]>
Commit | Line | Data |
---|---|---|
bb44e5d1 IM |
1 | /* |
2 | * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR | |
3 | * policies) | |
4 | */ | |
5 | ||
8f48894f PZ |
6 | #ifdef CONFIG_RT_GROUP_SCHED |
7 | ||
8 | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) | |
9 | ||
398a153b GH |
10 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) |
11 | { | |
8f48894f PZ |
12 | #ifdef CONFIG_SCHED_DEBUG |
13 | WARN_ON_ONCE(!rt_entity_is_task(rt_se)); | |
14 | #endif | |
398a153b GH |
15 | return container_of(rt_se, struct task_struct, rt); |
16 | } | |
17 | ||
398a153b GH |
18 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) |
19 | { | |
20 | return rt_rq->rq; | |
21 | } | |
22 | ||
23 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | |
24 | { | |
25 | return rt_se->rt_rq; | |
26 | } | |
27 | ||
28 | #else /* CONFIG_RT_GROUP_SCHED */ | |
29 | ||
a1ba4d8b PZ |
30 | #define rt_entity_is_task(rt_se) (1) |
31 | ||
8f48894f PZ |
32 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) |
33 | { | |
34 | return container_of(rt_se, struct task_struct, rt); | |
35 | } | |
36 | ||
398a153b GH |
37 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) |
38 | { | |
39 | return container_of(rt_rq, struct rq, rt); | |
40 | } | |
41 | ||
42 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | |
43 | { | |
44 | struct task_struct *p = rt_task_of(rt_se); | |
45 | struct rq *rq = task_rq(p); | |
46 | ||
47 | return &rq->rt; | |
48 | } | |
49 | ||
50 | #endif /* CONFIG_RT_GROUP_SCHED */ | |
51 | ||
4fd29176 | 52 | #ifdef CONFIG_SMP |
84de4274 | 53 | |
637f5085 | 54 | static inline int rt_overloaded(struct rq *rq) |
4fd29176 | 55 | { |
637f5085 | 56 | return atomic_read(&rq->rd->rto_count); |
4fd29176 | 57 | } |
84de4274 | 58 | |
4fd29176 SR |
59 | static inline void rt_set_overload(struct rq *rq) |
60 | { | |
1f11eb6a GH |
61 | if (!rq->online) |
62 | return; | |
63 | ||
c6c4927b | 64 | cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); |
4fd29176 SR |
65 | /* |
66 | * Make sure the mask is visible before we set | |
67 | * the overload count. That is checked to determine | |
68 | * if we should look at the mask. It would be a shame | |
69 | * if we looked at the mask, but the mask was not | |
70 | * updated yet. | |
71 | */ | |
72 | wmb(); | |
637f5085 | 73 | atomic_inc(&rq->rd->rto_count); |
4fd29176 | 74 | } |
84de4274 | 75 | |
4fd29176 SR |
76 | static inline void rt_clear_overload(struct rq *rq) |
77 | { | |
1f11eb6a GH |
78 | if (!rq->online) |
79 | return; | |
80 | ||
4fd29176 | 81 | /* the order here really doesn't matter */ |
637f5085 | 82 | atomic_dec(&rq->rd->rto_count); |
c6c4927b | 83 | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); |
4fd29176 | 84 | } |
73fe6aae | 85 | |
398a153b | 86 | static void update_rt_migration(struct rt_rq *rt_rq) |
73fe6aae | 87 | { |
a1ba4d8b | 88 | if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { |
398a153b GH |
89 | if (!rt_rq->overloaded) { |
90 | rt_set_overload(rq_of_rt_rq(rt_rq)); | |
91 | rt_rq->overloaded = 1; | |
cdc8eb98 | 92 | } |
398a153b GH |
93 | } else if (rt_rq->overloaded) { |
94 | rt_clear_overload(rq_of_rt_rq(rt_rq)); | |
95 | rt_rq->overloaded = 0; | |
637f5085 | 96 | } |
73fe6aae | 97 | } |
4fd29176 | 98 | |
398a153b GH |
99 | static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
100 | { | |
a1ba4d8b PZ |
101 | if (!rt_entity_is_task(rt_se)) |
102 | return; | |
103 | ||
104 | rt_rq = &rq_of_rt_rq(rt_rq)->rt; | |
105 | ||
106 | rt_rq->rt_nr_total++; | |
398a153b GH |
107 | if (rt_se->nr_cpus_allowed > 1) |
108 | rt_rq->rt_nr_migratory++; | |
109 | ||
110 | update_rt_migration(rt_rq); | |
111 | } | |
112 | ||
113 | static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
114 | { | |
a1ba4d8b PZ |
115 | if (!rt_entity_is_task(rt_se)) |
116 | return; | |
117 | ||
118 | rt_rq = &rq_of_rt_rq(rt_rq)->rt; | |
119 | ||
120 | rt_rq->rt_nr_total--; | |
398a153b GH |
121 | if (rt_se->nr_cpus_allowed > 1) |
122 | rt_rq->rt_nr_migratory--; | |
123 | ||
124 | update_rt_migration(rt_rq); | |
125 | } | |
126 | ||
917b627d GH |
127 | static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) |
128 | { | |
129 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | |
130 | plist_node_init(&p->pushable_tasks, p->prio); | |
131 | plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); | |
132 | } | |
133 | ||
134 | static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | |
135 | { | |
136 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | |
137 | } | |
138 | ||
bcf08df3 IM |
139 | static inline int has_pushable_tasks(struct rq *rq) |
140 | { | |
141 | return !plist_head_empty(&rq->rt.pushable_tasks); | |
142 | } | |
143 | ||
917b627d GH |
144 | #else |
145 | ||
ceacc2c1 | 146 | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) |
fa85ae24 | 147 | { |
6f505b16 PZ |
148 | } |
149 | ||
ceacc2c1 PZ |
150 | static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) |
151 | { | |
152 | } | |
153 | ||
b07430ac | 154 | static inline |
ceacc2c1 PZ |
155 | void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
156 | { | |
157 | } | |
158 | ||
398a153b | 159 | static inline |
ceacc2c1 PZ |
160 | void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
161 | { | |
162 | } | |
917b627d | 163 | |
4fd29176 SR |
164 | #endif /* CONFIG_SMP */ |
165 | ||
6f505b16 PZ |
166 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) |
167 | { | |
168 | return !list_empty(&rt_se->run_list); | |
169 | } | |
170 | ||
052f1dc7 | 171 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 | 172 | |
9f0c1e56 | 173 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) |
6f505b16 PZ |
174 | { |
175 | if (!rt_rq->tg) | |
9f0c1e56 | 176 | return RUNTIME_INF; |
6f505b16 | 177 | |
ac086bc2 PZ |
178 | return rt_rq->rt_runtime; |
179 | } | |
180 | ||
181 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | |
182 | { | |
183 | return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); | |
6f505b16 PZ |
184 | } |
185 | ||
186 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | |
80f40ee4 | 187 | list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) |
6f505b16 | 188 | |
6f505b16 PZ |
189 | #define for_each_sched_rt_entity(rt_se) \ |
190 | for (; rt_se; rt_se = rt_se->parent) | |
191 | ||
192 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | |
193 | { | |
194 | return rt_se->my_q; | |
195 | } | |
196 | ||
37dad3fc | 197 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); |
6f505b16 PZ |
198 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se); |
199 | ||
9f0c1e56 | 200 | static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) |
6f505b16 | 201 | { |
74b7eb58 | 202 | int this_cpu = smp_processor_id(); |
f6121f4f | 203 | struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; |
74b7eb58 YZ |
204 | struct sched_rt_entity *rt_se; |
205 | ||
206 | rt_se = rt_rq->tg->rt_se[this_cpu]; | |
6f505b16 | 207 | |
f6121f4f DF |
208 | if (rt_rq->rt_nr_running) { |
209 | if (rt_se && !on_rt_rq(rt_se)) | |
37dad3fc | 210 | enqueue_rt_entity(rt_se, false); |
e864c499 | 211 | if (rt_rq->highest_prio.curr < curr->prio) |
1020387f | 212 | resched_task(curr); |
6f505b16 PZ |
213 | } |
214 | } | |
215 | ||
9f0c1e56 | 216 | static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) |
6f505b16 | 217 | { |
74b7eb58 YZ |
218 | int this_cpu = smp_processor_id(); |
219 | struct sched_rt_entity *rt_se; | |
220 | ||
221 | rt_se = rt_rq->tg->rt_se[this_cpu]; | |
6f505b16 PZ |
222 | |
223 | if (rt_se && on_rt_rq(rt_se)) | |
224 | dequeue_rt_entity(rt_se); | |
225 | } | |
226 | ||
23b0fdfc PZ |
227 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) |
228 | { | |
229 | return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; | |
230 | } | |
231 | ||
232 | static int rt_se_boosted(struct sched_rt_entity *rt_se) | |
233 | { | |
234 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | |
235 | struct task_struct *p; | |
236 | ||
