]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
3e57ecf6 | 2 | * Copyright (c) 2000-2006 Silicon Graphics, Inc. |
7b718769 | 3 | * All Rights Reserved. |
1da177e4 | 4 | * |
7b718769 NS |
5 | * This program is free software; you can redistribute it and/or |
6 | * modify it under the terms of the GNU General Public License as | |
1da177e4 LT |
7 | * published by the Free Software Foundation. |
8 | * | |
7b718769 NS |
9 | * This program is distributed in the hope that it would be useful, |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
12 | * GNU General Public License for more details. | |
1da177e4 | 13 | * |
7b718769 NS |
14 | * You should have received a copy of the GNU General Public License |
15 | * along with this program; if not, write the Free Software Foundation, | |
16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |
1da177e4 | 17 | */ |
40ebd81d RD |
18 | #include <linux/log2.h> |
19 | ||
1da177e4 | 20 | #include "xfs.h" |
a844f451 | 21 | #include "xfs_fs.h" |
1da177e4 | 22 | #include "xfs_types.h" |
a844f451 | 23 | #include "xfs_bit.h" |
1da177e4 | 24 | #include "xfs_log.h" |
a844f451 | 25 | #include "xfs_inum.h" |
1da177e4 LT |
26 | #include "xfs_trans.h" |
27 | #include "xfs_trans_priv.h" | |
28 | #include "xfs_sb.h" | |
29 | #include "xfs_ag.h" | |
1da177e4 | 30 | #include "xfs_mount.h" |
1da177e4 | 31 | #include "xfs_bmap_btree.h" |
a844f451 | 32 | #include "xfs_alloc_btree.h" |
1da177e4 | 33 | #include "xfs_ialloc_btree.h" |
a844f451 | 34 | #include "xfs_attr_sf.h" |
1da177e4 | 35 | #include "xfs_dinode.h" |
1da177e4 | 36 | #include "xfs_inode.h" |
1da177e4 | 37 | #include "xfs_buf_item.h" |
a844f451 NS |
38 | #include "xfs_inode_item.h" |
39 | #include "xfs_btree.h" | |
8c4ed633 | 40 | #include "xfs_btree_trace.h" |
a844f451 NS |
41 | #include "xfs_alloc.h" |
42 | #include "xfs_ialloc.h" | |
43 | #include "xfs_bmap.h" | |
1da177e4 | 44 | #include "xfs_error.h" |
1da177e4 | 45 | #include "xfs_utils.h" |
1da177e4 | 46 | #include "xfs_quota.h" |
2a82b8be | 47 | #include "xfs_filestream.h" |
739bfb2a | 48 | #include "xfs_vnodeops.h" |
0b1b213f | 49 | #include "xfs_trace.h" |
1da177e4 | 50 | |
1da177e4 LT |
51 | kmem_zone_t *xfs_ifork_zone; |
52 | kmem_zone_t *xfs_inode_zone; | |
1da177e4 LT |
53 | |
54 | /* | |
55 | * Used in xfs_itruncate(). This is the maximum number of extents | |
56 | * freed from a file in a single transaction. | |
57 | */ | |
58 | #define XFS_ITRUNC_MAX_EXTENTS 2 | |
59 | ||
60 | STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); | |
61 | STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); | |
62 | STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); | |
63 | STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); | |
64 | ||
1da177e4 LT |
65 | #ifdef DEBUG |
66 | /* | |
67 | * Make sure that the extents in the given memory buffer | |
68 | * are valid. | |
69 | */ | |
70 | STATIC void | |
71 | xfs_validate_extents( | |
4eea22f0 | 72 | xfs_ifork_t *ifp, |
1da177e4 | 73 | int nrecs, |
1da177e4 LT |
74 | xfs_exntfmt_t fmt) |
75 | { | |
76 | xfs_bmbt_irec_t irec; | |
a6f64d4a | 77 | xfs_bmbt_rec_host_t rec; |
1da177e4 LT |
78 | int i; |
79 | ||
80 | for (i = 0; i < nrecs; i++) { | |
a6f64d4a CH |
81 | xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); |
82 | rec.l0 = get_unaligned(&ep->l0); | |
83 | rec.l1 = get_unaligned(&ep->l1); | |
84 | xfs_bmbt_get_all(&rec, &irec); | |
1da177e4 LT |
85 | if (fmt == XFS_EXTFMT_NOSTATE) |
86 | ASSERT(irec.br_state == XFS_EXT_NORM); | |
1da177e4 LT |
87 | } |
88 | } | |
89 | #else /* DEBUG */ | |
a6f64d4a | 90 | #define xfs_validate_extents(ifp, nrecs, fmt) |
1da177e4 LT |
91 | #endif /* DEBUG */ |
92 | ||
93 | /* | |
94 | * Check that none of the inode's in the buffer have a next | |
95 | * unlinked field of 0. | |
96 | */ | |
97 | #if defined(DEBUG) | |
98 | void | |
99 | xfs_inobp_check( | |
100 | xfs_mount_t *mp, | |
101 | xfs_buf_t *bp) | |
102 | { | |
103 | int i; | |
104 | int j; | |
105 | xfs_dinode_t *dip; | |
106 | ||
107 | j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; | |
108 | ||
109 | for (i = 0; i < j; i++) { | |
110 | dip = (xfs_dinode_t *)xfs_buf_offset(bp, | |
111 | i * mp->m_sb.sb_inodesize); | |
112 | if (!dip->di_next_unlinked) { | |
113 | xfs_fs_cmn_err(CE_ALERT, mp, | |
114 | "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.", | |
115 | bp); | |
116 | ASSERT(dip->di_next_unlinked); | |
117 | } | |
118 | } | |
119 | } | |
120 | #endif | |
121 | ||
4ae29b43 DC |
122 | /* |
123 | * Find the buffer associated with the given inode map | |
124 | * We do basic validation checks on the buffer once it has been | |
125 | * retrieved from disk. | |
126 | */ | |
127 | STATIC int | |
128 | xfs_imap_to_bp( | |
129 | xfs_mount_t *mp, | |
130 | xfs_trans_t *tp, | |
92bfc6e7 | 131 | struct xfs_imap *imap, |
4ae29b43 DC |
132 | xfs_buf_t **bpp, |
133 | uint buf_flags, | |
b48d8d64 | 134 | uint iget_flags) |
4ae29b43 DC |
135 | { |
136 | int error; | |
137 | int i; | |
138 | int ni; | |
139 | xfs_buf_t *bp; | |
140 | ||
141 | error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno, | |
a3f74ffb | 142 | (int)imap->im_len, buf_flags, &bp); |
4ae29b43 | 143 | if (error) { |
a3f74ffb DC |
144 | if (error != EAGAIN) { |
145 | cmn_err(CE_WARN, | |
146 | "xfs_imap_to_bp: xfs_trans_read_buf()returned " | |
4ae29b43 DC |
147 | "an error %d on %s. Returning error.", |
148 | error, mp->m_fsname); | |
a3f74ffb | 149 | } else { |
0cadda1c | 150 | ASSERT(buf_flags & XBF_TRYLOCK); |
a3f74ffb | 151 | } |
4ae29b43 DC |
152 | return error; |
153 | } | |
154 | ||
155 | /* | |
156 | * Validate the magic number and version of every inode in the buffer | |
157 | * (if DEBUG kernel) or the first inode in the buffer, otherwise. | |
158 | */ | |
159 | #ifdef DEBUG | |
160 | ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog; | |
161 | #else /* usual case */ | |
162 | ni = 1; | |
163 | #endif | |
164 | ||
165 | for (i = 0; i < ni; i++) { | |
166 | int di_ok; | |
167 | xfs_dinode_t *dip; | |
168 | ||
169 | dip = (xfs_dinode_t *)xfs_buf_offset(bp, | |
170 | (i << mp->m_sb.sb_inodelog)); | |
81591fe2 CH |
171 | di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC && |
172 | XFS_DINODE_GOOD_VERSION(dip->di_version); | |
4ae29b43 DC |
173 | if (unlikely(XFS_TEST_ERROR(!di_ok, mp, |
174 | XFS_ERRTAG_ITOBP_INOTOBP, | |
175 | XFS_RANDOM_ITOBP_INOTOBP))) { | |
1920779e | 176 | if (iget_flags & XFS_IGET_UNTRUSTED) { |
4ae29b43 DC |
177 | xfs_trans_brelse(tp, bp); |
178 | return XFS_ERROR(EINVAL); | |
179 | } | |
180 | XFS_CORRUPTION_ERROR("xfs_imap_to_bp", | |
181 | XFS_ERRLEVEL_HIGH, mp, dip); | |
182 | #ifdef DEBUG | |
183 | cmn_err(CE_PANIC, | |
184 | "Device %s - bad inode magic/vsn " | |
185 | "daddr %lld #%d (magic=%x)", | |
186 | XFS_BUFTARG_NAME(mp->m_ddev_targp), | |
187 | (unsigned long long)imap->im_blkno, i, | |
81591fe2 | 188 | be16_to_cpu(dip->di_magic)); |
4ae29b43 DC |
189 | #endif |
190 | xfs_trans_brelse(tp, bp); | |
191 | return XFS_ERROR(EFSCORRUPTED); | |
192 | } | |
193 | } | |
194 | ||
195 | xfs_inobp_check(mp, bp); | |
196 | ||
197 | /* | |
198 | * Mark the buffer as an inode buffer now that it looks good | |
199 | */ | |
200 | XFS_BUF_SET_VTYPE(bp, B_FS_INO); | |
201 | ||
202 | *bpp = bp; | |
203 | return 0; | |
204 | } | |
205 | ||
1da177e4 LT |
206 | /* |
207 | * This routine is called to map an inode number within a file | |
208 | * system to the buffer containing the on-disk version of the | |
209 | * inode. It returns a pointer to the buffer containing the | |
210 | * on-disk inode in the bpp parameter, and in the dip parameter | |
211 | * it returns a pointer to the on-disk inode within that buffer. | |
212 | * | |
213 | * If a non-zero error is returned, then the contents of bpp and | |
214 | * dipp are undefined. | |
215 | * | |
216 | * Use xfs_imap() to determine the size and location of the | |
217 | * buffer to read from disk. | |
218 | */ | |
c679eef0 | 219 | int |
1da177e4 LT |
220 | xfs_inotobp( |
221 | xfs_mount_t *mp, | |
222 | xfs_trans_t *tp, | |
223 | xfs_ino_t ino, | |
224 | xfs_dinode_t **dipp, | |
225 | xfs_buf_t **bpp, | |
c679eef0 CH |
226 | int *offset, |
227 | uint imap_flags) | |
1da177e4 | 228 | { |
92bfc6e7 | 229 | struct xfs_imap imap; |
1da177e4 LT |
230 | xfs_buf_t *bp; |
231 | int error; | |
1da177e4 | 232 | |
1da177e4 | 233 | imap.im_blkno = 0; |
a1941895 | 234 | error = xfs_imap(mp, tp, ino, &imap, imap_flags); |
4ae29b43 | 235 | if (error) |
1da177e4 | 236 | return error; |
1da177e4 | 237 | |
0cadda1c | 238 | error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags); |
4ae29b43 | 239 | if (error) |
1da177e4 | 240 | return error; |
1da177e4 | 241 | |
1da177e4 LT |
242 | *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); |
243 | *bpp = bp; | |
244 | *offset = imap.im_boffset; | |
245 | return 0; | |
246 | } | |
247 | ||
248 | ||
249 | /* | |
250 | * This routine is called to map an inode to the buffer containing | |
251 | * the on-disk version of the inode. It returns a pointer to the | |
252 | * buffer containing the on-disk inode in the bpp parameter, and in | |
253 | * the dip parameter it returns a pointer to the on-disk inode within | |
254 | * that buffer. | |
255 | * | |
256 | * If a non-zero error is returned, then the contents of bpp and | |
257 | * dipp are undefined. | |
258 | * | |
76d8b277 CH |
259 | * The inode is expected to already been mapped to its buffer and read |
260 | * in once, thus we can use the mapping information stored in the inode | |
261 | * rather than calling xfs_imap(). This allows us to avoid the overhead | |
262 | * of looking at the inode btree for small block file systems | |
94e1b69d | 263 | * (see xfs_imap()). |
1da177e4 LT |
264 | */ |
265 | int | |
266 | xfs_itobp( | |
267 | xfs_mount_t *mp, | |
268 | xfs_trans_t *tp, | |
269 | xfs_inode_t *ip, | |
270 | xfs_dinode_t **dipp, | |
271 | xfs_buf_t **bpp, | |
a3f74ffb | 272 | uint buf_flags) |
1da177e4 LT |
273 | { |
274 | xfs_buf_t *bp; | |
275 | int error; | |
1da177e4 | 276 | |
92bfc6e7 | 277 | ASSERT(ip->i_imap.im_blkno != 0); |
1da177e4 | 278 | |
92bfc6e7 | 279 | error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0); |
4ae29b43 | 280 | if (error) |
1da177e4 | 281 | return error; |
1da177e4 | 282 | |
a3f74ffb | 283 | if (!bp) { |
0cadda1c | 284 | ASSERT(buf_flags & XBF_TRYLOCK); |
a3f74ffb DC |
285 | ASSERT(tp == NULL); |
286 | *bpp = NULL; | |
287 | return EAGAIN; | |
288 | } | |
289 | ||
92bfc6e7 | 290 | *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); |
1da177e4 LT |
291 | *bpp = bp; |
292 | return 0; | |
293 | } | |
294 | ||
295 | /* | |
296 | * Move inode type and inode format specific information from the | |
297 | * on-disk inode to the in-core inode. For fifos, devs, and sockets | |
298 | * this means set if_rdev to the proper value. For files, directories, | |
299 | * and symlinks this means to bring in the in-line data or extent | |
300 | * pointers. For a file in B-tree format, only the root is immediately | |
301 | * brought in-core. The rest will be in-lined in if_extents when it | |
302 | * is first referenced (see xfs_iread_extents()). | |
303 | */ | |
304 | STATIC int | |
305 | xfs_iformat( | |
306 | xfs_inode_t *ip, | |
307 | xfs_dinode_t *dip) | |
308 | { | |
309 | xfs_attr_shortform_t *atp; | |
310 | int size; | |
311 | int error; | |
312 | xfs_fsize_t di_size; | |
313 | ip->i_df.if_ext_max = | |
314 | XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); | |
315 | error = 0; | |
316 | ||
81591fe2 CH |
317 | if (unlikely(be32_to_cpu(dip->di_nextents) + |
318 | be16_to_cpu(dip->di_anextents) > | |
319 | be64_to_cpu(dip->di_nblocks))) { | |
3762ec6b NS |
320 | xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, |
321 | "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", | |
1da177e4 | 322 | (unsigned long long)ip->i_ino, |
81591fe2 CH |
323 | (int)(be32_to_cpu(dip->di_nextents) + |
324 | be16_to_cpu(dip->di_anextents)), | |
1da177e4 | 325 | (unsigned long long) |
81591fe2 | 326 | be64_to_cpu(dip->di_nblocks)); |
1da177e4 LT |
327 | XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, |
328 | ip->i_mount, dip); | |
329 | return XFS_ERROR(EFSCORRUPTED); | |
330 | } | |
331 | ||
81591fe2 | 332 | if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) { |
3762ec6b NS |
333 | xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, |
334 | "corrupt dinode %Lu, forkoff = 0x%x.", | |
1da177e4 | 335 | (unsigned long long)ip->i_ino, |
81591fe2 | 336 | dip->di_forkoff); |
1da177e4 LT |
337 | XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, |
338 | ip->i_mount, dip); | |
339 | return XFS_ERROR(EFSCORRUPTED); | |
340 | } | |
341 | ||
b89d4208 CH |
342 | if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) && |
343 | !ip->i_mount->m_rtdev_targp)) { | |
344 | xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, | |
345 | "corrupt dinode %Lu, has realtime flag set.", | |
346 | ip->i_ino); | |
347 | XFS_CORRUPTION_ERROR("xfs_iformat(realtime)", | |
348 | XFS_ERRLEVEL_LOW, ip->i_mount, dip); | |
349 | return XFS_ERROR(EFSCORRUPTED); | |
350 | } | |
351 | ||
1da177e4 LT |
352 | switch (ip->i_d.di_mode & S_IFMT) { |
353 | case S_IFIFO: | |
354 | case S_IFCHR: | |
355 | case S_IFBLK: | |
356 | case S_IFSOCK: | |
81591fe2 | 357 | if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) { |
1da177e4 LT |
358 | XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, |
359 | ip->i_mount, dip); | |
360 | return XFS_ERROR(EFSCORRUPTED); | |
361 | } | |
362 | ip->i_d.di_size = 0; | |
ba87ea69 | 363 | ip->i_size = 0; |
81591fe2 | 364 | ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip); |
1da177e4 LT |
365 | break; |
366 | ||
367 | case S_IFREG: | |
368 | case S_IFLNK: | |
369 | case S_IFDIR: | |
81591fe2 | 370 | switch (dip->di_format) { |
1da177e4 LT |
371 | case XFS_DINODE_FMT_LOCAL: |
372 | /* | |
373 | * no local regular files yet | |
374 | */ | |
81591fe2 | 375 | if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) { |
3762ec6b NS |
376 | xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, |
377 | "corrupt inode %Lu " | |
378 | "(local format for regular file).", | |
1da177e4 LT |
379 | (unsigned long long) ip->i_ino); |
380 | XFS_CORRUPTION_ERROR("xfs_iformat(4)", | |
381 | XFS_ERRLEVEL_LOW, | |
382 | ip->i_mount, dip); | |
383 | return XFS_ERROR(EFSCORRUPTED); | |
384 | } | |
385 | ||
81591fe2 | 386 | di_size = be64_to_cpu(dip->di_size); |
1da177e4 | 387 | if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { |
3762ec6b NS |
388 | xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, |
389 | "corrupt inode %Lu " | |
390 | "(bad size %Ld for local inode).", | |
1da177e4 LT |
391 | (unsigned long long) ip->i_ino, |
392 | (long long) di_size); | |
393 | XFS_CORRUPTION_ERROR("xfs_iformat(5)", | |
394 | XFS_ERRLEVEL_LOW, | |
395 | ip->i_mount, dip); | |
396 | return XFS_ERROR(EFSCORRUPTED); | |
397 | } | |
398 | ||
399 | size = (int)di_size; | |
400 | error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); | |
401 | break; | |
402 | case XFS_DINODE_FMT_EXTENTS: | |
403 | error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); | |
404 | break; | |
405 | case XFS_DINODE_FMT_BTREE: | |
406 | error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); | |
407 | break; | |
408 | default: | |
409 | XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, | |
410 | ip->i_mount); | |
411 | return XFS_ERROR(EFSCORRUPTED); | |
412 | } | |
413 | break; | |
414 | ||
415 | default: | |
416 | XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); | |
417 | return XFS_ERROR(EFSCORRUPTED); | |
418 | } | |
419 | if (error) { | |
420 | return error; | |
421 | } | |
422 | if (!XFS_DFORK_Q(dip)) | |
423 | return 0; | |
424 | ASSERT(ip->i_afp == NULL); | |
4a7edddc | 425 | ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS); |
1da177e4 LT |
426 | ip->i_afp->if_ext_max = |
427 | XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); | |
81591fe2 | 428 | switch (dip->di_aformat) { |
1da177e4 LT |
429 | case XFS_DINODE_FMT_LOCAL: |
430 | atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); | |
3b244aa8 | 431 | size = be16_to_cpu(atp->hdr.totsize); |
2809f76a CH |
432 | |
433 | if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) { | |
434 | xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, | |
435 | "corrupt inode %Lu " | |
436 | "(bad attr fork size %Ld).", | |
437 | (unsigned long long) ip->i_ino, | |
438 | (long long) size); | |
439 | XFS_CORRUPTION_ERROR("xfs_iformat(8)", | |
440 | XFS_ERRLEVEL_LOW, | |
441 | ip->i_mount, dip); | |
442 | return XFS_ERROR(EFSCORRUPTED); | |
443 | } | |
444 | ||
1da177e4 LT |
445 | error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); |
446 | break; | |
447 | case XFS_DINODE_FMT_EXTENTS: | |
448 | error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); | |
449 | break; | |
450 | case XFS_DINODE_FMT_BTREE: | |
451 | error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); | |
452 | break; | |
453 | default: | |
454 | error = XFS_ERROR(EFSCORRUPTED); | |
455 | break; | |
456 | } | |
457 | if (error) { | |
458 | kmem_zone_free(xfs_ifork_zone, ip->i_afp); | |
459 | ip->i_afp = NULL; | |
460 | xfs_idestroy_fork(ip, XFS_DATA_FORK); | |
461 | } | |
462 | return error; | |
463 | } | |
464 | ||
465 | /* | |
466 | * The file is in-lined in the on-disk inode. | |
467 | * If it fits into if_inline_data, then copy | |
468 | * it there, otherwise allocate a buffer for it | |
469 | * and copy the data there. Either way, set | |
470 | * if_data to point at the data. | |
471 | * If we allocate a buffer for the data, make | |
472 | * sure that its size is a multiple of 4 and | |
473 | * record the real size in i_real_bytes. | |
474 | */ | |
475 | STATIC int | |
476 | xfs_iformat_local( | |
477 | xfs_inode_t *ip, | |
478 | xfs_dinode_t *dip, | |
479 | int whichfork, | |
480 | int size) | |
481 | { | |
482 | xfs_ifork_t *ifp; | |
483 | int real_size; | |
484 | ||
485 | /* | |
486 | * If the size is unreasonable, then something | |
487 | * is wrong and we just bail out rather than crash in | |
488 | * kmem_alloc() or memcpy() below. | |
489 | */ | |
490 | if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { | |
3762ec6b NS |
491 | xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, |
492 | "corrupt inode %Lu " | |
493 | "(bad size %d for local fork, size = %d).", | |
1da177e4 LT |
494 | (unsigned long long) ip->i_ino, size, |
495 | XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); | |
496 | XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, | |
497 | ip->i_mount, dip); | |
498 | return XFS_ERROR(EFSCORRUPTED); | |
499 | } | |
500 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
501 | real_size = 0; | |
502 | if (size == 0) | |
503 | ifp->if_u1.if_data = NULL; | |
504 | else if (size <= sizeof(ifp->if_u2.if_inline_data)) | |
505 | ifp->if_u1.if_data = ifp->if_u2.if_inline_data; | |
506 | else { | |
507 | real_size = roundup(size, 4); | |
4a7edddc | 508 | ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS); |
1da177e4 LT |
509 | } |
510 | ifp->if_bytes = size; | |
511 | ifp->if_real_bytes = real_size; | |
512 | if (size) | |
513 | memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); | |
514 | ifp->if_flags &= ~XFS_IFEXTENTS; | |
515 | ifp->if_flags |= XFS_IFINLINE; | |
516 | return 0; | |
517 | } | |
518 | ||
519 | /* | |
520 | * The file consists of a set of extents all | |
521 | * of which fit into the on-disk inode. | |
522 | * If there are few enough extents to fit into | |
523 | * the if_inline_ext, then copy them there. | |
524 | * Otherwise allocate a buffer for them and copy | |
525 | * them into it. Either way, set if_extents | |
526 | * to point at the extents. | |
527 | */ | |
528 | STATIC int | |
529 | xfs_iformat_extents( | |
530 | xfs_inode_t *ip, | |
531 | xfs_dinode_t *dip, | |
532 | int whichfork) | |
533 | { | |
a6f64d4a | 534 | xfs_bmbt_rec_t *dp; |
1da177e4 LT |
535 | xfs_ifork_t *ifp; |
536 | int nex; | |
1da177e4 LT |
537 | int size; |
538 | int i; | |
539 | ||
540 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
541 | nex = XFS_DFORK_NEXTENTS(dip, whichfork); | |
542 | size = nex * (uint)sizeof(xfs_bmbt_rec_t); | |
543 | ||
544 | /* | |
545 | * If the number of extents is unreasonable, then something | |
546 | * is wrong and we just bail out rather than crash in | |
547 | * kmem_alloc() or memcpy() below. | |
548 | */ | |
549 | if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { | |
3762ec6b NS |
550 | xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, |
551 | "corrupt inode %Lu ((a)extents = %d).", | |
1da177e4 LT |
552 | (unsigned long long) ip->i_ino, nex); |
553 | XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, | |
554 | ip->i_mount, dip); | |
555 | return XFS_ERROR(EFSCORRUPTED); | |
556 | } | |
557 | ||
4eea22f0 | 558 | ifp->if_real_bytes = 0; |
1da177e4 LT |
559 | if (nex == 0) |
560 | ifp->if_u1.if_extents = NULL; | |
561 | else if (nex <= XFS_INLINE_EXTS) | |
562 | ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; | |
4eea22f0 MK |
563 | else |
564 | xfs_iext_add(ifp, 0, nex); | |
565 | ||
1da177e4 | 566 | ifp->if_bytes = size; |
1da177e4 LT |
567 | if (size) { |
568 | dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); | |
