]>
Commit | Line | Data |
---|---|---|
3c7b4e6b CM |
1 | /* |
2 | * mm/kmemleak.c | |
3 | * | |
4 | * Copyright (C) 2008 ARM Limited | |
5 | * Written by Catalin Marinas <[email protected]> | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify | |
8 | * it under the terms of the GNU General Public License version 2 as | |
9 | * published by the Free Software Foundation. | |
10 | * | |
11 | * This program is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | * GNU General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU General Public License | |
17 | * along with this program; if not, write to the Free Software | |
18 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
19 | * | |
20 | * | |
21 | * For more information on the algorithm and kmemleak usage, please see | |
22901c6c | 22 | * Documentation/dev-tools/kmemleak.rst. |
3c7b4e6b CM |
23 | * |
24 | * Notes on locking | |
25 | * ---------------- | |
26 | * | |
27 | * The following locks and mutexes are used by kmemleak: | |
28 | * | |
29 | * - kmemleak_lock (rwlock): protects the object_list modifications and | |
30 | * accesses to the object_tree_root. The object_list is the main list | |
31 | * holding the metadata (struct kmemleak_object) for the allocated memory | |
85d3a316 | 32 | * blocks. The object_tree_root is a red black tree used to look-up |
3c7b4e6b CM |
33 | * metadata based on a pointer to the corresponding memory block. The |
34 | * kmemleak_object structures are added to the object_list and | |
35 | * object_tree_root in the create_object() function called from the | |
36 | * kmemleak_alloc() callback and removed in delete_object() called from the | |
37 | * kmemleak_free() callback | |
38 | * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to | |
39 | * the metadata (e.g. count) are protected by this lock. Note that some | |
40 | * members of this structure may be protected by other means (atomic or | |
41 | * kmemleak_lock). This lock is also held when scanning the corresponding | |
42 | * memory block to avoid the kernel freeing it via the kmemleak_free() | |
43 | * callback. This is less heavyweight than holding a global lock like | |
44 | * kmemleak_lock during scanning | |
45 | * - scan_mutex (mutex): ensures that only one thread may scan the memory for | |
46 | * unreferenced objects at a time. The gray_list contains the objects which | |
47 | * are already referenced or marked as false positives and need to be | |
48 | * scanned. This list is only modified during a scanning episode when the | |
49 | * scan_mutex is held. At the end of a scan, the gray_list is always empty. | |
50 | * Note that the kmemleak_object.use_count is incremented when an object is | |
4698c1f2 CM |
51 | * added to the gray_list and therefore cannot be freed. This mutex also |
52 | * prevents multiple users of the "kmemleak" debugfs file together with | |
53 | * modifications to the memory scanning parameters including the scan_thread | |
54 | * pointer | |
3c7b4e6b | 55 | * |
93ada579 | 56 | * Locks and mutexes are acquired/nested in the following order: |
9d5a4c73 | 57 | * |
93ada579 CM |
58 | * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) |
59 | * | |
60 | * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex | |
61 | * regions. | |
9d5a4c73 | 62 | * |
3c7b4e6b CM |
63 | * The kmemleak_object structures have a use_count incremented or decremented |
64 | * using the get_object()/put_object() functions. When the use_count becomes | |
65 | * 0, this count can no longer be incremented and put_object() schedules the | |
66 | * kmemleak_object freeing via an RCU callback. All calls to the get_object() | |
67 | * function must be protected by rcu_read_lock() to avoid accessing a freed | |
68 | * structure. | |
69 | */ | |
70 | ||
ae281064 JP |
71 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
72 | ||
3c7b4e6b CM |
73 | #include <linux/init.h> |
74 | #include <linux/kernel.h> | |
75 | #include <linux/list.h> | |
3f07c014 | 76 | #include <linux/sched/signal.h> |
29930025 | 77 | #include <linux/sched/task.h> |
68db0cf1 | 78 | #include <linux/sched/task_stack.h> |
3c7b4e6b CM |
79 | #include <linux/jiffies.h> |
80 | #include <linux/delay.h> | |
b95f1b31 | 81 | #include <linux/export.h> |
3c7b4e6b | 82 | #include <linux/kthread.h> |
85d3a316 | 83 | #include <linux/rbtree.h> |
3c7b4e6b CM |
84 | #include <linux/fs.h> |
85 | #include <linux/debugfs.h> | |
86 | #include <linux/seq_file.h> | |
87 | #include <linux/cpumask.h> | |
88 | #include <linux/spinlock.h> | |
89 | #include <linux/mutex.h> | |
90 | #include <linux/rcupdate.h> | |
91 | #include <linux/stacktrace.h> | |
92 | #include <linux/cache.h> | |
93 | #include <linux/percpu.h> | |
9099daed CM |
94 | #include <linux/bootmem.h> |
95 | #include <linux/pfn.h> | |
3c7b4e6b CM |
96 | #include <linux/mmzone.h> |
97 | #include <linux/slab.h> | |
98 | #include <linux/thread_info.h> | |
99 | #include <linux/err.h> | |
100 | #include <linux/uaccess.h> | |
101 | #include <linux/string.h> | |
102 | #include <linux/nodemask.h> | |
103 | #include <linux/mm.h> | |
179a8100 | 104 | #include <linux/workqueue.h> |
04609ccc | 105 | #include <linux/crc32.h> |
3c7b4e6b CM |
106 | |
107 | #include <asm/sections.h> | |
108 | #include <asm/processor.h> | |
60063497 | 109 | #include <linux/atomic.h> |
3c7b4e6b | 110 | |
e79ed2f1 | 111 | #include <linux/kasan.h> |
3c7b4e6b | 112 | #include <linux/kmemleak.h> |
029aeff5 | 113 | #include <linux/memory_hotplug.h> |
3c7b4e6b CM |
114 | |
115 | /* | |
116 | * Kmemleak configuration and common defines. | |
117 | */ | |
118 | #define MAX_TRACE 16 /* stack trace length */ | |
3c7b4e6b | 119 | #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ |
3c7b4e6b CM |
120 | #define SECS_FIRST_SCAN 60 /* delay before the first scan */ |
121 | #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ | |
af98603d | 122 | #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ |
3c7b4e6b CM |
123 | |
124 | #define BYTES_PER_POINTER sizeof(void *) | |
125 | ||
216c04b0 | 126 | /* GFP bitmask for kmemleak internal allocations */ |
20b5c303 | 127 | #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \ |
6ae4bd1f | 128 | __GFP_NORETRY | __GFP_NOMEMALLOC | \ |
d9570ee3 | 129 | __GFP_NOWARN | __GFP_NOFAIL) |
216c04b0 | 130 | |
3c7b4e6b CM |
131 | /* scanning area inside a memory block */ |
132 | struct kmemleak_scan_area { | |
133 | struct hlist_node node; | |
c017b4be CM |
134 | unsigned long start; |
135 | size_t size; | |
3c7b4e6b CM |
136 | }; |
137 | ||
a1084c87 LR |
138 | #define KMEMLEAK_GREY 0 |
139 | #define KMEMLEAK_BLACK -1 | |
140 | ||
3c7b4e6b CM |
141 | /* |
142 | * Structure holding the metadata for each allocated memory block. | |
143 | * Modifications to such objects should be made while holding the | |
144 | * object->lock. Insertions or deletions from object_list, gray_list or | |
85d3a316 | 145 | * rb_node are already protected by the corresponding locks or mutex (see |
3c7b4e6b CM |
146 | * the notes on locking above). These objects are reference-counted |
147 | * (use_count) and freed using the RCU mechanism. | |
148 | */ | |
149 | struct kmemleak_object { | |
150 | spinlock_t lock; | |
f66abf09 | 151 | unsigned int flags; /* object status flags */ |
3c7b4e6b CM |
152 | struct list_head object_list; |
153 | struct list_head gray_list; | |
85d3a316 | 154 | struct rb_node rb_node; |
3c7b4e6b CM |
155 | struct rcu_head rcu; /* object_list lockless traversal */ |
156 | /* object usage count; object freed when use_count == 0 */ | |
157 | atomic_t use_count; | |
158 | unsigned long pointer; | |
159 | size_t size; | |
94f4a161 CM |
160 | /* pass surplus references to this pointer */ |
161 | unsigned long excess_ref; | |
3c7b4e6b CM |
162 | /* minimum number of a pointers found before it is considered leak */ |
163 | int min_count; | |
164 | /* the total number of pointers found pointing to this object */ | |
165 | int count; | |
04609ccc CM |
166 | /* checksum for detecting modified objects */ |
167 | u32 checksum; | |
3c7b4e6b CM |
168 | /* memory ranges to be scanned inside an object (empty for all) */ |
169 | struct hlist_head area_list; | |
170 | unsigned long trace[MAX_TRACE]; | |
171 | unsigned int trace_len; | |
172 | unsigned long jiffies; /* creation timestamp */ | |
173 | pid_t pid; /* pid of the current task */ | |
174 | char comm[TASK_COMM_LEN]; /* executable name */ | |
175 | }; | |
176 | ||
177 | /* flag representing the memory block allocation status */ | |
178 | #define OBJECT_ALLOCATED (1 << 0) | |
179 | /* flag set after the first reporting of an unreference object */ | |
180 | #define OBJECT_REPORTED (1 << 1) | |
181 | /* flag set to not scan the object */ | |
182 | #define OBJECT_NO_SCAN (1 << 2) | |
183 | ||
0494e082 SS |
184 | /* number of bytes to print per line; must be 16 or 32 */ |
185 | #define HEX_ROW_SIZE 16 | |
186 | /* number of bytes to print at a time (1, 2, 4, 8) */ | |
187 | #define HEX_GROUP_SIZE 1 | |
188 | /* include ASCII after the hex output */ | |
189 | #define HEX_ASCII 1 | |
190 | /* max number of lines to be printed */ | |
191 | #define HEX_MAX_LINES 2 | |
192 | ||
3c7b4e6b CM |
193 | /* the list of all allocated objects */ |
194 | static LIST_HEAD(object_list); | |
195 | /* the list of gray-colored objects (see color_gray comment below) */ | |
196 | static LIST_HEAD(gray_list); | |
85d3a316 ML |
197 | /* search tree for object boundaries */ |
198 | static struct rb_root object_tree_root = RB_ROOT; | |
199 | /* rw_lock protecting the access to object_list and object_tree_root */ | |
3c7b4e6b CM |
200 | static DEFINE_RWLOCK(kmemleak_lock); |
201 | ||
202 | /* allocation caches for kmemleak internal data */ | |
203 | static struct kmem_cache *object_cache; | |
204 | static struct kmem_cache *scan_area_cache; | |
205 | ||
206 | /* set if tracing memory operations is enabled */ | |
8910ae89 | 207 | static int kmemleak_enabled; |
c5f3b1a5 CM |
208 | /* same as above but only for the kmemleak_free() callback */ |
209 | static int kmemleak_free_enabled; | |
3c7b4e6b | 210 | /* set in the late_initcall if there were no errors */ |
8910ae89 | 211 | static int kmemleak_initialized; |
3c7b4e6b | 212 | /* enables or disables early logging of the memory operations */ |
8910ae89 | 213 | static int kmemleak_early_log = 1; |
5f79020c | 214 | /* set if a kmemleak warning was issued */ |
8910ae89 | 215 | static int kmemleak_warning; |
5f79020c | 216 | /* set if a fatal kmemleak error has occurred */ |
8910ae89 | 217 | static int kmemleak_error; |
3c7b4e6b CM |
218 | |
219 | /* minimum and maximum address that may be valid pointers */ | |