237 | if (rt_rq) | |
238 | return !!rt_rq->rt_nr_boosted; | |
239 | ||
240 | p = rt_task_of(rt_se); | |
241 | return p->prio != p->normal_prio; | |
242 | } | |
243 | ||
d0b27fa7 | 244 | #ifdef CONFIG_SMP |
c6c4927b | 245 | static inline const struct cpumask *sched_rt_period_mask(void) |
d0b27fa7 PZ |
246 | { |
247 | return cpu_rq(smp_processor_id())->rd->span; | |
248 | } | |
6f505b16 | 249 | #else |
c6c4927b | 250 | static inline const struct cpumask *sched_rt_period_mask(void) |
d0b27fa7 | 251 | { |
c6c4927b | 252 | return cpu_online_mask; |
d0b27fa7 PZ |
253 | } |
254 | #endif | |
6f505b16 | 255 | |
d0b27fa7 PZ |
256 | static inline |
257 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | |
6f505b16 | 258 | { |
d0b27fa7 PZ |
259 | return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; |
260 | } | |
9f0c1e56 | 261 | |
ac086bc2 PZ |
262 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) |
263 | { | |
264 | return &rt_rq->tg->rt_bandwidth; | |
265 | } | |
266 | ||
55e12e5e | 267 | #else /* !CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 PZ |
268 | |
269 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) | |
270 | { | |
ac086bc2 PZ |
271 | return rt_rq->rt_runtime; |
272 | } | |
273 | ||
274 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | |
275 | { | |
276 | return ktime_to_ns(def_rt_bandwidth.rt_period); | |
6f505b16 PZ |
277 | } |
278 | ||
279 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | |
280 | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | |
281 | ||
6f505b16 PZ |
282 | #define for_each_sched_rt_entity(rt_se) \ |
283 | for (; rt_se; rt_se = NULL) | |
284 | ||
285 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | |
286 | { | |
287 | return NULL; | |
288 | } | |
289 | ||
9f0c1e56 | 290 | static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) |
6f505b16 | 291 | { |
f3ade837 JB |
292 | if (rt_rq->rt_nr_running) |
293 | resched_task(rq_of_rt_rq(rt_rq)->curr); | |
6f505b16 PZ |
294 | } |
295 | ||
9f0c1e56 | 296 | static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) |
6f505b16 PZ |
297 | { |
298 | } | |
299 | ||
23b0fdfc PZ |
300 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) |
301 | { | |
302 | return rt_rq->rt_throttled; | |
303 | } | |
d0b27fa7 | 304 | |
c6c4927b | 305 | static inline const struct cpumask *sched_rt_period_mask(void) |
d0b27fa7 | 306 | { |
c6c4927b | 307 | return cpu_online_mask; |
d0b27fa7 PZ |
308 | } |
309 | ||
310 | static inline | |
311 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | |
312 | { | |
313 | return &cpu_rq(cpu)->rt; | |
314 | } | |
315 | ||
ac086bc2 PZ |
316 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) |
317 | { | |
318 | return &def_rt_bandwidth; | |
319 | } | |
320 | ||
55e12e5e | 321 | #endif /* CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 | 322 | |
ac086bc2 | 323 | #ifdef CONFIG_SMP |
78333cdd PZ |
324 | /* |
325 | * We ran out of runtime, see if we can borrow some from our neighbours. | |
326 | */ | |
b79f3833 | 327 | static int do_balance_runtime(struct rt_rq *rt_rq) |
ac086bc2 PZ |
328 | { |
329 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | |
330 | struct root_domain *rd = cpu_rq(smp_processor_id())->rd; | |
331 | int i, weight, more = 0; | |
332 | u64 rt_period; | |
333 | ||
c6c4927b | 334 | weight = cpumask_weight(rd->span); |
ac086bc2 | 335 | |
0986b11b | 336 | raw_spin_lock(&rt_b->rt_runtime_lock); |
ac086bc2 | 337 | rt_period = ktime_to_ns(rt_b->rt_period); |
c6c4927b | 338 | for_each_cpu(i, rd->span) { |
ac086bc2 PZ |
339 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); |
340 | s64 diff; | |
341 | ||
342 | if (iter == rt_rq) | |
343 | continue; | |
344 | ||
0986b11b | 345 | raw_spin_lock(&iter->rt_runtime_lock); |
78333cdd PZ |
346 | /* |
347 | * Either all rqs have inf runtime and there's nothing to steal | |
348 | * or __disable_runtime() below sets a specific rq to inf to | |
349 | * indicate its been disabled and disalow stealing. | |
350 | */ | |
7def2be1 PZ |
351 | if (iter->rt_runtime == RUNTIME_INF) |
352 | goto next; | |
353 | ||
78333cdd PZ |
354 | /* |
355 | * From runqueues with spare time, take 1/n part of their | |
356 | * spare time, but no more than our period. | |
357 | */ | |
ac086bc2 PZ |
358 | diff = iter->rt_runtime - iter->rt_time; |
359 | if (diff > 0) { | |
58838cf3 | 360 | diff = div_u64((u64)diff, weight); |
ac086bc2 PZ |
361 | if (rt_rq->rt_runtime + diff > rt_period) |
362 | diff = rt_period - rt_rq->rt_runtime; | |
363 | iter->rt_runtime -= diff; | |
364 | rt_rq->rt_runtime += diff; | |
365 | more = 1; | |
366 | if (rt_rq->rt_runtime == rt_period) { | |
0986b11b | 367 | raw_spin_unlock(&iter->rt_runtime_lock); |
ac086bc2 PZ |
368 | break; |
369 | } | |
370 | } | |
7def2be1 | 371 | next: |
0986b11b | 372 | raw_spin_unlock(&iter->rt_runtime_lock); |
ac086bc2 | 373 | } |
0986b11b | 374 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
ac086bc2 PZ |
375 | |
376 | return more; | |
377 | } | |
7def2be1 | 378 | |
78333cdd PZ |
379 | /* |
380 | * Ensure this RQ takes back all the runtime it lend to its neighbours. | |
381 | */ | |
7def2be1 PZ |
382 | static void __disable_runtime(struct rq *rq) |
383 | { | |
384 | struct root_domain *rd = rq->rd; | |
385 | struct rt_rq *rt_rq; | |
386 | ||
387 | if (unlikely(!scheduler_running)) | |
388 | return; | |
389 | ||
390 | for_each_leaf_rt_rq(rt_rq, rq) { | |
391 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | |
392 | s64 want; | |
393 | int i; | |
394 | ||
0986b11b TG |
395 | raw_spin_lock(&rt_b->rt_runtime_lock); |
396 | raw_spin_lock(&rt_rq->rt_runtime_lock); | |
78333cdd PZ |
397 | /* |
398 | * Either we're all inf and nobody needs to borrow, or we're | |
399 | * already disabled and thus have nothing to do, or we have | |
400 | * exactly the right amount of runtime to take out. | |
401 | */ | |
7def2be1 PZ |
402 | if (rt_rq->rt_runtime == RUNTIME_INF || |
403 | rt_rq->rt_runtime == rt_b->rt_runtime) | |
404 | goto balanced; | |
0986b11b | 405 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
7def2be1 | 406 | |
78333cdd PZ |
407 | /* |
408 | * Calculate the difference between what we started out with | |
409 | * and what we current have, that's the amount of runtime | |
410 | * we lend and now have to reclaim. | |
411 | */ | |
7def2be1 PZ |
412 | want = rt_b->rt_runtime - rt_rq->rt_runtime; |
413 | ||
78333cdd PZ |
414 | /* |
415 | * Greedy reclaim, take back as much as we can. | |
416 | */ | |
c6c4927b | 417 | for_each_cpu(i, rd->span) { |
7def2be1 PZ |
418 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); |
419 | s64 diff; | |
420 | ||
78333cdd PZ |
421 | /* |
422 | * Can't reclaim from ourselves or disabled runqueues. | |
423 | */ | |
f1679d08 | 424 | if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) |
7def2be1 PZ |
425 | continue; |
426 | ||
0986b11b | 427 | raw_spin_lock(&iter->rt_runtime_lock); |
7def2be1 PZ |
428 | if (want > 0) { |
429 | diff = min_t(s64, iter->rt_runtime, want); | |
430 | iter->rt_runtime -= diff; | |
431 | want -= diff; | |
432 | } else { | |
433 | iter->rt_runtime -= want; | |
434 | want -= want; | |
435 | } | |
0986b11b | 436 | raw_spin_unlock(&iter->rt_runtime_lock); |
7def2be1 PZ |
437 | |
438 | if (!want) | |
439 | break; | |
440 | } | |
441 | ||
0986b11b | 442 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
78333cdd PZ |
443 | /* |
444 | * We cannot be left wanting - that would mean some runtime | |
445 | * leaked out of the system. | |
446 | */ | |
7def2be1 PZ |
447 | BUG_ON(want); |
448 | balanced: | |
78333cdd PZ |
449 | /* |
450 | * Disable all the borrow logic by pretending we have inf | |
451 | * runtime - in which case borrowing doesn't make sense. | |
452 | */ | |
7def2be1 | 453 | rt_rq->rt_runtime = RUNTIME_INF; |
0986b11b TG |
454 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
455 | raw_spin_unlock(&rt_b->rt_runtime_lock); | |
7def2be1 PZ |
456 | } |
457 | } | |
458 | ||