a6f64d4a | 569 | xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip)); |
4eea22f0 | 570 | for (i = 0; i < nex; i++, dp++) { |
a6f64d4a | 571 | xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); |
597bca63 HH |
572 | ep->l0 = get_unaligned_be64(&dp->l0); |
573 | ep->l1 = get_unaligned_be64(&dp->l1); | |
1da177e4 | 574 | } |
3a59c94c | 575 | XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork); |
1da177e4 LT |
576 | if (whichfork != XFS_DATA_FORK || |
577 | XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) | |
578 | if (unlikely(xfs_check_nostate_extents( | |
4eea22f0 | 579 | ifp, 0, nex))) { |
1da177e4 LT |
580 | XFS_ERROR_REPORT("xfs_iformat_extents(2)", |
581 | XFS_ERRLEVEL_LOW, | |
582 | ip->i_mount); | |
583 | return XFS_ERROR(EFSCORRUPTED); | |
584 | } | |
585 | } | |
586 | ifp->if_flags |= XFS_IFEXTENTS; | |
587 | return 0; | |
588 | } | |
589 | ||
590 | /* | |
591 | * The file has too many extents to fit into | |
592 | * the inode, so they are in B-tree format. | |
593 | * Allocate a buffer for the root of the B-tree | |
594 | * and copy the root into it. The i_extents | |
595 | * field will remain NULL until all of the | |
596 | * extents are read in (when they are needed). | |
597 | */ | |
598 | STATIC int | |
599 | xfs_iformat_btree( | |
600 | xfs_inode_t *ip, | |
601 | xfs_dinode_t *dip, | |
602 | int whichfork) | |
603 | { | |
604 | xfs_bmdr_block_t *dfp; | |
605 | xfs_ifork_t *ifp; | |
606 | /* REFERENCED */ | |
607 | int nrecs; | |
608 | int size; | |
609 | ||
610 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
611 | dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); | |
612 | size = XFS_BMAP_BROOT_SPACE(dfp); | |
60197e8d | 613 | nrecs = be16_to_cpu(dfp->bb_numrecs); |
1da177e4 LT |
614 | |
615 | /* | |
616 | * blow out if -- fork has less extents than can fit in | |
617 | * fork (fork shouldn't be a btree format), root btree | |
618 | * block has more records than can fit into the fork, | |
619 | * or the number of extents is greater than the number of | |
620 | * blocks. | |
621 | */ | |
622 | if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max | |
623 | || XFS_BMDR_SPACE_CALC(nrecs) > | |
624 | XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) | |
625 | || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { | |
3762ec6b NS |
626 | xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, |
627 | "corrupt inode %Lu (btree).", | |
1da177e4 LT |
628 | (unsigned long long) ip->i_ino); |
629 | XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, | |
630 | ip->i_mount); | |
631 | return XFS_ERROR(EFSCORRUPTED); | |
632 | } | |
633 | ||
634 | ifp->if_broot_bytes = size; | |
4a7edddc | 635 | ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS); |
1da177e4 LT |
636 | ASSERT(ifp->if_broot != NULL); |
637 | /* | |
638 | * Copy and convert from the on-disk structure | |
639 | * to the in-memory structure. | |
640 | */ | |
60197e8d CH |
641 | xfs_bmdr_to_bmbt(ip->i_mount, dfp, |
642 | XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), | |
643 | ifp->if_broot, size); | |
1da177e4 LT |
644 | ifp->if_flags &= ~XFS_IFEXTENTS; |
645 | ifp->if_flags |= XFS_IFBROOT; | |
646 | ||
647 | return 0; | |
648 | } | |
649 | ||
d96f8f89 | 650 | STATIC void |
347d1c01 CH |
651 | xfs_dinode_from_disk( |
652 | xfs_icdinode_t *to, | |
81591fe2 | 653 | xfs_dinode_t *from) |
1da177e4 | 654 | { |
347d1c01 CH |
655 | to->di_magic = be16_to_cpu(from->di_magic); |
656 | to->di_mode = be16_to_cpu(from->di_mode); | |
657 | to->di_version = from ->di_version; | |
658 | to->di_format = from->di_format; | |
659 | to->di_onlink = be16_to_cpu(from->di_onlink); | |
660 | to->di_uid = be32_to_cpu(from->di_uid); | |
661 | to->di_gid = be32_to_cpu(from->di_gid); | |
662 | to->di_nlink = be32_to_cpu(from->di_nlink); | |
663 | to->di_projid = be16_to_cpu(from->di_projid); | |
664 | memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); | |
665 | to->di_flushiter = be16_to_cpu(from->di_flushiter); | |
666 | to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec); | |
667 | to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec); | |
668 | to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec); | |
669 | to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec); | |
670 | to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec); | |
671 | to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec); | |
672 | to->di_size = be64_to_cpu(from->di_size); | |
673 | to->di_nblocks = be64_to_cpu(from->di_nblocks); | |
674 | to->di_extsize = be32_to_cpu(from->di_extsize); | |
675 | to->di_nextents = be32_to_cpu(from->di_nextents); | |
676 | to->di_anextents = be16_to_cpu(from->di_anextents); | |
677 | to->di_forkoff = from->di_forkoff; | |
678 | to->di_aformat = from->di_aformat; | |
679 | to->di_dmevmask = be32_to_cpu(from->di_dmevmask); | |
680 | to->di_dmstate = be16_to_cpu(from->di_dmstate); | |
681 | to->di_flags = be16_to_cpu(from->di_flags); | |
682 | to->di_gen = be32_to_cpu(from->di_gen); | |
683 | } | |
684 | ||
685 | void | |
686 | xfs_dinode_to_disk( | |
81591fe2 | 687 | xfs_dinode_t *to, |
347d1c01 CH |
688 | xfs_icdinode_t *from) |
689 | { | |
690 | to->di_magic = cpu_to_be16(from->di_magic); | |
691 | to->di_mode = cpu_to_be16(from->di_mode); | |
692 | to->di_version = from ->di_version; | |
693 | to->di_format = from->di_format; | |
694 | to->di_onlink = cpu_to_be16(from->di_onlink); | |
695 | to->di_uid = cpu_to_be32(from->di_uid); | |
696 | to->di_gid = cpu_to_be32(from->di_gid); | |
697 | to->di_nlink = cpu_to_be32(from->di_nlink); | |
698 | to->di_projid = cpu_to_be16(from->di_projid); | |
699 | memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); | |
700 | to->di_flushiter = cpu_to_be16(from->di_flushiter); | |
701 | to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec); | |
702 | to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec); | |
703 | to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec); | |
704 | to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec); | |
705 | to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec); | |
706 | to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec); | |
707 | to->di_size = cpu_to_be64(from->di_size); | |
708 | to->di_nblocks = cpu_to_be64(from->di_nblocks); | |
709 | to->di_extsize = cpu_to_be32(from->di_extsize); | |
710 | to->di_nextents = cpu_to_be32(from->di_nextents); | |
711 | to->di_anextents = cpu_to_be16(from->di_anextents); | |
712 | to->di_forkoff = from->di_forkoff; | |
713 | to->di_aformat = from->di_aformat; | |
714 | to->di_dmevmask = cpu_to_be32(from->di_dmevmask); | |
715 | to->di_dmstate = cpu_to_be16(from->di_dmstate); | |
716 | to->di_flags = cpu_to_be16(from->di_flags); | |
717 | to->di_gen = cpu_to_be32(from->di_gen); | |
1da177e4 LT |
718 | } |
719 | ||
720 | STATIC uint | |
721 | _xfs_dic2xflags( | |
1da177e4 LT |
722 | __uint16_t di_flags) |
723 | { | |
724 | uint flags = 0; | |
725 | ||
726 | if (di_flags & XFS_DIFLAG_ANY) { | |
727 | if (di_flags & XFS_DIFLAG_REALTIME) | |
728 | flags |= XFS_XFLAG_REALTIME; | |
729 | if (di_flags & XFS_DIFLAG_PREALLOC) | |
730 | flags |= XFS_XFLAG_PREALLOC; | |
731 | if (di_flags & XFS_DIFLAG_IMMUTABLE) | |
732 | flags |= XFS_XFLAG_IMMUTABLE; | |
733 | if (di_flags & XFS_DIFLAG_APPEND) | |
734 | flags |= XFS_XFLAG_APPEND; | |
735 | if (di_flags & XFS_DIFLAG_SYNC) | |
736 | flags |= XFS_XFLAG_SYNC; | |
737 | if (di_flags & XFS_DIFLAG_NOATIME) | |
738 | flags |= XFS_XFLAG_NOATIME; | |
739 | if (di_flags & XFS_DIFLAG_NODUMP) | |
740 | flags |= XFS_XFLAG_NODUMP; | |
741 | if (di_flags & XFS_DIFLAG_RTINHERIT) | |
742 | flags |= XFS_XFLAG_RTINHERIT; | |
743 | if (di_flags & XFS_DIFLAG_PROJINHERIT) | |
744 | flags |= XFS_XFLAG_PROJINHERIT; | |
745 | if (di_flags & XFS_DIFLAG_NOSYMLINKS) | |
746 | flags |= XFS_XFLAG_NOSYMLINKS; | |
dd9f438e NS |
747 | if (di_flags & XFS_DIFLAG_EXTSIZE) |
748 | flags |= XFS_XFLAG_EXTSIZE; | |
749 | if (di_flags & XFS_DIFLAG_EXTSZINHERIT) | |
750 | flags |= XFS_XFLAG_EXTSZINHERIT; | |
d3446eac BN |
751 | if (di_flags & XFS_DIFLAG_NODEFRAG) |
752 | flags |= XFS_XFLAG_NODEFRAG; | |
2a82b8be DC |
753 | if (di_flags & XFS_DIFLAG_FILESTREAM) |
754 | flags |= XFS_XFLAG_FILESTREAM; | |
1da177e4 LT |
755 | } |
756 | ||
757 | return flags; | |
758 | } | |
759 | ||
760 | uint | |
761 | xfs_ip2xflags( | |
762 | xfs_inode_t *ip) | |
763 | { | |
347d1c01 | 764 | xfs_icdinode_t *dic = &ip->i_d; |
1da177e4 | 765 | |
a916e2bd | 766 | return _xfs_dic2xflags(dic->di_flags) | |
45ba598e | 767 | (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); |
1da177e4 LT |
768 | } |
769 | ||
770 | uint | |
771 | xfs_dic2xflags( | |
45ba598e | 772 | xfs_dinode_t *dip) |
1da177e4 | 773 | { |
81591fe2 | 774 | return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) | |
45ba598e | 775 | (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); |
1da177e4 LT |
776 | } |
777 | ||
07c8f675 | 778 | /* |
24f211ba | 779 | * Read the disk inode attributes into the in-core inode structure. |
1da177e4 LT |
780 | */ |
781 | int | |
782 | xfs_iread( | |
783 | xfs_mount_t *mp, | |
784 | xfs_trans_t *tp, | |
24f211ba | 785 | xfs_inode_t *ip, |
24f211ba | 786 | uint iget_flags) |
1da177e4 LT |
787 | { |
788 | xfs_buf_t *bp; | |
789 | xfs_dinode_t *dip; | |
1da177e4 LT |
790 | int error; |
791 | ||
1da177e4 | 792 | /* |
92bfc6e7 | 793 | * Fill in the location information in the in-core inode. |
1da177e4 | 794 | */ |
24f211ba | 795 | error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags); |
76d8b277 | 796 | if (error) |
24f211ba | 797 | return error; |
76d8b277 CH |
798 | |
799 | /* | |
92bfc6e7 | 800 | * Get pointers to the on-disk inode and the buffer containing it. |
76d8b277 | 801 | */ |
92bfc6e7 | 802 | error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, |
0cadda1c | 803 | XBF_LOCK, iget_flags); |
9ed0451e | 804 | if (error) |
24f211ba | 805 | return error; |
92bfc6e7 | 806 | dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); |
1da177e4 | 807 | |
1da177e4 LT |
808 | /* |
809 | * If we got something that isn't an inode it means someone | |
810 | * (nfs or dmi) has a stale handle. | |
811 | */ | |
81591fe2 | 812 | if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) { |
1da177e4 LT |
813 | #ifdef DEBUG |
814 | xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " | |
81591fe2 | 815 | "dip->di_magic (0x%x) != " |
1da177e4 | 816 | "XFS_DINODE_MAGIC (0x%x)", |
81591fe2 | 817 | be16_to_cpu(dip->di_magic), |
1da177e4 LT |
818 | XFS_DINODE_MAGIC); |
819 | #endif /* DEBUG */ | |
9ed0451e CH |
820 | error = XFS_ERROR(EINVAL); |
821 | goto out_brelse; | |
1da177e4 LT |
822 | } |
823 | ||
824 | /* | |
825 | * If the on-disk inode is already linked to a directory | |
826 | * entry, copy all of the inode into the in-core inode. | |
827 | * xfs_iformat() handles copying in the inode format | |
828 | * specific information. | |
829 | * Otherwise, just get the truly permanent information. | |
830 | */ | |
81591fe2 CH |
831 | if (dip->di_mode) { |
832 | xfs_dinode_from_disk(&ip->i_d, dip); | |
1da177e4 LT |
833 | error = xfs_iformat(ip, dip); |
834 | if (error) { | |
1da177e4 LT |
835 | #ifdef DEBUG |
836 | xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " | |
837 | "xfs_iformat() returned error %d", | |
838 | error); | |
839 | #endif /* DEBUG */ | |
9ed0451e | 840 | goto out_brelse; |
1da177e4 LT |
841 | } |
842 | } else { | |
81591fe2 CH |
843 | ip->i_d.di_magic = be16_to_cpu(dip->di_magic); |
844 | ip->i_d.di_version = dip->di_version; | |
845 | ip->i_d.di_gen = be32_to_cpu(dip->di_gen); | |
846 | ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter); | |
1da177e4 LT |
847 | /* |
848 | * Make sure to pull in the mode here as well in | |
849 | * case the inode is released without being used. | |
850 | * This ensures that xfs_inactive() will see that | |
851 | * the inode is already free and not try to mess | |
852 | * with the uninitialized part of it. | |
853 | */ | |
854 | ip->i_d.di_mode = 0; | |
855 | /* | |
856 | * Initialize the per-fork minima and maxima for a new | |
857 | * inode here. xfs_iformat will do it for old inodes. | |
858 | */ | |
859 | ip->i_df.if_ext_max = | |
860 | XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); | |
861 | } | |
862 | ||
1da177e4 LT |
863 | /* |
864 | * The inode format changed when we moved the link count and | |
865 | * made it 32 bits long. If this is an old format inode, | |
866 | * convert it in memory to look like a new one. If it gets | |
867 | * flushed to disk we will convert back before flushing or | |
868 | * logging it. We zero out the new projid field and the old link | |
869 | * count field. We'll handle clearing the pad field (the remains | |
870 | * of the old uuid field) when we actually convert the inode to | |
871 | * the new format. We don't change the version number so that we | |
872 | * can distinguish this from a real new format inode. | |
873 | */ | |
51ce16d5 | 874 | if (ip->i_d.di_version == 1) { |
1da177e4 LT |
875 | ip->i_d.di_nlink = ip->i_d.di_onlink; |
876 | ip->i_d.di_onlink = 0; | |
877 | ip->i_d.di_projid = 0; | |
878 | } | |
879 | ||
880 | ip->i_delayed_blks = 0; | |
ba87ea69 | 881 | ip->i_size = ip->i_d.di_size; |
1da177e4 LT |
882 | |
883 | /* | |
884 | * Mark the buffer containing the inode as something to keep | |
885 | * around for a while. This helps to keep recently accessed | |
886 | * meta-data in-core longer. | |
887 | */ | |
6d73cf13 | 888 | XFS_BUF_SET_REF(bp, XFS_INO_REF); |
1da177e4 LT |
889 | |
890 | /* | |
891 | * Use xfs_trans_brelse() to release the buffer containing the | |
892 | * on-disk inode, because it was acquired with xfs_trans_read_buf() | |
893 | * in xfs_itobp() above. If tp is NULL, this is just a normal | |
894 | * brelse(). If we're within a transaction, then xfs_trans_brelse() | |
895 | * will only release the buffer if it is not dirty within the | |
896 | * transaction. It will be OK to release the buffer in this case, | |
897 | * because inodes on disk are never destroyed and we will be | |
898 | * locking the new in-core inode before putting it in the hash | |
899 | * table where other processes can find it. Thus we don't have | |
900 | * to worry about the inode being changed just because we released | |
901 | * the buffer. | |
902 | */ | |
9ed0451e CH |
903 | out_brelse: |
904 | xfs_trans_brelse(tp, bp); | |
9ed0451e | 905 | return error; |
1da177e4 LT |
906 | } |
907 | ||
908 | /* | |
909 | * Read in extents from a btree-format inode. | |
910 | * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. | |
911 | */ | |
912 | int | |
913 | xfs_iread_extents( | |
914 | xfs_trans_t *tp, | |
915 | xfs_inode_t *ip, | |
916 | int whichfork) | |
917 | { | |
918 | int error; | |
919 | xfs_ifork_t *ifp; | |
4eea22f0 | 920 | xfs_extnum_t nextents; |
1da177e4 LT |
921 | |
922 | if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { | |
923 | XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, | |
924 | ip->i_mount); | |
925 | return XFS_ERROR(EFSCORRUPTED); | |
926 | } | |
4eea22f0 | 927 | nextents = XFS_IFORK_NEXTENTS(ip, whichfork); |
1da177e4 | 928 | ifp = XFS_IFORK_PTR(ip, whichfork); |
4eea22f0 | 929 | |
1da177e4 LT |
930 | /* |
931 | * We know that the size is valid (it's checked in iformat_btree) | |
932 | */ | |
1da177e4 | 933 | ifp->if_lastex = NULLEXTNUM; |
4eea22f0 | 934 | ifp->if_bytes = ifp->if_real_bytes = 0; |
1da177e4 | 935 | ifp->if_flags |= XFS_IFEXTENTS; |
4eea22f0 | 936 | xfs_iext_add(ifp, 0, nextents); |
1da177e4 LT |
937 | error = xfs_bmap_read_extents(tp, ip, whichfork); |
938 | if (error) { | |
4eea22f0 | 939 | xfs_iext_destroy(ifp); |
1da177e4 LT |
940 | ifp->if_flags &= ~XFS_IFEXTENTS; |
941 | return error; | |
942 | } | |
a6f64d4a | 943 | xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip)); |
1da177e4 LT |
944 | return 0; |
945 | } | |
946 | ||
947 | /* | |
948 | * Allocate an inode on disk and return a copy of its in-core version. | |
949 | * The in-core inode is locked exclusively. Set mode, nlink, and rdev | |
950 | * appropriately within the inode. The uid and gid for the inode are | |
951 | * set according to the contents of the given cred structure. | |
952 | * | |
953 | * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() | |
954 | * has a free inode available, call xfs_iget() | |
955 | * to obtain the in-core version of the allocated inode. Finally, | |
956 | * fill in the inode and log its initial contents. In this case, | |
957 | * ialloc_context would be set to NULL and call_again set to false. | |
958 | * | |
959 | * If xfs_dialloc() does not have an available inode, | |
960 | * it will replenish its supply by doing an allocation. Since we can | |
961 | * only do one allocation within a transaction without deadlocks, we | |
962 | * must commit the current transaction before returning the inode itself. | |
963 | * In this case, therefore, we will set call_again to true and return. | |
964 | * The caller should then commit the current transaction, start a new | |
965 | * transaction, and call xfs_ialloc() again to actually get the inode. | |
966 | * | |
967 | * To ensure that some other process does not grab the inode that | |
968 | * was allocated during the first call to xfs_ialloc(), this routine | |
969 | * also returns the [locked] bp pointing to the head of the freelist | |
970 | * as ialloc_context. The caller should hold this buffer across | |
971 | * the commit and pass it back into this routine on the second call. | |
b11f94d5 DC |
972 | * |
973 | * If we are allocating quota inodes, we do not have a parent inode | |
974 | * to attach to or associate with (i.e. pip == NULL) because they | |
975 | * are not linked into the directory structure - they are attached | |
976 | * directly to the superblock - and so have no parent. | |
1da177e4 LT |
977 | */ |
978 | int | |
979 | xfs_ialloc( | |
980 | xfs_trans_t *tp, | |
981 | xfs_inode_t *pip, | |
982 | mode_t mode, | |
31b084ae | 983 | xfs_nlink_t nlink, |
1da177e4 LT |
984 | xfs_dev_t rdev, |
985 | cred_t *cr, | |
986 | xfs_prid_t prid, | |
987 | int okalloc, | |
988 | xfs_buf_t **ialloc_context, | |
989 | boolean_t *call_again, | |
990 | xfs_inode_t **ipp) | |
991 | { | |
992 | xfs_ino_t ino; | |
993 | xfs_inode_t *ip; | |
1da177e4 LT |
994 | uint flags; |
995 | int error; | |
dff35fd4 | 996 | timespec_t tv; |
bf904248 | 997 | int filestreams = 0; |
1da177e4 LT |
998 | |
999 | /* | |
1000 | * Call the space management code to pick | |
1001 | * the on-disk inode to be allocated. | |
1002 | */ | |
b11f94d5 | 1003 | error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, |
1da177e4 | 1004 | ialloc_context, call_again, &ino); |
bf904248 | 1005 | if (error) |
1da177e4 | 1006 | return error; |
1da177e4 LT |
1007 | if (*call_again || ino == NULLFSINO) { |
1008 | *ipp = NULL; | |
1009 | return 0; | |
1010 | } | |
1011 | ASSERT(*ialloc_context == NULL); | |
1012 | ||
1013 | /* | |
1014 | * Get the in-core inode with the lock held exclusively. | |
1015 | * This is because we're setting fields here we need | |
1016 | * to prevent others from looking at until we're done. | |
1017 | */ | |
1018 | error = xfs_trans_iget(tp->t_mountp, tp, ino, | |
745b1f47 | 1019 | XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); |
bf904248 | 1020 | if (error) |
1da177e4 | 1021 | return error; |
1da177e4 LT |
1022 | ASSERT(ip != NULL); |
1023 | ||
1da177e4 LT |
1024 | ip->i_d.di_mode = (__uint16_t)mode; |
1025 | ip->i_d.di_onlink = 0; | |
1026 | ip->i_d.di_nlink = nlink; | |
1027 | ASSERT(ip->i_d.di_nlink == nlink); | |
9e2b2dc4 DH |
1028 | ip->i_d.di_uid = current_fsuid(); |
1029 | ip->i_d.di_gid = current_fsgid(); | |
1da177e4 LT |
1030 | ip->i_d.di_projid = prid; |
1031 | memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); | |
1032 | ||
1033 | /* | |
1034 | * If the superblock version is up to where we support new format | |
1035 | * inodes and this is currently an old format inode, then change | |
1036 | * the inode version number now. This way we only do the conversion | |
1037 | * here rather than here and in the flush/logging code. | |
1038 | */ | |
62118709 | 1039 | if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) && |
51ce16d5 CH |
1040 | ip->i_d.di_version == 1) { |
1041 | ip->i_d.di_version = 2; | |
1da177e4 LT |
1042 | /* |
1043 | * We've already zeroed the old link count, the projid field, | |
1044 | * and the pad field. | |
1045 | */ | |
1046 | } | |
1047 | ||
1048 | /* | |
1049 | * Project ids won't be stored on disk if we are using a version 1 inode. | |
1050 | */ | |
51ce16d5 | 1051 | if ((prid != 0) && (ip->i_d.di_version == 1)) |
1da177e4 LT |
1052 | xfs_bump_ino_vers2(tp, ip); |
1053 | ||
bd186aa9 | 1054 | if (pip && XFS_INHERIT_GID(pip)) { |
1da177e4 LT |
1055 | ip->i_d.di_gid = pip->i_d.di_gid; |
1056 | if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { | |
1057 | ip->i_d.di_mode |= S_ISGID; | |
1058 | } | |
1059 | } | |
1060 | ||
1061 | /* | |
1062 | * If the group ID of the new file does not match the effective group | |
1063 | * ID or one of the supplementary group IDs, the S_ISGID bit is cleared | |
1064 | * (and only if the irix_sgid_inherit compatibility variable is set). | |
1065 | */ | |
1066 | if ((irix_sgid_inherit) && | |
1067 | (ip->i_d.di_mode & S_ISGID) && | |
