]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/timer.c | |
3 | * | |
8524070b | 4 | * Kernel internal timers, basic process system calls |
1da177e4 LT |
5 | * |
6 | * Copyright (C) 1991, 1992 Linus Torvalds | |
7 | * | |
8 | * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. | |
9 | * | |
10 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 | |
11 | * "A Kernel Model for Precision Timekeeping" by Dave Mills | |
12 | * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to | |
13 | * serialize accesses to xtime/lost_ticks). | |
14 | * Copyright (C) 1998 Andrea Arcangeli | |
15 | * 1999-03-10 Improved NTP compatibility by Ulrich Windl | |
16 | * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love | |
17 | * 2000-10-05 Implemented scalable SMP per-CPU timer handling. | |
18 | * Copyright (C) 2000, 2001, 2002 Ingo Molnar | |
19 | * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar | |
20 | */ | |
21 | ||
22 | #include <linux/kernel_stat.h> | |
23 | #include <linux/module.h> | |
24 | #include <linux/interrupt.h> | |
25 | #include <linux/percpu.h> | |
26 | #include <linux/init.h> | |
27 | #include <linux/mm.h> | |
28 | #include <linux/swap.h> | |
b488893a | 29 | #include <linux/pid_namespace.h> |
1da177e4 LT |
30 | #include <linux/notifier.h> |
31 | #include <linux/thread_info.h> | |
32 | #include <linux/time.h> | |
33 | #include <linux/jiffies.h> | |
34 | #include <linux/posix-timers.h> | |
35 | #include <linux/cpu.h> | |
36 | #include <linux/syscalls.h> | |
97a41e26 | 37 | #include <linux/delay.h> |
79bf2bb3 | 38 | #include <linux/tick.h> |
82f67cd9 | 39 | #include <linux/kallsyms.h> |
1da177e4 LT |
40 | |
41 | #include <asm/uaccess.h> | |
42 | #include <asm/unistd.h> | |
43 | #include <asm/div64.h> | |
44 | #include <asm/timex.h> | |
45 | #include <asm/io.h> | |
46 | ||
ecea8d19 TG |
47 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; |
48 | ||
49 | EXPORT_SYMBOL(jiffies_64); | |
50 | ||
1da177e4 LT |
51 | /* |
52 | * per-CPU timer vector definitions: | |
53 | */ | |
1da177e4 LT |
54 | #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) |
55 | #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) | |
56 | #define TVN_SIZE (1 << TVN_BITS) | |
57 | #define TVR_SIZE (1 << TVR_BITS) | |
58 | #define TVN_MASK (TVN_SIZE - 1) | |
59 | #define TVR_MASK (TVR_SIZE - 1) | |
60 | ||
a6fa8e5a | 61 | struct tvec { |
1da177e4 | 62 | struct list_head vec[TVN_SIZE]; |
a6fa8e5a | 63 | }; |
1da177e4 | 64 | |
a6fa8e5a | 65 | struct tvec_root { |
1da177e4 | 66 | struct list_head vec[TVR_SIZE]; |
a6fa8e5a | 67 | }; |
1da177e4 | 68 | |
a6fa8e5a | 69 | struct tvec_base { |
3691c519 ON |
70 | spinlock_t lock; |
71 | struct timer_list *running_timer; | |
1da177e4 | 72 | unsigned long timer_jiffies; |
a6fa8e5a PM |
73 | struct tvec_root tv1; |
74 | struct tvec tv2; | |
75 | struct tvec tv3; | |
76 | struct tvec tv4; | |
77 | struct tvec tv5; | |
6e453a67 | 78 | } ____cacheline_aligned; |
1da177e4 | 79 | |
a6fa8e5a | 80 | struct tvec_base boot_tvec_bases; |
3691c519 | 81 | EXPORT_SYMBOL(boot_tvec_bases); |
a6fa8e5a | 82 | static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases; |
1da177e4 | 83 | |
6e453a67 | 84 | /* |
a6fa8e5a | 85 | * Note that all tvec_bases are 2 byte aligned and lower bit of |
6e453a67 VP |
86 | * base in timer_list is guaranteed to be zero. Use the LSB for |
87 | * the new flag to indicate whether the timer is deferrable | |
88 | */ | |
89 | #define TBASE_DEFERRABLE_FLAG (0x1) | |
90 | ||
91 | /* Functions below help us manage 'deferrable' flag */ | |
a6fa8e5a | 92 | static inline unsigned int tbase_get_deferrable(struct tvec_base *base) |
6e453a67 | 93 | { |
e9910846 | 94 | return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG); |
6e453a67 VP |
95 | } |
96 | ||
a6fa8e5a | 97 | static inline struct tvec_base *tbase_get_base(struct tvec_base *base) |
6e453a67 | 98 | { |
a6fa8e5a | 99 | return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG)); |
6e453a67 VP |
100 | } |
101 | ||
102 | static inline void timer_set_deferrable(struct timer_list *timer) | |
103 | { | |
a6fa8e5a | 104 | timer->base = ((struct tvec_base *)((unsigned long)(timer->base) | |
6819457d | 105 | TBASE_DEFERRABLE_FLAG)); |
6e453a67 VP |
106 | } |
107 | ||
108 | static inline void | |
a6fa8e5a | 109 | timer_set_base(struct timer_list *timer, struct tvec_base *new_base) |
6e453a67 | 110 | { |
a6fa8e5a | 111 | timer->base = (struct tvec_base *)((unsigned long)(new_base) | |
6819457d | 112 | tbase_get_deferrable(timer->base)); |
6e453a67 VP |
113 | } |
114 | ||
4c36a5de AV |
115 | /** |
116 | * __round_jiffies - function to round jiffies to a full second | |
117 | * @j: the time in (absolute) jiffies that should be rounded | |
118 | * @cpu: the processor number on which the timeout will happen | |
119 | * | |
72fd4a35 | 120 | * __round_jiffies() rounds an absolute time in the future (in jiffies) |
4c36a5de AV |
121 | * up or down to (approximately) full seconds. This is useful for timers |
122 | * for which the exact time they fire does not matter too much, as long as | |
123 | * they fire approximately every X seconds. | |
124 | * | |
125 | * By rounding these timers to whole seconds, all such timers will fire | |
126 | * at the same time, rather than at various times spread out. The goal | |
127 | * of this is to have the CPU wake up less, which saves power. | |
128 | * | |
129 | * The exact rounding is skewed for each processor to avoid all | |
130 | * processors firing at the exact same time, which could lead | |
131 | * to lock contention or spurious cache line bouncing. | |
132 | * | |
72fd4a35 | 133 | * The return value is the rounded version of the @j parameter. |
4c36a5de AV |
134 | */ |
135 | unsigned long __round_jiffies(unsigned long j, int cpu) | |
136 | { | |
137 | int rem; | |
138 | unsigned long original = j; | |
139 | ||
140 | /* | |
141 | * We don't want all cpus firing their timers at once hitting the | |
