]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * fs/mpage.c | |
3 | * | |
4 | * Copyright (C) 2002, Linus Torvalds. | |
5 | * | |
6 | * Contains functions related to preparing and submitting BIOs which contain | |
7 | * multiple pagecache pages. | |
8 | * | |
e1f8e874 | 9 | * 15May2002 Andrew Morton |
1da177e4 LT |
10 | * Initial version |
11 | * 27Jun2002 [email protected] | |
12 | * use bio_add_page() to build bio's just the right size | |
13 | */ | |
14 | ||
15 | #include <linux/kernel.h> | |
16 | #include <linux/module.h> | |
17 | #include <linux/mm.h> | |
18 | #include <linux/kdev_t.h> | |
5a0e3ad6 | 19 | #include <linux/gfp.h> |
1da177e4 LT |
20 | #include <linux/bio.h> |
21 | #include <linux/fs.h> | |
22 | #include <linux/buffer_head.h> | |
23 | #include <linux/blkdev.h> | |
24 | #include <linux/highmem.h> | |
25 | #include <linux/prefetch.h> | |
26 | #include <linux/mpage.h> | |
27 | #include <linux/writeback.h> | |
28 | #include <linux/backing-dev.h> | |
29 | #include <linux/pagevec.h> | |
30 | ||
31 | /* | |
32 | * I/O completion handler for multipage BIOs. | |
33 | * | |
34 | * The mpage code never puts partial pages into a BIO (except for end-of-file). | |
35 | * If a page does not map to a contiguous run of blocks then it simply falls | |
36 | * back to block_read_full_page(). | |
37 | * | |
38 | * Why is this? If a page's completion depends on a number of different BIOs | |
39 | * which can complete in any order (or at the same time) then determining the | |
40 | * status of that page is hard. See end_buffer_async_read() for the details. | |
41 | * There is no point in duplicating all that complexity. | |
42 | */ | |
c32b0d4b | 43 | static void mpage_end_io(struct bio *bio, int err) |
1da177e4 LT |
44 | { |
45 | const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | |
46 | struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; | |
47 | ||
1da177e4 LT |
48 | do { |
49 | struct page *page = bvec->bv_page; | |
50 | ||
51 | if (--bvec >= bio->bi_io_vec) | |
52 | prefetchw(&bvec->bv_page->flags); | |
c32b0d4b HS |
53 | if (bio_data_dir(bio) == READ) { |
54 | if (uptodate) { | |
55 | SetPageUptodate(page); | |
56 | } else { | |
57 | ClearPageUptodate(page); | |
58 | SetPageError(page); | |
59 | } | |
60 | unlock_page(page); | |
61 | } else { /* bio_data_dir(bio) == WRITE */ | |
62 | if (!uptodate) { | |
63 | SetPageError(page); | |
64 | if (page->mapping) | |
65 | set_bit(AS_EIO, &page->mapping->flags); | |
66 | } | |
67 | end_page_writeback(page); | |
854715be | 68 | } |
1da177e4 LT |
69 | } while (bvec >= bio->bi_io_vec); |
70 | bio_put(bio); | |
1da177e4 LT |
71 | } |
72 | ||
ced117c7 | 73 | static struct bio *mpage_bio_submit(int rw, struct bio *bio) |
1da177e4 | 74 | { |
c32b0d4b | 75 | bio->bi_end_io = mpage_end_io; |
1da177e4 LT |
76 | submit_bio(rw, bio); |
77 | return NULL; | |
78 | } | |
79 | ||
80 | static struct bio * | |
81 | mpage_alloc(struct block_device *bdev, | |
82 | sector_t first_sector, int nr_vecs, | |
dd0fc66f | 83 | gfp_t gfp_flags) |
1da177e4 LT |
84 | { |
85 | struct bio *bio; | |
86 | ||
87 | bio = bio_alloc(gfp_flags, nr_vecs); | |
88 | ||
89 | if (bio == NULL && (current->flags & PF_MEMALLOC)) { | |
90 | while (!bio && (nr_vecs /= 2)) | |
91 | bio = bio_alloc(gfp_flags, nr_vecs); | |
92 | } | |
93 | ||
94 | if (bio) { | |
95 | bio->bi_bdev = bdev; | |
