_cgrp = parent->dom_cgrp;
479adb89
TH
3349 struct cgroup *dsct;
3350 struct cgroup_subsys_state *d_css;
8cfd8147
TH
3351 int ret;
3352
3353 lockdep_assert_held(&cgroup_mutex);
3354
3355 /* noop if already threaded */
3356 if (cgroup_is_threaded(cgrp))
3357 return 0;
3358
d1897c95
TH
3359 /*
3360 * If @cgroup is populated or has domain controllers enabled, it
3361 * can't be switched. While the below cgroup_can_be_thread_root()
3362 * test can catch the same conditions, that's only when @parent is
3363 * not mixable, so let's check it explicitly.
3364 */
3365 if (cgroup_is_populated(cgrp) ||
3366 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3367 return -EOPNOTSUPP;
3368
8cfd8147
TH
3369 /* we're joining the parent's domain, ensure its validity */
3370 if (!cgroup_is_valid_domain(dom_cgrp) ||
3371 !cgroup_can_be_thread_root(dom_cgrp))
3372 return -EOPNOTSUPP;
3373
8cfd8147
TH
3374 /*
3375 * The following shouldn't cause actual migrations and should
3376 * always succeed.
3377 */
3378 cgroup_save_control(cgrp);
3379
479adb89
TH
3380 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3381 if (dsct == cgrp || cgroup_is_threaded(dsct))
3382 dsct->dom_cgrp = dom_cgrp;
3383
8cfd8147
TH
3384 ret = cgroup_apply_control(cgrp);
3385 if (!ret)
3386 parent->nr_threaded_children++;
8cfd8147
TH
3387
3388 cgroup_finalize_control(cgrp, ret);
3389 return ret;
3390}
3391
3392static int cgroup_type_show(struct seq_file *seq, void *v)
3393{
3394 struct cgroup *cgrp = seq_css(seq)->cgroup;
3395
3396 if (cgroup_is_threaded(cgrp))
3397 seq_puts(seq, "threaded\n");
3398 else if (!cgroup_is_valid_domain(cgrp))
3399 seq_puts(seq, "domain invalid\n");
3400 else if (cgroup_is_thread_root(cgrp))
3401 seq_puts(seq, "domain threaded\n");
3402 else
3403 seq_puts(seq, "domain\n");
3404
3405 return 0;
3406}
3407
3408static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3409 size_t nbytes, loff_t off)
3410{
3411 struct cgroup *cgrp;
3412 int ret;
3413
3414 /* only switching to threaded mode is supported */
3415 if (strcmp(strstrip(buf), "threaded"))
3416 return -EINVAL;
3417
3418 cgrp = cgroup_kn_lock_live(of->kn, false);
3419 if (!cgrp)
3420 return -ENOENT;
3421
3422 /* threaded can only be enabled */
3423 ret = cgroup_enable_threaded(cgrp);
3424
3425 cgroup_kn_unlock(of->kn);
3426 return ret ?: nbytes;
3427}
3428
1a926e0b
RG
3429static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3430{
3431 struct cgroup *cgrp = seq_css(seq)->cgroup;
3432 int descendants = READ_ONCE(cgrp->max_descendants);
3433
3434 if (descendants == INT_MAX)
3435 seq_puts(seq, "max\n");
3436 else
3437 seq_printf(seq, "%d\n", descendants);
3438
3439 return 0;
3440}
3441
3442static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3443 char *buf, size_t nbytes, loff_t off)
3444{
3445 struct cgroup *cgrp;
3446 int descendants;
3447 ssize_t ret;
3448
3449 buf = strstrip(buf);
3450 if (!strcmp(buf, "max")) {
3451 descendants = INT_MAX;
3452 } else {
3453 ret = kstrtoint(buf, 0, &descendants);
3454 if (ret)
3455 return ret;
3456 }
3457
696b98f2 3458 if (descendants < 0)
1a926e0b
RG
3459 return -ERANGE;
3460
3461 cgrp = cgroup_kn_lock_live(of->kn, false);
3462 if (!cgrp)
3463 return -ENOENT;
3464
3465 cgrp->max_descendants = descendants;
3466
3467 cgroup_kn_unlock(of->kn);
3468
3469 return nbytes;
3470}
3471
3472static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3473{
3474 struct cgroup *cgrp = seq_css(seq)->cgroup;
3475 int depth = READ_ONCE(cgrp->max_depth);
3476
3477 if (depth == INT_MAX)
3478 seq_puts(seq, "max\n");
3479 else
3480 seq_printf(seq, "%d\n", depth);
3481
3482 return 0;
3483}
3484
3485static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3486 char *buf, size_t nbytes, loff_t off)
3487{
3488 struct cgroup *cgrp;
3489 ssize_t ret;
3490 int depth;
3491
3492 buf = strstrip(buf);
3493 if (!strcmp(buf, "max")) {
3494 depth = INT_MAX;
3495 } else {
3496 ret = kstrtoint(buf, 0, &depth);
3497 if (ret)
3498 return ret;
3499 }
3500
696b98f2 3501 if (depth < 0)
1a926e0b
RG
3502 return -ERANGE;
3503
3504 cgrp = cgroup_kn_lock_live(of->kn, false);
3505 if (!cgrp)
3506 return -ENOENT;
3507
3508 cgrp->max_depth = depth;
3509
3510 cgroup_kn_unlock(of->kn);
3511
3512 return nbytes;
3513}
3514
4a07c222 3515static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3516{
76f969e8
RG
3517 struct cgroup *cgrp = seq_css(seq)->cgroup;
3518
3519 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3520 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3521
842b597e
TH
3522 return 0;
3523}
3524
3e48930c 3525static int cgroup_stat_show(struct seq_file *seq, void *v)
ec39225c
RG
3526{
3527 struct cgroup *cgroup = seq_css(seq)->cgroup;
3528
3529 seq_printf(seq, "nr_descendants %d\n",
3530 cgroup->nr_descendants);
3531 seq_printf(seq, "nr_dying_descendants %d\n",
3532 cgroup->nr_dying_descendants);
3533
3534 return 0;
3535}
3536
d41bf8c9
TH
3537static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3538 struct cgroup *cgrp, int ssid)
3539{
3540 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3541 struct cgroup_subsys_state *css;
3542 int ret;
3543
3544 if (!ss->css_extra_stat_show)
3545 return 0;
3546
3547 css = cgroup_tryget_css(cgrp, ss);
3548 if (!css)
3549 return 0;
3550
3551 ret = ss->css_extra_stat_show(seq, css);
3552 css_put(css);
3553 return ret;
3554}
3555
3556static int cpu_stat_show(struct seq_file *seq, void *v)
3557{
c3ba1329 3558 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
d41bf8c9
TH
3559 int ret = 0;
3560
d4ff749b 3561 cgroup_base_stat_cputime_show(seq);
d41bf8c9
TH
3562#ifdef CONFIG_CGROUP_SCHED
3563 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3564#endif
3565 return ret;
3566}
3567
2ce7135a
JW
3568#ifdef CONFIG_PSI
3569static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3570{
df5ba5be
DS
3571 struct cgroup *cgroup = seq_css(seq)->cgroup;
3572 struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3573
3574 return psi_show(seq, psi, PSI_IO);
2ce7135a
JW
3575}
3576static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3577{
df5ba5be
DS
3578 struct cgroup *cgroup = seq_css(seq)->cgroup;
3579 struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3580
3581 return psi_show(seq, psi, PSI_MEM);
2ce7135a
JW
3582}
3583static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3584{
df5ba5be
DS
3585 struct cgroup *cgroup = seq_css(seq)->cgroup;
3586 struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3587
3588 return psi_show(seq, psi, PSI_CPU);
2ce7135a 3589}
0e94682b
SB
3590
3591static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3592 size_t nbytes, enum psi_res res)
3593{
3594 struct psi_trigger *new;
3595 struct cgroup *cgrp;
3596
3597 cgrp = cgroup_kn_lock_live(of->kn, false);
3598 if (!cgrp)
3599 return -ENODEV;
3600
3601 cgroup_get(cgrp);
3602 cgroup_kn_unlock(of->kn);
3603
3604 new = psi_trigger_create(&cgrp->psi, buf, nbytes, res);
3605 if (IS_ERR(new)) {
3606 cgroup_put(cgrp);
3607 return PTR_ERR(new);
3608 }
3609
3610 psi_trigger_replace(&of->priv, new);
3611
3612 cgroup_put(cgrp);
3613
3614 return nbytes;
3615}
3616
3617static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3618 char *buf, size_t nbytes,
3619 loff_t off)
3620{
3621 return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3622}
3623
3624static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3625 char *buf, size_t nbytes,
3626 loff_t off)
3627{
3628 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3629}
3630
3631static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3632 char *buf, size_t nbytes,
3633 loff_t off)
3634{
3635 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3636}
3637
3638static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3639 poll_table *pt)
3640{
3641 return psi_trigger_poll(&of->priv, of->file, pt);
3642}
3643
3644static void cgroup_pressure_release(struct kernfs_open_file *of)
3645{
3646 psi_trigger_replace(&of->priv, NULL);
3647}
3648#endif /* CONFIG_PSI */
2ce7135a 3649
76f969e8
RG
3650static int cgroup_freeze_show(struct seq_file *seq, void *v)
3651{
3652 struct cgroup *cgrp = seq_css(seq)->cgroup;
3653
3654 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3655
3656 return 0;
3657}
3658
3659static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3660 char *buf, size_t nbytes, loff_t off)
3661{
3662 struct cgroup *cgrp;
3663 ssize_t ret;
3664 int freeze;
3665
3666 ret = kstrtoint(strstrip(buf), 0, &freeze);
3667 if (ret)
3668 return ret;
3669
3670 if (freeze < 0 || freeze > 1)
3671 return -ERANGE;
3672
3673 cgrp = cgroup_kn_lock_live(of->kn, false);
3674 if (!cgrp)
3675 return -ENOENT;
3676
3677 cgroup_freeze(cgrp, freeze);
3678
3679 cgroup_kn_unlock(of->kn);
3680
3681 return nbytes;
3682}
3683
e90cbebc
TH
3684static int cgroup_file_open(struct kernfs_open_file *of)
3685{
3686 struct cftype *cft = of->kn->priv;
3687
3688 if (cft->open)
3689 return cft->open(of);
3690 return 0;
3691}
3692
3693static void cgroup_file_release(struct kernfs_open_file *of)
3694{
3695 struct cftype *cft = of->kn->priv;
3696
3697 if (cft->release)
3698 cft->release(of);
3699}
3700
2bd59d48
TH
3701static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3702 size_t nbytes, loff_t off)
355e0c48 3703{
5136f636 3704 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2bd59d48
TH
3705 struct cgroup *cgrp = of->kn->parent->priv;
3706 struct cftype *cft = of->kn->priv;
3707 struct cgroup_subsys_state *css;
a742c59d 3708 int ret;
355e0c48 3709
5136f636
TH
3710 /*
3711 * If namespaces are delegation boundaries, disallow writes to
3712 * files in an non-init namespace root from inside the namespace
3713 * except for the files explicitly marked delegatable -
3714 * cgroup.procs and cgroup.subtree_control.
3715 */
3716 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3717 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3718 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3719 return -EPERM;
3720
b4168640
TH
3721 if (cft->write)
3722 return cft->write(of, buf, nbytes, off);
3723
2bd59d48
TH
3724 /*
3725 * kernfs guarantees that a file isn't deleted with operations in
3726 * flight, which means that the matching css is and stays alive and
3727 * doesn't need to be pinned. The RCU locking is not necessary
3728 * either. It's just for the convenience of using cgroup_css().
