]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Dynamic DMA mapping support. | |
3 | * | |
563aaf06 | 4 | * This implementation is a fallback for platforms that do not support |
1da177e4 LT |
5 | * I/O TLBs (aka DMA address translation hardware). |
6 | * Copyright (C) 2000 Asit Mallick <[email protected]> | |
7 | * Copyright (C) 2000 Goutham Rao <[email protected]> | |
8 | * Copyright (C) 2000, 2003 Hewlett-Packard Co | |
9 | * David Mosberger-Tang <[email protected]> | |
10 | * | |
11 | * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. | |
12 | * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid | |
13 | * unnecessary i-cache flushing. | |
569c8bf5 JL |
14 | * 04/07/.. ak Better overflow handling. Assorted fixes. |
15 | * 05/09/10 linville Add support for syncing ranges, support syncing for | |
16 | * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. | |
fb05a379 | 17 | * 08/12/11 beckyb Add highmem support |
1da177e4 LT |
18 | */ |
19 | ||
20 | #include <linux/cache.h> | |
17e5ad6c | 21 | #include <linux/dma-mapping.h> |
1da177e4 LT |
22 | #include <linux/mm.h> |
23 | #include <linux/module.h> | |
1da177e4 LT |
24 | #include <linux/spinlock.h> |
25 | #include <linux/string.h> | |
0016fdee | 26 | #include <linux/swiotlb.h> |
fb05a379 | 27 | #include <linux/pfn.h> |
1da177e4 LT |
28 | #include <linux/types.h> |
29 | #include <linux/ctype.h> | |
ef9b1893 | 30 | #include <linux/highmem.h> |
5a0e3ad6 | 31 | #include <linux/gfp.h> |
1da177e4 LT |
32 | |
33 | #include <asm/io.h> | |
1da177e4 | 34 | #include <asm/dma.h> |
17e5ad6c | 35 | #include <asm/scatterlist.h> |
1da177e4 LT |
36 | |
37 | #include <linux/init.h> | |
38 | #include <linux/bootmem.h> | |
a8522509 | 39 | #include <linux/iommu-helper.h> |
1da177e4 LT |
40 | |
41 | #define OFFSET(val,align) ((unsigned long) \ | |
42 | ( (val) & ( (align) - 1))) | |
43 | ||
0b9afede AW |
44 | #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) |
45 | ||
46 | /* | |
47 | * Minimum IO TLB size to bother booting with. Systems with mainly | |
48 | * 64bit capable cards will only lightly use the swiotlb. If we can't | |
49 | * allocate a contiguous 1MB, we're probably in trouble anyway. | |
50 | */ | |
51 | #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) | |
52 | ||
1da177e4 LT |
53 | int swiotlb_force; |
54 | ||
55 | /* | |
bfc5501f KRW |
56 | * Used to do a quick range check in swiotlb_tbl_unmap_single and |
57 | * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this | |
1da177e4 LT |
58 | * API. |
59 | */ | |
60 | static char *io_tlb_start, *io_tlb_end; | |
61 | ||
62 | /* | |
b595076a | 63 | * The number of IO TLB blocks (in groups of 64) between io_tlb_start and |
1da177e4 LT |
64 | * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. |
65 | */ | |
66 | static unsigned long io_tlb_nslabs; | |
67 | ||
68 | /* | |
69 | * When the IOMMU overflows we return a fallback buffer. This sets the size. | |
70 | */ | |
71 | static unsigned long io_tlb_overflow = 32*1024; | |
72 | ||
03620b2d | 73 | static void *io_tlb_overflow_buffer; |
1da177e4 LT |
74 | |
75 | /* | |
76 | * This is a free list describing the number of free entries available from | |
77 | * each index | |
78 | */ | |
79 | static unsigned int *io_tlb_list; | |
80 | static unsigned int io_tlb_index; | |
81 | ||
82 | /* | |
83 | * We need to save away the original address corresponding to a mapped entry | |
84 | * for the sync operations. | |
85 | */ | |
bc40ac66 | 86 | static phys_addr_t *io_tlb_orig_addr; |
1da177e4 LT |
87 | |
88 | /* | |
89 | * Protect the above data structures in the map and unmap calls | |
90 | */ | |
91 | static DEFINE_SPINLOCK(io_tlb_lock); | |
92 | ||
5740afdb FT |
93 | static int late_alloc; |
94 | ||
1da177e4 LT |
95 | static int __init |
96 | setup_io_tlb_npages(char *str) | |
97 | { | |
98 | if (isdigit(*str)) { | |
e8579e72 | 99 | io_tlb_nslabs = simple_strtoul(str, &str, 0); |
1da177e4 LT |
100 | /* avoid tail segment of size < IO_TLB_SEGSIZE */ |
101 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | |
102 | } | |
103 | if (*str == ',') | |
104 | ++str; | |
b18485e7 | 105 | if (!strcmp(str, "force")) |
1da177e4 | 106 | swiotlb_force = 1; |
b18485e7 | 107 | |
1da177e4 LT |
108 | return 1; |
109 | } | |
110 | __setup("swiotlb=", setup_io_tlb_npages); | |
111 | /* make io_tlb_overflow tunable too? */ | |
112 | ||
02ca646e | 113 | /* Note that this doesn't work with highmem page */ |
70a7d3cc JF |
114 | static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev, |
115 | volatile void *address) | |
e08e1f7a | 116 | { |
862d196b | 117 | return phys_to_dma(hwdev, virt_to_phys(address)); |
e08e1f7a IC |
118 | } |
119 | ||