220 | static unsigned long min_addr = ULONG_MAX; | |
221 | static unsigned long max_addr; | |
222 | ||
3c7b4e6b | 223 | static struct task_struct *scan_thread; |
acf4968e | 224 | /* used to avoid reporting of recently allocated objects */ |
3c7b4e6b | 225 | static unsigned long jiffies_min_age; |
acf4968e | 226 | static unsigned long jiffies_last_scan; |
3c7b4e6b CM |
227 | /* delay between automatic memory scannings */ |
228 | static signed long jiffies_scan_wait; | |
229 | /* enables or disables the task stacks scanning */ | |
e0a2a160 | 230 | static int kmemleak_stack_scan = 1; |
4698c1f2 | 231 | /* protects the memory scanning, parameters and debug/kmemleak file access */ |
3c7b4e6b | 232 | static DEFINE_MUTEX(scan_mutex); |
ab0155a2 JB |
233 | /* setting kmemleak=on, will set this var, skipping the disable */ |
234 | static int kmemleak_skip_disable; | |
dc9b3f42 LZ |
235 | /* If there are leaks that can be reported */ |
236 | static bool kmemleak_found_leaks; | |
3c7b4e6b | 237 | |
3c7b4e6b | 238 | /* |
2030117d | 239 | * Early object allocation/freeing logging. Kmemleak is initialized after the |
3c7b4e6b | 240 | * kernel allocator. However, both the kernel allocator and kmemleak may |
2030117d | 241 | * allocate memory blocks which need to be tracked. Kmemleak defines an |
3c7b4e6b CM |
242 | * arbitrary buffer to hold the allocation/freeing information before it is |
243 | * fully initialized. | |
244 | */ | |
245 | ||
246 | /* kmemleak operation type for early logging */ | |
247 | enum { | |
248 | KMEMLEAK_ALLOC, | |
f528f0b8 | 249 | KMEMLEAK_ALLOC_PERCPU, |
3c7b4e6b | 250 | KMEMLEAK_FREE, |
53238a60 | 251 | KMEMLEAK_FREE_PART, |
f528f0b8 | 252 | KMEMLEAK_FREE_PERCPU, |
3c7b4e6b CM |
253 | KMEMLEAK_NOT_LEAK, |
254 | KMEMLEAK_IGNORE, | |
255 | KMEMLEAK_SCAN_AREA, | |
94f4a161 CM |
256 | KMEMLEAK_NO_SCAN, |
257 | KMEMLEAK_SET_EXCESS_REF | |
3c7b4e6b CM |
258 | }; |
259 | ||
260 | /* | |
261 | * Structure holding the information passed to kmemleak callbacks during the | |
262 | * early logging. | |
263 | */ | |
264 | struct early_log { | |
265 | int op_type; /* kmemleak operation type */ | |
f66abf09 | 266 | int min_count; /* minimum reference count */ |
3c7b4e6b | 267 | const void *ptr; /* allocated/freed memory block */ |
94f4a161 CM |
268 | union { |
269 | size_t size; /* memory block size */ | |
270 | unsigned long excess_ref; /* surplus reference passing */ | |
271 | }; | |
fd678967 CM |
272 | unsigned long trace[MAX_TRACE]; /* stack trace */ |
273 | unsigned int trace_len; /* stack trace length */ | |
3c7b4e6b CM |
274 | }; |
275 | ||
276 | /* early logging buffer and current position */ | |
a6186d89 CM |
277 | static struct early_log |
278 | early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata; | |
279 | static int crt_early_log __initdata; | |
3c7b4e6b CM |
280 | |
281 | static void kmemleak_disable(void); | |
282 | ||
283 | /* | |
284 | * Print a warning and dump the stack trace. | |
285 | */ | |
5f79020c | 286 | #define kmemleak_warn(x...) do { \ |
598d8091 | 287 | pr_warn(x); \ |
5f79020c | 288 | dump_stack(); \ |
8910ae89 | 289 | kmemleak_warning = 1; \ |
3c7b4e6b CM |
290 | } while (0) |
291 | ||
292 | /* | |
25985edc | 293 | * Macro invoked when a serious kmemleak condition occurred and cannot be |
2030117d | 294 | * recovered from. Kmemleak will be disabled and further allocation/freeing |
3c7b4e6b CM |
295 | * tracing no longer available. |
296 | */ | |
000814f4 | 297 | #define kmemleak_stop(x...) do { \ |
3c7b4e6b CM |
298 | kmemleak_warn(x); \ |
299 | kmemleak_disable(); \ | |
300 | } while (0) | |
301 | ||
0494e082 SS |
302 | /* |
303 | * Printing of the objects hex dump to the seq file. The number of lines to be | |
304 | * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The | |
305 | * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called | |
306 | * with the object->lock held. | |
307 | */ | |
308 | static void hex_dump_object(struct seq_file *seq, | |
309 | struct kmemleak_object *object) | |
310 | { | |
311 | const u8 *ptr = (const u8 *)object->pointer; | |
6fc37c49 | 312 | size_t len; |
0494e082 SS |
313 | |
314 | /* limit the number of lines to HEX_MAX_LINES */ | |
6fc37c49 | 315 | len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); |
0494e082 | 316 | |
6fc37c49 | 317 | seq_printf(seq, " hex dump (first %zu bytes):\n", len); |
5c335fe0 | 318 | kasan_disable_current(); |
6fc37c49 AS |
319 | seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE, |
320 | HEX_GROUP_SIZE, ptr, len, HEX_ASCII); | |
5c335fe0 | 321 | kasan_enable_current(); |
0494e082 SS |
322 | } |
323 | ||
3c7b4e6b CM |
324 | /* |
325 | * Object colors, encoded with count and min_count: | |
326 | * - white - orphan object, not enough references to it (count < min_count) | |
327 | * - gray - not orphan, not marked as false positive (min_count == 0) or | |
328 | * sufficient references to it (count >= min_count) | |
329 | * - black - ignore, it doesn't contain references (e.g. text section) | |
330 | * (min_count == -1). No function defined for this color. | |
331 | * Newly created objects don't have any color assigned (object->count == -1) | |
332 | * before the next memory scan when they become white. | |
333 | */ | |
4a558dd6 | 334 | static bool color_white(const struct kmemleak_object *object) |
3c7b4e6b | 335 | { |
a1084c87 LR |
336 | return object->count != KMEMLEAK_BLACK && |
337 | object->count < object->min_count; | |
3c7b4e6b CM |
338 | } |
339 | ||
4a558dd6 | 340 | static bool color_gray(const struct kmemleak_object *object) |
3c7b4e6b | 341 | { |
a1084c87 LR |
342 | return object->min_count != KMEMLEAK_BLACK && |
343 | object->count >= object->min_count; | |
3c7b4e6b CM |
344 | } |
345 | ||
3c7b4e6b CM |
346 | /* |
347 | * Objects are considered unreferenced only if their color is white, they have | |
348 | * not be deleted and have a minimum age to avoid false positives caused by | |
349 | * pointers temporarily stored in CPU registers. | |
350 | */ | |
4a558dd6 | 351 | static bool unreferenced_object(struct kmemleak_object *object) |
3c7b4e6b | 352 | { |
04609ccc | 353 | return (color_white(object) && object->flags & OBJECT_ALLOCATED) && |
acf4968e CM |
354 | time_before_eq(object->jiffies + jiffies_min_age, |
355 | jiffies_last_scan); | |
3c7b4e6b CM |
356 | } |
357 | ||
358 | /* | |
bab4a34a CM |
359 | * Printing of the unreferenced objects information to the seq file. The |
360 | * print_unreferenced function must be called with the object->lock held. | |
3c7b4e6b | 361 | */ |
3c7b4e6b CM |
362 | static void print_unreferenced(struct seq_file *seq, |
363 | struct kmemleak_object *object) | |
364 | { | |
365 | int i; | |
fefdd336 | 366 | unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); |
3c7b4e6b | 367 | |
bab4a34a CM |
368 | seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", |
369 | object->pointer, object->size); | |
fefdd336 CM |
370 | seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", |
371 | object->comm, object->pid, object->jiffies, | |
372 | msecs_age / 1000, msecs_age % 1000); | |
0494e082 | 373 | hex_dump_object(seq, object); |
bab4a34a | 374 | seq_printf(seq, " backtrace:\n"); |
3c7b4e6b CM |
375 | |
376 | for (i = 0; i < object->trace_len; i++) { | |
377 | void *ptr = (void *)object->trace[i]; | |
bab4a34a | 378 | seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); |
3c7b4e6b CM |
379 | } |
380 | } | |
381 | ||
382 | /* | |
383 | * Print the kmemleak_object information. This function is used mainly for | |
384 | * debugging special cases when kmemleak operations. It must be called with | |
385 | * the object->lock held. | |
386 | */ | |
387 | static void dump_object_info(struct kmemleak_object *object) | |
388 | { | |
389 | struct stack_trace trace; | |
390 | ||
391 | trace.nr_entries = object->trace_len; | |
392 | trace.entries = object->trace; | |
393 | ||
ae281064 | 394 | pr_notice("Object 0x%08lx (size %zu):\n", |
85d3a316 | 395 | object->pointer, object->size); |
3c7b4e6b CM |
396 | pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", |
397 | object->comm, object->pid, object->jiffies); | |
398 | pr_notice(" min_count = %d\n", object->min_count); | |
399 | pr_notice(" count = %d\n", object->count); | |
f66abf09 | 400 | pr_notice(" flags = 0x%x\n", object->flags); |
aae0ad7a | 401 | pr_notice(" checksum = %u\n", object->checksum); |
3c7b4e6b CM |
402 | pr_notice(" backtrace:\n"); |
403 | print_stack_trace(&trace, 4); | |
404 | } | |
405 | ||
406 | /* | |
85d3a316 | 407 | * Look-up a memory block metadata (kmemleak_object) in the object search |
3c7b4e6b CM |
408 | * tree based on a pointer value. If alias is 0, only values pointing to the |
409 | * beginning of the memory block are allowed. The kmemleak_lock must be held | |
410 | * when calling this function. | |
411 | */ | |
412 | static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) | |
413 | { | |
85d3a316 ML |
414 | struct rb_node *rb = object_tree_root.rb_node; |
415 | ||
416 | while (rb) { | |
417 | struct kmemleak_object *object = | |
418 | rb_entry(rb, struct kmemleak_object, rb_node); | |
419 | if (ptr < object->pointer) | |
420 | rb = object->rb_node.rb_left; | |
421 | else if (object->pointer + object->size <= ptr) | |
422 | rb = object->rb_node.rb_right; | |
423 | else if (object->pointer == ptr || alias) | |
424 | return object; | |
425 | else { | |
5f79020c CM |
426 | kmemleak_warn("Found object by alias at 0x%08lx\n", |
427 | ptr); | |
a7686a45 | 428 | dump_object_info(object); |
85d3a316 | 429 | break; |
3c7b4e6b | 430 | } |
85d3a316 ML |
431 | } |
432 | return NULL; | |
3c7b4e6b CM |
433 | } |
434 | ||
435 | /* | |
436 | * Increment the object use_count. Return 1 if successful or 0 otherwise. Note | |
437 | * that once an object's use_count reached 0, the RCU freeing was already | |
438 | * registered and the object should no longer be used. This function must be | |
439 | * called under the protection of rcu_read_lock(). | |
440 | */ | |
441 | static int get_object(struct kmemleak_object *object) | |
442 | { | |
443 | return atomic_inc_not_zero(&object->use_count); | |
444 | } | |
445 | ||
446 | /* | |
447 | * RCU callback to free a kmemleak_object. | |
448 | */ | |
449 | static void free_object_rcu(struct rcu_head *rcu) | |
450 | { | |
b67bfe0d | 451 | struct hlist_node *tmp; |
3c7b4e6b CM |
452 | struct kmemleak_scan_area *area; |
453 | struct kmemleak_object *object = | |
454 | container_of(rcu, struct kmemleak_object, rcu); | |
455 | ||
456 | /* | |
457 | * Once use_count is 0 (guaranteed by put_object), there is no other | |
458 | * code accessing this object, hence no need for locking. | |