96 | bio->bi_sector = first_sector; | |
97 | } | |
98 | return bio; | |
99 | } | |
100 | ||
101 | /* | |
102 | * support function for mpage_readpages. The fs supplied get_block might | |
103 | * return an up to date buffer. This is used to map that buffer into | |
104 | * the page, which allows readpage to avoid triggering a duplicate call | |
105 | * to get_block. | |
106 | * | |
107 | * The idea is to avoid adding buffers to pages that don't already have | |
108 | * them. So when the buffer is up to date and the page size == block size, | |
109 | * this marks the page up to date instead of adding new buffers. | |
110 | */ | |
111 | static void | |
112 | map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) | |
113 | { | |
114 | struct inode *inode = page->mapping->host; | |
115 | struct buffer_head *page_bh, *head; | |
116 | int block = 0; | |
117 | ||
118 | if (!page_has_buffers(page)) { | |
119 | /* | |
120 | * don't make any buffers if there is only one buffer on | |
121 | * the page and the page just needs to be set up to date | |
122 | */ | |
123 | if (inode->i_blkbits == PAGE_CACHE_SHIFT && | |
124 | buffer_uptodate(bh)) { | |
125 | SetPageUptodate(page); | |
126 | return; | |
127 | } | |
128 | create_empty_buffers(page, 1 << inode->i_blkbits, 0); | |
129 | } | |
130 | head = page_buffers(page); | |
131 | page_bh = head; | |
132 | do { | |
133 | if (block == page_block) { | |
134 | page_bh->b_state = bh->b_state; | |
135 | page_bh->b_bdev = bh->b_bdev; | |
136 | page_bh->b_blocknr = bh->b_blocknr; | |
137 | break; | |
138 | } | |
139 | page_bh = page_bh->b_this_page; | |
140 | block++; | |
141 | } while (page_bh != head); | |
142 | } | |
143 | ||
fa30bd05 BP |
144 | /* |
145 | * This is the worker routine which does all the work of mapping the disk | |
146 | * blocks and constructs largest possible bios, submits them for IO if the | |
147 | * blocks are not contiguous on the disk. | |
148 | * | |
149 | * We pass a buffer_head back and forth and use its buffer_mapped() flag to | |
150 | * represent the validity of its disk mapping and to decide when to do the next | |
151 | * get_block() call. | |
152 | */ | |
1da177e4 LT |
153 | static struct bio * |
154 | do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages, | |
fa30bd05 BP |
155 | sector_t *last_block_in_bio, struct buffer_head *map_bh, |
156 | unsigned long *first_logical_block, get_block_t get_block) | |
1da177e4 LT |
157 | { |
158 | struct inode *inode = page->mapping->host; | |
159 | const unsigned blkbits = inode->i_blkbits; | |
160 | const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; | |
161 | const unsigned blocksize = 1 << blkbits; | |
162 | sector_t block_in_file; | |
163 | sector_t last_block; | |
fa30bd05 | 164 | sector_t last_block_in_file; |
1da177e4 LT |
165 | sector_t blocks[MAX_BUF_PER_PAGE]; |
166 | unsigned page_block; | |
167 | unsigned first_hole = blocks_per_page; | |
168 | struct block_device *bdev = NULL; | |
1da177e4 LT |
169 | int length; |
170 | int fully_mapped = 1; | |
fa30bd05 BP |
171 | unsigned nblocks; |
172 | unsigned relative_block; | |
1da177e4 LT |
173 | |
174 | if (page_has_buffers(page)) | |
175 | goto confused; | |
176 | ||
54b21a79 | 177 | block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); |
fa30bd05 BP |
178 | last_block = block_in_file + nr_pages * blocks_per_page; |
