]>
Commit | Line | Data |
---|---|---|
19baf839 RO |
1 | /* |
2 | * This program is free software; you can redistribute it and/or | |
3 | * modify it under the terms of the GNU General Public License | |
4 | * as published by the Free Software Foundation; either version | |
5 | * 2 of the License, or (at your option) any later version. | |
6 | * | |
7 | * Robert Olsson <[email protected]> Uppsala Universitet | |
8 | * & Swedish University of Agricultural Sciences. | |
9 | * | |
e905a9ed | 10 | * Jens Laas <[email protected]> Swedish University of |
19baf839 | 11 | * Agricultural Sciences. |
e905a9ed | 12 | * |
19baf839 RO |
13 | * Hans Liss <[email protected]> Uppsala Universitet |
14 | * | |
25985edc | 15 | * This work is based on the LPC-trie which is originally described in: |
e905a9ed | 16 | * |
19baf839 RO |
17 | * An experimental study of compression methods for dynamic tries |
18 | * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. | |
631dd1a8 | 19 | * http://www.csc.kth.se/~snilsson/software/dyntrie2/ |
19baf839 RO |
20 | * |
21 | * | |
22 | * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson | |
23 | * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 | |
24 | * | |
19baf839 RO |
25 | * |
26 | * Code from fib_hash has been reused which includes the following header: | |
27 | * | |
28 | * | |
29 | * INET An implementation of the TCP/IP protocol suite for the LINUX | |
30 | * operating system. INET is implemented using the BSD Socket | |
31 | * interface as the means of communication with the user level. | |
32 | * | |
33 | * IPv4 FIB: lookup engine and maintenance routines. | |
34 | * | |
35 | * | |
36 | * Authors: Alexey Kuznetsov, <[email protected]> | |
37 | * | |
38 | * This program is free software; you can redistribute it and/or | |
39 | * modify it under the terms of the GNU General Public License | |
40 | * as published by the Free Software Foundation; either version | |
41 | * 2 of the License, or (at your option) any later version. | |
fd966255 RO |
42 | * |
43 | * Substantial contributions to this work comes from: | |
44 | * | |
45 | * David S. Miller, <[email protected]> | |
46 | * Stephen Hemminger <[email protected]> | |
47 | * Paul E. McKenney <[email protected]> | |
48 | * Patrick McHardy <[email protected]> | |
19baf839 RO |
49 | */ |
50 | ||
80b71b80 | 51 | #define VERSION "0.409" |
19baf839 | 52 | |
19baf839 | 53 | #include <asm/uaccess.h> |
1977f032 | 54 | #include <linux/bitops.h> |
19baf839 RO |
55 | #include <linux/types.h> |
56 | #include <linux/kernel.h> | |
19baf839 RO |
57 | #include <linux/mm.h> |
58 | #include <linux/string.h> | |
59 | #include <linux/socket.h> | |
60 | #include <linux/sockios.h> | |
61 | #include <linux/errno.h> | |
62 | #include <linux/in.h> | |
63 | #include <linux/inet.h> | |
cd8787ab | 64 | #include <linux/inetdevice.h> |
19baf839 RO |
65 | #include <linux/netdevice.h> |
66 | #include <linux/if_arp.h> | |
67 | #include <linux/proc_fs.h> | |
2373ce1c | 68 | #include <linux/rcupdate.h> |
19baf839 RO |
69 | #include <linux/skbuff.h> |
70 | #include <linux/netlink.h> | |
71 | #include <linux/init.h> | |
72 | #include <linux/list.h> | |
5a0e3ad6 | 73 | #include <linux/slab.h> |
70c71606 | 74 | #include <linux/prefetch.h> |
bc3b2d7f | 75 | #include <linux/export.h> |
457c4cbc | 76 | #include <net/net_namespace.h> |
19baf839 RO |
77 | #include <net/ip.h> |
78 | #include <net/protocol.h> | |
79 | #include <net/route.h> | |
80 | #include <net/tcp.h> | |
81 | #include <net/sock.h> | |
82 | #include <net/ip_fib.h> | |
83 | #include "fib_lookup.h" | |
84 | ||
06ef921d | 85 | #define MAX_STAT_DEPTH 32 |
19baf839 | 86 | |
19baf839 | 87 | #define KEYLENGTH (8*sizeof(t_key)) |
19baf839 | 88 | |
19baf839 RO |
89 | typedef unsigned int t_key; |
90 | ||
91 | #define T_TNODE 0 | |
92 | #define T_LEAF 1 | |
93 | #define NODE_TYPE_MASK 0x1UL | |
2373ce1c RO |
94 | #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK) |
95 | ||
91b9a277 OJ |
96 | #define IS_TNODE(n) (!(n->parent & T_LEAF)) |
97 | #define IS_LEAF(n) (n->parent & T_LEAF) | |
19baf839 | 98 | |
b299e4f0 | 99 | struct rt_trie_node { |
91b9a277 | 100 | unsigned long parent; |
8d965444 | 101 | t_key key; |
19baf839 RO |
102 | }; |
103 | ||
104 | struct leaf { | |
91b9a277 | 105 | unsigned long parent; |
8d965444 | 106 | t_key key; |
19baf839 | 107 | struct hlist_head list; |
2373ce1c | 108 | struct rcu_head rcu; |
19baf839 RO |
109 | }; |
110 | ||
111 | struct leaf_info { | |
112 | struct hlist_node hlist; | |
113 | int plen; | |
5c74501f | 114 | u32 mask_plen; /* ntohl(inet_make_mask(plen)) */ |
19baf839 | 115 | struct list_head falh; |
5c74501f | 116 | struct rcu_head rcu; |
19baf839 RO |
117 | }; |
118 | ||
119 | struct tnode { | |
91b9a277 | 120 | unsigned long parent; |
8d965444 | 121 | t_key key; |
112d8cfc ED |
122 | unsigned char pos; /* 2log(KEYLENGTH) bits needed */ |
123 | unsigned char bits; /* 2log(KEYLENGTH) bits needed */ | |
8d965444 ED |
124 | unsigned int full_children; /* KEYLENGTH bits needed */ |
125 | unsigned int empty_children; /* KEYLENGTH bits needed */ | |
15be75cd SH |
126 | union { |
127 | struct rcu_head rcu; | |
128 | struct work_struct work; | |
e0f7cb8c | 129 | struct tnode *tnode_free; |
15be75cd | 130 | }; |
0a5c0475 | 131 | struct rt_trie_node __rcu *child[0]; |
19baf839 RO |
132 | }; |
133 | ||
134 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
135 | struct trie_use_stats { | |
136 | unsigned int gets; | |
137 | unsigned int backtrack; | |
138 | unsigned int semantic_match_passed; | |
139 | unsigned int semantic_match_miss; | |
140 | unsigned int null_node_hit; | |
2f36895a | 141 | unsigned int resize_node_skipped; |
19baf839 RO |
142 | }; |
143 | #endif | |
144 | ||
145 | struct trie_stat { | |
146 | unsigned int totdepth; | |
147 | unsigned int maxdepth; | |
148 | unsigned int tnodes; | |
149 | unsigned int leaves; | |
150 | unsigned int nullpointers; | |
93672292 | 151 | unsigned int prefixes; |
06ef921d | 152 | unsigned int nodesizes[MAX_STAT_DEPTH]; |
c877efb2 | 153 | }; |
19baf839 RO |
154 | |
155 | struct trie { | |
0a5c0475 | 156 | struct rt_trie_node __rcu *trie; |
19baf839 RO |
157 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
158 | struct trie_use_stats stats; | |
159 | #endif | |
19baf839 RO |
160 | }; |
161 | ||
b299e4f0 | 162 | static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, |
a07f5f50 | 163 | int wasfull); |
b299e4f0 | 164 | static struct rt_trie_node *resize(struct trie *t, struct tnode *tn); |
2f80b3c8 RO |
165 | static struct tnode *inflate(struct trie *t, struct tnode *tn); |
166 | static struct tnode *halve(struct trie *t, struct tnode *tn); | |
e0f7cb8c JP |
167 | /* tnodes to free after resize(); protected by RTNL */ |
168 | static struct tnode *tnode_free_head; | |
c3059477 JP |
169 | static size_t tnode_free_size; |
170 | ||
171 | /* | |
172 | * synchronize_rcu after call_rcu for that many pages; it should be especially | |
173 | * useful before resizing the root node with PREEMPT_NONE configs; the value was | |
174 | * obtained experimentally, aiming to avoid visible slowdown. | |
175 | */ | |
176 | static const int sync_pages = 128; | |
19baf839 | 177 | |
e18b890b | 178 | static struct kmem_cache *fn_alias_kmem __read_mostly; |
bc3c8c1e | 179 | static struct kmem_cache *trie_leaf_kmem __read_mostly; |
19baf839 | 180 | |
0a5c0475 ED |
181 | /* |
182 | * caller must hold RTNL | |
183 | */ | |
184 | static inline struct tnode *node_parent(const struct rt_trie_node *node) | |
06801916 | 185 | { |
0a5c0475 ED |
186 | unsigned long parent; |
187 | ||
188 | parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held()); | |
189 | ||
190 | return (struct tnode *)(parent & ~NODE_TYPE_MASK); | |
b59cfbf7 ED |
191 | } |
192 | ||
0a5c0475 ED |
193 | /* |
194 | * caller must hold RCU read lock or RTNL | |
195 | */ | |
196 | static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node) | |
b59cfbf7 | 197 | { |
0a5c0475 ED |
198 | unsigned long parent; |
199 | ||
200 | parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() || | |
201 | lockdep_rtnl_is_held()); | |
06801916 | 202 | |
0a5c0475 | 203 | return (struct tnode *)(parent & ~NODE_TYPE_MASK); |
06801916 SH |
204 | } |
205 | ||
cf778b00 | 206 | /* Same as rcu_assign_pointer |
6440cc9e SH |
207 | * but that macro() assumes that value is a pointer. |
208 | */ | |
b299e4f0 | 209 | static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr) |
06801916 | 210 | { |
6440cc9e SH |
211 | smp_wmb(); |
212 | node->parent = (unsigned long)ptr | NODE_TYPE(node); | |
06801916 | 213 | } |
2373ce1c | 214 | |
0a5c0475 ED |
215 | /* |
216 | * caller must hold RTNL | |
217 | */ | |
218 | static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i) | |
b59cfbf7 ED |
219 | { |
220 | BUG_ON(i >= 1U << tn->bits); | |
2373ce1c | 221 | |
0a5c0475 | 222 | return rtnl_dereference(tn->child[i]); |
b59cfbf7 ED |
223 | } |
224 | ||
0a5c0475 ED |
225 | /* |
226 | * caller must hold RCU read lock or RTNL | |
227 | */ | |
228 | static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i) | |
19baf839 | 229 | { |
0a5c0475 | 230 | BUG_ON(i >= 1U << tn->bits); |
19baf839 | 231 | |
0a5c0475 | 232 | return rcu_dereference_rtnl(tn->child[i]); |
19baf839 RO |
233 | } |
234 | ||
bb435b8d | 235 | static inline int tnode_child_length(const struct tnode *tn) |
19baf839 | 236 | { |
91b9a277 | 237 | return 1 << tn->bits; |
19baf839 RO |
238 | } |
239 | ||
3b004569 | 240 | static inline t_key mask_pfx(t_key k, unsigned int l) |
ab66b4a7 SH |
241 | { |
242 | return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l); | |
243 | } | |
244 | ||
3b004569 | 245 | static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits) |
19baf839 | 246 | { |
91b9a277 | 247 | if (offset < KEYLENGTH) |
19baf839 | 248 | return ((t_key)(a << offset)) >> (KEYLENGTH - bits); |
91b9a277 | 249 | else |
19baf839 RO |
250 | return 0; |
251 | } | |
252 | ||
253 | static inline int tkey_equals(t_key a, t_key b) | |
254 | { | |
c877efb2 | 255 | return a == b; |
19baf839 RO |
256 | } |
257 | ||
258 | static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) | |
259 | { | |
c877efb2 SH |
260 | if (bits == 0 || offset >= KEYLENGTH) |
261 | return 1; | |
91b9a277 OJ |
262 | bits = bits > KEYLENGTH ? KEYLENGTH : bits; |
263 | return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; | |
c877efb2 | 264 | } |
19baf839 RO |
265 | |
266 | static inline int tkey_mismatch(t_key a, int offset, t_key b) | |
267 | { | |
268 | t_key diff = a ^ b; | |
269 | int i = offset; | |
270 | ||
c877efb2 SH |
271 | if (!diff) |
272 | return 0; | |
273 | while ((diff << i) >> (KEYLENGTH-1) == 0) | |
19baf839 RO |
274 | i++; |
275 | return i; | |
276 | } | |
277 | ||
19baf839 | 278 | /* |
e905a9ed YH |
279 | To understand this stuff, an understanding of keys and all their bits is |
280 | necessary. Every node in the trie has a key associated with it, but not | |
19baf839 RO |
281 | all of the bits in that key are significant. |
282 | ||
283 | Consider a node 'n' and its parent 'tp'. | |
284 | ||
e905a9ed YH |
285 | If n is a leaf, every bit in its key is significant. Its presence is |
286 | necessitated by path compression, since during a tree traversal (when | |
287 | searching for a leaf - unless we are doing an insertion) we will completely | |
288 | ignore all skipped bits we encounter. Thus we need to verify, at the end of | |
289 | a potentially successful search, that we have indeed been walking the | |
19baf839 RO |
290 | correct key path. |
291 | ||
e905a9ed YH |
292 | Note that we can never "miss" the correct key in the tree if present by |
293 | following the wrong path. Path compression ensures that segments of the key | |
294 | that are the same for all keys with a given prefix are skipped, but the | |
295 | skipped part *is* identical for each node in the subtrie below the skipped | |
296 | bit! trie_insert() in this implementation takes care of that - note the | |
19baf839 RO |
297 | call to tkey_sub_equals() in trie_insert(). |
298 | ||
e905a9ed | 299 | if n is an internal node - a 'tnode' here, the various parts of its key |
19baf839 RO |
300 | have many different meanings. |
301 | ||
e905a9ed | 302 | Example: |
19baf839 RO |
303 | _________________________________________________________________ |
304 | | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | | |
305 | ----------------------------------------------------------------- | |