459 | static void disable_runtime(struct rq *rq) | |
460 | { | |
461 | unsigned long flags; | |
462 | ||
05fa785c | 463 | raw_spin_lock_irqsave(&rq->lock, flags); |
7def2be1 | 464 | __disable_runtime(rq); |
05fa785c | 465 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
7def2be1 PZ |
466 | } |
467 | ||
468 | static void __enable_runtime(struct rq *rq) | |
469 | { | |
7def2be1 PZ |
470 | struct rt_rq *rt_rq; |
471 | ||
472 | if (unlikely(!scheduler_running)) | |
473 | return; | |
474 | ||
78333cdd PZ |
475 | /* |
476 | * Reset each runqueue's bandwidth settings | |
477 | */ | |
7def2be1 PZ |
478 | for_each_leaf_rt_rq(rt_rq, rq) { |
479 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | |
480 | ||
0986b11b TG |
481 | raw_spin_lock(&rt_b->rt_runtime_lock); |
482 | raw_spin_lock(&rt_rq->rt_runtime_lock); | |
7def2be1 PZ |
483 | rt_rq->rt_runtime = rt_b->rt_runtime; |
484 | rt_rq->rt_time = 0; | |
baf25731 | 485 | rt_rq->rt_throttled = 0; |
0986b11b TG |
486 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
487 | raw_spin_unlock(&rt_b->rt_runtime_lock); | |
7def2be1 PZ |
488 | } |
489 | } | |
490 | ||
491 | static void enable_runtime(struct rq *rq) | |
492 | { | |
493 | unsigned long flags; | |
494 | ||
05fa785c | 495 | raw_spin_lock_irqsave(&rq->lock, flags); |
7def2be1 | 496 | __enable_runtime(rq); |
05fa785c | 497 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
7def2be1 PZ |
498 | } |
499 | ||
eff6549b PZ |
500 | static int balance_runtime(struct rt_rq *rt_rq) |
501 | { | |
502 | int more = 0; | |
503 | ||
504 | if (rt_rq->rt_time > rt_rq->rt_runtime) { | |
0986b11b | 505 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
eff6549b | 506 | more = do_balance_runtime(rt_rq); |
0986b11b | 507 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
eff6549b PZ |
508 | } |
509 | ||
510 | return more; | |
511 | } | |
55e12e5e | 512 | #else /* !CONFIG_SMP */ |
eff6549b PZ |
513 | static inline int balance_runtime(struct rt_rq *rt_rq) |
514 | { | |
515 | return 0; | |
516 | } | |
55e12e5e | 517 | #endif /* CONFIG_SMP */ |
ac086bc2 | 518 | |
eff6549b PZ |
519 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) |
520 | { | |
521 | int i, idle = 1; | |
c6c4927b | 522 | const struct cpumask *span; |
eff6549b | 523 | |
0b148fa0 | 524 | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) |
eff6549b PZ |
525 | return 1; |
526 | ||
527 | span = sched_rt_period_mask(); | |
c6c4927b | 528 | for_each_cpu(i, span) { |
eff6549b PZ |
529 | int enqueue = 0; |
530 | struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); | |
531 | struct rq *rq = rq_of_rt_rq(rt_rq); | |
532 | ||
05fa785c | 533 | raw_spin_lock(&rq->lock); |
eff6549b PZ |
534 | if (rt_rq->rt_time) { |
535 | u64 runtime; | |
536 | ||
0986b11b | 537 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
eff6549b PZ |
538 | if (rt_rq->rt_throttled) |
539 | balance_runtime(rt_rq); | |
540 | runtime = rt_rq->rt_runtime; | |
541 | rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); | |
542 | if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { | |
543 | rt_rq->rt_throttled = 0; | |
544 | enqueue = 1; | |
545 | } | |
546 | if (rt_rq->rt_time || rt_rq->rt_nr_running) | |
547 | idle = 0; | |
0986b11b | 548 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
6c3df255 PZ |
549 | } else if (rt_rq->rt_nr_running) |
550 | idle = 0; | |
eff6549b PZ |
551 | |
552 | if (enqueue) | |
553 | sched_rt_rq_enqueue(rt_rq); | |
05fa785c | 554 | raw_spin_unlock(&rq->lock); |
eff6549b PZ |
555 | } |
556 | ||
557 | return idle; | |
558 | } | |
ac086bc2 | 559 | |
6f505b16 PZ |
560 | static inline int rt_se_prio(struct sched_rt_entity *rt_se) |
561 | { | |
052f1dc7 | 562 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 PZ |
563 | struct rt_rq *rt_rq = group_rt_rq(rt_se); |
564 | ||
565 | if (rt_rq) | |
e864c499 | 566 | return rt_rq->highest_prio.curr; |
6f505b16 PZ |
567 | #endif |
568 | ||
569 | return rt_task_of(rt_se)->prio; | |
570 | } | |
571 | ||
9f0c1e56 | 572 | static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) |
6f505b16 | 573 | { |
9f0c1e56 | 574 | u64 runtime = sched_rt_runtime(rt_rq); |
fa85ae24 | 575 | |
fa85ae24 | 576 | if (rt_rq->rt_throttled) |
23b0fdfc | 577 | return rt_rq_throttled(rt_rq); |
fa85ae24 | 578 | |
ac086bc2 PZ |
579 | if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq)) |
580 | return 0; | |
581 | ||
b79f3833 PZ |
582 | balance_runtime(rt_rq); |
583 | runtime = sched_rt_runtime(rt_rq); | |
584 | if (runtime == RUNTIME_INF) | |
585 | return 0; | |
ac086bc2 | 586 | |
9f0c1e56 | 587 | if (rt_rq->rt_time > runtime) { |
6f505b16 | 588 | rt_rq->rt_throttled = 1; |
23b0fdfc | 589 | if (rt_rq_throttled(rt_rq)) { |
9f0c1e56 | 590 | sched_rt_rq_dequeue(rt_rq); |
23b0fdfc PZ |
591 | return 1; |
592 | } | |
fa85ae24 PZ |
593 | } |
594 | ||
595 | return 0; | |
596 | } | |
597 | ||
bb44e5d1 IM |
598 | /* |
599 | * Update the current task's runtime statistics. Skip current tasks that | |
600 | * are not in our scheduling class. | |
601 | */ | |
a9957449 | 602 | static void update_curr_rt(struct rq *rq) |
bb44e5d1 IM |
603 | { |
604 | struct task_struct *curr = rq->curr; | |
6f505b16 PZ |
605 | struct sched_rt_entity *rt_se = &curr->rt; |
606 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | |
bb44e5d1 IM |
607 | u64 delta_exec; |
608 | ||
609 | if (!task_has_rt_policy(curr)) | |
610 | return; | |
611 | ||
d281918d | 612 | delta_exec = rq->clock - curr->se.exec_start; |
bb44e5d1 IM |
613 | if (unlikely((s64)delta_exec < 0)) |
614 | delta_exec = 0; | |
6cfb0d5d | 615 | |
41acab88 | 616 | schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec)); |
bb44e5d1 IM |
617 | |
618 | curr->se.sum_exec_runtime += delta_exec; | |
f06febc9 FM |
619 | account_group_exec_runtime(curr, delta_exec); |
620 | ||
d281918d | 621 | curr->se.exec_start = rq->clock; |
d842de87 | 622 | cpuacct_charge(curr, delta_exec); |
fa85ae24 | 623 | |
e9e9250b PZ |
624 | sched_rt_avg_update(rq, delta_exec); |
625 | ||
0b148fa0 PZ |
626 | if (!rt_bandwidth_enabled()) |
627 | return; | |
628 | ||
354d60c2 DG |
629 | for_each_sched_rt_entity(rt_se) { |
630 | rt_rq = rt_rq_of_se(rt_se); | |
631 | ||
cc2991cf | 632 | if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { |
0986b11b | 633 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
cc2991cf PZ |
634 | rt_rq->rt_time += delta_exec; |
635 | if (sched_rt_runtime_exceeded(rt_rq)) | |
636 | resched_task(curr); | |
0986b11b | 637 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
cc2991cf | 638 | } |
354d60c2 | 639 | } |
bb44e5d1 IM |
640 | } |
641 | ||
398a153b | 642 | #if defined CONFIG_SMP |
e864c499 GH |
643 | |
644 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu); | |
645 | ||
646 | static inline int next_prio(struct rq *rq) | |
63489e45 | 647 | { |
e864c499 GH |
648 | struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu); |
649 | ||
650 | if (next && rt_prio(next->prio)) | |
651 | return next->prio; | |
652 | else | |
653 | return MAX_RT_PRIO; | |
654 | } | |
e864c499 | 655 | |
398a153b GH |
656 | static void |
657 | inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | |
63489e45 | 658 | { |
4d984277 | 659 | struct rq *rq = rq_of_rt_rq(rt_rq); |
1f11eb6a | 660 | |
398a153b | 661 | if (prio < prev_prio) { |
4d984277 | 662 | |
e864c499 GH |
663 | /* |
664 | * If the new task is higher in priority than anything on the | |
398a153b GH |
665 | * run-queue, we know that the previous high becomes our |
666 | * next-highest. | |
e864c499 | 667 | */ |
398a153b | 668 | rt_rq->highest_prio.next = prev_prio; |
1f11eb6a GH |
669 | |
670 | if (rq->online) | |
4d984277 | 671 | cpupri_set(&rq->rd->cpupri, rq->cpu, prio); |
1100ac91 | 672 | |
e864c499 GH |
673 | } else if (prio == rt_rq->highest_prio.curr) |
674 | /* | |
675 | * If the next task is equal in priority to the highest on | |
676 | * the run-queue, then we implicitly know that the next highest | |