1068 | (!in_group_p((gid_t)ip->i_d.di_gid))) { | |
1069 | ip->i_d.di_mode &= ~S_ISGID; | |
1070 | } | |
1071 | ||
1072 | ip->i_d.di_size = 0; | |
ba87ea69 | 1073 | ip->i_size = 0; |
1da177e4 LT |
1074 | ip->i_d.di_nextents = 0; |
1075 | ASSERT(ip->i_d.di_nblocks == 0); | |
dff35fd4 CH |
1076 | |
1077 | nanotime(&tv); | |
1078 | ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; | |
1079 | ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; | |
1080 | ip->i_d.di_atime = ip->i_d.di_mtime; | |
1081 | ip->i_d.di_ctime = ip->i_d.di_mtime; | |
1082 | ||
1da177e4 LT |
1083 | /* |
1084 | * di_gen will have been taken care of in xfs_iread. | |
1085 | */ | |
1086 | ip->i_d.di_extsize = 0; | |
1087 | ip->i_d.di_dmevmask = 0; | |
1088 | ip->i_d.di_dmstate = 0; | |
1089 | ip->i_d.di_flags = 0; | |
1090 | flags = XFS_ILOG_CORE; | |
1091 | switch (mode & S_IFMT) { | |
1092 | case S_IFIFO: | |
1093 | case S_IFCHR: | |
1094 | case S_IFBLK: | |
1095 | case S_IFSOCK: | |
1096 | ip->i_d.di_format = XFS_DINODE_FMT_DEV; | |
1097 | ip->i_df.if_u2.if_rdev = rdev; | |
1098 | ip->i_df.if_flags = 0; | |
1099 | flags |= XFS_ILOG_DEV; | |
1100 | break; | |
1101 | case S_IFREG: | |
bf904248 DC |
1102 | /* |
1103 | * we can't set up filestreams until after the VFS inode | |
1104 | * is set up properly. | |
1105 | */ | |
1106 | if (pip && xfs_inode_is_filestream(pip)) | |
1107 | filestreams = 1; | |
2a82b8be | 1108 | /* fall through */ |
1da177e4 | 1109 | case S_IFDIR: |
b11f94d5 | 1110 | if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { |
365ca83d NS |
1111 | uint di_flags = 0; |
1112 | ||
1113 | if ((mode & S_IFMT) == S_IFDIR) { | |
1114 | if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) | |
1115 | di_flags |= XFS_DIFLAG_RTINHERIT; | |
dd9f438e NS |
1116 | if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { |
1117 | di_flags |= XFS_DIFLAG_EXTSZINHERIT; | |
1118 | ip->i_d.di_extsize = pip->i_d.di_extsize; | |
1119 | } | |
1120 | } else if ((mode & S_IFMT) == S_IFREG) { | |
613d7043 | 1121 | if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) |
365ca83d | 1122 | di_flags |= XFS_DIFLAG_REALTIME; |
dd9f438e NS |
1123 | if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { |
1124 | di_flags |= XFS_DIFLAG_EXTSIZE; | |
1125 | ip->i_d.di_extsize = pip->i_d.di_extsize; | |
1126 | } | |
1da177e4 LT |
1127 | } |
1128 | if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && | |
1129 | xfs_inherit_noatime) | |
365ca83d | 1130 | di_flags |= XFS_DIFLAG_NOATIME; |
1da177e4 LT |
1131 | if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && |
1132 | xfs_inherit_nodump) | |
365ca83d | 1133 | di_flags |= XFS_DIFLAG_NODUMP; |
1da177e4 LT |
1134 | if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && |
1135 | xfs_inherit_sync) | |
365ca83d | 1136 | di_flags |= XFS_DIFLAG_SYNC; |
1da177e4 LT |
1137 | if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && |
1138 | xfs_inherit_nosymlinks) | |
365ca83d NS |
1139 | di_flags |= XFS_DIFLAG_NOSYMLINKS; |
1140 | if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) | |
1141 | di_flags |= XFS_DIFLAG_PROJINHERIT; | |
d3446eac BN |
1142 | if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && |
1143 | xfs_inherit_nodefrag) | |
1144 | di_flags |= XFS_DIFLAG_NODEFRAG; | |
2a82b8be DC |
1145 | if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) |
1146 | di_flags |= XFS_DIFLAG_FILESTREAM; | |
365ca83d | 1147 | ip->i_d.di_flags |= di_flags; |
1da177e4 LT |
1148 | } |
1149 | /* FALLTHROUGH */ | |
1150 | case S_IFLNK: | |
1151 | ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; | |
1152 | ip->i_df.if_flags = XFS_IFEXTENTS; | |
1153 | ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; | |
1154 | ip->i_df.if_u1.if_extents = NULL; | |
1155 | break; | |
1156 | default: | |
1157 | ASSERT(0); | |
1158 | } | |
1159 | /* | |
1160 | * Attribute fork settings for new inode. | |
1161 | */ | |
1162 | ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; | |
1163 | ip->i_d.di_anextents = 0; | |
1164 | ||
1165 | /* | |
1166 | * Log the new values stuffed into the inode. | |
1167 | */ | |
1168 | xfs_trans_log_inode(tp, ip, flags); | |
1169 | ||
b83bd138 | 1170 | /* now that we have an i_mode we can setup inode ops and unlock */ |
41be8bed | 1171 | xfs_setup_inode(ip); |
1da177e4 | 1172 | |
bf904248 DC |
1173 | /* now we have set up the vfs inode we can associate the filestream */ |
1174 | if (filestreams) { | |
1175 | error = xfs_filestream_associate(pip, ip); | |
1176 | if (error < 0) | |
1177 | return -error; | |
1178 | if (!error) | |
1179 | xfs_iflags_set(ip, XFS_IFILESTREAM); | |
1180 | } | |
1181 | ||
1da177e4 LT |
1182 | *ipp = ip; |
1183 | return 0; | |
1184 | } | |
1185 | ||
1186 | /* | |
1187 | * Check to make sure that there are no blocks allocated to the | |
1188 | * file beyond the size of the file. We don't check this for | |
1189 | * files with fixed size extents or real time extents, but we | |
1190 | * at least do it for regular files. | |
1191 | */ | |
1192 | #ifdef DEBUG | |
1193 | void | |
1194 | xfs_isize_check( | |
1195 | xfs_mount_t *mp, | |
1196 | xfs_inode_t *ip, | |
1197 | xfs_fsize_t isize) | |
1198 | { | |
1199 | xfs_fileoff_t map_first; | |
1200 | int nimaps; | |
1201 | xfs_bmbt_irec_t imaps[2]; | |
1202 | ||
1203 | if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) | |
1204 | return; | |
1205 | ||
71ddabb9 ES |
1206 | if (XFS_IS_REALTIME_INODE(ip)) |
1207 | return; | |
1208 | ||
1209 | if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) | |
1da177e4 LT |
1210 | return; |
1211 | ||
1212 | nimaps = 2; | |
1213 | map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); | |
1214 | /* | |
1215 | * The filesystem could be shutting down, so bmapi may return | |
1216 | * an error. | |
1217 | */ | |
1218 | if (xfs_bmapi(NULL, ip, map_first, | |
1219 | (XFS_B_TO_FSB(mp, | |
1220 | (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - | |
1221 | map_first), | |
1222 | XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, | |
b4e9181e | 1223 | NULL)) |
1da177e4 LT |
1224 | return; |
1225 | ASSERT(nimaps == 1); | |
1226 | ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); | |
1227 | } | |
1228 | #endif /* DEBUG */ | |
1229 | ||
1230 | /* | |
1231 | * Calculate the last possible buffered byte in a file. This must | |
1232 | * include data that was buffered beyond the EOF by the write code. | |
1233 | * This also needs to deal with overflowing the xfs_fsize_t type | |
1234 | * which can happen for sizes near the limit. | |
1235 | * | |
1236 | * We also need to take into account any blocks beyond the EOF. It | |
1237 | * may be the case that they were buffered by a write which failed. | |
1238 | * In that case the pages will still be in memory, but the inode size | |
1239 | * will never have been updated. | |
1240 | */ | |
d96f8f89 | 1241 | STATIC xfs_fsize_t |
1da177e4 LT |
1242 | xfs_file_last_byte( |
1243 | xfs_inode_t *ip) | |
1244 | { | |
1245 | xfs_mount_t *mp; | |
1246 | xfs_fsize_t last_byte; | |
1247 | xfs_fileoff_t last_block; | |
1248 | xfs_fileoff_t size_last_block; | |
1249 | int error; | |
1250 | ||
579aa9ca | 1251 | ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)); |
1da177e4 LT |
1252 | |
1253 | mp = ip->i_mount; | |
1254 | /* | |
1255 | * Only check for blocks beyond the EOF if the extents have | |
1256 | * been read in. This eliminates the need for the inode lock, | |
1257 | * and it also saves us from looking when it really isn't | |
1258 | * necessary. | |
1259 | */ | |
1260 | if (ip->i_df.if_flags & XFS_IFEXTENTS) { | |
f25181f5 | 1261 | xfs_ilock(ip, XFS_ILOCK_SHARED); |
1da177e4 LT |
1262 | error = xfs_bmap_last_offset(NULL, ip, &last_block, |
1263 | XFS_DATA_FORK); | |
f25181f5 | 1264 | xfs_iunlock(ip, XFS_ILOCK_SHARED); |
1da177e4 LT |
1265 | if (error) { |
1266 | last_block = 0; | |
1267 | } | |
1268 | } else { | |
1269 | last_block = 0; | |
1270 | } | |
ba87ea69 | 1271 | size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size); |
1da177e4 LT |
1272 | last_block = XFS_FILEOFF_MAX(last_block, size_last_block); |
1273 | ||
1274 | last_byte = XFS_FSB_TO_B(mp, last_block); | |
1275 | if (last_byte < 0) { | |
1276 | return XFS_MAXIOFFSET(mp); | |
1277 | } | |
1278 | last_byte += (1 << mp->m_writeio_log); | |
1279 | if (last_byte < 0) { | |
1280 | return XFS_MAXIOFFSET(mp); | |
1281 | } | |
1282 | return last_byte; | |
1283 | } | |
1284 | ||
1da177e4 LT |
1285 | /* |
1286 | * Start the truncation of the file to new_size. The new size | |
1287 | * must be smaller than the current size. This routine will | |
1288 | * clear the buffer and page caches of file data in the removed | |
1289 | * range, and xfs_itruncate_finish() will remove the underlying | |
1290 | * disk blocks. | |
1291 | * | |
1292 | * The inode must have its I/O lock locked EXCLUSIVELY, and it | |
1293 | * must NOT have the inode lock held at all. This is because we're | |
1294 | * calling into the buffer/page cache code and we can't hold the | |
1295 | * inode lock when we do so. | |
1296 | * | |
38e2299a DC |
1297 | * We need to wait for any direct I/Os in flight to complete before we |
1298 | * proceed with the truncate. This is needed to prevent the extents | |
1299 | * being read or written by the direct I/Os from being removed while the | |
1300 | * I/O is in flight as there is no other method of synchronising | |
1301 | * direct I/O with the truncate operation. Also, because we hold | |
1302 | * the IOLOCK in exclusive mode, we prevent new direct I/Os from being | |
1303 | * started until the truncate completes and drops the lock. Essentially, | |
25e41b3d CH |
1304 | * the xfs_ioend_wait() call forms an I/O barrier that provides strict |
1305 | * ordering between direct I/Os and the truncate operation. | |
38e2299a | 1306 | * |
1da177e4 LT |
1307 | * The flags parameter can have either the value XFS_ITRUNC_DEFINITE |
1308 | * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used | |
1309 | * in the case that the caller is locking things out of order and | |
1310 | * may not be able to call xfs_itruncate_finish() with the inode lock | |
1311 | * held without dropping the I/O lock. If the caller must drop the | |
1312 | * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() | |
1313 | * must be called again with all the same restrictions as the initial | |
1314 | * call. | |
1315 | */ | |
d3cf2094 | 1316 | int |
1da177e4 LT |
1317 | xfs_itruncate_start( |
1318 | xfs_inode_t *ip, | |
1319 | uint flags, | |
1320 | xfs_fsize_t new_size) | |
1321 | { | |
1322 | xfs_fsize_t last_byte; | |
1323 | xfs_off_t toss_start; | |
1324 | xfs_mount_t *mp; | |
d3cf2094 | 1325 | int error = 0; |
1da177e4 | 1326 | |
579aa9ca | 1327 | ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); |
ba87ea69 | 1328 | ASSERT((new_size == 0) || (new_size <= ip->i_size)); |
1da177e4 LT |
1329 | ASSERT((flags == XFS_ITRUNC_DEFINITE) || |
1330 | (flags == XFS_ITRUNC_MAYBE)); | |
1331 | ||
1332 | mp = ip->i_mount; | |
9fa8046f | 1333 | |
c734c79b | 1334 | /* wait for the completion of any pending DIOs */ |
d112f298 | 1335 | if (new_size == 0 || new_size < ip->i_size) |
25e41b3d | 1336 | xfs_ioend_wait(ip); |
c734c79b | 1337 | |
1da177e4 | 1338 | /* |
67fcaa73 | 1339 | * Call toss_pages or flushinval_pages to get rid of pages |
1da177e4 | 1340 | * overlapping the region being removed. We have to use |
67fcaa73 | 1341 | * the less efficient flushinval_pages in the case that the |
1da177e4 LT |
1342 | * caller may not be able to finish the truncate without |
1343 | * dropping the inode's I/O lock. Make sure | |
1344 | * to catch any pages brought in by buffers overlapping | |
1345 | * the EOF by searching out beyond the isize by our | |
1346 | * block size. We round new_size up to a block boundary | |
1347 | * so that we don't toss things on the same block as | |
1348 | * new_size but before it. | |
1349 | * | |
67fcaa73 | 1350 | * Before calling toss_page or flushinval_pages, make sure to |
1da177e4 LT |
1351 | * call remapf() over the same region if the file is mapped. |
1352 | * This frees up mapped file references to the pages in the | |
67fcaa73 | 1353 | * given range and for the flushinval_pages case it ensures |
1da177e4 LT |
1354 | * that we get the latest mapped changes flushed out. |
1355 | */ | |
1356 | toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); | |
1357 | toss_start = XFS_FSB_TO_B(mp, toss_start); | |
1358 | if (toss_start < 0) { | |
1359 | /* | |
1360 | * The place to start tossing is beyond our maximum | |
1361 | * file size, so there is no way that the data extended | |
1362 | * out there. | |
1363 | */ | |
d3cf2094 | 1364 | return 0; |
1da177e4 LT |
1365 | } |
1366 | last_byte = xfs_file_last_byte(ip); | |
0b1b213f | 1367 | trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte); |
1da177e4 LT |
1368 | if (last_byte > toss_start) { |
1369 | if (flags & XFS_ITRUNC_DEFINITE) { | |
739bfb2a CH |
1370 | xfs_tosspages(ip, toss_start, |
1371 | -1, FI_REMAPF_LOCKED); | |
1da177e4 | 1372 | } else { |
739bfb2a CH |
1373 | error = xfs_flushinval_pages(ip, toss_start, |
1374 | -1, FI_REMAPF_LOCKED); | |
1da177e4 LT |
1375 | } |
1376 | } | |
1377 | ||
1378 | #ifdef DEBUG | |
1379 | if (new_size == 0) { | |
df80c933 | 1380 | ASSERT(VN_CACHED(VFS_I(ip)) == 0); |
1da177e4 LT |
1381 | } |
1382 | #endif | |
d3cf2094 | 1383 | return error; |
1da177e4 LT |
1384 | } |
1385 | ||
1386 | /* | |
f6485057 DC |
1387 | * Shrink the file to the given new_size. The new size must be smaller than |
1388 | * the current size. This will free up the underlying blocks in the removed | |
1389 | * range after a call to xfs_itruncate_start() or xfs_atruncate_start(). | |
1da177e4 | 1390 | * |
f6485057 DC |
1391 | * The transaction passed to this routine must have made a permanent log |
1392 | * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the | |
1393 | * given transaction and start new ones, so make sure everything involved in | |
1394 | * the transaction is tidy before calling here. Some transaction will be | |
1395 | * returned to the caller to be committed. The incoming transaction must | |
1396 | * already include the inode, and both inode locks must be held exclusively. | |
1397 | * The inode must also be "held" within the transaction. On return the inode | |
1398 | * will be "held" within the returned transaction. This routine does NOT | |
1399 | * require any disk space to be reserved for it within the transaction. | |
1da177e4 | 1400 | * |
f6485057 DC |
1401 | * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it |
1402 | * indicates the fork which is to be truncated. For the attribute fork we only | |
1403 | * support truncation to size 0. | |
1da177e4 | 1404 | * |
f6485057 DC |
1405 | * We use the sync parameter to indicate whether or not the first transaction |
1406 | * we perform might have to be synchronous. For the attr fork, it needs to be | |
1407 | * so if the unlink of the inode is not yet known to be permanent in the log. | |
1408 | * This keeps us from freeing and reusing the blocks of the attribute fork | |
1409 | * before the unlink of the inode becomes permanent. | |
1da177e4 | 1410 | * |
f6485057 DC |
1411 | * For the data fork, we normally have to run synchronously if we're being |
1412 | * called out of the inactive path or we're being called out of the create path | |
1413 | * where we're truncating an existing file. Either way, the truncate needs to | |
1414 | * be sync so blocks don't reappear in the file with altered data in case of a | |
1415 | * crash. wsync filesystems can run the first case async because anything that | |
1416 | * shrinks the inode has to run sync so by the time we're called here from | |
1417 | * inactive, the inode size is permanently set to 0. | |
1da177e4 | 1418 | * |
f6485057 DC |
1419 | * Calls from the truncate path always need to be sync unless we're in a wsync |
1420 | * filesystem and the file has already been unlinked. | |
1da177e4 | 1421 | * |
f6485057 DC |
1422 | * The caller is responsible for correctly setting the sync parameter. It gets |
1423 | * too hard for us to guess here which path we're being called out of just | |
1424 | * based on inode state. | |
1425 | * | |
1426 | * If we get an error, we must return with the inode locked and linked into the | |
1427 | * current transaction. This keeps things simple for the higher level code, | |
1428 | * because it always knows that the inode is locked and held in the transaction | |
1429 | * that returns to it whether errors occur or not. We don't mark the inode | |
1430 | * dirty on error so that transactions can be easily aborted if possible. | |
1da177e4 LT |
1431 | */ |
1432 | int | |
1433 | xfs_itruncate_finish( | |
1434 | xfs_trans_t **tp, | |
1435 | xfs_inode_t *ip, | |
1436 | xfs_fsize_t new_size, | |
1437 | int fork, | |
1438 | int sync) | |
1439 | { | |
1440 | xfs_fsblock_t first_block; | |
1441 | xfs_fileoff_t first_unmap_block; | |
1442 | xfs_fileoff_t last_block; | |
1443 | xfs_filblks_t unmap_len=0; | |
1444 | xfs_mount_t *mp; | |
1445 | xfs_trans_t *ntp; | |
1446 | int done; | |
1447 | int committed; | |
1448 | xfs_bmap_free_t free_list; | |
1449 | int error; | |
1450 | ||
579aa9ca | 1451 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); |
ba87ea69 | 1452 | ASSERT((new_size == 0) || (new_size <= ip->i_size)); |
1da177e4 LT |
1453 | ASSERT(*tp != NULL); |
1454 | ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); | |
1455 | ASSERT(ip->i_transp == *tp); | |
1456 | ASSERT(ip->i_itemp != NULL); | |
898621d5 | 1457 | ASSERT(ip->i_itemp->ili_lock_flags == 0); |
1da177e4 LT |
1458 | |
1459 | ||
1460 | ntp = *tp; | |
1461 | mp = (ntp)->t_mountp; | |
1462 | ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); | |
1463 | ||
1464 | /* | |
1465 | * We only support truncating the entire attribute fork. | |
1466 | */ | |
1467 | if (fork == XFS_ATTR_FORK) { | |
1468 | new_size = 0LL; | |
1469 | } | |
1470 | first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); | |
0b1b213f CH |
1471 | trace_xfs_itruncate_finish_start(ip, new_size); |
1472 | ||
1da177e4 LT |
1473 | /* |
1474 | * The first thing we do is set the size to new_size permanently | |
1475 | * on disk. This way we don't have to worry about anyone ever | |
1476 | * being able to look at the data being freed even in the face | |
1477 | * of a crash. What we're getting around here is the case where | |
1478 | * we free a block, it is allocated to another file, it is written | |
1479 | * to, and then we crash. If the new data gets written to the | |
1480 | * file but the log buffers containing the free and reallocation | |
1481 | * don't, then we'd end up with garbage in the blocks being freed. | |
1482 | * As long as we make the new_size permanent before actually | |
1483 | * freeing any blocks it doesn't matter if they get writtten to. | |
1484 | * | |
1485 | * The callers must signal into us whether or not the size | |
1486 | * setting here must be synchronous. There are a few cases | |
1487 | * where it doesn't have to be synchronous. Those cases | |
1488 | * occur if the file is unlinked and we know the unlink is | |
1489 | * permanent or if the blocks being truncated are guaranteed | |
1490 | * to be beyond the inode eof (regardless of the link count) | |
1491 | * and the eof value is permanent. Both of these cases occur | |
1492 | * only on wsync-mounted filesystems. In those cases, we're | |
1493 | * guaranteed that no user will ever see the data in the blocks | |
1494 | * that are being truncated so the truncate can run async. | |
1495 | * In the free beyond eof case, the file may wind up with | |
1496 | * more blocks allocated to it than it needs if we crash | |
1497 | * and that won't get fixed until the next time the file | |
1498 | * is re-opened and closed but that's ok as that shouldn't | |
1499 | * be too many blocks. | |
1500 | * | |
1501 | * However, we can't just make all wsync xactions run async | |
1502 | * because there's one call out of the create path that needs | |
1503 | * to run sync where it's truncating an existing file to size | |
1504 | * 0 whose size is > 0. | |
1505 | * | |
1506 | * It's probably possible to come up with a test in this | |
1507 | * routine that would correctly distinguish all the above | |
1508 | * cases from the values of the function parameters and the | |
1509 | * inode state but for sanity's sake, I've decided to let the | |
1510 | * layers above just tell us. It's simpler to correctly figure | |
1511 | * out in the layer above exactly under what conditions we | |
1512 | * can run async and I think it's easier for others read and | |
1513 | * follow the logic in case something has to be changed. | |
1514 | * cscope is your friend -- rcc. | |
1515 | * | |
1516 | * The attribute fork is much simpler. | |
1517 | * | |
1518 | * For the attribute fork we allow the caller to tell us whether | |
1519 | * the unlink of the inode that led to this call is yet permanent | |
1520 | * in the on disk log. If it is not and we will be freeing extents | |
1521 | * in this inode then we make the first transaction synchronous | |
1522 | * to make sure that the unlink is permanent by the time we free | |
1523 | * the blocks. | |
1524 | */ | |
1525 | if (fork == XFS_DATA_FORK) { | |
1526 | if (ip->i_d.di_nextents > 0) { | |
ba87ea69 LM |
1527 | /* |