459 | */ | |
b67bfe0d SL |
460 | hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { |
461 | hlist_del(&area->node); | |
3c7b4e6b CM |
462 | kmem_cache_free(scan_area_cache, area); |
463 | } | |
464 | kmem_cache_free(object_cache, object); | |
465 | } | |
466 | ||
467 | /* | |
468 | * Decrement the object use_count. Once the count is 0, free the object using | |
469 | * an RCU callback. Since put_object() may be called via the kmemleak_free() -> | |
470 | * delete_object() path, the delayed RCU freeing ensures that there is no | |
471 | * recursive call to the kernel allocator. Lock-less RCU object_list traversal | |
472 | * is also possible. | |
473 | */ | |
474 | static void put_object(struct kmemleak_object *object) | |
475 | { | |
476 | if (!atomic_dec_and_test(&object->use_count)) | |
477 | return; | |
478 | ||
479 | /* should only get here after delete_object was called */ | |
480 | WARN_ON(object->flags & OBJECT_ALLOCATED); | |
481 | ||
482 | call_rcu(&object->rcu, free_object_rcu); | |
483 | } | |
484 | ||
485 | /* | |
85d3a316 | 486 | * Look up an object in the object search tree and increase its use_count. |
3c7b4e6b CM |
487 | */ |
488 | static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) | |
489 | { | |
490 | unsigned long flags; | |
9fbed254 | 491 | struct kmemleak_object *object; |
3c7b4e6b CM |
492 | |
493 | rcu_read_lock(); | |
494 | read_lock_irqsave(&kmemleak_lock, flags); | |
93ada579 | 495 | object = lookup_object(ptr, alias); |
3c7b4e6b CM |
496 | read_unlock_irqrestore(&kmemleak_lock, flags); |
497 | ||
498 | /* check whether the object is still available */ | |
499 | if (object && !get_object(object)) | |
500 | object = NULL; | |
501 | rcu_read_unlock(); | |
502 | ||
503 | return object; | |
504 | } | |
505 | ||
e781a9ab CM |
506 | /* |
507 | * Look up an object in the object search tree and remove it from both | |
508 | * object_tree_root and object_list. The returned object's use_count should be | |
509 | * at least 1, as initially set by create_object(). | |
510 | */ | |
511 | static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) | |
512 | { | |
513 | unsigned long flags; | |
514 | struct kmemleak_object *object; | |
515 | ||
516 | write_lock_irqsave(&kmemleak_lock, flags); | |
517 | object = lookup_object(ptr, alias); | |
518 | if (object) { | |
519 | rb_erase(&object->rb_node, &object_tree_root); | |
520 | list_del_rcu(&object->object_list); | |
521 | } | |
522 | write_unlock_irqrestore(&kmemleak_lock, flags); | |
523 | ||
524 | return object; | |
525 | } | |
526 | ||
fd678967 CM |
527 | /* |
528 | * Save stack trace to the given array of MAX_TRACE size. | |
529 | */ | |
530 | static int __save_stack_trace(unsigned long *trace) | |
531 | { | |
532 | struct stack_trace stack_trace; | |
533 | ||
534 | stack_trace.max_entries = MAX_TRACE; | |
535 | stack_trace.nr_entries = 0; | |
536 | stack_trace.entries = trace; | |
537 | stack_trace.skip = 2; | |
538 | save_stack_trace(&stack_trace); | |
539 | ||
540 | return stack_trace.nr_entries; | |
541 | } | |
542 | ||
3c7b4e6b CM |
543 | /* |
544 | * Create the metadata (struct kmemleak_object) corresponding to an allocated | |
545 | * memory block and add it to the object_list and object_tree_root. | |
546 | */ | |
fd678967 CM |
547 | static struct kmemleak_object *create_object(unsigned long ptr, size_t size, |
548 | int min_count, gfp_t gfp) | |
3c7b4e6b CM |
549 | { |
550 | unsigned long flags; | |
85d3a316 ML |
551 | struct kmemleak_object *object, *parent; |
552 | struct rb_node **link, *rb_parent; | |
3c7b4e6b | 553 | |
6ae4bd1f | 554 | object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); |
3c7b4e6b | 555 | if (!object) { |
598d8091 | 556 | pr_warn("Cannot allocate a kmemleak_object structure\n"); |
6ae4bd1f | 557 | kmemleak_disable(); |
fd678967 | 558 | return NULL; |
3c7b4e6b CM |
559 | } |
560 | ||
561 | INIT_LIST_HEAD(&object->object_list); | |
562 | INIT_LIST_HEAD(&object->gray_list); | |
563 | INIT_HLIST_HEAD(&object->area_list); | |
564 | spin_lock_init(&object->lock); | |
565 | atomic_set(&object->use_count, 1); | |
04609ccc | 566 | object->flags = OBJECT_ALLOCATED; |
3c7b4e6b CM |
567 | object->pointer = ptr; |
568 | object->size = size; | |
94f4a161 | 569 | object->excess_ref = 0; |
3c7b4e6b | 570 | object->min_count = min_count; |
04609ccc | 571 | object->count = 0; /* white color initially */ |
3c7b4e6b | 572 | object->jiffies = jiffies; |
04609ccc | 573 | object->checksum = 0; |
3c7b4e6b CM |
574 | |
575 | /* task information */ | |
576 | if (in_irq()) { | |
577 | object->pid = 0; | |
578 | strncpy(object->comm, "hardirq", sizeof(object->comm)); | |
579 | } else if (in_softirq()) { | |
580 | object->pid = 0; | |
581 | strncpy(object->comm, "softirq", sizeof(object->comm)); | |
582 | } else { | |
583 | object->pid = current->pid; | |
584 | /* | |
585 | * There is a small chance of a race with set_task_comm(), | |
586 | * however using get_task_comm() here may cause locking | |
587 | * dependency issues with current->alloc_lock. In the worst | |
588 | * case, the command line is not correct. | |
589 | */ | |
590 | strncpy(object->comm, current->comm, sizeof(object->comm)); | |
591 | } | |
592 | ||
593 | /* kernel backtrace */ | |
fd678967 | 594 | object->trace_len = __save_stack_trace(object->trace); |
3c7b4e6b | 595 | |
3c7b4e6b | 596 | write_lock_irqsave(&kmemleak_lock, flags); |
0580a181 | 597 | |
3c7b4e6b CM |
598 | min_addr = min(min_addr, ptr); |
599 | max_addr = max(max_addr, ptr + size); | |
85d3a316 ML |
600 | link = &object_tree_root.rb_node; |
601 | rb_parent = NULL; | |
602 | while (*link) { | |
603 | rb_parent = *link; | |
604 | parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); | |
605 | if (ptr + size <= parent->pointer) | |
606 | link = &parent->rb_node.rb_left; | |
607 | else if (parent->pointer + parent->size <= ptr) | |
608 | link = &parent->rb_node.rb_right; | |
609 | else { | |
756a025f | 610 | kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", |
85d3a316 | 611 | ptr); |
9d5a4c73 CM |
612 | /* |
613 | * No need for parent->lock here since "parent" cannot | |
614 | * be freed while the kmemleak_lock is held. | |
615 | */ | |
616 | dump_object_info(parent); | |
85d3a316 | 617 | kmem_cache_free(object_cache, object); |
9d5a4c73 | 618 | object = NULL; |
85d3a316 ML |
619 | goto out; |
620 | } | |
3c7b4e6b | 621 | } |
85d3a316 ML |
622 | rb_link_node(&object->rb_node, rb_parent, link); |
623 | rb_insert_color(&object->rb_node, &object_tree_root); | |
624 | ||
3c7b4e6b CM |
625 | list_add_tail_rcu(&object->object_list, &object_list); |
626 | out: | |
627 | write_unlock_irqrestore(&kmemleak_lock, flags); | |
fd678967 | 628 | return object; |
3c7b4e6b CM |
629 | } |
630 | ||
631 | /* | |
e781a9ab | 632 | * Mark the object as not allocated and schedule RCU freeing via put_object(). |
3c7b4e6b | 633 | */ |
53238a60 | 634 | static void __delete_object(struct kmemleak_object *object) |
3c7b4e6b CM |
635 | { |
636 | unsigned long flags; | |
3c7b4e6b | 637 | |
3c7b4e6b | 638 | WARN_ON(!(object->flags & OBJECT_ALLOCATED)); |
e781a9ab | 639 | WARN_ON(atomic_read(&object->use_count) < 1); |
3c7b4e6b CM |
640 | |
641 | /* | |
642 | * Locking here also ensures that the corresponding memory block | |
643 | * cannot be freed when it is being scanned. | |
644 | */ | |
645 | spin_lock_irqsave(&object->lock, flags); | |
3c7b4e6b CM |
646 | object->flags &= ~OBJECT_ALLOCATED; |
647 | spin_unlock_irqrestore(&object->lock, flags); | |
648 | put_object(object); | |
649 | } | |
650 | ||
53238a60 CM |
651 | /* |
652 | * Look up the metadata (struct kmemleak_object) corresponding to ptr and | |
653 | * delete it. | |
654 | */ | |
655 | static void delete_object_full(unsigned long ptr) | |
656 | { | |
657 | struct kmemleak_object *object; | |
658 | ||
e781a9ab | 659 | object = find_and_remove_object(ptr, 0); |
53238a60 CM |
660 | if (!object) { |
661 | #ifdef DEBUG | |
662 | kmemleak_warn("Freeing unknown object at 0x%08lx\n", | |
663 | ptr); | |
664 | #endif | |
665 | return; | |
666 | } | |
667 | __delete_object(object); | |
53238a60 CM |
668 | } |
669 | ||
670 | /* | |
671 | * Look up the metadata (struct kmemleak_object) corresponding to ptr and | |
672 | * delete it. If the memory block is partially freed, the function may create | |
673 | * additional metadata for the remaining parts of the block. | |
674 | */ | |
675 | static void delete_object_part(unsigned long ptr, size_t size) | |
676 | { | |
677 | struct kmemleak_object *object; | |
678 | unsigned long start, end; | |
679 | ||
e781a9ab | 680 | object = find_and_remove_object(ptr, 1); |
53238a60 CM |
681 | if (!object) { |
682 | #ifdef DEBUG | |
756a025f JP |
683 | kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", |
684 | ptr, size); | |
53238a60 CM |
685 | #endif |
686 | return; | |
687 | } | |
53238a60 CM |
688 | |
689 | /* | |
690 | * Create one or two objects that may result from the memory block | |
691 | * split. Note that partial freeing is only done by free_bootmem() and | |
692 | * this happens before kmemleak_init() is called. The path below is | |
693 | * only executed during early log recording in kmemleak_init(), so | |
694 | * GFP_KERNEL is enough. | |
695 | */ | |
696 | start = object->pointer; | |
697 | end = object->pointer + object->size; | |
698 | if (ptr > start) | |
699 | create_object(start, ptr - start, object->min_count, | |
700 | GFP_KERNEL); | |
701 | if (ptr + size < end) | |
702 | create_object(ptr + size, end - ptr - size, object->min_count, | |
703 | GFP_KERNEL); | |
704 | ||
e781a9ab | 705 | __delete_object(object); |
53238a60 | 706 | } |
a1084c87 LR |
707 | |
708 | static void __paint_it(struct kmemleak_object *object, int color) | |
709 | { | |
710 | object->min_count = color; | |
711 | if (color == KMEMLEAK_BLACK) | |
712 | object->flags |= OBJECT_NO_SCAN; | |
713 | } | |
714 | ||
715 | static void paint_it(struct kmemleak_object *object, int color) | |
3c7b4e6b CM |
716 | { |
717 | unsigned long flags; | |
a1084c87 LR |
718 | |
719 | spin_lock_irqsave(&object->lock, flags); | |
720 | __paint_it(object, color); | |
721 | spin_unlock_irqrestore(&object->lock, flags); | |
722 | } | |
723 | ||
724 | static void paint_ptr(unsigned long ptr, int color) | |
725 | { | |
3c7b4e6b CM |
726 | struct kmemleak_object *object; |
727 | ||
728 | object = find_and_get_object(ptr, 0); | |
729 | if (!object) { | |
756a025f JP |
730 | kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", |
731 | ptr, | |
a1084c87 LR |
732 | (color == KMEMLEAK_GREY) ? "Grey" : |
733 | (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); | |
3c7b4e6b CM |