677 | * task cannot be any lower than current | |
678 | */ | |
679 | rt_rq->highest_prio.next = prio; | |
680 | else if (prio < rt_rq->highest_prio.next) | |
681 | /* | |
682 | * Otherwise, we need to recompute next-highest | |
683 | */ | |
684 | rt_rq->highest_prio.next = next_prio(rq); | |
398a153b | 685 | } |
73fe6aae | 686 | |
398a153b GH |
687 | static void |
688 | dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | |
689 | { | |
690 | struct rq *rq = rq_of_rt_rq(rt_rq); | |
d0b27fa7 | 691 | |
398a153b GH |
692 | if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next)) |
693 | rt_rq->highest_prio.next = next_prio(rq); | |
694 | ||
695 | if (rq->online && rt_rq->highest_prio.curr != prev_prio) | |
696 | cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); | |
63489e45 SR |
697 | } |
698 | ||
398a153b GH |
699 | #else /* CONFIG_SMP */ |
700 | ||
6f505b16 | 701 | static inline |
398a153b GH |
702 | void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} |
703 | static inline | |
704 | void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} | |
705 | ||
706 | #endif /* CONFIG_SMP */ | |
6e0534f2 | 707 | |
052f1dc7 | 708 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
398a153b GH |
709 | static void |
710 | inc_rt_prio(struct rt_rq *rt_rq, int prio) | |
711 | { | |
712 | int prev_prio = rt_rq->highest_prio.curr; | |
713 | ||
714 | if (prio < prev_prio) | |
715 | rt_rq->highest_prio.curr = prio; | |
716 | ||
717 | inc_rt_prio_smp(rt_rq, prio, prev_prio); | |
718 | } | |
719 | ||
720 | static void | |
721 | dec_rt_prio(struct rt_rq *rt_rq, int prio) | |
722 | { | |
723 | int prev_prio = rt_rq->highest_prio.curr; | |
724 | ||
6f505b16 | 725 | if (rt_rq->rt_nr_running) { |
764a9d6f | 726 | |
398a153b | 727 | WARN_ON(prio < prev_prio); |
764a9d6f | 728 | |
e864c499 | 729 | /* |
398a153b GH |
730 | * This may have been our highest task, and therefore |
731 | * we may have some recomputation to do | |
e864c499 | 732 | */ |
398a153b | 733 | if (prio == prev_prio) { |
e864c499 GH |
734 | struct rt_prio_array *array = &rt_rq->active; |
735 | ||
736 | rt_rq->highest_prio.curr = | |
764a9d6f | 737 | sched_find_first_bit(array->bitmap); |
e864c499 GH |
738 | } |
739 | ||
764a9d6f | 740 | } else |
e864c499 | 741 | rt_rq->highest_prio.curr = MAX_RT_PRIO; |
73fe6aae | 742 | |
398a153b GH |
743 | dec_rt_prio_smp(rt_rq, prio, prev_prio); |
744 | } | |
1f11eb6a | 745 | |
398a153b GH |
746 | #else |
747 | ||
748 | static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} | |
749 | static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} | |
750 | ||
751 | #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ | |
6e0534f2 | 752 | |
052f1dc7 | 753 | #ifdef CONFIG_RT_GROUP_SCHED |
398a153b GH |
754 | |
755 | static void | |
756 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
757 | { | |
758 | if (rt_se_boosted(rt_se)) | |
759 | rt_rq->rt_nr_boosted++; | |
760 | ||
761 | if (rt_rq->tg) | |
762 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | |
763 | } | |
764 | ||
765 | static void | |
766 | dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
767 | { | |
23b0fdfc PZ |
768 | if (rt_se_boosted(rt_se)) |
769 | rt_rq->rt_nr_boosted--; | |
770 | ||
771 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); | |
398a153b GH |
772 | } |
773 | ||
774 | #else /* CONFIG_RT_GROUP_SCHED */ | |
775 | ||
776 | static void | |
777 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
778 | { | |
779 | start_rt_bandwidth(&def_rt_bandwidth); | |
780 | } | |
781 | ||
782 | static inline | |
783 | void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} | |
784 | ||
785 | #endif /* CONFIG_RT_GROUP_SCHED */ | |
786 | ||
787 | static inline | |
788 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
789 | { | |
790 | int prio = rt_se_prio(rt_se); | |
791 | ||
792 | WARN_ON(!rt_prio(prio)); | |
793 | rt_rq->rt_nr_running++; | |
794 | ||
795 | inc_rt_prio(rt_rq, prio); | |
796 | inc_rt_migration(rt_se, rt_rq); | |
797 | inc_rt_group(rt_se, rt_rq); | |
798 | } | |
799 | ||
800 | static inline | |
801 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
802 | { | |
803 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | |
804 | WARN_ON(!rt_rq->rt_nr_running); | |
805 | rt_rq->rt_nr_running--; | |
806 | ||
807 | dec_rt_prio(rt_rq, rt_se_prio(rt_se)); | |
808 | dec_rt_migration(rt_se, rt_rq); | |
809 | dec_rt_group(rt_se, rt_rq); | |
63489e45 SR |
810 | } |
811 | ||
37dad3fc | 812 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) |
bb44e5d1 | 813 | { |
6f505b16 PZ |
814 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); |
815 | struct rt_prio_array *array = &rt_rq->active; | |
816 | struct rt_rq *group_rq = group_rt_rq(rt_se); | |
20b6331b | 817 | struct list_head *queue = array->queue + rt_se_prio(rt_se); |
bb44e5d1 | 818 | |
ad2a3f13 PZ |
819 | /* |
820 | * Don't enqueue the group if its throttled, or when empty. | |
821 | * The latter is a consequence of the former when a child group | |
822 | * get throttled and the current group doesn't have any other | |
823 | * active members. | |
824 | */ | |
825 | if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) | |
6f505b16 | 826 | return; |
63489e45 | 827 | |
37dad3fc TG |
828 | if (head) |
829 | list_add(&rt_se->run_list, queue); | |
830 | else | |
831 | list_add_tail(&rt_se->run_list, queue); | |
6f505b16 | 832 | __set_bit(rt_se_prio(rt_se), array->bitmap); |
78f2c7db | 833 | |
6f505b16 PZ |
834 | inc_rt_tasks(rt_se, rt_rq); |
835 | } | |
836 | ||
ad2a3f13 | 837 | static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) |
6f505b16 PZ |
838 | { |
839 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | |
840 | struct rt_prio_array *array = &rt_rq->active; | |
841 | ||
842 | list_del_init(&rt_se->run_list); | |
843 | if (list_empty(array->queue + rt_se_prio(rt_se))) | |
844 | __clear_bit(rt_se_prio(rt_se), array->bitmap); | |
845 | ||
846 | dec_rt_tasks(rt_se, rt_rq); | |
847 | } | |
848 | ||
849 | /* | |
850 | * Because the prio of an upper entry depends on the lower | |
851 | * entries, we must remove entries top - down. | |
6f505b16 | 852 | */ |
ad2a3f13 | 853 | static void dequeue_rt_stack(struct sched_rt_entity *rt_se) |
6f505b16 | 854 | { |
ad2a3f13 | 855 | struct sched_rt_entity *back = NULL; |
6f505b16 | 856 | |
58d6c2d7 PZ |
857 | for_each_sched_rt_entity(rt_se) { |
858 | rt_se->back = back; | |
859 | back = rt_se; | |
860 | } | |
861 | ||
862 | for (rt_se = back; rt_se; rt_se = rt_se->back) { | |
863 | if (on_rt_rq(rt_se)) | |
ad2a3f13 PZ |
864 | __dequeue_rt_entity(rt_se); |
865 | } | |
866 | } | |
867 | ||
37dad3fc | 868 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) |
ad2a3f13 PZ |
869 | { |
870 | dequeue_rt_stack(rt_se); | |
871 | for_each_sched_rt_entity(rt_se) | |
37dad3fc | 872 | __enqueue_rt_entity(rt_se, head); |
ad2a3f13 PZ |
873 | } |
874 | ||
875 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se) | |
876 | { | |
877 | dequeue_rt_stack(rt_se); | |
878 | ||
879 | for_each_sched_rt_entity(rt_se) { | |
880 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | |
881 | ||
882 | if (rt_rq && rt_rq->rt_nr_running) | |
37dad3fc | 883 | __enqueue_rt_entity(rt_se, false); |
58d6c2d7 | 884 | } |
bb44e5d1 IM |
885 | } |
886 | ||
887 | /* | |
888 | * Adding/removing a task to/from a priority array: | |
889 | */ | |
ea87bb78 | 890 | static void |
371fd7e7 | 891 | enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) |
6f505b16 PZ |
892 | { |
893 | struct sched_rt_entity *rt_se = &p->rt; | |
894 | ||
371fd7e7 | 895 | if (flags & ENQUEUE_WAKEUP) |
6f505b16 PZ |
896 | rt_se->timeout = 0; |
897 | ||
371fd7e7 | 898 | enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); |
c09595f6 | 899 | |
917b627d GH |
900 | if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) |
901 | enqueue_pushable_task(rq, p); | |
6f505b16 PZ |
902 | } |
903 | ||
371fd7e7 | 904 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) |