3729 */
3730 rcu_read_lock();
3731 css = cgroup_css(cgrp, cft->ss);
3732 rcu_read_unlock();
a742c59d 3733
451af504 3734 if (cft->write_u64) {
a742c59d
TH
3735 unsigned long long v;
3736 ret = kstrtoull(buf, 0, &v);
3737 if (!ret)
3738 ret = cft->write_u64(css, cft, v);
3739 } else if (cft->write_s64) {
3740 long long v;
3741 ret = kstrtoll(buf, 0, &v);
3742 if (!ret)
3743 ret = cft->write_s64(css, cft, v);
e73d2c61 3744 } else {
a742c59d 3745 ret = -EINVAL;
e73d2c61 3746 }
2bd59d48 3747
a742c59d 3748 return ret ?: nbytes;
355e0c48
PM
3749}
3750
dc50537b
JW
3751static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3752{
3753 struct cftype *cft = of->kn->priv;
3754
3755 if (cft->poll)
3756 return cft->poll(of, pt);
3757
3758 return kernfs_generic_poll(of, pt);
3759}
3760
6612f05b 3761static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3762{
2bd59d48 3763 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3764}
3765
6612f05b 3766static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3767{
2bd59d48 3768 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3769}
3770
6612f05b 3771static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3772{
e90cbebc
TH
3773 if (seq_cft(seq)->seq_stop)
3774 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3775}
3776
91796569 3777static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3778{
7da11279
TH
3779 struct cftype *cft = seq_cft(m);
3780 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3781
2da8ca82
TH
3782 if (cft->seq_show)
3783 return cft->seq_show(m, arg);
e73d2c61 3784
f4c753b7 3785 if (cft->read_u64)
896f5199
TH
3786 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3787 else if (cft->read_s64)
3788 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3789 else
3790 return -EINVAL;
3791 return 0;
91796569
PM
3792}
3793
2bd59d48
TH
3794static struct kernfs_ops cgroup_kf_single_ops = {
3795 .atomic_write_len = PAGE_SIZE,
e90cbebc
TH
3796 .open = cgroup_file_open,
3797 .release = cgroup_file_release,
2bd59d48 3798 .write = cgroup_file_write,
dc50537b 3799 .poll = cgroup_file_poll,
2bd59d48 3800 .seq_show = cgroup_seqfile_show,
91796569
PM
3801};
3802
2bd59d48
TH
3803static struct kernfs_ops cgroup_kf_ops = {
3804 .atomic_write_len = PAGE_SIZE,
e90cbebc
TH
3805 .open = cgroup_file_open,
3806 .release = cgroup_file_release,
2bd59d48 3807 .write = cgroup_file_write,
dc50537b 3808 .poll = cgroup_file_poll,
2bd59d48
TH
3809 .seq_start = cgroup_seqfile_start,
3810 .seq_next = cgroup_seqfile_next,
3811 .seq_stop = cgroup_seqfile_stop,
3812 .seq_show = cgroup_seqfile_show,
3813};
ddbcc7e8 3814
49957f8e
TH
3815/* set uid and gid of cgroup dirs and files to that of the creator */
3816static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3817{
3818 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3819 .ia_uid = current_fsuid(),
3820 .ia_gid = current_fsgid(), };
3821
3822 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3823 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3824 return 0;
3825
3826 return kernfs_setattr(kn, &iattr);
3827}
3828
b12e3583
TH
3829static void cgroup_file_notify_timer(struct timer_list *timer)
3830{
3831 cgroup_file_notify(container_of(timer, struct cgroup_file,
3832 notify_timer));
3833}
3834
4df8dc90
TH
3835static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3836 struct cftype *cft)
ddbcc7e8 3837{
8d7e6fb0 3838 char name[CGROUP_FILE_NAME_MAX];
2bd59d48 3839 struct kernfs_node *kn;
54b7b868 3840 struct kernfs_node *kn_link;
2bd59d48 3841 struct lock_class_key *key = NULL;
49957f8e 3842 int ret;
05ef1d7c 3843
2bd59d48
TH
3844#ifdef CONFIG_DEBUG_LOCK_ALLOC
3845 key = &cft->lockdep_key;
3846#endif
3847 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
488dee96
DT
3848 cgroup_file_mode(cft),
3849 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3850 0, cft->kf_ops, cft,
dfeb0750 3851 NULL, key);
49957f8e
TH
3852 if (IS_ERR(kn))
3853 return PTR_ERR(kn);
3854
3855 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3856 if (ret) {
49957f8e 3857 kernfs_remove(kn);
f8f22e53
TH
3858 return ret;
3859 }
3860
6f60eade
TH
3861 if (cft->file_offset) {
3862 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3863
b12e3583
TH
3864 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3865
34c06254 3866 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 3867 cfile->kn = kn;
34c06254 3868 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
3869 }
3870
54b7b868
AR
3871 if (cft->flags & CFTYPE_SYMLINKED) {
3872 kn_link = kernfs_create_link(cgrp->kn,
3873 cgroup_link_name(cgrp, cft, name),
3874 kn);
3875 if (IS_ERR(kn_link))
3876 return PTR_ERR(kn_link);
3877 }
3878
f8f22e53 3879 return 0;
ddbcc7e8
PM
3880}
3881
b1f28d31
TH
3882/**
3883 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3884 * @css: the target css
3885 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3886 * @cfts: array of cftypes to be added
3887 * @is_add: whether to add or remove
3888 *
3889 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3890 * For removals, this function never fails.
b1f28d31 3891 */
4df8dc90
TH
3892static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3893 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3894 bool is_add)
ddbcc7e8 3895{
6732ed85 3896 struct cftype *cft, *cft_end = NULL;
b598dde3 3897 int ret = 0;
b1f28d31 3898
01f6474c 3899 lockdep_assert_held(&cgroup_mutex);
db0416b6 3900
6732ed85
TH
3901restart:
3902 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3903 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3904 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3905 continue;
05ebb6e6 3906 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3907 continue;
d51f39b0 3908 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3909 continue;
d51f39b0 3910 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2 3911 continue;
5cf8114d
WL
3912 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3913 continue;
2739d3cc 3914 if (is_add) {
4df8dc90 3915 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3916 if (ret) {
ed3d261b
JP
3917 pr_warn("%s: failed to add %s, err=%d\n",
3918 __func__, cft->name, ret);
6732ed85
TH
3919 cft_end = cft;
3920 is_add = false;
3921 goto restart;
b1f28d31 3922 }
2739d3cc
LZ
3923 } else {
3924 cgroup_rm_file(cgrp, cft);
db0416b6 3925 }
ddbcc7e8 3926 }
b598dde3 3927 return ret;
ddbcc7e8
PM
3928}
3929
21a2d343 3930static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541 3931{
2bb566cb 3932 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3933 struct cgroup *root = &ss->root->cgrp;
492eb21b 3934 struct cgroup_subsys_state *css;
9ccece80 3935 int ret = 0;
8e3f6541 3936
01f6474c 3937 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3938
e8c82d20 3939 /* add/rm files for all cgroups created before */
ca8bdcaf 3940 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3941 struct cgroup *cgrp = css->cgroup;
3942
88cb04b9 3943 if (!(css->flags & CSS_VISIBLE))
e8c82d20
LZ
3944 continue;
3945
4df8dc90 3946 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3947 if (ret)
3948 break;
8e3f6541 3949 }
21a2d343
TH
3950
3951 if (is_add && !ret)
3952 kernfs_activate(root->kn);
9ccece80 3953 return ret;
8e3f6541
TH
3954}
3955
2da440a2 3956static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3957{
2bb566cb 3958 struct cftype *cft;
8e3f6541 3959
2bd59d48
TH
3960 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3961 /* free copy for custom atomic_write_len, see init_cftypes() */
3962 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3963 kfree(cft->kf_ops);
3964 cft->kf_ops = NULL;
2da440a2 3965 cft->ss = NULL;
a8ddc821
TH
3966
3967 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3968 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3969 }
2da440a2
TH
3970}
3971
2bd59d48 3972static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3973{
3974 struct cftype *cft;
3975
2bd59d48
TH
3976 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3977 struct kernfs_ops *kf_ops;
3978
0adb0704
TH
3979 WARN_ON(cft->ss || cft->kf_ops);
3980
2bd59d48
TH
3981 if (cft->seq_start)
3982 kf_ops = &cgroup_kf_ops;
3983 else
3984 kf_ops = &cgroup_kf_single_ops;
3985
3986 /*
3987 * Ugh... if @cft wants a custom max_write_len, we need to
3988 * make a copy of kf_ops to set its atomic_write_len.
3989 */
3990 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3991 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3992 if (!kf_ops) {
3993 cgroup_exit_cftypes(cfts);
3994 return -ENOMEM;
3995 }
3996 kf_ops->atomic_write_len = cft->max_write_len;
3997 }
8e3f6541 3998
2bd59d48 3999 cft->kf_ops = kf_ops;
2bb566cb 4000 cft->ss = ss;
2bd59d48 4001 }
2bb566cb 4002
2bd59d48 4003 return 0;
2da440a2
TH
4004}
4005
21a2d343
TH
4006static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4007{
01f6474c 4008 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
4009
4010 if (!cfts || !cfts[0].ss)
4011 return -ENOENT;
4012
4013 list_del(&cfts->node);
4014 cgroup_apply_cftypes(cfts, false);
4015 cgroup_exit_cftypes(cfts);
4016 return 0;
8e3f6541 4017}
8e3f6541 4018
79578621
TH
4019/**
4020 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
4021 * @cfts: zero-length name terminated array of cftypes
4022 *
2bb566cb
TH
4023 * Unregister @cfts. Files described by @cfts are removed from all
4024 * existing cgroups and all future cgroups won't have them either. This
4025 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
4026 *
4027 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 4028 * registered.
79578621 4029 */
2bb566cb 4030int cgroup_rm_cftypes(struct cftype *cfts)
79578621 4031{
21a2d343 4032 int ret;
79578621 4033
01f6474c 4034 mutex_lock(&cgroup_mutex);
21a2d343 4035 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 4036 mutex_unlock(&cgroup_mutex);
21a2d343 4037 return ret;
80b13586
TH
4038}
4039
8e3f6541
TH
4040/**
4041 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4042 * @ss: target cgroup subsystem
4043 * @cfts: zero-length name terminated array of cftypes
4044 *
4045 * Register @cfts to @ss. Files described by @cfts are created for all
4046 * existing cgroups to which @ss is attached and all future cgroups will
4047 * have them too. This function can be called anytime whether @ss is
4048 * attached or not.
4049 *
4050 * Returns 0 on successful registration, -errno on failure. Note that this
4051 * function currently returns 0 as long as @cfts registration is successful
4052 * even if some file creation attempts on existing cgroups fail.
4053 */
2cf669a5 4054static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 4055{
9ccece80 4056 int ret;
8e3f6541 4057
fc5ed1e9 4058 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
4059 return 0;
4060
dc5736ed
LZ
4061 if (!cfts || cfts[0].name[0] == '\0')
4062 return 0;
2bb566cb 4063
2bd59d48
TH
4064 ret = cgroup_init_cftypes(ss, cfts);
4065 if (ret)
4066 return ret;
79578621 4067
01f6474c 4068 mutex_lock(&cgroup_mutex);
21a2d343 4069
0adb0704 4070 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 4071 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 4072 if (ret)
21a2d343 4073 cgroup_rm_cftypes_locked(cfts);
79578621 4074
01f6474c 4075 mutex_unlock(&cgroup_mutex);
9ccece80 4076 return ret;
79578621
TH
4077}
4078
a8ddc821
TH
4079/**
4080 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4081 * @ss: target cgroup subsystem
4082 * @cfts: zero-length name terminated array of cftypes
4083 *
4084 * Similar to cgroup_add_cftypes() but the added files are only used for
4085 * the default hierarchy.
4086 */
4087int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4088{
4089 struct cftype *cft;
4090
4091 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 4092 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
4093 return cgroup_add_cftypes(ss, cfts);
4094}
4095
4096/**
4097 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4098 * @ss: target cgroup subsystem
4099 * @cfts: zero-length name terminated array of cftypes
4100 *
4101 * Similar to cgroup_add_cftypes() but the added files are only used for
4102 * the legacy hierarchies.
4103 */
2cf669a5
TH
4104int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4105{
a8ddc821
TH
4106 struct cftype *cft;
4107
e4b7037c
TH
4108 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4109 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
4110 return cgroup_add_cftypes(ss, cfts);
4111}
4112
34c06254
TH
4113/**
4114 * cgroup_file_notify - generate a file modified event for a cgroup_file
4115 * @cfile: target cgroup_file
4116 *
4117 * @cfile must have been obtained by setting cftype->file_offset.
4118 */
4119void cgroup_file_notify(struct cgroup_file *cfile)
4120{
4121 unsigned long flags;
4122
4123 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
b12e3583
TH
4124 if (cfile->kn) {
4125 unsigned long last = cfile->notified_at;
4126 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4127
4128 if (time_in_range(jiffies, last, next)) {
4129 timer_reduce(&cfile->notify_timer, next);
4130 } else {
4131 kernfs_notify(cfile->kn);
4132 cfile->notified_at = jiffies;
4133 }
4134 }
34c06254
TH
4135 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4136}
4137
53fa5261 4138/**
492eb21b 4139 * css_next_child - find the next child of a given css
c2931b70
TH
4140 * @pos: the current position (%NULL to initiate traversal)
4141 * @parent: css whose children to walk
53fa5261 4142 *
c2931b70 4143 * This function returns the next child of @parent and should be called
87fb54f1 4144 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
4145 * that @parent and @pos are accessible. The next sibling is guaranteed to
4146 * be returned regardless of their states.
4147 *
4148 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4149 * css which finished ->css_online() is guaranteed to be visible in the
4150 * future iterations and will stay visible until the last reference is put.
4151 * A css which hasn't finished ->css_online() or already finished
4152 * ->css_offline() may show up during traversal. It's each subsystem's
4153 * responsibility to synchronize against on/offlining.
53fa5261 4154 */
c2931b70
TH
4155struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4156 struct cgroup_subsys_state *parent)
53fa5261 4157{
c2931b70 4158 struct cgroup_subsys_state *next;
53fa5261 4159
8353da1f 4160 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
4161
4162 /*
de3f0341
TH
4163 * @pos could already have been unlinked from the sibling list.
4164 * Once a cgroup is removed, its ->sibling.next is no longer
4165 * updated when its next sibling changes. CSS_RELEASED is set when
4166 * @pos is taken off list, at which time its next pointer is valid,
4167 * and, as releases are serialized, the one pointed to by the next
4168 * pointer is guaranteed to not have started release yet. This
4169 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4170 * critical section, the one pointed to by its next pointer is
4171 * guaranteed to not have finished its RCU grace period even if we
4172 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 4173 *
de3f0341
TH
4174 * If @pos has CSS_RELEASED set, its next pointer can't be
4175 * dereferenced; however, as each css is given a monotonically
4176 * increasing unique serial number and always appended to the
4177 * sibling list, the next one can be found by walking the parent's
4178 * children until the first css with higher serial number than
4179 * @pos's. While this path can be slower, it happens iff iteration
4180 * races against release and the race window is very small.