734 | return; |
735 | } | |
a1084c87 | 736 | paint_it(object, color); |
3c7b4e6b CM |
737 | put_object(object); |
738 | } | |
739 | ||
a1084c87 | 740 | /* |
145b64b9 | 741 | * Mark an object permanently as gray-colored so that it can no longer be |
a1084c87 LR |
742 | * reported as a leak. This is used in general to mark a false positive. |
743 | */ | |
744 | static void make_gray_object(unsigned long ptr) | |
745 | { | |
746 | paint_ptr(ptr, KMEMLEAK_GREY); | |
747 | } | |
748 | ||
3c7b4e6b CM |
749 | /* |
750 | * Mark the object as black-colored so that it is ignored from scans and | |
751 | * reporting. | |
752 | */ | |
753 | static void make_black_object(unsigned long ptr) | |
754 | { | |
a1084c87 | 755 | paint_ptr(ptr, KMEMLEAK_BLACK); |
3c7b4e6b CM |
756 | } |
757 | ||
758 | /* | |
759 | * Add a scanning area to the object. If at least one such area is added, | |
760 | * kmemleak will only scan these ranges rather than the whole memory block. | |
761 | */ | |
c017b4be | 762 | static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) |
3c7b4e6b CM |
763 | { |
764 | unsigned long flags; | |
765 | struct kmemleak_object *object; | |
766 | struct kmemleak_scan_area *area; | |
767 | ||
c017b4be | 768 | object = find_and_get_object(ptr, 1); |
3c7b4e6b | 769 | if (!object) { |
ae281064 JP |
770 | kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", |
771 | ptr); | |
3c7b4e6b CM |
772 | return; |
773 | } | |
774 | ||
6ae4bd1f | 775 | area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); |
3c7b4e6b | 776 | if (!area) { |
598d8091 | 777 | pr_warn("Cannot allocate a scan area\n"); |
3c7b4e6b CM |
778 | goto out; |
779 | } | |
780 | ||
781 | spin_lock_irqsave(&object->lock, flags); | |
7f88f88f CM |
782 | if (size == SIZE_MAX) { |
783 | size = object->pointer + object->size - ptr; | |
784 | } else if (ptr + size > object->pointer + object->size) { | |
ae281064 | 785 | kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); |
3c7b4e6b CM |
786 | dump_object_info(object); |
787 | kmem_cache_free(scan_area_cache, area); | |
788 | goto out_unlock; | |
789 | } | |
790 | ||
791 | INIT_HLIST_NODE(&area->node); | |
c017b4be CM |
792 | area->start = ptr; |
793 | area->size = size; | |
3c7b4e6b CM |
794 | |
795 | hlist_add_head(&area->node, &object->area_list); | |
796 | out_unlock: | |
797 | spin_unlock_irqrestore(&object->lock, flags); | |
798 | out: | |
799 | put_object(object); | |
800 | } | |
801 | ||
94f4a161 CM |
802 | /* |
803 | * Any surplus references (object already gray) to 'ptr' are passed to | |
804 | * 'excess_ref'. This is used in the vmalloc() case where a pointer to | |
805 | * vm_struct may be used as an alternative reference to the vmalloc'ed object | |
806 | * (see free_thread_stack()). | |
807 | */ | |
808 | static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) | |
809 | { | |
810 | unsigned long flags; | |
811 | struct kmemleak_object *object; | |
812 | ||
813 | object = find_and_get_object(ptr, 0); | |
814 | if (!object) { | |
815 | kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", | |
816 | ptr); | |
817 | return; | |
818 | } | |
819 | ||
820 | spin_lock_irqsave(&object->lock, flags); | |
821 | object->excess_ref = excess_ref; | |
822 | spin_unlock_irqrestore(&object->lock, flags); | |
823 | put_object(object); | |
824 | } | |
825 | ||
3c7b4e6b CM |
826 | /* |
827 | * Set the OBJECT_NO_SCAN flag for the object corresponding to the give | |
828 | * pointer. Such object will not be scanned by kmemleak but references to it | |
829 | * are searched. | |
830 | */ | |
831 | static void object_no_scan(unsigned long ptr) | |
832 | { | |
833 | unsigned long flags; | |
834 | struct kmemleak_object *object; | |
835 | ||
836 | object = find_and_get_object(ptr, 0); | |
837 | if (!object) { | |
ae281064 | 838 | kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); |
3c7b4e6b CM |
839 | return; |
840 | } | |
841 | ||
842 | spin_lock_irqsave(&object->lock, flags); | |
843 | object->flags |= OBJECT_NO_SCAN; | |
844 | spin_unlock_irqrestore(&object->lock, flags); | |
845 | put_object(object); | |
846 | } | |
847 | ||
848 | /* | |
849 | * Log an early kmemleak_* call to the early_log buffer. These calls will be | |
850 | * processed later once kmemleak is fully initialized. | |
851 | */ | |
a6186d89 | 852 | static void __init log_early(int op_type, const void *ptr, size_t size, |
c017b4be | 853 | int min_count) |
3c7b4e6b CM |
854 | { |
855 | unsigned long flags; | |
856 | struct early_log *log; | |
857 | ||
8910ae89 | 858 | if (kmemleak_error) { |
b6693005 CM |
859 | /* kmemleak stopped recording, just count the requests */ |
860 | crt_early_log++; | |
861 | return; | |
862 | } | |
863 | ||
3c7b4e6b | 864 | if (crt_early_log >= ARRAY_SIZE(early_log)) { |
21cd3a60 | 865 | crt_early_log++; |
a9d9058a | 866 | kmemleak_disable(); |
3c7b4e6b CM |
867 | return; |
868 | } | |
869 | ||
870 | /* | |
871 | * There is no need for locking since the kernel is still in UP mode | |
872 | * at this stage. Disabling the IRQs is enough. | |
873 | */ | |
874 | local_irq_save(flags); | |
875 | log = &early_log[crt_early_log]; | |
876 | log->op_type = op_type; | |
877 | log->ptr = ptr; | |
878 | log->size = size; | |
879 | log->min_count = min_count; | |
5f79020c | 880 | log->trace_len = __save_stack_trace(log->trace); |
3c7b4e6b CM |
881 | crt_early_log++; |
882 | local_irq_restore(flags); | |
883 | } | |
884 | ||
fd678967 CM |
885 | /* |
886 | * Log an early allocated block and populate the stack trace. | |
887 | */ | |
888 | static void early_alloc(struct early_log *log) | |
889 | { | |
890 | struct kmemleak_object *object; | |
891 | unsigned long flags; | |
892 | int i; | |
893 | ||
8910ae89 | 894 | if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr)) |
fd678967 CM |
895 | return; |
896 | ||
897 | /* | |
898 | * RCU locking needed to ensure object is not freed via put_object(). | |
899 | */ | |
900 | rcu_read_lock(); | |
901 | object = create_object((unsigned long)log->ptr, log->size, | |
c1bcd6b3 | 902 | log->min_count, GFP_ATOMIC); |
0d5d1aad CM |
903 | if (!object) |
904 | goto out; | |
fd678967 CM |
905 | spin_lock_irqsave(&object->lock, flags); |
906 | for (i = 0; i < log->trace_len; i++) | |
907 | object->trace[i] = log->trace[i]; | |
908 | object->trace_len = log->trace_len; | |
909 | spin_unlock_irqrestore(&object->lock, flags); | |
0d5d1aad | 910 | out: |
fd678967 CM |
911 | rcu_read_unlock(); |
912 | } | |
913 | ||
f528f0b8 CM |
914 | /* |
915 | * Log an early allocated block and populate the stack trace. | |
916 | */ | |
917 | static void early_alloc_percpu(struct early_log *log) | |
918 | { | |
919 | unsigned int cpu; | |
920 | const void __percpu *ptr = log->ptr; | |
921 | ||
922 | for_each_possible_cpu(cpu) { | |
923 | log->ptr = per_cpu_ptr(ptr, cpu); | |
924 | early_alloc(log); | |
925 | } | |
926 | } | |
927 | ||
a2b6bf63 CM |
928 | /** |
929 | * kmemleak_alloc - register a newly allocated object | |
930 | * @ptr: pointer to beginning of the object | |
931 | * @size: size of the object | |
932 | * @min_count: minimum number of references to this object. If during memory | |
933 | * scanning a number of references less than @min_count is found, | |
934 | * the object is reported as a memory leak. If @min_count is 0, | |
935 | * the object is never reported as a leak. If @min_count is -1, | |
936 | * the object is ignored (not scanned and not reported as a leak) | |
937 | * @gfp: kmalloc() flags used for kmemleak internal memory allocations | |
938 | * | |
939 | * This function is called from the kernel allocators when a new object | |
94f4a161 | 940 | * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). |
3c7b4e6b | 941 | */ |
a6186d89 CM |
942 | void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, |
943 | gfp_t gfp) | |
3c7b4e6b CM |
944 | { |
945 | pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); | |
946 | ||
8910ae89 | 947 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
3c7b4e6b | 948 | create_object((unsigned long)ptr, size, min_count, gfp); |
8910ae89 | 949 | else if (kmemleak_early_log) |
c017b4be | 950 | log_early(KMEMLEAK_ALLOC, ptr, size, min_count); |
3c7b4e6b CM |
951 | } |
952 | EXPORT_SYMBOL_GPL(kmemleak_alloc); | |
953 | ||
f528f0b8 CM |
954 | /** |
955 | * kmemleak_alloc_percpu - register a newly allocated __percpu object | |
956 | * @ptr: __percpu pointer to beginning of the object | |
957 | * @size: size of the object | |
8a8c35fa | 958 | * @gfp: flags used for kmemleak internal memory allocations |
f528f0b8 CM |
959 | * |
960 | * This function is called from the kernel percpu allocator when a new object | |
8a8c35fa | 961 | * (memory block) is allocated (alloc_percpu). |
f528f0b8 | 962 | */ |
8a8c35fa LF |
963 | void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, |
964 | gfp_t gfp) | |
f528f0b8 CM |
965 | { |
966 | unsigned int cpu; | |
967 | ||
968 | pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); | |
969 | ||
970 | /* | |
971 | * Percpu allocations are only scanned and not reported as leaks | |
972 | * (min_count is set to 0). | |
973 | */ | |
8910ae89 | 974 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
f528f0b8 CM |
975 | for_each_possible_cpu(cpu) |
976 | create_object((unsigned long)per_cpu_ptr(ptr, cpu), | |
8a8c35fa | 977 | size, 0, gfp); |
8910ae89 | 978 | else if (kmemleak_early_log) |
f528f0b8 CM |
979 | log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0); |
980 | } | |
981 | EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); | |
982 | ||
94f4a161 CM |
983 | /** |
984 | * kmemleak_vmalloc - register a newly vmalloc'ed object | |
985 | * @area: pointer to vm_struct | |
986 | * @size: size of the object | |
987 | * @gfp: __vmalloc() flags used for kmemleak internal memory allocations | |
988 | * | |
989 | * This function is called from the vmalloc() kernel allocator when a new | |
990 | * object (memory block) is allocated. | |
991 | */ | |
992 | void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) | |
993 | { | |
994 | pr_debug("%s(0x%p, %zu)\n", __func__, area, size); | |
995 | ||
996 | /* | |
997 | * A min_count = 2 is needed because vm_struct contains a reference to | |
998 | * the virtual address of the vmalloc'ed block. | |
999 | */ | |
1000 | if (kmemleak_enabled) { | |
1001 | create_object((unsigned long)area->addr, size, 2, gfp); | |
1002 | object_set_excess_ref((unsigned long)area, | |
1003 | (unsigned long)area->addr); | |
1004 | } else if (kmemleak_early_log) { | |
1005 | log_early(KMEMLEAK_ALLOC, area->addr, size, 2); | |
1006 | /* reusing early_log.size for storing area->addr */ | |