179 | last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; | |
180 | if (last_block > last_block_in_file) | |
181 | last_block = last_block_in_file; | |
182 | page_block = 0; | |
183 | ||
184 | /* | |
185 | * Map blocks using the result from the previous get_blocks call first. | |
186 | */ | |
187 | nblocks = map_bh->b_size >> blkbits; | |
188 | if (buffer_mapped(map_bh) && block_in_file > *first_logical_block && | |
189 | block_in_file < (*first_logical_block + nblocks)) { | |
190 | unsigned map_offset = block_in_file - *first_logical_block; | |
191 | unsigned last = nblocks - map_offset; | |
192 | ||
193 | for (relative_block = 0; ; relative_block++) { | |
194 | if (relative_block == last) { | |
195 | clear_buffer_mapped(map_bh); | |
196 | break; | |
197 | } | |
198 | if (page_block == blocks_per_page) | |
199 | break; | |
200 | blocks[page_block] = map_bh->b_blocknr + map_offset + | |
201 | relative_block; | |
202 | page_block++; | |
203 | block_in_file++; | |
204 | } | |
205 | bdev = map_bh->b_bdev; | |
206 | } | |
207 | ||
208 | /* | |
209 | * Then do more get_blocks calls until we are done with this page. | |
210 | */ | |
211 | map_bh->b_page = page; | |
212 | while (page_block < blocks_per_page) { | |
213 | map_bh->b_state = 0; | |
214 | map_bh->b_size = 0; | |
1da177e4 | 215 | |
1da177e4 | 216 | if (block_in_file < last_block) { |
fa30bd05 BP |
217 | map_bh->b_size = (last_block-block_in_file) << blkbits; |
218 | if (get_block(inode, block_in_file, map_bh, 0)) | |
1da177e4 | 219 | goto confused; |
fa30bd05 | 220 | *first_logical_block = block_in_file; |
1da177e4 LT |
221 | } |
222 | ||
fa30bd05 | 223 | if (!buffer_mapped(map_bh)) { |
1da177e4 LT |
224 | fully_mapped = 0; |
225 | if (first_hole == blocks_per_page) | |
226 | first_hole = page_block; | |
fa30bd05 BP |
227 | page_block++; |
228 | block_in_file++; | |
1da177e4 LT |
229 | continue; |
230 | } | |
231 | ||
232 | /* some filesystems will copy data into the page during | |
233 | * the get_block call, in which case we don't want to | |
234 | * read it again. map_buffer_to_page copies the data | |
235 | * we just collected from get_block into the page's buffers | |
236 | * so readpage doesn't have to repeat the get_block call | |
237 | */ | |
fa30bd05 BP |
238 | if (buffer_uptodate(map_bh)) { |
239 | map_buffer_to_page(page, map_bh, page_block); | |
1da177e4 LT |
240 | goto confused; |
241 | } | |
242 | ||
243 | if (first_hole != blocks_per_page) | |
244 | goto confused; /* hole -> non-hole */ | |
245 | ||
246 | /* Contiguous blocks? */ | |
fa30bd05 | 247 | if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) |
1da177e4 | 248 | goto confused; |
fa30bd05 BP |
249 | nblocks = map_bh->b_size >> blkbits; |
250 | for (relative_block = 0; ; relative_block++) { | |
251 | if (relative_block == nblocks) { | |
252 | clear_buffer_mapped(map_bh); | |
253 | break; | |
254 | } else if (page_block == blocks_per_page) | |
255 | break; | |
256 | blocks[page_block] = map_bh->b_blocknr+relative_block; | |
257 | page_block++; | |
258 | block_in_file++; | |
259 | } | |
260 | bdev = map_bh->b_bdev; | |
1da177e4 LT |
261 | } |
262 | ||
263 | if (first_hole != blocks_per_page) { | |
eebd2aa3 | 264 | zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE); |
1da177e4 LT |
265 | if (first_hole == 0) { |
266 | SetPageUptodate(page); | |
267 | unlock_page(page); | |