53fa5261 4181 */
3b287a50 4182 if (!pos) {
c2931b70
TH
4183 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4184 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4185 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 4186 } else {
c2931b70 4187 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
4188 if (next->serial_nr > pos->serial_nr)
4189 break;
53fa5261
TH
4190 }
4191
3b281afb
TH
4192 /*
4193 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 4194 * the next sibling.
3b281afb 4195 */
c2931b70
TH
4196 if (&next->sibling != &parent->children)
4197 return next;
3b281afb 4198 return NULL;
53fa5261 4199}
53fa5261 4200
574bd9f7 4201/**
492eb21b 4202 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 4203 * @pos: the current position (%NULL to initiate traversal)
492eb21b 4204 * @root: css whose descendants to walk
574bd9f7 4205 *
492eb21b 4206 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
4207 * to visit for pre-order traversal of @root's descendants. @root is
4208 * included in the iteration and the first node to be visited.
75501a6d 4209 *
87fb54f1
TH
4210 * While this function requires cgroup_mutex or RCU read locking, it
4211 * doesn't require the whole traversal to be contained in a single critical
4212 * section. This function will return the correct next descendant as long
4213 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
4214 *
4215 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4216 * css which finished ->css_online() is guaranteed to be visible in the
4217 * future iterations and will stay visible until the last reference is put.
4218 * A css which hasn't finished ->css_online() or already finished
4219 * ->css_offline() may show up during traversal. It's each subsystem's
4220 * responsibility to synchronize against on/offlining.
574bd9f7 4221 */
492eb21b
TH
4222struct cgroup_subsys_state *
4223css_next_descendant_pre(struct cgroup_subsys_state *pos,
4224 struct cgroup_subsys_state *root)
574bd9f7 4225{
492eb21b 4226 struct cgroup_subsys_state *next;
574bd9f7 4227
8353da1f 4228 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 4229
bd8815a6 4230 /* if first iteration, visit @root */
7805d000 4231 if (!pos)
bd8815a6 4232 return root;
574bd9f7
TH
4233
4234 /* visit the first child if exists */
492eb21b 4235 next = css_next_child(NULL, pos);
574bd9f7
TH
4236 if (next)
4237 return next;
4238
4239 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 4240 while (pos != root) {
5c9d535b 4241 next = css_next_child(pos, pos->parent);
75501a6d 4242 if (next)
574bd9f7 4243 return next;
5c9d535b 4244 pos = pos->parent;
7805d000 4245 }
574bd9f7
TH
4246
4247 return NULL;
4248}
574bd9f7 4249
12a9d2fe 4250/**
492eb21b
TH
4251 * css_rightmost_descendant - return the rightmost descendant of a css
4252 * @pos: css of interest
12a9d2fe 4253 *
492eb21b
TH
4254 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4255 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 4256 * subtree of @pos.
75501a6d 4257 *
87fb54f1
TH
4258 * While this function requires cgroup_mutex or RCU read locking, it
4259 * doesn't require the whole traversal to be contained in a single critical
4260 * section. This function will return the correct rightmost descendant as
4261 * long as @pos is accessible.
12a9d2fe 4262 */
492eb21b
TH
4263struct cgroup_subsys_state *
4264css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 4265{
492eb21b 4266 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 4267
8353da1f 4268 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
4269
4270 do {
4271 last = pos;
4272 /* ->prev isn't RCU safe, walk ->next till the end */
4273 pos = NULL;
492eb21b 4274 css_for_each_child(tmp, last)
12a9d2fe
TH
4275 pos = tmp;
4276 } while (pos);
4277
4278 return last;
4279}
12a9d2fe 4280
492eb21b
TH
4281static struct cgroup_subsys_state *
4282css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 4283{
492eb21b 4284 struct cgroup_subsys_state *last;
574bd9f7
TH
4285
4286 do {
4287 last = pos;
492eb21b 4288 pos = css_next_child(NULL, pos);
574bd9f7
TH
4289 } while (pos);
4290
4291 return last;
4292}
4293
4294/**
492eb21b 4295 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 4296 * @pos: the current position (%NULL to initiate traversal)
492eb21b 4297 * @root: css whose descendants to walk
574bd9f7 4298 *
492eb21b 4299 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
4300 * to visit for post-order traversal of @root's descendants. @root is
4301 * included in the iteration and the last node to be visited.
75501a6d 4302 *
87fb54f1
TH
4303 * While this function requires cgroup_mutex or RCU read locking, it
4304 * doesn't require the whole traversal to be contained in a single critical
4305 * section. This function will return the correct next descendant as long
4306 * as both @pos and @cgroup are accessible and @pos is a descendant of
4307 * @cgroup.
c2931b70
TH
4308 *
4309 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4310 * css which finished ->css_online() is guaranteed to be visible in the
4311 * future iterations and will stay visible until the last reference is put.
4312 * A css which hasn't finished ->css_online() or already finished
4313 * ->css_offline() may show up during traversal. It's each subsystem's
4314 * responsibility to synchronize against on/offlining.
574bd9f7 4315 */
492eb21b
TH
4316struct cgroup_subsys_state *
4317css_next_descendant_post(struct cgroup_subsys_state *pos,
4318 struct cgroup_subsys_state *root)
574bd9f7 4319{
492eb21b 4320 struct cgroup_subsys_state *next;
574bd9f7 4321
8353da1f 4322 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 4323
58b79a91
TH
4324 /* if first iteration, visit leftmost descendant which may be @root */
4325 if (!pos)
4326 return css_leftmost_descendant(root);
574bd9f7 4327
bd8815a6
TH
4328 /* if we visited @root, we're done */
4329 if (pos == root)
4330 return NULL;
4331
574bd9f7 4332 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 4333 next = css_next_child(pos, pos->parent);
75501a6d 4334 if (next)
492eb21b 4335 return css_leftmost_descendant(next);
574bd9f7
TH
4336
4337 /* no sibling left, visit parent */
5c9d535b 4338 return pos->parent;
574bd9f7 4339}
574bd9f7 4340
f3d46500
TH
4341/**
4342 * css_has_online_children - does a css have online children
4343 * @css: the target css
4344 *
4345 * Returns %true if @css has any online children; otherwise, %false. This
4346 * function can be called from any context but the caller is responsible
4347 * for synchronizing against on/offlining as necessary.
4348 */
4349bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 4350{
f3d46500
TH
4351 struct cgroup_subsys_state *child;
4352 bool ret = false;
cbc125ef
TH
4353
4354 rcu_read_lock();
f3d46500 4355 css_for_each_child(child, css) {
99bae5f9 4356 if (child->flags & CSS_ONLINE) {
f3d46500
TH
4357 ret = true;
4358 break;
cbc125ef
TH
4359 }
4360 }
4361 rcu_read_unlock();
f3d46500 4362 return ret;
574bd9f7 4363}
574bd9f7 4364
450ee0c1
TH
4365static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4366{
4367 struct list_head *l;
4368 struct cgrp_cset_link *link;
4369 struct css_set *cset;
4370
4371 lockdep_assert_held(&css_set_lock);
4372
4373 /* find the next threaded cset */
4374 if (it->tcset_pos) {
4375 l = it->tcset_pos->next;
4376
4377 if (l != it->tcset_head) {
4378 it->tcset_pos = l;
4379 return container_of(l, struct css_set,
4380 threaded_csets_node);
4381 }
4382
4383 it->tcset_pos = NULL;
4384 }
4385
4386 /* find the next cset */
4387 l = it->cset_pos;
4388 l = l->next;
4389 if (l == it->cset_head) {
4390 it->cset_pos = NULL;
4391 return NULL;
4392 }
4393
4394 if (it->ss) {
4395 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4396 } else {
4397 link = list_entry(l, struct cgrp_cset_link, cset_link);
4398 cset = link->cset;
4399 }
4400
4401 it->cset_pos = l;
4402
4403 /* initialize threaded css_set walking */
4404 if (it->flags & CSS_TASK_ITER_THREADED) {
4405 if (it->cur_dcset)
4406 put_css_set_locked(it->cur_dcset);
4407 it->cur_dcset = cset;
4408 get_css_set(cset);
4409
4410 it->tcset_head = &cset->threaded_csets;
4411 it->tcset_pos = &cset->threaded_csets;
4412 }
4413
4414 return cset;
4415}
4416
0942eeee 4417/**
ecb9d535 4418 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
4419 * @it: the iterator to advance
4420 *
4421 * Advance @it to the next css_set to walk.
d515876e 4422 */
ecb9d535 4423static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 4424{
d515876e
TH
4425 struct css_set *cset;
4426
f0d9a5f1 4427 lockdep_assert_held(&css_set_lock);
ed27b9f7 4428
d515876e
TH
4429 /* Advance to the next non-empty css_set */
4430 do {
450ee0c1
TH
4431 cset = css_task_iter_next_css_set(it);
4432 if (!cset) {
ecb9d535 4433 it->task_pos = NULL;
d515876e
TH
4434 return;
4435 }
0de0942d 4436 } while (!css_set_populated(cset));
c7561128 4437
c7561128 4438 if (!list_empty(&cset->tasks))
0f0a2b4f 4439 it->task_pos = cset->tasks.next;
c7561128 4440 else
0f0a2b4f
TH
4441 it->task_pos = cset->mg_tasks.next;
4442
4443 it->tasks_head = &cset->tasks;
4444 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
4445
4446 /*
4447 * We don't keep css_sets locked across iteration steps and thus
4448 * need to take steps to ensure that iteration can be resumed after
4449 * the lock is re-acquired. Iteration is performed at two levels -
4450 * css_sets and tasks in them.
4451 *
4452 * Once created, a css_set never leaves its cgroup lists, so a
4453 * pinned css_set is guaranteed to stay put and we can resume
4454 * iteration afterwards.
4455 *
4456 * Tasks may leave @cset across iteration steps. This is resolved
4457 * by registering each iterator with the css_set currently being
4458 * walked and making css_set_move_task() advance iterators whose
4459 * next task is leaving.
4460 */
4461 if (it->cur_cset) {
4462 list_del(&it->iters_node);
4463 put_css_set_locked(it->cur_cset);
4464 }
4465 get_css_set(cset);
4466 it->cur_cset = cset;
4467 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
4468}
4469
ecb9d535
TH
4470static void css_task_iter_advance(struct css_task_iter *it)
4471{
74d0833c 4472 struct list_head *next;
ecb9d535 4473
f0d9a5f1 4474 lockdep_assert_held(&css_set_lock);
bc2fb7ed 4475repeat:
e9d81a1b
TH
4476 if (it->task_pos) {
4477 /*
4478 * Advance iterator to find next entry. cset->tasks is
4479 * consumed first and then ->mg_tasks. After ->mg_tasks,
4480 * we move onto the next cset.
4481 */
4482 next = it->task_pos->next;
ecb9d535 4483
e9d81a1b
TH
4484 if (next == it->tasks_head)
4485 next = it->mg_tasks_head->next;
ecb9d535 4486
e9d81a1b
TH
4487 if (next == it->mg_tasks_head)
4488 css_task_iter_advance_css_set(it);
4489 else
4490 it->task_pos = next;
4491 } else {
4492 /* called from start, proceed to the first cset */
ecb9d535 4493 css_task_iter_advance_css_set(it);
e9d81a1b 4494 }
bc2fb7ed
TH
4495
4496 /* if PROCS, skip over tasks which aren't group leaders */
4497 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4498 !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4499 cg_list)))
4500 goto repeat;
ecb9d535
TH
4501}
4502
0942eeee 4503/**
72ec7029
TH
4504 * css_task_iter_start - initiate task iteration
4505 * @css: the css to walk tasks of
bc2fb7ed 4506 * @flags: CSS_TASK_ITER_* flags
0942eeee
TH
4507 * @it: the task iterator to use
4508 *
72ec7029
TH
4509 * Initiate iteration through the tasks of @css. The caller can call
4510 * css_task_iter_next() to walk through the tasks until the function
4511 * returns NULL. On completion of iteration, css_task_iter_end() must be
4512 * called.
0942eeee 4513 */
bc2fb7ed 4514void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
72ec7029 4515 struct css_task_iter *it)
817929ec 4516{
56fde9e0
TH
4517 /* no one should try to iterate before mounting cgroups */
4518 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 4519
ed27b9f7
TH
4520 memset(it, 0, sizeof(*it));
4521
82d6489d 4522 spin_lock_irq(&css_set_lock);
c59cd3d8 4523
3ebb2b6e 4524 it->ss = css->ss;
bc2fb7ed 4525 it->flags = flags;
3ebb2b6e
TH
4526
4527 if (it->ss)
4528 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4529 else
4530 it->cset_pos = &css->cgroup->cset_links;
4531
0f0a2b4f 4532 it->cset_head = it->cset_pos;
c59cd3d8 4533
e9d81a1b 4534 css_task_iter_advance(it);
ed27b9f7 4535
82d6489d 4536 spin_unlock_irq(&css_set_lock);
817929ec
PM
4537}
4538
0942eeee 4539/**
72ec7029 4540 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
4541 * @it: the task iterator being iterated
4542 *
4543 * The "next" function for task iteration. @it should have been
72ec7029
TH
4544 * initialized via css_task_iter_start(). Returns NULL when the iteration
4545 * reaches the end.