e905a9ed | 306 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
19baf839 RO |
307 | |
308 | _________________________________________________________________ | |
309 | | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | | |
310 | ----------------------------------------------------------------- | |
311 | 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | |
312 | ||
313 | tp->pos = 7 | |
314 | tp->bits = 3 | |
315 | n->pos = 15 | |
91b9a277 | 316 | n->bits = 4 |
19baf839 | 317 | |
e905a9ed YH |
318 | First, let's just ignore the bits that come before the parent tp, that is |
319 | the bits from 0 to (tp->pos-1). They are *known* but at this point we do | |
19baf839 RO |
320 | not use them for anything. |
321 | ||
322 | The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the | |
e905a9ed | 323 | index into the parent's child array. That is, they will be used to find |
19baf839 RO |
324 | 'n' among tp's children. |
325 | ||
326 | The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits | |
327 | for the node n. | |
328 | ||
e905a9ed | 329 | All the bits we have seen so far are significant to the node n. The rest |
19baf839 RO |
330 | of the bits are really not needed or indeed known in n->key. |
331 | ||
e905a9ed | 332 | The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into |
19baf839 | 333 | n's child array, and will of course be different for each child. |
e905a9ed | 334 | |
c877efb2 | 335 | |
19baf839 RO |
336 | The rest of the bits, from (n->pos + n->bits) onward, are completely unknown |
337 | at this point. | |
338 | ||
339 | */ | |
340 | ||
0c7770c7 | 341 | static inline void check_tnode(const struct tnode *tn) |
19baf839 | 342 | { |
0c7770c7 | 343 | WARN_ON(tn && tn->pos+tn->bits > 32); |
19baf839 RO |
344 | } |
345 | ||
f5026fab DL |
346 | static const int halve_threshold = 25; |
347 | static const int inflate_threshold = 50; | |
345aa031 | 348 | static const int halve_threshold_root = 15; |
80b71b80 | 349 | static const int inflate_threshold_root = 30; |
2373ce1c RO |
350 | |
351 | static void __alias_free_mem(struct rcu_head *head) | |
19baf839 | 352 | { |
2373ce1c RO |
353 | struct fib_alias *fa = container_of(head, struct fib_alias, rcu); |
354 | kmem_cache_free(fn_alias_kmem, fa); | |
19baf839 RO |
355 | } |
356 | ||
2373ce1c | 357 | static inline void alias_free_mem_rcu(struct fib_alias *fa) |
19baf839 | 358 | { |
2373ce1c RO |
359 | call_rcu(&fa->rcu, __alias_free_mem); |
360 | } | |
91b9a277 | 361 | |
2373ce1c RO |
362 | static void __leaf_free_rcu(struct rcu_head *head) |
363 | { | |
bc3c8c1e SH |
364 | struct leaf *l = container_of(head, struct leaf, rcu); |
365 | kmem_cache_free(trie_leaf_kmem, l); | |
2373ce1c | 366 | } |
91b9a277 | 367 | |
387a5487 SH |
368 | static inline void free_leaf(struct leaf *l) |
369 | { | |
0c03eca3 | 370 | call_rcu(&l->rcu, __leaf_free_rcu); |
387a5487 SH |
371 | } |
372 | ||
2373ce1c | 373 | static inline void free_leaf_info(struct leaf_info *leaf) |
19baf839 | 374 | { |
bceb0f45 | 375 | kfree_rcu(leaf, rcu); |
19baf839 RO |
376 | } |
377 | ||
8d965444 | 378 | static struct tnode *tnode_alloc(size_t size) |
f0e36f8c | 379 | { |
2373ce1c | 380 | if (size <= PAGE_SIZE) |
8d965444 | 381 | return kzalloc(size, GFP_KERNEL); |
15be75cd | 382 | else |
7a1c8e5a | 383 | return vzalloc(size); |
15be75cd | 384 | } |
2373ce1c | 385 | |
15be75cd SH |
386 | static void __tnode_vfree(struct work_struct *arg) |
387 | { | |
388 | struct tnode *tn = container_of(arg, struct tnode, work); | |
389 | vfree(tn); | |
f0e36f8c PM |
390 | } |
391 | ||
2373ce1c | 392 | static void __tnode_free_rcu(struct rcu_head *head) |
f0e36f8c | 393 | { |
2373ce1c | 394 | struct tnode *tn = container_of(head, struct tnode, rcu); |
8d965444 | 395 | size_t size = sizeof(struct tnode) + |
b299e4f0 | 396 | (sizeof(struct rt_trie_node *) << tn->bits); |
f0e36f8c PM |
397 | |
398 | if (size <= PAGE_SIZE) | |
399 | kfree(tn); | |
15be75cd SH |
400 | else { |
401 | INIT_WORK(&tn->work, __tnode_vfree); | |
402 | schedule_work(&tn->work); | |
403 | } | |
f0e36f8c PM |
404 | } |
405 | ||
2373ce1c RO |
406 | static inline void tnode_free(struct tnode *tn) |
407 | { | |
387a5487 SH |
408 | if (IS_LEAF(tn)) |
409 | free_leaf((struct leaf *) tn); | |
410 | else | |
550e29bc | 411 | call_rcu(&tn->rcu, __tnode_free_rcu); |
2373ce1c RO |
412 | } |
413 | ||
e0f7cb8c JP |
414 | static void tnode_free_safe(struct tnode *tn) |
415 | { | |
416 | BUG_ON(IS_LEAF(tn)); | |
7b85576d JP |
417 | tn->tnode_free = tnode_free_head; |
418 | tnode_free_head = tn; | |
c3059477 | 419 | tnode_free_size += sizeof(struct tnode) + |
b299e4f0 | 420 | (sizeof(struct rt_trie_node *) << tn->bits); |
e0f7cb8c JP |
421 | } |
422 | ||
423 | static void tnode_free_flush(void) | |
424 | { | |
425 | struct tnode *tn; | |
426 | ||
427 | while ((tn = tnode_free_head)) { | |
428 | tnode_free_head = tn->tnode_free; | |
429 | tn->tnode_free = NULL; | |
430 | tnode_free(tn); | |
431 | } | |
c3059477 JP |
432 | |
433 | if (tnode_free_size >= PAGE_SIZE * sync_pages) { | |
434 | tnode_free_size = 0; | |
435 | synchronize_rcu(); | |
436 | } | |
e0f7cb8c JP |
437 | } |
438 | ||
2373ce1c RO |
439 | static struct leaf *leaf_new(void) |
440 | { | |
bc3c8c1e | 441 | struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); |
2373ce1c RO |
442 | if (l) { |
443 | l->parent = T_LEAF; | |
444 | INIT_HLIST_HEAD(&l->list); | |
445 | } | |
446 | return l; | |
447 | } | |
448 | ||
449 | static struct leaf_info *leaf_info_new(int plen) | |
450 | { | |
451 | struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); | |
452 | if (li) { | |
453 | li->plen = plen; | |
5c74501f | 454 | li->mask_plen = ntohl(inet_make_mask(plen)); |
2373ce1c RO |
455 | INIT_LIST_HEAD(&li->falh); |
456 | } | |
457 | return li; | |
458 | } | |
459 | ||
a07f5f50 | 460 | static struct tnode *tnode_new(t_key key, int pos, int bits) |
19baf839 | 461 | { |
b299e4f0 | 462 | size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits); |
f0e36f8c | 463 | struct tnode *tn = tnode_alloc(sz); |
19baf839 | 464 | |
91b9a277 | 465 | if (tn) { |
2373ce1c | 466 | tn->parent = T_TNODE; |
19baf839 RO |
467 | tn->pos = pos; |
468 | tn->bits = bits; | |
469 | tn->key = key; | |
470 | tn->full_children = 0; | |
471 | tn->empty_children = 1<<bits; | |
472 | } | |
c877efb2 | 473 | |
a034ee3c | 474 | pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode), |
4ea4bf7e | 475 | sizeof(struct rt_trie_node *) << bits); |
19baf839 RO |
476 | return tn; |
477 | } | |
478 | ||
19baf839 RO |
479 | /* |
480 | * Check whether a tnode 'n' is "full", i.e. it is an internal node | |
481 | * and no bits are skipped. See discussion in dyntree paper p. 6 | |
482 | */ | |
483 | ||
b299e4f0 | 484 | static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n) |
19baf839 | 485 | { |
c877efb2 | 486 | if (n == NULL || IS_LEAF(n)) |
19baf839 RO |
487 | return 0; |
488 | ||
489 | return ((struct tnode *) n)->pos == tn->pos + tn->bits; | |
490 | } | |
491 | ||
61648d91 | 492 | static inline void put_child(struct tnode *tn, int i, |
b299e4f0 | 493 | struct rt_trie_node *n) |
19baf839 RO |
494 | { |
495 | tnode_put_child_reorg(tn, i, n, -1); | |
496 | } | |
497 | ||
c877efb2 | 498 | /* |
19baf839 RO |
499 | * Add a child at position i overwriting the old value. |
500 | * Update the value of full_children and empty_children. | |
501 | */ | |
502 | ||
b299e4f0 | 503 | static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, |
a07f5f50 | 504 | int wasfull) |
19baf839 | 505 | { |
0a5c0475 | 506 | struct rt_trie_node *chi = rtnl_dereference(tn->child[i]); |
19baf839 RO |
507 | int isfull; |
508 | ||
0c7770c7 SH |
509 | BUG_ON(i >= 1<<tn->bits); |
510 | ||
19baf839 RO |
511 | /* update emptyChildren */ |
512 | if (n == NULL && chi != NULL) | |
513 | tn->empty_children++; | |
514 | else if (n != NULL && chi == NULL) | |
515 | tn->empty_children--; | |
c877efb2 | 516 | |
19baf839 | 517 | /* update fullChildren */ |
91b9a277 | 518 | if (wasfull == -1) |
19baf839 RO |
519 | wasfull = tnode_full(tn, chi); |
520 | ||
521 | isfull = tnode_full(tn, n); | |
c877efb2 | 522 | if (wasfull && !isfull) |
19baf839 | 523 | tn->full_children--; |
c877efb2 | 524 | else if (!wasfull && isfull) |
19baf839 | 525 | tn->full_children++; |
91b9a277 | 526 | |
c877efb2 | 527 | if (n) |
06801916 | 528 | node_set_parent(n, tn); |
19baf839 | 529 | |
cf778b00 | 530 | rcu_assign_pointer(tn->child[i], n); |
19baf839 RO |
531 | } |
532 | ||
80b71b80 | 533 | #define MAX_WORK 10 |
b299e4f0 | 534 | static struct rt_trie_node *resize(struct trie *t, struct tnode *tn) |
19baf839 RO |
535 | { |
536 | int i; | |
2f80b3c8 | 537 | struct tnode *old_tn; |
e6308be8 RO |
538 | int inflate_threshold_use; |
539 | int halve_threshold_use; | |
80b71b80 | 540 | int max_work; |
19baf839 | 541 | |
e905a9ed | 542 | if (!tn) |
19baf839 RO |
543 | return NULL; |
544 | ||
0c7770c7 SH |
545 | pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", |
546 | tn, inflate_threshold, halve_threshold); | |
19baf839 RO |
547 | |
548 | /* No children */ | |
549 | if (tn->empty_children == tnode_child_length(tn)) { | |
e0f7cb8c | 550 | tnode_free_safe(tn); |
19baf839 RO |
551 | return NULL; |
552 | } | |
553 | /* One child */ | |
554 | if (tn->empty_children == tnode_child_length(tn) - 1) | |
80b71b80 | 555 | goto one_child; |
c877efb2 | 556 | /* |
19baf839 RO |
557 | * Double as long as the resulting node has a number of |
558 | * nonempty nodes that are above the threshold. | |
559 | */ | |
560 | ||
561 | /* | |
c877efb2 SH |
562 | * From "Implementing a dynamic compressed trie" by Stefan Nilsson of |
563 | * the Helsinki University of Technology and Matti Tikkanen of Nokia | |
19baf839 | 564 | * Telecommunications, page 6: |
c877efb2 | 565 | * "A node is doubled if the ratio of non-empty children to all |
19baf839 RO |
566 | * children in the *doubled* node is at least 'high'." |
567 | * | |
c877efb2 SH |
568 | * 'high' in this instance is the variable 'inflate_threshold'. It |
569 | * is expressed as a percentage, so we multiply it with | |
570 | * tnode_child_length() and instead of multiplying by 2 (since the | |
571 | * child array will be doubled by inflate()) and multiplying | |
572 | * the left-hand side by 100 (to handle the percentage thing) we | |
19baf839 | 573 | * multiply the left-hand side by 50. |
c877efb2 SH |
574 | * |
575 | * The left-hand side may look a bit weird: tnode_child_length(tn) | |
576 | * - tn->empty_children is of course the number of non-null children | |
577 | * in the current node. tn->full_children is the number of "full" | |
19baf839 | 578 | * children, that is non-null tnodes with a skip value of 0. |
c877efb2 | 579 | * All of those will be doubled in the resulting inflated tnode, so |
19baf839 | 580 | * we just count them one extra time here. |
c877efb2 | 581 | * |
19baf839 | 582 | * A clearer way to write this would be: |
c877efb2 | 583 | * |
19baf839 | 584 | * to_be_doubled = tn->full_children; |
c877efb2 | 585 | * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - |
19baf839 RO |
586 | * tn->full_children; |
587 | * | |
588 | * new_child_length = tnode_child_length(tn) * 2; | |
589 | * | |
c877efb2 | 590 | * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / |
19baf839 RO |
591 | * new_child_length; |
592 | * if (new_fill_factor >= inflate_threshold) | |
c877efb2 SH |
593 | * |
594 | * ...and so on, tho it would mess up the while () loop. | |
595 | * | |
19baf839 RO |
596 | * anyway, |
597 | * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= | |
598 | * inflate_threshold | |
c877efb2 | 599 | * |
19baf839 RO |
600 | * avoid a division: |
601 | * 100 * (not_to_be_doubled + 2*to_be_doubled) >= | |
602 | * inflate_threshold * new_child_length | |
c877efb2 | 603 | * |
19baf839 | 604 | * expand not_to_be_doubled and to_be_doubled, and shorten: |
c877efb2 | 605 | * 100 * (tnode_child_length(tn) - tn->empty_children + |
91b9a277 | 606 | * tn->full_children) >= inflate_threshold * new_child_length |
c877efb2 | 607 | * |
19baf839 | 608 | * expand new_child_length: |
c877efb2 | 609 | * 100 * (tnode_child_length(tn) - tn->empty_children + |
91b9a277 | 610 | * tn->full_children) >= |
19baf839 | 611 | * inflate_threshold * tnode_child_length(tn) * 2 |
c877efb2 | 612 | * |
19baf839 | 613 | * shorten again: |
c877efb2 | 614 | * 50 * (tn->full_children + tnode_child_length(tn) - |