1528 | * If we are not changing the file size then do | |
1529 | * not update the on-disk file size - we may be | |
1530 | * called from xfs_inactive_free_eofblocks(). If we | |
1531 | * update the on-disk file size and then the system | |
1532 | * crashes before the contents of the file are | |
1533 | * flushed to disk then the files may be full of | |
1534 | * holes (ie NULL files bug). | |
1535 | */ | |
1536 | if (ip->i_size != new_size) { | |
1537 | ip->i_d.di_size = new_size; | |
1538 | ip->i_size = new_size; | |
1539 | xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); | |
1540 | } | |
1da177e4 LT |
1541 | } |
1542 | } else if (sync) { | |
1543 | ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); | |
1544 | if (ip->i_d.di_anextents > 0) | |
1545 | xfs_trans_set_sync(ntp); | |
1546 | } | |
1547 | ASSERT(fork == XFS_DATA_FORK || | |
1548 | (fork == XFS_ATTR_FORK && | |
1549 | ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || | |
1550 | (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); | |
1551 | ||
1552 | /* | |
1553 | * Since it is possible for space to become allocated beyond | |
1554 | * the end of the file (in a crash where the space is allocated | |
1555 | * but the inode size is not yet updated), simply remove any | |
1556 | * blocks which show up between the new EOF and the maximum | |
1557 | * possible file size. If the first block to be removed is | |
1558 | * beyond the maximum file size (ie it is the same as last_block), | |
1559 | * then there is nothing to do. | |
1560 | */ | |
1561 | last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); | |
1562 | ASSERT(first_unmap_block <= last_block); | |
1563 | done = 0; | |
1564 | if (last_block == first_unmap_block) { | |
1565 | done = 1; | |
1566 | } else { | |
1567 | unmap_len = last_block - first_unmap_block + 1; | |
1568 | } | |
1569 | while (!done) { | |
1570 | /* | |
1571 | * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi() | |
1572 | * will tell us whether it freed the entire range or | |
1573 | * not. If this is a synchronous mount (wsync), | |
1574 | * then we can tell bunmapi to keep all the | |
1575 | * transactions asynchronous since the unlink | |
1576 | * transaction that made this inode inactive has | |
1577 | * already hit the disk. There's no danger of | |
1578 | * the freed blocks being reused, there being a | |
1579 | * crash, and the reused blocks suddenly reappearing | |
1580 | * in this file with garbage in them once recovery | |
1581 | * runs. | |
1582 | */ | |
9d87c319 | 1583 | xfs_bmap_init(&free_list, &first_block); |
541d7d3c | 1584 | error = xfs_bunmapi(ntp, ip, |
3e57ecf6 | 1585 | first_unmap_block, unmap_len, |
cd8b0bb3 | 1586 | xfs_bmapi_aflag(fork), |
1da177e4 | 1587 | XFS_ITRUNC_MAX_EXTENTS, |
3e57ecf6 | 1588 | &first_block, &free_list, |
b4e9181e | 1589 | &done); |
1da177e4 LT |
1590 | if (error) { |
1591 | /* | |
1592 | * If the bunmapi call encounters an error, | |
1593 | * return to the caller where the transaction | |
1594 | * can be properly aborted. We just need to | |
1595 | * make sure we're not holding any resources | |
1596 | * that we were not when we came in. | |
1597 | */ | |
1598 | xfs_bmap_cancel(&free_list); | |
1599 | return error; | |
1600 | } | |
1601 | ||
1602 | /* | |
1603 | * Duplicate the transaction that has the permanent | |
1604 | * reservation and commit the old transaction. | |
1605 | */ | |
f7c99b6f | 1606 | error = xfs_bmap_finish(tp, &free_list, &committed); |
1da177e4 | 1607 | ntp = *tp; |
898621d5 CH |
1608 | if (committed) |
1609 | xfs_trans_ijoin(ntp, ip); | |
f6485057 | 1610 | |
1da177e4 LT |
1611 | if (error) { |
1612 | /* | |
f6485057 DC |
1613 | * If the bmap finish call encounters an error, return |
1614 | * to the caller where the transaction can be properly | |
1615 | * aborted. We just need to make sure we're not | |
1616 | * holding any resources that we were not when we came | |
1617 | * in. | |
1da177e4 | 1618 | * |
f6485057 DC |
1619 | * Aborting from this point might lose some blocks in |
1620 | * the file system, but oh well. | |
1da177e4 LT |
1621 | */ |
1622 | xfs_bmap_cancel(&free_list); | |
1da177e4 LT |
1623 | return error; |
1624 | } | |
1625 | ||
1626 | if (committed) { | |
1627 | /* | |
f6485057 | 1628 | * Mark the inode dirty so it will be logged and |
e5720eec | 1629 | * moved forward in the log as part of every commit. |
1da177e4 | 1630 | */ |
1da177e4 LT |
1631 | xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); |
1632 | } | |
f6485057 | 1633 | |
1da177e4 | 1634 | ntp = xfs_trans_dup(ntp); |
e5720eec | 1635 | error = xfs_trans_commit(*tp, 0); |
1da177e4 | 1636 | *tp = ntp; |
e5720eec | 1637 | |
898621d5 | 1638 | xfs_trans_ijoin(ntp, ip); |
f6485057 | 1639 | |
cc09c0dc DC |
1640 | if (error) |
1641 | return error; | |
1642 | /* | |
1643 | * transaction commit worked ok so we can drop the extra ticket | |
1644 | * reference that we gained in xfs_trans_dup() | |
1645 | */ | |
1646 | xfs_log_ticket_put(ntp->t_ticket); | |
1647 | error = xfs_trans_reserve(ntp, 0, | |
f6485057 DC |
1648 | XFS_ITRUNCATE_LOG_RES(mp), 0, |
1649 | XFS_TRANS_PERM_LOG_RES, | |
1650 | XFS_ITRUNCATE_LOG_COUNT); | |
1651 | if (error) | |
1652 | return error; | |
1da177e4 LT |
1653 | } |
1654 | /* | |
1655 | * Only update the size in the case of the data fork, but | |
1656 | * always re-log the inode so that our permanent transaction | |
1657 | * can keep on rolling it forward in the log. | |
1658 | */ | |
1659 | if (fork == XFS_DATA_FORK) { | |
1660 | xfs_isize_check(mp, ip, new_size); | |
ba87ea69 LM |
1661 | /* |
1662 | * If we are not changing the file size then do | |
1663 | * not update the on-disk file size - we may be | |
1664 | * called from xfs_inactive_free_eofblocks(). If we | |
1665 | * update the on-disk file size and then the system | |
1666 | * crashes before the contents of the file are | |
1667 | * flushed to disk then the files may be full of | |
1668 | * holes (ie NULL files bug). | |
1669 | */ | |
1670 | if (ip->i_size != new_size) { | |
1671 | ip->i_d.di_size = new_size; | |
1672 | ip->i_size = new_size; | |
1673 | } | |
1da177e4 LT |
1674 | } |
1675 | xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); | |
1676 | ASSERT((new_size != 0) || | |
1677 | (fork == XFS_ATTR_FORK) || | |
1678 | (ip->i_delayed_blks == 0)); | |
1679 | ASSERT((new_size != 0) || | |
1680 | (fork == XFS_ATTR_FORK) || | |
1681 | (ip->i_d.di_nextents == 0)); | |
0b1b213f | 1682 | trace_xfs_itruncate_finish_end(ip, new_size); |
1da177e4 LT |
1683 | return 0; |
1684 | } | |
1685 | ||
1da177e4 LT |
1686 | /* |
1687 | * This is called when the inode's link count goes to 0. | |
1688 | * We place the on-disk inode on a list in the AGI. It | |
1689 | * will be pulled from this list when the inode is freed. | |
1690 | */ | |
1691 | int | |
1692 | xfs_iunlink( | |
1693 | xfs_trans_t *tp, | |
1694 | xfs_inode_t *ip) | |
1695 | { | |
1696 | xfs_mount_t *mp; | |
1697 | xfs_agi_t *agi; | |
1698 | xfs_dinode_t *dip; | |
1699 | xfs_buf_t *agibp; | |
1700 | xfs_buf_t *ibp; | |
1da177e4 LT |
1701 | xfs_agino_t agino; |
1702 | short bucket_index; | |
1703 | int offset; | |
1704 | int error; | |
1da177e4 LT |
1705 | |
1706 | ASSERT(ip->i_d.di_nlink == 0); | |
1707 | ASSERT(ip->i_d.di_mode != 0); | |
1708 | ASSERT(ip->i_transp == tp); | |
1709 | ||
1710 | mp = tp->t_mountp; | |
1711 | ||
1da177e4 LT |
1712 | /* |
1713 | * Get the agi buffer first. It ensures lock ordering | |
1714 | * on the list. | |
1715 | */ | |
5e1be0fb | 1716 | error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); |
859d7182 | 1717 | if (error) |
1da177e4 | 1718 | return error; |
1da177e4 | 1719 | agi = XFS_BUF_TO_AGI(agibp); |
5e1be0fb | 1720 | |
1da177e4 LT |
1721 | /* |
1722 | * Get the index into the agi hash table for the | |
1723 | * list this inode will go on. | |
1724 | */ | |
1725 | agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | |
1726 | ASSERT(agino != 0); | |
1727 | bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; | |
1728 | ASSERT(agi->agi_unlinked[bucket_index]); | |
16259e7d | 1729 | ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); |
1da177e4 | 1730 | |
16259e7d | 1731 | if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) { |
1da177e4 LT |
1732 | /* |
1733 | * There is already another inode in the bucket we need | |
1734 | * to add ourselves to. Add us at the front of the list. | |
1735 | * Here we put the head pointer into our next pointer, | |
1736 | * and then we fall through to point the head at us. | |
1737 | */ | |
0cadda1c | 1738 | error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK); |
c319b58b VA |
1739 | if (error) |
1740 | return error; | |
1741 | ||
347d1c01 | 1742 | ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO); |
1da177e4 LT |
1743 | /* both on-disk, don't endian flip twice */ |
1744 | dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; | |
92bfc6e7 | 1745 | offset = ip->i_imap.im_boffset + |
1da177e4 LT |
1746 | offsetof(xfs_dinode_t, di_next_unlinked); |
1747 | xfs_trans_inode_buf(tp, ibp); | |
1748 | xfs_trans_log_buf(tp, ibp, offset, | |
1749 | (offset + sizeof(xfs_agino_t) - 1)); | |
1750 | xfs_inobp_check(mp, ibp); | |
1751 | } | |
1752 | ||
1753 | /* | |
1754 | * Point the bucket head pointer at the inode being inserted. | |
1755 | */ | |
1756 | ASSERT(agino != 0); | |
16259e7d | 1757 | agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); |
1da177e4 LT |
1758 | offset = offsetof(xfs_agi_t, agi_unlinked) + |
1759 | (sizeof(xfs_agino_t) * bucket_index); | |
1760 | xfs_trans_log_buf(tp, agibp, offset, | |
1761 | (offset + sizeof(xfs_agino_t) - 1)); | |
1762 | return 0; | |
1763 | } | |
1764 | ||
1765 | /* | |
1766 | * Pull the on-disk inode from the AGI unlinked list. | |
1767 | */ | |
1768 | STATIC int | |
1769 | xfs_iunlink_remove( | |
1770 | xfs_trans_t *tp, | |
1771 | xfs_inode_t *ip) | |
1772 | { | |
1773 | xfs_ino_t next_ino; | |
1774 | xfs_mount_t *mp; | |
1775 | xfs_agi_t *agi; | |
1776 | xfs_dinode_t *dip; | |
1777 | xfs_buf_t *agibp; | |
1778 | xfs_buf_t *ibp; | |
1779 | xfs_agnumber_t agno; | |
1da177e4 LT |
1780 | xfs_agino_t agino; |
1781 | xfs_agino_t next_agino; | |
1782 | xfs_buf_t *last_ibp; | |
6fdf8ccc | 1783 | xfs_dinode_t *last_dip = NULL; |
1da177e4 | 1784 | short bucket_index; |
6fdf8ccc | 1785 | int offset, last_offset = 0; |
1da177e4 | 1786 | int error; |
1da177e4 | 1787 | |
1da177e4 | 1788 | mp = tp->t_mountp; |
1da177e4 | 1789 | agno = XFS_INO_TO_AGNO(mp, ip->i_ino); |
1da177e4 LT |
1790 | |
1791 | /* | |
1792 | * Get the agi buffer first. It ensures lock ordering | |
1793 | * on the list. | |
1794 | */ | |
5e1be0fb CH |
1795 | error = xfs_read_agi(mp, tp, agno, &agibp); |
1796 | if (error) | |
1da177e4 | 1797 | return error; |
5e1be0fb | 1798 | |
1da177e4 | 1799 | agi = XFS_BUF_TO_AGI(agibp); |
5e1be0fb | 1800 | |
1da177e4 LT |
1801 | /* |
1802 | * Get the index into the agi hash table for the | |
1803 | * list this inode will go on. | |
1804 | */ | |
1805 | agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | |
1806 | ASSERT(agino != 0); | |
1807 | bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; | |
16259e7d | 1808 | ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO); |
1da177e4 LT |
1809 | ASSERT(agi->agi_unlinked[bucket_index]); |
1810 | ||
16259e7d | 1811 | if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { |
1da177e4 LT |
1812 | /* |
1813 | * We're at the head of the list. Get the inode's | |
1814 | * on-disk buffer to see if there is anyone after us | |
1815 | * on the list. Only modify our next pointer if it | |
1816 | * is not already NULLAGINO. This saves us the overhead | |
1817 | * of dealing with the buffer when there is no need to | |
1818 | * change it. | |
1819 | */ | |
0cadda1c | 1820 | error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK); |
1da177e4 LT |
1821 | if (error) { |
1822 | cmn_err(CE_WARN, | |
1823 | "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", | |
1824 | error, mp->m_fsname); | |
1825 | return error; | |
1826 | } | |
347d1c01 | 1827 | next_agino = be32_to_cpu(dip->di_next_unlinked); |
1da177e4 LT |
1828 | ASSERT(next_agino != 0); |
1829 | if (next_agino != NULLAGINO) { | |
347d1c01 | 1830 | dip->di_next_unlinked = cpu_to_be32(NULLAGINO); |
92bfc6e7 | 1831 | offset = ip->i_imap.im_boffset + |
1da177e4 LT |
1832 | offsetof(xfs_dinode_t, di_next_unlinked); |
1833 | xfs_trans_inode_buf(tp, ibp); | |
1834 | xfs_trans_log_buf(tp, ibp, offset, | |
1835 | (offset + sizeof(xfs_agino_t) - 1)); | |
1836 | xfs_inobp_check(mp, ibp); | |
1837 | } else { | |
1838 | xfs_trans_brelse(tp, ibp); | |
1839 | } | |
1840 | /* | |
1841 | * Point the bucket head pointer at the next inode. | |
1842 | */ | |
1843 | ASSERT(next_agino != 0); | |
1844 | ASSERT(next_agino != agino); | |
16259e7d | 1845 | agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); |
1da177e4 LT |
1846 | offset = offsetof(xfs_agi_t, agi_unlinked) + |
1847 | (sizeof(xfs_agino_t) * bucket_index); | |
1848 | xfs_trans_log_buf(tp, agibp, offset, | |
1849 | (offset + sizeof(xfs_agino_t) - 1)); | |
1850 | } else { | |
1851 | /* | |
1852 | * We need to search the list for the inode being freed. | |
1853 | */ | |
16259e7d | 1854 | next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); |
1da177e4 LT |
1855 | last_ibp = NULL; |
1856 | while (next_agino != agino) { | |
1857 | /* | |
1858 | * If the last inode wasn't the one pointing to | |
1859 | * us, then release its buffer since we're not | |
1860 | * going to do anything with it. | |
1861 | */ | |
1862 | if (last_ibp != NULL) { | |
1863 | xfs_trans_brelse(tp, last_ibp); | |
1864 | } | |
1865 | next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); | |
1866 | error = xfs_inotobp(mp, tp, next_ino, &last_dip, | |
c679eef0 | 1867 | &last_ibp, &last_offset, 0); |
1da177e4 LT |
1868 | if (error) { |
1869 | cmn_err(CE_WARN, | |
1870 | "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.", | |
1871 | error, mp->m_fsname); | |
1872 | return error; | |
1873 | } | |
347d1c01 | 1874 | next_agino = be32_to_cpu(last_dip->di_next_unlinked); |
1da177e4 LT |
1875 | ASSERT(next_agino != NULLAGINO); |
1876 | ASSERT(next_agino != 0); | |
1877 | } | |
1878 | /* | |
1879 | * Now last_ibp points to the buffer previous to us on | |
1880 | * the unlinked list. Pull us from the list. | |
1881 | */ | |
0cadda1c | 1882 | error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK); |
1da177e4 LT |
1883 | if (error) { |
1884 | cmn_err(CE_WARN, | |
1885 | "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", | |
1886 | error, mp->m_fsname); | |
1887 | return error; | |
1888 | } | |
347d1c01 | 1889 | next_agino = be32_to_cpu(dip->di_next_unlinked); |
1da177e4 LT |
1890 | ASSERT(next_agino != 0); |
1891 | ASSERT(next_agino != agino); | |
1892 | if (next_agino != NULLAGINO) { | |
347d1c01 | 1893 | dip->di_next_unlinked = cpu_to_be32(NULLAGINO); |
92bfc6e7 | 1894 | offset = ip->i_imap.im_boffset + |
1da177e4 LT |
1895 | offsetof(xfs_dinode_t, di_next_unlinked); |
1896 | xfs_trans_inode_buf(tp, ibp); | |
1897 | xfs_trans_log_buf(tp, ibp, offset, | |
1898 | (offset + sizeof(xfs_agino_t) - 1)); | |
1899 | xfs_inobp_check(mp, ibp); | |
1900 | } else { | |
1901 | xfs_trans_brelse(tp, ibp); | |
1902 | } | |
1903 | /* | |
1904 | * Point the previous inode on the list to the next inode. | |
1905 | */ | |
347d1c01 | 1906 | last_dip->di_next_unlinked = cpu_to_be32(next_agino); |
1da177e4 LT |
1907 | ASSERT(next_agino != 0); |
1908 | offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); | |
1909 | xfs_trans_inode_buf(tp, last_ibp); | |
1910 | xfs_trans_log_buf(tp, last_ibp, offset, | |
1911 | (offset + sizeof(xfs_agino_t) - 1)); | |
1912 | xfs_inobp_check(mp, last_ibp); | |
1913 | } | |
1914 | return 0; | |
1915 | } | |
1916 | ||
5b3eed75 DC |
1917 | /* |
1918 | * A big issue when freeing the inode cluster is is that we _cannot_ skip any | |
1919 | * inodes that are in memory - they all must be marked stale and attached to | |
1920 | * the cluster buffer. | |
1921 | */ | |
ba0f32d4 | 1922 | STATIC void |
1da177e4 LT |
1923 | xfs_ifree_cluster( |
1924 | xfs_inode_t *free_ip, | |
1925 | xfs_trans_t *tp, | |
1926 | xfs_ino_t inum) | |
1927 | { | |
1928 | xfs_mount_t *mp = free_ip->i_mount; | |
1929 | int blks_per_cluster; | |
1930 | int nbufs; | |
1931 | int ninodes; | |
5b257b4a | 1932 | int i, j; |
1da177e4 LT |
1933 | xfs_daddr_t blkno; |
1934 | xfs_buf_t *bp; | |
5b257b4a | 1935 | xfs_inode_t *ip; |
1da177e4 LT |
1936 | xfs_inode_log_item_t *iip; |
1937 | xfs_log_item_t *lip; | |
5017e97d | 1938 | struct xfs_perag *pag; |
1da177e4 | 1939 | |
5017e97d | 1940 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); |
1da177e4 LT |
1941 | if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { |
1942 | blks_per_cluster = 1; | |
1943 | ninodes = mp->m_sb.sb_inopblock; | |
1944 | nbufs = XFS_IALLOC_BLOCKS(mp); | |
1945 | } else { | |
1946 | blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / | |
1947 | mp->m_sb.sb_blocksize; | |
1948 | ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; | |
1949 | nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; | |
1950 | } | |
1951 | ||
1da177e4 LT |
1952 | for (j = 0; j < nbufs; j++, inum += ninodes) { |
1953 | blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), | |
1954 | XFS_INO_TO_AGBNO(mp, inum)); | |
1955 | ||
5b257b4a DC |
1956 | /* |
1957 | * We obtain and lock the backing buffer first in the process | |
1958 | * here, as we have to ensure that any dirty inode that we | |
1959 | * can't get the flush lock on is attached to the buffer. | |
1960 | * If we scan the in-memory inodes first, then buffer IO can | |
1961 | * complete before we get a lock on it, and hence we may fail | |
1962 | * to mark all the active inodes on the buffer stale. | |
1963 | */ | |
1964 | bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, | |
1965 | mp->m_bsize * blks_per_cluster, | |
1966 | XBF_LOCK); | |
1967 | ||
1968 | /* | |
1969 | * Walk the inodes already attached to the buffer and mark them | |
1970 | * stale. These will all have the flush locks held, so an | |
5b3eed75 DC |
1971 | * in-memory inode walk can't lock them. By marking them all |
1972 | * stale first, we will not attempt to lock them in the loop | |
1973 | * below as the XFS_ISTALE flag will be set. | |
5b257b4a DC |
1974 | */ |
1975 | lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); | |
1976 | while (lip) { | |
1977 | if (lip->li_type == XFS_LI_INODE) { | |
1978 | iip = (xfs_inode_log_item_t *)lip; | |
1979 | ASSERT(iip->ili_logged == 1); | |
ca30b2a7 | 1980 | lip->li_cb = xfs_istale_done; |
5b257b4a DC |
1981 | xfs_trans_ail_copy_lsn(mp->m_ail, |
1982 | &iip->ili_flush_lsn, | |
1983 | &iip->ili_item.li_lsn); | |
1984 | xfs_iflags_set(iip->ili_inode, XFS_ISTALE); | |
5b257b4a DC |
1985 | } |
1986 | lip = lip->li_bio_list; | |
1987 | } | |
1da177e4 | 1988 | |
5b3eed75 | 1989 | |
1da177e4 | 1990 | /* |
5b257b4a DC |
1991 | * For each inode in memory attempt to add it to the inode |
1992 | * buffer and set it up for being staled on buffer IO | |
1993 | * completion. This is safe as we've locked out tail pushing | |
1994 | * and flushing by locking the buffer. | |
1da177e4 | 1995 | * |
5b257b4a DC |
1996 | * We have already marked every inode that was part of a |
1997 | * transaction stale above, which means there is no point in | |
1998 | * even trying to lock them. | |
1da177e4 | 1999 | */ |
1da177e4 | 2000 | for (i = 0; i < ninodes; i++) { |
5b3eed75 | 2001 | retry: |
da353b0d DC |
2002 | read_lock(&pag->pag_ici_lock); |
2003 | ip = radix_tree_lookup(&pag->pag_ici_root, | |
2004 | XFS_INO_TO_AGINO(mp, (inum + i))); | |
1da177e4 | 2005 | |
5b257b4a | 2006 | /* Inode not in memory or stale, nothing to do */ |
7a18c386 | 2007 | if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) { |
da353b0d | 2008 | read_unlock(&pag->pag_ici_lock); |
1da177e4 LT |
2009 | continue; |
2010 | } | |
2011 | ||
5b3eed75 DC |
2012 | /* |
2013 | * Don't try to lock/unlock the current inode, but we | |
2014 | * _cannot_ skip the other inodes that we did not find | |
2015 | * in the list attached to the buffer and are not | |
2016 | * already marked stale. If we can't lock it, back off | |
2017 | * and retry. | |
2018 | */ | |
5b257b4a DC |
2019 | if (ip != free_ip && |
2020 | !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { | |
da353b0d | 2021 | read_unlock(&pag->pag_ici_lock); |
5b3eed75 DC |
2022 | delay(1); |
2023 | goto retry; | |
1da177e4 | 2024 | } |
5b257b4a | 2025 | read_unlock(&pag->pag_ici_lock); |
1da177e4 | 2026 | |
5b3eed75 | 2027 | xfs_iflock(ip); |
5b257b4a | 2028 | xfs_iflags_set(ip, XFS_ISTALE); |
1da177e4 | 2029 | |
5b3eed75 DC |
2030 | /* |
2031 | * we don't need to attach clean inodes or those only | |
2032 | * with unlogged changes (which we throw away, anyway). | |
2033 | */ | |
1da177e4 | 2034 | iip = ip->i_itemp; |
5b3eed75 | 2035 | if (!iip || xfs_inode_clean(ip)) { |
5b257b4a | 2036 | ASSERT(ip != free_ip); |
1da177e4 LT |
2037 | ip->i_update_core = 0; |
2038 | xfs_ifunlock(ip); | |
2039 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | |
2040 | continue; | |
2041 | } | |
2042 | ||
2043 | iip->ili_last_fields = iip->ili_format.ilf_fields; | |
2044 | iip->ili_format.ilf_fields = 0; | |