0942eeee 4546 */
72ec7029 4547struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 4548{
d5745675 4549 if (it->cur_task) {
ed27b9f7 4550 put_task_struct(it->cur_task);
d5745675
TH
4551 it->cur_task = NULL;
4552 }
ed27b9f7 4553
82d6489d 4554 spin_lock_irq(&css_set_lock);
ed27b9f7 4555
d5745675
TH
4556 if (it->task_pos) {
4557 it->cur_task = list_entry(it->task_pos, struct task_struct,
4558 cg_list);
4559 get_task_struct(it->cur_task);
4560 css_task_iter_advance(it);
4561 }
ed27b9f7 4562
82d6489d 4563 spin_unlock_irq(&css_set_lock);
ed27b9f7
TH
4564
4565 return it->cur_task;
817929ec
PM
4566}
4567
0942eeee 4568/**
72ec7029 4569 * css_task_iter_end - finish task iteration
0942eeee
TH
4570 * @it: the task iterator to finish
4571 *
72ec7029 4572 * Finish task iteration started by css_task_iter_start().
0942eeee 4573 */
72ec7029 4574void css_task_iter_end(struct css_task_iter *it)
31a7df01 4575{
ed27b9f7 4576 if (it->cur_cset) {
82d6489d 4577 spin_lock_irq(&css_set_lock);
ed27b9f7
TH
4578 list_del(&it->iters_node);
4579 put_css_set_locked(it->cur_cset);
82d6489d 4580 spin_unlock_irq(&css_set_lock);
ed27b9f7
TH
4581 }
4582
450ee0c1
TH
4583 if (it->cur_dcset)
4584 put_css_set(it->cur_dcset);
4585
ed27b9f7
TH
4586 if (it->cur_task)
4587 put_task_struct(it->cur_task);
31a7df01
CW
4588}
4589
b4b90a8e 4590static void cgroup_procs_release(struct kernfs_open_file *of)
31a7df01 4591{
b4b90a8e
TH
4592 if (of->priv) {
4593 css_task_iter_end(of->priv);
4594 kfree(of->priv);
4595 }
4596}
6c694c88 4597
b4b90a8e
TH
4598static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4599{
4600 struct kernfs_open_file *of = s->private;
4601 struct css_task_iter *it = of->priv;
31a7df01 4602
bc2fb7ed 4603 return css_task_iter_next(it);
b4b90a8e 4604}
31a7df01 4605
8cfd8147
TH
4606static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4607 unsigned int iter_flags)
b4b90a8e
TH
4608{
4609 struct kernfs_open_file *of = s->private;
4610 struct cgroup *cgrp = seq_css(s)->cgroup;
4611 struct css_task_iter *it = of->priv;
8cc99345 4612
952aaa12 4613 /*
b4b90a8e
TH
4614 * When a seq_file is seeked, it's always traversed sequentially
4615 * from position 0, so we can simply keep iterating on !0 *pos.
952aaa12 4616 */
b4b90a8e
TH
4617 if (!it) {
4618 if (WARN_ON_ONCE((*pos)++))
4619 return ERR_PTR(-EINVAL);
8cc99345 4620
b4b90a8e
TH
4621 it = kzalloc(sizeof(*it), GFP_KERNEL);
4622 if (!it)
4623 return ERR_PTR(-ENOMEM);
4624 of->priv = it;
450ee0c1 4625 css_task_iter_start(&cgrp->self, iter_flags, it);
b4b90a8e
TH
4626 } else if (!(*pos)++) {
4627 css_task_iter_end(it);
450ee0c1 4628 css_task_iter_start(&cgrp->self, iter_flags, it);
b4b90a8e 4629 }
bbcb81d0 4630
b4b90a8e
TH
4631 return cgroup_procs_next(s, NULL, NULL);
4632}
24528255 4633
8cfd8147
TH
4634static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4635{
4636 struct cgroup *cgrp = seq_css(s)->cgroup;
4637
4638 /*
4639 * All processes of a threaded subtree belong to the domain cgroup
4640 * of the subtree. Only threads can be distributed across the
4641 * subtree. Reject reads on cgroup.procs in the subtree proper.
4642 * They're always empty anyway.
4643 */
4644 if (cgroup_is_threaded(cgrp))
4645 return ERR_PTR(-EOPNOTSUPP);
4646
4647 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4648 CSS_TASK_ITER_THREADED);
4649}
4650
b4b90a8e 4651static int cgroup_procs_show(struct seq_file *s, void *v)
bbcb81d0 4652{
bc2fb7ed 4653 seq_printf(s, "%d\n", task_pid_vnr(v));
97978e6d
DL
4654 return 0;
4655}
4656
715c809d
TH
4657static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4658 struct cgroup *dst_cgrp,
4659 struct super_block *sb)
4660{
4661 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4662 struct cgroup *com_cgrp = src_cgrp;
4663 struct inode *inode;
4664 int ret;
4665
4666 lockdep_assert_held(&cgroup_mutex);
4667
4668 /* find the common ancestor */
4669 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4670 com_cgrp = cgroup_parent(com_cgrp);
4671
4672 /* %current should be authorized to migrate to the common ancestor */
4673 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4674 if (!inode)
4675 return -ENOMEM;
4676
4677 ret = inode_permission(inode, MAY_WRITE);
4678 iput(inode);
4679 if (ret)
4680 return ret;
4681
4682 /*
4683 * If namespaces are delegation boundaries, %current must be able
4684 * to see both source and destination cgroups from its namespace.
4685 */
4686 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4687 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4688 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4689 return -ENOENT;
4690
4691 return 0;
4692}
4693
4694static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4695 char *buf, size_t nbytes, loff_t off)
4696{
4697 struct cgroup *src_cgrp, *dst_cgrp;
4698 struct task_struct *task;
4699 ssize_t ret;
4700
4701 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4702 if (!dst_cgrp)
4703 return -ENODEV;
4704
4705 task = cgroup_procs_write_start(buf, true);
4706 ret = PTR_ERR_OR_ZERO(task);
4707 if (ret)
4708 goto out_unlock;
4709
4710 /* find the source cgroup */
4711 spin_lock_irq(&css_set_lock);
4712 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4713 spin_unlock_irq(&css_set_lock);
4714
4715 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4716 of->file->f_path.dentry->d_sb);
4717 if (ret)
4718 goto out_finish;
4719
4720 ret = cgroup_attach_task(dst_cgrp, task, true);
4721
4722out_finish:
4723 cgroup_procs_write_finish(task);
4724out_unlock:
4725 cgroup_kn_unlock(of->kn);
4726
4727 return ret ?: nbytes;
4728}
4729
8cfd8147
TH
4730static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4731{
4732 return __cgroup_procs_start(s, pos, 0);
4733}
4734
4735static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4736 char *buf, size_t nbytes, loff_t off)
4737{
4738 struct cgroup *src_cgrp, *dst_cgrp;
4739 struct task_struct *task;
4740 ssize_t ret;
4741
4742 buf = strstrip(buf);
4743
4744 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4745 if (!dst_cgrp)
4746 return -ENODEV;
4747
4748 task = cgroup_procs_write_start(buf, false);
4749 ret = PTR_ERR_OR_ZERO(task);
4750 if (ret)
4751 goto out_unlock;
4752
4753 /* find the source cgroup */
4754 spin_lock_irq(&css_set_lock);
4755 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4756 spin_unlock_irq(&css_set_lock);
4757
4758 /* thread migrations follow the cgroup.procs delegation rule */
4759 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4760 of->file->f_path.dentry->d_sb);
4761 if (ret)
4762 goto out_finish;
4763
4764 /* and must be contained in the same domain */
4765 ret = -EOPNOTSUPP;
4766 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4767 goto out_finish;
4768
4769 ret = cgroup_attach_task(dst_cgrp, task, false);
4770
4771out_finish:
4772 cgroup_procs_write_finish(task);
4773out_unlock:
4774 cgroup_kn_unlock(of->kn);
4775
4776 return ret ?: nbytes;
4777}
4778
a14c6874 4779/* cgroup core interface files for the default hierarchy */
d62beb7f 4780static struct cftype cgroup_base_files[] = {
8cfd8147
TH
4781 {
4782 .name = "cgroup.type",
4783 .flags = CFTYPE_NOT_ON_ROOT,
4784 .seq_show = cgroup_type_show,
4785 .write = cgroup_type_write,
4786 },
81a6a5cd 4787 {
d5c56ced 4788 .name = "cgroup.procs",
5136f636 4789 .flags = CFTYPE_NS_DELEGATABLE,
6f60eade 4790 .file_offset = offsetof(struct cgroup, procs_file),
b4b90a8e
TH
4791 .release = cgroup_procs_release,
4792 .seq_start = cgroup_procs_start,
4793 .seq_next = cgroup_procs_next,
4794 .seq_show = cgroup_procs_show,
acbef755 4795 .write = cgroup_procs_write,
102a775e 4796 },
8cfd8147
TH
4797 {
4798 .name = "cgroup.threads",
4f58424d 4799 .flags = CFTYPE_NS_DELEGATABLE,
8cfd8147
TH
4800 .release = cgroup_procs_release,
4801 .seq_start = cgroup_threads_start,
4802 .seq_next = cgroup_procs_next,
4803 .seq_show = cgroup_procs_show,
4804 .write = cgroup_threads_write,
4805 },
f8f22e53
TH
4806 {
4807 .name = "cgroup.controllers",
f8f22e53
TH
4808 .seq_show = cgroup_controllers_show,
4809 },
4810 {
4811 .name = "cgroup.subtree_control",
5136f636 4812 .flags = CFTYPE_NS_DELEGATABLE,
f8f22e53 4813 .seq_show = cgroup_subtree_control_show,
451af504 4814 .write = cgroup_subtree_control_write,
f8f22e53 4815 },
842b597e 4816 {
4a07c222 4817 .name = "cgroup.events",
a14c6874 4818 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4819 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4820 .seq_show = cgroup_events_show,
842b597e 4821 },
1a926e0b
RG
4822 {
4823 .name = "cgroup.max.descendants",
4824 .seq_show = cgroup_max_descendants_show,
4825 .write = cgroup_max_descendants_write,
4826 },
4827 {
4828 .name = "cgroup.max.depth",
4829 .seq_show = cgroup_max_depth_show,
4830 .write = cgroup_max_depth_write,
4831 },
ec39225c
RG
4832 {
4833 .name = "cgroup.stat",
3e48930c 4834 .seq_show = cgroup_stat_show,
ec39225c 4835 },
76f969e8
RG
4836 {
4837 .name = "cgroup.freeze",
4838 .flags = CFTYPE_NOT_ON_ROOT,
4839 .seq_show = cgroup_freeze_show,
4840 .write = cgroup_freeze_write,
4841 },
d41bf8c9
TH
4842 {
4843 .name = "cpu.stat",
4844 .flags = CFTYPE_NOT_ON_ROOT,
4845 .seq_show = cpu_stat_show,
4846 },
2ce7135a
JW
4847#ifdef CONFIG_PSI
4848 {
4849 .name = "io.pressure",
2ce7135a 4850 .seq_show = cgroup_io_pressure_show,
0e94682b
SB
4851 .write = cgroup_io_pressure_write,
4852 .poll = cgroup_pressure_poll,
4853 .release = cgroup_pressure_release,
2ce7135a
JW
4854 },
4855 {
4856 .name = "memory.pressure",
2ce7135a 4857 .seq_show = cgroup_memory_pressure_show,
0e94682b
SB
4858 .write = cgroup_memory_pressure_write,
4859 .poll = cgroup_pressure_poll,
4860 .release = cgroup_pressure_release,
2ce7135a
JW
4861 },
4862 {
4863 .name = "cpu.pressure",
2ce7135a 4864 .seq_show = cgroup_cpu_pressure_show,
0e94682b
SB
4865 .write = cgroup_cpu_pressure_write,
4866 .poll = cgroup_pressure_poll,
4867 .release = cgroup_pressure_release,
2ce7135a 4868 },
0e94682b 4869#endif /* CONFIG_PSI */
a14c6874
TH
4870 { } /* terminate */
4871};
d5c56ced 4872
0c21ead1
TH
4873/*
4874 * css destruction is four-stage process.
4875 *
4876 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4877 * Implemented in kill_css().
4878 *
4879 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4880 * and thus css_tryget_online() is guaranteed to fail, the css can be
4881 * offlined by invoking offline_css(). After offlining, the base ref is
4882 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4883 *
4884 * 3. When the percpu_ref reaches zero, the only possible remaining
4885 * accessors are inside RCU read sections. css_release() schedules the
4886 * RCU callback.
4887 *
4888 * 4. After the grace period, the css can be freed. Implemented in
4889 * css_free_work_fn().
4890 *
4891 * It is actually hairier because both step 2 and 4 require process context
4892 * and thus involve punting to css->destroy_work adding two additional
4893 * steps to the already complex sequence.
4894 */
8f36aaec 4895static void css_free_rwork_fn(struct work_struct *work)
48ddbe19 4896{
8f36aaec
TH
4897 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4898 struct cgroup_subsys_state, destroy_rwork);
01e58659 4899 struct cgroup_subsys *ss = css->ss;
0c21ead1 4900 struct cgroup *cgrp = css->cgroup;
48ddbe19 4901
9a1049da
TH
4902 percpu_ref_exit(&css->refcnt);
4903
01e58659 4904 if (ss) {
9d755d33 4905 /* css free path */
8bb5ef79 4906 struct cgroup_subsys_state *parent = css->parent;
01e58659
VD
4907 int id = css->id;
4908
01e58659
VD
4909 ss->css_free(css);
4910 cgroup_idr_remove(&ss->css_idr, id);
9d755d33 4911 cgroup_put(cgrp);
8bb5ef79
TH
4912
4913 if (parent)
4914 css_put(parent);
9d755d33
TH
4915 } else {
4916 /* cgroup free path */
4917 atomic_dec(&cgrp->root->nr_cgrps);
d62beb7f 4918 cgroup1_pidlist_destroy_all(cgrp);
971ff493 4919 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4920
d51f39b0 4921 if (cgroup_parent(cgrp)) {
9d755d33
TH
4922 /*
4923 * We get a ref to the parent, and put the ref when
4924 * this cgroup is being freed, so it's guaranteed
4925 * that the parent won't be destroyed before its
4926 * children.