91b9a277 | 615 | * tn->empty_children) >= inflate_threshold * |
19baf839 | 616 | * tnode_child_length(tn) |
c877efb2 | 617 | * |
19baf839 RO |
618 | */ |
619 | ||
620 | check_tnode(tn); | |
c877efb2 | 621 | |
e6308be8 RO |
622 | /* Keep root node larger */ |
623 | ||
b299e4f0 | 624 | if (!node_parent((struct rt_trie_node *)tn)) { |
80b71b80 JL |
625 | inflate_threshold_use = inflate_threshold_root; |
626 | halve_threshold_use = halve_threshold_root; | |
a034ee3c | 627 | } else { |
e6308be8 | 628 | inflate_threshold_use = inflate_threshold; |
80b71b80 JL |
629 | halve_threshold_use = halve_threshold; |
630 | } | |
e6308be8 | 631 | |
80b71b80 JL |
632 | max_work = MAX_WORK; |
633 | while ((tn->full_children > 0 && max_work-- && | |
a07f5f50 SH |
634 | 50 * (tn->full_children + tnode_child_length(tn) |
635 | - tn->empty_children) | |
636 | >= inflate_threshold_use * tnode_child_length(tn))) { | |
19baf839 | 637 | |
2f80b3c8 RO |
638 | old_tn = tn; |
639 | tn = inflate(t, tn); | |
a07f5f50 | 640 | |
2f80b3c8 RO |
641 | if (IS_ERR(tn)) { |
642 | tn = old_tn; | |
2f36895a RO |
643 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
644 | t->stats.resize_node_skipped++; | |
645 | #endif | |
646 | break; | |
647 | } | |
19baf839 RO |
648 | } |
649 | ||
650 | check_tnode(tn); | |
651 | ||
80b71b80 | 652 | /* Return if at least one inflate is run */ |
a034ee3c | 653 | if (max_work != MAX_WORK) |
b299e4f0 | 654 | return (struct rt_trie_node *) tn; |
80b71b80 | 655 | |
19baf839 RO |
656 | /* |
657 | * Halve as long as the number of empty children in this | |
658 | * node is above threshold. | |
659 | */ | |
2f36895a | 660 | |
80b71b80 JL |
661 | max_work = MAX_WORK; |
662 | while (tn->bits > 1 && max_work-- && | |
19baf839 | 663 | 100 * (tnode_child_length(tn) - tn->empty_children) < |
e6308be8 | 664 | halve_threshold_use * tnode_child_length(tn)) { |
2f36895a | 665 | |
2f80b3c8 RO |
666 | old_tn = tn; |
667 | tn = halve(t, tn); | |
668 | if (IS_ERR(tn)) { | |
669 | tn = old_tn; | |
2f36895a RO |
670 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
671 | t->stats.resize_node_skipped++; | |
672 | #endif | |
673 | break; | |
674 | } | |
675 | } | |
19baf839 | 676 | |
c877efb2 | 677 | |
19baf839 | 678 | /* Only one child remains */ |
80b71b80 JL |
679 | if (tn->empty_children == tnode_child_length(tn) - 1) { |
680 | one_child: | |
19baf839 | 681 | for (i = 0; i < tnode_child_length(tn); i++) { |
b299e4f0 | 682 | struct rt_trie_node *n; |
19baf839 | 683 | |
0a5c0475 | 684 | n = rtnl_dereference(tn->child[i]); |
2373ce1c | 685 | if (!n) |
91b9a277 | 686 | continue; |
91b9a277 OJ |
687 | |
688 | /* compress one level */ | |
689 | ||
06801916 | 690 | node_set_parent(n, NULL); |
e0f7cb8c | 691 | tnode_free_safe(tn); |
91b9a277 | 692 | return n; |
19baf839 | 693 | } |
80b71b80 | 694 | } |
b299e4f0 | 695 | return (struct rt_trie_node *) tn; |
19baf839 RO |
696 | } |
697 | ||
0a5c0475 ED |
698 | |
699 | static void tnode_clean_free(struct tnode *tn) | |
700 | { | |
701 | int i; | |
702 | struct tnode *tofree; | |
703 | ||
704 | for (i = 0; i < tnode_child_length(tn); i++) { | |
705 | tofree = (struct tnode *)rtnl_dereference(tn->child[i]); | |
706 | if (tofree) | |
707 | tnode_free(tofree); | |
708 | } | |
709 | tnode_free(tn); | |
710 | } | |
711 | ||
2f80b3c8 | 712 | static struct tnode *inflate(struct trie *t, struct tnode *tn) |
19baf839 | 713 | { |
19baf839 RO |
714 | struct tnode *oldtnode = tn; |
715 | int olen = tnode_child_length(tn); | |
716 | int i; | |
717 | ||
0c7770c7 | 718 | pr_debug("In inflate\n"); |
19baf839 RO |
719 | |
720 | tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); | |
721 | ||
0c7770c7 | 722 | if (!tn) |
2f80b3c8 | 723 | return ERR_PTR(-ENOMEM); |
2f36895a RO |
724 | |
725 | /* | |
c877efb2 SH |
726 | * Preallocate and store tnodes before the actual work so we |
727 | * don't get into an inconsistent state if memory allocation | |
728 | * fails. In case of failure we return the oldnode and inflate | |
2f36895a RO |
729 | * of tnode is ignored. |
730 | */ | |
91b9a277 OJ |
731 | |
732 | for (i = 0; i < olen; i++) { | |
a07f5f50 | 733 | struct tnode *inode; |
2f36895a | 734 | |
a07f5f50 | 735 | inode = (struct tnode *) tnode_get_child(oldtnode, i); |
2f36895a RO |
736 | if (inode && |
737 | IS_TNODE(inode) && | |
738 | inode->pos == oldtnode->pos + oldtnode->bits && | |
739 | inode->bits > 1) { | |
740 | struct tnode *left, *right; | |
ab66b4a7 | 741 | t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos; |
c877efb2 | 742 | |
2f36895a RO |
743 | left = tnode_new(inode->key&(~m), inode->pos + 1, |
744 | inode->bits - 1); | |
2f80b3c8 RO |
745 | if (!left) |
746 | goto nomem; | |
91b9a277 | 747 | |
2f36895a RO |
748 | right = tnode_new(inode->key|m, inode->pos + 1, |
749 | inode->bits - 1); | |
750 | ||
e905a9ed | 751 | if (!right) { |
2f80b3c8 RO |
752 | tnode_free(left); |
753 | goto nomem; | |
e905a9ed | 754 | } |
2f36895a | 755 | |
61648d91 LM |
756 | put_child(tn, 2*i, (struct rt_trie_node *) left); |
757 | put_child(tn, 2*i+1, (struct rt_trie_node *) right); | |
2f36895a RO |
758 | } |
759 | } | |
760 | ||
91b9a277 | 761 | for (i = 0; i < olen; i++) { |
c95aaf9a | 762 | struct tnode *inode; |
b299e4f0 | 763 | struct rt_trie_node *node = tnode_get_child(oldtnode, i); |
91b9a277 OJ |
764 | struct tnode *left, *right; |
765 | int size, j; | |
c877efb2 | 766 | |
19baf839 RO |
767 | /* An empty child */ |
768 | if (node == NULL) | |
769 | continue; | |
770 | ||
771 | /* A leaf or an internal node with skipped bits */ | |
772 | ||
c877efb2 | 773 | if (IS_LEAF(node) || ((struct tnode *) node)->pos > |
19baf839 | 774 | tn->pos + tn->bits - 1) { |
a07f5f50 SH |
775 | if (tkey_extract_bits(node->key, |
776 | oldtnode->pos + oldtnode->bits, | |
777 | 1) == 0) | |
61648d91 | 778 | put_child(tn, 2*i, node); |
19baf839 | 779 | else |
61648d91 | 780 | put_child(tn, 2*i+1, node); |
19baf839 RO |
781 | continue; |
782 | } | |
783 | ||
784 | /* An internal node with two children */ | |
785 | inode = (struct tnode *) node; | |
786 | ||
787 | if (inode->bits == 1) { | |
61648d91 LM |
788 | put_child(tn, 2*i, rtnl_dereference(inode->child[0])); |
789 | put_child(tn, 2*i+1, rtnl_dereference(inode->child[1])); | |
19baf839 | 790 | |
e0f7cb8c | 791 | tnode_free_safe(inode); |
91b9a277 | 792 | continue; |
19baf839 RO |
793 | } |
794 | ||
91b9a277 OJ |
795 | /* An internal node with more than two children */ |
796 | ||
797 | /* We will replace this node 'inode' with two new | |
798 | * ones, 'left' and 'right', each with half of the | |
799 | * original children. The two new nodes will have | |
800 | * a position one bit further down the key and this | |
801 | * means that the "significant" part of their keys | |
802 | * (see the discussion near the top of this file) | |
803 | * will differ by one bit, which will be "0" in | |
804 | * left's key and "1" in right's key. Since we are | |
805 | * moving the key position by one step, the bit that | |
806 | * we are moving away from - the bit at position | |
807 | * (inode->pos) - is the one that will differ between | |
808 | * left and right. So... we synthesize that bit in the | |
809 | * two new keys. | |
810 | * The mask 'm' below will be a single "one" bit at | |
811 | * the position (inode->pos) | |
812 | */ | |
19baf839 | 813 | |
91b9a277 OJ |
814 | /* Use the old key, but set the new significant |
815 | * bit to zero. | |
816 | */ | |
2f36895a | 817 | |
91b9a277 | 818 | left = (struct tnode *) tnode_get_child(tn, 2*i); |
61648d91 | 819 | put_child(tn, 2*i, NULL); |
2f36895a | 820 | |
91b9a277 | 821 | BUG_ON(!left); |
2f36895a | 822 | |
91b9a277 | 823 | right = (struct tnode *) tnode_get_child(tn, 2*i+1); |
61648d91 | 824 | put_child(tn, 2*i+1, NULL); |
19baf839 | 825 | |
91b9a277 | 826 | BUG_ON(!right); |
19baf839 | 827 | |
91b9a277 OJ |
828 | size = tnode_child_length(left); |
829 | for (j = 0; j < size; j++) { | |
61648d91 LM |
830 | put_child(left, j, rtnl_dereference(inode->child[j])); |
831 | put_child(right, j, rtnl_dereference(inode->child[j + size])); | |
19baf839 | 832 | } |
61648d91 LM |
833 | put_child(tn, 2*i, resize(t, left)); |
834 | put_child(tn, 2*i+1, resize(t, right)); | |
91b9a277 | 835 | |
e0f7cb8c | 836 | tnode_free_safe(inode); |
19baf839 | 837 | } |
e0f7cb8c | 838 | tnode_free_safe(oldtnode); |
19baf839 | 839 | return tn; |
2f80b3c8 | 840 | nomem: |
0a5c0475 ED |
841 | tnode_clean_free(tn); |
842 | return ERR_PTR(-ENOMEM); | |
19baf839 RO |
843 | } |
844 | ||
2f80b3c8 | 845 | static struct tnode *halve(struct trie *t, struct tnode *tn) |
19baf839 RO |
846 | { |
847 | struct tnode *oldtnode = tn; | |
b299e4f0 | 848 | struct rt_trie_node *left, *right; |
19baf839 RO |
849 | int i; |
850 | int olen = tnode_child_length(tn); | |
851 | ||
0c7770c7 | 852 | pr_debug("In halve\n"); |
c877efb2 SH |
853 | |
854 | tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); | |
19baf839 | 855 | |
2f80b3c8 RO |
856 | if (!tn) |
857 | return ERR_PTR(-ENOMEM); | |
2f36895a RO |
858 | |
859 | /* | |
c877efb2 SH |
860 | * Preallocate and store tnodes before the actual work so we |
861 | * don't get into an inconsistent state if memory allocation | |
862 | * fails. In case of failure we return the oldnode and halve | |
2f36895a RO |
863 | * of tnode is ignored. |
864 | */ | |
865 | ||
91b9a277 | 866 | for (i = 0; i < olen; i += 2) { |
2f36895a RO |
867 | left = tnode_get_child(oldtnode, i); |
868 | right = tnode_get_child(oldtnode, i+1); | |
c877efb2 | 869 | |
2f36895a | 870 | /* Two nonempty children */ |
0c7770c7 | 871 | if (left && right) { |
2f80b3c8 | 872 | struct tnode *newn; |
0c7770c7 | 873 | |
2f80b3c8 | 874 | newn = tnode_new(left->key, tn->pos + tn->bits, 1); |
0c7770c7 SH |
875 | |
876 | if (!newn) | |
2f80b3c8 | 877 | goto nomem; |
0c7770c7 | 878 | |
61648d91 | 879 | put_child(tn, i/2, (struct rt_trie_node *)newn); |
2f36895a | 880 | } |
2f36895a | 881 | |
2f36895a | 882 | } |
19baf839 | 883 | |
91b9a277 OJ |
884 | for (i = 0; i < olen; i += 2) { |
885 | struct tnode *newBinNode; | |
886 | ||
19baf839 RO |
887 | left = tnode_get_child(oldtnode, i); |
888 | right = tnode_get_child(oldtnode, i+1); | |
c877efb2 | 889 | |
19baf839 RO |
890 | /* At least one of the children is empty */ |
891 | if (left == NULL) { | |
892 | if (right == NULL) /* Both are empty */ | |
893 | continue; | |
61648d91 | 894 | put_child(tn, i/2, right); |
91b9a277 | 895 | continue; |
0c7770c7 | 896 | } |
91b9a277 OJ |
897 | |
898 | if (right == NULL) { | |
61648d91 | 899 | put_child(tn, i/2, left); |
91b9a277 OJ |
900 | continue; |
901 | } | |
c877efb2 | 902 | |
19baf839 | 903 | /* Two nonempty children */ |
91b9a277 | 904 | newBinNode = (struct tnode *) tnode_get_child(tn, i/2); |
61648d91 LM |
905 | put_child(tn, i/2, NULL); |
906 | put_child(newBinNode, 0, left); | |
907 | put_child(newBinNode, 1, right); | |
908 | put_child(tn, i/2, resize(t, newBinNode)); | |
19baf839 | 909 | } |
e0f7cb8c | 910 | tnode_free_safe(oldtnode); |
19baf839 | 911 | return tn; |
2f80b3c8 | 912 | nomem: |
0a5c0475 ED |
913 | tnode_clean_free(tn); |
914 | return ERR_PTR(-ENOMEM); | |
19baf839 RO |
915 | } |
916 | ||
772cb712 | 917 | /* readside must use rcu_read_lock currently dump routines |
2373ce1c RO |
918 | via get_fa_head and dump */ |
919 | ||
772cb712 | 920 | static struct leaf_info *find_leaf_info(struct leaf *l, int plen) |
19baf839 | 921 | { |
772cb712 | 922 | struct hlist_head *head = &l->list; |
19baf839 RO |
923 | struct hlist_node *node; |
924 | struct leaf_info *li; | |
925 | ||
2373ce1c | 926 | hlist_for_each_entry_rcu(li, node, head, hlist) |
c877efb2 | 927 | if (li->plen == plen) |
19baf839 | 928 | return li; |
91b9a277 | 929 | |
19baf839 RO |
930 | return NULL; |
931 | } | |
932 | ||
a07f5f50 | 933 | static inline struct list_head *get_fa_head(struct leaf *l, int plen) |
19baf839 | 934 | { |
772cb712 | 935 | struct leaf_info *li = find_leaf_info(l, plen); |
c877efb2 | 936 | |
91b9a277 OJ |
937 | if (!li) |
938 | return NULL; | |
c877efb2 | 939 | |
91b9a277 | 940 | return &li->falh; |
19baf839 RO |
941 | } |
942 | ||
943 | static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) | |
944 | { | |
e905a9ed YH |
945 | struct leaf_info *li = NULL, *last = NULL; |
946 | struct hlist_node *node; | |
947 | ||
948 | if (hlist_empty(head)) { | |
949 | hlist_add_head_rcu(&new->hlist, head); | |
950 | } else { | |
951 | hlist_for_each_entry(li, node, head, hlist) { | |
952 | if (new->plen > li->plen) | |