1007 | log_early(KMEMLEAK_SET_EXCESS_REF, | |
1008 | area, (unsigned long)area->addr, 0); | |
1009 | } | |
1010 | } | |
1011 | EXPORT_SYMBOL_GPL(kmemleak_vmalloc); | |
1012 | ||
a2b6bf63 CM |
1013 | /** |
1014 | * kmemleak_free - unregister a previously registered object | |
1015 | * @ptr: pointer to beginning of the object | |
1016 | * | |
1017 | * This function is called from the kernel allocators when an object (memory | |
1018 | * block) is freed (kmem_cache_free, kfree, vfree etc.). | |
3c7b4e6b | 1019 | */ |
a6186d89 | 1020 | void __ref kmemleak_free(const void *ptr) |
3c7b4e6b CM |
1021 | { |
1022 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1023 | ||
c5f3b1a5 | 1024 | if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) |
53238a60 | 1025 | delete_object_full((unsigned long)ptr); |
8910ae89 | 1026 | else if (kmemleak_early_log) |
c017b4be | 1027 | log_early(KMEMLEAK_FREE, ptr, 0, 0); |
3c7b4e6b CM |
1028 | } |
1029 | EXPORT_SYMBOL_GPL(kmemleak_free); | |
1030 | ||
a2b6bf63 CM |
1031 | /** |
1032 | * kmemleak_free_part - partially unregister a previously registered object | |
1033 | * @ptr: pointer to the beginning or inside the object. This also | |
1034 | * represents the start of the range to be freed | |
1035 | * @size: size to be unregistered | |
1036 | * | |
1037 | * This function is called when only a part of a memory block is freed | |
1038 | * (usually from the bootmem allocator). | |
53238a60 | 1039 | */ |
a6186d89 | 1040 | void __ref kmemleak_free_part(const void *ptr, size_t size) |
53238a60 CM |
1041 | { |
1042 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1043 | ||
8910ae89 | 1044 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
53238a60 | 1045 | delete_object_part((unsigned long)ptr, size); |
8910ae89 | 1046 | else if (kmemleak_early_log) |
c017b4be | 1047 | log_early(KMEMLEAK_FREE_PART, ptr, size, 0); |
53238a60 CM |
1048 | } |
1049 | EXPORT_SYMBOL_GPL(kmemleak_free_part); | |
1050 | ||
f528f0b8 CM |
1051 | /** |
1052 | * kmemleak_free_percpu - unregister a previously registered __percpu object | |
1053 | * @ptr: __percpu pointer to beginning of the object | |
1054 | * | |
1055 | * This function is called from the kernel percpu allocator when an object | |
1056 | * (memory block) is freed (free_percpu). | |
1057 | */ | |
1058 | void __ref kmemleak_free_percpu(const void __percpu *ptr) | |
1059 | { | |
1060 | unsigned int cpu; | |
1061 | ||
1062 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1063 | ||
c5f3b1a5 | 1064 | if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) |
f528f0b8 CM |
1065 | for_each_possible_cpu(cpu) |
1066 | delete_object_full((unsigned long)per_cpu_ptr(ptr, | |
1067 | cpu)); | |
8910ae89 | 1068 | else if (kmemleak_early_log) |
f528f0b8 CM |
1069 | log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0); |
1070 | } | |
1071 | EXPORT_SYMBOL_GPL(kmemleak_free_percpu); | |
1072 | ||
ffe2c748 CM |
1073 | /** |
1074 | * kmemleak_update_trace - update object allocation stack trace | |
1075 | * @ptr: pointer to beginning of the object | |
1076 | * | |
1077 | * Override the object allocation stack trace for cases where the actual | |
1078 | * allocation place is not always useful. | |
1079 | */ | |
1080 | void __ref kmemleak_update_trace(const void *ptr) | |
1081 | { | |
1082 | struct kmemleak_object *object; | |
1083 | unsigned long flags; | |
1084 | ||
1085 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1086 | ||
1087 | if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) | |
1088 | return; | |
1089 | ||
1090 | object = find_and_get_object((unsigned long)ptr, 1); | |
1091 | if (!object) { | |
1092 | #ifdef DEBUG | |
1093 | kmemleak_warn("Updating stack trace for unknown object at %p\n", | |
1094 | ptr); | |
1095 | #endif | |
1096 | return; | |
1097 | } | |
1098 | ||
1099 | spin_lock_irqsave(&object->lock, flags); | |
1100 | object->trace_len = __save_stack_trace(object->trace); | |
1101 | spin_unlock_irqrestore(&object->lock, flags); | |
1102 | ||
1103 | put_object(object); | |
1104 | } | |
1105 | EXPORT_SYMBOL(kmemleak_update_trace); | |
1106 | ||
a2b6bf63 CM |
1107 | /** |
1108 | * kmemleak_not_leak - mark an allocated object as false positive | |
1109 | * @ptr: pointer to beginning of the object | |
1110 | * | |
1111 | * Calling this function on an object will cause the memory block to no longer | |
1112 | * be reported as leak and always be scanned. | |
3c7b4e6b | 1113 | */ |
a6186d89 | 1114 | void __ref kmemleak_not_leak(const void *ptr) |
3c7b4e6b CM |
1115 | { |
1116 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1117 | ||
8910ae89 | 1118 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
3c7b4e6b | 1119 | make_gray_object((unsigned long)ptr); |
8910ae89 | 1120 | else if (kmemleak_early_log) |
c017b4be | 1121 | log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0); |
3c7b4e6b CM |
1122 | } |
1123 | EXPORT_SYMBOL(kmemleak_not_leak); | |
1124 | ||
a2b6bf63 CM |
1125 | /** |
1126 | * kmemleak_ignore - ignore an allocated object | |
1127 | * @ptr: pointer to beginning of the object | |
1128 | * | |
1129 | * Calling this function on an object will cause the memory block to be | |
1130 | * ignored (not scanned and not reported as a leak). This is usually done when | |
1131 | * it is known that the corresponding block is not a leak and does not contain | |
1132 | * any references to other allocated memory blocks. | |
3c7b4e6b | 1133 | */ |
a6186d89 | 1134 | void __ref kmemleak_ignore(const void *ptr) |
3c7b4e6b CM |
1135 | { |
1136 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1137 | ||
8910ae89 | 1138 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
3c7b4e6b | 1139 | make_black_object((unsigned long)ptr); |
8910ae89 | 1140 | else if (kmemleak_early_log) |
c017b4be | 1141 | log_early(KMEMLEAK_IGNORE, ptr, 0, 0); |
3c7b4e6b CM |
1142 | } |
1143 | EXPORT_SYMBOL(kmemleak_ignore); | |
1144 | ||
a2b6bf63 CM |
1145 | /** |
1146 | * kmemleak_scan_area - limit the range to be scanned in an allocated object | |
1147 | * @ptr: pointer to beginning or inside the object. This also | |
1148 | * represents the start of the scan area | |
1149 | * @size: size of the scan area | |
1150 | * @gfp: kmalloc() flags used for kmemleak internal memory allocations | |
1151 | * | |
1152 | * This function is used when it is known that only certain parts of an object | |
1153 | * contain references to other objects. Kmemleak will only scan these areas | |
1154 | * reducing the number false negatives. | |
3c7b4e6b | 1155 | */ |
c017b4be | 1156 | void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) |
3c7b4e6b CM |
1157 | { |
1158 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1159 | ||
8910ae89 | 1160 | if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) |
c017b4be | 1161 | add_scan_area((unsigned long)ptr, size, gfp); |
8910ae89 | 1162 | else if (kmemleak_early_log) |
c017b4be | 1163 | log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0); |
3c7b4e6b CM |
1164 | } |
1165 | EXPORT_SYMBOL(kmemleak_scan_area); | |
1166 | ||
a2b6bf63 CM |
1167 | /** |
1168 | * kmemleak_no_scan - do not scan an allocated object | |
1169 | * @ptr: pointer to beginning of the object | |
1170 | * | |
1171 | * This function notifies kmemleak not to scan the given memory block. Useful | |
1172 | * in situations where it is known that the given object does not contain any | |
1173 | * references to other objects. Kmemleak will not scan such objects reducing | |
1174 | * the number of false negatives. | |
3c7b4e6b | 1175 | */ |
a6186d89 | 1176 | void __ref kmemleak_no_scan(const void *ptr) |
3c7b4e6b CM |
1177 | { |
1178 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1179 | ||
8910ae89 | 1180 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
3c7b4e6b | 1181 | object_no_scan((unsigned long)ptr); |
8910ae89 | 1182 | else if (kmemleak_early_log) |
c017b4be | 1183 | log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0); |
3c7b4e6b CM |
1184 | } |
1185 | EXPORT_SYMBOL(kmemleak_no_scan); | |
1186 | ||
9099daed CM |
1187 | /** |
1188 | * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical | |
1189 | * address argument | |
1190 | */ | |
1191 | void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count, | |
1192 | gfp_t gfp) | |
1193 | { | |
1194 | if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) | |
1195 | kmemleak_alloc(__va(phys), size, min_count, gfp); | |
1196 | } | |
1197 | EXPORT_SYMBOL(kmemleak_alloc_phys); | |
1198 | ||
1199 | /** | |
1200 | * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a | |
1201 | * physical address argument | |
1202 | */ | |
1203 | void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) | |
1204 | { | |
1205 | if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) | |
1206 | kmemleak_free_part(__va(phys), size); | |
1207 | } | |
1208 | EXPORT_SYMBOL(kmemleak_free_part_phys); | |
1209 | ||
1210 | /** | |
1211 | * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical | |
1212 | * address argument | |
1213 | */ | |
1214 | void __ref kmemleak_not_leak_phys(phys_addr_t phys) | |
1215 | { | |
1216 | if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) | |
1217 | kmemleak_not_leak(__va(phys)); | |
1218 | } | |
1219 | EXPORT_SYMBOL(kmemleak_not_leak_phys); | |
1220 | ||
1221 | /** | |
1222 | * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical | |
1223 | * address argument | |
1224 | */ | |
1225 | void __ref kmemleak_ignore_phys(phys_addr_t phys) | |
1226 | { | |
1227 | if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) | |
1228 | kmemleak_ignore(__va(phys)); | |
1229 | } | |
1230 | EXPORT_SYMBOL(kmemleak_ignore_phys); | |
1231 | ||
04609ccc CM |
1232 | /* |
1233 | * Update an object's checksum and return true if it was modified. | |
1234 | */ | |
1235 | static bool update_checksum(struct kmemleak_object *object) | |
1236 | { | |
1237 | u32 old_csum = object->checksum; | |
1238 | ||
e79ed2f1 | 1239 | kasan_disable_current(); |
04609ccc | 1240 | object->checksum = crc32(0, (void *)object->pointer, object->size); |
e79ed2f1 AR |
1241 | kasan_enable_current(); |
1242 | ||
04609ccc CM |
1243 | return object->checksum != old_csum; |
1244 | } | |
1245 | ||
04f70d13 CM |
1246 | /* |
1247 | * Update an object's references. object->lock must be held by the caller. | |
1248 | */ | |
1249 | static void update_refs(struct kmemleak_object *object) | |
1250 | { | |
1251 | if (!color_white(object)) { | |
1252 | /* non-orphan, ignored or new */ | |
1253 | return; | |
1254 | } | |
1255 | ||
1256 | /* | |
1257 | * Increase the object's reference count (number of pointers to the | |
1258 | * memory block). If this count reaches the required minimum, the | |