4927 */
d51f39b0 4928 cgroup_put(cgroup_parent(cgrp));
9d755d33 4929 kernfs_put(cgrp->kn);
2ce7135a 4930 psi_cgroup_free(cgrp);
041cd640 4931 if (cgroup_on_dfl(cgrp))
c58632b3 4932 cgroup_rstat_exit(cgrp);
9d755d33
TH
4933 kfree(cgrp);
4934 } else {
4935 /*
4936 * This is root cgroup's refcnt reaching zero,
4937 * which indicates that the root should be
4938 * released.
4939 */
4940 cgroup_destroy_root(cgrp->root);
4941 }
4942 }
48ddbe19
TH
4943}
4944
25e15d83 4945static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4946{
4947 struct cgroup_subsys_state *css =
25e15d83 4948 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4949 struct cgroup_subsys *ss = css->ss;
9d755d33 4950 struct cgroup *cgrp = css->cgroup;
15a4c835 4951
1fed1b2e
TH
4952 mutex_lock(&cgroup_mutex);
4953
de3f0341 4954 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4955 list_del_rcu(&css->sibling);
4956
9d755d33
TH
4957 if (ss) {
4958 /* css release path */
8f53470b
TH
4959 if (!list_empty(&css->rstat_css_node)) {
4960 cgroup_rstat_flush(cgrp);
4961 list_del_rcu(&css->rstat_css_node);
4962 }
4963
01e58659 4964 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4965 if (ss->css_released)
4966 ss->css_released(css);
9d755d33 4967 } else {
0679dee0
RG
4968 struct cgroup *tcgrp;
4969
9d755d33 4970 /* cgroup release path */
e4f8d81c 4971 TRACE_CGROUP_PATH(release, cgrp);
ed1777de 4972
041cd640 4973 if (cgroup_on_dfl(cgrp))
c58632b3 4974 cgroup_rstat_flush(cgrp);
041cd640 4975
4dcabece 4976 spin_lock_irq(&css_set_lock);
0679dee0
RG
4977 for (tcgrp = cgroup_parent(cgrp); tcgrp;
4978 tcgrp = cgroup_parent(tcgrp))
4979 tcgrp->nr_dying_descendants--;
4dcabece 4980 spin_unlock_irq(&css_set_lock);
0679dee0 4981
9d755d33
TH
4982 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4983 cgrp->id = -1;
a4189487
LZ
4984
4985 /*
4986 * There are two control paths which try to determine
4987 * cgroup from dentry without going through kernfs -
4988 * cgroupstats_build() and css_tryget_online_from_dir().
4989 * Those are supported by RCU protecting clearing of
4990 * cgrp->kn->priv backpointer.
4991 */
6cd0f5bb
TH
4992 if (cgrp->kn)
4993 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4994 NULL);
30070984
DM
4995
4996 cgroup_bpf_put(cgrp);
9d755d33 4997 }
d3daf28d 4998
1fed1b2e
TH
4999 mutex_unlock(&cgroup_mutex);
5000
8f36aaec
TH
5001 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5002 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
d3daf28d
TH
5003}
5004
d3daf28d
TH
5005static void css_release(struct percpu_ref *ref)
5006{
5007 struct cgroup_subsys_state *css =
5008 container_of(ref, struct cgroup_subsys_state, refcnt);
5009
25e15d83
TH
5010 INIT_WORK(&css->destroy_work, css_release_work_fn);
5011 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
5012}
5013
ddfcadab
TH
5014static void init_and_link_css(struct cgroup_subsys_state *css,
5015 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 5016{
0cb51d71
TH
5017 lockdep_assert_held(&cgroup_mutex);
5018
a590b90d 5019 cgroup_get_live(cgrp);
ddfcadab 5020
d5c419b6 5021 memset(css, 0, sizeof(*css));
bd89aabc 5022 css->cgroup = cgrp;
72c97e54 5023 css->ss = ss;
8fa3b8d6 5024 css->id = -1;
d5c419b6
TH
5025 INIT_LIST_HEAD(&css->sibling);
5026 INIT_LIST_HEAD(&css->children);
8f53470b 5027 INIT_LIST_HEAD(&css->rstat_css_node);
0cb51d71 5028 css->serial_nr = css_serial_nr_next++;
aa226ff4 5029 atomic_set(&css->online_cnt, 0);
0ae78e0b 5030
d51f39b0
TH
5031 if (cgroup_parent(cgrp)) {
5032 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 5033 css_get(css->parent);
ddfcadab 5034 }
48ddbe19 5035
8f53470b
TH
5036 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5037 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5038
ca8bdcaf 5039 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
5040}
5041
2a4ac633 5042/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 5043static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 5044{
623f926b 5045 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
5046 int ret = 0;
5047
a31f2d3f
TH
5048 lockdep_assert_held(&cgroup_mutex);
5049
92fb9748 5050 if (ss->css_online)
eb95419b 5051 ret = ss->css_online(css);
ae7f164a 5052 if (!ret) {
eb95419b 5053 css->flags |= CSS_ONLINE;
aec25020 5054 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
aa226ff4
TH
5055
5056 atomic_inc(&css->online_cnt);
5057 if (css->parent)
5058 atomic_inc(&css->parent->online_cnt);
ae7f164a 5059 }
b1929db4 5060 return ret;
a31f2d3f
TH
5061}
5062
2a4ac633 5063/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 5064static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 5065{
623f926b 5066 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
5067
5068 lockdep_assert_held(&cgroup_mutex);
5069
5070 if (!(css->flags & CSS_ONLINE))
5071 return;
5072
d7eeac19 5073 if (ss->css_offline)
eb95419b 5074 ss->css_offline(css);
a31f2d3f 5075
eb95419b 5076 css->flags &= ~CSS_ONLINE;
e3297803 5077 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
5078
5079 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
5080}
5081
c81c925a 5082/**
6cd0f5bb 5083 * css_create - create a cgroup_subsys_state
c81c925a
TH
5084 * @cgrp: the cgroup new css will be associated with
5085 * @ss: the subsys of new css
5086 *
5087 * Create a new css associated with @cgrp - @ss pair. On success, the new
6cd0f5bb
TH
5088 * css is online and installed in @cgrp. This function doesn't create the
5089 * interface files. Returns 0 on success, -errno on failure.
c81c925a 5090 */
6cd0f5bb
TH
5091static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5092 struct cgroup_subsys *ss)
c81c925a 5093{
d51f39b0 5094 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 5095 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
5096 struct cgroup_subsys_state *css;
5097 int err;
5098
c81c925a
TH
5099 lockdep_assert_held(&cgroup_mutex);
5100
1fed1b2e 5101 css = ss->css_alloc(parent_css);
e7e15b87
TH
5102 if (!css)
5103 css = ERR_PTR(-ENOMEM);
c81c925a 5104 if (IS_ERR(css))
6cd0f5bb 5105 return css;
c81c925a 5106
ddfcadab 5107 init_and_link_css(css, ss, cgrp);
a2bed820 5108
2aad2a86 5109 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 5110 if (err)
3eb59ec6 5111 goto err_free_css;
c81c925a 5112
cf780b7d 5113 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835 5114 if (err < 0)
b00c52da 5115 goto err_free_css;
15a4c835 5116 css->id = err;
c81c925a 5117
15a4c835 5118 /* @css is ready to be brought online now, make it visible */
1fed1b2e 5119 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 5120 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
5121
5122 err = online_css(css);
5123 if (err)
1fed1b2e 5124 goto err_list_del;
94419627 5125
c81c925a 5126 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 5127 cgroup_parent(parent)) {
ed3d261b 5128 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 5129 current->comm, current->pid, ss->name);
c81c925a 5130 if (!strcmp(ss->name, "memory"))
ed3d261b 5131 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
5132 ss->warned_broken_hierarchy = true;
5133 }
5134
6cd0f5bb 5135 return css;
c81c925a 5136
1fed1b2e
TH
5137err_list_del:
5138 list_del_rcu(&css->sibling);
3eb59ec6 5139err_free_css:
8f53470b 5140 list_del_rcu(&css->rstat_css_node);
8f36aaec
TH
5141 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5142 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
6cd0f5bb 5143 return ERR_PTR(err);
c81c925a
TH
5144}
5145
07cd1294
TH
5146/*
5147 * The returned cgroup is fully initialized including its control mask, but
5148 * it isn't associated with its kernfs_node and doesn't have the control
5149 * mask applied.
5150 */
a5bca215 5151static struct cgroup *cgroup_create(struct cgroup *parent)
ddbcc7e8 5152{
a5bca215 5153 struct cgroup_root *root = parent->root;
a5bca215
TH
5154 struct cgroup *cgrp, *tcgrp;
5155 int level = parent->level + 1;
03970d3c 5156 int ret;
ddbcc7e8 5157
0a950f65 5158 /* allocate the cgroup and its ID, 0 is reserved for the root */
acafe7e3
KC
5159 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5160 GFP_KERNEL);
a5bca215
TH
5161 if (!cgrp)
5162 return ERR_PTR(-ENOMEM);
0ab02ca8 5163
2aad2a86 5164 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
5165 if (ret)
5166 goto out_free_cgrp;
5167
041cd640 5168 if (cgroup_on_dfl(parent)) {
c58632b3 5169 ret = cgroup_rstat_init(cgrp);
041cd640
TH
5170 if (ret)
5171 goto out_cancel_ref;
5172 }
5173
0ab02ca8
LZ
5174 /*
5175 * Temporarily set the pointer to NULL, so idr_find() won't return
5176 * a half-baked cgroup.
5177 */
cf780b7d 5178 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 5179 if (cgrp->id < 0) {
ba0f4d76 5180 ret = -ENOMEM;
041cd640 5181 goto out_stat_exit;
976c06bc
TH
5182 }
5183
cc31edce 5184 init_cgroup_housekeeping(cgrp);
ddbcc7e8 5185
9d800df1 5186 cgrp->self.parent = &parent->self;
ba0f4d76 5187 cgrp->root = root;
b11cfb58 5188 cgrp->level = level;
2ce7135a
JW
5189
5190 ret = psi_cgroup_alloc(cgrp);
324bda9e
AS
5191 if (ret)
5192 goto out_idr_free;
b11cfb58 5193
2ce7135a
JW
5194 ret = cgroup_bpf_inherit(cgrp);
5195 if (ret)
5196 goto out_psi_free;
5197
76f969e8
RG
5198 /*
5199 * New cgroup inherits effective freeze counter, and
5200 * if the parent has to be frozen, the child has too.
5201 */
5202 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5203 if (cgrp->freezer.e_freeze)
5204 set_bit(CGRP_FROZEN, &cgrp->flags);
5205
4dcabece 5206 spin_lock_irq(&css_set_lock);
0679dee0 5207 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
b11cfb58 5208 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
ddbcc7e8 5209
76f969e8 5210 if (tcgrp != cgrp) {
0679dee0 5211 tcgrp->nr_descendants++;
76f969e8
RG
5212
5213 /*
5214 * If the new cgroup is frozen, all ancestor cgroups
5215 * get a new frozen descendant, but their state can't
5216 * change because of this.
5217 */
5218 if (cgrp->freezer.e_freeze)
5219 tcgrp->freezer.nr_frozen_descendants++;
5220 }
0679dee0 5221 }
4dcabece 5222 spin_unlock_irq(&css_set_lock);
0679dee0 5223
b6abdb0e
LZ
5224 if (notify_on_release(parent))
5225 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5226
2260e7fc
TH
5227 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5228 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 5229
0cb51d71 5230 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 5231
4e139afc 5232 /* allocation complete, commit to creation */
d5c419b6 5233 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 5234 atomic_inc(&root->nr_cgrps);
a590b90d 5235 cgroup_get_live(parent);
415cf07a 5236
0d80255e
TH
5237 /*
5238 * @cgrp is now fully operational. If something fails after this
5239 * point, it'll be released via the normal destruction path.