ad32e8cb | 120 | void swiotlb_print_info(void) |
2e5b2b86 | 121 | { |
ad32e8cb | 122 | unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; |
2e5b2b86 | 123 | phys_addr_t pstart, pend; |
2e5b2b86 IC |
124 | |
125 | pstart = virt_to_phys(io_tlb_start); | |
126 | pend = virt_to_phys(io_tlb_end); | |
127 | ||
2e5b2b86 IC |
128 | printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n", |
129 | bytes >> 20, io_tlb_start, io_tlb_end); | |
70a7d3cc JF |
130 | printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n", |
131 | (unsigned long long)pstart, | |
132 | (unsigned long long)pend); | |
2e5b2b86 IC |
133 | } |
134 | ||
abbceff7 | 135 | void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) |
1da177e4 | 136 | { |
563aaf06 | 137 | unsigned long i, bytes; |
1da177e4 | 138 | |
abbceff7 | 139 | bytes = nslabs << IO_TLB_SHIFT; |
1da177e4 | 140 | |
abbceff7 FT |
141 | io_tlb_nslabs = nslabs; |
142 | io_tlb_start = tlb; | |
563aaf06 | 143 | io_tlb_end = io_tlb_start + bytes; |
1da177e4 LT |
144 | |
145 | /* | |
146 | * Allocate and initialize the free list array. This array is used | |
147 | * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | |
148 | * between io_tlb_start and io_tlb_end. | |
149 | */ | |
e79f86b2 | 150 | io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); |
25667d67 | 151 | for (i = 0; i < io_tlb_nslabs; i++) |
1da177e4 LT |
152 | io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); |
153 | io_tlb_index = 0; | |
e79f86b2 | 154 | io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); |
1da177e4 LT |
155 | |
156 | /* | |
157 | * Get the overflow emergency buffer | |
158 | */ | |
e79f86b2 | 159 | io_tlb_overflow_buffer = alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow)); |
563aaf06 JB |
160 | if (!io_tlb_overflow_buffer) |
161 | panic("Cannot allocate SWIOTLB overflow buffer!\n"); | |
ad32e8cb FT |
162 | if (verbose) |
163 | swiotlb_print_info(); | |
1da177e4 LT |
164 | } |
165 | ||
abbceff7 FT |
166 | /* |
167 | * Statically reserve bounce buffer space and initialize bounce buffer data | |
168 | * structures for the software IO TLB used to implement the DMA API. | |
169 | */ | |
170 | void __init | |
171 | swiotlb_init_with_default_size(size_t default_size, int verbose) | |
172 | { | |
173 | unsigned long bytes; | |
174 | ||
175 | if (!io_tlb_nslabs) { | |
176 | io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | |
177 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | |
178 | } | |
179 | ||
180 | bytes = io_tlb_nslabs << IO_TLB_SHIFT; | |
181 | ||
182 | /* | |
183 | * Get IO TLB memory from the low pages | |
184 | */ | |
e79f86b2 | 185 | io_tlb_start = alloc_bootmem_low_pages(PAGE_ALIGN(bytes)); |
abbceff7 FT |
186 | if (!io_tlb_start) |
187 | panic("Cannot allocate SWIOTLB buffer"); | |
188 | ||
189 | swiotlb_init_with_tbl(io_tlb_start, io_tlb_nslabs, verbose); | |
190 | } | |
191 | ||
563aaf06 | 192 | void __init |
ad32e8cb | 193 | swiotlb_init(int verbose) |
1da177e4 | 194 | { |
ad32e8cb | 195 | swiotlb_init_with_default_size(64 * (1<<20), verbose); /* default to 64MB */ |
1da177e4 LT |
196 | } |
197 | ||
0b9afede AW |
198 | /* |
199 | * Systems with larger DMA zones (those that don't support ISA) can | |
200 | * initialize the swiotlb later using the slab allocator if needed. | |
201 | * This should be just like above, but with some error catching. | |
202 | */ | |
203 | int | |
563aaf06 | 204 | swiotlb_late_init_with_default_size(size_t default_size) |
0b9afede | 205 | { |
563aaf06 | 206 | unsigned long i, bytes, req_nslabs = io_tlb_nslabs; |
0b9afede AW |
207 | unsigned int order; |
208 | ||
209 | if (!io_tlb_nslabs) { | |
210 | io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | |
211 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | |
212 | } | |
213 | ||
214 | /* | |
215 | * Get IO TLB memory from the low pages | |
216 | */ | |
563aaf06 | 217 | order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); |
0b9afede | 218 | io_tlb_nslabs = SLABS_PER_PAGE << order; |
563aaf06 | 219 | bytes = io_tlb_nslabs << IO_TLB_SHIFT; |
0b9afede AW |
220 | |
221 | while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { | |
bb52196b FT |
222 | io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, |
223 | order); | |
0b9afede AW |
224 | if (io_tlb_start) |
225 | break; | |
226 | order--; | |
227 | } | |
228 | ||
229 | if (!io_tlb_start) | |
230 | goto cleanup1; | |
231 | ||
563aaf06 | 232 | if (order != get_order(bytes)) { |
0b9afede AW |
233 | printk(KERN_WARNING "Warning: only able to allocate %ld MB " |
234 | "for software IO TLB\n", (PAGE_SIZE << order) >> 20); | |
235 | io_tlb_nslabs = SLABS_PER_PAGE << order; | |