bb44e5d1 | 905 | { |
6f505b16 | 906 | struct sched_rt_entity *rt_se = &p->rt; |
bb44e5d1 | 907 | |
f1e14ef6 | 908 | update_curr_rt(rq); |
ad2a3f13 | 909 | dequeue_rt_entity(rt_se); |
c09595f6 | 910 | |
917b627d | 911 | dequeue_pushable_task(rq, p); |
bb44e5d1 IM |
912 | } |
913 | ||
914 | /* | |
915 | * Put task to the end of the run list without the overhead of dequeue | |
916 | * followed by enqueue. | |
917 | */ | |
7ebefa8c DA |
918 | static void |
919 | requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) | |
6f505b16 | 920 | { |
1cdad715 | 921 | if (on_rt_rq(rt_se)) { |
7ebefa8c DA |
922 | struct rt_prio_array *array = &rt_rq->active; |
923 | struct list_head *queue = array->queue + rt_se_prio(rt_se); | |
924 | ||
925 | if (head) | |
926 | list_move(&rt_se->run_list, queue); | |
927 | else | |
928 | list_move_tail(&rt_se->run_list, queue); | |
1cdad715 | 929 | } |
6f505b16 PZ |
930 | } |
931 | ||
7ebefa8c | 932 | static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) |
bb44e5d1 | 933 | { |
6f505b16 PZ |
934 | struct sched_rt_entity *rt_se = &p->rt; |
935 | struct rt_rq *rt_rq; | |
bb44e5d1 | 936 | |
6f505b16 PZ |
937 | for_each_sched_rt_entity(rt_se) { |
938 | rt_rq = rt_rq_of_se(rt_se); | |
7ebefa8c | 939 | requeue_rt_entity(rt_rq, rt_se, head); |
6f505b16 | 940 | } |
bb44e5d1 IM |
941 | } |
942 | ||
6f505b16 | 943 | static void yield_task_rt(struct rq *rq) |
bb44e5d1 | 944 | { |
7ebefa8c | 945 | requeue_task_rt(rq, rq->curr, 0); |
bb44e5d1 IM |
946 | } |
947 | ||
e7693a36 | 948 | #ifdef CONFIG_SMP |
318e0893 GH |
949 | static int find_lowest_rq(struct task_struct *task); |
950 | ||
0017d735 PZ |
951 | static int |
952 | select_task_rq_rt(struct rq *rq, struct task_struct *p, int sd_flag, int flags) | |
e7693a36 | 953 | { |
0763a660 | 954 | if (sd_flag != SD_BALANCE_WAKE) |
5f3edc1b PZ |
955 | return smp_processor_id(); |
956 | ||
318e0893 | 957 | /* |
e1f47d89 SR |
958 | * If the current task is an RT task, then |
959 | * try to see if we can wake this RT task up on another | |
960 | * runqueue. Otherwise simply start this RT task | |
961 | * on its current runqueue. | |
962 | * | |
963 | * We want to avoid overloading runqueues. Even if | |
964 | * the RT task is of higher priority than the current RT task. | |
965 | * RT tasks behave differently than other tasks. If | |
966 | * one gets preempted, we try to push it off to another queue. | |
967 | * So trying to keep a preempting RT task on the same | |
968 | * cache hot CPU will force the running RT task to | |
969 | * a cold CPU. So we waste all the cache for the lower | |
970 | * RT task in hopes of saving some of a RT task | |
971 | * that is just being woken and probably will have | |
972 | * cold cache anyway. | |
318e0893 | 973 | */ |
17b3279b | 974 | if (unlikely(rt_task(rq->curr)) && |
6f505b16 | 975 | (p->rt.nr_cpus_allowed > 1)) { |
318e0893 GH |
976 | int cpu = find_lowest_rq(p); |
977 | ||
978 | return (cpu == -1) ? task_cpu(p) : cpu; | |
979 | } | |
980 | ||
981 | /* | |
982 | * Otherwise, just let it ride on the affined RQ and the | |
983 | * post-schedule router will push the preempted task away | |
984 | */ | |
e7693a36 GH |
985 | return task_cpu(p); |
986 | } | |
7ebefa8c DA |
987 | |
988 | static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) | |
989 | { | |
7ebefa8c DA |
990 | if (rq->curr->rt.nr_cpus_allowed == 1) |
991 | return; | |
992 | ||
24600ce8 | 993 | if (p->rt.nr_cpus_allowed != 1 |
13b8bd0a RR |
994 | && cpupri_find(&rq->rd->cpupri, p, NULL)) |
995 | return; | |
24600ce8 | 996 | |
13b8bd0a RR |
997 | if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) |
998 | return; | |
7ebefa8c DA |
999 | |
1000 | /* | |
1001 | * There appears to be other cpus that can accept | |
1002 | * current and none to run 'p', so lets reschedule | |
1003 | * to try and push current away: | |
1004 | */ | |
1005 | requeue_task_rt(rq, p, 1); | |
1006 | resched_task(rq->curr); | |
1007 | } | |
1008 | ||
e7693a36 GH |
1009 | #endif /* CONFIG_SMP */ |
1010 | ||
bb44e5d1 IM |
1011 | /* |
1012 | * Preempt the current task with a newly woken task if needed: | |
1013 | */ | |
7d478721 | 1014 | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) |
bb44e5d1 | 1015 | { |
45c01e82 | 1016 | if (p->prio < rq->curr->prio) { |
bb44e5d1 | 1017 | resched_task(rq->curr); |
45c01e82 GH |
1018 | return; |
1019 | } | |
1020 | ||
1021 | #ifdef CONFIG_SMP | |
1022 | /* | |
1023 | * If: | |
1024 | * | |
1025 | * - the newly woken task is of equal priority to the current task | |
1026 | * - the newly woken task is non-migratable while current is migratable | |
1027 | * - current will be preempted on the next reschedule | |
1028 | * | |
1029 | * we should check to see if current can readily move to a different | |
1030 | * cpu. If so, we will reschedule to allow the push logic to try | |
1031 | * to move current somewhere else, making room for our non-migratable | |
1032 | * task. | |
1033 | */ | |
7ebefa8c DA |
1034 | if (p->prio == rq->curr->prio && !need_resched()) |
1035 | check_preempt_equal_prio(rq, p); | |
45c01e82 | 1036 | #endif |
bb44e5d1 IM |
1037 | } |
1038 | ||
6f505b16 PZ |
1039 | static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, |
1040 | struct rt_rq *rt_rq) | |
bb44e5d1 | 1041 | { |
6f505b16 PZ |
1042 | struct rt_prio_array *array = &rt_rq->active; |
1043 | struct sched_rt_entity *next = NULL; | |
bb44e5d1 IM |
1044 | struct list_head *queue; |
1045 | int idx; | |
1046 | ||
1047 | idx = sched_find_first_bit(array->bitmap); | |
6f505b16 | 1048 | BUG_ON(idx >= MAX_RT_PRIO); |
bb44e5d1 IM |
1049 | |
1050 | queue = array->queue + idx; | |
6f505b16 | 1051 | next = list_entry(queue->next, struct sched_rt_entity, run_list); |
326587b8 | 1052 | |
6f505b16 PZ |
1053 | return next; |
1054 | } | |
bb44e5d1 | 1055 | |
917b627d | 1056 | static struct task_struct *_pick_next_task_rt(struct rq *rq) |
6f505b16 PZ |
1057 | { |
1058 | struct sched_rt_entity *rt_se; | |
1059 | struct task_struct *p; | |
1060 | struct rt_rq *rt_rq; | |
bb44e5d1 | 1061 | |
6f505b16 PZ |
1062 | rt_rq = &rq->rt; |
1063 | ||
1064 | if (unlikely(!rt_rq->rt_nr_running)) | |
1065 | return NULL; | |
1066 | ||
23b0fdfc | 1067 | if (rt_rq_throttled(rt_rq)) |
6f505b16 PZ |
1068 | return NULL; |
1069 | ||
1070 | do { | |
1071 | rt_se = pick_next_rt_entity(rq, rt_rq); | |
326587b8 | 1072 | BUG_ON(!rt_se); |
6f505b16 PZ |
1073 | rt_rq = group_rt_rq(rt_se); |
1074 | } while (rt_rq); | |
1075 | ||
1076 | p = rt_task_of(rt_se); | |
1077 | p->se.exec_start = rq->clock; | |
917b627d GH |
1078 | |
1079 | return p; | |
1080 | } | |
1081 | ||
1082 | static struct task_struct *pick_next_task_rt(struct rq *rq) | |
1083 | { | |
1084 | struct task_struct *p = _pick_next_task_rt(rq); | |
1085 | ||
1086 | /* The running task is never eligible for pushing */ | |
1087 | if (p) | |
1088 | dequeue_pushable_task(rq, p); | |
1089 | ||
bcf08df3 | 1090 | #ifdef CONFIG_SMP |
3f029d3c GH |
1091 | /* |
1092 | * We detect this state here so that we can avoid taking the RQ | |
1093 | * lock again later if there is no need to push | |
1094 | */ | |
1095 | rq->post_schedule = has_pushable_tasks(rq); | |
bcf08df3 | 1096 | #endif |
3f029d3c | 1097 | |
6f505b16 | 1098 | return p; |
bb44e5d1 IM |
1099 | } |
1100 | ||
31ee529c | 1101 | static void put_prev_task_rt(struct rq *rq, struct task_struct *p) |
bb44e5d1 | 1102 | { |
f1e14ef6 | 1103 | update_curr_rt(rq); |
bb44e5d1 | 1104 | p->se.exec_start = 0; |
917b627d GH |
1105 | |
1106 | /* | |
1107 | * The previous task needs to be made eligible for pushing | |
1108 | * if it is still active | |
1109 | */ | |
1110 | if (p->se.on_rq && p->rt.nr_cpus_allowed > 1) | |
1111 | enqueue_pushable_task(rq, p); | |
bb44e5d1 IM |
1112 | } |
1113 | ||
681f3e68 | 1114 | #ifdef CONFIG_SMP |
6f505b16 | 1115 | |
e8fa1362 SR |
1116 | /* Only try algorithms three times */ |
1117 | #define RT_MAX_TRIES 3 | |
1118 | ||
e8fa1362 SR |