5240 */
6fa4918d 5241 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 5242
bd53d617
TH
5243 /*
5244 * On the default hierarchy, a child doesn't automatically inherit
667c2491 5245 * subtree_control from the parent. Each is configured manually.
bd53d617 5246 */
03970d3c 5247 if (!cgroup_on_dfl(cgrp))
5531dc91 5248 cgrp->subtree_control = cgroup_control(cgrp);
03970d3c
TH
5249
5250 cgroup_propagate_control(cgrp);
5251
a5bca215
TH
5252 return cgrp;
5253
2ce7135a
JW
5254out_psi_free:
5255 psi_cgroup_free(cgrp);
324bda9e
AS
5256out_idr_free:
5257 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
041cd640
TH
5258out_stat_exit:
5259 if (cgroup_on_dfl(parent))
c58632b3 5260 cgroup_rstat_exit(cgrp);
a5bca215
TH
5261out_cancel_ref:
5262 percpu_ref_exit(&cgrp->self.refcnt);
5263out_free_cgrp:
5264 kfree(cgrp);
5265 return ERR_PTR(ret);
a5bca215
TH
5266}
5267
1a926e0b
RG
5268static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5269{
5270 struct cgroup *cgroup;
5271 int ret = false;
5272 int level = 1;
5273
5274 lockdep_assert_held(&cgroup_mutex);
5275
5276 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5277 if (cgroup->nr_descendants >= cgroup->max_descendants)
5278 goto fail;
5279
5280 if (level > cgroup->max_depth)
5281 goto fail;
5282
5283 level++;
5284 }
5285
5286 ret = true;
5287fail:
5288 return ret;
5289}
5290
1592c9b2 5291int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
a5bca215
TH
5292{
5293 struct cgroup *parent, *cgrp;
a5bca215 5294 struct kernfs_node *kn;
03970d3c 5295 int ret;
a5bca215
TH
5296
5297 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5298 if (strchr(name, '\n'))
5299 return -EINVAL;
5300
945ba199 5301 parent = cgroup_kn_lock_live(parent_kn, false);
a5bca215
TH
5302 if (!parent)
5303 return -ENODEV;
5304
1a926e0b
RG
5305 if (!cgroup_check_hierarchy_limits(parent)) {
5306 ret = -EAGAIN;
5307 goto out_unlock;
5308 }
5309
a5bca215
TH
5310 cgrp = cgroup_create(parent);
5311 if (IS_ERR(cgrp)) {
5312 ret = PTR_ERR(cgrp);
5313 goto out_unlock;
5314 }
5315
195e9b6c
TH
5316 /* create the directory */
5317 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5318 if (IS_ERR(kn)) {
5319 ret = PTR_ERR(kn);
5320 goto out_destroy;
5321 }
5322 cgrp->kn = kn;
5323
5324 /*
5325 * This extra ref will be put in cgroup_free_fn() and guarantees
5326 * that @cgrp->kn is always accessible.
5327 */
5328 kernfs_get(kn);
5329
5330 ret = cgroup_kn_set_ugid(kn);
5331 if (ret)
5332 goto out_destroy;
5333
334c3679 5334 ret = css_populate_dir(&cgrp->self);
195e9b6c
TH
5335 if (ret)
5336 goto out_destroy;
5337
03970d3c
TH
5338 ret = cgroup_apply_control_enable(cgrp);
5339 if (ret)
5340 goto out_destroy;
195e9b6c 5341
e4f8d81c 5342 TRACE_CGROUP_PATH(mkdir, cgrp);
ed1777de 5343
195e9b6c 5344 /* let's create and online css's */
2bd59d48 5345 kernfs_activate(kn);
ddbcc7e8 5346
ba0f4d76
TH
5347 ret = 0;
5348 goto out_unlock;
ddbcc7e8 5349
a5bca215
TH
5350out_destroy:
5351 cgroup_destroy_locked(cgrp);
ba0f4d76 5352out_unlock:
a9746d8d 5353 cgroup_kn_unlock(parent_kn);
ba0f4d76 5354 return ret;
ddbcc7e8
PM
5355}
5356
223dbc38
TH
5357/*
5358 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
5359 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5360 * initate destruction and put the css ref from kill_css().
223dbc38
TH
5361 */
5362static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5363{
223dbc38
TH
5364 struct cgroup_subsys_state *css =
5365 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5366
f20104de 5367 mutex_lock(&cgroup_mutex);
09a503ea 5368
aa226ff4
TH
5369 do {
5370 offline_css(css);
5371 css_put(css);
5372 /* @css can't go away while we're holding cgroup_mutex */
5373 css = css->parent;
5374 } while (css && atomic_dec_and_test(&css->online_cnt));
5375
5376 mutex_unlock(&cgroup_mutex);
d3daf28d
TH
5377}
5378
223dbc38
TH
5379/* css kill confirmation processing requires process context, bounce */
5380static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5381{
5382 struct cgroup_subsys_state *css =
5383 container_of(ref, struct cgroup_subsys_state, refcnt);
5384
aa226ff4
TH
5385 if (atomic_dec_and_test(&css->online_cnt)) {
5386 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5387 queue_work(cgroup_destroy_wq, &css->destroy_work);
5388 }
d3daf28d
TH
5389}
5390
f392e51c
TH
5391/**
5392 * kill_css - destroy a css
5393 * @css: css to destroy
5394 *
5395 * This function initiates destruction of @css by removing cgroup interface
5396 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5397 * asynchronously once css_tryget_online() is guaranteed to fail and when
5398 * the reference count reaches zero, @css will be released.
f392e51c
TH
5399 */
5400static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5401{
01f6474c 5402 lockdep_assert_held(&cgroup_mutex);
94419627 5403
33c35aa4
WL
5404 if (css->flags & CSS_DYING)
5405 return;
5406
5407 css->flags |= CSS_DYING;
5408
2bd59d48
TH
5409 /*
5410 * This must happen before css is disassociated with its cgroup.
5411 * See seq_css() for details.
5412 */
334c3679 5413 css_clear_dir(css);
3c14f8b4 5414
edae0c33
TH
5415 /*
5416 * Killing would put the base ref, but we need to keep it alive
5417 * until after ->css_offline().
5418 */
5419 css_get(css);
5420
5421 /*
5422 * cgroup core guarantees that, by the time ->css_offline() is
5423 * invoked, no new css reference will be given out via
ec903c0c 5424 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5425 * proceed to offlining css's because percpu_ref_kill() doesn't
5426 * guarantee that the ref is seen as killed on all CPUs on return.
5427 *
5428 * Use percpu_ref_kill_and_confirm() to get notifications as each
5429 * css is confirmed to be seen as killed on all CPUs.
5430 */
5431 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5432}
5433
5434/**
5435 * cgroup_destroy_locked - the first stage of cgroup destruction
5436 * @cgrp: cgroup to be destroyed
5437 *
5438 * css's make use of percpu refcnts whose killing latency shouldn't be
5439 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5440 * guarantee that css_tryget_online() won't succeed by the time
5441 * ->css_offline() is invoked. To satisfy all the requirements,
5442 * destruction is implemented in the following two steps.
d3daf28d
TH
5443 *
5444 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5445 * userland visible parts and start killing the percpu refcnts of
5446 * css's. Set up so that the next stage will be kicked off once all
5447 * the percpu refcnts are confirmed to be killed.
5448 *
5449 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5450 * rest of destruction. Once all cgroup references are gone, the
5451 * cgroup is RCU-freed.
5452 *
5453 * This function implements s1. After this step, @cgrp is gone as far as
5454 * the userland is concerned and a new cgroup with the same name may be
5455 * created. As cgroup doesn't care about the names internally, this
5456 * doesn't cause any problem.
5457 */
42809dd4
TH
5458static int cgroup_destroy_locked(struct cgroup *cgrp)
5459 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5460{
0679dee0 5461 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
2bd59d48 5462 struct cgroup_subsys_state *css;
2b021cbf 5463 struct cgrp_cset_link *link;
1c6727af 5464 int ssid;
ddbcc7e8 5465
42809dd4
TH
5466 lockdep_assert_held(&cgroup_mutex);
5467
91486f61
TH
5468 /*
5469 * Only migration can raise populated from zero and we're already
5470 * holding cgroup_mutex.
5471 */
5472 if (cgroup_is_populated(cgrp))
ddbcc7e8 5473 return -EBUSY;
a043e3b2 5474
bb78a92f 5475 /*
d5c419b6
TH
5476 * Make sure there's no live children. We can't test emptiness of
5477 * ->self.children as dead children linger on it while being
5478 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5479 */
f3d46500 5480 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5481 return -EBUSY;
5482
455050d2 5483 /*
2b021cbf
TH
5484 * Mark @cgrp and the associated csets dead. The former prevents
5485 * further task migration and child creation by disabling
5486 * cgroup_lock_live_group(). The latter makes the csets ignored by
5487 * the migration path.
455050d2 5488 */
184faf32 5489 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5490
82d6489d 5491 spin_lock_irq(&css_set_lock);
2b021cbf
TH
5492 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5493 link->cset->dead = true;
82d6489d 5494 spin_unlock_irq(&css_set_lock);
2b021cbf 5495
249f3468 5496 /* initiate massacre of all css's */
1c6727af
TH
5497 for_each_css(css, ssid, cgrp)
5498 kill_css(css);
455050d2 5499
5faaf05f
TH
5500 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5501 css_clear_dir(&cgrp->self);
01f6474c 5502 kernfs_remove(cgrp->kn);
f20104de 5503
454000ad
TH
5504 if (parent && cgroup_is_threaded(cgrp))
5505 parent->nr_threaded_children--;
5506
4dcabece 5507 spin_lock_irq(&css_set_lock);
0679dee0
RG
5508 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5509 tcgrp->nr_descendants--;
5510 tcgrp->nr_dying_descendants++;
76f969e8
RG
5511 /*
5512 * If the dying cgroup is frozen, decrease frozen descendants
5513 * counters of ancestor cgroups.
5514 */
5515 if (test_bit(CGRP_FROZEN, &cgrp->flags))
5516 tcgrp->freezer.nr_frozen_descendants--;
0679dee0 5517 }
4dcabece 5518 spin_unlock_irq(&css_set_lock);
0679dee0 5519
5a621e6c 5520 cgroup1_check_for_release(parent);
2bd59d48 5521
249f3468 5522 /* put the base reference */
9d755d33 5523 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5524
ea15f8cc
TH
5525 return 0;
5526};
5527
1592c9b2 5528int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5529{
a9746d8d 5530 struct cgroup *cgrp;
2bd59d48 5531 int ret = 0;
42809dd4 5532
945ba199 5533 cgrp = cgroup_kn_lock_live(kn, false);
a9746d8d
TH
5534 if (!cgrp)
5535 return 0;
42809dd4 5536
a9746d8d 5537 ret = cgroup_destroy_locked(cgrp);
ed1777de 5538 if (!ret)
e4f8d81c 5539 TRACE_CGROUP_PATH(rmdir, cgrp);
ed1777de 5540
a9746d8d 5541 cgroup_kn_unlock(kn);
42809dd4 5542 return ret;
8e3f6541
TH
5543}
5544
2bd59d48 5545static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5136f636 5546 .show_options = cgroup_show_options,
2bd59d48
TH
5547 .mkdir = cgroup_mkdir,
5548 .rmdir = cgroup_rmdir,
4f41fc59 5549 .show_path = cgroup_show_path,
2bd59d48
TH
5550};
5551
15a4c835 5552static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5553{
ddbcc7e8 5554 struct cgroup_subsys_state *css;
cfe36bde 5555
a5ae9899 5556 pr_debug("Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5557
648bb56d
TH
5558 mutex_lock(&cgroup_mutex);
5559
15a4c835 5560 idr_init(&ss->css_idr);
0adb0704 5561 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5562
3dd06ffa
TH
5563 /* Create the root cgroup state for this subsystem */
5564 ss->root = &cgrp_dfl_root;
5565 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5566 /* We don't handle early failures gracefully */
5567 BUG_ON(IS_ERR(css));
ddfcadab 5568 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5569
5570 /*
5571 * Root csses are never destroyed and we can't initialize
5572 * percpu_ref during early init. Disable refcnting.
5573 */
5574 css->flags |= CSS_NO_REF;
5575
15a4c835 5576 if (early) {
9395a450 5577 /* allocation can't be done safely during early init */
15a4c835
TH
5578 css->id = 1;
5579 } else {
5580 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5581 BUG_ON(css->id < 0);
5582 }
ddbcc7e8 5583
e8d55fde 5584 /* Update the init_css_set to contain a subsys
817929ec 5585 * pointer to this state - since the subsystem is
e8d55fde 5586 * newly registered, all tasks and hence the
3dd06ffa 5587 * init_css_set is in the subsystem's root cgroup. */
aec25020 5588 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5589
cb4a3167
AS
5590 have_fork_callback |= (bool)ss->fork << ss->id;
5591 have_exit_callback |= (bool)ss->exit << ss->id;
51bee5ab 5592 have_release_callback |= (bool)ss->release << ss->id;
7e47682e 5593 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5594
e8d55fde
LZ
5595 /* At system boot, before all subsystems have been
5596 * registered, no tasks have been forked, so we don't
5597 * need to invoke fork callbacks here. */
5598 BUG_ON(!list_empty(&init_task.tasks));
5599
ae7f164a 5600 BUG_ON(online_css(css));
a8638030 5601
cf5d5941
BB
5602 mutex_unlock(&cgroup_mutex);
5603}
cf5d5941 5604
ddbcc7e8 5605/**
a043e3b2
LZ
5606 * cgroup_init_early - cgroup initialization at system boot
5607 *
5608 * Initialize cgroups at system boot, and initialize any
5609 * subsystems that request early init.
ddbcc7e8
PM
5610 */
5611int __init cgroup_init_early(void)
5612{
f5dfb531 5613 static struct cgroup_fs_context __initdata ctx;
30159ec7 5614 struct cgroup_subsys *ss;
ddbcc7e8 5615 int i;
30159ec7 5616
cf6299b1
AV
5617 ctx.root = &cgrp_dfl_root;
5618 init_cgroup_root(&ctx);
3b514d24
TH
5619 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5620
a4ea1cc9 5621 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5622
3ed80a62 5623 for_each_subsys(ss, i) {
aec25020 5624 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
63253ad8 5625 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
073219e9 5626 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5627 ss->id, ss->name);
073219e9
TH
5628 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5629 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5630
aec25020 5631 ss->id = i;
073219e9 5632 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5633 if (!ss->legacy_name)
5634 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5635
5636 if (ss->early_init)
15a4c835 5637 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5638 }
5639 return 0;
5640}
5641
6e5c8307 5642static u16 cgroup_disable_mask __initdata;
a3e72739 5643
ddbcc7e8 5644/**
a043e3b2
LZ
5645 * cgroup_init - cgroup initialization
5646 *
5647 * Register cgroup filesystem and /proc file, and initialize
5648 * any subsystems that didn't request early init.
ddbcc7e8
PM
5649 */
5650int __init cgroup_init(void)
5651{
30159ec7 5652 struct cgroup_subsys *ss;
035f4f51 5653 int ssid;
ddbcc7e8 5654
6e5c8307 5655 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
1ed13287 5656 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
d62beb7f
TH
5657 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5658 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
ddbcc7e8 5659
c58632b3 5660 cgroup_rstat_boot();
041cd640 5661
3942a9bd 5662 /*
2af3024c 5663 * The latency of the synchronize_rcu() is too high for cgroups,
3942a9bd
PZ
5664 * avoid it at the cost of forcing all readers into the slow path.