563aaf06 | 236 | bytes = io_tlb_nslabs << IO_TLB_SHIFT; |
0b9afede | 237 | } |
563aaf06 JB |
238 | io_tlb_end = io_tlb_start + bytes; |
239 | memset(io_tlb_start, 0, bytes); | |
0b9afede AW |
240 | |
241 | /* | |
242 | * Allocate and initialize the free list array. This array is used | |
243 | * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | |
244 | * between io_tlb_start and io_tlb_end. | |
245 | */ | |
246 | io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, | |
247 | get_order(io_tlb_nslabs * sizeof(int))); | |
248 | if (!io_tlb_list) | |
249 | goto cleanup2; | |
250 | ||
251 | for (i = 0; i < io_tlb_nslabs; i++) | |
252 | io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); | |
253 | io_tlb_index = 0; | |
254 | ||
bc40ac66 BB |
255 | io_tlb_orig_addr = (phys_addr_t *) |
256 | __get_free_pages(GFP_KERNEL, | |
257 | get_order(io_tlb_nslabs * | |
258 | sizeof(phys_addr_t))); | |
0b9afede AW |
259 | if (!io_tlb_orig_addr) |
260 | goto cleanup3; | |
261 | ||
bc40ac66 | 262 | memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t)); |
0b9afede AW |
263 | |
264 | /* | |
265 | * Get the overflow emergency buffer | |
266 | */ | |
267 | io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA, | |
268 | get_order(io_tlb_overflow)); | |
269 | if (!io_tlb_overflow_buffer) | |
270 | goto cleanup4; | |
271 | ||
ad32e8cb | 272 | swiotlb_print_info(); |
0b9afede | 273 | |
5740afdb FT |
274 | late_alloc = 1; |
275 | ||
0b9afede AW |
276 | return 0; |
277 | ||
278 | cleanup4: | |
bc40ac66 BB |
279 | free_pages((unsigned long)io_tlb_orig_addr, |
280 | get_order(io_tlb_nslabs * sizeof(phys_addr_t))); | |
0b9afede AW |
281 | io_tlb_orig_addr = NULL; |
282 | cleanup3: | |
25667d67 TL |
283 | free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * |
284 | sizeof(int))); | |
0b9afede | 285 | io_tlb_list = NULL; |
0b9afede | 286 | cleanup2: |
563aaf06 | 287 | io_tlb_end = NULL; |
0b9afede AW |
288 | free_pages((unsigned long)io_tlb_start, order); |
289 | io_tlb_start = NULL; | |
290 | cleanup1: | |
291 | io_tlb_nslabs = req_nslabs; | |
292 | return -ENOMEM; | |
293 | } | |
294 | ||
5740afdb FT |
295 | void __init swiotlb_free(void) |
296 | { | |
297 | if (!io_tlb_overflow_buffer) | |
298 | return; | |
299 | ||
300 | if (late_alloc) { | |
301 | free_pages((unsigned long)io_tlb_overflow_buffer, | |
302 | get_order(io_tlb_overflow)); | |
303 | free_pages((unsigned long)io_tlb_orig_addr, | |
304 | get_order(io_tlb_nslabs * sizeof(phys_addr_t))); | |
305 | free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * | |
306 | sizeof(int))); | |
307 | free_pages((unsigned long)io_tlb_start, | |
308 | get_order(io_tlb_nslabs << IO_TLB_SHIFT)); | |
309 | } else { | |
310 | free_bootmem_late(__pa(io_tlb_overflow_buffer), | |
e79f86b2 | 311 | PAGE_ALIGN(io_tlb_overflow)); |
5740afdb | 312 | free_bootmem_late(__pa(io_tlb_orig_addr), |
e79f86b2 | 313 | PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); |
5740afdb | 314 | free_bootmem_late(__pa(io_tlb_list), |
e79f86b2 | 315 | PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); |
5740afdb | 316 | free_bootmem_late(__pa(io_tlb_start), |
e79f86b2 | 317 | PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); |
5740afdb FT |
318 | } |
319 | } | |
320 | ||
02ca646e | 321 | static int is_swiotlb_buffer(phys_addr_t paddr) |
640aebfe | 322 | { |
02ca646e FT |
323 | return paddr >= virt_to_phys(io_tlb_start) && |
324 | paddr < virt_to_phys(io_tlb_end); | |
640aebfe FT |
325 | } |
326 | ||
fb05a379 BB |
327 | /* |
328 | * Bounce: copy the swiotlb buffer back to the original dma location | |
329 | */ | |
d7ef1533 KRW |
330 | void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size, |
331 | enum dma_data_direction dir) | |
fb05a379 BB |
332 | { |
333 | unsigned long pfn = PFN_DOWN(phys); | |
334 | ||
335 | if (PageHighMem(pfn_to_page(pfn))) { | |
336 | /* The buffer does not have a mapping. Map it in and copy */ | |
337 | unsigned int offset = phys & ~PAGE_MASK; | |
338 | char *buffer; | |
339 | unsigned int sz = 0; | |
340 | unsigned long flags; | |
341 | ||
342 | while (size) { | |
67131ad0 | 343 | sz = min_t(size_t, PAGE_SIZE - offset, size); |
fb05a379 BB |
344 | |
345 | local_irq_save(flags); | |
346 | buffer = kmap_atomic(pfn_to_page(pfn), | |
347 | KM_BOUNCE_READ); | |
348 | if (dir == DMA_TO_DEVICE) | |
349 | memcpy(dma_addr, buffer + offset, sz); | |
ef9b1893 | 350 | else |
fb05a379 BB |
351 | memcpy(buffer + offset, dma_addr, sz); |
352 | kunmap_atomic(buffer, KM_BOUNCE_READ); | |
ef9b1893 | 353 | local_irq_restore(flags); |
fb05a379 BB |
354 | |
355 | size -= sz; | |
356 | pfn++; | |
357 | dma_addr += sz; | |
358 | offset = 0; | |
ef9b1893 JF |
359 | } |