1119 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep); |
1120 | ||
f65eda4f SR |
1121 | static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) |
1122 | { | |
1123 | if (!task_running(rq, p) && | |
96f874e2 | 1124 | (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) && |
6f505b16 | 1125 | (p->rt.nr_cpus_allowed > 1)) |
f65eda4f SR |
1126 | return 1; |
1127 | return 0; | |
1128 | } | |
1129 | ||
e8fa1362 | 1130 | /* Return the second highest RT task, NULL otherwise */ |
79064fbf | 1131 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) |
e8fa1362 | 1132 | { |
6f505b16 PZ |
1133 | struct task_struct *next = NULL; |
1134 | struct sched_rt_entity *rt_se; | |
1135 | struct rt_prio_array *array; | |
1136 | struct rt_rq *rt_rq; | |
e8fa1362 SR |
1137 | int idx; |
1138 | ||
6f505b16 PZ |
1139 | for_each_leaf_rt_rq(rt_rq, rq) { |
1140 | array = &rt_rq->active; | |
1141 | idx = sched_find_first_bit(array->bitmap); | |
1142 | next_idx: | |
1143 | if (idx >= MAX_RT_PRIO) | |
1144 | continue; | |
1145 | if (next && next->prio < idx) | |
1146 | continue; | |
1147 | list_for_each_entry(rt_se, array->queue + idx, run_list) { | |
3d07467b PZ |
1148 | struct task_struct *p; |
1149 | ||
1150 | if (!rt_entity_is_task(rt_se)) | |
1151 | continue; | |
1152 | ||
1153 | p = rt_task_of(rt_se); | |
6f505b16 PZ |
1154 | if (pick_rt_task(rq, p, cpu)) { |
1155 | next = p; | |
1156 | break; | |
1157 | } | |
1158 | } | |
1159 | if (!next) { | |
1160 | idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); | |
1161 | goto next_idx; | |
1162 | } | |
f65eda4f SR |
1163 | } |
1164 | ||
e8fa1362 SR |
1165 | return next; |
1166 | } | |
1167 | ||
0e3900e6 | 1168 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); |
e8fa1362 | 1169 | |
6e1254d2 GH |
1170 | static int find_lowest_rq(struct task_struct *task) |
1171 | { | |
1172 | struct sched_domain *sd; | |
96f874e2 | 1173 | struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); |
6e1254d2 GH |
1174 | int this_cpu = smp_processor_id(); |
1175 | int cpu = task_cpu(task); | |
06f90dbd | 1176 | |
6e0534f2 GH |
1177 | if (task->rt.nr_cpus_allowed == 1) |
1178 | return -1; /* No other targets possible */ | |
6e1254d2 | 1179 | |
6e0534f2 GH |
1180 | if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) |
1181 | return -1; /* No targets found */ | |
6e1254d2 GH |
1182 | |
1183 | /* | |
1184 | * At this point we have built a mask of cpus representing the | |
1185 | * lowest priority tasks in the system. Now we want to elect | |
1186 | * the best one based on our affinity and topology. | |
1187 | * | |
1188 | * We prioritize the last cpu that the task executed on since | |
1189 | * it is most likely cache-hot in that location. | |
1190 | */ | |
96f874e2 | 1191 | if (cpumask_test_cpu(cpu, lowest_mask)) |
6e1254d2 GH |
1192 | return cpu; |
1193 | ||
1194 | /* | |
1195 | * Otherwise, we consult the sched_domains span maps to figure | |
1196 | * out which cpu is logically closest to our hot cache data. | |
1197 | */ | |
e2c88063 RR |
1198 | if (!cpumask_test_cpu(this_cpu, lowest_mask)) |
1199 | this_cpu = -1; /* Skip this_cpu opt if not among lowest */ | |
6e1254d2 | 1200 | |
e2c88063 RR |
1201 | for_each_domain(cpu, sd) { |
1202 | if (sd->flags & SD_WAKE_AFFINE) { | |
1203 | int best_cpu; | |
6e1254d2 | 1204 | |
e2c88063 RR |
1205 | /* |
1206 | * "this_cpu" is cheaper to preempt than a | |
1207 | * remote processor. | |
1208 | */ | |
1209 | if (this_cpu != -1 && | |
1210 | cpumask_test_cpu(this_cpu, sched_domain_span(sd))) | |
1211 | return this_cpu; | |
1212 | ||
1213 | best_cpu = cpumask_first_and(lowest_mask, | |
1214 | sched_domain_span(sd)); | |
1215 | if (best_cpu < nr_cpu_ids) | |
1216 | return best_cpu; | |
6e1254d2 GH |
1217 | } |
1218 | } | |
1219 | ||
1220 | /* | |
1221 | * And finally, if there were no matches within the domains | |
1222 | * just give the caller *something* to work with from the compatible | |
1223 | * locations. | |
1224 | */ | |
e2c88063 RR |
1225 | if (this_cpu != -1) |
1226 | return this_cpu; | |
1227 | ||
1228 | cpu = cpumask_any(lowest_mask); | |
1229 | if (cpu < nr_cpu_ids) | |
1230 | return cpu; | |
1231 | return -1; | |
07b4032c GH |
1232 | } |
1233 | ||
1234 | /* Will lock the rq it finds */ | |
4df64c0b | 1235 | static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) |
07b4032c GH |
1236 | { |
1237 | struct rq *lowest_rq = NULL; | |
07b4032c | 1238 | int tries; |
4df64c0b | 1239 | int cpu; |
e8fa1362 | 1240 | |
07b4032c GH |
1241 | for (tries = 0; tries < RT_MAX_TRIES; tries++) { |
1242 | cpu = find_lowest_rq(task); | |
1243 | ||
2de0b463 | 1244 | if ((cpu == -1) || (cpu == rq->cpu)) |
e8fa1362 SR |
1245 | break; |
1246 | ||
07b4032c GH |
1247 | lowest_rq = cpu_rq(cpu); |
1248 | ||
e8fa1362 | 1249 | /* if the prio of this runqueue changed, try again */ |
07b4032c | 1250 | if (double_lock_balance(rq, lowest_rq)) { |
e8fa1362 SR |
1251 | /* |
1252 | * We had to unlock the run queue. In | |
1253 | * the mean time, task could have | |
1254 | * migrated already or had its affinity changed. | |
1255 | * Also make sure that it wasn't scheduled on its rq. | |
1256 | */ | |
07b4032c | 1257 | if (unlikely(task_rq(task) != rq || |
96f874e2 RR |
1258 | !cpumask_test_cpu(lowest_rq->cpu, |
1259 | &task->cpus_allowed) || | |
07b4032c | 1260 | task_running(rq, task) || |
e8fa1362 | 1261 | !task->se.on_rq)) { |
4df64c0b | 1262 | |
05fa785c | 1263 | raw_spin_unlock(&lowest_rq->lock); |
e8fa1362 SR |
1264 | lowest_rq = NULL; |
1265 | break; | |
1266 | } | |
1267 | } | |
1268 | ||
1269 | /* If this rq is still suitable use it. */ | |
e864c499 | 1270 | if (lowest_rq->rt.highest_prio.curr > task->prio) |
e8fa1362 SR |
1271 | break; |
1272 | ||
1273 | /* try again */ | |
1b12bbc7 | 1274 | double_unlock_balance(rq, lowest_rq); |
e8fa1362 SR |
1275 | lowest_rq = NULL; |
1276 | } | |
1277 | ||
1278 | return lowest_rq; | |
1279 | } | |
1280 | ||
917b627d GH |
1281 | static struct task_struct *pick_next_pushable_task(struct rq *rq) |
1282 | { | |
1283 | struct task_struct *p; | |
1284 | ||
1285 | if (!has_pushable_tasks(rq)) | |
1286 | return NULL; | |
1287 | ||
1288 | p = plist_first_entry(&rq->rt.pushable_tasks, | |
1289 | struct task_struct, pushable_tasks); | |
1290 | ||
1291 | BUG_ON(rq->cpu != task_cpu(p)); | |
1292 | BUG_ON(task_current(rq, p)); | |
1293 | BUG_ON(p->rt.nr_cpus_allowed <= 1); | |
1294 | ||
1295 | BUG_ON(!p->se.on_rq); | |
1296 | BUG_ON(!rt_task(p)); | |
1297 | ||
1298 | return p; | |
1299 | } | |
1300 | ||
e8fa1362 SR |
1301 | /* |
1302 | * If the current CPU has more than one RT task, see if the non | |
1303 | * running task can migrate over to a CPU that is running a task | |
1304 | * of lesser priority. | |
1305 | */ | |
697f0a48 | 1306 | static int push_rt_task(struct rq *rq) |
e8fa1362 SR |
1307 | { |
1308 | struct task_struct *next_task; | |
1309 | struct rq *lowest_rq; | |
e8fa1362 | 1310 | |
a22d7fc1 GH |
1311 | if (!rq->rt.overloaded) |
1312 | return 0; | |
1313 | ||
917b627d | 1314 | next_task = pick_next_pushable_task(rq); |
e8fa1362 SR |
1315 | if (!next_task) |
1316 | return 0; | |
1317 | ||
1318 | retry: | |
697f0a48 | 1319 | if (unlikely(next_task == rq->curr)) { |
f65eda4f | 1320 | WARN_ON(1); |
e8fa1362 | 1321 | return 0; |
f65eda4f | 1322 | } |
e8fa1362 SR |
1323 | |
1324 | /* | |
1325 | * It's possible that the next_task slipped in of | |
1326 | * higher priority than current. If that's the case | |
1327 | * just reschedule current. | |
1328 | */ | |
697f0a48 GH |
1329 | if (unlikely(next_task->prio < rq->curr->prio)) { |
1330 | resched_task(rq->curr); | |
e8fa1362 SR |
1331 | return 0; |
1332 | } | |
1333 | ||
697f0a48 | 1334 | /* We might release rq lock */ |
e8fa1362 SR |
1335 | get_task_struct(next_task); |
1336 | ||
1337 | /* find_lock_lowest_rq locks the rq if found */ | |
697f0a48 | 1338 | lowest_rq = find_lock_lowest_rq(next_task, rq); |
e8fa1362 SR |
1339 | if (!lowest_rq) { |
1340 | struct task_struct *task; | |