142 | * same lock or cachelines, so we skew each extra cpu with an extra | |
143 | * 3 jiffies. This 3 jiffies came originally from the mm/ code which | |
144 | * already did this. | |
145 | * The skew is done by adding 3*cpunr, then round, then subtract this | |
146 | * extra offset again. | |
147 | */ | |
148 | j += cpu * 3; | |
149 | ||
150 | rem = j % HZ; | |
151 | ||
152 | /* | |
153 | * If the target jiffie is just after a whole second (which can happen | |
154 | * due to delays of the timer irq, long irq off times etc etc) then | |
155 | * we should round down to the whole second, not up. Use 1/4th second | |
156 | * as cutoff for this rounding as an extreme upper bound for this. | |
157 | */ | |
158 | if (rem < HZ/4) /* round down */ | |
159 | j = j - rem; | |
160 | else /* round up */ | |
161 | j = j - rem + HZ; | |
162 | ||
163 | /* now that we have rounded, subtract the extra skew again */ | |
164 | j -= cpu * 3; | |
165 | ||
166 | if (j <= jiffies) /* rounding ate our timeout entirely; */ | |
167 | return original; | |
168 | return j; | |
169 | } | |
170 | EXPORT_SYMBOL_GPL(__round_jiffies); | |
171 | ||
172 | /** | |
173 | * __round_jiffies_relative - function to round jiffies to a full second | |
174 | * @j: the time in (relative) jiffies that should be rounded | |
175 | * @cpu: the processor number on which the timeout will happen | |
176 | * | |
72fd4a35 | 177 | * __round_jiffies_relative() rounds a time delta in the future (in jiffies) |
4c36a5de AV |
178 | * up or down to (approximately) full seconds. This is useful for timers |
179 | * for which the exact time they fire does not matter too much, as long as | |
180 | * they fire approximately every X seconds. | |
181 | * | |
182 | * By rounding these timers to whole seconds, all such timers will fire | |
183 | * at the same time, rather than at various times spread out. The goal | |
184 | * of this is to have the CPU wake up less, which saves power. | |
185 | * | |
186 | * The exact rounding is skewed for each processor to avoid all | |
187 | * processors firing at the exact same time, which could lead | |
188 | * to lock contention or spurious cache line bouncing. | |
189 | * | |
72fd4a35 | 190 | * The return value is the rounded version of the @j parameter. |
4c36a5de AV |
191 | */ |
192 | unsigned long __round_jiffies_relative(unsigned long j, int cpu) | |
193 | { | |
194 | /* | |
195 | * In theory the following code can skip a jiffy in case jiffies | |
196 | * increments right between the addition and the later subtraction. | |
197 | * However since the entire point of this function is to use approximate | |
198 | * timeouts, it's entirely ok to not handle that. | |
199 | */ | |
200 | return __round_jiffies(j + jiffies, cpu) - jiffies; | |
201 | } | |
202 | EXPORT_SYMBOL_GPL(__round_jiffies_relative); | |
203 | ||
204 | /** | |
205 | * round_jiffies - function to round jiffies to a full second | |
206 | * @j: the time in (absolute) jiffies that should be rounded | |
207 | * | |
72fd4a35 | 208 | * round_jiffies() rounds an absolute time in the future (in jiffies) |
4c36a5de AV |
209 | * up or down to (approximately) full seconds. This is useful for timers |
210 | * for which the exact time they fire does not matter too much, as long as | |
211 | * they fire approximately every X seconds. | |
212 | * | |
213 | * By rounding these timers to whole seconds, all such timers will fire | |
214 | * at the same time, rather than at various times spread out. The goal | |
215 | * of this is to have the CPU wake up less, which saves power. | |
216 | * | |
72fd4a35 | 217 | * The return value is the rounded version of the @j parameter. |
4c36a5de AV |
218 | */ |
219 | unsigned long round_jiffies(unsigned long j) | |
220 | { | |
221 | return __round_jiffies(j, raw_smp_processor_id()); | |
222 | } | |
223 | EXPORT_SYMBOL_GPL(round_jiffies); | |
224 | ||
225 | /** | |
226 | * round_jiffies_relative - function to round jiffies to a full second | |
227 | * @j: the time in (relative) jiffies that should be rounded | |
228 | * | |
72fd4a35 | 229 | * round_jiffies_relative() rounds a time delta in the future (in jiffies) |
4c36a5de AV |
230 | * up or down to (approximately) full seconds. This is useful for timers |
231 | * for which the exact time they fire does not matter too much, as long as | |
232 | * they fire approximately every X seconds. | |
233 | * | |
234 | * By rounding these timers to whole seconds, all such timers will fire | |
235 | * at the same time, rather than at various times spread out. The goal | |
236 | * of this is to have the CPU wake up less, which saves power. | |
237 | * | |
72fd4a35 | 238 | * The return value is the rounded version of the @j parameter. |
4c36a5de AV |
239 | */ |
240 | unsigned long round_jiffies_relative(unsigned long j) | |
241 | { | |
242 | return __round_jiffies_relative(j, raw_smp_processor_id()); | |
243 | } | |
244 | EXPORT_SYMBOL_GPL(round_jiffies_relative); | |
245 | ||
246 | ||
a6fa8e5a | 247 | static inline void set_running_timer(struct tvec_base *base, |
1da177e4 LT |
248 | struct timer_list *timer) |
249 | { | |
250 | #ifdef CONFIG_SMP | |
3691c519 | 251 | base->running_timer = timer; |
1da177e4 LT |
252 | #endif |
253 | } | |
254 | ||
a6fa8e5a | 255 | static void internal_add_timer(struct tvec_base *base, struct timer_list *timer) |
1da177e4 LT |
256 | { |
257 | unsigned long expires = timer->expires; | |
258 | unsigned long idx = expires - base->timer_jiffies; | |
259 | struct list_head *vec; | |
260 | ||
261 | if (idx < TVR_SIZE) { | |
262 | int i = expires & TVR_MASK; | |
263 | vec = base->tv1.vec + i; | |
264 | } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { | |
265 | int i = (expires >> TVR_BITS) & TVN_MASK; | |
266 | vec = base->tv2.vec + i; | |
267 | } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { | |
268 | int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; | |
269 | vec = base->tv3.vec + i; | |
270 | } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { | |
271 | int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; | |
272 | vec = base->tv4.vec + i; | |
273 | } else if ((signed long) idx < 0) { | |
274 | /* | |
275 | * Can happen if you add a timer with expires == jiffies, | |
276 | * or you set a timer to go off in the past | |
277 | */ | |
278 | vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); | |
279 | } else { | |
280 | int i; | |
281 | /* If the timeout is larger than 0xffffffff on 64-bit | |
282 | * architectures then we use the maximum timeout: | |
283 | */ | |
284 | if (idx > 0xffffffffUL) { | |
285 | idx = 0xffffffffUL; | |
286 | expires = idx + base->timer_jiffies; | |
287 | } | |
288 | i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; | |
289 | vec = base->tv5.vec + i; | |
290 | } | |
291 | /* | |
292 | * Timers are FIFO: | |
293 | */ | |
294 | list_add_tail(&timer->entry, vec); | |
295 | } | |
296 | ||
82f67cd9 IM |
297 | #ifdef CONFIG_TIMER_STATS |
298 | void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr) | |
299 | { | |
300 | if (timer->start_site) | |
301 | return; | |
302 | ||
303 | timer->start_site = addr; | |
304 | memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); | |
305 | timer->start_pid = current->pid; | |
306 | } | |
c5c061b8 VP |
307 | |
308 | static void timer_stats_account_timer(struct timer_list *timer) | |
309 | { | |
310 | unsigned int flag = 0; | |
311 | ||
312 | if (unlikely(tbase_get_deferrable(timer->base))) | |
313 | flag |= TIMER_STATS_FLAG_DEFERRABLE; | |
314 | ||
315 | timer_stats_update_stats(timer, timer->start_pid, timer->start_site, | |
316 | timer->function, timer->start_comm, flag); | |
317 | } | |
318 | ||
319 | #else | |
320 | static void timer_stats_account_timer(struct timer_list *timer) {} | |
82f67cd9 IM |
321 | #endif |
322 | ||
c6f3a97f TG |
323 | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS |
324 | ||
325 | static struct debug_obj_descr timer_debug_descr; | |
326 | ||
327 | /* | |
328 | * fixup_init is called when: | |
329 | * - an active object is initialized | |
55c888d6 | 330 | */ |
c6f3a97f TG |
331 | static int timer_fixup_init(void *addr, enum debug_obj_state state) |
332 | { | |
333 | struct timer_list *timer = addr; | |
334 | ||
335 | switch (state) { | |
336 | case ODEBUG_STATE_ACTIVE: | |
337 | del_timer_sync(timer); | |
338 | debug_object_init(timer, &timer_debug_descr); | |
339 | return 1; | |
340 | default: | |
341 | return 0; | |
342 | } | |
343 | } | |
344 | ||
345 | /* | |
346 | * fixup_activate is called when: | |
347 | * - an active object is activated | |
348 | * - an unknown object is activated (might be a statically initialized object) | |
349 | */ | |
350 | static int timer_fixup_activate(void *addr, enum debug_obj_state state) | |
351 | { | |
352 | struct timer_list *timer = addr; | |
353 | ||
354 | switch (state) { | |
355 | ||
356 | case ODEBUG_STATE_NOTAVAILABLE: | |
357 | /* | |
358 | * This is not really a fixup. The timer was | |
359 | * statically initialized. We just make sure that it | |
360 | * is tracked in the object tracker. | |
361 | */ | |
362 | if (timer->entry.next == NULL && | |
363 | timer->entry.prev == TIMER_ENTRY_STATIC) { | |
364 | debug_object_init(timer, &timer_debug_descr); | |
365 | debug_object_activate(timer, &timer_debug_descr); | |
366 | return 0; | |
367 | } else { | |
368 | WARN_ON_ONCE(1); | |
369 | } | |
370 | return 0; | |
371 | ||
372 | case ODEBUG_STATE_ACTIVE: | |
373 | WARN_ON(1); | |
374 | ||
375 | default: | |
376 | return 0; | |
377 | } | |
378 | } | |
379 | ||
380 | /* | |
381 | * fixup_free is called when: | |
382 | * - an active object is freed | |
383 | */ | |
384 | static int timer_fixup_free(void *addr, enum debug_obj_state state) | |
385 | { | |
386 | struct timer_list *timer = addr; | |
387 | ||
388 | switch (state) { | |
389 | case ODEBUG_STATE_ACTIVE: | |
390 | del_timer_sync(timer); | |
391 | debug_object_free(timer, &timer_debug_descr); | |
392 | return 1; | |
393 | default: | |
394 | return 0; | |
395 | } | |
396 | } | |
397 | ||
398 | static struct debug_obj_descr timer_debug_descr = { | |
399 | .name = "timer_list", | |
400 | .fixup_init = timer_fixup_init, | |
401 | .fixup_activate = timer_fixup_activate, | |
402 | .fixup_free = timer_fixup_free, | |
403 | }; | |
404 | ||
405 | static inline void debug_timer_init(struct timer_list *timer) | |
406 | { | |
407 | debug_object_init(timer, &timer_debug_descr); | |
408 | } | |
409 | ||
410 | static inline void debug_timer_activate(struct timer_list *timer) | |
411 | { | |
412 | debug_object_activate(timer, &timer_debug_descr); | |
413 | } | |
414 | ||
415 | static inline void debug_timer_deactivate(struct timer_list *timer) | |
416 | { | |
417 | debug_object_deactivate(timer, &timer_debug_descr); | |
418 | } | |
419 | ||
420 | static inline void debug_timer_free(struct timer_list *timer) | |
421 | { | |
422 | debug_object_free(timer, &timer_debug_descr); | |
423 | } | |
424 | ||
425 | static void __init_timer(struct timer_list *timer); | |
426 | ||
427 | void init_timer_on_stack(struct timer_list *timer) | |
428 | { | |
429 | debug_object_init_on_stack(timer, &timer_debug_descr); | |
430 | __init_timer(timer); | |
431 | } | |
432 | EXPORT_SYMBOL_GPL(init_timer_on_stack); | |
433 | ||
434 | void destroy_timer_on_stack(struct timer_list *timer) | |
435 | { | |
436 | debug_object_free(timer, &timer_debug_descr); | |
437 | } | |
438 | EXPORT_SYMBOL_GPL(destroy_timer_on_stack); | |
439 | ||
440 | #else | |
441 | static inline void debug_timer_init(struct timer_list *timer) { } | |
442 | static inline void debug_timer_activate(struct timer_list *timer) { } | |
443 | static inline void debug_timer_deactivate(struct timer_list *timer) { } | |
444 | #endif | |
445 | ||
446 | static void __init_timer(struct timer_list *timer) | |
55c888d6 ON |
447 | { |
448 | timer->entry.next = NULL; | |
bfe5d834 | 449 | timer->base = __raw_get_cpu_var(tvec_bases); |
82f67cd9 IM |
450 | #ifdef CONFIG_TIMER_STATS |