2045 | iip->ili_logged = 1; | |
7b2e2a31 DC |
2046 | xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, |
2047 | &iip->ili_item.li_lsn); | |
1da177e4 | 2048 | |
ca30b2a7 CH |
2049 | xfs_buf_attach_iodone(bp, xfs_istale_done, |
2050 | &iip->ili_item); | |
5b257b4a DC |
2051 | |
2052 | if (ip != free_ip) | |
1da177e4 | 2053 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
1da177e4 LT |
2054 | } |
2055 | ||
5b3eed75 | 2056 | xfs_trans_stale_inode_buf(tp, bp); |
1da177e4 LT |
2057 | xfs_trans_binval(tp, bp); |
2058 | } | |
2059 | ||
5017e97d | 2060 | xfs_perag_put(pag); |
1da177e4 LT |
2061 | } |
2062 | ||
2063 | /* | |
2064 | * This is called to return an inode to the inode free list. | |
2065 | * The inode should already be truncated to 0 length and have | |
2066 | * no pages associated with it. This routine also assumes that | |
2067 | * the inode is already a part of the transaction. | |
2068 | * | |
2069 | * The on-disk copy of the inode will have been added to the list | |
2070 | * of unlinked inodes in the AGI. We need to remove the inode from | |
2071 | * that list atomically with respect to freeing it here. | |
2072 | */ | |
2073 | int | |
2074 | xfs_ifree( | |
2075 | xfs_trans_t *tp, | |
2076 | xfs_inode_t *ip, | |
2077 | xfs_bmap_free_t *flist) | |
2078 | { | |
2079 | int error; | |
2080 | int delete; | |
2081 | xfs_ino_t first_ino; | |
c319b58b VA |
2082 | xfs_dinode_t *dip; |
2083 | xfs_buf_t *ibp; | |
1da177e4 | 2084 | |
579aa9ca | 2085 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
1da177e4 LT |
2086 | ASSERT(ip->i_transp == tp); |
2087 | ASSERT(ip->i_d.di_nlink == 0); | |
2088 | ASSERT(ip->i_d.di_nextents == 0); | |
2089 | ASSERT(ip->i_d.di_anextents == 0); | |
ba87ea69 | 2090 | ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) || |
1da177e4 LT |
2091 | ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); |
2092 | ASSERT(ip->i_d.di_nblocks == 0); | |
2093 | ||
2094 | /* | |
2095 | * Pull the on-disk inode from the AGI unlinked list. | |
2096 | */ | |
2097 | error = xfs_iunlink_remove(tp, ip); | |
2098 | if (error != 0) { | |
2099 | return error; | |
2100 | } | |
2101 | ||
2102 | error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); | |
2103 | if (error != 0) { | |
2104 | return error; | |
2105 | } | |
2106 | ip->i_d.di_mode = 0; /* mark incore inode as free */ | |
2107 | ip->i_d.di_flags = 0; | |
2108 | ip->i_d.di_dmevmask = 0; | |
2109 | ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ | |
2110 | ip->i_df.if_ext_max = | |
2111 | XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); | |
2112 | ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; | |
2113 | ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; | |
2114 | /* | |
2115 | * Bump the generation count so no one will be confused | |
2116 | * by reincarnations of this inode. | |
2117 | */ | |
2118 | ip->i_d.di_gen++; | |
c319b58b | 2119 | |
1da177e4 LT |
2120 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
2121 | ||
0cadda1c | 2122 | error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK); |
c319b58b VA |
2123 | if (error) |
2124 | return error; | |
2125 | ||
2126 | /* | |
2127 | * Clear the on-disk di_mode. This is to prevent xfs_bulkstat | |
2128 | * from picking up this inode when it is reclaimed (its incore state | |
2129 | * initialzed but not flushed to disk yet). The in-core di_mode is | |
2130 | * already cleared and a corresponding transaction logged. | |
2131 | * The hack here just synchronizes the in-core to on-disk | |
2132 | * di_mode value in advance before the actual inode sync to disk. | |
2133 | * This is OK because the inode is already unlinked and would never | |
2134 | * change its di_mode again for this inode generation. | |
2135 | * This is a temporary hack that would require a proper fix | |
2136 | * in the future. | |
2137 | */ | |
81591fe2 | 2138 | dip->di_mode = 0; |
c319b58b | 2139 | |
1da177e4 LT |
2140 | if (delete) { |
2141 | xfs_ifree_cluster(ip, tp, first_ino); | |
2142 | } | |
2143 | ||
2144 | return 0; | |
2145 | } | |
2146 | ||
2147 | /* | |
2148 | * Reallocate the space for if_broot based on the number of records | |
2149 | * being added or deleted as indicated in rec_diff. Move the records | |
2150 | * and pointers in if_broot to fit the new size. When shrinking this | |
2151 | * will eliminate holes between the records and pointers created by | |
2152 | * the caller. When growing this will create holes to be filled in | |
2153 | * by the caller. | |
2154 | * | |
2155 | * The caller must not request to add more records than would fit in | |
2156 | * the on-disk inode root. If the if_broot is currently NULL, then | |
2157 | * if we adding records one will be allocated. The caller must also | |
2158 | * not request that the number of records go below zero, although | |
2159 | * it can go to zero. | |
2160 | * | |
2161 | * ip -- the inode whose if_broot area is changing | |
2162 | * ext_diff -- the change in the number of records, positive or negative, | |
2163 | * requested for the if_broot array. | |
2164 | */ | |
2165 | void | |
2166 | xfs_iroot_realloc( | |
2167 | xfs_inode_t *ip, | |
2168 | int rec_diff, | |
2169 | int whichfork) | |
2170 | { | |
60197e8d | 2171 | struct xfs_mount *mp = ip->i_mount; |
1da177e4 LT |
2172 | int cur_max; |
2173 | xfs_ifork_t *ifp; | |
7cc95a82 | 2174 | struct xfs_btree_block *new_broot; |
1da177e4 LT |
2175 | int new_max; |
2176 | size_t new_size; | |
2177 | char *np; | |
2178 | char *op; | |
2179 | ||
2180 | /* | |
2181 | * Handle the degenerate case quietly. | |
2182 | */ | |
2183 | if (rec_diff == 0) { | |
2184 | return; | |
2185 | } | |
2186 | ||
2187 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
2188 | if (rec_diff > 0) { | |
2189 | /* | |
2190 | * If there wasn't any memory allocated before, just | |
2191 | * allocate it now and get out. | |
2192 | */ | |
2193 | if (ifp->if_broot_bytes == 0) { | |
2194 | new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); | |
4a7edddc | 2195 | ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); |
1da177e4 LT |
2196 | ifp->if_broot_bytes = (int)new_size; |
2197 | return; | |
2198 | } | |
2199 | ||
2200 | /* | |
2201 | * If there is already an existing if_broot, then we need | |
2202 | * to realloc() it and shift the pointers to their new | |
2203 | * location. The records don't change location because | |
2204 | * they are kept butted up against the btree block header. | |
2205 | */ | |
60197e8d | 2206 | cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); |
1da177e4 LT |
2207 | new_max = cur_max + rec_diff; |
2208 | new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); | |
7cc95a82 | 2209 | ifp->if_broot = kmem_realloc(ifp->if_broot, new_size, |
1da177e4 | 2210 | (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ |
4a7edddc | 2211 | KM_SLEEP | KM_NOFS); |
60197e8d CH |
2212 | op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, |
2213 | ifp->if_broot_bytes); | |
2214 | np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, | |
2215 | (int)new_size); | |
1da177e4 LT |
2216 | ifp->if_broot_bytes = (int)new_size; |
2217 | ASSERT(ifp->if_broot_bytes <= | |
2218 | XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); | |
2219 | memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); | |
2220 | return; | |
2221 | } | |
2222 | ||
2223 | /* | |
2224 | * rec_diff is less than 0. In this case, we are shrinking the | |
2225 | * if_broot buffer. It must already exist. If we go to zero | |
2226 | * records, just get rid of the root and clear the status bit. | |
2227 | */ | |
2228 | ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); | |
60197e8d | 2229 | cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); |
1da177e4 LT |
2230 | new_max = cur_max + rec_diff; |
2231 | ASSERT(new_max >= 0); | |
2232 | if (new_max > 0) | |
2233 | new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); | |
2234 | else | |
2235 | new_size = 0; | |
2236 | if (new_size > 0) { | |
4a7edddc | 2237 | new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); |
1da177e4 LT |
2238 | /* |
2239 | * First copy over the btree block header. | |
2240 | */ | |
7cc95a82 | 2241 | memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN); |
1da177e4 LT |
2242 | } else { |
2243 | new_broot = NULL; | |
2244 | ifp->if_flags &= ~XFS_IFBROOT; | |
2245 | } | |
2246 | ||
2247 | /* | |
2248 | * Only copy the records and pointers if there are any. | |
2249 | */ | |
2250 | if (new_max > 0) { | |
2251 | /* | |
2252 | * First copy the records. | |
2253 | */ | |
136341b4 CH |
2254 | op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); |
2255 | np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); | |
1da177e4 LT |
2256 | memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); |
2257 | ||
2258 | /* | |
2259 | * Then copy the pointers. | |
2260 | */ | |
60197e8d | 2261 | op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, |
1da177e4 | 2262 | ifp->if_broot_bytes); |
60197e8d | 2263 | np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, |
1da177e4 LT |
2264 | (int)new_size); |
2265 | memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); | |
2266 | } | |
f0e2d93c | 2267 | kmem_free(ifp->if_broot); |
1da177e4 LT |
2268 | ifp->if_broot = new_broot; |
2269 | ifp->if_broot_bytes = (int)new_size; | |
2270 | ASSERT(ifp->if_broot_bytes <= | |
2271 | XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); | |
2272 | return; | |
2273 | } | |
2274 | ||
2275 | ||
1da177e4 LT |
2276 | /* |
2277 | * This is called when the amount of space needed for if_data | |
2278 | * is increased or decreased. The change in size is indicated by | |
2279 | * the number of bytes that need to be added or deleted in the | |
2280 | * byte_diff parameter. | |
2281 | * | |
2282 | * If the amount of space needed has decreased below the size of the | |
2283 | * inline buffer, then switch to using the inline buffer. Otherwise, | |
2284 | * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer | |
2285 | * to what is needed. | |
2286 | * | |
2287 | * ip -- the inode whose if_data area is changing | |
2288 | * byte_diff -- the change in the number of bytes, positive or negative, | |
2289 | * requested for the if_data array. | |
2290 | */ | |
2291 | void | |
2292 | xfs_idata_realloc( | |
2293 | xfs_inode_t *ip, | |
2294 | int byte_diff, | |
2295 | int whichfork) | |
2296 | { | |
2297 | xfs_ifork_t *ifp; | |
2298 | int new_size; | |
2299 | int real_size; | |
2300 | ||
2301 | if (byte_diff == 0) { | |
2302 | return; | |
2303 | } | |
2304 | ||
2305 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
2306 | new_size = (int)ifp->if_bytes + byte_diff; | |
2307 | ASSERT(new_size >= 0); | |
2308 | ||
2309 | if (new_size == 0) { | |
2310 | if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { | |
f0e2d93c | 2311 | kmem_free(ifp->if_u1.if_data); |
1da177e4 LT |
2312 | } |
2313 | ifp->if_u1.if_data = NULL; | |
2314 | real_size = 0; | |
2315 | } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { | |
2316 | /* | |
2317 | * If the valid extents/data can fit in if_inline_ext/data, | |
2318 | * copy them from the malloc'd vector and free it. | |
2319 | */ | |
2320 | if (ifp->if_u1.if_data == NULL) { | |
2321 | ifp->if_u1.if_data = ifp->if_u2.if_inline_data; | |
2322 | } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { | |
2323 | ASSERT(ifp->if_real_bytes != 0); | |
2324 | memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, | |
2325 | new_size); | |
f0e2d93c | 2326 | kmem_free(ifp->if_u1.if_data); |
1da177e4 LT |
2327 | ifp->if_u1.if_data = ifp->if_u2.if_inline_data; |
2328 | } | |
2329 | real_size = 0; | |
2330 | } else { | |
2331 | /* | |
2332 | * Stuck with malloc/realloc. | |
2333 | * For inline data, the underlying buffer must be | |
2334 | * a multiple of 4 bytes in size so that it can be | |
2335 | * logged and stay on word boundaries. We enforce | |
2336 | * that here. | |
2337 | */ | |
2338 | real_size = roundup(new_size, 4); | |
2339 | if (ifp->if_u1.if_data == NULL) { | |
2340 | ASSERT(ifp->if_real_bytes == 0); | |
4a7edddc DC |
2341 | ifp->if_u1.if_data = kmem_alloc(real_size, |
2342 | KM_SLEEP | KM_NOFS); | |
1da177e4 LT |
2343 | } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { |
2344 | /* | |
2345 | * Only do the realloc if the underlying size | |
2346 | * is really changing. | |
2347 | */ | |
2348 | if (ifp->if_real_bytes != real_size) { | |
2349 | ifp->if_u1.if_data = | |
2350 | kmem_realloc(ifp->if_u1.if_data, | |
2351 | real_size, | |
2352 | ifp->if_real_bytes, | |
4a7edddc | 2353 | KM_SLEEP | KM_NOFS); |
1da177e4 LT |
2354 | } |
2355 | } else { | |
2356 | ASSERT(ifp->if_real_bytes == 0); | |
4a7edddc DC |
2357 | ifp->if_u1.if_data = kmem_alloc(real_size, |
2358 | KM_SLEEP | KM_NOFS); | |
1da177e4 LT |
2359 | memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, |
2360 | ifp->if_bytes); | |
2361 | } | |
2362 | } | |
2363 | ifp->if_real_bytes = real_size; | |
2364 | ifp->if_bytes = new_size; | |
2365 | ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); | |
2366 | } | |
2367 | ||
1da177e4 LT |
2368 | void |
2369 | xfs_idestroy_fork( | |
2370 | xfs_inode_t *ip, | |
2371 | int whichfork) | |
2372 | { | |
2373 | xfs_ifork_t *ifp; | |
2374 | ||
2375 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
2376 | if (ifp->if_broot != NULL) { | |
f0e2d93c | 2377 | kmem_free(ifp->if_broot); |
1da177e4 LT |
2378 | ifp->if_broot = NULL; |
2379 | } | |
2380 | ||
2381 | /* | |
2382 | * If the format is local, then we can't have an extents | |
2383 | * array so just look for an inline data array. If we're | |
2384 | * not local then we may or may not have an extents list, | |
2385 | * so check and free it up if we do. | |
2386 | */ | |
2387 | if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { | |
2388 | if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && | |
2389 | (ifp->if_u1.if_data != NULL)) { | |
2390 | ASSERT(ifp->if_real_bytes != 0); | |
f0e2d93c | 2391 | kmem_free(ifp->if_u1.if_data); |
1da177e4 LT |
2392 | ifp->if_u1.if_data = NULL; |
2393 | ifp->if_real_bytes = 0; | |
2394 | } | |
2395 | } else if ((ifp->if_flags & XFS_IFEXTENTS) && | |
0293ce3a MK |
2396 | ((ifp->if_flags & XFS_IFEXTIREC) || |
2397 | ((ifp->if_u1.if_extents != NULL) && | |
2398 | (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) { | |
1da177e4 | 2399 | ASSERT(ifp->if_real_bytes != 0); |
4eea22f0 | 2400 | xfs_iext_destroy(ifp); |
1da177e4 LT |
2401 | } |
2402 | ASSERT(ifp->if_u1.if_extents == NULL || | |
2403 | ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); | |
2404 | ASSERT(ifp->if_real_bytes == 0); | |
2405 | if (whichfork == XFS_ATTR_FORK) { | |
2406 | kmem_zone_free(xfs_ifork_zone, ip->i_afp); | |
2407 | ip->i_afp = NULL; | |
2408 | } | |
2409 | } | |
2410 | ||
1da177e4 | 2411 | /* |
60ec6783 CH |
2412 | * This is called to unpin an inode. The caller must have the inode locked |
2413 | * in at least shared mode so that the buffer cannot be subsequently pinned | |
2414 | * once someone is waiting for it to be unpinned. | |
1da177e4 | 2415 | */ |
60ec6783 CH |
2416 | static void |
2417 | xfs_iunpin_nowait( | |
2418 | struct xfs_inode *ip) | |
1da177e4 | 2419 | { |
579aa9ca | 2420 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
1da177e4 | 2421 | |
4aaf15d1 DC |
2422 | trace_xfs_inode_unpin_nowait(ip, _RET_IP_); |
2423 | ||
a3f74ffb | 2424 | /* Give the log a push to start the unpinning I/O */ |
60ec6783 | 2425 | xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); |
a14a348b | 2426 | |
a3f74ffb | 2427 | } |
1da177e4 | 2428 | |
777df5af | 2429 | void |
a3f74ffb | 2430 | xfs_iunpin_wait( |
60ec6783 | 2431 | struct xfs_inode *ip) |
a3f74ffb | 2432 | { |
60ec6783 CH |
2433 | if (xfs_ipincount(ip)) { |
2434 | xfs_iunpin_nowait(ip); | |
2435 | wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0)); | |
2436 | } | |
1da177e4 LT |
2437 | } |
2438 | ||
1da177e4 LT |
2439 | /* |
2440 | * xfs_iextents_copy() | |
2441 | * | |
2442 | * This is called to copy the REAL extents (as opposed to the delayed | |
2443 | * allocation extents) from the inode into the given buffer. It | |
2444 | * returns the number of bytes copied into the buffer. | |
2445 | * | |
2446 | * If there are no delayed allocation extents, then we can just | |
2447 | * memcpy() the extents into the buffer. Otherwise, we need to | |
2448 | * examine each extent in turn and skip those which are delayed. | |
2449 | */ | |
2450 | int | |
2451 | xfs_iextents_copy( | |
2452 | xfs_inode_t *ip, | |
a6f64d4a | 2453 | xfs_bmbt_rec_t *dp, |
1da177e4 LT |
2454 | int whichfork) |
2455 | { | |
2456 | int copied; | |
1da177e4 LT |
2457 | int i; |
2458 | xfs_ifork_t *ifp; | |
2459 | int nrecs; | |
2460 | xfs_fsblock_t start_block; | |
2461 | ||
2462 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
579aa9ca | 2463 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
1da177e4 LT |
2464 | ASSERT(ifp->if_bytes > 0); |
2465 | ||
2466 | nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | |
3a59c94c | 2467 | XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork); |
1da177e4 LT |
2468 | ASSERT(nrecs > 0); |
2469 | ||
2470 | /* | |
2471 | * There are some delayed allocation extents in the | |
2472 | * inode, so copy the extents one at a time and skip | |
2473 | * the delayed ones. There must be at least one | |
2474 | * non-delayed extent. | |
2475 | */ | |
1da177e4 LT |
2476 | copied = 0; |
2477 | for (i = 0; i < nrecs; i++) { | |
a6f64d4a | 2478 | xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); |
1da177e4 | 2479 | start_block = xfs_bmbt_get_startblock(ep); |
9d87c319 | 2480 | if (isnullstartblock(start_block)) { |
1da177e4 LT |
2481 | /* |
2482 | * It's a delayed allocation extent, so skip it. | |
2483 | */ | |
1da177e4 LT |
2484 | continue; |
2485 | } | |
2486 | ||
2487 | /* Translate to on disk format */ | |
cd8b0a97 CH |
2488 | put_unaligned(cpu_to_be64(ep->l0), &dp->l0); |
2489 | put_unaligned(cpu_to_be64(ep->l1), &dp->l1); | |
a6f64d4a | 2490 | dp++; |
1da177e4 LT |
2491 | copied++; |
2492 | } | |
2493 | ASSERT(copied != 0); | |
a6f64d4a | 2494 | xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip)); |
1da177e4 LT |
2495 | |
2496 | return (copied * (uint)sizeof(xfs_bmbt_rec_t)); | |
2497 | } | |
2498 | ||
2499 | /* | |
2500 | * Each of the following cases stores data into the same region | |
2501 | * of the on-disk inode, so only one of them can be valid at | |
2502 | * any given time. While it is possible to have conflicting formats | |
2503 | * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is | |
2504 | * in EXTENTS format, this can only happen when the fork has | |
2505 | * changed formats after being modified but before being flushed. | |
2506 | * In these cases, the format always takes precedence, because the | |
2507 | * format indicates the current state of the fork. | |
2508 | */ | |
2509 | /*ARGSUSED*/ | |
e4ac967b | 2510 | STATIC void |
1da177e4 LT |
2511 | xfs_iflush_fork( |
2512 | xfs_inode_t *ip, | |
2513 | xfs_dinode_t *dip, | |
2514 | xfs_inode_log_item_t *iip, | |
2515 | int whichfork, | |
2516 | xfs_buf_t *bp) | |
2517 | { | |
2518 | char *cp; | |
2519 | xfs_ifork_t *ifp; | |
2520 | xfs_mount_t *mp; | |
2521 | #ifdef XFS_TRANS_DEBUG | |
2522 | int first; | |
2523 | #endif | |
2524 | static const short brootflag[2] = | |
2525 | { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; | |
2526 | static const short dataflag[2] = | |
2527 | { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; | |
2528 | static const short extflag[2] = | |
2529 | { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; | |
2530 | ||
e4ac967b DC |
2531 | if (!iip) |
2532 | return; | |
1da177e4 LT |
2533 | ifp = XFS_IFORK_PTR(ip, whichfork); |
2534 | /* | |
2535 | * This can happen if we gave up in iformat in an error path, | |
2536 | * for the attribute fork. | |
2537 | */ | |
e4ac967b | 2538 | if (!ifp) { |
1da177e4 | 2539 | ASSERT(whichfork == XFS_ATTR_FORK); |
e4ac967b | 2540 | return; |
1da177e4 LT |
2541 | } |
2542 | cp = XFS_DFORK_PTR(dip, whichfork); | |
2543 | mp = ip->i_mount; | |
2544 | switch (XFS_IFORK_FORMAT(ip, whichfork)) { | |
2545 | case XFS_DINODE_FMT_LOCAL: | |
2546 | if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && | |
2547 | (ifp->if_bytes > 0)) { | |
2548 | ASSERT(ifp->if_u1.if_data != NULL); | |
2549 | ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); | |
2550 | memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); | |
2551 | } | |
1da177e4 LT |
2552 | break; |
2553 | ||
2554 | case XFS_DINODE_FMT_EXTENTS: | |
2555 | ASSERT((ifp->if_flags & XFS_IFEXTENTS) || | |
2556 | !(iip->ili_format.ilf_fields & extflag[whichfork])); | |
4eea22f0 MK |
2557 | ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) || |
2558 | (ifp->if_bytes == 0)); | |
2559 | ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) || | |
2560 | (ifp->if_bytes > 0)); | |
1da177e4 LT |
2561 | if ((iip->ili_format.ilf_fields & extflag[whichfork]) && |
2562 | (ifp->if_bytes > 0)) { | |
2563 | ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); | |
2564 | (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, | |
2565 | whichfork); | |
2566 | } | |
2567 | break; | |
2568 | ||
2569 | case XFS_DINODE_FMT_BTREE: | |
2570 | if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && | |
2571 | (ifp->if_broot_bytes > 0)) { | |
2572 | ASSERT(ifp->if_broot != NULL); | |
2573 | ASSERT(ifp->if_broot_bytes <= | |
2574 | (XFS_IFORK_SIZE(ip, whichfork) + | |
2575 | XFS_BROOT_SIZE_ADJ)); | |
60197e8d | 2576 | xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, |
1da177e4 LT |
2577 | (xfs_bmdr_block_t *)cp, |
2578 | XFS_DFORK_SIZE(dip, mp, whichfork)); | |
2579 | } | |
2580 | break; | |
2581 | ||
2582 | case XFS_DINODE_FMT_DEV: | |
2583 | if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { | |
2584 | ASSERT(whichfork == XFS_DATA_FORK); | |
81591fe2 | 2585 | xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev); |
1da177e4 LT |
2586 | } |
2587 | break; | |
2588 | ||
2589 | case XFS_DINODE_FMT_UUID: | |
2590 | if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { | |
2591 | ASSERT(whichfork == XFS_DATA_FORK); | |
81591fe2 CH |
2592 | memcpy(XFS_DFORK_DPTR(dip), |
2593 | &ip->i_df.if_u2.if_uuid, | |
2594 | sizeof(uuid_t)); | |
1da177e4 LT |
2595 | } |
2596 | break; | |
2597 | ||
2598 | default: | |
2599 | ASSERT(0); | |
2600 | break; | |
2601 | } | |
1da177e4 LT |
2602 | } |
2603 | ||
bad55843 DC |
2604 | STATIC int |
2605 | xfs_iflush_cluster( | |
2606 | xfs_inode_t *ip, | |
2607 | xfs_buf_t *bp) | |
2608 | { | |
2609 | xfs_mount_t *mp = ip->i_mount; | |
5017e97d | 2610 | struct xfs_perag *pag; |
bad55843 | 2611 | unsigned long first_index, mask; |
c8f5f12e | 2612 | unsigned long inodes_per_cluster; |
bad55843 DC |
2613 | int ilist_size; |
2614 | xfs_inode_t **ilist; | |
2615 | xfs_inode_t *iq; | |
bad55843 DC |
2616 | int nr_found; |
2617 | int clcount = 0; | |
2618 | int bufwasdelwri; | |
2619 | int i; | |
2620 | ||
5017e97d | 2621 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); |
bad55843 | 2622 | |
c8f5f12e DC |
2623 | inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog; |
2624 | ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); | |
49383b0e | 2625 | ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); |
bad55843 | 2626 | if (!ilist) |
44b56e0a | 2627 | goto out_put; |
bad55843 DC |
2628 | |
2629 | mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1); | |
2630 | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; | |
2631 | read_lock(&pag->pag_ici_lock); | |
2632 | /* really need a gang lookup range call here */ | |
2633 | nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, | |
c8f5f12e | 2634 | first_index, inodes_per_cluster); |
bad55843 DC |
2635 | if (nr_found == 0) |
2636 | goto out_free; | |
2637 | ||
2638 | for (i = 0; i < nr_found; i++) { | |
2639 | iq = ilist[i]; | |
2640 | if (iq == ip) | |
2641 | continue; | |
2642 | /* if the inode lies outside this cluster, we're done. */ | |
2643 | if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) | |
2644 | break; | |
2645 | /* | |
2646 | * Do an un-protected check to see if the inode is dirty and | |
2647 | * is a candidate for flushing. These checks will be repeated | |
2648 | * later after the appropriate locks are acquired. | |
2649 | */ | |
33540408 | 2650 | if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) |
bad55843 | 2651 | continue; |
bad55843 DC |
2652 | |
2653 | /* | |
2654 | * Try to get locks. If any are unavailable or it is pinned, | |
2655 | * then this inode cannot be flushed and is skipped. | |
2656 | */ | |
2657 | ||
2658 | if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) | |
2659 | continue; | |
2660 | if (!xfs_iflock_nowait(iq)) { | |
2661 | xfs_iunlock(iq, XFS_ILOCK_SHARED); | |
2662 | continue; | |
2663 | } | |
2664 | if (xfs_ipincount(iq)) { | |
2665 | xfs_ifunlock(iq); | |
2666 | xfs_iunlock(iq, XFS_ILOCK_SHARED); | |
2667 | continue; | |
2668 | } | |
2669 | ||
2670 | /* | |
2671 | * arriving here means that this inode can be flushed. First | |
2672 | * re-check that it's dirty before flushing. | |
2673 | */ | |
33540408 DC |
2674 | if (!xfs_inode_clean(iq)) { |
2675 | int error; | |
bad55843 DC |
2676 | error = xfs_iflush_int(iq, bp); |
2677 | if (error) { | |
2678 | xfs_iunlock(iq, XFS_ILOCK_SHARED); | |
2679 | goto cluster_corrupt_out; | |
2680 | } | |
2681 | clcount++; | |
2682 | } else { | |
2683 | xfs_ifunlock(iq); | |
2684 | } | |
2685 | xfs_iunlock(iq, XFS_ILOCK_SHARED); | |
2686 | } | |
2687 | ||
2688 | if (clcount) { | |
2689 | XFS_STATS_INC(xs_icluster_flushcnt); | |
2690 | XFS_STATS_ADD(xs_icluster_flushinode, clcount); | |
2691 | } | |
2692 | ||
2693 | out_free: | |
2694 | read_unlock(&pag->pag_ici_lock); | |
f0e2d93c | 2695 | kmem_free(ilist); |
44b56e0a DC |
2696 | out_put: |
2697 | xfs_perag_put(pag); | |
bad55843 DC |
2698 | return 0; |
2699 | ||
2700 | ||
2701 | cluster_corrupt_out: | |
2702 | /* | |
2703 | * Corruption detected in the clustering loop. Invalidate the | |
2704 | * inode buffer and shut down the filesystem. | |
2705 | */ | |
2706 | read_unlock(&pag->pag_ici_lock); | |
2707 | /* | |
2708 | * Clean up the buffer. If it was B_DELWRI, just release it -- | |
2709 | * brelse can handle it with no problems. If not, shut down the | |
2710 | * filesystem before releasing the buffer. | |
2711 | */ | |
2712 | bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp); | |
2713 | if (bufwasdelwri) | |
2714 | xfs_buf_relse(bp); | |
2715 | ||
2716 | xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); | |
2717 | ||
2718 | if (!bufwasdelwri) { | |
2719 | /* | |
2720 | * Just like incore_relse: if we have b_iodone functions, | |
2721 | * mark the buffer as an error and call them. Otherwise | |
2722 | * mark it as stale and brelse. | |
2723 | */ | |
2724 | if (XFS_BUF_IODONE_FUNC(bp)) { | |
bad55843 DC |
2725 | XFS_BUF_UNDONE(bp); |
2726 | XFS_BUF_STALE(bp); | |
bad55843 DC |
2727 | XFS_BUF_ERROR(bp,EIO); |
2728 | xfs_biodone(bp); | |
2729 | } else { | |
2730 | XFS_BUF_STALE(bp); | |
2731 | xfs_buf_relse(bp); | |
2732 | } | |
2733 | } | |
2734 | ||
2735 | /* | |
2736 | * Unlocks the flush lock | |
2737 | */ | |
2738 | xfs_iflush_abort(iq); | |
f0e2d93c | 2739 | kmem_free(ilist); |
44b56e0a | 2740 | xfs_perag_put(pag); |
bad55843 DC |
2741 | return XFS_ERROR(EFSCORRUPTED); |
2742 | } | |
2743 | ||
1da177e4 LT |
2744 | /* |
2745 | * xfs_iflush() will write a modified inode's changes out to the | |
2746 | * inode's on disk home. The caller must have the inode lock held | |
c63942d3 DC |
2747 | * in at least shared mode and the inode flush completion must be |
2748 | * active as well. The inode lock will still be held upon return from | |
1da177e4 | 2749 | * the call and the caller is free to unlock it. |
c63942d3 | 2750 | * The inode flush will be completed when the inode reaches the disk. |
1da177e4 LT |
2751 | * The flags indicate how the inode's buffer should be written out. |
2752 | */ | |
2753 | int | |
2754 | xfs_iflush( | |
2755 | xfs_inode_t *ip, | |
2756 | uint flags) | |
2757 | { | |
2758 | xfs_inode_log_item_t *iip; | |
2759 | xfs_buf_t *bp; | |
2760 | xfs_dinode_t *dip; | |
2761 | xfs_mount_t *mp; | |
2762 | int error; | |
1da177e4 LT |
2763 | |
2764 | XFS_STATS_INC(xs_iflush_count); | |
2765 | ||
579aa9ca | 2766 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
c63942d3 | 2767 | ASSERT(!completion_done(&ip->i_flush)); |
1da177e4 LT |
2768 | ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || |
2769 | ip->i_d.di_nextents > ip->i_df.if_ext_max); | |
2770 | ||
2771 | iip = ip->i_itemp; | |
2772 | mp = ip->i_mount; | |
2773 | ||
1da177e4 | 2774 | /* |
a3f74ffb DC |
2775 | * We can't flush the inode until it is unpinned, so wait for it if we |
2776 | * are allowed to block. We know noone new can pin it, because we are | |
2777 | * holding the inode lock shared and you need to hold it exclusively to | |
2778 | * pin the inode. | |
2779 | * | |
2780 | * If we are not allowed to block, force the log out asynchronously so | |
2781 | * that when we come back the inode will be unpinned. If other inodes | |
2782 | * in the same cluster are dirty, they will probably write the inode | |
2783 | * out for us if they occur after the log force completes. | |
1da177e4 | 2784 | */ |
c854363e | 2785 | if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) { |
a3f74ffb DC |
2786 | xfs_iunpin_nowait(ip); |
2787 | xfs_ifunlock(ip); | |
2788 | return EAGAIN; | |
2789 | } | |
1da177e4 LT |
2790 | xfs_iunpin_wait(ip); |
2791 | ||
4b6a4688 DC |
2792 | /* |
2793 | * For stale inodes we cannot rely on the backing buffer remaining | |
2794 | * stale in cache for the remaining life of the stale inode and so | |
2795 | * xfs_itobp() below may give us a buffer that no longer contains | |
2796 | * inodes below. We have to check this after ensuring the inode is | |
2797 | * unpinned so that it is safe to reclaim the stale inode after the | |
2798 | * flush call. | |
2799 | */ | |
2800 | if (xfs_iflags_test(ip, XFS_ISTALE)) { | |
2801 | xfs_ifunlock(ip); | |
2802 | return 0; | |
2803 | } | |
2804 | ||
1da177e4 LT |
2805 | /* |
2806 | * This may have been unpinned because the filesystem is shutting | |
2807 | * down forcibly. If that's the case we must not write this inode | |
2808 | * to disk, because the log record didn't make it to disk! | |
2809 | */ | |
2810 | if (XFS_FORCED_SHUTDOWN(mp)) { | |
2811 | ip->i_update_core = 0; | |
2812 | if (iip) | |
2813 | iip->ili_format.ilf_fields = 0; | |
2814 | xfs_ifunlock(ip); | |
2815 | return XFS_ERROR(EIO); | |
2816 | } | |
2817 | ||
a3f74ffb DC |
2818 | /* |
2819 | * Get the buffer containing the on-disk inode. | |
2820 | */ | |
76d8b277 | 2821 | error = xfs_itobp(mp, NULL, ip, &dip, &bp, |
c854363e | 2822 | (flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK); |
a3f74ffb DC |
2823 | if (error || !bp) { |
2824 | xfs_ifunlock(ip); | |
2825 | return error; | |
2826 | } | |
2827 | ||
1da177e4 LT |
2828 | /* |
2829 | * First flush out the inode that xfs_iflush was called with. | |
2830 | */ | |
2831 | error = xfs_iflush_int(ip, bp); | |
bad55843 | 2832 | if (error) |
1da177e4 | 2833 | goto corrupt_out; |
1da177e4 | 2834 | |
a3f74ffb DC |
2835 | /* |
2836 | * If the buffer is pinned then push on the log now so we won't | |
2837 | * get stuck waiting in the write for too long. | |
2838 | */ | |
2839 | if (XFS_BUF_ISPINNED(bp)) | |
a14a348b | 2840 | xfs_log_force(mp, 0); |
a3f74ffb | 2841 | |
1da177e4 LT |
2842 | /* |
2843 | * inode clustering: | |
2844 | * see if other inodes can be gathered into this write | |
2845 | */ | |
bad55843 DC |
2846 | error = xfs_iflush_cluster(ip, bp); |
2847 | if (error) | |
2848 | goto cluster_corrupt_out; | |
1da177e4 | 2849 | |
c854363e | 2850 | if (flags & SYNC_WAIT) |
1da177e4 | 2851 | error = xfs_bwrite(mp, bp); |
c854363e DC |
2852 | else |
2853 | xfs_bdwrite(mp, bp); | |
1da177e4 LT |
2854 | return error; |
2855 | ||
2856 | corrupt_out: | |
2857 | xfs_buf_relse(bp); | |
7d04a335 | 2858 | xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
1da177e4 | 2859 | cluster_corrupt_out: |
1da177e4 LT |
2860 | /* |
2861 | * Unlocks the flush lock | |
2862 | */ | |
bad55843 | 2863 | xfs_iflush_abort(ip); |
1da177e4 LT |
2864 | return XFS_ERROR(EFSCORRUPTED); |
2865 | } | |
2866 | ||
2867 | ||
2868 | STATIC int | |
2869 | xfs_iflush_int( | |
2870 | xfs_inode_t *ip, | |
2871 | xfs_buf_t *bp) | |
2872 | { | |
2873 | xfs_inode_log_item_t *iip; | |
2874 | xfs_dinode_t *dip; | |
2875 | xfs_mount_t *mp; | |
2876 | #ifdef XFS_TRANS_DEBUG | |
2877 | int first; | |
2878 | #endif | |
1da177e4 | 2879 | |
579aa9ca | 2880 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
c63942d3 | 2881 | ASSERT(!completion_done(&ip->i_flush)); |
1da177e4 LT |
2882 | ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || |
2883 | ip->i_d.di_nextents > ip->i_df.if_ext_max); | |
2884 | ||
2885 | iip = ip->i_itemp; | |
2886 | mp = ip->i_mount; | |
2887 | ||
1da177e4 | 2888 | /* set *dip = inode's place in the buffer */ |
92bfc6e7 | 2889 | dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); |
1da177e4 LT |
2890 | |
2891 | /* | |
2892 | * Clear i_update_core before copying out the data. | |
2893 | * This is for coordination with our timestamp updates | |
2894 | * that don't hold the inode lock. They will always | |
2895 | * update the timestamps BEFORE setting i_update_core, | |
2896 | * so if we clear i_update_core after they set it we | |
2897 | * are guaranteed to see their updates to the timestamps. | |
2898 | * I believe that this depends on strongly ordered memory | |
2899 | * semantics, but we have that. We use the SYNCHRONIZE | |
2900 | * macro to make sure that the compiler does not reorder | |
2901 | * the i_update_core access below the data copy below. | |
2902 | */ | |
2903 | ip->i_update_core = 0; | |
2904 | SYNCHRONIZE(); | |
2905 | ||
42fe2b1f | 2906 | /* |
f9581b14 | 2907 | * Make sure to get the latest timestamps from the Linux inode. |
42fe2b1f | 2908 | */ |
f9581b14 | 2909 | xfs_synchronize_times(ip); |
42fe2b1f | 2910 | |
81591fe2 | 2911 | if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC, |
1da177e4 LT |
2912 | mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { |
2913 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | |
2914 | "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", | |
81591fe2 | 2915 | ip->i_ino, be16_to_cpu(dip->di_magic), dip); |
1da177e4 LT |
2916 | goto corrupt_out; |
2917 | } | |
2918 | if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, | |
2919 | mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { | |
2920 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | |
2921 | "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", | |
2922 | ip->i_ino, ip, ip->i_d.di_magic); | |
2923 | goto corrupt_out; | |
2924 | } | |
2925 | if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { | |
2926 | if (XFS_TEST_ERROR( | |
2927 | (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && | |
2928 | (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), | |
2929 | mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { | |
2930 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | |
2931 | "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", | |
2932 | ip->i_ino, ip); | |
2933 | goto corrupt_out; | |
2934 | } | |
2935 | } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { | |
2936 | if (XFS_TEST_ERROR( | |
2937 | (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && | |
2938 | (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && | |
2939 | (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), | |
2940 | mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { | |
2941 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | |
2942 | "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", | |
2943 | ip->i_ino, ip); | |
2944 | goto corrupt_out; | |
2945 | } | |
2946 | } | |
2947 | if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > | |
2948 | ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, | |
2949 | XFS_RANDOM_IFLUSH_5)) { | |
2950 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | |
2951 | "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", | |
2952 | ip->i_ino, | |
2953 | ip->i_d.di_nextents + ip->i_d.di_anextents, | |
2954 | ip->i_d.di_nblocks, | |
2955 | ip); | |
2956 | goto corrupt_out; | |
2957 | } | |
2958 | if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, | |
2959 | mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { | |
2960 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | |
2961 | "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", | |
2962 | ip->i_ino, ip->i_d.di_forkoff, ip); | |
2963 | goto corrupt_out; | |
2964 | } | |
2965 | /* | |
2966 | * bump the flush iteration count, used to detect flushes which | |
2967 | * postdate a log record during recovery. | |
2968 | */ | |
2969 | ||
2970 | ip->i_d.di_flushiter++; | |
2971 | ||
2972 | /* | |
2973 | * Copy the dirty parts of the inode into the on-disk | |
2974 | * inode. We always copy out the core of the inode, | |
2975 | * because if the inode is dirty at all the core must | |
2976 | * be. | |
2977 | */ | |
81591fe2 | 2978 | xfs_dinode_to_disk(dip, &ip->i_d); |
1da177e4 LT |
2979 | |
2980 | /* Wrap, we never let the log put out DI_MAX_FLUSH */ | |
2981 | if (ip->i_d.di_flushiter == DI_MAX_FLUSH) | |
2982 | ip->i_d.di_flushiter = 0; | |
2983 | ||
2984 | /* | |
2985 | * If this is really an old format inode and the superblock version | |
2986 | * has not been updated to support only new format inodes, then | |
2987 | * convert back to the old inode format. If the superblock version | |
2988 | * has been updated, then make the conversion permanent. | |
2989 | */ | |
51ce16d5 CH |
2990 | ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); |
2991 | if (ip->i_d.di_version == 1) { | |
62118709 | 2992 | if (!xfs_sb_version_hasnlink(&mp->m_sb)) { |
1da177e4 LT |
2993 | /* |
2994 | * Convert it back. | |
2995 | */ | |
2996 | ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); | |
81591fe2 | 2997 | dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink); |
1da177e4 LT |
2998 | } else { |
2999 | /* | |
3000 | * The superblock version has already been bumped, | |
3001 | * so just make the conversion to the new inode | |
3002 | * format permanent. | |
3003 | */ | |
51ce16d5 CH |
3004 | ip->i_d.di_version = 2; |
3005 | dip->di_version = 2; | |
1da177e4 | 3006 | ip->i_d.di_onlink = 0; |
81591fe2 | 3007 | dip->di_onlink = 0; |
1da177e4 | 3008 | memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); |
81591fe2 CH |
3009 | memset(&(dip->di_pad[0]), 0, |
3010 | sizeof(dip->di_pad)); | |
1da177e4 LT |
3011 | ASSERT(ip->i_d.di_projid == 0); |
3012 | } | |
3013 | } | |
3014 | ||
e4ac967b DC |
3015 | xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp); |
3016 | if (XFS_IFORK_Q(ip)) | |
3017 | xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); | |
1da177e4 LT |
3018 | xfs_inobp_check(mp, bp); |
3019 | ||
3020 | /* | |
3021 | * We've recorded everything logged in the inode, so we'd | |
3022 | * like to clear the ilf_fields bits so we don't log and | |
3023 | * flush things unnecessarily. However, we can't stop | |
3024 | * logging all this information until the data we've copied | |
3025 | * into the disk buffer is written to disk. If we did we might | |
3026 | * overwrite the copy of the inode in the log with all the | |
3027 | * data after re-logging only part of it, and in the face of | |
3028 | * a crash we wouldn't have all the data we need to recover. | |
3029 | * | |
3030 | * What we do is move the bits to the ili_last_fields field. | |
3031 | * When logging the inode, these bits are moved back to the | |
3032 | * ilf_fields field. In the xfs_iflush_done() routine we | |
3033 | * clear ili_last_fields, since we know that the information | |
3034 | * those bits represent is permanently on disk. As long as | |
3035 | * the flush completes before the inode is logged again, then | |
3036 | * both ilf_fields and ili_last_fields will be cleared. | |
3037 | * | |
3038 | * We can play with the ilf_fields bits here, because the inode | |
3039 | * lock must be held exclusively in order to set bits there | |
3040 | * and the flush lock protects the ili_last_fields bits. | |
3041 | * Set ili_logged so the flush done | |
3042 | * routine can tell whether or not to look in the AIL. | |
3043 | * Also, store the current LSN of the inode so that we can tell | |
3044 | * whether the item has moved in the AIL from xfs_iflush_done(). | |
3045 | * In order to read the lsn we need the AIL lock, because | |
3046 | * it is a 64 bit value that cannot be read atomically. | |
3047 | */ | |
3048 | if (iip != NULL && iip->ili_format.ilf_fields != 0) { | |
3049 | iip->ili_last_fields = iip->ili_format.ilf_fields; | |
3050 | iip->ili_format.ilf_fields = 0; | |
3051 | iip->ili_logged = 1; | |
3052 | ||
7b2e2a31 DC |
3053 | xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, |
3054 | &iip->ili_item.li_lsn); | |
1da177e4 LT |
3055 | |
3056 | /* | |
3057 | * Attach the function xfs_iflush_done to the inode's | |
3058 | * buffer. This will remove the inode from the AIL | |
3059 | * and unlock the inode's flush lock when the inode is | |
3060 | * completely written to disk. | |
3061 | */ | |
ca30b2a7 | 3062 | xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); |
1da177e4 LT |
3063 | |
3064 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
3065 | ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); | |
3066 | } else { | |
3067 | /* | |
3068 | * We're flushing an inode which is not in the AIL and has | |
3069 | * not been logged but has i_update_core set. For this | |
3070 | * case we can use a B_DELWRI flush and immediately drop | |
3071 | * the inode flush lock because we can avoid the whole | |
3072 | * AIL state thing. It's OK to drop the flush lock now, | |
3073 | * because we've already locked the buffer and to do anything | |
3074 | * you really need both. | |
3075 | */ | |
3076 | if (iip != NULL) { | |
3077 | ASSERT(iip->ili_logged == 0); | |
3078 | ASSERT(iip->ili_last_fields == 0); | |
3079 | ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); | |
3080 | } | |
3081 | xfs_ifunlock(ip); | |
3082 | } | |
3083 | ||
3084 | return 0; | |
3085 | ||
3086 | corrupt_out: | |
3087 | return XFS_ERROR(EFSCORRUPTED); | |
3088 | } | |
3089 | ||
4eea22f0 MK |
3090 | /* |
3091 | * Return a pointer to the extent record at file index idx. | |
3092 | */ | |
a6f64d4a | 3093 | xfs_bmbt_rec_host_t * |
4eea22f0 MK |
3094 | xfs_iext_get_ext( |