1341 | /* | |
697f0a48 | 1342 | * find lock_lowest_rq releases rq->lock |
1563513d GH |
1343 | * so it is possible that next_task has migrated. |
1344 | * | |
1345 | * We need to make sure that the task is still on the same | |
1346 | * run-queue and is also still the next task eligible for | |
1347 | * pushing. | |
e8fa1362 | 1348 | */ |
917b627d | 1349 | task = pick_next_pushable_task(rq); |
1563513d GH |
1350 | if (task_cpu(next_task) == rq->cpu && task == next_task) { |
1351 | /* | |
1352 | * If we get here, the task hasnt moved at all, but | |
1353 | * it has failed to push. We will not try again, | |
1354 | * since the other cpus will pull from us when they | |
1355 | * are ready. | |
1356 | */ | |
1357 | dequeue_pushable_task(rq, next_task); | |
1358 | goto out; | |
e8fa1362 | 1359 | } |
917b627d | 1360 | |
1563513d GH |
1361 | if (!task) |
1362 | /* No more tasks, just exit */ | |
1363 | goto out; | |
1364 | ||
917b627d | 1365 | /* |
1563513d | 1366 | * Something has shifted, try again. |
917b627d | 1367 | */ |
1563513d GH |
1368 | put_task_struct(next_task); |
1369 | next_task = task; | |
1370 | goto retry; | |
e8fa1362 SR |
1371 | } |
1372 | ||
697f0a48 | 1373 | deactivate_task(rq, next_task, 0); |
e8fa1362 SR |
1374 | set_task_cpu(next_task, lowest_rq->cpu); |
1375 | activate_task(lowest_rq, next_task, 0); | |
1376 | ||
1377 | resched_task(lowest_rq->curr); | |
1378 | ||
1b12bbc7 | 1379 | double_unlock_balance(rq, lowest_rq); |
e8fa1362 | 1380 | |
e8fa1362 SR |
1381 | out: |
1382 | put_task_struct(next_task); | |
1383 | ||
917b627d | 1384 | return 1; |
e8fa1362 SR |
1385 | } |
1386 | ||
e8fa1362 SR |
1387 | static void push_rt_tasks(struct rq *rq) |
1388 | { | |
1389 | /* push_rt_task will return true if it moved an RT */ | |
1390 | while (push_rt_task(rq)) | |
1391 | ; | |
1392 | } | |
1393 | ||
f65eda4f SR |
1394 | static int pull_rt_task(struct rq *this_rq) |
1395 | { | |
80bf3171 | 1396 | int this_cpu = this_rq->cpu, ret = 0, cpu; |
a8728944 | 1397 | struct task_struct *p; |
f65eda4f | 1398 | struct rq *src_rq; |
f65eda4f | 1399 | |
637f5085 | 1400 | if (likely(!rt_overloaded(this_rq))) |
f65eda4f SR |
1401 | return 0; |
1402 | ||
c6c4927b | 1403 | for_each_cpu(cpu, this_rq->rd->rto_mask) { |
f65eda4f SR |
1404 | if (this_cpu == cpu) |
1405 | continue; | |
1406 | ||
1407 | src_rq = cpu_rq(cpu); | |
74ab8e4f GH |
1408 | |
1409 | /* | |
1410 | * Don't bother taking the src_rq->lock if the next highest | |
1411 | * task is known to be lower-priority than our current task. | |
1412 | * This may look racy, but if this value is about to go | |
1413 | * logically higher, the src_rq will push this task away. | |
1414 | * And if its going logically lower, we do not care | |
1415 | */ | |
1416 | if (src_rq->rt.highest_prio.next >= | |
1417 | this_rq->rt.highest_prio.curr) | |
1418 | continue; | |
1419 | ||
f65eda4f SR |
1420 | /* |
1421 | * We can potentially drop this_rq's lock in | |
1422 | * double_lock_balance, and another CPU could | |
a8728944 | 1423 | * alter this_rq |
f65eda4f | 1424 | */ |
a8728944 | 1425 | double_lock_balance(this_rq, src_rq); |
f65eda4f SR |
1426 | |
1427 | /* | |
1428 | * Are there still pullable RT tasks? | |
1429 | */ | |
614ee1f6 MG |
1430 | if (src_rq->rt.rt_nr_running <= 1) |
1431 | goto skip; | |
f65eda4f | 1432 | |
f65eda4f SR |
1433 | p = pick_next_highest_task_rt(src_rq, this_cpu); |
1434 | ||
1435 | /* | |
1436 | * Do we have an RT task that preempts | |
1437 | * the to-be-scheduled task? | |
1438 | */ | |
a8728944 | 1439 | if (p && (p->prio < this_rq->rt.highest_prio.curr)) { |
f65eda4f SR |
1440 | WARN_ON(p == src_rq->curr); |
1441 | WARN_ON(!p->se.on_rq); | |
1442 | ||
1443 | /* | |
1444 | * There's a chance that p is higher in priority | |
1445 | * than what's currently running on its cpu. | |
1446 | * This is just that p is wakeing up and hasn't | |
1447 | * had a chance to schedule. We only pull | |
1448 | * p if it is lower in priority than the | |
a8728944 | 1449 | * current task on the run queue |
f65eda4f | 1450 | */ |
a8728944 | 1451 | if (p->prio < src_rq->curr->prio) |
614ee1f6 | 1452 | goto skip; |
f65eda4f SR |
1453 | |
1454 | ret = 1; | |
1455 | ||
1456 | deactivate_task(src_rq, p, 0); | |
1457 | set_task_cpu(p, this_cpu); | |
1458 | activate_task(this_rq, p, 0); | |
1459 | /* | |
1460 | * We continue with the search, just in | |
1461 | * case there's an even higher prio task | |
1462 | * in another runqueue. (low likelyhood | |
1463 | * but possible) | |
f65eda4f | 1464 | */ |
f65eda4f | 1465 | } |
614ee1f6 | 1466 | skip: |
1b12bbc7 | 1467 | double_unlock_balance(this_rq, src_rq); |
f65eda4f SR |
1468 | } |
1469 | ||
1470 | return ret; | |
1471 | } | |
1472 | ||
9a897c5a | 1473 | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) |
f65eda4f SR |
1474 | { |
1475 | /* Try to pull RT tasks here if we lower this rq's prio */ | |
e864c499 | 1476 | if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio) |
f65eda4f SR |
1477 | pull_rt_task(rq); |
1478 | } | |
1479 | ||
9a897c5a | 1480 | static void post_schedule_rt(struct rq *rq) |
e8fa1362 | 1481 | { |
967fc046 | 1482 | push_rt_tasks(rq); |
e8fa1362 SR |
1483 | } |
1484 | ||
8ae121ac GH |
1485 | /* |
1486 | * If we are not running and we are not going to reschedule soon, we should | |
1487 | * try to push tasks away now | |
1488 | */ | |
efbbd05a | 1489 | static void task_woken_rt(struct rq *rq, struct task_struct *p) |
4642dafd | 1490 | { |
9a897c5a | 1491 | if (!task_running(rq, p) && |
8ae121ac | 1492 | !test_tsk_need_resched(rq->curr) && |
917b627d | 1493 | has_pushable_tasks(rq) && |
777c2f38 | 1494 | p->rt.nr_cpus_allowed > 1) |
4642dafd SR |
1495 | push_rt_tasks(rq); |
1496 | } | |
1497 | ||
cd8ba7cd | 1498 | static void set_cpus_allowed_rt(struct task_struct *p, |
96f874e2 | 1499 | const struct cpumask *new_mask) |
73fe6aae | 1500 | { |
96f874e2 | 1501 | int weight = cpumask_weight(new_mask); |
73fe6aae GH |
1502 | |
1503 | BUG_ON(!rt_task(p)); | |
1504 | ||
1505 | /* | |
1506 | * Update the migration status of the RQ if we have an RT task | |
1507 | * which is running AND changing its weight value. | |
1508 | */ | |
6f505b16 | 1509 | if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { |
73fe6aae GH |
1510 | struct rq *rq = task_rq(p); |
1511 | ||
917b627d GH |
1512 | if (!task_current(rq, p)) { |
1513 | /* | |
1514 | * Make sure we dequeue this task from the pushable list | |
1515 | * before going further. It will either remain off of | |
1516 | * the list because we are no longer pushable, or it | |
1517 | * will be requeued. | |
1518 | */ | |
1519 | if (p->rt.nr_cpus_allowed > 1) | |
1520 | dequeue_pushable_task(rq, p); | |
1521 | ||
1522 | /* | |
1523 | * Requeue if our weight is changing and still > 1 | |
1524 | */ | |
1525 | if (weight > 1) | |
1526 | enqueue_pushable_task(rq, p); | |
1527 | ||
1528 | } | |
1529 | ||
6f505b16 | 1530 | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { |
73fe6aae | 1531 | rq->rt.rt_nr_migratory++; |
6f505b16 | 1532 | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { |
73fe6aae GH |
1533 | BUG_ON(!rq->rt.rt_nr_migratory); |
1534 | rq->rt.rt_nr_migratory--; | |
1535 | } | |
1536 | ||
398a153b | 1537 | update_rt_migration(&rq->rt); |
73fe6aae GH |
1538 | } |
1539 | ||
96f874e2 | 1540 | cpumask_copy(&p->cpus_allowed, new_mask); |
6f505b16 | 1541 | p->rt.nr_cpus_allowed = weight; |
73fe6aae | 1542 | } |
deeeccd4 | 1543 | |
bdd7c81b | 1544 | /* Assumes rq->lock is held */ |
1f11eb6a | 1545 | static void rq_online_rt(struct rq *rq) |
bdd7c81b IM |
1546 | { |
1547 | if (rq->rt.overloaded) | |
1548 | rt_set_overload(rq); | |
6e0534f2 | 1549 | |
7def2be1 PZ |
1550 | __enable_runtime(rq); |
1551 | ||
e864c499 | 1552 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); |
bdd7c81b IM |
1553 | } |
1554 | ||
1555 | /* Assumes rq->lock is held */ | |
1f11eb6a | 1556 | static void rq_offline_rt(struct rq *rq) |
bdd7c81b IM |
1557 | { |