451 | timer->start_site = NULL; | |
452 | timer->start_pid = -1; | |
453 | memset(timer->start_comm, 0, TASK_COMM_LEN); | |
454 | #endif | |
55c888d6 | 455 | } |
c6f3a97f TG |
456 | |
457 | /** | |
458 | * init_timer - initialize a timer. | |
459 | * @timer: the timer to be initialized | |
460 | * | |
461 | * init_timer() must be done to a timer prior calling *any* of the | |
462 | * other timer functions. | |
463 | */ | |
464 | void init_timer(struct timer_list *timer) | |
465 | { | |
466 | debug_timer_init(timer); | |
467 | __init_timer(timer); | |
468 | } | |
55c888d6 ON |
469 | EXPORT_SYMBOL(init_timer); |
470 | ||
7ad5b3a5 | 471 | void init_timer_deferrable(struct timer_list *timer) |
6e453a67 VP |
472 | { |
473 | init_timer(timer); | |
474 | timer_set_deferrable(timer); | |
475 | } | |
476 | EXPORT_SYMBOL(init_timer_deferrable); | |
477 | ||
55c888d6 | 478 | static inline void detach_timer(struct timer_list *timer, |
82f67cd9 | 479 | int clear_pending) |
55c888d6 ON |
480 | { |
481 | struct list_head *entry = &timer->entry; | |
482 | ||
c6f3a97f TG |
483 | debug_timer_deactivate(timer); |
484 | ||
55c888d6 ON |
485 | __list_del(entry->prev, entry->next); |
486 | if (clear_pending) | |
487 | entry->next = NULL; | |
488 | entry->prev = LIST_POISON2; | |
489 | } | |
490 | ||
491 | /* | |
3691c519 | 492 | * We are using hashed locking: holding per_cpu(tvec_bases).lock |
55c888d6 ON |
493 | * means that all timers which are tied to this base via timer->base are |
494 | * locked, and the base itself is locked too. | |
495 | * | |
496 | * So __run_timers/migrate_timers can safely modify all timers which could | |
497 | * be found on ->tvX lists. | |
498 | * | |
499 | * When the timer's base is locked, and the timer removed from list, it is | |
500 | * possible to set timer->base = NULL and drop the lock: the timer remains | |
501 | * locked. | |
502 | */ | |
a6fa8e5a | 503 | static struct tvec_base *lock_timer_base(struct timer_list *timer, |
55c888d6 | 504 | unsigned long *flags) |
89e7e374 | 505 | __acquires(timer->base->lock) |
55c888d6 | 506 | { |
a6fa8e5a | 507 | struct tvec_base *base; |
55c888d6 ON |
508 | |
509 | for (;;) { | |
a6fa8e5a | 510 | struct tvec_base *prelock_base = timer->base; |
6e453a67 | 511 | base = tbase_get_base(prelock_base); |
55c888d6 ON |
512 | if (likely(base != NULL)) { |
513 | spin_lock_irqsave(&base->lock, *flags); | |
6e453a67 | 514 | if (likely(prelock_base == timer->base)) |
55c888d6 ON |
515 | return base; |
516 | /* The timer has migrated to another CPU */ | |
517 | spin_unlock_irqrestore(&base->lock, *flags); | |
518 | } | |
519 | cpu_relax(); | |
520 | } | |
521 | } | |
522 | ||
1da177e4 LT |
523 | int __mod_timer(struct timer_list *timer, unsigned long expires) |
524 | { | |
a6fa8e5a | 525 | struct tvec_base *base, *new_base; |
1da177e4 LT |
526 | unsigned long flags; |
527 | int ret = 0; | |
528 | ||
82f67cd9 | 529 | timer_stats_timer_set_start_info(timer); |
1da177e4 | 530 | BUG_ON(!timer->function); |
1da177e4 | 531 | |
55c888d6 ON |
532 | base = lock_timer_base(timer, &flags); |
533 | ||
534 | if (timer_pending(timer)) { | |
535 | detach_timer(timer, 0); | |
536 | ret = 1; | |
537 | } | |
538 | ||
c6f3a97f TG |
539 | debug_timer_activate(timer); |
540 | ||
a4a6198b | 541 | new_base = __get_cpu_var(tvec_bases); |
1da177e4 | 542 | |
3691c519 | 543 | if (base != new_base) { |
1da177e4 | 544 | /* |
55c888d6 ON |
545 | * We are trying to schedule the timer on the local CPU. |
546 | * However we can't change timer's base while it is running, | |
547 | * otherwise del_timer_sync() can't detect that the timer's | |
548 | * handler yet has not finished. This also guarantees that | |
549 | * the timer is serialized wrt itself. | |
1da177e4 | 550 | */ |
a2c348fe | 551 | if (likely(base->running_timer != timer)) { |
55c888d6 | 552 | /* See the comment in lock_timer_base() */ |
6e453a67 | 553 | timer_set_base(timer, NULL); |
55c888d6 | 554 | spin_unlock(&base->lock); |
a2c348fe ON |
555 | base = new_base; |
556 | spin_lock(&base->lock); | |
6e453a67 | 557 | timer_set_base(timer, base); |
1da177e4 LT |
558 | } |
559 | } | |
560 | ||
1da177e4 | 561 | timer->expires = expires; |
a2c348fe ON |
562 | internal_add_timer(base, timer); |
563 | spin_unlock_irqrestore(&base->lock, flags); | |
1da177e4 LT |
564 | |
565 | return ret; | |
566 | } | |
567 | ||
568 | EXPORT_SYMBOL(__mod_timer); | |
569 | ||
2aae4a10 | 570 | /** |
1da177e4 LT |
571 | * add_timer_on - start a timer on a particular CPU |
572 | * @timer: the timer to be added | |
573 | * @cpu: the CPU to start it on | |
574 | * | |
575 | * This is not very scalable on SMP. Double adds are not possible. | |
576 | */ | |
577 | void add_timer_on(struct timer_list *timer, int cpu) | |
578 | { | |
a6fa8e5a | 579 | struct tvec_base *base = per_cpu(tvec_bases, cpu); |
6819457d | 580 | unsigned long flags; |
55c888d6 | 581 | |
82f67cd9 | 582 | timer_stats_timer_set_start_info(timer); |
6819457d | 583 | BUG_ON(timer_pending(timer) || !timer->function); |
3691c519 | 584 | spin_lock_irqsave(&base->lock, flags); |
6e453a67 | 585 | timer_set_base(timer, base); |
c6f3a97f | 586 | debug_timer_activate(timer); |
1da177e4 | 587 | internal_add_timer(base, timer); |
06d8308c TG |
588 | /* |
589 | * Check whether the other CPU is idle and needs to be | |
590 | * triggered to reevaluate the timer wheel when nohz is | |
591 | * active. We are protected against the other CPU fiddling | |
592 | * with the timer by holding the timer base lock. This also | |
593 | * makes sure that a CPU on the way to idle can not evaluate | |
594 | * the timer wheel. | |
595 | */ | |
596 | wake_up_idle_cpu(cpu); | |
3691c519 | 597 | spin_unlock_irqrestore(&base->lock, flags); |
1da177e4 LT |
598 | } |
599 | ||
2aae4a10 | 600 | /** |
1da177e4 LT |
601 | * mod_timer - modify a timer's timeout |
602 | * @timer: the timer to be modified | |
2aae4a10 | 603 | * @expires: new timeout in jiffies |
1da177e4 | 604 | * |