360 | } else { | |
ef9b1893 | 361 | if (dir == DMA_TO_DEVICE) |
fb05a379 | 362 | memcpy(dma_addr, phys_to_virt(phys), size); |
ef9b1893 | 363 | else |
fb05a379 | 364 | memcpy(phys_to_virt(phys), dma_addr, size); |
ef9b1893 | 365 | } |
1b548f66 | 366 | } |
d7ef1533 | 367 | EXPORT_SYMBOL_GPL(swiotlb_bounce); |
1b548f66 | 368 | |
eb605a57 | 369 | void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr, |
22d48269 KRW |
370 | phys_addr_t phys, size_t size, |
371 | enum dma_data_direction dir) | |
1da177e4 LT |
372 | { |
373 | unsigned long flags; | |
374 | char *dma_addr; | |
375 | unsigned int nslots, stride, index, wrap; | |
376 | int i; | |
681cc5cd FT |
377 | unsigned long mask; |
378 | unsigned long offset_slots; | |
379 | unsigned long max_slots; | |
380 | ||
381 | mask = dma_get_seg_boundary(hwdev); | |
681cc5cd | 382 | |
eb605a57 FT |
383 | tbl_dma_addr &= mask; |
384 | ||
385 | offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | |
a5ddde4a IC |
386 | |
387 | /* | |
388 | * Carefully handle integer overflow which can occur when mask == ~0UL. | |
389 | */ | |
b15a3891 JB |
390 | max_slots = mask + 1 |
391 | ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT | |
392 | : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); | |
1da177e4 LT |
393 | |
394 | /* | |
395 | * For mappings greater than a page, we limit the stride (and | |
396 | * hence alignment) to a page size. | |
397 | */ | |
398 | nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | |
399 | if (size > PAGE_SIZE) | |
400 | stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); | |
401 | else | |
402 | stride = 1; | |
403 | ||
34814545 | 404 | BUG_ON(!nslots); |
1da177e4 LT |
405 | |
406 | /* | |
407 | * Find suitable number of IO TLB entries size that will fit this | |
408 | * request and allocate a buffer from that IO TLB pool. | |
409 | */ | |
410 | spin_lock_irqsave(&io_tlb_lock, flags); | |
a7133a15 AM |
411 | index = ALIGN(io_tlb_index, stride); |
412 | if (index >= io_tlb_nslabs) | |
413 | index = 0; | |
414 | wrap = index; | |
415 | ||
416 | do { | |
a8522509 FT |
417 | while (iommu_is_span_boundary(index, nslots, offset_slots, |
418 | max_slots)) { | |
b15a3891 JB |
419 | index += stride; |
420 | if (index >= io_tlb_nslabs) | |
421 | index = 0; | |
a7133a15 AM |
422 | if (index == wrap) |
423 | goto not_found; | |
424 | } | |
425 | ||
426 | /* | |
427 | * If we find a slot that indicates we have 'nslots' number of | |
428 | * contiguous buffers, we allocate the buffers from that slot | |
429 | * and mark the entries as '0' indicating unavailable. | |
430 | */ | |
431 | if (io_tlb_list[index] >= nslots) { | |
432 | int count = 0; | |
433 | ||
434 | for (i = index; i < (int) (index + nslots); i++) | |
435 | io_tlb_list[i] = 0; | |
436 | for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) | |
437 | io_tlb_list[i] = ++count; | |
438 | dma_addr = io_tlb_start + (index << IO_TLB_SHIFT); | |
1da177e4 | 439 | |
a7133a15 AM |
440 | /* |
441 | * Update the indices to avoid searching in the next | |
442 | * round. | |
443 | */ | |
444 | io_tlb_index = ((index + nslots) < io_tlb_nslabs | |
445 | ? (index + nslots) : 0); | |
446 | ||
447 | goto found; | |
448 | } | |
449 | index += stride; | |
450 | if (index >= io_tlb_nslabs) | |
451 | index = 0; | |
452 | } while (index != wrap); | |
453 | ||
454 | not_found: | |
455 | spin_unlock_irqrestore(&io_tlb_lock, flags); | |
456 | return NULL; | |
457 | found: | |
1da177e4 LT |
458 | spin_unlock_irqrestore(&io_tlb_lock, flags); |
459 | ||
460 | /* | |
461 | * Save away the mapping from the original address to the DMA address. | |
462 | * This is needed when we sync the memory. Then we sync the buffer if | |
463 | * needed. | |
464 | */ | |
bc40ac66 BB |
465 | for (i = 0; i < nslots; i++) |
466 | io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT); | |
1da177e4 | 467 | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) |
fb05a379 | 468 | swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE); |
1da177e4 LT |
469 | |
470 | return dma_addr; | |
471 | } | |
d7ef1533 | 472 | EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single); |
1da177e4 | 473 | |
eb605a57 FT |
474 | /* |
475 | * Allocates bounce buffer and returns its kernel virtual address. | |
476 | */ | |
477 | ||
478 | static void * | |
22d48269 KRW |
479 | map_single(struct device *hwdev, phys_addr_t phys, size_t size, |
480 | enum dma_data_direction dir) | |
eb605a57 FT |
481 | { |
482 | dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start); | |
483 | ||
484 | return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir); | |
485 | } | |
486 | ||
1da177e4 LT |
487 | /* |