1259 | * object's color will become gray and it will be added to the | |
1260 | * gray_list. | |
1261 | */ | |
1262 | object->count++; | |
1263 | if (color_gray(object)) { | |
1264 | /* put_object() called when removing from gray_list */ | |
1265 | WARN_ON(!get_object(object)); | |
1266 | list_add_tail(&object->gray_list, &gray_list); | |
1267 | } | |
1268 | } | |
1269 | ||
3c7b4e6b CM |
1270 | /* |
1271 | * Memory scanning is a long process and it needs to be interruptable. This | |
25985edc | 1272 | * function checks whether such interrupt condition occurred. |
3c7b4e6b CM |
1273 | */ |
1274 | static int scan_should_stop(void) | |
1275 | { | |
8910ae89 | 1276 | if (!kmemleak_enabled) |
3c7b4e6b CM |
1277 | return 1; |
1278 | ||
1279 | /* | |
1280 | * This function may be called from either process or kthread context, | |
1281 | * hence the need to check for both stop conditions. | |
1282 | */ | |
1283 | if (current->mm) | |
1284 | return signal_pending(current); | |
1285 | else | |
1286 | return kthread_should_stop(); | |
1287 | ||
1288 | return 0; | |
1289 | } | |
1290 | ||
1291 | /* | |
1292 | * Scan a memory block (exclusive range) for valid pointers and add those | |
1293 | * found to the gray list. | |
1294 | */ | |
1295 | static void scan_block(void *_start, void *_end, | |
93ada579 | 1296 | struct kmemleak_object *scanned) |
3c7b4e6b CM |
1297 | { |
1298 | unsigned long *ptr; | |
1299 | unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); | |
1300 | unsigned long *end = _end - (BYTES_PER_POINTER - 1); | |
93ada579 | 1301 | unsigned long flags; |
3c7b4e6b | 1302 | |
93ada579 | 1303 | read_lock_irqsave(&kmemleak_lock, flags); |
3c7b4e6b | 1304 | for (ptr = start; ptr < end; ptr++) { |
3c7b4e6b | 1305 | struct kmemleak_object *object; |
8e019366 | 1306 | unsigned long pointer; |
94f4a161 | 1307 | unsigned long excess_ref; |
3c7b4e6b CM |
1308 | |
1309 | if (scan_should_stop()) | |
1310 | break; | |
1311 | ||
e79ed2f1 | 1312 | kasan_disable_current(); |
8e019366 | 1313 | pointer = *ptr; |
e79ed2f1 | 1314 | kasan_enable_current(); |
8e019366 | 1315 | |
93ada579 CM |
1316 | if (pointer < min_addr || pointer >= max_addr) |
1317 | continue; | |
1318 | ||
1319 | /* | |
1320 | * No need for get_object() here since we hold kmemleak_lock. | |
1321 | * object->use_count cannot be dropped to 0 while the object | |
1322 | * is still present in object_tree_root and object_list | |
1323 | * (with updates protected by kmemleak_lock). | |
1324 | */ | |
1325 | object = lookup_object(pointer, 1); | |
3c7b4e6b CM |
1326 | if (!object) |
1327 | continue; | |
93ada579 | 1328 | if (object == scanned) |
3c7b4e6b | 1329 | /* self referenced, ignore */ |
3c7b4e6b | 1330 | continue; |
3c7b4e6b CM |
1331 | |
1332 | /* | |
1333 | * Avoid the lockdep recursive warning on object->lock being | |
1334 | * previously acquired in scan_object(). These locks are | |
1335 | * enclosed by scan_mutex. | |
1336 | */ | |
93ada579 | 1337 | spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); |
94f4a161 CM |
1338 | /* only pass surplus references (object already gray) */ |
1339 | if (color_gray(object)) { | |
1340 | excess_ref = object->excess_ref; | |
1341 | /* no need for update_refs() if object already gray */ | |
1342 | } else { | |
1343 | excess_ref = 0; | |
1344 | update_refs(object); | |
1345 | } | |
93ada579 | 1346 | spin_unlock(&object->lock); |
94f4a161 CM |
1347 | |
1348 | if (excess_ref) { | |
1349 | object = lookup_object(excess_ref, 0); | |
1350 | if (!object) | |
1351 | continue; | |
1352 | if (object == scanned) | |
1353 | /* circular reference, ignore */ | |
1354 | continue; | |
1355 | spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); | |
1356 | update_refs(object); | |
1357 | spin_unlock(&object->lock); | |
1358 | } | |
93ada579 CM |
1359 | } |
1360 | read_unlock_irqrestore(&kmemleak_lock, flags); | |
1361 | } | |
0587da40 | 1362 | |
93ada579 CM |
1363 | /* |
1364 | * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. | |
1365 | */ | |
1366 | static void scan_large_block(void *start, void *end) | |
1367 | { | |
1368 | void *next; | |
1369 | ||
1370 | while (start < end) { | |
1371 | next = min(start + MAX_SCAN_SIZE, end); | |
1372 | scan_block(start, next, NULL); | |
1373 | start = next; | |
1374 | cond_resched(); | |
3c7b4e6b CM |
1375 | } |
1376 | } | |
1377 | ||
1378 | /* | |
1379 | * Scan a memory block corresponding to a kmemleak_object. A condition is | |
1380 | * that object->use_count >= 1. | |
1381 | */ | |
1382 | static void scan_object(struct kmemleak_object *object) | |
1383 | { | |
1384 | struct kmemleak_scan_area *area; | |
3c7b4e6b CM |
1385 | unsigned long flags; |
1386 | ||
1387 | /* | |
21ae2956 UKK |
1388 | * Once the object->lock is acquired, the corresponding memory block |
1389 | * cannot be freed (the same lock is acquired in delete_object). | |
3c7b4e6b CM |
1390 | */ |
1391 | spin_lock_irqsave(&object->lock, flags); | |
1392 | if (object->flags & OBJECT_NO_SCAN) | |
1393 | goto out; | |
1394 | if (!(object->flags & OBJECT_ALLOCATED)) | |
1395 | /* already freed object */ | |
1396 | goto out; | |
af98603d CM |
1397 | if (hlist_empty(&object->area_list)) { |
1398 | void *start = (void *)object->pointer; | |
1399 | void *end = (void *)(object->pointer + object->size); | |
93ada579 CM |
1400 | void *next; |
1401 | ||
1402 | do { | |
1403 | next = min(start + MAX_SCAN_SIZE, end); | |
1404 | scan_block(start, next, object); | |
af98603d | 1405 | |
93ada579 CM |
1406 | start = next; |
1407 | if (start >= end) | |
1408 | break; | |
af98603d CM |
1409 | |
1410 | spin_unlock_irqrestore(&object->lock, flags); | |
1411 | cond_resched(); | |
1412 | spin_lock_irqsave(&object->lock, flags); | |
93ada579 | 1413 | } while (object->flags & OBJECT_ALLOCATED); |
af98603d | 1414 | } else |
b67bfe0d | 1415 | hlist_for_each_entry(area, &object->area_list, node) |
c017b4be CM |
1416 | scan_block((void *)area->start, |
1417 | (void *)(area->start + area->size), | |
93ada579 | 1418 | object); |
3c7b4e6b CM |
1419 | out: |
1420 | spin_unlock_irqrestore(&object->lock, flags); | |
1421 | } | |
1422 | ||
04609ccc CM |
1423 | /* |
1424 | * Scan the objects already referenced (gray objects). More objects will be | |
1425 | * referenced and, if there are no memory leaks, all the objects are scanned. | |
1426 | */ | |
1427 | static void scan_gray_list(void) | |
1428 | { | |
1429 | struct kmemleak_object *object, *tmp; | |
1430 | ||
1431 | /* | |
1432 | * The list traversal is safe for both tail additions and removals | |
1433 | * from inside the loop. The kmemleak objects cannot be freed from | |
1434 | * outside the loop because their use_count was incremented. | |
1435 | */ | |
1436 | object = list_entry(gray_list.next, typeof(*object), gray_list); | |
1437 | while (&object->gray_list != &gray_list) { | |
1438 | cond_resched(); | |
1439 | ||
1440 | /* may add new objects to the list */ | |
1441 | if (!scan_should_stop()) | |
1442 | scan_object(object); | |
1443 | ||
1444 | tmp = list_entry(object->gray_list.next, typeof(*object), | |
1445 | gray_list); | |
1446 | ||
1447 | /* remove the object from the list and release it */ | |
1448 | list_del(&object->gray_list); | |
1449 | put_object(object); | |
1450 | ||
1451 | object = tmp; | |
1452 | } | |
1453 | WARN_ON(!list_empty(&gray_list)); | |
1454 | } | |
1455 | ||
3c7b4e6b CM |
1456 | /* |
1457 | * Scan data sections and all the referenced memory blocks allocated via the | |
1458 | * kernel's standard allocators. This function must be called with the | |
1459 | * scan_mutex held. | |
1460 | */ | |
1461 | static void kmemleak_scan(void) | |
1462 | { | |
1463 | unsigned long flags; | |
04609ccc | 1464 | struct kmemleak_object *object; |
3c7b4e6b | 1465 | int i; |
4698c1f2 | 1466 | int new_leaks = 0; |
3c7b4e6b | 1467 | |
acf4968e CM |
1468 | jiffies_last_scan = jiffies; |
1469 | ||
3c7b4e6b CM |
1470 | /* prepare the kmemleak_object's */ |
1471 | rcu_read_lock(); | |
1472 | list_for_each_entry_rcu(object, &object_list, object_list) { | |
1473 | spin_lock_irqsave(&object->lock, flags); | |
1474 | #ifdef DEBUG | |
1475 | /* | |
1476 | * With a few exceptions there should be a maximum of | |
1477 | * 1 reference to any object at this point. | |
1478 | */ | |
1479 | if (atomic_read(&object->use_count) > 1) { | |
ae281064 | 1480 | pr_debug("object->use_count = %d\n", |
3c7b4e6b CM |
1481 | atomic_read(&object->use_count)); |
1482 | dump_object_info(object); | |
1483 | } | |
1484 | #endif | |
1485 | /* reset the reference count (whiten the object) */ | |
1486 | object->count = 0; | |
1487 | if (color_gray(object) && get_object(object)) | |
1488 | list_add_tail(&object->gray_list, &gray_list); | |
1489 | ||
1490 | spin_unlock_irqrestore(&object->lock, flags); | |
1491 | } | |
1492 | rcu_read_unlock(); | |
1493 | ||
1494 | /* data/bss scanning */ | |
93ada579 CM |
1495 | scan_large_block(_sdata, _edata); |
1496 | scan_large_block(__bss_start, __bss_stop); | |
906f2a51 | 1497 | scan_large_block(__start_ro_after_init, __end_ro_after_init); |
3c7b4e6b CM |
1498 | |
1499 | #ifdef CONFIG_SMP | |
1500 | /* per-cpu sections scanning */ | |
1501 | for_each_possible_cpu(i) | |
93ada579 CM |
1502 | scan_large_block(__per_cpu_start + per_cpu_offset(i), |
1503 | __per_cpu_end + per_cpu_offset(i)); | |
3c7b4e6b CM |
1504 | #endif |
1505 | ||
1506 | /* | |
029aeff5 | 1507 | * Struct page scanning for each node. |
3c7b4e6b | 1508 | */ |
bfc8c901 | 1509 | get_online_mems(); |
3c7b4e6b | 1510 | for_each_online_node(i) { |
108bcc96 CS |
1511 | unsigned long start_pfn = node_start_pfn(i); |
1512 | unsigned long end_pfn = node_end_pfn(i); | |
3c7b4e6b CM |
1513 | unsigned long pfn; |
1514 | ||
1515 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { | |
1516 | struct page *page; | |
1517 | ||
1518 | if (!pfn_valid(pfn)) | |
1519 | continue; | |
1520 | page = pfn_to_page(pfn); | |
1521 | /* only scan if page is in use */ | |
1522 | if (page_count(page) == 0) | |
1523 | continue; | |
93ada579 | 1524 | scan_block(page, page + 1, NULL); |
13ab183d | 1525 | if (!(pfn & 63)) |
bde5f6bc | 1526 | cond_resched(); |
3c7b4e6b CM |
1527 | } |
1528 | } | |
bfc8c901 | 1529 | put_online_mems(); |
3c7b4e6b CM |
1530 | |
1531 | /* | |
43ed5d6e | 1532 | * Scanning the task stacks (may introduce false negatives). |
3c7b4e6b CM |
1533 | */ |
1534 | if (kmemleak_stack_scan) { | |
43ed5d6e CM |
1535 | struct task_struct *p, *g; |
1536 | ||
3c7b4e6b | 1537 | read_lock(&tasklist_lock); |
43ed5d6e | 1538 | do_each_thread(g, p) { |
37df49f4 CM |
1539 | void *stack = try_get_task_stack(p); |
1540 | if (stack) { | |