72fd4a35 | 605 | * mod_timer() is a more efficient way to update the expire field of an |
1da177e4 LT |
606 | * active timer (if the timer is inactive it will be activated) |
607 | * | |
608 | * mod_timer(timer, expires) is equivalent to: | |
609 | * | |
610 | * del_timer(timer); timer->expires = expires; add_timer(timer); | |
611 | * | |
612 | * Note that if there are multiple unserialized concurrent users of the | |
613 | * same timer, then mod_timer() is the only safe way to modify the timeout, | |
614 | * since add_timer() cannot modify an already running timer. | |
615 | * | |
616 | * The function returns whether it has modified a pending timer or not. | |
617 | * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an | |
618 | * active timer returns 1.) | |
619 | */ | |
620 | int mod_timer(struct timer_list *timer, unsigned long expires) | |
621 | { | |
622 | BUG_ON(!timer->function); | |
623 | ||
82f67cd9 | 624 | timer_stats_timer_set_start_info(timer); |
1da177e4 LT |
625 | /* |
626 | * This is a common optimization triggered by the | |
627 | * networking code - if the timer is re-modified | |
628 | * to be the same thing then just return: | |
629 | */ | |
630 | if (timer->expires == expires && timer_pending(timer)) | |
631 | return 1; | |
632 | ||
633 | return __mod_timer(timer, expires); | |
634 | } | |
635 | ||
636 | EXPORT_SYMBOL(mod_timer); | |
637 | ||
2aae4a10 | 638 | /** |
1da177e4 LT |
639 | * del_timer - deactive a timer. |
640 | * @timer: the timer to be deactivated | |
641 | * | |
642 | * del_timer() deactivates a timer - this works on both active and inactive | |
643 | * timers. | |
644 | * | |
645 | * The function returns whether it has deactivated a pending timer or not. | |
646 | * (ie. del_timer() of an inactive timer returns 0, del_timer() of an | |
647 | * active timer returns 1.) | |
648 | */ | |
649 | int del_timer(struct timer_list *timer) | |
650 | { | |
a6fa8e5a | 651 | struct tvec_base *base; |
1da177e4 | 652 | unsigned long flags; |
55c888d6 | 653 | int ret = 0; |
1da177e4 | 654 | |
82f67cd9 | 655 | timer_stats_timer_clear_start_info(timer); |
55c888d6 ON |
656 | if (timer_pending(timer)) { |
657 | base = lock_timer_base(timer, &flags); | |
658 | if (timer_pending(timer)) { | |
659 | detach_timer(timer, 1); | |
660 | ret = 1; | |
661 | } | |
1da177e4 | 662 | spin_unlock_irqrestore(&base->lock, flags); |
1da177e4 | 663 | } |
1da177e4 | 664 | |
55c888d6 | 665 | return ret; |
1da177e4 LT |
666 | } |
667 | ||
668 | EXPORT_SYMBOL(del_timer); | |
669 | ||
670 | #ifdef CONFIG_SMP | |
2aae4a10 REB |
671 | /** |
672 | * try_to_del_timer_sync - Try to deactivate a timer | |
673 | * @timer: timer do del | |
674 | * | |
fd450b73 ON |
675 | * This function tries to deactivate a timer. Upon successful (ret >= 0) |
676 | * exit the timer is not queued and the handler is not running on any CPU. | |
677 | * | |
678 | * It must not be called from interrupt contexts. | |
679 | */ | |
680 | int try_to_del_timer_sync(struct timer_list *timer) | |
681 | { | |
a6fa8e5a | 682 | struct tvec_base *base; |
fd450b73 ON |
683 | unsigned long flags; |
684 | int ret = -1; | |
685 | ||
686 | base = lock_timer_base(timer, &flags); | |
687 | ||
688 | if (base->running_timer == timer) | |
689 | goto out; | |
690 | ||
691 | ret = 0; | |
692 | if (timer_pending(timer)) { | |
693 | detach_timer(timer, 1); | |
694 | ret = 1; | |
695 | } | |
696 | out: | |
697 | spin_unlock_irqrestore(&base->lock, flags); | |
698 | ||
699 | return ret; | |
700 | } | |
701 | ||
e19dff1f DH |
702 | EXPORT_SYMBOL(try_to_del_timer_sync); |
703 | ||
2aae4a10 | 704 | /** |
1da177e4 LT |
705 | * del_timer_sync - deactivate a timer and wait for the handler to finish. |
706 | * @timer: the timer to be deactivated | |
707 | * | |
708 | * This function only differs from del_timer() on SMP: besides deactivating | |
709 | * the timer it also makes sure the handler has finished executing on other | |
710 | * CPUs. | |
711 | * | |
72fd4a35 | 712 | * Synchronization rules: Callers must prevent restarting of the timer, |
1da177e4 LT |
713 | * otherwise this function is meaningless. It must not be called from |
714 | * interrupt contexts. The caller must not hold locks which would prevent | |
55c888d6 ON |
715 | * completion of the timer's handler. The timer's handler must not call |
716 | * add_timer_on(). Upon exit the timer is not queued and the handler is | |
717 | * not running on any CPU. | |
1da177e4 LT |
718 | * |
719 | * The function returns whether it has deactivated a pending timer or not. | |
1da177e4 LT |
720 | */ |
721 | int del_timer_sync(struct timer_list *timer) | |
722 | { | |
fd450b73 ON |
723 | for (;;) { |
724 | int ret = try_to_del_timer_sync(timer); | |
725 | if (ret >= 0) | |
726 | return ret; | |
a0009652 | 727 | cpu_relax(); |
fd450b73 | 728 | } |
1da177e4 | 729 | } |
1da177e4 | 730 | |
55c888d6 | 731 | EXPORT_SYMBOL(del_timer_sync); |
1da177e4 LT |
732 | #endif |
733 | ||
a6fa8e5a | 734 | static int cascade(struct tvec_base *base, struct tvec *tv, int index) |
1da177e4 LT |
735 | { |
736 | /* cascade all the timers from tv up one level */ | |
3439dd86 P |
737 | struct timer_list *timer, *tmp; |
738 | struct list_head tv_list; | |
739 | ||
740 | list_replace_init(tv->vec + index, &tv_list); | |
1da177e4 | 741 | |
1da177e4 | 742 | /* |
3439dd86 P |
743 | * We are removing _all_ timers from the list, so we |
744 | * don't have to detach them individually. | |
1da177e4 | 745 | */ |
3439dd86 | 746 | list_for_each_entry_safe(timer, tmp, &tv_list, entry) { |
6e453a67 | 747 | BUG_ON(tbase_get_base(timer->base) != base); |
3439dd86 | 748 | internal_add_timer(base, timer); |
1da177e4 | 749 | } |
1da177e4 LT |
750 | |
751 | return index; | |
752 | } | |
753 | ||
2aae4a10 REB |
754 | #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK) |
755 | ||
756 | /** | |
1da177e4 LT |
757 | * __run_timers - run all expired timers (if any) on this CPU. |
758 | * @base: the timer vector to be processed. | |
759 | * | |