953 | break; | |
954 | ||
955 | last = li; | |
956 | } | |
957 | if (last) | |
958 | hlist_add_after_rcu(&last->hlist, &new->hlist); | |
959 | else | |
960 | hlist_add_before_rcu(&new->hlist, &li->hlist); | |
961 | } | |
19baf839 RO |
962 | } |
963 | ||
2373ce1c RO |
964 | /* rcu_read_lock needs to be hold by caller from readside */ |
965 | ||
19baf839 RO |
966 | static struct leaf * |
967 | fib_find_node(struct trie *t, u32 key) | |
968 | { | |
969 | int pos; | |
970 | struct tnode *tn; | |
b299e4f0 | 971 | struct rt_trie_node *n; |
19baf839 RO |
972 | |
973 | pos = 0; | |
a034ee3c | 974 | n = rcu_dereference_rtnl(t->trie); |
19baf839 RO |
975 | |
976 | while (n != NULL && NODE_TYPE(n) == T_TNODE) { | |
977 | tn = (struct tnode *) n; | |
91b9a277 | 978 | |
19baf839 | 979 | check_tnode(tn); |
91b9a277 | 980 | |
c877efb2 | 981 | if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { |
91b9a277 | 982 | pos = tn->pos + tn->bits; |
a07f5f50 SH |
983 | n = tnode_get_child_rcu(tn, |
984 | tkey_extract_bits(key, | |
985 | tn->pos, | |
986 | tn->bits)); | |
91b9a277 | 987 | } else |
19baf839 RO |
988 | break; |
989 | } | |
990 | /* Case we have found a leaf. Compare prefixes */ | |
991 | ||
91b9a277 OJ |
992 | if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) |
993 | return (struct leaf *)n; | |
994 | ||
19baf839 RO |
995 | return NULL; |
996 | } | |
997 | ||
7b85576d | 998 | static void trie_rebalance(struct trie *t, struct tnode *tn) |
19baf839 | 999 | { |
19baf839 | 1000 | int wasfull; |
3ed18d76 | 1001 | t_key cindex, key; |
06801916 | 1002 | struct tnode *tp; |
19baf839 | 1003 | |
3ed18d76 RO |
1004 | key = tn->key; |
1005 | ||
b299e4f0 | 1006 | while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) { |
19baf839 RO |
1007 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); |
1008 | wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); | |
e3192690 | 1009 | tn = (struct tnode *)resize(t, tn); |
a07f5f50 | 1010 | |
e3192690 | 1011 | tnode_put_child_reorg(tp, cindex, |
b299e4f0 | 1012 | (struct rt_trie_node *)tn, wasfull); |
91b9a277 | 1013 | |
b299e4f0 | 1014 | tp = node_parent((struct rt_trie_node *) tn); |
008440e3 | 1015 | if (!tp) |
cf778b00 | 1016 | rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); |
008440e3 | 1017 | |
e0f7cb8c | 1018 | tnode_free_flush(); |
06801916 | 1019 | if (!tp) |
19baf839 | 1020 | break; |
06801916 | 1021 | tn = tp; |
19baf839 | 1022 | } |
06801916 | 1023 | |
19baf839 | 1024 | /* Handle last (top) tnode */ |
7b85576d | 1025 | if (IS_TNODE(tn)) |
e3192690 | 1026 | tn = (struct tnode *)resize(t, tn); |
19baf839 | 1027 | |
cf778b00 | 1028 | rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); |
7b85576d | 1029 | tnode_free_flush(); |
19baf839 RO |
1030 | } |
1031 | ||
2373ce1c RO |
1032 | /* only used from updater-side */ |
1033 | ||
fea86ad8 | 1034 | static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen) |
19baf839 RO |
1035 | { |
1036 | int pos, newpos; | |
1037 | struct tnode *tp = NULL, *tn = NULL; | |
b299e4f0 | 1038 | struct rt_trie_node *n; |
19baf839 RO |
1039 | struct leaf *l; |
1040 | int missbit; | |
c877efb2 | 1041 | struct list_head *fa_head = NULL; |
19baf839 RO |
1042 | struct leaf_info *li; |
1043 | t_key cindex; | |
1044 | ||
1045 | pos = 0; | |
0a5c0475 | 1046 | n = rtnl_dereference(t->trie); |
19baf839 | 1047 | |
c877efb2 SH |
1048 | /* If we point to NULL, stop. Either the tree is empty and we should |
1049 | * just put a new leaf in if, or we have reached an empty child slot, | |
19baf839 | 1050 | * and we should just put our new leaf in that. |
c877efb2 SH |
1051 | * If we point to a T_TNODE, check if it matches our key. Note that |
1052 | * a T_TNODE might be skipping any number of bits - its 'pos' need | |
19baf839 RO |
1053 | * not be the parent's 'pos'+'bits'! |
1054 | * | |
c877efb2 | 1055 | * If it does match the current key, get pos/bits from it, extract |
19baf839 RO |
1056 | * the index from our key, push the T_TNODE and walk the tree. |
1057 | * | |
1058 | * If it doesn't, we have to replace it with a new T_TNODE. | |
1059 | * | |
c877efb2 SH |
1060 | * If we point to a T_LEAF, it might or might not have the same key |
1061 | * as we do. If it does, just change the value, update the T_LEAF's | |
1062 | * value, and return it. | |
19baf839 RO |
1063 | * If it doesn't, we need to replace it with a T_TNODE. |
1064 | */ | |
1065 | ||
1066 | while (n != NULL && NODE_TYPE(n) == T_TNODE) { | |
1067 | tn = (struct tnode *) n; | |
91b9a277 | 1068 | |
c877efb2 | 1069 | check_tnode(tn); |
91b9a277 | 1070 | |
c877efb2 | 1071 | if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { |
19baf839 | 1072 | tp = tn; |
91b9a277 | 1073 | pos = tn->pos + tn->bits; |
a07f5f50 SH |
1074 | n = tnode_get_child(tn, |
1075 | tkey_extract_bits(key, | |
1076 | tn->pos, | |
1077 | tn->bits)); | |
19baf839 | 1078 | |
06801916 | 1079 | BUG_ON(n && node_parent(n) != tn); |
91b9a277 | 1080 | } else |
19baf839 RO |
1081 | break; |
1082 | } | |
1083 | ||
1084 | /* | |
1085 | * n ----> NULL, LEAF or TNODE | |
1086 | * | |
c877efb2 | 1087 | * tp is n's (parent) ----> NULL or TNODE |
19baf839 RO |
1088 | */ |
1089 | ||
91b9a277 | 1090 | BUG_ON(tp && IS_LEAF(tp)); |
19baf839 RO |
1091 | |
1092 | /* Case 1: n is a leaf. Compare prefixes */ | |
1093 | ||
c877efb2 | 1094 | if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { |
c95aaf9a | 1095 | l = (struct leaf *) n; |
19baf839 | 1096 | li = leaf_info_new(plen); |
91b9a277 | 1097 | |
fea86ad8 SH |
1098 | if (!li) |
1099 | return NULL; | |
19baf839 RO |
1100 | |
1101 | fa_head = &li->falh; | |
1102 | insert_leaf_info(&l->list, li); | |
1103 | goto done; | |
1104 | } | |
19baf839 RO |
1105 | l = leaf_new(); |
1106 | ||
fea86ad8 SH |
1107 | if (!l) |
1108 | return NULL; | |
19baf839 RO |
1109 | |
1110 | l->key = key; | |
1111 | li = leaf_info_new(plen); | |
1112 | ||
c877efb2 | 1113 | if (!li) { |
387a5487 | 1114 | free_leaf(l); |
fea86ad8 | 1115 | return NULL; |
f835e471 | 1116 | } |
19baf839 RO |
1117 | |
1118 | fa_head = &li->falh; | |
1119 | insert_leaf_info(&l->list, li); | |
1120 | ||
19baf839 | 1121 | if (t->trie && n == NULL) { |
91b9a277 | 1122 | /* Case 2: n is NULL, and will just insert a new leaf */ |
19baf839 | 1123 | |
b299e4f0 | 1124 | node_set_parent((struct rt_trie_node *)l, tp); |
19baf839 | 1125 | |
91b9a277 | 1126 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); |
61648d91 | 1127 | put_child(tp, cindex, (struct rt_trie_node *)l); |
91b9a277 OJ |
1128 | } else { |
1129 | /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ | |
c877efb2 SH |
1130 | /* |
1131 | * Add a new tnode here | |
19baf839 RO |
1132 | * first tnode need some special handling |
1133 | */ | |
1134 | ||
1135 | if (tp) | |
91b9a277 | 1136 | pos = tp->pos+tp->bits; |
19baf839 | 1137 | else |
91b9a277 OJ |
1138 | pos = 0; |
1139 | ||
c877efb2 | 1140 | if (n) { |
19baf839 RO |
1141 | newpos = tkey_mismatch(key, pos, n->key); |
1142 | tn = tnode_new(n->key, newpos, 1); | |
91b9a277 | 1143 | } else { |
19baf839 | 1144 | newpos = 0; |
c877efb2 | 1145 | tn = tnode_new(key, newpos, 1); /* First tnode */ |
19baf839 | 1146 | } |
19baf839 | 1147 | |
c877efb2 | 1148 | if (!tn) { |
f835e471 | 1149 | free_leaf_info(li); |
387a5487 | 1150 | free_leaf(l); |
fea86ad8 | 1151 | return NULL; |
91b9a277 OJ |
1152 | } |
1153 | ||
b299e4f0 | 1154 | node_set_parent((struct rt_trie_node *)tn, tp); |
19baf839 | 1155 | |
91b9a277 | 1156 | missbit = tkey_extract_bits(key, newpos, 1); |
61648d91 LM |
1157 | put_child(tn, missbit, (struct rt_trie_node *)l); |
1158 | put_child(tn, 1-missbit, n); | |
19baf839 | 1159 | |
c877efb2 | 1160 | if (tp) { |
19baf839 | 1161 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); |
61648d91 | 1162 | put_child(tp, cindex, (struct rt_trie_node *)tn); |
91b9a277 | 1163 | } else { |
cf778b00 | 1164 | rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); |
19baf839 RO |
1165 | tp = tn; |
1166 | } | |
1167 | } | |
91b9a277 OJ |
1168 | |
1169 | if (tp && tp->pos + tp->bits > 32) | |
058bd4d2 JP |
1170 | pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", |
1171 | tp, tp->pos, tp->bits, key, plen); | |
91b9a277 | 1172 | |
19baf839 | 1173 | /* Rebalance the trie */ |
2373ce1c | 1174 | |
7b85576d | 1175 | trie_rebalance(t, tp); |
f835e471 | 1176 | done: |
19baf839 RO |
1177 | return fa_head; |
1178 | } | |
1179 | ||
d562f1f8 RO |
1180 | /* |
1181 | * Caller must hold RTNL. | |
1182 | */ | |
16c6cf8b | 1183 | int fib_table_insert(struct fib_table *tb, struct fib_config *cfg) |
19baf839 RO |
1184 | { |
1185 | struct trie *t = (struct trie *) tb->tb_data; | |
1186 | struct fib_alias *fa, *new_fa; | |
c877efb2 | 1187 | struct list_head *fa_head = NULL; |
19baf839 | 1188 | struct fib_info *fi; |
4e902c57 TG |
1189 | int plen = cfg->fc_dst_len; |
1190 | u8 tos = cfg->fc_tos; | |
19baf839 RO |
1191 | u32 key, mask; |
1192 | int err; | |
1193 | struct leaf *l; | |
1194 | ||
1195 | if (plen > 32) | |
1196 | return -EINVAL; | |
1197 | ||
4e902c57 | 1198 | key = ntohl(cfg->fc_dst); |
19baf839 | 1199 | |
2dfe55b4 | 1200 | pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); |
19baf839 | 1201 | |
91b9a277 | 1202 | mask = ntohl(inet_make_mask(plen)); |
19baf839 | 1203 | |
c877efb2 | 1204 | if (key & ~mask) |
19baf839 RO |
1205 | return -EINVAL; |
1206 | ||
1207 | key = key & mask; | |
1208 | ||
4e902c57 TG |
1209 | fi = fib_create_info(cfg); |
1210 | if (IS_ERR(fi)) { | |
1211 | err = PTR_ERR(fi); | |
19baf839 | 1212 | goto err; |
4e902c57 | 1213 | } |
19baf839 RO |
1214 | |
1215 | l = fib_find_node(t, key); | |
c877efb2 | 1216 | fa = NULL; |
19baf839 | 1217 | |
c877efb2 | 1218 | if (l) { |
19baf839 RO |
1219 | fa_head = get_fa_head(l, plen); |
1220 | fa = fib_find_alias(fa_head, tos, fi->fib_priority); | |
1221 | } | |
1222 | ||
1223 | /* Now fa, if non-NULL, points to the first fib alias | |
1224 | * with the same keys [prefix,tos,priority], if such key already | |
1225 | * exists or to the node before which we will insert new one. | |
1226 | * | |
1227 | * If fa is NULL, we will need to allocate a new one and | |
1228 | * insert to the head of f. | |
1229 | * | |
1230 | * If f is NULL, no fib node matched the destination key | |
1231 | * and we need to allocate a new one of those as well. | |
1232 | */ | |
1233 | ||
936f6f8e JA |
1234 | if (fa && fa->fa_tos == tos && |
1235 | fa->fa_info->fib_priority == fi->fib_priority) { | |
1236 | struct fib_alias *fa_first, *fa_match; | |
19baf839 RO |
1237 | |
1238 | err = -EEXIST; | |
4e902c57 | 1239 | if (cfg->fc_nlflags & NLM_F_EXCL) |
19baf839 RO |
1240 | goto out; |
1241 | ||
936f6f8e JA |
1242 | /* We have 2 goals: |
1243 | * 1. Find exact match for type, scope, fib_info to avoid | |
1244 | * duplicate routes | |
1245 | * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it | |
1246 | */ | |
1247 | fa_match = NULL; | |
1248 | fa_first = fa; | |
1249 | fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); | |
1250 | list_for_each_entry_continue(fa, fa_head, fa_list) { | |
1251 | if (fa->fa_tos != tos) | |
1252 | break; | |
1253 | if (fa->fa_info->fib_priority != fi->fib_priority) | |
1254 | break; | |
1255 | if (fa->fa_type == cfg->fc_type && | |
936f6f8e JA |
1256 | fa->fa_info == fi) { |
1257 | fa_match = fa; | |
1258 | break; | |
1259 | } | |
1260 | } | |
1261 | ||
4e902c57 | 1262 | if (cfg->fc_nlflags & NLM_F_REPLACE) { |
19baf839 RO |
1263 | struct fib_info *fi_drop; |
1264 | u8 state; | |
1265 | ||
936f6f8e JA |
1266 | fa = fa_first; |
1267 | if (fa_match) { | |
1268 | if (fa == fa_match) | |
1269 | err = 0; | |
6725033f | 1270 | goto out; |
936f6f8e | 1271 | } |
2373ce1c | 1272 | err = -ENOBUFS; |
e94b1766 | 1273 | new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); |
2373ce1c RO |
1274 | if (new_fa == NULL) |
1275 | goto out; | |
19baf839 RO |
1276 | |
1277 | fi_drop = fa->fa_info; | |
2373ce1c RO |
1278 | new_fa->fa_tos = fa->fa_tos; |
1279 | new_fa->fa_info = fi; | |
4e902c57 | 1280 | new_fa->fa_type = cfg->fc_type; |
19baf839 | 1281 | state = fa->fa_state; |
936f6f8e | 1282 | new_fa->fa_state = state & ~FA_S_ACCESSED; |
19baf839 | 1283 | |
2373ce1c RO |
1284 | list_replace_rcu(&fa->fa_list, &new_fa->fa_list); |
1285 | alias_free_mem_rcu(fa); | |
19baf839 RO |
1286 | |
1287 | fib_release_info(fi_drop); | |
1288 | if (state & FA_S_ACCESSED) | |
4ccfe6d4 | 1289 | rt_cache_flush(cfg->fc_nlinfo.nl_net); |
b8f55831 MK |