3095 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3096 | xfs_extnum_t idx) /* index of target extent */ | |
3097 | { | |
3098 | ASSERT(idx >= 0); | |
0293ce3a MK |
3099 | if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) { |
3100 | return ifp->if_u1.if_ext_irec->er_extbuf; | |
3101 | } else if (ifp->if_flags & XFS_IFEXTIREC) { | |
3102 | xfs_ext_irec_t *erp; /* irec pointer */ | |
3103 | int erp_idx = 0; /* irec index */ | |
3104 | xfs_extnum_t page_idx = idx; /* ext index in target list */ | |
3105 | ||
3106 | erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); | |
3107 | return &erp->er_extbuf[page_idx]; | |
3108 | } else if (ifp->if_bytes) { | |
4eea22f0 MK |
3109 | return &ifp->if_u1.if_extents[idx]; |
3110 | } else { | |
3111 | return NULL; | |
3112 | } | |
3113 | } | |
3114 | ||
3115 | /* | |
3116 | * Insert new item(s) into the extent records for incore inode | |
3117 | * fork 'ifp'. 'count' new items are inserted at index 'idx'. | |
3118 | */ | |
3119 | void | |
3120 | xfs_iext_insert( | |
6ef35544 | 3121 | xfs_inode_t *ip, /* incore inode pointer */ |
4eea22f0 MK |
3122 | xfs_extnum_t idx, /* starting index of new items */ |
3123 | xfs_extnum_t count, /* number of inserted items */ | |
6ef35544 CH |
3124 | xfs_bmbt_irec_t *new, /* items to insert */ |
3125 | int state) /* type of extent conversion */ | |
4eea22f0 | 3126 | { |
6ef35544 | 3127 | xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df; |
4eea22f0 MK |
3128 | xfs_extnum_t i; /* extent record index */ |
3129 | ||
0b1b213f CH |
3130 | trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_); |
3131 | ||
4eea22f0 MK |
3132 | ASSERT(ifp->if_flags & XFS_IFEXTENTS); |
3133 | xfs_iext_add(ifp, idx, count); | |
a6f64d4a CH |
3134 | for (i = idx; i < idx + count; i++, new++) |
3135 | xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new); | |
4eea22f0 MK |
3136 | } |
3137 | ||
3138 | /* | |
3139 | * This is called when the amount of space required for incore file | |
3140 | * extents needs to be increased. The ext_diff parameter stores the | |
3141 | * number of new extents being added and the idx parameter contains | |
3142 | * the extent index where the new extents will be added. If the new | |
3143 | * extents are being appended, then we just need to (re)allocate and | |
3144 | * initialize the space. Otherwise, if the new extents are being | |
3145 | * inserted into the middle of the existing entries, a bit more work | |
3146 | * is required to make room for the new extents to be inserted. The | |
3147 | * caller is responsible for filling in the new extent entries upon | |
3148 | * return. | |
3149 | */ | |
3150 | void | |
3151 | xfs_iext_add( | |
3152 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3153 | xfs_extnum_t idx, /* index to begin adding exts */ | |
c41564b5 | 3154 | int ext_diff) /* number of extents to add */ |
4eea22f0 MK |
3155 | { |
3156 | int byte_diff; /* new bytes being added */ | |
3157 | int new_size; /* size of extents after adding */ | |
3158 | xfs_extnum_t nextents; /* number of extents in file */ | |
3159 | ||
3160 | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | |
3161 | ASSERT((idx >= 0) && (idx <= nextents)); | |
3162 | byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t); | |
3163 | new_size = ifp->if_bytes + byte_diff; | |
3164 | /* | |
3165 | * If the new number of extents (nextents + ext_diff) | |
3166 | * fits inside the inode, then continue to use the inline | |
3167 | * extent buffer. | |
3168 | */ | |
3169 | if (nextents + ext_diff <= XFS_INLINE_EXTS) { | |
3170 | if (idx < nextents) { | |
3171 | memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff], | |
3172 | &ifp->if_u2.if_inline_ext[idx], | |
3173 | (nextents - idx) * sizeof(xfs_bmbt_rec_t)); | |
3174 | memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff); | |
3175 | } | |
3176 | ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; | |
3177 | ifp->if_real_bytes = 0; | |
0293ce3a | 3178 | ifp->if_lastex = nextents + ext_diff; |
4eea22f0 MK |
3179 | } |
3180 | /* | |
3181 | * Otherwise use a linear (direct) extent list. | |
3182 | * If the extents are currently inside the inode, | |
3183 | * xfs_iext_realloc_direct will switch us from | |
3184 | * inline to direct extent allocation mode. | |
3185 | */ | |
0293ce3a | 3186 | else if (nextents + ext_diff <= XFS_LINEAR_EXTS) { |
4eea22f0 MK |
3187 | xfs_iext_realloc_direct(ifp, new_size); |
3188 | if (idx < nextents) { | |
3189 | memmove(&ifp->if_u1.if_extents[idx + ext_diff], | |
3190 | &ifp->if_u1.if_extents[idx], | |
3191 | (nextents - idx) * sizeof(xfs_bmbt_rec_t)); | |
3192 | memset(&ifp->if_u1.if_extents[idx], 0, byte_diff); | |
3193 | } | |
3194 | } | |
0293ce3a MK |
3195 | /* Indirection array */ |
3196 | else { | |
3197 | xfs_ext_irec_t *erp; | |
3198 | int erp_idx = 0; | |
3199 | int page_idx = idx; | |
3200 | ||
3201 | ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS); | |
3202 | if (ifp->if_flags & XFS_IFEXTIREC) { | |
3203 | erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1); | |
3204 | } else { | |
3205 | xfs_iext_irec_init(ifp); | |
3206 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
3207 | erp = ifp->if_u1.if_ext_irec; | |
3208 | } | |
3209 | /* Extents fit in target extent page */ | |
3210 | if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) { | |
3211 | if (page_idx < erp->er_extcount) { | |
3212 | memmove(&erp->er_extbuf[page_idx + ext_diff], | |
3213 | &erp->er_extbuf[page_idx], | |
3214 | (erp->er_extcount - page_idx) * | |
3215 | sizeof(xfs_bmbt_rec_t)); | |
3216 | memset(&erp->er_extbuf[page_idx], 0, byte_diff); | |
3217 | } | |
3218 | erp->er_extcount += ext_diff; | |
3219 | xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); | |
3220 | } | |
3221 | /* Insert a new extent page */ | |
3222 | else if (erp) { | |
3223 | xfs_iext_add_indirect_multi(ifp, | |
3224 | erp_idx, page_idx, ext_diff); | |
3225 | } | |
3226 | /* | |
3227 | * If extent(s) are being appended to the last page in | |
3228 | * the indirection array and the new extent(s) don't fit | |
3229 | * in the page, then erp is NULL and erp_idx is set to | |
3230 | * the next index needed in the indirection array. | |
3231 | */ | |
3232 | else { | |
3233 | int count = ext_diff; | |
3234 | ||
3235 | while (count) { | |
3236 | erp = xfs_iext_irec_new(ifp, erp_idx); | |
3237 | erp->er_extcount = count; | |
3238 | count -= MIN(count, (int)XFS_LINEAR_EXTS); | |
3239 | if (count) { | |
3240 | erp_idx++; | |
3241 | } | |
3242 | } | |
3243 | } | |
3244 | } | |
4eea22f0 MK |
3245 | ifp->if_bytes = new_size; |
3246 | } | |
3247 | ||
0293ce3a MK |
3248 | /* |
3249 | * This is called when incore extents are being added to the indirection | |
3250 | * array and the new extents do not fit in the target extent list. The | |
3251 | * erp_idx parameter contains the irec index for the target extent list | |
3252 | * in the indirection array, and the idx parameter contains the extent | |
3253 | * index within the list. The number of extents being added is stored | |
3254 | * in the count parameter. | |
3255 | * | |
3256 | * |-------| |-------| | |
3257 | * | | | | idx - number of extents before idx | |
3258 | * | idx | | count | | |
3259 | * | | | | count - number of extents being inserted at idx | |
3260 | * |-------| |-------| | |
3261 | * | count | | nex2 | nex2 - number of extents after idx + count | |
3262 | * |-------| |-------| | |
3263 | */ | |
3264 | void | |
3265 | xfs_iext_add_indirect_multi( | |
3266 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3267 | int erp_idx, /* target extent irec index */ | |
3268 | xfs_extnum_t idx, /* index within target list */ | |
3269 | int count) /* new extents being added */ | |
3270 | { | |
3271 | int byte_diff; /* new bytes being added */ | |
3272 | xfs_ext_irec_t *erp; /* pointer to irec entry */ | |
3273 | xfs_extnum_t ext_diff; /* number of extents to add */ | |
3274 | xfs_extnum_t ext_cnt; /* new extents still needed */ | |
3275 | xfs_extnum_t nex2; /* extents after idx + count */ | |
3276 | xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */ | |
3277 | int nlists; /* number of irec's (lists) */ | |
3278 | ||
3279 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
3280 | erp = &ifp->if_u1.if_ext_irec[erp_idx]; | |
3281 | nex2 = erp->er_extcount - idx; | |
3282 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | |
3283 | ||
3284 | /* | |
3285 | * Save second part of target extent list | |
3286 | * (all extents past */ | |
3287 | if (nex2) { | |
3288 | byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); | |
6785073b | 3289 | nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS); |
0293ce3a MK |
3290 | memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff); |
3291 | erp->er_extcount -= nex2; | |
3292 | xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2); | |
3293 | memset(&erp->er_extbuf[idx], 0, byte_diff); | |
3294 | } | |
3295 | ||
3296 | /* | |
3297 | * Add the new extents to the end of the target | |
3298 | * list, then allocate new irec record(s) and | |
3299 | * extent buffer(s) as needed to store the rest | |
3300 | * of the new extents. | |
3301 | */ | |
3302 | ext_cnt = count; | |
3303 | ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount); | |
3304 | if (ext_diff) { | |
3305 | erp->er_extcount += ext_diff; | |
3306 | xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); | |
3307 | ext_cnt -= ext_diff; | |
3308 | } | |
3309 | while (ext_cnt) { | |
3310 | erp_idx++; | |
3311 | erp = xfs_iext_irec_new(ifp, erp_idx); | |
3312 | ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS); | |
3313 | erp->er_extcount = ext_diff; | |
3314 | xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); | |
3315 | ext_cnt -= ext_diff; | |
3316 | } | |
3317 | ||
3318 | /* Add nex2 extents back to indirection array */ | |
3319 | if (nex2) { | |
3320 | xfs_extnum_t ext_avail; | |
3321 | int i; | |
3322 | ||
3323 | byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); | |
3324 | ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; | |
3325 | i = 0; | |
3326 | /* | |
3327 | * If nex2 extents fit in the current page, append | |
3328 | * nex2_ep after the new extents. | |
3329 | */ | |
3330 | if (nex2 <= ext_avail) { | |
3331 | i = erp->er_extcount; | |
3332 | } | |
3333 | /* | |
3334 | * Otherwise, check if space is available in the | |
3335 | * next page. | |
3336 | */ | |
3337 | else if ((erp_idx < nlists - 1) && | |
3338 | (nex2 <= (ext_avail = XFS_LINEAR_EXTS - | |
3339 | ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) { | |
3340 | erp_idx++; | |
3341 | erp++; | |
3342 | /* Create a hole for nex2 extents */ | |
3343 | memmove(&erp->er_extbuf[nex2], erp->er_extbuf, | |
3344 | erp->er_extcount * sizeof(xfs_bmbt_rec_t)); | |
3345 | } | |
3346 | /* | |
3347 | * Final choice, create a new extent page for | |
3348 | * nex2 extents. | |
3349 | */ | |
3350 | else { | |
3351 | erp_idx++; | |
3352 | erp = xfs_iext_irec_new(ifp, erp_idx); | |
3353 | } | |
3354 | memmove(&erp->er_extbuf[i], nex2_ep, byte_diff); | |
f0e2d93c | 3355 | kmem_free(nex2_ep); |
0293ce3a MK |
3356 | erp->er_extcount += nex2; |
3357 | xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2); | |
3358 | } | |
3359 | } | |
3360 | ||
4eea22f0 MK |
3361 | /* |
3362 | * This is called when the amount of space required for incore file | |
3363 | * extents needs to be decreased. The ext_diff parameter stores the | |
3364 | * number of extents to be removed and the idx parameter contains | |
3365 | * the extent index where the extents will be removed from. | |
0293ce3a MK |
3366 | * |
3367 | * If the amount of space needed has decreased below the linear | |
3368 | * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous | |
3369 | * extent array. Otherwise, use kmem_realloc() to adjust the | |
3370 | * size to what is needed. | |
4eea22f0 MK |
3371 | */ |
3372 | void | |
3373 | xfs_iext_remove( | |
6ef35544 | 3374 | xfs_inode_t *ip, /* incore inode pointer */ |
4eea22f0 | 3375 | xfs_extnum_t idx, /* index to begin removing exts */ |
6ef35544 CH |
3376 | int ext_diff, /* number of extents to remove */ |
3377 | int state) /* type of extent conversion */ | |
4eea22f0 | 3378 | { |
6ef35544 | 3379 | xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df; |
4eea22f0 MK |
3380 | xfs_extnum_t nextents; /* number of extents in file */ |
3381 | int new_size; /* size of extents after removal */ | |
3382 | ||
0b1b213f CH |
3383 | trace_xfs_iext_remove(ip, idx, state, _RET_IP_); |
3384 | ||
4eea22f0 MK |
3385 | ASSERT(ext_diff > 0); |
3386 | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | |
3387 | new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t); | |
3388 | ||
3389 | if (new_size == 0) { | |
3390 | xfs_iext_destroy(ifp); | |
0293ce3a MK |
3391 | } else if (ifp->if_flags & XFS_IFEXTIREC) { |
3392 | xfs_iext_remove_indirect(ifp, idx, ext_diff); | |
4eea22f0 MK |
3393 | } else if (ifp->if_real_bytes) { |
3394 | xfs_iext_remove_direct(ifp, idx, ext_diff); | |
3395 | } else { | |
3396 | xfs_iext_remove_inline(ifp, idx, ext_diff); | |
3397 | } | |
3398 | ifp->if_bytes = new_size; | |
3399 | } | |
3400 | ||
3401 | /* | |
3402 | * This removes ext_diff extents from the inline buffer, beginning | |
3403 | * at extent index idx. | |
3404 | */ | |
3405 | void | |
3406 | xfs_iext_remove_inline( | |
3407 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3408 | xfs_extnum_t idx, /* index to begin removing exts */ | |
3409 | int ext_diff) /* number of extents to remove */ | |
3410 | { | |
3411 | int nextents; /* number of extents in file */ | |
3412 | ||
0293ce3a | 3413 | ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); |
4eea22f0 MK |
3414 | ASSERT(idx < XFS_INLINE_EXTS); |
3415 | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | |
3416 | ASSERT(((nextents - ext_diff) > 0) && | |
3417 | (nextents - ext_diff) < XFS_INLINE_EXTS); | |
3418 | ||
3419 | if (idx + ext_diff < nextents) { | |
3420 | memmove(&ifp->if_u2.if_inline_ext[idx], | |
3421 | &ifp->if_u2.if_inline_ext[idx + ext_diff], | |
3422 | (nextents - (idx + ext_diff)) * | |
3423 | sizeof(xfs_bmbt_rec_t)); | |
3424 | memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff], | |
3425 | 0, ext_diff * sizeof(xfs_bmbt_rec_t)); | |
3426 | } else { | |
3427 | memset(&ifp->if_u2.if_inline_ext[idx], 0, | |
3428 | ext_diff * sizeof(xfs_bmbt_rec_t)); | |
3429 | } | |
3430 | } | |
3431 | ||
3432 | /* | |
3433 | * This removes ext_diff extents from a linear (direct) extent list, | |
3434 | * beginning at extent index idx. If the extents are being removed | |
3435 | * from the end of the list (ie. truncate) then we just need to re- | |
3436 | * allocate the list to remove the extra space. Otherwise, if the | |
3437 | * extents are being removed from the middle of the existing extent | |
3438 | * entries, then we first need to move the extent records beginning | |
3439 | * at idx + ext_diff up in the list to overwrite the records being | |
3440 | * removed, then remove the extra space via kmem_realloc. | |
3441 | */ | |
3442 | void | |
3443 | xfs_iext_remove_direct( | |
3444 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3445 | xfs_extnum_t idx, /* index to begin removing exts */ | |
3446 | int ext_diff) /* number of extents to remove */ | |
3447 | { | |
3448 | xfs_extnum_t nextents; /* number of extents in file */ | |
3449 | int new_size; /* size of extents after removal */ | |
3450 | ||
0293ce3a | 3451 | ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); |
4eea22f0 MK |
3452 | new_size = ifp->if_bytes - |
3453 | (ext_diff * sizeof(xfs_bmbt_rec_t)); | |
3454 | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | |
3455 | ||
3456 | if (new_size == 0) { | |
3457 | xfs_iext_destroy(ifp); | |
3458 | return; | |
3459 | } | |
3460 | /* Move extents up in the list (if needed) */ | |
3461 | if (idx + ext_diff < nextents) { | |
3462 | memmove(&ifp->if_u1.if_extents[idx], | |
3463 | &ifp->if_u1.if_extents[idx + ext_diff], | |
3464 | (nextents - (idx + ext_diff)) * | |
3465 | sizeof(xfs_bmbt_rec_t)); | |
3466 | } | |
3467 | memset(&ifp->if_u1.if_extents[nextents - ext_diff], | |
3468 | 0, ext_diff * sizeof(xfs_bmbt_rec_t)); | |
3469 | /* | |
3470 | * Reallocate the direct extent list. If the extents | |
3471 | * will fit inside the inode then xfs_iext_realloc_direct | |
3472 | * will switch from direct to inline extent allocation | |
3473 | * mode for us. | |
3474 | */ | |
3475 | xfs_iext_realloc_direct(ifp, new_size); | |
3476 | ifp->if_bytes = new_size; | |
3477 | } | |
3478 | ||
0293ce3a MK |
3479 | /* |
3480 | * This is called when incore extents are being removed from the | |
3481 | * indirection array and the extents being removed span multiple extent | |
3482 | * buffers. The idx parameter contains the file extent index where we | |
3483 | * want to begin removing extents, and the count parameter contains | |
3484 | * how many extents need to be removed. | |
3485 | * | |
3486 | * |-------| |-------| | |
3487 | * | nex1 | | | nex1 - number of extents before idx | |
3488 | * |-------| | count | | |
3489 | * | | | | count - number of extents being removed at idx | |
3490 | * | count | |-------| | |
3491 | * | | | nex2 | nex2 - number of extents after idx + count | |
3492 | * |-------| |-------| | |
3493 | */ | |
3494 | void | |
3495 | xfs_iext_remove_indirect( | |
3496 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3497 | xfs_extnum_t idx, /* index to begin removing extents */ | |
3498 | int count) /* number of extents to remove */ | |
3499 | { | |
3500 | xfs_ext_irec_t *erp; /* indirection array pointer */ | |
3501 | int erp_idx = 0; /* indirection array index */ | |
3502 | xfs_extnum_t ext_cnt; /* extents left to remove */ | |
3503 | xfs_extnum_t ext_diff; /* extents to remove in current list */ | |
3504 | xfs_extnum_t nex1; /* number of extents before idx */ | |
3505 | xfs_extnum_t nex2; /* extents after idx + count */ | |
0293ce3a MK |
3506 | int page_idx = idx; /* index in target extent list */ |
3507 | ||
3508 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
3509 | erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); | |
3510 | ASSERT(erp != NULL); | |
0293ce3a MK |
3511 | nex1 = page_idx; |
3512 | ext_cnt = count; | |
3513 | while (ext_cnt) { | |
3514 | nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0); | |
3515 | ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1)); | |
3516 | /* | |
3517 | * Check for deletion of entire list; | |
3518 | * xfs_iext_irec_remove() updates extent offsets. | |
3519 | */ | |
3520 | if (ext_diff == erp->er_extcount) { | |
3521 | xfs_iext_irec_remove(ifp, erp_idx); | |
3522 | ext_cnt -= ext_diff; | |
3523 | nex1 = 0; | |
3524 | if (ext_cnt) { | |
3525 | ASSERT(erp_idx < ifp->if_real_bytes / | |
3526 | XFS_IEXT_BUFSZ); | |
3527 | erp = &ifp->if_u1.if_ext_irec[erp_idx]; | |
3528 | nex1 = 0; | |
3529 | continue; | |
3530 | } else { | |
3531 | break; | |
3532 | } | |
3533 | } | |
3534 | /* Move extents up (if needed) */ | |
3535 | if (nex2) { | |
3536 | memmove(&erp->er_extbuf[nex1], | |
3537 | &erp->er_extbuf[nex1 + ext_diff], | |
3538 | nex2 * sizeof(xfs_bmbt_rec_t)); | |
3539 | } | |
3540 | /* Zero out rest of page */ | |
3541 | memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ - | |
3542 | ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t)))); | |
3543 | /* Update remaining counters */ | |
3544 | erp->er_extcount -= ext_diff; | |
3545 | xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff); | |
3546 | ext_cnt -= ext_diff; | |
3547 | nex1 = 0; | |
3548 | erp_idx++; | |
3549 | erp++; | |
3550 | } | |
3551 | ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t); | |
3552 | xfs_iext_irec_compact(ifp); | |
3553 | } | |
3554 | ||
4eea22f0 MK |
3555 | /* |
3556 | * Create, destroy, or resize a linear (direct) block of extents. | |
3557 | */ | |
3558 | void | |
3559 | xfs_iext_realloc_direct( | |
3560 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3561 | int new_size) /* new size of extents */ | |
3562 | { | |
3563 | int rnew_size; /* real new size of extents */ | |
3564 | ||
3565 | rnew_size = new_size; | |
3566 | ||
0293ce3a MK |
3567 | ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) || |
3568 | ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) && | |
3569 | (new_size != ifp->if_real_bytes))); | |
3570 | ||
4eea22f0 MK |
3571 | /* Free extent records */ |
3572 | if (new_size == 0) { | |
3573 | xfs_iext_destroy(ifp); | |
3574 | } | |
3575 | /* Resize direct extent list and zero any new bytes */ | |
3576 | else if (ifp->if_real_bytes) { | |
3577 | /* Check if extents will fit inside the inode */ | |
3578 | if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) { | |
3579 | xfs_iext_direct_to_inline(ifp, new_size / | |
3580 | (uint)sizeof(xfs_bmbt_rec_t)); | |
3581 | ifp->if_bytes = new_size; | |
3582 | return; | |
3583 | } | |
16a087d8 | 3584 | if (!is_power_of_2(new_size)){ |
40ebd81d | 3585 | rnew_size = roundup_pow_of_two(new_size); |
4eea22f0 MK |
3586 | } |
3587 | if (rnew_size != ifp->if_real_bytes) { | |
a6f64d4a | 3588 | ifp->if_u1.if_extents = |
4eea22f0 MK |
3589 | kmem_realloc(ifp->if_u1.if_extents, |
3590 | rnew_size, | |
6785073b | 3591 | ifp->if_real_bytes, KM_NOFS); |
4eea22f0 MK |
3592 | } |
3593 | if (rnew_size > ifp->if_real_bytes) { | |