5665 */
5666 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5667
a79a908f
AK
5668 get_user_ns(init_cgroup_ns.user_ns);
5669
54e7b4eb 5670 mutex_lock(&cgroup_mutex);
54e7b4eb 5671
2378d8b8
TH
5672 /*
5673 * Add init_css_set to the hash table so that dfl_root can link to
5674 * it during init.
5675 */
5676 hash_add(css_set_table, &init_css_set.hlist,
5677 css_set_hash(init_css_set.subsys));
82fe9b0d 5678
35ac1184 5679 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5680
54e7b4eb
TH
5681 mutex_unlock(&cgroup_mutex);
5682
172a2c06 5683 for_each_subsys(ss, ssid) {
15a4c835
TH
5684 if (ss->early_init) {
5685 struct cgroup_subsys_state *css =
5686 init_css_set.subsys[ss->id];
5687
5688 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5689 GFP_KERNEL);
5690 BUG_ON(css->id < 0);
5691 } else {
5692 cgroup_init_subsys(ss, false);
5693 }
172a2c06 5694
2d8f243a
TH
5695 list_add_tail(&init_css_set.e_cset_node[ssid],
5696 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5697
5698 /*
c731ae1d
LZ
5699 * Setting dfl_root subsys_mask needs to consider the
5700 * disabled flag and cftype registration needs kmalloc,
5701 * both of which aren't available during early_init.
172a2c06 5702 */
a3e72739
TH
5703 if (cgroup_disable_mask & (1 << ssid)) {
5704 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5705 printk(KERN_INFO "Disabling %s control group subsystem\n",
5706 ss->name);
a8ddc821 5707 continue;
a3e72739 5708 }
a8ddc821 5709
d62beb7f 5710 if (cgroup1_ssid_disabled(ssid))
223ffb29
JW
5711 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5712 ss->name);
5713
a8ddc821
TH
5714 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5715
8cfd8147
TH
5716 /* implicit controllers must be threaded too */
5717 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5718
f6d635ad
TH
5719 if (ss->implicit_on_dfl)
5720 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5721 else if (!ss->dfl_cftypes)
a7165264 5722 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5de4fa13 5723
8cfd8147
TH
5724 if (ss->threaded)
5725 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5726
a8ddc821
TH
5727 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5728 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5729 } else {
5730 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5731 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5732 }
295458e6
VD
5733
5734 if (ss->bind)
5735 ss->bind(init_css_set.subsys[ssid]);
7af608e4
TH
5736
5737 mutex_lock(&cgroup_mutex);
5738 css_populate_dir(init_css_set.subsys[ssid]);
5739 mutex_unlock(&cgroup_mutex);
676db4af
GKH
5740 }
5741
2378d8b8
TH
5742 /* init_css_set.subsys[] has been updated, re-hash */
5743 hash_del(&init_css_set.hlist);
5744 hash_add(css_set_table, &init_css_set.hlist,
5745 css_set_hash(init_css_set.subsys));
5746
035f4f51
TH
5747 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5748 WARN_ON(register_filesystem(&cgroup_fs_type));
67e9c74b 5749 WARN_ON(register_filesystem(&cgroup2_fs_type));
3f3942ac 5750 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
ddbcc7e8 5751
2bd59d48 5752 return 0;
ddbcc7e8 5753}
b4f48b63 5754
e5fca243
TH
5755static int __init cgroup_wq_init(void)
5756{
5757 /*
5758 * There isn't much point in executing destruction path in
5759 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5760 * Use 1 for @max_active.
e5fca243
TH
5761 *
5762 * We would prefer to do this in cgroup_init() above, but that
5763 * is called before init_workqueues(): so leave this until after.
5764 */
1a11533f 5765 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243
TH
5766 BUG_ON(!cgroup_destroy_wq);
5767 return 0;
5768}
5769core_initcall(cgroup_wq_init);
5770
69fd5c39
SL
5771void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5772 char *buf, size_t buflen)
5773{
5774 struct kernfs_node *kn;
5775
5776 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5777 if (!kn)
5778 return;
5779 kernfs_path(kn, buf, buflen);
5780 kernfs_put(kn);
5781}
5782
a424316c
PM
5783/*
5784 * proc_cgroup_show()
5785 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5786 * - Used for /proc/<pid>/cgroup.
a424316c 5787 */
006f4ac4
ZL
5788int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5789 struct pid *pid, struct task_struct *tsk)
a424316c 5790{
4c737b41 5791 char *buf;
a424316c 5792 int retval;
3dd06ffa 5793 struct cgroup_root *root;
a424316c
PM
5794
5795 retval = -ENOMEM;
e61734c5 5796 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5797 if (!buf)
5798 goto out;
5799
a424316c 5800 mutex_lock(&cgroup_mutex);
82d6489d 5801 spin_lock_irq(&css_set_lock);
a424316c 5802
985ed670 5803 for_each_root(root) {
a424316c 5804 struct cgroup_subsys *ss;
bd89aabc 5805 struct cgroup *cgrp;
b85d2040 5806 int ssid, count = 0;
a424316c 5807
a7165264 5808 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
985ed670
TH
5809 continue;
5810
2c6ab6d2 5811 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5812 if (root != &cgrp_dfl_root)
5813 for_each_subsys(ss, ssid)
5814 if (root->subsys_mask & (1 << ssid))
5815 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5816 ss->legacy_name);
c6d57f33
PM
5817 if (strlen(root->name))
5818 seq_printf(m, "%sname=%s", count ? "," : "",
5819 root->name);
a424316c 5820 seq_putc(m, ':');
2e91fa7f 5821
7717f7ba 5822 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5823
5824 /*
5825 * On traditional hierarchies, all zombie tasks show up as
5826 * belonging to the root cgroup. On the default hierarchy,
5827 * while a zombie doesn't show up in "cgroup.procs" and
5828 * thus can't be migrated, its /proc/PID/cgroup keeps
5829 * reporting the cgroup it belonged to before exiting. If
5830 * the cgroup is removed before the zombie is reaped,
5831 * " (deleted)" is appended to the cgroup path.
5832 */
5833 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
4c737b41 5834 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
a79a908f 5835 current->nsproxy->cgroup_ns);
e0223003 5836 if (retval >= PATH_MAX)
2e91fa7f 5837 retval = -ENAMETOOLONG;
e0223003 5838 if (retval < 0)
2e91fa7f 5839 goto out_unlock;
4c737b41
TH
5840
5841 seq_puts(m, buf);
2e91fa7f 5842 } else {
4c737b41 5843 seq_puts(m, "/");
e61734c5 5844 }
2e91fa7f 5845
2e91fa7f
TH
5846 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5847 seq_puts(m, " (deleted)\n");
5848 else
5849 seq_putc(m, '\n');
a424316c
PM
5850 }
5851
006f4ac4 5852 retval = 0;
a424316c 5853out_unlock:
82d6489d 5854 spin_unlock_irq(&css_set_lock);
a424316c 5855 mutex_unlock(&cgroup_mutex);
a424316c
PM
5856 kfree(buf);
5857out:
5858 return retval;
5859}
5860
b4f48b63 5861/**
eaf797ab 5862 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5863 * @child: pointer to task_struct of forking parent process.
b4f48b63 5864 *
eaf797ab
TH
5865 * A task is associated with the init_css_set until cgroup_post_fork()
5866 * attaches it to the parent's css_set. Empty cg_list indicates that
5867 * @child isn't holding reference to its css_set.
b4f48b63
PM
5868 */
5869void cgroup_fork(struct task_struct *child)
5870{
eaf797ab 5871 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5872 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5873}
5874
7e47682e
AS
5875/**
5876 * cgroup_can_fork - called on a new task before the process is exposed
5877 * @child: the task in question.
5878 *
5879 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5880 * returns an error, the fork aborts with that error code. This allows for
5881 * a cgroup subsystem to conditionally allow or deny new forks.
5882 */
b53202e6 5883int cgroup_can_fork(struct task_struct *child)
7e47682e
AS
5884{
5885 struct cgroup_subsys *ss;
5886 int i, j, ret;
5887
b4e0eeaf 5888 do_each_subsys_mask(ss, i, have_canfork_callback) {
b53202e6 5889 ret = ss->can_fork(child);
7e47682e
AS
5890 if (ret)
5891 goto out_revert;
b4e0eeaf 5892 } while_each_subsys_mask();
7e47682e
AS
5893
5894 return 0;
5895
5896out_revert:
5897 for_each_subsys(ss, j) {
5898 if (j >= i)
5899 break;
5900 if (ss->cancel_fork)
b53202e6 5901 ss->cancel_fork(child);
7e47682e
AS
5902 }
5903
5904 return ret;
5905}
5906
5907/**
5908 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5909 * @child: the task in question
5910 *
5911 * This calls the cancel_fork() callbacks if a fork failed *after*
5912 * cgroup_can_fork() succeded.
5913 */
b53202e6 5914void cgroup_cancel_fork(struct task_struct *child)
7e47682e
AS
5915{
5916 struct cgroup_subsys *ss;
5917 int i;
5918
5919 for_each_subsys(ss, i)
5920 if (ss->cancel_fork)
b53202e6 5921 ss->cancel_fork(child);
7e47682e
AS
5922}
5923
817929ec 5924/**
a043e3b2
LZ
5925 * cgroup_post_fork - called on a new task after adding it to the task list
5926 * @child: the task in question
5927 *
5edee61e
TH
5928 * Adds the task to the list running through its css_set if necessary and
5929 * call the subsystem fork() callbacks. Has to be after the task is
5930 * visible on the task list in case we race with the first call to
0942eeee 5931 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5932 * list.
a043e3b2 5933 */
b53202e6 5934void cgroup_post_fork(struct task_struct *child)
817929ec 5935{
30159ec7 5936 struct cgroup_subsys *ss;
5edee61e
TH
5937 int i;
5938
3ce3230a 5939 /*
251f8c03 5940 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5941 * function sets use_task_css_set_links before grabbing
5942 * tasklist_lock and we just went through tasklist_lock to add
5943 * @child, it's guaranteed that either we see the set
5944 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5945 * @child during its iteration.
5946 *
5947 * If we won the race, @child is associated with %current's
f0d9a5f1 5948 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5949 * association is stable, and, on completion of the parent's
5950 * migration, @child is visible in the source of migration or
5951 * already in the destination cgroup. This guarantee is necessary
5952 * when implementing operations which need to migrate all tasks of
5953 * a cgroup to another.
5954 *
251f8c03 5955 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5956 * will remain in init_css_set. This is safe because all tasks are
5957 * in the init_css_set before cg_links is enabled and there's no
5958 * operation which transfers all tasks out of init_css_set.
3ce3230a 5959 */
817929ec 5960 if (use_task_css_set_links) {
eaf797ab
TH
5961 struct css_set *cset;
5962
82d6489d 5963 spin_lock_irq(&css_set_lock);
0e1d768f 5964 cset = task_css_set(current);
eaf797ab 5965 if (list_empty(&child->cg_list)) {
eaf797ab 5966 get_css_set(cset);
73a7242a 5967 cset->nr_tasks++;
f6d7d049 5968 css_set_move_task(child, NULL, cset, false);
eaf797ab 5969 }
76f969e8
RG
5970
5971 /*
5972 * If the cgroup has to be frozen, the new task has too.
5973 * Let's set the JOBCTL_TRAP_FREEZE jobctl bit to get
5974 * the task into the frozen state.
5975 */
5976 if (unlikely(cgroup_task_freeze(child))) {
76f969e8
RG
5977 spin_lock(&child->sighand->siglock);
5978 WARN_ON_ONCE(child->frozen);
76f969e8
RG
5979 child->jobctl |= JOBCTL_TRAP_FREEZE;
5980 spin_unlock(&child->sighand->siglock);
5981
5982 /*
5983 * Calling cgroup_update_frozen() isn't required here,
5984 * because it will be called anyway a bit later
5985 * from do_freezer_trap(). So we avoid cgroup's
5986 * transient switch from the frozen state and back.
5987 */
5988 }
5989
82d6489d 5990 spin_unlock_irq(&css_set_lock);
817929ec 5991 }
5edee61e
TH
5992
5993 /*
5994 * Call ss->fork(). This must happen after @child is linked on
5995 * css_set; otherwise, @child might change state between ->fork()
5996 * and addition to css_set.