268 | goto out; | |
269 | } | |
270 | } else if (fully_mapped) { | |
271 | SetPageMappedToDisk(page); | |
272 | } | |
273 | ||
274 | /* | |
275 | * This page will go to BIO. Do we need to send this BIO off first? | |
276 | */ | |
277 | if (bio && (*last_block_in_bio != blocks[0] - 1)) | |
278 | bio = mpage_bio_submit(READ, bio); | |
279 | ||
280 | alloc_new: | |
281 | if (bio == NULL) { | |
282 | bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), | |
283 | min_t(int, nr_pages, bio_get_nr_vecs(bdev)), | |
284 | GFP_KERNEL); | |
285 | if (bio == NULL) | |
286 | goto confused; | |
287 | } | |
288 | ||
289 | length = first_hole << blkbits; | |
290 | if (bio_add_page(bio, page, length, 0) < length) { | |
291 | bio = mpage_bio_submit(READ, bio); | |
292 | goto alloc_new; | |
293 | } | |
294 | ||
38c8e618 MS |
295 | relative_block = block_in_file - *first_logical_block; |
296 | nblocks = map_bh->b_size >> blkbits; | |
297 | if ((buffer_boundary(map_bh) && relative_block == nblocks) || | |
298 | (first_hole != blocks_per_page)) | |
1da177e4 LT |
299 | bio = mpage_bio_submit(READ, bio); |
300 | else | |
301 | *last_block_in_bio = blocks[blocks_per_page - 1]; | |
302 | out: | |
303 | return bio; | |
304 | ||
305 | confused: | |
306 | if (bio) | |
307 | bio = mpage_bio_submit(READ, bio); | |
308 | if (!PageUptodate(page)) | |
309 | block_read_full_page(page, get_block); | |
310 | else | |
311 | unlock_page(page); | |
312 | goto out; | |
313 | } | |
314 | ||
67be2dd1 | 315 | /** |
78a4a50a | 316 | * mpage_readpages - populate an address space with some pages & start reads against them |
67be2dd1 MW |
317 | * @mapping: the address_space |
318 | * @pages: The address of a list_head which contains the target pages. These | |
319 | * pages have their ->index populated and are otherwise uninitialised. | |
67be2dd1 MW |
320 | * The page at @pages->prev has the lowest file offset, and reads should be |
321 | * issued in @pages->prev to @pages->next order. | |
67be2dd1 MW |
322 | * @nr_pages: The number of pages at *@pages |
323 | * @get_block: The filesystem's block mapper function. | |
324 | * | |
325 | * This function walks the pages and the blocks within each page, building and | |
326 | * emitting large BIOs. | |
327 | * | |
328 | * If anything unusual happens, such as: | |
329 | * | |
330 | * - encountering a page which has buffers | |
331 | * - encountering a page which has a non-hole after a hole | |
332 | * - encountering a page with non-contiguous blocks | |
333 | * | |
334 | * then this code just gives up and calls the buffer_head-based read function. | |
335 | * It does handle a page which has holes at the end - that is a common case: | |
336 | * the end-of-file on blocksize < PAGE_CACHE_SIZE setups. | |
337 | * | |
338 | * BH_Boundary explanation: | |
339 | * | |
340 | * There is a problem. The mpage read code assembles several pages, gets all | |
341 | * their disk mappings, and then submits them all. That's fine, but obtaining | |
342 | * the disk mappings may require I/O. Reads of indirect blocks, for example. | |
343 | * | |
344 | * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be | |
345 | * submitted in the following order: | |
346 | * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 | |
78a4a50a | 347 | * |
67be2dd1 MW |
348 | * because the indirect block has to be read to get the mappings of blocks |