488 | * dma_addr is the kernel virtual address of the bounce buffer to unmap. | |
489 | */ | |
d7ef1533 | 490 | void |
bfc5501f | 491 | swiotlb_tbl_unmap_single(struct device *hwdev, char *dma_addr, size_t size, |
22d48269 | 492 | enum dma_data_direction dir) |
1da177e4 LT |
493 | { |
494 | unsigned long flags; | |
495 | int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | |
496 | int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT; | |
bc40ac66 | 497 | phys_addr_t phys = io_tlb_orig_addr[index]; |
1da177e4 LT |
498 | |
499 | /* | |
500 | * First, sync the memory before unmapping the entry | |
501 | */ | |
bc40ac66 | 502 | if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) |
fb05a379 | 503 | swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE); |
1da177e4 LT |
504 | |
505 | /* | |
506 | * Return the buffer to the free list by setting the corresponding | |
af901ca1 | 507 | * entries to indicate the number of contiguous entries available. |
1da177e4 LT |
508 | * While returning the entries to the free list, we merge the entries |
509 | * with slots below and above the pool being returned. | |
510 | */ | |
511 | spin_lock_irqsave(&io_tlb_lock, flags); | |
512 | { | |
513 | count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? | |
514 | io_tlb_list[index + nslots] : 0); | |
515 | /* | |
516 | * Step 1: return the slots to the free list, merging the | |
517 | * slots with superceeding slots | |
518 | */ | |
519 | for (i = index + nslots - 1; i >= index; i--) | |
520 | io_tlb_list[i] = ++count; | |
521 | /* | |
522 | * Step 2: merge the returned slots with the preceding slots, | |
523 | * if available (non zero) | |
524 | */ | |
525 | for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) | |
526 | io_tlb_list[i] = ++count; | |
527 | } | |
528 | spin_unlock_irqrestore(&io_tlb_lock, flags); | |
529 | } | |
d7ef1533 | 530 | EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single); |
1da177e4 | 531 | |
d7ef1533 | 532 | void |
bfc5501f | 533 | swiotlb_tbl_sync_single(struct device *hwdev, char *dma_addr, size_t size, |
d7ef1533 KRW |
534 | enum dma_data_direction dir, |
535 | enum dma_sync_target target) | |
1da177e4 | 536 | { |
bc40ac66 BB |
537 | int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT; |
538 | phys_addr_t phys = io_tlb_orig_addr[index]; | |
539 | ||
540 | phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1)); | |
df336d1c | 541 | |
de69e0f0 JL |
542 | switch (target) { |
543 | case SYNC_FOR_CPU: | |
544 | if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) | |
fb05a379 | 545 | swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE); |
34814545 ES |
546 | else |
547 | BUG_ON(dir != DMA_TO_DEVICE); | |
de69e0f0 JL |
548 | break; |
549 | case SYNC_FOR_DEVICE: | |
550 | if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) | |
fb05a379 | 551 | swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE); |
34814545 ES |
552 | else |
553 | BUG_ON(dir != DMA_FROM_DEVICE); | |
de69e0f0 JL |
554 | break; |
555 | default: | |
1da177e4 | 556 | BUG(); |
de69e0f0 | 557 | } |
1da177e4 | 558 | } |
d7ef1533 | 559 | EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single); |
1da177e4 LT |
560 | |
561 | void * | |
562 | swiotlb_alloc_coherent(struct device *hwdev, size_t size, | |
06a54497 | 563 | dma_addr_t *dma_handle, gfp_t flags) |
1da177e4 | 564 | { |
563aaf06 | 565 | dma_addr_t dev_addr; |
1da177e4 LT |
566 | void *ret; |
567 | int order = get_order(size); | |
284901a9 | 568 | u64 dma_mask = DMA_BIT_MASK(32); |
1e74f300 FT |
569 | |
570 | if (hwdev && hwdev->coherent_dma_mask) | |
571 | dma_mask = hwdev->coherent_dma_mask; | |
1da177e4 | 572 | |
25667d67 | 573 | ret = (void *)__get_free_pages(flags, order); |
ac2b3e67 | 574 | if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) { |
1da177e4 LT |
575 | /* |
576 | * The allocated memory isn't reachable by the device. | |
1da177e4 LT |
577 | */ |
578 | free_pages((unsigned long) ret, order); | |
579 | ret = NULL; | |
580 | } | |
581 | if (!ret) { | |
582 | /* | |
bfc5501f KRW |
583 | * We are either out of memory or the device can't DMA to |
584 | * GFP_DMA memory; fall back on map_single(), which | |
ceb5ac32 | 585 | * will grab memory from the lowest available address range. |
1da177e4 | 586 | */ |
bc40ac66 | 587 | ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE); |
9dfda12b | 588 | if (!ret) |
1da177e4 | 589 | return NULL; |
1da177e4 LT |
590 | } |
591 | ||
592 | memset(ret, 0, size); | |
70a7d3cc | 593 | dev_addr = swiotlb_virt_to_bus(hwdev, ret); |
1da177e4 LT |
594 | |
595 | /* Confirm address can be DMA'd by device */ | |
ac2b3e67 | 596 | if (dev_addr + size - 1 > dma_mask) { |