1290 | rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, |
1291 | tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); | |
19baf839 | 1292 | |
91b9a277 | 1293 | goto succeeded; |
19baf839 RO |
1294 | } |
1295 | /* Error if we find a perfect match which | |
1296 | * uses the same scope, type, and nexthop | |
1297 | * information. | |
1298 | */ | |
936f6f8e JA |
1299 | if (fa_match) |
1300 | goto out; | |
a07f5f50 | 1301 | |
4e902c57 | 1302 | if (!(cfg->fc_nlflags & NLM_F_APPEND)) |
936f6f8e | 1303 | fa = fa_first; |
19baf839 RO |
1304 | } |
1305 | err = -ENOENT; | |
4e902c57 | 1306 | if (!(cfg->fc_nlflags & NLM_F_CREATE)) |
19baf839 RO |
1307 | goto out; |
1308 | ||
1309 | err = -ENOBUFS; | |
e94b1766 | 1310 | new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); |
19baf839 RO |
1311 | if (new_fa == NULL) |
1312 | goto out; | |
1313 | ||
1314 | new_fa->fa_info = fi; | |
1315 | new_fa->fa_tos = tos; | |
4e902c57 | 1316 | new_fa->fa_type = cfg->fc_type; |
19baf839 | 1317 | new_fa->fa_state = 0; |
19baf839 RO |
1318 | /* |
1319 | * Insert new entry to the list. | |
1320 | */ | |
1321 | ||
c877efb2 | 1322 | if (!fa_head) { |
fea86ad8 SH |
1323 | fa_head = fib_insert_node(t, key, plen); |
1324 | if (unlikely(!fa_head)) { | |
1325 | err = -ENOMEM; | |
f835e471 | 1326 | goto out_free_new_fa; |
fea86ad8 | 1327 | } |
f835e471 | 1328 | } |
19baf839 | 1329 | |
21d8c49e DM |
1330 | if (!plen) |
1331 | tb->tb_num_default++; | |
1332 | ||
2373ce1c RO |
1333 | list_add_tail_rcu(&new_fa->fa_list, |
1334 | (fa ? &fa->fa_list : fa_head)); | |
19baf839 | 1335 | |
4ccfe6d4 | 1336 | rt_cache_flush(cfg->fc_nlinfo.nl_net); |
4e902c57 | 1337 | rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, |
b8f55831 | 1338 | &cfg->fc_nlinfo, 0); |
19baf839 RO |
1339 | succeeded: |
1340 | return 0; | |
f835e471 RO |
1341 | |
1342 | out_free_new_fa: | |
1343 | kmem_cache_free(fn_alias_kmem, new_fa); | |
19baf839 RO |
1344 | out: |
1345 | fib_release_info(fi); | |
91b9a277 | 1346 | err: |
19baf839 RO |
1347 | return err; |
1348 | } | |
1349 | ||
772cb712 | 1350 | /* should be called with rcu_read_lock */ |
5b470441 | 1351 | static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l, |
22bd5b9b | 1352 | t_key key, const struct flowi4 *flp, |
ebc0ffae | 1353 | struct fib_result *res, int fib_flags) |
19baf839 | 1354 | { |
19baf839 RO |
1355 | struct leaf_info *li; |
1356 | struct hlist_head *hhead = &l->list; | |
1357 | struct hlist_node *node; | |
c877efb2 | 1358 | |
2373ce1c | 1359 | hlist_for_each_entry_rcu(li, node, hhead, hlist) { |
3be0686b | 1360 | struct fib_alias *fa; |
a07f5f50 | 1361 | |
5c74501f | 1362 | if (l->key != (key & li->mask_plen)) |
19baf839 RO |
1363 | continue; |
1364 | ||
3be0686b DM |
1365 | list_for_each_entry_rcu(fa, &li->falh, fa_list) { |
1366 | struct fib_info *fi = fa->fa_info; | |
1367 | int nhsel, err; | |
a07f5f50 | 1368 | |
22bd5b9b | 1369 | if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) |
3be0686b | 1370 | continue; |
dccd9ecc DM |
1371 | if (fi->fib_dead) |
1372 | continue; | |
37e826c5 | 1373 | if (fa->fa_info->fib_scope < flp->flowi4_scope) |
3be0686b DM |
1374 | continue; |
1375 | fib_alias_accessed(fa); | |
1376 | err = fib_props[fa->fa_type].error; | |
1377 | if (err) { | |
19baf839 | 1378 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
1fbc7843 | 1379 | t->stats.semantic_match_passed++; |
3be0686b | 1380 | #endif |
1fbc7843 | 1381 | return err; |
3be0686b DM |
1382 | } |
1383 | if (fi->fib_flags & RTNH_F_DEAD) | |
1384 | continue; | |
1385 | for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { | |
1386 | const struct fib_nh *nh = &fi->fib_nh[nhsel]; | |
1387 | ||
1388 | if (nh->nh_flags & RTNH_F_DEAD) | |
1389 | continue; | |
22bd5b9b | 1390 | if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif) |
3be0686b DM |
1391 | continue; |
1392 | ||
1393 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1394 | t->stats.semantic_match_passed++; | |
1395 | #endif | |
5c74501f | 1396 | res->prefixlen = li->plen; |
3be0686b DM |
1397 | res->nh_sel = nhsel; |
1398 | res->type = fa->fa_type; | |
37e826c5 | 1399 | res->scope = fa->fa_info->fib_scope; |
3be0686b DM |
1400 | res->fi = fi; |
1401 | res->table = tb; | |
1402 | res->fa_head = &li->falh; | |
1403 | if (!(fib_flags & FIB_LOOKUP_NOREF)) | |
5c74501f | 1404 | atomic_inc(&fi->fib_clntref); |
3be0686b DM |
1405 | return 0; |
1406 | } | |
1407 | } | |
1408 | ||
1409 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1410 | t->stats.semantic_match_miss++; | |
19baf839 | 1411 | #endif |
19baf839 | 1412 | } |
a07f5f50 | 1413 | |
2e655571 | 1414 | return 1; |
19baf839 RO |
1415 | } |
1416 | ||
22bd5b9b | 1417 | int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, |
ebc0ffae | 1418 | struct fib_result *res, int fib_flags) |
19baf839 RO |
1419 | { |
1420 | struct trie *t = (struct trie *) tb->tb_data; | |
2e655571 | 1421 | int ret; |
b299e4f0 | 1422 | struct rt_trie_node *n; |
19baf839 | 1423 | struct tnode *pn; |
3b004569 | 1424 | unsigned int pos, bits; |
22bd5b9b | 1425 | t_key key = ntohl(flp->daddr); |
3b004569 | 1426 | unsigned int chopped_off; |
19baf839 | 1427 | t_key cindex = 0; |
3b004569 | 1428 | unsigned int current_prefix_length = KEYLENGTH; |
91b9a277 | 1429 | struct tnode *cn; |
874ffa8f | 1430 | t_key pref_mismatch; |
91b9a277 | 1431 | |
2373ce1c | 1432 | rcu_read_lock(); |
91b9a277 | 1433 | |
2373ce1c | 1434 | n = rcu_dereference(t->trie); |
c877efb2 | 1435 | if (!n) |
19baf839 RO |
1436 | goto failed; |
1437 | ||
1438 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1439 | t->stats.gets++; | |
1440 | #endif | |
1441 | ||
1442 | /* Just a leaf? */ | |
1443 | if (IS_LEAF(n)) { | |
5b470441 | 1444 | ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); |
a07f5f50 | 1445 | goto found; |
19baf839 | 1446 | } |
a07f5f50 | 1447 | |
19baf839 RO |
1448 | pn = (struct tnode *) n; |
1449 | chopped_off = 0; | |
c877efb2 | 1450 | |
91b9a277 | 1451 | while (pn) { |
19baf839 RO |
1452 | pos = pn->pos; |
1453 | bits = pn->bits; | |
1454 | ||
c877efb2 | 1455 | if (!chopped_off) |
ab66b4a7 SH |
1456 | cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length), |
1457 | pos, bits); | |
19baf839 | 1458 | |
b902e573 | 1459 | n = tnode_get_child_rcu(pn, cindex); |
19baf839 RO |
1460 | |
1461 | if (n == NULL) { | |
1462 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1463 | t->stats.null_node_hit++; | |
1464 | #endif | |
1465 | goto backtrace; | |
1466 | } | |
1467 | ||
91b9a277 | 1468 | if (IS_LEAF(n)) { |
5b470441 | 1469 | ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); |
2e655571 | 1470 | if (ret > 0) |
91b9a277 | 1471 | goto backtrace; |
a07f5f50 | 1472 | goto found; |
91b9a277 OJ |
1473 | } |
1474 | ||
91b9a277 | 1475 | cn = (struct tnode *)n; |
19baf839 | 1476 | |
91b9a277 OJ |
1477 | /* |
1478 | * It's a tnode, and we can do some extra checks here if we | |
1479 | * like, to avoid descending into a dead-end branch. | |
1480 | * This tnode is in the parent's child array at index | |
1481 | * key[p_pos..p_pos+p_bits] but potentially with some bits | |
1482 | * chopped off, so in reality the index may be just a | |
1483 | * subprefix, padded with zero at the end. | |
1484 | * We can also take a look at any skipped bits in this | |
1485 | * tnode - everything up to p_pos is supposed to be ok, | |
1486 | * and the non-chopped bits of the index (se previous | |
1487 | * paragraph) are also guaranteed ok, but the rest is | |
1488 | * considered unknown. | |
1489 | * | |
1490 | * The skipped bits are key[pos+bits..cn->pos]. | |
1491 | */ | |
19baf839 | 1492 | |
91b9a277 OJ |
1493 | /* If current_prefix_length < pos+bits, we are already doing |
1494 | * actual prefix matching, which means everything from | |
1495 | * pos+(bits-chopped_off) onward must be zero along some | |
1496 | * branch of this subtree - otherwise there is *no* valid | |
1497 | * prefix present. Here we can only check the skipped | |
1498 | * bits. Remember, since we have already indexed into the | |
1499 | * parent's child array, we know that the bits we chopped of | |
1500 | * *are* zero. | |
1501 | */ | |
19baf839 | 1502 | |
a07f5f50 SH |
1503 | /* NOTA BENE: Checking only skipped bits |
1504 | for the new node here */ | |
19baf839 | 1505 | |
91b9a277 OJ |
1506 | if (current_prefix_length < pos+bits) { |
1507 | if (tkey_extract_bits(cn->key, current_prefix_length, | |
a07f5f50 SH |
1508 | cn->pos - current_prefix_length) |
1509 | || !(cn->child[0])) | |
91b9a277 OJ |
1510 | goto backtrace; |
1511 | } | |
19baf839 | 1512 | |
91b9a277 OJ |
1513 | /* |
1514 | * If chopped_off=0, the index is fully validated and we | |
1515 | * only need to look at the skipped bits for this, the new, | |
1516 | * tnode. What we actually want to do is to find out if | |
1517 | * these skipped bits match our key perfectly, or if we will | |
1518 | * have to count on finding a matching prefix further down, | |
1519 | * because if we do, we would like to have some way of | |
1520 | * verifying the existence of such a prefix at this point. | |
1521 | */ | |
19baf839 | 1522 | |
91b9a277 OJ |
1523 | /* The only thing we can do at this point is to verify that |
1524 | * any such matching prefix can indeed be a prefix to our | |
1525 | * key, and if the bits in the node we are inspecting that | |
1526 | * do not match our key are not ZERO, this cannot be true. | |
1527 | * Thus, find out where there is a mismatch (before cn->pos) | |
1528 | * and verify that all the mismatching bits are zero in the | |
1529 | * new tnode's key. | |
1530 | */ | |
19baf839 | 1531 | |
a07f5f50 SH |
1532 | /* |
1533 | * Note: We aren't very concerned about the piece of | |
1534 | * the key that precede pn->pos+pn->bits, since these | |
1535 | * have already been checked. The bits after cn->pos | |
1536 | * aren't checked since these are by definition | |
1537 | * "unknown" at this point. Thus, what we want to see | |
1538 | * is if we are about to enter the "prefix matching" | |
1539 | * state, and in that case verify that the skipped | |
1540 | * bits that will prevail throughout this subtree are | |
1541 | * zero, as they have to be if we are to find a | |
1542 | * matching prefix. | |
91b9a277 OJ |
1543 | */ |
1544 | ||
874ffa8f | 1545 | pref_mismatch = mask_pfx(cn->key ^ key, cn->pos); |
91b9a277 | 1546 | |
a07f5f50 SH |
1547 | /* |
1548 | * In short: If skipped bits in this node do not match | |
1549 | * the search key, enter the "prefix matching" | |
1550 | * state.directly. | |
91b9a277 OJ |
1551 | */ |
1552 | if (pref_mismatch) { | |
79cda75a ED |
1553 | /* fls(x) = __fls(x) + 1 */ |
1554 | int mp = KEYLENGTH - __fls(pref_mismatch) - 1; | |
91b9a277 | 1555 | |
874ffa8f | 1556 | if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0) |
91b9a277 OJ |
1557 | goto backtrace; |
1558 | ||
1559 | if (current_prefix_length >= cn->pos) | |
1560 | current_prefix_length = mp; | |
c877efb2 | 1561 | } |
a07f5f50 | 1562 | |
91b9a277 OJ |
1563 | pn = (struct tnode *)n; /* Descend */ |
1564 | chopped_off = 0; | |
1565 | continue; | |
1566 | ||
19baf839 RO |
1567 | backtrace: |
1568 | chopped_off++; | |
1569 | ||
1570 | /* As zero don't change the child key (cindex) */ | |
a07f5f50 SH |
1571 | while ((chopped_off <= pn->bits) |
1572 | && !(cindex & (1<<(chopped_off-1)))) | |
19baf839 | 1573 | chopped_off++; |
19baf839 RO |
1574 | |
1575 | /* Decrease current_... with bits chopped off */ | |
1576 | if (current_prefix_length > pn->pos + pn->bits - chopped_off) | |
a07f5f50 SH |
1577 | current_prefix_length = pn->pos + pn->bits |
1578 | - chopped_off; | |
91b9a277 | 1579 | |
19baf839 | 1580 | /* |
c877efb2 | 1581 | * Either we do the actual chop off according or if we have |
19baf839 RO |
1582 | * chopped off all bits in this tnode walk up to our parent. |
1583 | */ | |
1584 | ||
91b9a277 | 1585 | if (chopped_off <= pn->bits) { |
19baf839 | 1586 | cindex &= ~(1 << (chopped_off-1)); |
91b9a277 | 1587 | } else { |
b299e4f0 | 1588 | struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn); |
06801916 | 1589 | if (!parent) |
19baf839 | 1590 | goto failed; |
91b9a277 | 1591 | |
19baf839 | 1592 | /* Get Child's index */ |
06801916 SH |
1593 | cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits); |
1594 | pn = parent; | |
19baf839 RO |
1595 | chopped_off = 0; |
1596 | ||
1597 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1598 | t->stats.backtrack++; | |
1599 | #endif | |