1541 | scan_block(stack, stack + THREAD_SIZE, NULL); | |
1542 | put_task_stack(p); | |
1543 | } | |
43ed5d6e | 1544 | } while_each_thread(g, p); |
3c7b4e6b CM |
1545 | read_unlock(&tasklist_lock); |
1546 | } | |
1547 | ||
1548 | /* | |
1549 | * Scan the objects already referenced from the sections scanned | |
04609ccc | 1550 | * above. |
3c7b4e6b | 1551 | */ |
04609ccc | 1552 | scan_gray_list(); |
2587362e CM |
1553 | |
1554 | /* | |
04609ccc CM |
1555 | * Check for new or unreferenced objects modified since the previous |
1556 | * scan and color them gray until the next scan. | |
2587362e CM |
1557 | */ |
1558 | rcu_read_lock(); | |
1559 | list_for_each_entry_rcu(object, &object_list, object_list) { | |
1560 | spin_lock_irqsave(&object->lock, flags); | |
04609ccc CM |
1561 | if (color_white(object) && (object->flags & OBJECT_ALLOCATED) |
1562 | && update_checksum(object) && get_object(object)) { | |
1563 | /* color it gray temporarily */ | |
1564 | object->count = object->min_count; | |
2587362e CM |
1565 | list_add_tail(&object->gray_list, &gray_list); |
1566 | } | |
1567 | spin_unlock_irqrestore(&object->lock, flags); | |
1568 | } | |
1569 | rcu_read_unlock(); | |
1570 | ||
04609ccc CM |
1571 | /* |
1572 | * Re-scan the gray list for modified unreferenced objects. | |
1573 | */ | |
1574 | scan_gray_list(); | |
4698c1f2 | 1575 | |
17bb9e0d | 1576 | /* |
04609ccc | 1577 | * If scanning was stopped do not report any new unreferenced objects. |
17bb9e0d | 1578 | */ |
04609ccc | 1579 | if (scan_should_stop()) |
17bb9e0d CM |
1580 | return; |
1581 | ||
4698c1f2 CM |
1582 | /* |
1583 | * Scanning result reporting. | |
1584 | */ | |
1585 | rcu_read_lock(); | |
1586 | list_for_each_entry_rcu(object, &object_list, object_list) { | |
1587 | spin_lock_irqsave(&object->lock, flags); | |
1588 | if (unreferenced_object(object) && | |
1589 | !(object->flags & OBJECT_REPORTED)) { | |
1590 | object->flags |= OBJECT_REPORTED; | |
1591 | new_leaks++; | |
1592 | } | |
1593 | spin_unlock_irqrestore(&object->lock, flags); | |
1594 | } | |
1595 | rcu_read_unlock(); | |
1596 | ||
dc9b3f42 LZ |
1597 | if (new_leaks) { |
1598 | kmemleak_found_leaks = true; | |
1599 | ||
756a025f JP |
1600 | pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", |
1601 | new_leaks); | |
dc9b3f42 | 1602 | } |
4698c1f2 | 1603 | |
3c7b4e6b CM |
1604 | } |
1605 | ||
1606 | /* | |
1607 | * Thread function performing automatic memory scanning. Unreferenced objects | |
1608 | * at the end of a memory scan are reported but only the first time. | |
1609 | */ | |
1610 | static int kmemleak_scan_thread(void *arg) | |
1611 | { | |
1612 | static int first_run = 1; | |
1613 | ||
ae281064 | 1614 | pr_info("Automatic memory scanning thread started\n"); |
bf2a76b3 | 1615 | set_user_nice(current, 10); |
3c7b4e6b CM |
1616 | |
1617 | /* | |
1618 | * Wait before the first scan to allow the system to fully initialize. | |
1619 | */ | |
1620 | if (first_run) { | |
98c42d94 | 1621 | signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); |
3c7b4e6b | 1622 | first_run = 0; |
98c42d94 VN |
1623 | while (timeout && !kthread_should_stop()) |
1624 | timeout = schedule_timeout_interruptible(timeout); | |
3c7b4e6b CM |
1625 | } |
1626 | ||
1627 | while (!kthread_should_stop()) { | |
3c7b4e6b CM |
1628 | signed long timeout = jiffies_scan_wait; |
1629 | ||
1630 | mutex_lock(&scan_mutex); | |
3c7b4e6b | 1631 | kmemleak_scan(); |
3c7b4e6b | 1632 | mutex_unlock(&scan_mutex); |
4698c1f2 | 1633 | |
3c7b4e6b CM |
1634 | /* wait before the next scan */ |
1635 | while (timeout && !kthread_should_stop()) | |
1636 | timeout = schedule_timeout_interruptible(timeout); | |
1637 | } | |
1638 | ||
ae281064 | 1639 | pr_info("Automatic memory scanning thread ended\n"); |
3c7b4e6b CM |
1640 | |
1641 | return 0; | |
1642 | } | |
1643 | ||
1644 | /* | |
1645 | * Start the automatic memory scanning thread. This function must be called | |
4698c1f2 | 1646 | * with the scan_mutex held. |
3c7b4e6b | 1647 | */ |
7eb0d5e5 | 1648 | static void start_scan_thread(void) |
3c7b4e6b CM |
1649 | { |
1650 | if (scan_thread) | |
1651 | return; | |
1652 | scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); | |
1653 | if (IS_ERR(scan_thread)) { | |
598d8091 | 1654 | pr_warn("Failed to create the scan thread\n"); |
3c7b4e6b CM |
1655 | scan_thread = NULL; |
1656 | } | |
1657 | } | |
1658 | ||
1659 | /* | |
914b6dff | 1660 | * Stop the automatic memory scanning thread. |
3c7b4e6b | 1661 | */ |
7eb0d5e5 | 1662 | static void stop_scan_thread(void) |
3c7b4e6b CM |
1663 | { |
1664 | if (scan_thread) { | |
1665 | kthread_stop(scan_thread); | |
1666 | scan_thread = NULL; | |
1667 | } | |
1668 | } | |
1669 | ||
1670 | /* | |
1671 | * Iterate over the object_list and return the first valid object at or after | |
1672 | * the required position with its use_count incremented. The function triggers | |
1673 | * a memory scanning when the pos argument points to the first position. | |
1674 | */ | |
1675 | static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) | |
1676 | { | |
1677 | struct kmemleak_object *object; | |
1678 | loff_t n = *pos; | |
b87324d0 CM |
1679 | int err; |
1680 | ||
1681 | err = mutex_lock_interruptible(&scan_mutex); | |
1682 | if (err < 0) | |
1683 | return ERR_PTR(err); | |
3c7b4e6b | 1684 | |
3c7b4e6b CM |
1685 | rcu_read_lock(); |
1686 | list_for_each_entry_rcu(object, &object_list, object_list) { | |
1687 | if (n-- > 0) | |
1688 | continue; | |
1689 | if (get_object(object)) | |
1690 | goto out; | |
1691 | } | |
1692 | object = NULL; | |
1693 | out: | |
3c7b4e6b CM |
1694 | return object; |
1695 | } | |
1696 | ||
1697 | /* | |
1698 | * Return the next object in the object_list. The function decrements the | |
1699 | * use_count of the previous object and increases that of the next one. | |
1700 | */ | |
1701 | static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) | |
1702 | { | |
1703 | struct kmemleak_object *prev_obj = v; | |
1704 | struct kmemleak_object *next_obj = NULL; | |
58fac095 | 1705 | struct kmemleak_object *obj = prev_obj; |
3c7b4e6b CM |
1706 | |
1707 | ++(*pos); | |
3c7b4e6b | 1708 | |
58fac095 | 1709 | list_for_each_entry_continue_rcu(obj, &object_list, object_list) { |
52c3ce4e CM |
1710 | if (get_object(obj)) { |
1711 | next_obj = obj; | |
3c7b4e6b | 1712 | break; |
52c3ce4e | 1713 | } |
3c7b4e6b | 1714 | } |
288c857d | 1715 | |
3c7b4e6b CM |
1716 | put_object(prev_obj); |
1717 | return next_obj; | |
1718 | } | |
1719 | ||
1720 | /* | |
1721 | * Decrement the use_count of the last object required, if any. | |
1722 | */ | |
1723 | static void kmemleak_seq_stop(struct seq_file *seq, void *v) | |
1724 | { | |
b87324d0 CM |
1725 | if (!IS_ERR(v)) { |
1726 | /* | |
1727 | * kmemleak_seq_start may return ERR_PTR if the scan_mutex | |
1728 | * waiting was interrupted, so only release it if !IS_ERR. | |
1729 | */ | |
f5886c7f | 1730 | rcu_read_unlock(); |
b87324d0 CM |
1731 | mutex_unlock(&scan_mutex); |
1732 | if (v) | |
1733 | put_object(v); | |
1734 | } | |
3c7b4e6b CM |
1735 | } |
1736 | ||
1737 | /* | |
1738 | * Print the information for an unreferenced object to the seq file. | |
1739 | */ | |
1740 | static int kmemleak_seq_show(struct seq_file *seq, void *v) | |
1741 | { | |
1742 | struct kmemleak_object *object = v; | |
1743 | unsigned long flags; | |
1744 | ||
1745 | spin_lock_irqsave(&object->lock, flags); | |
288c857d | 1746 | if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) |
17bb9e0d | 1747 | print_unreferenced(seq, object); |
3c7b4e6b CM |
1748 | spin_unlock_irqrestore(&object->lock, flags); |
1749 | return 0; | |
1750 | } | |
1751 | ||
1752 | static const struct seq_operations kmemleak_seq_ops = { | |
1753 | .start = kmemleak_seq_start, | |
1754 | .next = kmemleak_seq_next, | |
1755 | .stop = kmemleak_seq_stop, | |
1756 | .show = kmemleak_seq_show, | |
1757 | }; | |
1758 | ||
1759 | static int kmemleak_open(struct inode *inode, struct file *file) | |
1760 | { | |
b87324d0 | 1761 | return seq_open(file, &kmemleak_seq_ops); |
3c7b4e6b CM |
1762 | } |
1763 | ||
189d84ed CM |
1764 | static int dump_str_object_info(const char *str) |
1765 | { | |
1766 | unsigned long flags; | |
1767 | struct kmemleak_object *object; | |
1768 | unsigned long addr; | |
1769 | ||
dc053733 AP |
1770 | if (kstrtoul(str, 0, &addr)) |
1771 | return -EINVAL; | |
189d84ed CM |
1772 | object = find_and_get_object(addr, 0); |
1773 | if (!object) { | |
1774 | pr_info("Unknown object at 0x%08lx\n", addr); | |
1775 | return -EINVAL; | |
1776 | } | |
1777 | ||
1778 | spin_lock_irqsave(&object->lock, flags); | |
1779 | dump_object_info(object); | |
1780 | spin_unlock_irqrestore(&object->lock, flags); | |
1781 | ||
1782 | put_object(object); | |
1783 | return 0; | |
1784 | } | |
1785 | ||
30b37101 LR |
1786 | /* |
1787 | * We use grey instead of black to ensure we can do future scans on the same | |
1788 | * objects. If we did not do future scans these black objects could | |
1789 | * potentially contain references to newly allocated objects in the future and | |
1790 | * we'd end up with false positives. | |
1791 | */ | |
1792 | static void kmemleak_clear(void) | |
1793 | { | |
1794 | struct kmemleak_object *object; | |
1795 | unsigned long flags; | |
1796 | ||
1797 | rcu_read_lock(); | |
1798 | list_for_each_entry_rcu(object, &object_list, object_list) { | |
1799 | spin_lock_irqsave(&object->lock, flags); | |
1800 | if ((object->flags & OBJECT_REPORTED) && | |
1801 | unreferenced_object(object)) | |
a1084c87 | 1802 | __paint_it(object, KMEMLEAK_GREY); |
30b37101 LR |
1803 | spin_unlock_irqrestore(&object->lock, flags); |
1804 | } | |
1805 | rcu_read_unlock(); | |
dc9b3f42 LZ |
1806 | |
1807 | kmemleak_found_leaks = false; | |
30b37101 LR |
1808 | } |
1809 | ||
c89da70c LZ |
1810 | static void __kmemleak_do_cleanup(void); |
1811 | ||
3c7b4e6b CM |
1812 | /* |
1813 | * File write operation to configure kmemleak at run-time. The following | |
1814 | * commands can be written to the /sys/kernel/debug/kmemleak file: | |
1815 | * off - disable kmemleak (irreversible) | |
1816 | * stack=on - enable the task stacks scanning | |
1817 | * stack=off - disable the tasks stacks scanning | |
1818 | * scan=on - start the automatic memory scanning thread | |
1819 | * scan=off - stop the automatic memory scanning thread | |
1820 | * scan=... - set the automatic memory scanning period in seconds (0 to | |
1821 | * disable it) | |
4698c1f2 | 1822 | * scan - trigger a memory scan |
30b37101 | 1823 | * clear - mark all current reported unreferenced kmemleak objects as |
c89da70c LZ |
1824 | * grey to ignore printing them, or free all kmemleak objects |