760 | * This function cascades all vectors and executes all expired timer | |
761 | * vectors. | |
762 | */ | |
a6fa8e5a | 763 | static inline void __run_timers(struct tvec_base *base) |
1da177e4 LT |
764 | { |
765 | struct timer_list *timer; | |
766 | ||
3691c519 | 767 | spin_lock_irq(&base->lock); |
1da177e4 | 768 | while (time_after_eq(jiffies, base->timer_jiffies)) { |
626ab0e6 | 769 | struct list_head work_list; |
1da177e4 | 770 | struct list_head *head = &work_list; |
6819457d | 771 | int index = base->timer_jiffies & TVR_MASK; |
626ab0e6 | 772 | |
1da177e4 LT |
773 | /* |
774 | * Cascade timers: | |
775 | */ | |
776 | if (!index && | |
777 | (!cascade(base, &base->tv2, INDEX(0))) && | |
778 | (!cascade(base, &base->tv3, INDEX(1))) && | |
779 | !cascade(base, &base->tv4, INDEX(2))) | |
780 | cascade(base, &base->tv5, INDEX(3)); | |
626ab0e6 ON |
781 | ++base->timer_jiffies; |
782 | list_replace_init(base->tv1.vec + index, &work_list); | |
55c888d6 | 783 | while (!list_empty(head)) { |
1da177e4 LT |
784 | void (*fn)(unsigned long); |
785 | unsigned long data; | |
786 | ||
b5e61818 | 787 | timer = list_first_entry(head, struct timer_list,entry); |
6819457d TG |
788 | fn = timer->function; |
789 | data = timer->data; | |
1da177e4 | 790 | |
82f67cd9 IM |
791 | timer_stats_account_timer(timer); |
792 | ||
1da177e4 | 793 | set_running_timer(base, timer); |
55c888d6 | 794 | detach_timer(timer, 1); |
3691c519 | 795 | spin_unlock_irq(&base->lock); |
1da177e4 | 796 | { |
be5b4fbd | 797 | int preempt_count = preempt_count(); |
1da177e4 LT |
798 | fn(data); |
799 | if (preempt_count != preempt_count()) { | |
4c9dc641 | 800 | printk(KERN_ERR "huh, entered %p " |
be5b4fbd JJ |
801 | "with preempt_count %08x, exited" |
802 | " with %08x?\n", | |
803 | fn, preempt_count, | |
804 | preempt_count()); | |
1da177e4 LT |
805 | BUG(); |
806 | } | |
807 | } | |
3691c519 | 808 | spin_lock_irq(&base->lock); |
1da177e4 LT |
809 | } |
810 | } | |
811 | set_running_timer(base, NULL); | |
3691c519 | 812 | spin_unlock_irq(&base->lock); |
1da177e4 LT |
813 | } |
814 | ||
fd064b9b | 815 | #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ) |
1da177e4 LT |
816 | /* |
817 | * Find out when the next timer event is due to happen. This | |
818 | * is used on S/390 to stop all activity when a cpus is idle. | |
819 | * This functions needs to be called disabled. | |
820 | */ | |
a6fa8e5a | 821 | static unsigned long __next_timer_interrupt(struct tvec_base *base) |
1da177e4 | 822 | { |
1cfd6849 | 823 | unsigned long timer_jiffies = base->timer_jiffies; |
eaad084b | 824 | unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA; |
1cfd6849 | 825 | int index, slot, array, found = 0; |
1da177e4 | 826 | struct timer_list *nte; |
a6fa8e5a | 827 | struct tvec *varray[4]; |
1da177e4 LT |
828 | |
829 | /* Look for timer events in tv1. */ | |
1cfd6849 | 830 | index = slot = timer_jiffies & TVR_MASK; |
1da177e4 | 831 | do { |
1cfd6849 | 832 | list_for_each_entry(nte, base->tv1.vec + slot, entry) { |
6819457d TG |
833 | if (tbase_get_deferrable(nte->base)) |
834 | continue; | |
6e453a67 | 835 | |
1cfd6849 | 836 | found = 1; |
1da177e4 | 837 | expires = nte->expires; |
1cfd6849 TG |
838 | /* Look at the cascade bucket(s)? */ |
839 | if (!index || slot < index) | |
840 | goto cascade; | |
841 | return expires; | |
1da177e4 | 842 | } |
1cfd6849 TG |
843 | slot = (slot + 1) & TVR_MASK; |
844 | } while (slot != index); | |
845 | ||
846 | cascade: | |
847 | /* Calculate the next cascade event */ | |
848 | if (index) | |
849 | timer_jiffies += TVR_SIZE - index; | |
850 | timer_jiffies >>= TVR_BITS; | |
1da177e4 LT |
851 | |
852 | /* Check tv2-tv5. */ | |
853 | varray[0] = &base->tv2; | |
854 | varray[1] = &base->tv3; | |
855 | varray[2] = &base->tv4; | |
856 | varray[3] = &base->tv5; | |
1cfd6849 TG |
857 | |
858 | for (array = 0; array < 4; array++) { | |
a6fa8e5a | 859 | struct tvec *varp = varray[array]; |
1cfd6849 TG |
860 | |
861 | index = slot = timer_jiffies & TVN_MASK; | |
1da177e4 | 862 | do { |
1cfd6849 TG |
863 | list_for_each_entry(nte, varp->vec + slot, entry) { |
864 | found = 1; | |
1da177e4 LT |
865 | if (time_before(nte->expires, expires)) |
866 | expires = nte->expires; | |
1cfd6849 TG |
867 | } |
868 | /* | |
869 | * Do we still search for the first timer or are | |
870 | * we looking up the cascade buckets ? | |
871 | */ | |
872 | if (found) { | |
873 | /* Look at the cascade bucket(s)? */ | |
874 | if (!index || slot < index) | |
875 | break; | |
876 | return expires; | |
877 | } | |
878 | slot = (slot + 1) & TVN_MASK; | |
879 | } while (slot != index); | |
880 | ||
881 | if (index) | |
882 | timer_jiffies += TVN_SIZE - index; | |
883 | timer_jiffies >>= TVN_BITS; | |
1da177e4 | 884 | } |
1cfd6849 TG |
885 | return expires; |
886 | } | |
69239749 | 887 | |
1cfd6849 TG |
888 | /* |
889 | * Check, if the next hrtimer event is before the next timer wheel | |
890 | * event: | |
891 | */ | |
892 | static unsigned long cmp_next_hrtimer_event(unsigned long now, | |
893 | unsigned long expires) | |
894 | { | |
895 | ktime_t hr_delta = hrtimer_get_next_event(); | |
896 | struct timespec tsdelta; | |
9501b6cf | 897 | unsigned long delta; |
1cfd6849 TG |
898 | |
899 | if (hr_delta.tv64 == KTIME_MAX) | |
900 | return expires; | |
0662b713 | 901 | |
9501b6cf TG |
902 | /* |
903 | * Expired timer available, let it expire in the next tick | |
904 | */ | |
905 | if (hr_delta.tv64 <= 0) | |
906 | return now + 1; | |
69239749 | 907 | |
1cfd6849 | 908 | tsdelta = ktime_to_timespec(hr_delta); |
9501b6cf | 909 | delta = timespec_to_jiffies(&tsdelta); |
eaad084b TG |
910 | |
911 | /* | |
912 | * Limit the delta to the max value, which is checked in | |
913 | * tick_nohz_stop_sched_tick(): | |
914 | */ | |
915 | if (delta > NEXT_TIMER_MAX_DELTA) | |
916 | delta = NEXT_TIMER_MAX_DELTA; | |
917 | ||
9501b6cf TG |
918 | /* |
919 | * Take rounding errors in to account and make sure, that it | |