349 | * 13,14,15,16. Obviously, this impacts performance. | |
350 | * | |
351 | * So what we do it to allow the filesystem's get_block() function to set | |
352 | * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block | |
353 | * after this one will require I/O against a block which is probably close to | |
354 | * this one. So you should push what I/O you have currently accumulated. | |
355 | * | |
356 | * This all causes the disk requests to be issued in the correct order. | |
357 | */ | |
1da177e4 LT |
358 | int |
359 | mpage_readpages(struct address_space *mapping, struct list_head *pages, | |
360 | unsigned nr_pages, get_block_t get_block) | |
361 | { | |
362 | struct bio *bio = NULL; | |
363 | unsigned page_idx; | |
364 | sector_t last_block_in_bio = 0; | |
fa30bd05 BP |
365 | struct buffer_head map_bh; |
366 | unsigned long first_logical_block = 0; | |
1da177e4 | 367 | |
79ffab34 AK |
368 | map_bh.b_state = 0; |
369 | map_bh.b_size = 0; | |
1da177e4 LT |
370 | for (page_idx = 0; page_idx < nr_pages; page_idx++) { |
371 | struct page *page = list_entry(pages->prev, struct page, lru); | |
372 | ||
373 | prefetchw(&page->flags); | |
374 | list_del(&page->lru); | |
eb2be189 | 375 | if (!add_to_page_cache_lru(page, mapping, |
1da177e4 LT |
376 | page->index, GFP_KERNEL)) { |
377 | bio = do_mpage_readpage(bio, page, | |
378 | nr_pages - page_idx, | |
fa30bd05 BP |
379 | &last_block_in_bio, &map_bh, |
380 | &first_logical_block, | |
381 | get_block); | |
1da177e4 | 382 | } |
eb2be189 | 383 | page_cache_release(page); |
1da177e4 | 384 | } |
1da177e4 LT |
385 | BUG_ON(!list_empty(pages)); |
386 | if (bio) | |
387 | mpage_bio_submit(READ, bio); | |
388 | return 0; | |
389 | } | |
390 | EXPORT_SYMBOL(mpage_readpages); | |
391 | ||
392 | /* | |
393 | * This isn't called much at all | |
394 | */ | |
395 | int mpage_readpage(struct page *page, get_block_t get_block) | |
396 | { | |
397 | struct bio *bio = NULL; | |
398 | sector_t last_block_in_bio = 0; | |
fa30bd05 BP |
399 | struct buffer_head map_bh; |
400 | unsigned long first_logical_block = 0; | |
1da177e4 | 401 | |
79ffab34 AK |
402 | map_bh.b_state = 0; |
403 | map_bh.b_size = 0; | |
fa30bd05 BP |
404 | bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio, |
405 | &map_bh, &first_logical_block, get_block); | |
1da177e4 LT |
406 | if (bio) |
407 | mpage_bio_submit(READ, bio); | |
408 | return 0; | |
409 | } | |
410 | EXPORT_SYMBOL(mpage_readpage); | |
411 | ||
412 | /* | |
413 | * Writing is not so simple. | |
414 | * | |
415 | * If the page has buffers then they will be used for obtaining the disk | |
416 | * mapping. We only support pages which are fully mapped-and-dirty, with a | |
417 | * special case for pages which are unmapped at the end: end-of-file. | |
418 | * | |
419 | * If the page has no buffers (preferred) then the page is mapped here. | |
420 | * | |
421 | * If all blocks are found to be contiguous then the page can go into the | |
422 | * BIO. Otherwise fall back to the mapping's writepage(). | |
423 | * | |
424 | * FIXME: This code wants an estimate of how many pages are still to be | |
425 | * written, so it can intelligently allocate a suitably-sized BIO. For now, | |
426 | * just allocate full-size (16-page) BIOs. | |
427 | */ | |
0ea97180 | 428 | |
ced117c7 DV |
429 | struct mpage_data { |
430 | struct bio *bio; | |