563aaf06 | 597 | printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n", |
1e74f300 | 598 | (unsigned long long)dma_mask, |
563aaf06 | 599 | (unsigned long long)dev_addr); |
a2b89b59 FT |
600 | |
601 | /* DMA_TO_DEVICE to avoid memcpy in unmap_single */ | |
bfc5501f | 602 | swiotlb_tbl_unmap_single(hwdev, ret, size, DMA_TO_DEVICE); |
a2b89b59 | 603 | return NULL; |
1da177e4 LT |
604 | } |
605 | *dma_handle = dev_addr; | |
606 | return ret; | |
607 | } | |
874d6a95 | 608 | EXPORT_SYMBOL(swiotlb_alloc_coherent); |
1da177e4 LT |
609 | |
610 | void | |
611 | swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, | |
02ca646e | 612 | dma_addr_t dev_addr) |
1da177e4 | 613 | { |
862d196b | 614 | phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); |
02ca646e | 615 | |
aa24886e | 616 | WARN_ON(irqs_disabled()); |
02ca646e FT |
617 | if (!is_swiotlb_buffer(paddr)) |
618 | free_pages((unsigned long)vaddr, get_order(size)); | |
1da177e4 | 619 | else |
bfc5501f KRW |
620 | /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */ |
621 | swiotlb_tbl_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE); | |
1da177e4 | 622 | } |
874d6a95 | 623 | EXPORT_SYMBOL(swiotlb_free_coherent); |
1da177e4 LT |
624 | |
625 | static void | |
22d48269 KRW |
626 | swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir, |
627 | int do_panic) | |
1da177e4 LT |
628 | { |
629 | /* | |
630 | * Ran out of IOMMU space for this operation. This is very bad. | |
631 | * Unfortunately the drivers cannot handle this operation properly. | |
17e5ad6c | 632 | * unless they check for dma_mapping_error (most don't) |
1da177e4 LT |
633 | * When the mapping is small enough return a static buffer to limit |
634 | * the damage, or panic when the transfer is too big. | |
635 | */ | |
563aaf06 | 636 | printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at " |
94b32486 | 637 | "device %s\n", size, dev ? dev_name(dev) : "?"); |
1da177e4 | 638 | |
c7084b35 CD |
639 | if (size <= io_tlb_overflow || !do_panic) |
640 | return; | |
641 | ||
642 | if (dir == DMA_BIDIRECTIONAL) | |
643 | panic("DMA: Random memory could be DMA accessed\n"); | |
644 | if (dir == DMA_FROM_DEVICE) | |
645 | panic("DMA: Random memory could be DMA written\n"); | |
646 | if (dir == DMA_TO_DEVICE) | |
647 | panic("DMA: Random memory could be DMA read\n"); | |
1da177e4 LT |
648 | } |
649 | ||
650 | /* | |
651 | * Map a single buffer of the indicated size for DMA in streaming mode. The | |
17e5ad6c | 652 | * physical address to use is returned. |
1da177e4 LT |
653 | * |
654 | * Once the device is given the dma address, the device owns this memory until | |
ceb5ac32 | 655 | * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed. |
1da177e4 | 656 | */ |
f98eee8e FT |
657 | dma_addr_t swiotlb_map_page(struct device *dev, struct page *page, |
658 | unsigned long offset, size_t size, | |
659 | enum dma_data_direction dir, | |
660 | struct dma_attrs *attrs) | |
1da177e4 | 661 | { |
f98eee8e | 662 | phys_addr_t phys = page_to_phys(page) + offset; |
862d196b | 663 | dma_addr_t dev_addr = phys_to_dma(dev, phys); |
1da177e4 LT |
664 | void *map; |
665 | ||
34814545 | 666 | BUG_ON(dir == DMA_NONE); |
1da177e4 | 667 | /* |
ceb5ac32 | 668 | * If the address happens to be in the device's DMA window, |
1da177e4 LT |
669 | * we can safely return the device addr and not worry about bounce |
670 | * buffering it. | |
671 | */ | |
b9394647 | 672 | if (dma_capable(dev, dev_addr, size) && !swiotlb_force) |
1da177e4 LT |
673 | return dev_addr; |
674 | ||
675 | /* | |
676 | * Oh well, have to allocate and map a bounce buffer. | |
677 | */ | |
f98eee8e | 678 | map = map_single(dev, phys, size, dir); |
1da177e4 | 679 | if (!map) { |
f98eee8e | 680 | swiotlb_full(dev, size, dir, 1); |
1da177e4 LT |
681 | map = io_tlb_overflow_buffer; |
682 | } | |
683 | ||
f98eee8e | 684 | dev_addr = swiotlb_virt_to_bus(dev, map); |
1da177e4 LT |
685 | |
686 | /* | |
687 | * Ensure that the address returned is DMA'ble | |
688 | */ | |
b9394647 | 689 | if (!dma_capable(dev, dev_addr, size)) |
1da177e4 LT |
690 | panic("map_single: bounce buffer is not DMA'ble"); |
691 | ||
692 | return dev_addr; | |
693 | } | |
f98eee8e | 694 | EXPORT_SYMBOL_GPL(swiotlb_map_page); |
1da177e4 | 695 | |
1da177e4 LT |
696 | /* |
697 | * Unmap a single streaming mode DMA translation. The dma_addr and size must | |
ceb5ac32 | 698 | * match what was provided for in a previous swiotlb_map_page call. All |
1da177e4 LT |
699 | * other usages are undefined. |
700 | * | |
701 | * After this call, reads by the cpu to the buffer are guaranteed to see | |
702 | * whatever the device wrote there. | |
703 | */ | |