3594 | memset(&ifp->if_u1.if_extents[ifp->if_bytes / | |
3595 | (uint)sizeof(xfs_bmbt_rec_t)], 0, | |
3596 | rnew_size - ifp->if_real_bytes); | |
3597 | } | |
3598 | } | |
3599 | /* | |
3600 | * Switch from the inline extent buffer to a direct | |
3601 | * extent list. Be sure to include the inline extent | |
3602 | * bytes in new_size. | |
3603 | */ | |
3604 | else { | |
3605 | new_size += ifp->if_bytes; | |
16a087d8 | 3606 | if (!is_power_of_2(new_size)) { |
40ebd81d | 3607 | rnew_size = roundup_pow_of_two(new_size); |
4eea22f0 MK |
3608 | } |
3609 | xfs_iext_inline_to_direct(ifp, rnew_size); | |
3610 | } | |
3611 | ifp->if_real_bytes = rnew_size; | |
3612 | ifp->if_bytes = new_size; | |
3613 | } | |
3614 | ||
3615 | /* | |
3616 | * Switch from linear (direct) extent records to inline buffer. | |
3617 | */ | |
3618 | void | |
3619 | xfs_iext_direct_to_inline( | |
3620 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3621 | xfs_extnum_t nextents) /* number of extents in file */ | |
3622 | { | |
3623 | ASSERT(ifp->if_flags & XFS_IFEXTENTS); | |
3624 | ASSERT(nextents <= XFS_INLINE_EXTS); | |
3625 | /* | |
3626 | * The inline buffer was zeroed when we switched | |
3627 | * from inline to direct extent allocation mode, | |
3628 | * so we don't need to clear it here. | |
3629 | */ | |
3630 | memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, | |
3631 | nextents * sizeof(xfs_bmbt_rec_t)); | |
f0e2d93c | 3632 | kmem_free(ifp->if_u1.if_extents); |
4eea22f0 MK |
3633 | ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; |
3634 | ifp->if_real_bytes = 0; | |
3635 | } | |
3636 | ||
3637 | /* | |
3638 | * Switch from inline buffer to linear (direct) extent records. | |
3639 | * new_size should already be rounded up to the next power of 2 | |
3640 | * by the caller (when appropriate), so use new_size as it is. | |
3641 | * However, since new_size may be rounded up, we can't update | |
3642 | * if_bytes here. It is the caller's responsibility to update | |
3643 | * if_bytes upon return. | |
3644 | */ | |
3645 | void | |
3646 | xfs_iext_inline_to_direct( | |
3647 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3648 | int new_size) /* number of extents in file */ | |
3649 | { | |
6785073b | 3650 | ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS); |
4eea22f0 MK |
3651 | memset(ifp->if_u1.if_extents, 0, new_size); |
3652 | if (ifp->if_bytes) { | |
3653 | memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, | |
3654 | ifp->if_bytes); | |
3655 | memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * | |
3656 | sizeof(xfs_bmbt_rec_t)); | |
3657 | } | |
3658 | ifp->if_real_bytes = new_size; | |
3659 | } | |
3660 | ||
0293ce3a MK |
3661 | /* |
3662 | * Resize an extent indirection array to new_size bytes. | |
3663 | */ | |
d96f8f89 | 3664 | STATIC void |
0293ce3a MK |
3665 | xfs_iext_realloc_indirect( |
3666 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3667 | int new_size) /* new indirection array size */ | |
3668 | { | |
3669 | int nlists; /* number of irec's (ex lists) */ | |
3670 | int size; /* current indirection array size */ | |
3671 | ||
3672 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
3673 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | |
3674 | size = nlists * sizeof(xfs_ext_irec_t); | |
3675 | ASSERT(ifp->if_real_bytes); | |
3676 | ASSERT((new_size >= 0) && (new_size != size)); | |
3677 | if (new_size == 0) { | |
3678 | xfs_iext_destroy(ifp); | |
3679 | } else { | |
3680 | ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *) | |
3681 | kmem_realloc(ifp->if_u1.if_ext_irec, | |
6785073b | 3682 | new_size, size, KM_NOFS); |
0293ce3a MK |
3683 | } |
3684 | } | |
3685 | ||
3686 | /* | |
3687 | * Switch from indirection array to linear (direct) extent allocations. | |
3688 | */ | |
d96f8f89 | 3689 | STATIC void |
0293ce3a MK |
3690 | xfs_iext_indirect_to_direct( |
3691 | xfs_ifork_t *ifp) /* inode fork pointer */ | |
3692 | { | |
a6f64d4a | 3693 | xfs_bmbt_rec_host_t *ep; /* extent record pointer */ |
0293ce3a MK |
3694 | xfs_extnum_t nextents; /* number of extents in file */ |
3695 | int size; /* size of file extents */ | |
3696 | ||
3697 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
3698 | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | |
3699 | ASSERT(nextents <= XFS_LINEAR_EXTS); | |
3700 | size = nextents * sizeof(xfs_bmbt_rec_t); | |
3701 | ||
71a8c87f | 3702 | xfs_iext_irec_compact_pages(ifp); |
0293ce3a MK |
3703 | ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ); |
3704 | ||
3705 | ep = ifp->if_u1.if_ext_irec->er_extbuf; | |
f0e2d93c | 3706 | kmem_free(ifp->if_u1.if_ext_irec); |
0293ce3a MK |
3707 | ifp->if_flags &= ~XFS_IFEXTIREC; |
3708 | ifp->if_u1.if_extents = ep; | |
3709 | ifp->if_bytes = size; | |
3710 | if (nextents < XFS_LINEAR_EXTS) { | |
3711 | xfs_iext_realloc_direct(ifp, size); | |
3712 | } | |
3713 | } | |
3714 | ||
4eea22f0 MK |
3715 | /* |
3716 | * Free incore file extents. | |
3717 | */ | |
3718 | void | |
3719 | xfs_iext_destroy( | |
3720 | xfs_ifork_t *ifp) /* inode fork pointer */ | |
3721 | { | |
0293ce3a MK |
3722 | if (ifp->if_flags & XFS_IFEXTIREC) { |
3723 | int erp_idx; | |
3724 | int nlists; | |
3725 | ||
3726 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | |
3727 | for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) { | |
3728 | xfs_iext_irec_remove(ifp, erp_idx); | |
3729 | } | |
3730 | ifp->if_flags &= ~XFS_IFEXTIREC; | |
3731 | } else if (ifp->if_real_bytes) { | |
f0e2d93c | 3732 | kmem_free(ifp->if_u1.if_extents); |
4eea22f0 MK |
3733 | } else if (ifp->if_bytes) { |
3734 | memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * | |
3735 | sizeof(xfs_bmbt_rec_t)); | |
3736 | } | |
3737 | ifp->if_u1.if_extents = NULL; | |
3738 | ifp->if_real_bytes = 0; | |
3739 | ifp->if_bytes = 0; | |
3740 | } | |
0293ce3a | 3741 | |
8867bc9b MK |
3742 | /* |
3743 | * Return a pointer to the extent record for file system block bno. | |
3744 | */ | |
a6f64d4a | 3745 | xfs_bmbt_rec_host_t * /* pointer to found extent record */ |
8867bc9b MK |
3746 | xfs_iext_bno_to_ext( |
3747 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3748 | xfs_fileoff_t bno, /* block number to search for */ | |
3749 | xfs_extnum_t *idxp) /* index of target extent */ | |
3750 | { | |
a6f64d4a | 3751 | xfs_bmbt_rec_host_t *base; /* pointer to first extent */ |
8867bc9b | 3752 | xfs_filblks_t blockcount = 0; /* number of blocks in extent */ |
a6f64d4a | 3753 | xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */ |
8867bc9b | 3754 | xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ |
c41564b5 | 3755 | int high; /* upper boundary in search */ |
8867bc9b | 3756 | xfs_extnum_t idx = 0; /* index of target extent */ |
c41564b5 | 3757 | int low; /* lower boundary in search */ |
8867bc9b MK |
3758 | xfs_extnum_t nextents; /* number of file extents */ |
3759 | xfs_fileoff_t startoff = 0; /* start offset of extent */ | |
3760 | ||
3761 | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | |
3762 | if (nextents == 0) { | |
3763 | *idxp = 0; | |
3764 | return NULL; | |
3765 | } | |
3766 | low = 0; | |
3767 | if (ifp->if_flags & XFS_IFEXTIREC) { | |
3768 | /* Find target extent list */ | |
3769 | int erp_idx = 0; | |
3770 | erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx); | |
3771 | base = erp->er_extbuf; | |
3772 | high = erp->er_extcount - 1; | |
3773 | } else { | |
3774 | base = ifp->if_u1.if_extents; | |
3775 | high = nextents - 1; | |
3776 | } | |
3777 | /* Binary search extent records */ | |
3778 | while (low <= high) { | |
3779 | idx = (low + high) >> 1; | |
3780 | ep = base + idx; | |
3781 | startoff = xfs_bmbt_get_startoff(ep); | |
3782 | blockcount = xfs_bmbt_get_blockcount(ep); | |
3783 | if (bno < startoff) { | |
3784 | high = idx - 1; | |
3785 | } else if (bno >= startoff + blockcount) { | |
3786 | low = idx + 1; | |
3787 | } else { | |
3788 | /* Convert back to file-based extent index */ | |
3789 | if (ifp->if_flags & XFS_IFEXTIREC) { | |
3790 | idx += erp->er_extoff; | |
3791 | } | |
3792 | *idxp = idx; | |
3793 | return ep; | |
3794 | } | |
3795 | } | |
3796 | /* Convert back to file-based extent index */ | |
3797 | if (ifp->if_flags & XFS_IFEXTIREC) { | |
3798 | idx += erp->er_extoff; | |
3799 | } | |
3800 | if (bno >= startoff + blockcount) { | |
3801 | if (++idx == nextents) { | |
3802 | ep = NULL; | |
3803 | } else { | |
3804 | ep = xfs_iext_get_ext(ifp, idx); | |
3805 | } | |
3806 | } | |
3807 | *idxp = idx; | |
3808 | return ep; | |
3809 | } | |
3810 | ||
0293ce3a MK |
3811 | /* |
3812 | * Return a pointer to the indirection array entry containing the | |
3813 | * extent record for filesystem block bno. Store the index of the | |
3814 | * target irec in *erp_idxp. | |
3815 | */ | |
8867bc9b | 3816 | xfs_ext_irec_t * /* pointer to found extent record */ |
0293ce3a MK |
3817 | xfs_iext_bno_to_irec( |
3818 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3819 | xfs_fileoff_t bno, /* block number to search for */ | |
3820 | int *erp_idxp) /* irec index of target ext list */ | |
3821 | { | |
3822 | xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ | |
3823 | xfs_ext_irec_t *erp_next; /* next indirection array entry */ | |
8867bc9b | 3824 | int erp_idx; /* indirection array index */ |
0293ce3a MK |
3825 | int nlists; /* number of extent irec's (lists) */ |
3826 | int high; /* binary search upper limit */ | |
3827 | int low; /* binary search lower limit */ | |
3828 | ||
3829 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
3830 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | |
3831 | erp_idx = 0; | |
3832 | low = 0; | |
3833 | high = nlists - 1; | |
3834 | while (low <= high) { | |
3835 | erp_idx = (low + high) >> 1; | |
3836 | erp = &ifp->if_u1.if_ext_irec[erp_idx]; | |
3837 | erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL; | |
3838 | if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) { | |
3839 | high = erp_idx - 1; | |
3840 | } else if (erp_next && bno >= | |
3841 | xfs_bmbt_get_startoff(erp_next->er_extbuf)) { | |
3842 | low = erp_idx + 1; | |
3843 | } else { | |
3844 | break; | |
3845 | } | |
3846 | } | |
3847 | *erp_idxp = erp_idx; | |
3848 | return erp; | |
3849 | } | |
3850 | ||
3851 | /* | |
3852 | * Return a pointer to the indirection array entry containing the | |
3853 | * extent record at file extent index *idxp. Store the index of the | |
3854 | * target irec in *erp_idxp and store the page index of the target | |
3855 | * extent record in *idxp. | |
3856 | */ | |
3857 | xfs_ext_irec_t * | |
3858 | xfs_iext_idx_to_irec( | |
3859 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3860 | xfs_extnum_t *idxp, /* extent index (file -> page) */ | |
3861 | int *erp_idxp, /* pointer to target irec */ | |
3862 | int realloc) /* new bytes were just added */ | |
3863 | { | |
3864 | xfs_ext_irec_t *prev; /* pointer to previous irec */ | |
3865 | xfs_ext_irec_t *erp = NULL; /* pointer to current irec */ | |
3866 | int erp_idx; /* indirection array index */ | |
3867 | int nlists; /* number of irec's (ex lists) */ | |
3868 | int high; /* binary search upper limit */ | |
3869 | int low; /* binary search lower limit */ | |
3870 | xfs_extnum_t page_idx = *idxp; /* extent index in target list */ | |
3871 | ||
3872 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
3873 | ASSERT(page_idx >= 0 && page_idx <= | |
3874 | ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t)); | |
3875 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | |
3876 | erp_idx = 0; | |
3877 | low = 0; | |
3878 | high = nlists - 1; | |
3879 | ||
3880 | /* Binary search extent irec's */ | |
3881 | while (low <= high) { | |
3882 | erp_idx = (low + high) >> 1; | |
3883 | erp = &ifp->if_u1.if_ext_irec[erp_idx]; | |
3884 | prev = erp_idx > 0 ? erp - 1 : NULL; | |
3885 | if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff && | |
3886 | realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) { | |
3887 | high = erp_idx - 1; | |
3888 | } else if (page_idx > erp->er_extoff + erp->er_extcount || | |
3889 | (page_idx == erp->er_extoff + erp->er_extcount && | |
3890 | !realloc)) { | |
3891 | low = erp_idx + 1; | |
3892 | } else if (page_idx == erp->er_extoff + erp->er_extcount && | |
3893 | erp->er_extcount == XFS_LINEAR_EXTS) { | |
3894 | ASSERT(realloc); | |
3895 | page_idx = 0; | |
3896 | erp_idx++; | |
3897 | erp = erp_idx < nlists ? erp + 1 : NULL; | |
3898 | break; | |
3899 | } else { | |
3900 | page_idx -= erp->er_extoff; | |
3901 | break; | |
3902 | } | |
3903 | } | |
3904 | *idxp = page_idx; | |
3905 | *erp_idxp = erp_idx; | |
3906 | return(erp); | |
3907 | } | |
3908 | ||
3909 | /* | |
3910 | * Allocate and initialize an indirection array once the space needed | |
3911 | * for incore extents increases above XFS_IEXT_BUFSZ. | |
3912 | */ | |
3913 | void | |
3914 | xfs_iext_irec_init( | |
3915 | xfs_ifork_t *ifp) /* inode fork pointer */ | |
3916 | { | |
3917 | xfs_ext_irec_t *erp; /* indirection array pointer */ | |
3918 | xfs_extnum_t nextents; /* number of extents in file */ | |
3919 | ||
3920 | ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); | |
3921 | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | |
3922 | ASSERT(nextents <= XFS_LINEAR_EXTS); | |
3923 | ||
6785073b | 3924 | erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS); |
0293ce3a MK |
3925 | |
3926 | if (nextents == 0) { | |
6785073b | 3927 | ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); |
0293ce3a MK |
3928 | } else if (!ifp->if_real_bytes) { |
3929 | xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ); | |
3930 | } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) { | |
3931 | xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ); | |
3932 | } | |
3933 | erp->er_extbuf = ifp->if_u1.if_extents; | |
3934 | erp->er_extcount = nextents; | |
3935 | erp->er_extoff = 0; | |
3936 | ||
3937 | ifp->if_flags |= XFS_IFEXTIREC; | |
3938 | ifp->if_real_bytes = XFS_IEXT_BUFSZ; | |
3939 | ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t); | |
3940 | ifp->if_u1.if_ext_irec = erp; | |
3941 | ||
3942 | return; | |
3943 | } | |
3944 | ||
3945 | /* | |
3946 | * Allocate and initialize a new entry in the indirection array. | |
3947 | */ | |
3948 | xfs_ext_irec_t * | |
3949 | xfs_iext_irec_new( | |
3950 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3951 | int erp_idx) /* index for new irec */ | |
3952 | { | |
3953 | xfs_ext_irec_t *erp; /* indirection array pointer */ | |
3954 | int i; /* loop counter */ | |
3955 | int nlists; /* number of irec's (ex lists) */ | |
3956 | ||
3957 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
3958 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | |
3959 | ||
3960 | /* Resize indirection array */ | |
3961 | xfs_iext_realloc_indirect(ifp, ++nlists * | |
3962 | sizeof(xfs_ext_irec_t)); | |
3963 | /* | |
3964 | * Move records down in the array so the | |
3965 | * new page can use erp_idx. | |
3966 | */ | |
3967 | erp = ifp->if_u1.if_ext_irec; | |
3968 | for (i = nlists - 1; i > erp_idx; i--) { | |
3969 | memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t)); | |
3970 | } | |
3971 | ASSERT(i == erp_idx); | |
3972 | ||
3973 | /* Initialize new extent record */ | |
3974 | erp = ifp->if_u1.if_ext_irec; | |
6785073b | 3975 | erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); |
0293ce3a MK |
3976 | ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; |
3977 | memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ); | |
3978 | erp[erp_idx].er_extcount = 0; | |
3979 | erp[erp_idx].er_extoff = erp_idx > 0 ? | |
3980 | erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0; | |
3981 | return (&erp[erp_idx]); | |
3982 | } | |
3983 | ||
3984 | /* | |
3985 | * Remove a record from the indirection array. | |
3986 | */ | |
3987 | void | |
3988 | xfs_iext_irec_remove( | |
3989 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3990 | int erp_idx) /* irec index to remove */ | |
3991 | { | |
3992 | xfs_ext_irec_t *erp; /* indirection array pointer */ | |
3993 | int i; /* loop counter */ | |
3994 | int nlists; /* number of irec's (ex lists) */ | |
3995 | ||
3996 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
3997 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | |
3998 | erp = &ifp->if_u1.if_ext_irec[erp_idx]; | |
3999 | if (erp->er_extbuf) { | |
4000 | xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, | |
4001 | -erp->er_extcount); | |
f0e2d93c | 4002 | kmem_free(erp->er_extbuf); |
0293ce3a MK |
4003 | } |
4004 | /* Compact extent records */ | |
4005 | erp = ifp->if_u1.if_ext_irec; | |
4006 | for (i = erp_idx; i < nlists - 1; i++) { | |
4007 | memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t)); | |
4008 | } | |
4009 | /* | |
4010 | * Manually free the last extent record from the indirection | |
4011 | * array. A call to xfs_iext_realloc_indirect() with a size | |
4012 | * of zero would result in a call to xfs_iext_destroy() which | |
4013 | * would in turn call this function again, creating a nasty | |
4014 | * infinite loop. | |
4015 | */ | |
4016 | if (--nlists) { | |
4017 | xfs_iext_realloc_indirect(ifp, | |
4018 | nlists * sizeof(xfs_ext_irec_t)); | |
4019 | } else { | |
f0e2d93c | 4020 | kmem_free(ifp->if_u1.if_ext_irec); |
0293ce3a MK |
4021 | } |
4022 | ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; | |
4023 | } | |
4024 | ||
4025 | /* | |
4026 | * This is called to clean up large amounts of unused memory allocated | |
4027 | * by the indirection array. Before compacting anything though, verify | |
4028 | * that the indirection array is still needed and switch back to the | |
4029 | * linear extent list (or even the inline buffer) if possible. The | |
4030 | * compaction policy is as follows: | |
4031 | * | |
4032 | * Full Compaction: Extents fit into a single page (or inline buffer) | |
71a8c87f | 4033 | * Partial Compaction: Extents occupy less than 50% of allocated space |
0293ce3a MK |
4034 | * No Compaction: Extents occupy at least 50% of allocated space |
4035 | */ | |
4036 | void | |
4037 | xfs_iext_irec_compact( | |
4038 | xfs_ifork_t *ifp) /* inode fork pointer */ | |
4039 | { | |
4040 | xfs_extnum_t nextents; /* number of extents in file */ | |
4041 | int nlists; /* number of irec's (ex lists) */ | |
4042 | ||
4043 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
4044 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | |
4045 | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | |
4046 | ||
4047 | if (nextents == 0) { | |
4048 | xfs_iext_destroy(ifp); | |
4049 | } else if (nextents <= XFS_INLINE_EXTS) { | |
4050 | xfs_iext_indirect_to_direct(ifp); | |
4051 | xfs_iext_direct_to_inline(ifp, nextents); | |
4052 | } else if (nextents <= XFS_LINEAR_EXTS) { | |
4053 | xfs_iext_indirect_to_direct(ifp); | |
0293ce3a MK |
4054 | } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) { |
4055 | xfs_iext_irec_compact_pages(ifp); | |
4056 | } | |
4057 | } | |
4058 | ||
4059 | /* | |
4060 | * Combine extents from neighboring extent pages. | |
4061 | */ | |
4062 | void | |
4063 | xfs_iext_irec_compact_pages( | |
4064 | xfs_ifork_t *ifp) /* inode fork pointer */ | |
4065 | { | |
4066 | xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */ | |
4067 | int erp_idx = 0; /* indirection array index */ | |
4068 | int nlists; /* number of irec's (ex lists) */ | |
4069 | ||
4070 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
4071 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | |
4072 | while (erp_idx < nlists - 1) { | |
4073 | erp = &ifp->if_u1.if_ext_irec[erp_idx]; | |
4074 | erp_next = erp + 1; | |
4075 | if (erp_next->er_extcount <= | |
4076 | (XFS_LINEAR_EXTS - erp->er_extcount)) { | |
71a8c87f | 4077 | memcpy(&erp->er_extbuf[erp->er_extcount], |
0293ce3a MK |
4078 | erp_next->er_extbuf, erp_next->er_extcount * |
4079 | sizeof(xfs_bmbt_rec_t)); | |
4080 | erp->er_extcount += erp_next->er_extcount; | |
4081 | /* | |
4082 | * Free page before removing extent record | |
4083 | * so er_extoffs don't get modified in | |
4084 | * xfs_iext_irec_remove. | |
4085 | */ | |
f0e2d93c | 4086 | kmem_free(erp_next->er_extbuf); |
0293ce3a MK |
4087 | erp_next->er_extbuf = NULL; |
4088 | xfs_iext_irec_remove(ifp, erp_idx + 1); | |
4089 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | |
4090 | } else { | |
4091 | erp_idx++; | |
4092 | } | |
4093 | } | |
4094 | } | |
4095 | ||
0293ce3a MK |
4096 | /* |
4097 | * This is called to update the er_extoff field in the indirection | |
4098 | * array when extents have been added or removed from one of the | |
4099 | * extent lists. erp_idx contains the irec index to begin updating | |
4100 | * at and ext_diff contains the number of extents that were added | |
4101 | * or removed. | |
4102 | */ | |
4103 | void | |
4104 | xfs_iext_irec_update_extoffs( | |
4105 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
4106 | int erp_idx, /* irec index to update */ | |
4107 | int ext_diff) /* number of new extents */ | |
4108 | { | |
4109 | int i; /* loop counter */ | |
4110 | int nlists; /* number of irec's (ex lists */ | |
4111 | ||
4112 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
4113 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | |
4114 | for (i = erp_idx; i < nlists; i++) { | |
4115 | ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff; | |
4116 | } | |
4117 | } |