431 | sector_t last_block_in_bio; | |
432 | get_block_t *get_block; | |
433 | unsigned use_writepage; | |
434 | }; | |
435 | ||
436 | static int __mpage_writepage(struct page *page, struct writeback_control *wbc, | |
29a814d2 | 437 | void *data) |
1da177e4 | 438 | { |
0ea97180 MS |
439 | struct mpage_data *mpd = data; |
440 | struct bio *bio = mpd->bio; | |
1da177e4 LT |
441 | struct address_space *mapping = page->mapping; |
442 | struct inode *inode = page->mapping->host; | |
443 | const unsigned blkbits = inode->i_blkbits; | |
444 | unsigned long end_index; | |
445 | const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; | |
446 | sector_t last_block; | |
447 | sector_t block_in_file; | |
448 | sector_t blocks[MAX_BUF_PER_PAGE]; | |
449 | unsigned page_block; | |
450 | unsigned first_unmapped = blocks_per_page; | |
451 | struct block_device *bdev = NULL; | |
452 | int boundary = 0; | |
453 | sector_t boundary_block = 0; | |
454 | struct block_device *boundary_bdev = NULL; | |
455 | int length; | |
456 | struct buffer_head map_bh; | |
457 | loff_t i_size = i_size_read(inode); | |
0ea97180 | 458 | int ret = 0; |
1da177e4 LT |
459 | |
460 | if (page_has_buffers(page)) { | |
461 | struct buffer_head *head = page_buffers(page); | |
462 | struct buffer_head *bh = head; | |
463 | ||
464 | /* If they're all mapped and dirty, do it */ | |
465 | page_block = 0; | |
466 | do { | |
467 | BUG_ON(buffer_locked(bh)); | |
468 | if (!buffer_mapped(bh)) { | |
469 | /* | |
470 | * unmapped dirty buffers are created by | |
471 | * __set_page_dirty_buffers -> mmapped data | |
472 | */ | |
473 | if (buffer_dirty(bh)) | |
474 | goto confused; | |
475 | if (first_unmapped == blocks_per_page) | |
476 | first_unmapped = page_block; | |
477 | continue; | |
478 | } | |
479 | ||
480 | if (first_unmapped != blocks_per_page) | |
481 | goto confused; /* hole -> non-hole */ | |
482 | ||
483 | if (!buffer_dirty(bh) || !buffer_uptodate(bh)) | |
484 | goto confused; | |
485 | if (page_block) { | |
486 | if (bh->b_blocknr != blocks[page_block-1] + 1) | |
487 | goto confused; | |
488 | } | |
489 | blocks[page_block++] = bh->b_blocknr; | |
490 | boundary = buffer_boundary(bh); | |
491 | if (boundary) { | |
492 | boundary_block = bh->b_blocknr; | |
493 | boundary_bdev = bh->b_bdev; | |
494 | } | |
495 | bdev = bh->b_bdev; | |
496 | } while ((bh = bh->b_this_page) != head); | |
497 | ||
498 | if (first_unmapped) | |
499 | goto page_is_mapped; | |
500 | ||
501 | /* | |
502 | * Page has buffers, but they are all unmapped. The page was | |
503 | * created by pagein or read over a hole which was handled by | |
504 | * block_read_full_page(). If this address_space is also | |
505 | * using mpage_readpages then this can rarely happen. | |
506 | */ | |
507 | goto confused; | |
508 | } | |
509 | ||
510 | /* | |
511 | * The page has no buffers: map it to disk | |
512 | */ | |
513 | BUG_ON(!PageUptodate(page)); | |
54b21a79 | 514 | block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); |
1da177e4 LT |
515 | last_block = (i_size - 1) >> blkbits; |
516 | map_bh.b_page = page; | |
517 | for (page_block = 0; page_block < blocks_per_page; ) { | |
518 | ||
519 | map_bh.b_state = 0; | |
b0cf2321 | 520 | map_bh.b_size = 1 << blkbits; |
0ea97180 | 521 | if (mpd->get_block(inode, block_in_file, &map_bh, 1)) |
1da177e4 LT |
522 | goto confused; |