1825 | * if kmemleak has been disabled. | |
189d84ed | 1826 | * dump=... - dump information about the object found at the given address |
3c7b4e6b CM |
1827 | */ |
1828 | static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, | |
1829 | size_t size, loff_t *ppos) | |
1830 | { | |
1831 | char buf[64]; | |
1832 | int buf_size; | |
b87324d0 | 1833 | int ret; |
3c7b4e6b CM |
1834 | |
1835 | buf_size = min(size, (sizeof(buf) - 1)); | |
1836 | if (strncpy_from_user(buf, user_buf, buf_size) < 0) | |
1837 | return -EFAULT; | |
1838 | buf[buf_size] = 0; | |
1839 | ||
b87324d0 CM |
1840 | ret = mutex_lock_interruptible(&scan_mutex); |
1841 | if (ret < 0) | |
1842 | return ret; | |
1843 | ||
c89da70c | 1844 | if (strncmp(buf, "clear", 5) == 0) { |
8910ae89 | 1845 | if (kmemleak_enabled) |
c89da70c LZ |
1846 | kmemleak_clear(); |
1847 | else | |
1848 | __kmemleak_do_cleanup(); | |
1849 | goto out; | |
1850 | } | |
1851 | ||
8910ae89 | 1852 | if (!kmemleak_enabled) { |
c89da70c LZ |
1853 | ret = -EBUSY; |
1854 | goto out; | |
1855 | } | |
1856 | ||
3c7b4e6b CM |
1857 | if (strncmp(buf, "off", 3) == 0) |
1858 | kmemleak_disable(); | |
1859 | else if (strncmp(buf, "stack=on", 8) == 0) | |
1860 | kmemleak_stack_scan = 1; | |
1861 | else if (strncmp(buf, "stack=off", 9) == 0) | |
1862 | kmemleak_stack_scan = 0; | |
1863 | else if (strncmp(buf, "scan=on", 7) == 0) | |
1864 | start_scan_thread(); | |
1865 | else if (strncmp(buf, "scan=off", 8) == 0) | |
1866 | stop_scan_thread(); | |
1867 | else if (strncmp(buf, "scan=", 5) == 0) { | |
1868 | unsigned long secs; | |
3c7b4e6b | 1869 | |
3dbb95f7 | 1870 | ret = kstrtoul(buf + 5, 0, &secs); |
b87324d0 CM |
1871 | if (ret < 0) |
1872 | goto out; | |
3c7b4e6b CM |
1873 | stop_scan_thread(); |
1874 | if (secs) { | |
1875 | jiffies_scan_wait = msecs_to_jiffies(secs * 1000); | |
1876 | start_scan_thread(); | |
1877 | } | |
4698c1f2 CM |
1878 | } else if (strncmp(buf, "scan", 4) == 0) |
1879 | kmemleak_scan(); | |
189d84ed CM |
1880 | else if (strncmp(buf, "dump=", 5) == 0) |
1881 | ret = dump_str_object_info(buf + 5); | |
4698c1f2 | 1882 | else |
b87324d0 CM |
1883 | ret = -EINVAL; |
1884 | ||
1885 | out: | |
1886 | mutex_unlock(&scan_mutex); | |
1887 | if (ret < 0) | |
1888 | return ret; | |
3c7b4e6b CM |
1889 | |
1890 | /* ignore the rest of the buffer, only one command at a time */ | |
1891 | *ppos += size; | |
1892 | return size; | |
1893 | } | |
1894 | ||
1895 | static const struct file_operations kmemleak_fops = { | |
1896 | .owner = THIS_MODULE, | |
1897 | .open = kmemleak_open, | |
1898 | .read = seq_read, | |
1899 | .write = kmemleak_write, | |
1900 | .llseek = seq_lseek, | |
5f3bf19a | 1901 | .release = seq_release, |
3c7b4e6b CM |
1902 | }; |
1903 | ||
c89da70c LZ |
1904 | static void __kmemleak_do_cleanup(void) |
1905 | { | |
1906 | struct kmemleak_object *object; | |
1907 | ||
1908 | rcu_read_lock(); | |
1909 | list_for_each_entry_rcu(object, &object_list, object_list) | |
1910 | delete_object_full(object->pointer); | |
1911 | rcu_read_unlock(); | |
1912 | } | |
1913 | ||
3c7b4e6b | 1914 | /* |
74341703 CM |
1915 | * Stop the memory scanning thread and free the kmemleak internal objects if |
1916 | * no previous scan thread (otherwise, kmemleak may still have some useful | |
1917 | * information on memory leaks). | |
3c7b4e6b | 1918 | */ |
179a8100 | 1919 | static void kmemleak_do_cleanup(struct work_struct *work) |
3c7b4e6b | 1920 | { |
3c7b4e6b | 1921 | stop_scan_thread(); |
3c7b4e6b | 1922 | |
914b6dff | 1923 | mutex_lock(&scan_mutex); |
c5f3b1a5 | 1924 | /* |
914b6dff VM |
1925 | * Once it is made sure that kmemleak_scan has stopped, it is safe to no |
1926 | * longer track object freeing. Ordering of the scan thread stopping and | |
1927 | * the memory accesses below is guaranteed by the kthread_stop() | |
1928 | * function. | |
c5f3b1a5 CM |
1929 | */ |
1930 | kmemleak_free_enabled = 0; | |
914b6dff | 1931 | mutex_unlock(&scan_mutex); |
c5f3b1a5 | 1932 | |
c89da70c LZ |
1933 | if (!kmemleak_found_leaks) |
1934 | __kmemleak_do_cleanup(); | |
1935 | else | |
756a025f | 1936 | pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); |
3c7b4e6b CM |
1937 | } |
1938 | ||
179a8100 | 1939 | static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); |
3c7b4e6b CM |
1940 | |
1941 | /* | |
1942 | * Disable kmemleak. No memory allocation/freeing will be traced once this | |
1943 | * function is called. Disabling kmemleak is an irreversible operation. | |
1944 | */ | |
1945 | static void kmemleak_disable(void) | |
1946 | { | |
1947 | /* atomically check whether it was already invoked */ | |
8910ae89 | 1948 | if (cmpxchg(&kmemleak_error, 0, 1)) |
3c7b4e6b CM |
1949 | return; |
1950 | ||
1951 | /* stop any memory operation tracing */ | |
8910ae89 | 1952 | kmemleak_enabled = 0; |
3c7b4e6b CM |
1953 | |
1954 | /* check whether it is too early for a kernel thread */ | |
8910ae89 | 1955 | if (kmemleak_initialized) |
179a8100 | 1956 | schedule_work(&cleanup_work); |
c5f3b1a5 CM |
1957 | else |
1958 | kmemleak_free_enabled = 0; | |
3c7b4e6b CM |
1959 | |
1960 | pr_info("Kernel memory leak detector disabled\n"); | |
1961 | } | |
1962 | ||
1963 | /* | |
1964 | * Allow boot-time kmemleak disabling (enabled by default). | |
1965 | */ | |
1966 | static int kmemleak_boot_config(char *str) | |
1967 | { | |
1968 | if (!str) | |
1969 | return -EINVAL; | |
1970 | if (strcmp(str, "off") == 0) | |
1971 | kmemleak_disable(); | |
ab0155a2 JB |
1972 | else if (strcmp(str, "on") == 0) |
1973 | kmemleak_skip_disable = 1; | |
1974 | else | |
3c7b4e6b CM |
1975 | return -EINVAL; |
1976 | return 0; | |
1977 | } | |
1978 | early_param("kmemleak", kmemleak_boot_config); | |
1979 | ||
5f79020c CM |
1980 | static void __init print_log_trace(struct early_log *log) |
1981 | { | |
1982 | struct stack_trace trace; | |
1983 | ||
1984 | trace.nr_entries = log->trace_len; | |
1985 | trace.entries = log->trace; | |
1986 | ||
1987 | pr_notice("Early log backtrace:\n"); | |
1988 | print_stack_trace(&trace, 2); | |
1989 | } | |
1990 | ||
3c7b4e6b | 1991 | /* |
2030117d | 1992 | * Kmemleak initialization. |
3c7b4e6b CM |
1993 | */ |
1994 | void __init kmemleak_init(void) | |
1995 | { | |
1996 | int i; | |
1997 | unsigned long flags; | |
1998 | ||
ab0155a2 JB |
1999 | #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF |
2000 | if (!kmemleak_skip_disable) { | |
3551a928 | 2001 | kmemleak_early_log = 0; |
ab0155a2 JB |
2002 | kmemleak_disable(); |
2003 | return; | |
2004 | } | |
2005 | #endif | |
2006 | ||
3c7b4e6b CM |
2007 | jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); |
2008 | jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); | |
2009 | ||
2010 | object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); | |
2011 | scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); | |
3c7b4e6b | 2012 | |
21cd3a60 | 2013 | if (crt_early_log > ARRAY_SIZE(early_log)) |
598d8091 JP |
2014 | pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", |
2015 | crt_early_log); | |
b6693005 | 2016 | |
3c7b4e6b CM |
2017 | /* the kernel is still in UP mode, so disabling the IRQs is enough */ |
2018 | local_irq_save(flags); | |
3551a928 | 2019 | kmemleak_early_log = 0; |
8910ae89 | 2020 | if (kmemleak_error) { |
b6693005 CM |
2021 | local_irq_restore(flags); |
2022 | return; | |
c5f3b1a5 | 2023 | } else { |
8910ae89 | 2024 | kmemleak_enabled = 1; |
c5f3b1a5 CM |
2025 | kmemleak_free_enabled = 1; |
2026 | } | |
3c7b4e6b CM |
2027 | local_irq_restore(flags); |
2028 | ||
2029 | /* | |
2030 | * This is the point where tracking allocations is safe. Automatic | |
2031 | * scanning is started during the late initcall. Add the early logged | |
2032 | * callbacks to the kmemleak infrastructure. | |
2033 | */ | |
2034 | for (i = 0; i < crt_early_log; i++) { | |
2035 | struct early_log *log = &early_log[i]; | |
2036 | ||
2037 | switch (log->op_type) { | |
2038 | case KMEMLEAK_ALLOC: | |
fd678967 | 2039 | early_alloc(log); |
3c7b4e6b | 2040 | break; |
f528f0b8 CM |
2041 | case KMEMLEAK_ALLOC_PERCPU: |
2042 | early_alloc_percpu(log); | |
2043 | break; | |
3c7b4e6b CM |
2044 | case KMEMLEAK_FREE: |
2045 | kmemleak_free(log->ptr); | |
2046 | break; | |
53238a60 CM |
2047 | case KMEMLEAK_FREE_PART: |
2048 | kmemleak_free_part(log->ptr, log->size); | |
2049 | break; | |
f528f0b8 CM |
2050 | case KMEMLEAK_FREE_PERCPU: |
2051 | kmemleak_free_percpu(log->ptr); | |
2052 | break; | |
3c7b4e6b CM |
2053 | case KMEMLEAK_NOT_LEAK: |
2054 | kmemleak_not_leak(log->ptr); | |
2055 | break; | |
2056 | case KMEMLEAK_IGNORE: | |
2057 | kmemleak_ignore(log->ptr); | |
2058 | break; | |
2059 | case KMEMLEAK_SCAN_AREA: | |
c017b4be | 2060 | kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL); |
3c7b4e6b CM |
2061 | break; |
2062 | case KMEMLEAK_NO_SCAN: | |
2063 | kmemleak_no_scan(log->ptr); | |
2064 | break; | |
94f4a161 CM |
2065 | case KMEMLEAK_SET_EXCESS_REF: |
2066 | object_set_excess_ref((unsigned long)log->ptr, | |
2067 | log->excess_ref); | |
2068 | break; | |
3c7b4e6b | 2069 | default: |
5f79020c CM |
2070 | kmemleak_warn("Unknown early log operation: %d\n", |
2071 | log->op_type); | |
2072 | } | |
2073 | ||
8910ae89 | 2074 | if (kmemleak_warning) { |
5f79020c | 2075 | print_log_trace(log); |
8910ae89 | 2076 | kmemleak_warning = 0; |
3c7b4e6b CM |
2077 | } |
2078 | } | |
2079 | } | |
2080 | ||
2081 | /* | |
2082 | * Late initialization function. | |
2083 | */ | |
2084 | static int __init kmemleak_late_init(void) | |
2085 | { | |
2086 | struct dentry *dentry; | |
2087 | ||
8910ae89 | 2088 | kmemleak_initialized = 1; |
3c7b4e6b | 2089 | |
8910ae89 | 2090 | if (kmemleak_error) { |
3c7b4e6b | 2091 | /* |
25985edc | 2092 | * Some error occurred and kmemleak was disabled. There is a |
3c7b4e6b CM |
2093 | * small chance that kmemleak_disable() was called immediately |
2094 | * after setting kmemleak_initialized and we may end up with | |
2095 | * two clean-up threads but serialized by scan_mutex. | |
2096 | */ | |
179a8100 | 2097 | schedule_work(&cleanup_work); |
3c7b4e6b CM |
2098 | return -ENOMEM; |
2099 | } | |
2100 | ||
7d6c4dfa | 2101 | dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL, |
3c7b4e6b CM |
2102 | &kmemleak_fops); |
2103 | if (!dentry) | |
598d8091 | 2104 | pr_warn("Failed to create the debugfs kmemleak file\n"); |
4698c1f2 | 2105 | mutex_lock(&scan_mutex); |
3c7b4e6b | 2106 | start_scan_thread(); |
4698c1f2 | 2107 | mutex_unlock(&scan_mutex); |
3c7b4e6b CM |
2108 | |
2109 | pr_info("Kernel memory leak detector initialized\n"); | |
2110 | ||
2111 | return 0; | |
2112 | } | |
2113 | late_initcall(kmemleak_late_init); |