7fcebbd2 | 704 | static void unmap_single(struct device *hwdev, dma_addr_t dev_addr, |
22d48269 | 705 | size_t size, enum dma_data_direction dir) |
1da177e4 | 706 | { |
862d196b | 707 | phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); |
1da177e4 | 708 | |
34814545 | 709 | BUG_ON(dir == DMA_NONE); |
7fcebbd2 | 710 | |
02ca646e | 711 | if (is_swiotlb_buffer(paddr)) { |
bfc5501f | 712 | swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir); |
7fcebbd2 BB |
713 | return; |
714 | } | |
715 | ||
716 | if (dir != DMA_FROM_DEVICE) | |
717 | return; | |
718 | ||
02ca646e FT |
719 | /* |
720 | * phys_to_virt doesn't work with hihgmem page but we could | |
721 | * call dma_mark_clean() with hihgmem page here. However, we | |
722 | * are fine since dma_mark_clean() is null on POWERPC. We can | |
723 | * make dma_mark_clean() take a physical address if necessary. | |
724 | */ | |
725 | dma_mark_clean(phys_to_virt(paddr), size); | |
7fcebbd2 BB |
726 | } |
727 | ||
728 | void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, | |
729 | size_t size, enum dma_data_direction dir, | |
730 | struct dma_attrs *attrs) | |
731 | { | |
732 | unmap_single(hwdev, dev_addr, size, dir); | |
1da177e4 | 733 | } |
f98eee8e | 734 | EXPORT_SYMBOL_GPL(swiotlb_unmap_page); |
874d6a95 | 735 | |
1da177e4 LT |
736 | /* |
737 | * Make physical memory consistent for a single streaming mode DMA translation | |
738 | * after a transfer. | |
739 | * | |
ceb5ac32 | 740 | * If you perform a swiotlb_map_page() but wish to interrogate the buffer |
17e5ad6c TL |
741 | * using the cpu, yet do not wish to teardown the dma mapping, you must |
742 | * call this function before doing so. At the next point you give the dma | |
1da177e4 LT |
743 | * address back to the card, you must first perform a |
744 | * swiotlb_dma_sync_for_device, and then the device again owns the buffer | |
745 | */ | |
be6b0267 | 746 | static void |
8270f3f1 | 747 | swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, |
d7ef1533 KRW |
748 | size_t size, enum dma_data_direction dir, |
749 | enum dma_sync_target target) | |
1da177e4 | 750 | { |
862d196b | 751 | phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); |
1da177e4 | 752 | |
34814545 | 753 | BUG_ON(dir == DMA_NONE); |
380d6878 | 754 | |
02ca646e | 755 | if (is_swiotlb_buffer(paddr)) { |
bfc5501f KRW |
756 | swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir, |
757 | target); | |
380d6878 BB |
758 | return; |
759 | } | |
760 | ||
761 | if (dir != DMA_FROM_DEVICE) | |
762 | return; | |
763 | ||
02ca646e | 764 | dma_mark_clean(phys_to_virt(paddr), size); |
1da177e4 LT |
765 | } |
766 | ||
8270f3f1 JL |
767 | void |
768 | swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, | |
160c1d8e | 769 | size_t size, enum dma_data_direction dir) |
8270f3f1 | 770 | { |
de69e0f0 | 771 | swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); |
8270f3f1 | 772 | } |
874d6a95 | 773 | EXPORT_SYMBOL(swiotlb_sync_single_for_cpu); |
8270f3f1 | 774 | |
1da177e4 LT |
775 | void |
776 | swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, | |
160c1d8e | 777 | size_t size, enum dma_data_direction dir) |
1da177e4 | 778 | { |
de69e0f0 | 779 | swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); |
1da177e4 | 780 | } |
874d6a95 | 781 | EXPORT_SYMBOL(swiotlb_sync_single_for_device); |
1da177e4 LT |
782 | |
783 | /* | |
784 | * Map a set of buffers described by scatterlist in streaming mode for DMA. | |
ceb5ac32 | 785 | * This is the scatter-gather version of the above swiotlb_map_page |
1da177e4 LT |
786 | * interface. Here the scatter gather list elements are each tagged with the |
787 | * appropriate dma address and length. They are obtained via | |
788 | * sg_dma_{address,length}(SG). | |
789 | * | |
790 | * NOTE: An implementation may be able to use a smaller number of | |
791 | * DMA address/length pairs than there are SG table elements. | |
792 | * (for example via virtual mapping capabilities) | |
793 | * The routine returns the number of addr/length pairs actually | |
794 | * used, at most nents. | |
795 | * | |
ceb5ac32 | 796 | * Device ownership issues as mentioned above for swiotlb_map_page are the |
1da177e4 LT |
797 | * same here. |
798 | */ | |
799 | int | |
309df0c5 | 800 | swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems, |
160c1d8e | 801 | enum dma_data_direction dir, struct dma_attrs *attrs) |
1da177e4 | 802 | { |
dbfd49fe | 803 | struct scatterlist *sg; |
1da177e4 LT |
804 | int i; |
805 | ||
34814545 | 806 | BUG_ON(dir == DMA_NONE); |
1da177e4 | 807 | |
dbfd49fe | 808 | for_each_sg(sgl, sg, nelems, i) { |
961d7d0e | 809 | phys_addr_t paddr = sg_phys(sg); |
862d196b | 810 | dma_addr_t dev_addr = phys_to_dma(hwdev, paddr); |