920 | * expires in the next tick. Otherwise we go into an endless | |
921 | * ping pong due to tick_nohz_stop_sched_tick() retriggering | |
922 | * the timer softirq | |
923 | */ | |
924 | if (delta < 1) | |
925 | delta = 1; | |
926 | now += delta; | |
1cfd6849 TG |
927 | if (time_before(now, expires)) |
928 | return now; | |
1da177e4 LT |
929 | return expires; |
930 | } | |
1cfd6849 TG |
931 | |
932 | /** | |
8dce39c2 | 933 | * get_next_timer_interrupt - return the jiffy of the next pending timer |
05fb6bf0 | 934 | * @now: current time (in jiffies) |
1cfd6849 | 935 | */ |
fd064b9b | 936 | unsigned long get_next_timer_interrupt(unsigned long now) |
1cfd6849 | 937 | { |
a6fa8e5a | 938 | struct tvec_base *base = __get_cpu_var(tvec_bases); |
fd064b9b | 939 | unsigned long expires; |
1cfd6849 TG |
940 | |
941 | spin_lock(&base->lock); | |
942 | expires = __next_timer_interrupt(base); | |
943 | spin_unlock(&base->lock); | |
944 | ||
945 | if (time_before_eq(expires, now)) | |
946 | return now; | |
947 | ||
948 | return cmp_next_hrtimer_event(now, expires); | |
949 | } | |
fd064b9b TG |
950 | |
951 | #ifdef CONFIG_NO_IDLE_HZ | |
952 | unsigned long next_timer_interrupt(void) | |
953 | { | |
954 | return get_next_timer_interrupt(jiffies); | |
955 | } | |
956 | #endif | |
957 | ||
1da177e4 LT |
958 | #endif |
959 | ||
fa13a5a1 PM |
960 | #ifndef CONFIG_VIRT_CPU_ACCOUNTING |
961 | void account_process_tick(struct task_struct *p, int user_tick) | |
962 | { | |
06b8e878 MN |
963 | cputime_t one_jiffy = jiffies_to_cputime(1); |
964 | ||
fa13a5a1 | 965 | if (user_tick) { |
06b8e878 MN |
966 | account_user_time(p, one_jiffy); |
967 | account_user_time_scaled(p, cputime_to_scaled(one_jiffy)); | |
fa13a5a1 | 968 | } else { |
06b8e878 MN |
969 | account_system_time(p, HARDIRQ_OFFSET, one_jiffy); |
970 | account_system_time_scaled(p, cputime_to_scaled(one_jiffy)); | |
fa13a5a1 PM |
971 | } |
972 | } | |
973 | #endif | |
974 | ||
1da177e4 | 975 | /* |
5b4db0c2 | 976 | * Called from the timer interrupt handler to charge one tick to the current |
1da177e4 LT |
977 | * process. user_tick is 1 if the tick is user time, 0 for system. |
978 | */ | |
979 | void update_process_times(int user_tick) | |
980 | { | |
981 | struct task_struct *p = current; | |
982 | int cpu = smp_processor_id(); | |
983 | ||
984 | /* Note: this timer irq context must be accounted for as well. */ | |
fa13a5a1 | 985 | account_process_tick(p, user_tick); |
1da177e4 LT |
986 | run_local_timers(); |
987 | if (rcu_pending(cpu)) | |
988 | rcu_check_callbacks(cpu, user_tick); | |
989 | scheduler_tick(); | |
6819457d | 990 | run_posix_cpu_timers(p); |
1da177e4 LT |
991 | } |
992 | ||
993 | /* | |
994 | * Nr of active tasks - counted in fixed-point numbers | |
995 | */ | |
996 | static unsigned long count_active_tasks(void) | |
997 | { | |
db1b1fef | 998 | return nr_active() * FIXED_1; |
1da177e4 LT |
999 | } |
1000 | ||
1001 | /* | |
1002 | * Hmm.. Changed this, as the GNU make sources (load.c) seems to | |
1003 | * imply that avenrun[] is the standard name for this kind of thing. | |
1004 | * Nothing else seems to be standardized: the fractional size etc | |
1005 | * all seem to differ on different machines. | |
1006 | * | |
1007 | * Requires xtime_lock to access. | |
1008 | */ | |
1009 | unsigned long avenrun[3]; | |
1010 | ||
1011 | EXPORT_SYMBOL(avenrun); | |
1012 | ||
1013 | /* | |
1014 | * calc_load - given tick count, update the avenrun load estimates. | |
1015 | * This is called while holding a write_lock on xtime_lock. | |
1016 | */ | |
1017 | static inline void calc_load(unsigned long ticks) | |
1018 | { | |
1019 | unsigned long active_tasks; /* fixed-point */ | |
1020 | static int count = LOAD_FREQ; | |
1021 | ||
cd7175ed ED |
1022 | count -= ticks; |
1023 | if (unlikely(count < 0)) { | |
1024 | active_tasks = count_active_tasks(); | |
1025 | do { | |
1026 | CALC_LOAD(avenrun[0], EXP_1, active_tasks); | |
1027 | CALC_LOAD(avenrun[1], EXP_5, active_tasks); | |
1028 | CALC_LOAD(avenrun[2], EXP_15, active_tasks); | |
1029 | count += LOAD_FREQ; | |
1030 | } while (count < 0); | |
1da177e4 LT |
1031 | } |
1032 | } | |
1033 | ||
1da177e4 LT |
1034 | /* |
1035 | * This function runs timers and the timer-tq in bottom half context. | |
1036 | */ | |
1037 | static void run_timer_softirq(struct softirq_action *h) | |
1038 | { | |
a6fa8e5a | 1039 | struct tvec_base *base = __get_cpu_var(tvec_bases); |
1da177e4 | 1040 | |
d3d74453 | 1041 | hrtimer_run_pending(); |
82f67cd9 | 1042 | |
1da177e4 LT |
1043 | if (time_after_eq(jiffies, base->timer_jiffies)) |
1044 | __run_timers(base); | |
1045 | } | |
1046 | ||
1047 | /* | |
1048 | * Called by the local, per-CPU timer interrupt on SMP. | |
1049 | */ | |
1050 | void run_local_timers(void) | |
1051 | { | |
d3d74453 | 1052 | hrtimer_run_queues(); |
1da177e4 | 1053 | raise_softirq(TIMER_SOFTIRQ); |
6687a97d | 1054 | softlockup_tick(); |
1da177e4 LT |
1055 | } |
1056 | ||
1057 | /* | |
1058 | * Called by the timer interrupt. xtime_lock must already be taken | |
1059 | * by the timer IRQ! | |
1060 | */ | |
3171a030 | 1061 | static inline void update_times(unsigned long ticks) |
1da177e4 | 1062 | { |
ad596171 | 1063 | update_wall_time(); |
1da177e4 LT |
1064 | calc_load(ticks); |
1065 | } | |
6819457d | 1066 | |
1da177e4 LT |
1067 | /* |
1068 | * The 64-bit jiffies value is not atomic - you MUST NOT read it | |
1069 | * without sampling the sequence number in xtime_lock. | |
1070 | * jiffies is defined in the linker script... | |
1071 | */ | |
1072 | ||
3171a030 | 1073 | void do_timer(unsigned long ticks) |
1da177e4 | 1074 | { |
3171a030 AN |
1075 | jiffies_64 += ticks; |
1076 | update_times(ticks); | |
1da177e4 LT |
1077 | } |
1078 | ||
1079 | #ifdef __ARCH_WANT_SYS_ALARM | |
1080 | ||
1081 | /* | |
1082 | * For backwards compatibility? This can be done in libc so Alpha | |
1083 | * and all newer ports shouldn't need it. | |
1084 | */ | |
1085 | asmlinkage unsigned long sys_alarm(unsigned int seconds) | |