1558 | if (rq->rt.overloaded) | |
1559 | rt_clear_overload(rq); | |
6e0534f2 | 1560 | |
7def2be1 PZ |
1561 | __disable_runtime(rq); |
1562 | ||
6e0534f2 | 1563 | cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); |
bdd7c81b | 1564 | } |
cb469845 SR |
1565 | |
1566 | /* | |
1567 | * When switch from the rt queue, we bring ourselves to a position | |
1568 | * that we might want to pull RT tasks from other runqueues. | |
1569 | */ | |
1570 | static void switched_from_rt(struct rq *rq, struct task_struct *p, | |
1571 | int running) | |
1572 | { | |
1573 | /* | |
1574 | * If there are other RT tasks then we will reschedule | |
1575 | * and the scheduling of the other RT tasks will handle | |
1576 | * the balancing. But if we are the last RT task | |
1577 | * we may need to handle the pulling of RT tasks | |
1578 | * now. | |
1579 | */ | |
1580 | if (!rq->rt.rt_nr_running) | |
1581 | pull_rt_task(rq); | |
1582 | } | |
3d8cbdf8 RR |
1583 | |
1584 | static inline void init_sched_rt_class(void) | |
1585 | { | |
1586 | unsigned int i; | |
1587 | ||
1588 | for_each_possible_cpu(i) | |
eaa95840 | 1589 | zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), |
6ca09dfc | 1590 | GFP_KERNEL, cpu_to_node(i)); |
3d8cbdf8 | 1591 | } |
cb469845 SR |
1592 | #endif /* CONFIG_SMP */ |
1593 | ||
1594 | /* | |
1595 | * When switching a task to RT, we may overload the runqueue | |
1596 | * with RT tasks. In this case we try to push them off to | |
1597 | * other runqueues. | |
1598 | */ | |
1599 | static void switched_to_rt(struct rq *rq, struct task_struct *p, | |
1600 | int running) | |
1601 | { | |
1602 | int check_resched = 1; | |
1603 | ||
1604 | /* | |
1605 | * If we are already running, then there's nothing | |
1606 | * that needs to be done. But if we are not running | |
1607 | * we may need to preempt the current running task. | |
1608 | * If that current running task is also an RT task | |
1609 | * then see if we can move to another run queue. | |
1610 | */ | |
1611 | if (!running) { | |
1612 | #ifdef CONFIG_SMP | |
1613 | if (rq->rt.overloaded && push_rt_task(rq) && | |
1614 | /* Don't resched if we changed runqueues */ | |
1615 | rq != task_rq(p)) | |
1616 | check_resched = 0; | |
1617 | #endif /* CONFIG_SMP */ | |
1618 | if (check_resched && p->prio < rq->curr->prio) | |
1619 | resched_task(rq->curr); | |
1620 | } | |
1621 | } | |
1622 | ||
1623 | /* | |
1624 | * Priority of the task has changed. This may cause | |
1625 | * us to initiate a push or pull. | |
1626 | */ | |
1627 | static void prio_changed_rt(struct rq *rq, struct task_struct *p, | |
1628 | int oldprio, int running) | |
1629 | { | |
1630 | if (running) { | |
1631 | #ifdef CONFIG_SMP | |
1632 | /* | |
1633 | * If our priority decreases while running, we | |
1634 | * may need to pull tasks to this runqueue. | |
1635 | */ | |
1636 | if (oldprio < p->prio) | |
1637 | pull_rt_task(rq); | |
1638 | /* | |
1639 | * If there's a higher priority task waiting to run | |
6fa46fa5 SR |
1640 | * then reschedule. Note, the above pull_rt_task |
1641 | * can release the rq lock and p could migrate. | |
1642 | * Only reschedule if p is still on the same runqueue. | |
cb469845 | 1643 | */ |
e864c499 | 1644 | if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) |
cb469845 SR |
1645 | resched_task(p); |
1646 | #else | |
1647 | /* For UP simply resched on drop of prio */ | |
1648 | if (oldprio < p->prio) | |
1649 | resched_task(p); | |
e8fa1362 | 1650 | #endif /* CONFIG_SMP */ |
cb469845 SR |
1651 | } else { |
1652 | /* | |
1653 | * This task is not running, but if it is | |
1654 | * greater than the current running task | |
1655 | * then reschedule. | |
1656 | */ | |
1657 | if (p->prio < rq->curr->prio) | |
1658 | resched_task(rq->curr); | |
1659 | } | |
1660 | } | |
1661 | ||
78f2c7db PZ |
1662 | static void watchdog(struct rq *rq, struct task_struct *p) |
1663 | { | |
1664 | unsigned long soft, hard; | |
1665 | ||
1666 | if (!p->signal) | |
1667 | return; | |
1668 | ||
78d7d407 JS |
1669 | /* max may change after cur was read, this will be fixed next tick */ |
1670 | soft = task_rlimit(p, RLIMIT_RTTIME); | |
1671 | hard = task_rlimit_max(p, RLIMIT_RTTIME); | |
78f2c7db PZ |
1672 | |
1673 | if (soft != RLIM_INFINITY) { | |
1674 | unsigned long next; | |
1675 | ||
1676 | p->rt.timeout++; | |
1677 | next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); | |
5a52dd50 | 1678 | if (p->rt.timeout > next) |
f06febc9 | 1679 | p->cputime_expires.sched_exp = p->se.sum_exec_runtime; |
78f2c7db PZ |
1680 | } |
1681 | } | |
bb44e5d1 | 1682 | |
8f4d37ec | 1683 | static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) |
bb44e5d1 | 1684 | { |
67e2be02 PZ |
1685 | update_curr_rt(rq); |
1686 | ||
78f2c7db PZ |
1687 | watchdog(rq, p); |
1688 | ||
bb44e5d1 IM |
1689 | /* |
1690 | * RR tasks need a special form of timeslice management. | |
1691 | * FIFO tasks have no timeslices. | |
1692 | */ | |
1693 | if (p->policy != SCHED_RR) | |
1694 | return; | |
1695 | ||
fa717060 | 1696 | if (--p->rt.time_slice) |
bb44e5d1 IM |
1697 | return; |
1698 | ||
fa717060 | 1699 | p->rt.time_slice = DEF_TIMESLICE; |
bb44e5d1 | 1700 | |
98fbc798 DA |
1701 | /* |
1702 | * Requeue to the end of queue if we are not the only element | |
1703 | * on the queue: | |
1704 | */ | |
fa717060 | 1705 | if (p->rt.run_list.prev != p->rt.run_list.next) { |
7ebefa8c | 1706 | requeue_task_rt(rq, p, 0); |
98fbc798 DA |
1707 | set_tsk_need_resched(p); |
1708 | } | |
bb44e5d1 IM |
1709 | } |
1710 | ||
83b699ed SV |
1711 | static void set_curr_task_rt(struct rq *rq) |
1712 | { | |
1713 | struct task_struct *p = rq->curr; | |
1714 | ||
1715 | p->se.exec_start = rq->clock; | |
917b627d GH |
1716 | |
1717 | /* The running task is never eligible for pushing */ | |
1718 | dequeue_pushable_task(rq, p); | |
83b699ed SV |
1719 | } |
1720 | ||
6d686f45 | 1721 | static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) |
0d721cea PW |
1722 | { |
1723 | /* | |
1724 | * Time slice is 0 for SCHED_FIFO tasks | |
1725 | */ | |
1726 | if (task->policy == SCHED_RR) | |
1727 | return DEF_TIMESLICE; | |
1728 | else | |
1729 | return 0; | |
1730 | } | |
1731 | ||
2abdad0a | 1732 | static const struct sched_class rt_sched_class = { |
5522d5d5 | 1733 | .next = &fair_sched_class, |
bb44e5d1 IM |
1734 | .enqueue_task = enqueue_task_rt, |
1735 | .dequeue_task = dequeue_task_rt, | |
1736 | .yield_task = yield_task_rt, | |
1737 | ||
1738 | .check_preempt_curr = check_preempt_curr_rt, | |
1739 | ||
1740 | .pick_next_task = pick_next_task_rt, | |
1741 | .put_prev_task = put_prev_task_rt, | |
1742 | ||
681f3e68 | 1743 | #ifdef CONFIG_SMP |
4ce72a2c LZ |
1744 | .select_task_rq = select_task_rq_rt, |
1745 | ||
73fe6aae | 1746 | .set_cpus_allowed = set_cpus_allowed_rt, |
1f11eb6a GH |
1747 | .rq_online = rq_online_rt, |
1748 | .rq_offline = rq_offline_rt, | |
9a897c5a SR |
1749 | .pre_schedule = pre_schedule_rt, |
1750 | .post_schedule = post_schedule_rt, | |
efbbd05a | 1751 | .task_woken = task_woken_rt, |
cb469845 | 1752 | .switched_from = switched_from_rt, |
681f3e68 | 1753 | #endif |
bb44e5d1 | 1754 | |
83b699ed | 1755 | .set_curr_task = set_curr_task_rt, |
bb44e5d1 | 1756 | .task_tick = task_tick_rt, |
cb469845 | 1757 | |
0d721cea PW |
1758 | .get_rr_interval = get_rr_interval_rt, |
1759 | ||
cb469845 SR |
1760 | .prio_changed = prio_changed_rt, |
1761 | .switched_to = switched_to_rt, | |
bb44e5d1 | 1762 | }; |
ada18de2 PZ |
1763 | |
1764 | #ifdef CONFIG_SCHED_DEBUG | |
1765 | extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); | |
1766 | ||
1767 | static void print_rt_stats(struct seq_file *m, int cpu) | |
1768 | { | |
1769 | struct rt_rq *rt_rq; | |
1770 | ||
1771 | rcu_read_lock(); | |
1772 | for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu)) | |
1773 | print_rt_rq(m, cpu, rt_rq); | |
1774 | rcu_read_unlock(); | |
1775 | } | |
55e12e5e | 1776 | #endif /* CONFIG_SCHED_DEBUG */ |
0e3900e6 | 1777 |