5997 */
b4e0eeaf 5998 do_each_subsys_mask(ss, i, have_fork_callback) {
b53202e6 5999 ss->fork(child);
b4e0eeaf 6000 } while_each_subsys_mask();
817929ec 6001}
5edee61e 6002
b4f48b63
PM
6003/**
6004 * cgroup_exit - detach cgroup from exiting task
6005 * @tsk: pointer to task_struct of exiting process
6006 *
6007 * Description: Detach cgroup from @tsk and release it.
6008 *
6009 * Note that cgroups marked notify_on_release force every task in
6010 * them to take the global cgroup_mutex mutex when exiting.
6011 * This could impact scaling on very large systems. Be reluctant to
6012 * use notify_on_release cgroups where very high task exit scaling
6013 * is required on large systems.
6014 *
0e1d768f
TH
6015 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
6016 * call cgroup_exit() while the task is still competent to handle
6017 * notify_on_release(), then leave the task attached to the root cgroup in
6018 * each hierarchy for the remainder of its exit. No need to bother with
6019 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 6020 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 6021 */
1ec41830 6022void cgroup_exit(struct task_struct *tsk)
b4f48b63 6023{
30159ec7 6024 struct cgroup_subsys *ss;
5abb8855 6025 struct css_set *cset;
d41d5a01 6026 int i;
817929ec
PM
6027
6028 /*
0e1d768f 6029 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 6030 * with us, we can check css_set and cg_list without synchronization.
817929ec 6031 */
0de0942d
TH
6032 cset = task_css_set(tsk);
6033
817929ec 6034 if (!list_empty(&tsk->cg_list)) {
82d6489d 6035 spin_lock_irq(&css_set_lock);
f6d7d049 6036 css_set_move_task(tsk, cset, NULL, false);
73a7242a 6037 cset->nr_tasks--;
76f969e8 6038
96b9c592
RG
6039 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6040 if (unlikely(cgroup_task_freeze(tsk)))
76f969e8
RG
6041 cgroup_update_frozen(task_dfl_cgroup(tsk));
6042
82d6489d 6043 spin_unlock_irq(&css_set_lock);
2e91fa7f
TH
6044 } else {
6045 get_css_set(cset);
817929ec
PM
6046 }
6047
cb4a3167 6048 /* see cgroup_post_fork() for details */
b4e0eeaf 6049 do_each_subsys_mask(ss, i, have_exit_callback) {
2e91fa7f 6050 ss->exit(tsk);
b4e0eeaf 6051 } while_each_subsys_mask();
2e91fa7f 6052}
30159ec7 6053
51bee5ab 6054void cgroup_release(struct task_struct *task)
2e91fa7f 6055{
afcf6c8b
TH
6056 struct cgroup_subsys *ss;
6057 int ssid;
6058
51bee5ab
ON
6059 do_each_subsys_mask(ss, ssid, have_release_callback) {
6060 ss->release(task);
b4e0eeaf 6061 } while_each_subsys_mask();
51bee5ab 6062}
d41d5a01 6063
51bee5ab
ON
6064void cgroup_free(struct task_struct *task)
6065{
6066 struct css_set *cset = task_css_set(task);
2e91fa7f 6067 put_css_set(cset);
b4f48b63 6068}
697f4161 6069
8bab8dde
PM
6070static int __init cgroup_disable(char *str)
6071{
30159ec7 6072 struct cgroup_subsys *ss;
8bab8dde 6073 char *token;
30159ec7 6074 int i;
8bab8dde
PM
6075
6076 while ((token = strsep(&str, ",")) != NULL) {
6077 if (!*token)
6078 continue;
be45c900 6079
3ed80a62 6080 for_each_subsys(ss, i) {
3e1d2eed
TH
6081 if (strcmp(token, ss->name) &&
6082 strcmp(token, ss->legacy_name))
6083 continue;
a3e72739 6084 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
6085 }
6086 }
6087 return 1;
6088}
6089__setup("cgroup_disable=", cgroup_disable);
38460b48 6090
5cf8114d
WL
6091void __init __weak enable_debug_cgroup(void) { }
6092
6093static int __init enable_cgroup_debug(char *str)
6094{
6095 cgroup_debug = true;
6096 enable_debug_cgroup();
6097 return 1;
6098}
6099__setup("cgroup_debug", enable_cgroup_debug);
6100
b77d7b60 6101/**
ec903c0c 6102 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
6103 * @dentry: directory dentry of interest
6104 * @ss: subsystem of interest
b77d7b60 6105 *
5a17f543
TH
6106 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6107 * to get the corresponding css and return it. If such css doesn't exist
6108 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 6109 */
ec903c0c
TH
6110struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6111 struct cgroup_subsys *ss)
e5d1367f 6112{
2bd59d48 6113 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
f17fc25f 6114 struct file_system_type *s_type = dentry->d_sb->s_type;
2bd59d48 6115 struct cgroup_subsys_state *css = NULL;
e5d1367f 6116 struct cgroup *cgrp;
e5d1367f 6117
35cf0836 6118 /* is @dentry a cgroup dir? */
f17fc25f
TH
6119 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6120 !kn || kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
6121 return ERR_PTR(-EBADF);
6122
5a17f543
TH
6123 rcu_read_lock();
6124
2bd59d48
TH
6125 /*
6126 * This path doesn't originate from kernfs and @kn could already
6127 * have been or be removed at any point. @kn->priv is RCU
a4189487 6128 * protected for this access. See css_release_work_fn() for details.
2bd59d48 6129 */
e0aed7c7 6130 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
2bd59d48
TH
6131 if (cgrp)
6132 css = cgroup_css(cgrp, ss);
5a17f543 6133
ec903c0c 6134 if (!css || !css_tryget_online(css))
5a17f543
TH
6135 css = ERR_PTR(-ENOENT);
6136
6137 rcu_read_unlock();
6138 return css;
e5d1367f 6139}
e5d1367f 6140
1cb650b9
LZ
6141/**
6142 * css_from_id - lookup css by id
6143 * @id: the cgroup id
6144 * @ss: cgroup subsys to be looked into
6145 *
6146 * Returns the css if there's valid one with @id, otherwise returns NULL.
6147 * Should be called under rcu_read_lock().
6148 */
6149struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6150{
6fa4918d 6151 WARN_ON_ONCE(!rcu_read_lock_held());
d6ccc55e 6152 return idr_find(&ss->css_idr, id);
e5d1367f
SE
6153}
6154
16af4396
TH
6155/**
6156 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6157 * @path: path on the default hierarchy
6158 *
6159 * Find the cgroup at @path on the default hierarchy, increment its
6160 * reference count and return it. Returns pointer to the found cgroup on
6161 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6162 * if @path points to a non-directory.
6163 */
6164struct cgroup *cgroup_get_from_path(const char *path)
6165{
6166 struct kernfs_node *kn;
6167 struct cgroup *cgrp;
6168
6169 mutex_lock(&cgroup_mutex);
6170
6171 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6172 if (kn) {
6173 if (kernfs_type(kn) == KERNFS_DIR) {
6174 cgrp = kn->priv;
a590b90d 6175 cgroup_get_live(cgrp);
16af4396
TH
6176 } else {
6177 cgrp = ERR_PTR(-ENOTDIR);
6178 }
6179 kernfs_put(kn);
6180 } else {
6181 cgrp = ERR_PTR(-ENOENT);
6182 }
6183
6184 mutex_unlock(&cgroup_mutex);
6185 return cgrp;
6186}
6187EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6188
1f3fe7eb
MKL
6189/**
6190 * cgroup_get_from_fd - get a cgroup pointer from a fd
6191 * @fd: fd obtained by open(cgroup2_dir)
6192 *
6193 * Find the cgroup from a fd which should be obtained
6194 * by opening a cgroup directory. Returns a pointer to the
6195 * cgroup on success. ERR_PTR is returned if the cgroup
6196 * cannot be found.
6197 */
6198struct cgroup *cgroup_get_from_fd(int fd)
6199{
6200 struct cgroup_subsys_state *css;
6201 struct cgroup *cgrp;
6202 struct file *f;
6203
6204 f = fget_raw(fd);
6205 if (!f)
6206 return ERR_PTR(-EBADF);
6207
6208 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6209 fput(f);
6210 if (IS_ERR(css))
6211 return ERR_CAST(css);
6212
6213 cgrp = css->cgroup;
6214 if (!cgroup_on_dfl(cgrp)) {
6215 cgroup_put(cgrp);
6216 return ERR_PTR(-EBADF);
6217 }
6218
6219 return cgrp;
6220}
6221EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6222
bd1060a1
TH
6223/*
6224 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6225 * definition in cgroup-defs.h.
6226 */
6227#ifdef CONFIG_SOCK_CGROUP_DATA
6228
6229#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6230
3fa4cc9c 6231DEFINE_SPINLOCK(cgroup_sk_update_lock);
bd1060a1
TH
6232static bool cgroup_sk_alloc_disabled __read_mostly;
6233
6234void cgroup_sk_alloc_disable(void)
6235{
6236 if (cgroup_sk_alloc_disabled)
6237 return;
6238 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6239 cgroup_sk_alloc_disabled = true;
6240}
6241
6242#else
6243
6244#define cgroup_sk_alloc_disabled false
6245
6246#endif
6247
6248void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6249{
6250 if (cgroup_sk_alloc_disabled)
6251 return;
6252
d979a39d
JW
6253 /* Socket clone path */
6254 if (skcd->val) {
a590b90d
TH
6255 /*
6256 * We might be cloning a socket which is left in an empty
6257 * cgroup and the cgroup might have already been rmdir'd.
6258 * Don't use cgroup_get_live().
6259 */
d979a39d
JW
6260 cgroup_get(sock_cgroup_ptr(skcd));
6261 return;
6262 }
6263
bd1060a1
TH
6264 rcu_read_lock();
6265
6266 while (true) {
6267 struct css_set *cset;
6268
6269 cset = task_css_set(current);
6270 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6271 skcd->val = (unsigned long)cset->dfl_cgrp;
6272 break;
6273 }
6274 cpu_relax();
6275 }
6276
6277 rcu_read_unlock();
6278}
6279
6280void cgroup_sk_free(struct sock_cgroup_data *skcd)
6281{
6282 cgroup_put(sock_cgroup_ptr(skcd));
6283}
6284
6285#endif /* CONFIG_SOCK_CGROUP_DATA */
6286
30070984 6287#ifdef CONFIG_CGROUP_BPF
324bda9e
AS
6288int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
6289 enum bpf_attach_type type, u32 flags)
6290{
6291 int ret;
6292
6293 mutex_lock(&cgroup_mutex);
6294 ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
6295 mutex_unlock(&cgroup_mutex);
6296 return ret;
6297}
6298int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6299 enum bpf_attach_type type, u32 flags)
30070984 6300{
7f677633 6301 int ret;
30070984
DM
6302
6303 mutex_lock(&cgroup_mutex);
1832f4ef 6304 ret = __cgroup_bpf_detach(cgrp, prog, type);
30070984 6305 mutex_unlock(&cgroup_mutex);
7f677633 6306 return ret;
30070984 6307}
468e2f64
AS
6308int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6309 union bpf_attr __user *uattr)
6310{
6311 int ret;
6312
6313 mutex_lock(&cgroup_mutex);
6314 ret = __cgroup_bpf_query(cgrp, attr, uattr);
6315 mutex_unlock(&cgroup_mutex);
6316 return ret;
6317}
30070984 6318#endif /* CONFIG_CGROUP_BPF */
01ee6cfb
RG
6319
6320#ifdef CONFIG_SYSFS
6321static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6322 ssize_t size, const char *prefix)
6323{
6324 struct cftype *cft;
6325 ssize_t ret = 0;
6326
6327 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6328 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6329 continue;
6330
6331 if (prefix)
6332 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6333
6334 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6335
4d9ebbe2 6336 if (WARN_ON(ret >= size))
01ee6cfb 6337 break;
01ee6cfb
RG
6338 }
6339
6340 return ret;
6341}
6342
6343static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6344 char *buf)
6345{
6346 struct cgroup_subsys *ss;
6347 int ssid;
6348 ssize_t ret = 0;
6349
6350 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6351 NULL);
6352
6353 for_each_subsys(ss, ssid)
6354 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6355 PAGE_SIZE - ret,
6356 cgroup_subsys_name[ssid]);
6357
6358 return ret;
6359}
6360static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6361
5f2e6734
RG
6362static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6363 char *buf)
6364{
9852ae3f 6365 return snprintf(buf, PAGE_SIZE, "nsdelegate\nmemory_localevents\n");
5f2e6734
RG
6366}
6367static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6368
01ee6cfb
RG
6369static struct attribute *cgroup_sysfs_attrs[] = {
6370 &cgroup_delegate_attr.attr,
5f2e6734 6371 &cgroup_features_attr.attr,
01ee6cfb
RG
6372 NULL,
6373};
6374
6375static const struct attribute_group cgroup_sysfs_attr_group = {
6376 .attrs = cgroup_sysfs_attrs,
6377 .name = "cgroup",
6378};
6379
6380static int __init cgroup_sysfs_init(void)
6381{
6382 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6383}
6384subsys_initcall(cgroup_sysfs_init);
6385#endif /* CONFIG_SYSFS */
This page took 2.380929 seconds and 4 git commands to generate.