1600 | goto backtrace; | |
c877efb2 | 1601 | } |
19baf839 RO |
1602 | } |
1603 | failed: | |
c877efb2 | 1604 | ret = 1; |
19baf839 | 1605 | found: |
2373ce1c | 1606 | rcu_read_unlock(); |
19baf839 RO |
1607 | return ret; |
1608 | } | |
6fc01438 | 1609 | EXPORT_SYMBOL_GPL(fib_table_lookup); |
19baf839 | 1610 | |
9195bef7 SH |
1611 | /* |
1612 | * Remove the leaf and return parent. | |
1613 | */ | |
1614 | static void trie_leaf_remove(struct trie *t, struct leaf *l) | |
19baf839 | 1615 | { |
b299e4f0 | 1616 | struct tnode *tp = node_parent((struct rt_trie_node *) l); |
c877efb2 | 1617 | |
9195bef7 | 1618 | pr_debug("entering trie_leaf_remove(%p)\n", l); |
19baf839 | 1619 | |
c877efb2 | 1620 | if (tp) { |
9195bef7 | 1621 | t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits); |
61648d91 | 1622 | put_child(tp, cindex, NULL); |
7b85576d | 1623 | trie_rebalance(t, tp); |
91b9a277 | 1624 | } else |
a9b3cd7f | 1625 | RCU_INIT_POINTER(t->trie, NULL); |
19baf839 | 1626 | |
387a5487 | 1627 | free_leaf(l); |
19baf839 RO |
1628 | } |
1629 | ||
d562f1f8 RO |
1630 | /* |
1631 | * Caller must hold RTNL. | |
1632 | */ | |
16c6cf8b | 1633 | int fib_table_delete(struct fib_table *tb, struct fib_config *cfg) |
19baf839 RO |
1634 | { |
1635 | struct trie *t = (struct trie *) tb->tb_data; | |
1636 | u32 key, mask; | |
4e902c57 TG |
1637 | int plen = cfg->fc_dst_len; |
1638 | u8 tos = cfg->fc_tos; | |
19baf839 RO |
1639 | struct fib_alias *fa, *fa_to_delete; |
1640 | struct list_head *fa_head; | |
1641 | struct leaf *l; | |
91b9a277 OJ |
1642 | struct leaf_info *li; |
1643 | ||
c877efb2 | 1644 | if (plen > 32) |
19baf839 RO |
1645 | return -EINVAL; |
1646 | ||
4e902c57 | 1647 | key = ntohl(cfg->fc_dst); |
91b9a277 | 1648 | mask = ntohl(inet_make_mask(plen)); |
19baf839 | 1649 | |
c877efb2 | 1650 | if (key & ~mask) |
19baf839 RO |
1651 | return -EINVAL; |
1652 | ||
1653 | key = key & mask; | |
1654 | l = fib_find_node(t, key); | |
1655 | ||
c877efb2 | 1656 | if (!l) |
19baf839 RO |
1657 | return -ESRCH; |
1658 | ||
ad5b3102 IM |
1659 | li = find_leaf_info(l, plen); |
1660 | ||
1661 | if (!li) | |
1662 | return -ESRCH; | |
1663 | ||
1664 | fa_head = &li->falh; | |
19baf839 RO |
1665 | fa = fib_find_alias(fa_head, tos, 0); |
1666 | ||
1667 | if (!fa) | |
1668 | return -ESRCH; | |
1669 | ||
0c7770c7 | 1670 | pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); |
19baf839 RO |
1671 | |
1672 | fa_to_delete = NULL; | |
936f6f8e JA |
1673 | fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); |
1674 | list_for_each_entry_continue(fa, fa_head, fa_list) { | |
19baf839 RO |
1675 | struct fib_info *fi = fa->fa_info; |
1676 | ||
1677 | if (fa->fa_tos != tos) | |
1678 | break; | |
1679 | ||
4e902c57 TG |
1680 | if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && |
1681 | (cfg->fc_scope == RT_SCOPE_NOWHERE || | |
37e826c5 | 1682 | fa->fa_info->fib_scope == cfg->fc_scope) && |
74cb3c10 JA |
1683 | (!cfg->fc_prefsrc || |
1684 | fi->fib_prefsrc == cfg->fc_prefsrc) && | |
4e902c57 TG |
1685 | (!cfg->fc_protocol || |
1686 | fi->fib_protocol == cfg->fc_protocol) && | |
1687 | fib_nh_match(cfg, fi) == 0) { | |
19baf839 RO |
1688 | fa_to_delete = fa; |
1689 | break; | |
1690 | } | |
1691 | } | |
1692 | ||
91b9a277 OJ |
1693 | if (!fa_to_delete) |
1694 | return -ESRCH; | |
19baf839 | 1695 | |
91b9a277 | 1696 | fa = fa_to_delete; |
4e902c57 | 1697 | rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, |
b8f55831 | 1698 | &cfg->fc_nlinfo, 0); |
91b9a277 | 1699 | |
2373ce1c | 1700 | list_del_rcu(&fa->fa_list); |
19baf839 | 1701 | |
21d8c49e DM |
1702 | if (!plen) |
1703 | tb->tb_num_default--; | |
1704 | ||
91b9a277 | 1705 | if (list_empty(fa_head)) { |
2373ce1c | 1706 | hlist_del_rcu(&li->hlist); |
91b9a277 | 1707 | free_leaf_info(li); |
2373ce1c | 1708 | } |
19baf839 | 1709 | |
91b9a277 | 1710 | if (hlist_empty(&l->list)) |
9195bef7 | 1711 | trie_leaf_remove(t, l); |
19baf839 | 1712 | |
91b9a277 | 1713 | if (fa->fa_state & FA_S_ACCESSED) |
4ccfe6d4 | 1714 | rt_cache_flush(cfg->fc_nlinfo.nl_net); |
19baf839 | 1715 | |
2373ce1c RO |
1716 | fib_release_info(fa->fa_info); |
1717 | alias_free_mem_rcu(fa); | |
91b9a277 | 1718 | return 0; |
19baf839 RO |
1719 | } |
1720 | ||
ef3660ce | 1721 | static int trie_flush_list(struct list_head *head) |
19baf839 RO |
1722 | { |
1723 | struct fib_alias *fa, *fa_node; | |
1724 | int found = 0; | |
1725 | ||
1726 | list_for_each_entry_safe(fa, fa_node, head, fa_list) { | |
1727 | struct fib_info *fi = fa->fa_info; | |
19baf839 | 1728 | |
2373ce1c RO |
1729 | if (fi && (fi->fib_flags & RTNH_F_DEAD)) { |
1730 | list_del_rcu(&fa->fa_list); | |
1731 | fib_release_info(fa->fa_info); | |
1732 | alias_free_mem_rcu(fa); | |
19baf839 RO |
1733 | found++; |
1734 | } | |
1735 | } | |
1736 | return found; | |
1737 | } | |
1738 | ||
ef3660ce | 1739 | static int trie_flush_leaf(struct leaf *l) |
19baf839 RO |
1740 | { |
1741 | int found = 0; | |
1742 | struct hlist_head *lih = &l->list; | |
1743 | struct hlist_node *node, *tmp; | |
1744 | struct leaf_info *li = NULL; | |
1745 | ||
1746 | hlist_for_each_entry_safe(li, node, tmp, lih, hlist) { | |
ef3660ce | 1747 | found += trie_flush_list(&li->falh); |
19baf839 RO |
1748 | |
1749 | if (list_empty(&li->falh)) { | |
2373ce1c | 1750 | hlist_del_rcu(&li->hlist); |
19baf839 RO |
1751 | free_leaf_info(li); |
1752 | } | |
1753 | } | |
1754 | return found; | |
1755 | } | |
1756 | ||
82cfbb00 SH |
1757 | /* |
1758 | * Scan for the next right leaf starting at node p->child[idx] | |
1759 | * Since we have back pointer, no recursion necessary. | |
1760 | */ | |
b299e4f0 | 1761 | static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c) |
19baf839 | 1762 | { |
82cfbb00 SH |
1763 | do { |
1764 | t_key idx; | |
c877efb2 | 1765 | |
c877efb2 | 1766 | if (c) |
82cfbb00 | 1767 | idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1; |
c877efb2 | 1768 | else |
82cfbb00 | 1769 | idx = 0; |
2373ce1c | 1770 | |
82cfbb00 SH |
1771 | while (idx < 1u << p->bits) { |
1772 | c = tnode_get_child_rcu(p, idx++); | |
2373ce1c | 1773 | if (!c) |
91b9a277 OJ |
1774 | continue; |
1775 | ||
82cfbb00 | 1776 | if (IS_LEAF(c)) { |
0a5c0475 | 1777 | prefetch(rcu_dereference_rtnl(p->child[idx])); |
82cfbb00 | 1778 | return (struct leaf *) c; |
19baf839 | 1779 | } |
82cfbb00 SH |
1780 | |
1781 | /* Rescan start scanning in new node */ | |
1782 | p = (struct tnode *) c; | |
1783 | idx = 0; | |
19baf839 | 1784 | } |
82cfbb00 SH |
1785 | |
1786 | /* Node empty, walk back up to parent */ | |
b299e4f0 | 1787 | c = (struct rt_trie_node *) p; |
a034ee3c | 1788 | } while ((p = node_parent_rcu(c)) != NULL); |
82cfbb00 SH |
1789 | |
1790 | return NULL; /* Root of trie */ | |
1791 | } | |
1792 | ||
82cfbb00 SH |
1793 | static struct leaf *trie_firstleaf(struct trie *t) |
1794 | { | |
a034ee3c | 1795 | struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie); |
82cfbb00 SH |
1796 | |
1797 | if (!n) | |
1798 | return NULL; | |
1799 | ||
1800 | if (IS_LEAF(n)) /* trie is just a leaf */ | |
1801 | return (struct leaf *) n; | |
1802 | ||
1803 | return leaf_walk_rcu(n, NULL); | |
1804 | } | |
1805 | ||
1806 | static struct leaf *trie_nextleaf(struct leaf *l) | |
1807 | { | |
b299e4f0 | 1808 | struct rt_trie_node *c = (struct rt_trie_node *) l; |
b902e573 | 1809 | struct tnode *p = node_parent_rcu(c); |
82cfbb00 SH |
1810 | |
1811 | if (!p) | |
1812 | return NULL; /* trie with just one leaf */ | |
1813 | ||
1814 | return leaf_walk_rcu(p, c); | |
19baf839 RO |
1815 | } |
1816 | ||
71d67e66 SH |
1817 | static struct leaf *trie_leafindex(struct trie *t, int index) |
1818 | { | |
1819 | struct leaf *l = trie_firstleaf(t); | |
1820 | ||
ec28cf73 | 1821 | while (l && index-- > 0) |
71d67e66 | 1822 | l = trie_nextleaf(l); |
ec28cf73 | 1823 | |
71d67e66 SH |
1824 | return l; |
1825 | } | |
1826 | ||
1827 | ||
d562f1f8 RO |
1828 | /* |
1829 | * Caller must hold RTNL. | |
1830 | */ | |
16c6cf8b | 1831 | int fib_table_flush(struct fib_table *tb) |
19baf839 RO |
1832 | { |
1833 | struct trie *t = (struct trie *) tb->tb_data; | |
9195bef7 | 1834 | struct leaf *l, *ll = NULL; |
82cfbb00 | 1835 | int found = 0; |
19baf839 | 1836 | |
82cfbb00 | 1837 | for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) { |
ef3660ce | 1838 | found += trie_flush_leaf(l); |
19baf839 RO |
1839 | |
1840 | if (ll && hlist_empty(&ll->list)) | |
9195bef7 | 1841 | trie_leaf_remove(t, ll); |
19baf839 RO |
1842 | ll = l; |
1843 | } | |
1844 | ||
1845 | if (ll && hlist_empty(&ll->list)) | |
9195bef7 | 1846 | trie_leaf_remove(t, ll); |
19baf839 | 1847 | |
0c7770c7 | 1848 | pr_debug("trie_flush found=%d\n", found); |
19baf839 RO |
1849 | return found; |
1850 | } | |
1851 | ||
4aa2c466 PE |
1852 | void fib_free_table(struct fib_table *tb) |
1853 | { | |
1854 | kfree(tb); | |
1855 | } | |
1856 | ||
a07f5f50 SH |
1857 | static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, |
1858 | struct fib_table *tb, | |
19baf839 RO |
1859 | struct sk_buff *skb, struct netlink_callback *cb) |
1860 | { | |
1861 | int i, s_i; | |
1862 | struct fib_alias *fa; | |
32ab5f80 | 1863 | __be32 xkey = htonl(key); |
19baf839 | 1864 | |
71d67e66 | 1865 | s_i = cb->args[5]; |
19baf839 RO |
1866 | i = 0; |
1867 | ||
2373ce1c RO |
1868 | /* rcu_read_lock is hold by caller */ |
1869 | ||
1870 | list_for_each_entry_rcu(fa, fah, fa_list) { | |
19baf839 RO |
1871 | if (i < s_i) { |
1872 | i++; | |
1873 | continue; | |
1874 | } | |
19baf839 | 1875 | |
15e47304 | 1876 | if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid, |
19baf839 RO |
1877 | cb->nlh->nlmsg_seq, |
1878 | RTM_NEWROUTE, | |
1879 | tb->tb_id, | |
1880 | fa->fa_type, | |
be403ea1 | 1881 | xkey, |
19baf839 RO |
1882 | plen, |
1883 | fa->fa_tos, | |
64347f78 | 1884 | fa->fa_info, NLM_F_MULTI) < 0) { |
71d67e66 | 1885 | cb->args[5] = i; |
19baf839 | 1886 | return -1; |
91b9a277 | 1887 | } |
19baf839 RO |
1888 | i++; |
1889 | } | |
71d67e66 | 1890 | cb->args[5] = i; |
19baf839 RO |
1891 | return skb->len; |
1892 | } | |
1893 | ||
a88ee229 SH |
1894 | static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb, |
1895 | struct sk_buff *skb, struct netlink_callback *cb) | |
19baf839 | 1896 | { |
a88ee229 SH |
1897 | struct leaf_info *li; |
1898 | struct hlist_node *node; | |
1899 | int i, s_i; | |
19baf839 | 1900 | |
71d67e66 | 1901 | s_i = cb->args[4]; |
a88ee229 | 1902 | i = 0; |
19baf839 | 1903 | |
a88ee229 SH |
1904 | /* rcu_read_lock is hold by caller */ |
1905 | hlist_for_each_entry_rcu(li, node, &l->list, hlist) { | |
1906 | if (i < s_i) { | |
1907 | i++; | |
19baf839 | 1908 | continue; |
a88ee229 | 1909 | } |
91b9a277 | 1910 | |
a88ee229 | 1911 | if (i > s_i) |
71d67e66 | 1912 | cb->args[5] = 0; |
19baf839 | 1913 | |
a88ee229 | 1914 | if (list_empty(&li->falh)) |
19baf839 RO |
1915 | continue; |
1916 | ||
a88ee229 | 1917 | if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) { |
71d67e66 | 1918 | cb->args[4] = i; |
19baf839 RO |
1919 | return -1; |
1920 | } | |
a88ee229 | 1921 | i++; |
19baf839 | 1922 | } |
a88ee229 | 1923 | |
71d67e66 | 1924 | cb->args[4] = i; |
19baf839 RO |
1925 | return skb->len; |
1926 | } | |
1927 | ||
16c6cf8b SH |
1928 | int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, |
1929 | struct netlink_callback *cb) | |
19baf839 | 1930 | { |
a88ee229 | 1931 | struct leaf *l; |
19baf839 | 1932 | struct trie *t = (struct trie *) tb->tb_data; |
d5ce8a0e | 1933 | t_key key = cb->args[2]; |
71d67e66 | 1934 | int count = cb->args[3]; |
19baf839 | 1935 | |
2373ce1c | 1936 | rcu_read_lock(); |
d5ce8a0e SH |
1937 | /* Dump starting at last key. |
1938 | * Note: 0.0.0.0/0 (ie default) is first key. | |
1939 | */ | |
71d67e66 | 1940 | if (count == 0) |
d5ce8a0e SH |
1941 | l = trie_firstleaf(t); |
1942 | else { | |
71d67e66 SH |
1943 | /* Normally, continue from last key, but if that is missing |
1944 | * fallback to using slow rescan | |
1945 | */ | |
d5ce8a0e | 1946 | l = fib_find_node(t, key); |
71d67e66 SH |
1947 | if (!l) |
1948 | l = trie_leafindex(t, count); | |
d5ce8a0e | 1949 | } |
a88ee229 | 1950 | |
d5ce8a0e SH |
1951 | while (l) { |
1952 | cb->args[2] = l->key; | |
a88ee229 | 1953 | if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { |
71d67e66 | 1954 | cb->args[3] = count; |
a88ee229 | 1955 | rcu_read_unlock(); |
a88ee229 | 1956 | return -1; |
19baf839 | 1957 | } |
d5ce8a0e | 1958 | |
71d67e66 | 1959 | ++count; |
d5ce8a0e | 1960 | l = trie_nextleaf(l); |