523 | if (buffer_new(&map_bh)) | |
524 | unmap_underlying_metadata(map_bh.b_bdev, | |
525 | map_bh.b_blocknr); | |
526 | if (buffer_boundary(&map_bh)) { | |
527 | boundary_block = map_bh.b_blocknr; | |
528 | boundary_bdev = map_bh.b_bdev; | |
529 | } | |
530 | if (page_block) { | |
531 | if (map_bh.b_blocknr != blocks[page_block-1] + 1) | |
532 | goto confused; | |
533 | } | |
534 | blocks[page_block++] = map_bh.b_blocknr; | |
535 | boundary = buffer_boundary(&map_bh); | |
536 | bdev = map_bh.b_bdev; | |
537 | if (block_in_file == last_block) | |
538 | break; | |
539 | block_in_file++; | |
540 | } | |
541 | BUG_ON(page_block == 0); | |
542 | ||
543 | first_unmapped = page_block; | |
544 | ||
545 | page_is_mapped: | |
546 | end_index = i_size >> PAGE_CACHE_SHIFT; | |
547 | if (page->index >= end_index) { | |
548 | /* | |
549 | * The page straddles i_size. It must be zeroed out on each | |
2a61aa40 | 550 | * and every writepage invocation because it may be mmapped. |
1da177e4 LT |
551 | * "A file is mapped in multiples of the page size. For a file |
552 | * that is not a multiple of the page size, the remaining memory | |
553 | * is zeroed when mapped, and writes to that region are not | |
554 | * written out to the file." | |
555 | */ | |
556 | unsigned offset = i_size & (PAGE_CACHE_SIZE - 1); | |
1da177e4 LT |
557 | |
558 | if (page->index > end_index || !offset) | |
559 | goto confused; | |
eebd2aa3 | 560 | zero_user_segment(page, offset, PAGE_CACHE_SIZE); |
1da177e4 LT |
561 | } |
562 | ||
563 | /* | |
564 | * This page will go to BIO. Do we need to send this BIO off first? | |
565 | */ | |
0ea97180 | 566 | if (bio && mpd->last_block_in_bio != blocks[0] - 1) |
1da177e4 LT |
567 | bio = mpage_bio_submit(WRITE, bio); |
568 | ||
569 | alloc_new: | |
570 | if (bio == NULL) { | |
571 | bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), | |
572 | bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH); | |
573 | if (bio == NULL) | |
574 | goto confused; | |
575 | } | |
576 | ||
577 | /* | |
578 | * Must try to add the page before marking the buffer clean or | |
579 | * the confused fail path above (OOM) will be very confused when | |
580 | * it finds all bh marked clean (i.e. it will not write anything) | |
581 | */ | |
582 | length = first_unmapped << blkbits; | |
583 | if (bio_add_page(bio, page, length, 0) < length) { | |
584 | bio = mpage_bio_submit(WRITE, bio); | |
585 | goto alloc_new; | |
586 | } | |
587 | ||
588 | /* | |
589 | * OK, we have our BIO, so we can now mark the buffers clean. Make | |
590 | * sure to only clean buffers which we know we'll be writing. | |
591 | */ | |
592 | if (page_has_buffers(page)) { | |
593 | struct buffer_head *head = page_buffers(page); | |
594 | struct buffer_head *bh = head; | |
595 | unsigned buffer_counter = 0; | |
596 | ||
597 | do { | |
598 | if (buffer_counter++ == first_unmapped) | |
599 | break; | |
600 | clear_buffer_dirty(bh); | |
601 | bh = bh->b_this_page; | |
602 | } while (bh != head); | |
603 | ||
604 | /* | |
605 | * we cannot drop the bh if the page is not uptodate | |
606 | * or a concurrent readpage would fail to serialize with the bh | |
607 | * and it would read from disk before we reach the platter. | |
608 | */ | |
609 | if (buffer_heads_over_limit && PageUptodate(page)) | |
610 | try_to_free_buffers(page); | |
611 | } | |
612 | ||