bc40ac66 | 811 | |
cf56e3f2 | 812 | if (swiotlb_force || |
b9394647 | 813 | !dma_capable(hwdev, dev_addr, sg->length)) { |
bc40ac66 BB |
814 | void *map = map_single(hwdev, sg_phys(sg), |
815 | sg->length, dir); | |
7e870233 | 816 | if (!map) { |
1da177e4 LT |
817 | /* Don't panic here, we expect map_sg users |
818 | to do proper error handling. */ | |
819 | swiotlb_full(hwdev, sg->length, dir, 0); | |
309df0c5 AK |
820 | swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, |
821 | attrs); | |
dbfd49fe | 822 | sgl[0].dma_length = 0; |
1da177e4 LT |
823 | return 0; |
824 | } | |
70a7d3cc | 825 | sg->dma_address = swiotlb_virt_to_bus(hwdev, map); |
1da177e4 LT |
826 | } else |
827 | sg->dma_address = dev_addr; | |
828 | sg->dma_length = sg->length; | |
829 | } | |
830 | return nelems; | |
831 | } | |
309df0c5 AK |
832 | EXPORT_SYMBOL(swiotlb_map_sg_attrs); |
833 | ||
834 | int | |
835 | swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, | |
22d48269 | 836 | enum dma_data_direction dir) |
309df0c5 AK |
837 | { |
838 | return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL); | |
839 | } | |
874d6a95 | 840 | EXPORT_SYMBOL(swiotlb_map_sg); |
1da177e4 LT |
841 | |
842 | /* | |
843 | * Unmap a set of streaming mode DMA translations. Again, cpu read rules | |
ceb5ac32 | 844 | * concerning calls here are the same as for swiotlb_unmap_page() above. |
1da177e4 LT |
845 | */ |
846 | void | |
309df0c5 | 847 | swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, |
160c1d8e | 848 | int nelems, enum dma_data_direction dir, struct dma_attrs *attrs) |
1da177e4 | 849 | { |
dbfd49fe | 850 | struct scatterlist *sg; |
1da177e4 LT |
851 | int i; |
852 | ||
34814545 | 853 | BUG_ON(dir == DMA_NONE); |
1da177e4 | 854 | |
7fcebbd2 BB |
855 | for_each_sg(sgl, sg, nelems, i) |
856 | unmap_single(hwdev, sg->dma_address, sg->dma_length, dir); | |
857 | ||
1da177e4 | 858 | } |
309df0c5 AK |
859 | EXPORT_SYMBOL(swiotlb_unmap_sg_attrs); |
860 | ||
861 | void | |
862 | swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, | |
22d48269 | 863 | enum dma_data_direction dir) |
309df0c5 AK |
864 | { |
865 | return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL); | |
866 | } | |
874d6a95 | 867 | EXPORT_SYMBOL(swiotlb_unmap_sg); |
1da177e4 LT |
868 | |
869 | /* | |
870 | * Make physical memory consistent for a set of streaming mode DMA translations | |
871 | * after a transfer. | |
872 | * | |
873 | * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules | |
874 | * and usage. | |
875 | */ | |
be6b0267 | 876 | static void |
dbfd49fe | 877 | swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, |
d7ef1533 KRW |
878 | int nelems, enum dma_data_direction dir, |
879 | enum dma_sync_target target) | |
1da177e4 | 880 | { |
dbfd49fe | 881 | struct scatterlist *sg; |
1da177e4 LT |
882 | int i; |
883 | ||
380d6878 BB |
884 | for_each_sg(sgl, sg, nelems, i) |
885 | swiotlb_sync_single(hwdev, sg->dma_address, | |
de69e0f0 | 886 | sg->dma_length, dir, target); |
1da177e4 LT |
887 | } |
888 | ||
8270f3f1 JL |
889 | void |
890 | swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, | |
160c1d8e | 891 | int nelems, enum dma_data_direction dir) |
8270f3f1 | 892 | { |
de69e0f0 | 893 | swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); |
8270f3f1 | 894 | } |
874d6a95 | 895 | EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu); |
8270f3f1 | 896 | |
1da177e4 LT |
897 | void |
898 | swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, | |
160c1d8e | 899 | int nelems, enum dma_data_direction dir) |
1da177e4 | 900 | { |
de69e0f0 | 901 | swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); |
1da177e4 | 902 | } |
874d6a95 | 903 | EXPORT_SYMBOL(swiotlb_sync_sg_for_device); |
1da177e4 LT |
904 | |
905 | int | |
8d8bb39b | 906 | swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) |
1da177e4 | 907 | { |
70a7d3cc | 908 | return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer)); |
1da177e4 | 909 | } |
874d6a95 | 910 | EXPORT_SYMBOL(swiotlb_dma_mapping_error); |
1da177e4 LT |
911 | |
912 | /* | |
17e5ad6c | 913 | * Return whether the given device DMA address mask can be supported |
1da177e4 | 914 | * properly. For example, if your device can only drive the low 24-bits |
17e5ad6c | 915 | * during bus mastering, then you would pass 0x00ffffff as the mask to |
1da177e4 LT |
916 | * this function. |
917 | */ | |
918 | int | |
563aaf06 | 919 | swiotlb_dma_supported(struct device *hwdev, u64 mask) |
1da177e4 | 920 | { |
70a7d3cc | 921 | return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask; |
1da177e4 | 922 | } |
1da177e4 | 923 | EXPORT_SYMBOL(swiotlb_dma_supported); |