71d67e66 SH |
1961 | memset(&cb->args[4], 0, |
1962 | sizeof(cb->args) - 4*sizeof(cb->args[0])); | |
19baf839 | 1963 | } |
71d67e66 | 1964 | cb->args[3] = count; |
2373ce1c | 1965 | rcu_read_unlock(); |
a88ee229 | 1966 | |
19baf839 | 1967 | return skb->len; |
19baf839 RO |
1968 | } |
1969 | ||
5348ba85 | 1970 | void __init fib_trie_init(void) |
7f9b8052 | 1971 | { |
a07f5f50 SH |
1972 | fn_alias_kmem = kmem_cache_create("ip_fib_alias", |
1973 | sizeof(struct fib_alias), | |
bc3c8c1e SH |
1974 | 0, SLAB_PANIC, NULL); |
1975 | ||
1976 | trie_leaf_kmem = kmem_cache_create("ip_fib_trie", | |
1977 | max(sizeof(struct leaf), | |
1978 | sizeof(struct leaf_info)), | |
1979 | 0, SLAB_PANIC, NULL); | |
7f9b8052 | 1980 | } |
19baf839 | 1981 | |
7f9b8052 | 1982 | |
5348ba85 | 1983 | struct fib_table *fib_trie_table(u32 id) |
19baf839 RO |
1984 | { |
1985 | struct fib_table *tb; | |
1986 | struct trie *t; | |
1987 | ||
19baf839 RO |
1988 | tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), |
1989 | GFP_KERNEL); | |
1990 | if (tb == NULL) | |
1991 | return NULL; | |
1992 | ||
1993 | tb->tb_id = id; | |
971b893e | 1994 | tb->tb_default = -1; |
21d8c49e | 1995 | tb->tb_num_default = 0; |
19baf839 RO |
1996 | |
1997 | t = (struct trie *) tb->tb_data; | |
c28a1cf4 | 1998 | memset(t, 0, sizeof(*t)); |
19baf839 | 1999 | |
19baf839 RO |
2000 | return tb; |
2001 | } | |
2002 | ||
cb7b593c SH |
2003 | #ifdef CONFIG_PROC_FS |
2004 | /* Depth first Trie walk iterator */ | |
2005 | struct fib_trie_iter { | |
1c340b2f | 2006 | struct seq_net_private p; |
3d3b2d25 | 2007 | struct fib_table *tb; |
cb7b593c | 2008 | struct tnode *tnode; |
a034ee3c ED |
2009 | unsigned int index; |
2010 | unsigned int depth; | |
cb7b593c | 2011 | }; |
19baf839 | 2012 | |
b299e4f0 | 2013 | static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter) |
19baf839 | 2014 | { |
cb7b593c | 2015 | struct tnode *tn = iter->tnode; |
a034ee3c | 2016 | unsigned int cindex = iter->index; |
cb7b593c | 2017 | struct tnode *p; |
19baf839 | 2018 | |
6640e697 EB |
2019 | /* A single entry routing table */ |
2020 | if (!tn) | |
2021 | return NULL; | |
2022 | ||
cb7b593c SH |
2023 | pr_debug("get_next iter={node=%p index=%d depth=%d}\n", |
2024 | iter->tnode, iter->index, iter->depth); | |
2025 | rescan: | |
2026 | while (cindex < (1<<tn->bits)) { | |
b299e4f0 | 2027 | struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex); |
19baf839 | 2028 | |
cb7b593c SH |
2029 | if (n) { |
2030 | if (IS_LEAF(n)) { | |
2031 | iter->tnode = tn; | |
2032 | iter->index = cindex + 1; | |
2033 | } else { | |
2034 | /* push down one level */ | |
2035 | iter->tnode = (struct tnode *) n; | |
2036 | iter->index = 0; | |
2037 | ++iter->depth; | |
2038 | } | |
2039 | return n; | |
2040 | } | |
19baf839 | 2041 | |
cb7b593c SH |
2042 | ++cindex; |
2043 | } | |
91b9a277 | 2044 | |
cb7b593c | 2045 | /* Current node exhausted, pop back up */ |
b299e4f0 | 2046 | p = node_parent_rcu((struct rt_trie_node *)tn); |
cb7b593c SH |
2047 | if (p) { |
2048 | cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1; | |
2049 | tn = p; | |
2050 | --iter->depth; | |
2051 | goto rescan; | |
19baf839 | 2052 | } |
cb7b593c SH |
2053 | |
2054 | /* got root? */ | |
2055 | return NULL; | |
19baf839 RO |
2056 | } |
2057 | ||
b299e4f0 | 2058 | static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter, |
cb7b593c | 2059 | struct trie *t) |
19baf839 | 2060 | { |
b299e4f0 | 2061 | struct rt_trie_node *n; |
5ddf0eb2 | 2062 | |
132adf54 | 2063 | if (!t) |
5ddf0eb2 RO |
2064 | return NULL; |
2065 | ||
2066 | n = rcu_dereference(t->trie); | |
3d3b2d25 | 2067 | if (!n) |
5ddf0eb2 | 2068 | return NULL; |
19baf839 | 2069 | |
3d3b2d25 SH |
2070 | if (IS_TNODE(n)) { |
2071 | iter->tnode = (struct tnode *) n; | |
2072 | iter->index = 0; | |
2073 | iter->depth = 1; | |
2074 | } else { | |
2075 | iter->tnode = NULL; | |
2076 | iter->index = 0; | |
2077 | iter->depth = 0; | |
91b9a277 | 2078 | } |
3d3b2d25 SH |
2079 | |
2080 | return n; | |
cb7b593c | 2081 | } |
91b9a277 | 2082 | |
cb7b593c SH |
2083 | static void trie_collect_stats(struct trie *t, struct trie_stat *s) |
2084 | { | |
b299e4f0 | 2085 | struct rt_trie_node *n; |
cb7b593c | 2086 | struct fib_trie_iter iter; |
91b9a277 | 2087 | |
cb7b593c | 2088 | memset(s, 0, sizeof(*s)); |
91b9a277 | 2089 | |
cb7b593c | 2090 | rcu_read_lock(); |
3d3b2d25 | 2091 | for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { |
cb7b593c | 2092 | if (IS_LEAF(n)) { |
93672292 SH |
2093 | struct leaf *l = (struct leaf *)n; |
2094 | struct leaf_info *li; | |
2095 | struct hlist_node *tmp; | |
2096 | ||
cb7b593c SH |
2097 | s->leaves++; |
2098 | s->totdepth += iter.depth; | |
2099 | if (iter.depth > s->maxdepth) | |
2100 | s->maxdepth = iter.depth; | |
93672292 SH |
2101 | |
2102 | hlist_for_each_entry_rcu(li, tmp, &l->list, hlist) | |
2103 | ++s->prefixes; | |
cb7b593c SH |
2104 | } else { |
2105 | const struct tnode *tn = (const struct tnode *) n; | |
2106 | int i; | |
2107 | ||
2108 | s->tnodes++; | |
132adf54 | 2109 | if (tn->bits < MAX_STAT_DEPTH) |
06ef921d RO |
2110 | s->nodesizes[tn->bits]++; |
2111 | ||
cb7b593c SH |
2112 | for (i = 0; i < (1<<tn->bits); i++) |
2113 | if (!tn->child[i]) | |
2114 | s->nullpointers++; | |
19baf839 | 2115 | } |
19baf839 | 2116 | } |
2373ce1c | 2117 | rcu_read_unlock(); |
19baf839 RO |
2118 | } |
2119 | ||
cb7b593c SH |
2120 | /* |
2121 | * This outputs /proc/net/fib_triestats | |
2122 | */ | |
2123 | static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) | |
19baf839 | 2124 | { |
a034ee3c | 2125 | unsigned int i, max, pointers, bytes, avdepth; |
c877efb2 | 2126 | |
cb7b593c SH |
2127 | if (stat->leaves) |
2128 | avdepth = stat->totdepth*100 / stat->leaves; | |
2129 | else | |
2130 | avdepth = 0; | |
91b9a277 | 2131 | |
a07f5f50 SH |
2132 | seq_printf(seq, "\tAver depth: %u.%02d\n", |
2133 | avdepth / 100, avdepth % 100); | |
cb7b593c | 2134 | seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); |
91b9a277 | 2135 | |
cb7b593c | 2136 | seq_printf(seq, "\tLeaves: %u\n", stat->leaves); |
cb7b593c | 2137 | bytes = sizeof(struct leaf) * stat->leaves; |
93672292 SH |
2138 | |
2139 | seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); | |
2140 | bytes += sizeof(struct leaf_info) * stat->prefixes; | |
2141 | ||
187b5188 | 2142 | seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); |
cb7b593c | 2143 | bytes += sizeof(struct tnode) * stat->tnodes; |
19baf839 | 2144 | |
06ef921d RO |
2145 | max = MAX_STAT_DEPTH; |
2146 | while (max > 0 && stat->nodesizes[max-1] == 0) | |
cb7b593c | 2147 | max--; |
19baf839 | 2148 | |
cb7b593c SH |
2149 | pointers = 0; |
2150 | for (i = 1; i <= max; i++) | |
2151 | if (stat->nodesizes[i] != 0) { | |
187b5188 | 2152 | seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); |
cb7b593c SH |
2153 | pointers += (1<<i) * stat->nodesizes[i]; |
2154 | } | |
2155 | seq_putc(seq, '\n'); | |
187b5188 | 2156 | seq_printf(seq, "\tPointers: %u\n", pointers); |
2373ce1c | 2157 | |
b299e4f0 | 2158 | bytes += sizeof(struct rt_trie_node *) * pointers; |
187b5188 SH |
2159 | seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); |
2160 | seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); | |
66a2f7fd | 2161 | } |
2373ce1c | 2162 | |
cb7b593c | 2163 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
66a2f7fd SH |
2164 | static void trie_show_usage(struct seq_file *seq, |
2165 | const struct trie_use_stats *stats) | |
2166 | { | |
2167 | seq_printf(seq, "\nCounters:\n---------\n"); | |
a07f5f50 SH |
2168 | seq_printf(seq, "gets = %u\n", stats->gets); |
2169 | seq_printf(seq, "backtracks = %u\n", stats->backtrack); | |
2170 | seq_printf(seq, "semantic match passed = %u\n", | |
2171 | stats->semantic_match_passed); | |
2172 | seq_printf(seq, "semantic match miss = %u\n", | |
2173 | stats->semantic_match_miss); | |
2174 | seq_printf(seq, "null node hit= %u\n", stats->null_node_hit); | |
2175 | seq_printf(seq, "skipped node resize = %u\n\n", | |
2176 | stats->resize_node_skipped); | |
cb7b593c | 2177 | } |
66a2f7fd SH |
2178 | #endif /* CONFIG_IP_FIB_TRIE_STATS */ |
2179 | ||
3d3b2d25 | 2180 | static void fib_table_print(struct seq_file *seq, struct fib_table *tb) |
d717a9a6 | 2181 | { |
3d3b2d25 SH |
2182 | if (tb->tb_id == RT_TABLE_LOCAL) |
2183 | seq_puts(seq, "Local:\n"); | |
2184 | else if (tb->tb_id == RT_TABLE_MAIN) | |
2185 | seq_puts(seq, "Main:\n"); | |
2186 | else | |
2187 | seq_printf(seq, "Id %d:\n", tb->tb_id); | |
d717a9a6 | 2188 | } |
19baf839 | 2189 | |
3d3b2d25 | 2190 | |
cb7b593c SH |
2191 | static int fib_triestat_seq_show(struct seq_file *seq, void *v) |
2192 | { | |
1c340b2f | 2193 | struct net *net = (struct net *)seq->private; |
3d3b2d25 | 2194 | unsigned int h; |
877a9bff | 2195 | |
d717a9a6 | 2196 | seq_printf(seq, |
a07f5f50 SH |
2197 | "Basic info: size of leaf:" |
2198 | " %Zd bytes, size of tnode: %Zd bytes.\n", | |
d717a9a6 SH |
2199 | sizeof(struct leaf), sizeof(struct tnode)); |
2200 | ||
3d3b2d25 SH |
2201 | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { |
2202 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | |
2203 | struct hlist_node *node; | |
2204 | struct fib_table *tb; | |
2205 | ||
2206 | hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { | |
2207 | struct trie *t = (struct trie *) tb->tb_data; | |
2208 | struct trie_stat stat; | |
877a9bff | 2209 | |
3d3b2d25 SH |
2210 | if (!t) |
2211 | continue; | |
2212 | ||
2213 | fib_table_print(seq, tb); | |
2214 | ||
2215 | trie_collect_stats(t, &stat); | |
2216 | trie_show_stats(seq, &stat); | |
2217 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
2218 | trie_show_usage(seq, &t->stats); | |
2219 | #endif | |
2220 | } | |
2221 | } | |
19baf839 | 2222 | |
cb7b593c | 2223 | return 0; |
19baf839 RO |
2224 | } |
2225 | ||
cb7b593c | 2226 | static int fib_triestat_seq_open(struct inode *inode, struct file *file) |
19baf839 | 2227 | { |
de05c557 | 2228 | return single_open_net(inode, file, fib_triestat_seq_show); |
1c340b2f DL |
2229 | } |
2230 | ||
9a32144e | 2231 | static const struct file_operations fib_triestat_fops = { |
cb7b593c SH |
2232 | .owner = THIS_MODULE, |
2233 | .open = fib_triestat_seq_open, | |
2234 | .read = seq_read, | |
2235 | .llseek = seq_lseek, | |
b6fcbdb4 | 2236 | .release = single_release_net, |
cb7b593c SH |
2237 | }; |
2238 | ||
b299e4f0 | 2239 | static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos) |
19baf839 | 2240 | { |
1218854a YH |
2241 | struct fib_trie_iter *iter = seq->private; |
2242 | struct net *net = seq_file_net(seq); | |
cb7b593c | 2243 | loff_t idx = 0; |
3d3b2d25 | 2244 | unsigned int h; |
cb7b593c | 2245 | |
3d3b2d25 SH |
2246 | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { |
2247 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | |
2248 | struct hlist_node *node; | |
2249 | struct fib_table *tb; | |
cb7b593c | 2250 | |
3d3b2d25 | 2251 | hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { |
b299e4f0 | 2252 | struct rt_trie_node *n; |
3d3b2d25 SH |
2253 | |
2254 | for (n = fib_trie_get_first(iter, | |
2255 | (struct trie *) tb->tb_data); | |
2256 | n; n = fib_trie_get_next(iter)) | |
2257 | if (pos == idx++) { | |
2258 | iter->tb = tb; | |
2259 | return n; | |
2260 | } | |
2261 | } | |
cb7b593c | 2262 | } |
3d3b2d25 | 2263 | |
19baf839 RO |
2264 | return NULL; |
2265 | } | |
2266 | ||
cb7b593c | 2267 | static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) |
c95aaf9a | 2268 | __acquires(RCU) |
19baf839 | 2269 | { |
cb7b593c | 2270 | rcu_read_lock(); |
1218854a | 2271 | return fib_trie_get_idx(seq, *pos); |
19baf839 RO |
2272 | } |
2273 | ||
cb7b593c | 2274 | static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
19baf839 | 2275 | { |
cb7b593c | 2276 | struct fib_trie_iter *iter = seq->private; |
1218854a | 2277 | struct net *net = seq_file_net(seq); |
3d3b2d25 SH |
2278 | struct fib_table *tb = iter->tb; |
2279 | struct hlist_node *tb_node; | |
2280 | unsigned int h; | |
b299e4f0 | 2281 | struct rt_trie_node *n; |
cb7b593c | 2282 | |
19baf839 | 2283 | ++*pos; |
3d3b2d25 SH |
2284 | /* next node in same table */ |
2285 | n = fib_trie_get_next(iter); | |
2286 | if (n) | |
2287 | return n; | |
19baf839 | 2288 | |
3d3b2d25 SH |
2289 | /* walk rest of this hash chain */ |
2290 | h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); | |
0a5c0475 | 2291 | while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { |
3d3b2d25 SH |