613 | BUG_ON(PageWriteback(page)); | |
614 | set_page_writeback(page); | |
615 | unlock_page(page); | |
616 | if (boundary || (first_unmapped != blocks_per_page)) { | |
617 | bio = mpage_bio_submit(WRITE, bio); | |
618 | if (boundary_block) { | |
619 | write_boundary_block(boundary_bdev, | |
620 | boundary_block, 1 << blkbits); | |
621 | } | |
622 | } else { | |
0ea97180 | 623 | mpd->last_block_in_bio = blocks[blocks_per_page - 1]; |
1da177e4 LT |
624 | } |
625 | goto out; | |
626 | ||
627 | confused: | |
628 | if (bio) | |
629 | bio = mpage_bio_submit(WRITE, bio); | |
630 | ||
0ea97180 MS |
631 | if (mpd->use_writepage) { |
632 | ret = mapping->a_ops->writepage(page, wbc); | |
1da177e4 | 633 | } else { |
0ea97180 | 634 | ret = -EAGAIN; |
1da177e4 LT |
635 | goto out; |
636 | } | |
637 | /* | |
638 | * The caller has a ref on the inode, so *mapping is stable | |
639 | */ | |
0ea97180 | 640 | mapping_set_error(mapping, ret); |
1da177e4 | 641 | out: |
0ea97180 MS |
642 | mpd->bio = bio; |
643 | return ret; | |
1da177e4 LT |
644 | } |
645 | ||
646 | /** | |
78a4a50a | 647 | * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them |
1da177e4 LT |
648 | * @mapping: address space structure to write |
649 | * @wbc: subtract the number of written pages from *@wbc->nr_to_write | |
650 | * @get_block: the filesystem's block mapper function. | |
651 | * If this is NULL then use a_ops->writepage. Otherwise, go | |
652 | * direct-to-BIO. | |
653 | * | |
654 | * This is a library function, which implements the writepages() | |
655 | * address_space_operation. | |
656 | * | |
657 | * If a page is already under I/O, generic_writepages() skips it, even | |
658 | * if it's dirty. This is desirable behaviour for memory-cleaning writeback, | |
659 | * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() | |
660 | * and msync() need to guarantee that all the data which was dirty at the time | |
661 | * the call was made get new I/O started against them. If wbc->sync_mode is | |
662 | * WB_SYNC_ALL then we were called for data integrity and we must wait for | |
663 | * existing IO to complete. | |
664 | */ | |
665 | int | |
666 | mpage_writepages(struct address_space *mapping, | |
667 | struct writeback_control *wbc, get_block_t get_block) | |
1da177e4 | 668 | { |
0ea97180 MS |
669 | int ret; |
670 | ||
671 | if (!get_block) | |
672 | ret = generic_writepages(mapping, wbc); | |
673 | else { | |
674 | struct mpage_data mpd = { | |
675 | .bio = NULL, | |
676 | .last_block_in_bio = 0, | |
677 | .get_block = get_block, | |
678 | .use_writepage = 1, | |
679 | }; | |
680 | ||
681 | ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); | |
682 | if (mpd.bio) | |
683 | mpage_bio_submit(WRITE, mpd.bio); | |
1da177e4 | 684 | } |
1da177e4 LT |
685 | return ret; |
686 | } | |
687 | EXPORT_SYMBOL(mpage_writepages); | |
1da177e4 LT |
688 | |
689 | int mpage_writepage(struct page *page, get_block_t get_block, | |
690 | struct writeback_control *wbc) | |
691 | { | |
0ea97180 MS |
692 | struct mpage_data mpd = { |
693 | .bio = NULL, | |
694 | .last_block_in_bio = 0, | |
695 | .get_block = get_block, | |
696 | .use_writepage = 0, | |
697 | }; | |
698 | int ret = __mpage_writepage(page, wbc, &mpd); | |
699 | if (mpd.bio) | |
700 | mpage_bio_submit(WRITE, mpd.bio); | |
1da177e4 LT |
701 | return ret; |
702 | } | |
703 | EXPORT_SYMBOL(mpage_writepage); |