2292 | tb = hlist_entry(tb_node, struct fib_table, tb_hlist); |
2293 | n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); | |
2294 | if (n) | |
2295 | goto found; | |
2296 | } | |
19baf839 | 2297 | |
3d3b2d25 SH |
2298 | /* new hash chain */ |
2299 | while (++h < FIB_TABLE_HASHSZ) { | |
2300 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | |
2301 | hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) { | |
2302 | n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); | |
2303 | if (n) | |
2304 | goto found; | |
2305 | } | |
2306 | } | |
cb7b593c | 2307 | return NULL; |
3d3b2d25 SH |
2308 | |
2309 | found: | |
2310 | iter->tb = tb; | |
2311 | return n; | |
cb7b593c | 2312 | } |
19baf839 | 2313 | |
cb7b593c | 2314 | static void fib_trie_seq_stop(struct seq_file *seq, void *v) |
c95aaf9a | 2315 | __releases(RCU) |
19baf839 | 2316 | { |
cb7b593c SH |
2317 | rcu_read_unlock(); |
2318 | } | |
91b9a277 | 2319 | |
cb7b593c SH |
2320 | static void seq_indent(struct seq_file *seq, int n) |
2321 | { | |
a034ee3c ED |
2322 | while (n-- > 0) |
2323 | seq_puts(seq, " "); | |
cb7b593c | 2324 | } |
19baf839 | 2325 | |
28d36e37 | 2326 | static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) |
cb7b593c | 2327 | { |
132adf54 | 2328 | switch (s) { |
cb7b593c SH |
2329 | case RT_SCOPE_UNIVERSE: return "universe"; |
2330 | case RT_SCOPE_SITE: return "site"; | |
2331 | case RT_SCOPE_LINK: return "link"; | |
2332 | case RT_SCOPE_HOST: return "host"; | |
2333 | case RT_SCOPE_NOWHERE: return "nowhere"; | |
2334 | default: | |
28d36e37 | 2335 | snprintf(buf, len, "scope=%d", s); |
cb7b593c SH |
2336 | return buf; |
2337 | } | |
2338 | } | |
19baf839 | 2339 | |
36cbd3dc | 2340 | static const char *const rtn_type_names[__RTN_MAX] = { |
cb7b593c SH |
2341 | [RTN_UNSPEC] = "UNSPEC", |
2342 | [RTN_UNICAST] = "UNICAST", | |
2343 | [RTN_LOCAL] = "LOCAL", | |
2344 | [RTN_BROADCAST] = "BROADCAST", | |
2345 | [RTN_ANYCAST] = "ANYCAST", | |
2346 | [RTN_MULTICAST] = "MULTICAST", | |
2347 | [RTN_BLACKHOLE] = "BLACKHOLE", | |
2348 | [RTN_UNREACHABLE] = "UNREACHABLE", | |
2349 | [RTN_PROHIBIT] = "PROHIBIT", | |
2350 | [RTN_THROW] = "THROW", | |
2351 | [RTN_NAT] = "NAT", | |
2352 | [RTN_XRESOLVE] = "XRESOLVE", | |
2353 | }; | |
19baf839 | 2354 | |
a034ee3c | 2355 | static inline const char *rtn_type(char *buf, size_t len, unsigned int t) |
cb7b593c | 2356 | { |
cb7b593c SH |
2357 | if (t < __RTN_MAX && rtn_type_names[t]) |
2358 | return rtn_type_names[t]; | |
28d36e37 | 2359 | snprintf(buf, len, "type %u", t); |
cb7b593c | 2360 | return buf; |
19baf839 RO |
2361 | } |
2362 | ||
cb7b593c SH |
2363 | /* Pretty print the trie */ |
2364 | static int fib_trie_seq_show(struct seq_file *seq, void *v) | |
19baf839 | 2365 | { |
cb7b593c | 2366 | const struct fib_trie_iter *iter = seq->private; |
b299e4f0 | 2367 | struct rt_trie_node *n = v; |
c877efb2 | 2368 | |
3d3b2d25 SH |
2369 | if (!node_parent_rcu(n)) |
2370 | fib_table_print(seq, iter->tb); | |
095b8501 | 2371 | |
cb7b593c SH |
2372 | if (IS_TNODE(n)) { |
2373 | struct tnode *tn = (struct tnode *) n; | |
ab66b4a7 | 2374 | __be32 prf = htonl(mask_pfx(tn->key, tn->pos)); |
91b9a277 | 2375 | |
1d25cd6c | 2376 | seq_indent(seq, iter->depth-1); |
673d57e7 HH |
2377 | seq_printf(seq, " +-- %pI4/%d %d %d %d\n", |
2378 | &prf, tn->pos, tn->bits, tn->full_children, | |
1d25cd6c | 2379 | tn->empty_children); |
e905a9ed | 2380 | |
cb7b593c SH |
2381 | } else { |
2382 | struct leaf *l = (struct leaf *) n; | |
1328042e SH |
2383 | struct leaf_info *li; |
2384 | struct hlist_node *node; | |
32ab5f80 | 2385 | __be32 val = htonl(l->key); |
cb7b593c SH |
2386 | |
2387 | seq_indent(seq, iter->depth); | |
673d57e7 | 2388 | seq_printf(seq, " |-- %pI4\n", &val); |
1328042e SH |
2389 | |
2390 | hlist_for_each_entry_rcu(li, node, &l->list, hlist) { | |
2391 | struct fib_alias *fa; | |
2392 | ||
2393 | list_for_each_entry_rcu(fa, &li->falh, fa_list) { | |
2394 | char buf1[32], buf2[32]; | |
2395 | ||
2396 | seq_indent(seq, iter->depth+1); | |
2397 | seq_printf(seq, " /%d %s %s", li->plen, | |
2398 | rtn_scope(buf1, sizeof(buf1), | |
37e826c5 | 2399 | fa->fa_info->fib_scope), |
1328042e SH |
2400 | rtn_type(buf2, sizeof(buf2), |
2401 | fa->fa_type)); | |
2402 | if (fa->fa_tos) | |
b9c4d82a | 2403 | seq_printf(seq, " tos=%d", fa->fa_tos); |
1328042e | 2404 | seq_putc(seq, '\n'); |
cb7b593c SH |
2405 | } |
2406 | } | |
19baf839 | 2407 | } |
cb7b593c | 2408 | |
19baf839 RO |
2409 | return 0; |
2410 | } | |
2411 | ||
f690808e | 2412 | static const struct seq_operations fib_trie_seq_ops = { |
cb7b593c SH |
2413 | .start = fib_trie_seq_start, |
2414 | .next = fib_trie_seq_next, | |
2415 | .stop = fib_trie_seq_stop, | |
2416 | .show = fib_trie_seq_show, | |
19baf839 RO |
2417 | }; |
2418 | ||
cb7b593c | 2419 | static int fib_trie_seq_open(struct inode *inode, struct file *file) |
19baf839 | 2420 | { |
1c340b2f DL |
2421 | return seq_open_net(inode, file, &fib_trie_seq_ops, |
2422 | sizeof(struct fib_trie_iter)); | |
19baf839 RO |
2423 | } |
2424 | ||
9a32144e | 2425 | static const struct file_operations fib_trie_fops = { |
cb7b593c SH |
2426 | .owner = THIS_MODULE, |
2427 | .open = fib_trie_seq_open, | |
2428 | .read = seq_read, | |
2429 | .llseek = seq_lseek, | |
1c340b2f | 2430 | .release = seq_release_net, |
19baf839 RO |
2431 | }; |
2432 | ||
8315f5d8 SH |
2433 | struct fib_route_iter { |
2434 | struct seq_net_private p; | |
2435 | struct trie *main_trie; | |
2436 | loff_t pos; | |
2437 | t_key key; | |
2438 | }; | |
2439 | ||
2440 | static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos) | |
2441 | { | |
2442 | struct leaf *l = NULL; | |
2443 | struct trie *t = iter->main_trie; | |
2444 | ||
2445 | /* use cache location of last found key */ | |
2446 | if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key))) | |
2447 | pos -= iter->pos; | |
2448 | else { | |
2449 | iter->pos = 0; | |
2450 | l = trie_firstleaf(t); | |
2451 | } | |
2452 | ||
2453 | while (l && pos-- > 0) { | |
2454 | iter->pos++; | |
2455 | l = trie_nextleaf(l); | |
2456 | } | |
2457 | ||
2458 | if (l) | |
2459 | iter->key = pos; /* remember it */ | |
2460 | else | |
2461 | iter->pos = 0; /* forget it */ | |
2462 | ||
2463 | return l; | |
2464 | } | |
2465 | ||
2466 | static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) | |
2467 | __acquires(RCU) | |
2468 | { | |
2469 | struct fib_route_iter *iter = seq->private; | |
2470 | struct fib_table *tb; | |
2471 | ||
2472 | rcu_read_lock(); | |
1218854a | 2473 | tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); |
8315f5d8 SH |
2474 | if (!tb) |
2475 | return NULL; | |
2476 | ||
2477 | iter->main_trie = (struct trie *) tb->tb_data; | |
2478 | if (*pos == 0) | |
2479 | return SEQ_START_TOKEN; | |
2480 | else | |
2481 | return fib_route_get_idx(iter, *pos - 1); | |
2482 | } | |
2483 | ||
2484 | static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) | |
2485 | { | |
2486 | struct fib_route_iter *iter = seq->private; | |
2487 | struct leaf *l = v; | |
2488 | ||
2489 | ++*pos; | |
2490 | if (v == SEQ_START_TOKEN) { | |
2491 | iter->pos = 0; | |
2492 | l = trie_firstleaf(iter->main_trie); | |
2493 | } else { | |
2494 | iter->pos++; | |
2495 | l = trie_nextleaf(l); | |
2496 | } | |
2497 | ||
2498 | if (l) | |
2499 | iter->key = l->key; | |
2500 | else | |
2501 | iter->pos = 0; | |
2502 | return l; | |
2503 | } | |
2504 | ||
2505 | static void fib_route_seq_stop(struct seq_file *seq, void *v) | |
2506 | __releases(RCU) | |
2507 | { | |
2508 | rcu_read_unlock(); | |
2509 | } | |
2510 | ||
a034ee3c | 2511 | static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) |
19baf839 | 2512 | { |
a034ee3c | 2513 | unsigned int flags = 0; |
19baf839 | 2514 | |
a034ee3c ED |
2515 | if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) |
2516 | flags = RTF_REJECT; | |
cb7b593c SH |
2517 | if (fi && fi->fib_nh->nh_gw) |
2518 | flags |= RTF_GATEWAY; | |
32ab5f80 | 2519 | if (mask == htonl(0xFFFFFFFF)) |
cb7b593c SH |
2520 | flags |= RTF_HOST; |
2521 | flags |= RTF_UP; | |
2522 | return flags; | |
19baf839 RO |
2523 | } |
2524 | ||
cb7b593c SH |
2525 | /* |
2526 | * This outputs /proc/net/route. | |
2527 | * The format of the file is not supposed to be changed | |
a034ee3c | 2528 | * and needs to be same as fib_hash output to avoid breaking |
cb7b593c SH |
2529 | * legacy utilities |
2530 | */ | |
2531 | static int fib_route_seq_show(struct seq_file *seq, void *v) | |
19baf839 | 2532 | { |
cb7b593c | 2533 | struct leaf *l = v; |
1328042e SH |
2534 | struct leaf_info *li; |
2535 | struct hlist_node *node; | |
19baf839 | 2536 | |
cb7b593c SH |
2537 | if (v == SEQ_START_TOKEN) { |
2538 | seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " | |
2539 | "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" | |
2540 | "\tWindow\tIRTT"); | |
2541 | return 0; | |
2542 | } | |
19baf839 | 2543 | |
1328042e | 2544 | hlist_for_each_entry_rcu(li, node, &l->list, hlist) { |
cb7b593c | 2545 | struct fib_alias *fa; |
32ab5f80 | 2546 | __be32 mask, prefix; |
91b9a277 | 2547 | |
cb7b593c SH |
2548 | mask = inet_make_mask(li->plen); |
2549 | prefix = htonl(l->key); | |
19baf839 | 2550 | |
cb7b593c | 2551 | list_for_each_entry_rcu(fa, &li->falh, fa_list) { |
1371e37d | 2552 | const struct fib_info *fi = fa->fa_info; |
a034ee3c | 2553 | unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); |
5e659e4c | 2554 | int len; |
19baf839 | 2555 | |
cb7b593c SH |
2556 | if (fa->fa_type == RTN_BROADCAST |
2557 | || fa->fa_type == RTN_MULTICAST) | |
2558 | continue; | |
19baf839 | 2559 | |
cb7b593c | 2560 | if (fi) |
5e659e4c PE |
2561 | seq_printf(seq, |
2562 | "%s\t%08X\t%08X\t%04X\t%d\t%u\t" | |
2563 | "%d\t%08X\t%d\t%u\t%u%n", | |
cb7b593c SH |
2564 | fi->fib_dev ? fi->fib_dev->name : "*", |
2565 | prefix, | |
2566 | fi->fib_nh->nh_gw, flags, 0, 0, | |
2567 | fi->fib_priority, | |
2568 | mask, | |
a07f5f50 SH |
2569 | (fi->fib_advmss ? |
2570 | fi->fib_advmss + 40 : 0), | |
cb7b593c | 2571 | fi->fib_window, |
5e659e4c | 2572 | fi->fib_rtt >> 3, &len); |
cb7b593c | 2573 | else |
5e659e4c PE |
2574 | seq_printf(seq, |
2575 | "*\t%08X\t%08X\t%04X\t%d\t%u\t" | |
2576 | "%d\t%08X\t%d\t%u\t%u%n", | |
cb7b593c | 2577 | prefix, 0, flags, 0, 0, 0, |
5e659e4c | 2578 | mask, 0, 0, 0, &len); |
19baf839 | 2579 | |
5e659e4c | 2580 | seq_printf(seq, "%*s\n", 127 - len, ""); |
cb7b593c | 2581 | } |
19baf839 RO |
2582 | } |
2583 | ||
2584 | return 0; | |
2585 | } | |
2586 | ||
f690808e | 2587 | static const struct seq_operations fib_route_seq_ops = { |
8315f5d8 SH |
2588 | .start = fib_route_seq_start, |
2589 | .next = fib_route_seq_next, | |
2590 | .stop = fib_route_seq_stop, | |
cb7b593c | 2591 | .show = fib_route_seq_show, |
19baf839 RO |
2592 | }; |
2593 | ||
cb7b593c | 2594 | static int fib_route_seq_open(struct inode *inode, struct file *file) |
19baf839 | 2595 | { |
1c340b2f | 2596 | return seq_open_net(inode, file, &fib_route_seq_ops, |
8315f5d8 | 2597 | sizeof(struct fib_route_iter)); |
19baf839 RO |
2598 | } |
2599 | ||
9a32144e | 2600 | static const struct file_operations fib_route_fops = { |
cb7b593c SH |
2601 | .owner = THIS_MODULE, |
2602 | .open = fib_route_seq_open, | |
2603 | .read = seq_read, | |
2604 | .llseek = seq_lseek, | |
1c340b2f | 2605 | .release = seq_release_net, |
19baf839 RO |
2606 | }; |
2607 | ||
61a02653 | 2608 | int __net_init fib_proc_init(struct net *net) |
19baf839 | 2609 | { |
61a02653 | 2610 | if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops)) |
cb7b593c SH |
2611 | goto out1; |
2612 | ||
61a02653 DL |
2613 | if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO, |
2614 | &fib_triestat_fops)) | |
cb7b593c SH |
2615 | goto out2; |
2616 | ||
61a02653 | 2617 | if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops)) |
cb7b593c SH |
2618 | goto out3; |
2619 | ||
19baf839 | 2620 | return 0; |
cb7b593c SH |
2621 | |
2622 | out3: | |
61a02653 | 2623 | proc_net_remove(net, "fib_triestat"); |
cb7b593c | 2624 | out2: |
61a02653 | 2625 | proc_net_remove(net, "fib_trie"); |
cb7b593c SH |
2626 | out1: |
2627 | return -ENOMEM; | |
19baf839 RO |
2628 | } |
2629 | ||
61a02653 | 2630 | void __net_exit fib_proc_exit(struct net *net) |
19baf839 | 2631 | { |
61a02653 DL |
2632 | proc_net_remove(net, "fib_trie"); |
2633 | proc_net_remove(net, "fib_triestat"); | |
2634 | proc_net_remove(net, "route"); | |
19baf839 RO |
2635 | } |
2636 | ||
2637 | #endif /* CONFIG_PROC_FS */ |