1086 | { | |
c08b8a49 | 1087 | return alarm_setitimer(seconds); |
1da177e4 LT |
1088 | } |
1089 | ||
1090 | #endif | |
1091 | ||
1092 | #ifndef __alpha__ | |
1093 | ||
1094 | /* | |
1095 | * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this | |
1096 | * should be moved into arch/i386 instead? | |
1097 | */ | |
1098 | ||
1099 | /** | |
1100 | * sys_getpid - return the thread group id of the current process | |
1101 | * | |
1102 | * Note, despite the name, this returns the tgid not the pid. The tgid and | |
1103 | * the pid are identical unless CLONE_THREAD was specified on clone() in | |
1104 | * which case the tgid is the same in all threads of the same group. | |
1105 | * | |
1106 | * This is SMP safe as current->tgid does not change. | |
1107 | */ | |
1108 | asmlinkage long sys_getpid(void) | |
1109 | { | |
b488893a | 1110 | return task_tgid_vnr(current); |
1da177e4 LT |
1111 | } |
1112 | ||
1113 | /* | |
6997a6fa KK |
1114 | * Accessing ->real_parent is not SMP-safe, it could |
1115 | * change from under us. However, we can use a stale | |
1116 | * value of ->real_parent under rcu_read_lock(), see | |
1117 | * release_task()->call_rcu(delayed_put_task_struct). | |
1da177e4 LT |
1118 | */ |
1119 | asmlinkage long sys_getppid(void) | |
1120 | { | |
1121 | int pid; | |
1da177e4 | 1122 | |
6997a6fa | 1123 | rcu_read_lock(); |
6c5f3e7b | 1124 | pid = task_tgid_vnr(current->real_parent); |
6997a6fa | 1125 | rcu_read_unlock(); |
1da177e4 | 1126 | |
1da177e4 LT |
1127 | return pid; |
1128 | } | |
1129 | ||
1130 | asmlinkage long sys_getuid(void) | |
1131 | { | |
1132 | /* Only we change this so SMP safe */ | |
1133 | return current->uid; | |
1134 | } | |
1135 | ||
1136 | asmlinkage long sys_geteuid(void) | |
1137 | { | |
1138 | /* Only we change this so SMP safe */ | |
1139 | return current->euid; | |
1140 | } | |
1141 | ||
1142 | asmlinkage long sys_getgid(void) | |
1143 | { | |
1144 | /* Only we change this so SMP safe */ | |
1145 | return current->gid; | |
1146 | } | |
1147 | ||
1148 | asmlinkage long sys_getegid(void) | |
1149 | { | |
1150 | /* Only we change this so SMP safe */ | |
1151 | return current->egid; | |
1152 | } | |
1153 | ||
1154 | #endif | |
1155 | ||
1156 | static void process_timeout(unsigned long __data) | |
1157 | { | |
36c8b586 | 1158 | wake_up_process((struct task_struct *)__data); |
1da177e4 LT |
1159 | } |
1160 | ||
1161 | /** | |
1162 | * schedule_timeout - sleep until timeout | |
1163 | * @timeout: timeout value in jiffies | |
1164 | * | |
1165 | * Make the current task sleep until @timeout jiffies have | |
1166 | * elapsed. The routine will return immediately unless | |
1167 | * the current task state has been set (see set_current_state()). | |
1168 | * | |
1169 | * You can set the task state as follows - | |
1170 | * | |
1171 | * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to | |
1172 | * pass before the routine returns. The routine will return 0 | |
1173 | * | |
1174 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | |
1175 | * delivered to the current task. In this case the remaining time | |
1176 | * in jiffies will be returned, or 0 if the timer expired in time | |
1177 | * | |
1178 | * The current task state is guaranteed to be TASK_RUNNING when this | |
1179 | * routine returns. | |
1180 | * | |
1181 | * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule | |
1182 | * the CPU away without a bound on the timeout. In this case the return | |
1183 | * value will be %MAX_SCHEDULE_TIMEOUT. | |
1184 | * | |
1185 | * In all cases the return value is guaranteed to be non-negative. | |
1186 | */ | |
7ad5b3a5 | 1187 | signed long __sched schedule_timeout(signed long timeout) |
1da177e4 LT |
1188 | { |
1189 | struct timer_list timer; | |
1190 | unsigned long expire; | |
1191 | ||
1192 | switch (timeout) | |
1193 | { | |
1194 | case MAX_SCHEDULE_TIMEOUT: | |
1195 | /* | |
1196 | * These two special cases are useful to be comfortable | |
1197 | * in the caller. Nothing more. We could take | |
1198 | * MAX_SCHEDULE_TIMEOUT from one of the negative value | |
1199 | * but I' d like to return a valid offset (>=0) to allow | |
1200 | * the caller to do everything it want with the retval. | |
1201 | */ | |
1202 | schedule(); | |
1203 | goto out; | |
1204 | default: | |
1205 | /* | |
1206 | * Another bit of PARANOID. Note that the retval will be | |
1207 | * 0 since no piece of kernel is supposed to do a check | |
1208 | * for a negative retval of schedule_timeout() (since it | |
1209 | * should never happens anyway). You just have the printk() | |
1210 | * that will tell you if something is gone wrong and where. | |
1211 | */ | |
5b149bcc | 1212 | if (timeout < 0) { |
1da177e4 | 1213 | printk(KERN_ERR "schedule_timeout: wrong timeout " |
5b149bcc AM |
1214 | "value %lx\n", timeout); |
1215 | dump_stack(); | |
1da177e4 LT |
1216 | current->state = TASK_RUNNING; |
1217 | goto out; | |
1218 | } | |
1219 | } | |
1220 | ||
1221 | expire = timeout + jiffies; | |
1222 | ||
c6f3a97f | 1223 | setup_timer_on_stack(&timer, process_timeout, (unsigned long)current); |
a8db2db1 | 1224 | __mod_timer(&timer, expire); |
1da177e4 LT |
1225 | schedule(); |
1226 | del_singleshot_timer_sync(&timer); | |
1227 | ||
c6f3a97f TG |
1228 | /* Remove the timer from the object tracker */ |
1229 | destroy_timer_on_stack(&timer); | |
1230 | ||
1da177e4 LT |
1231 | timeout = expire - jiffies; |
1232 | ||
1233 | out: | |
1234 | return timeout < 0 ? 0 : timeout; | |
1235 | } | |
1da177e4 LT |
1236 | EXPORT_SYMBOL(schedule_timeout); |
1237 | ||
8a1c1757 AM |
1238 | /* |
1239 | * We can use __set_current_state() here because schedule_timeout() calls | |
1240 | * schedule() unconditionally. | |
1241 | */ | |
64ed93a2 NA |
1242 | signed long __sched schedule_timeout_interruptible(signed long timeout) |
1243 | { | |
a5a0d52c AM |
1244 | __set_current_state(TASK_INTERRUPTIBLE); |
1245 | return schedule_timeout(timeout); | |
64ed93a2 NA |
1246 | } |
1247 | EXPORT_SYMBOL(schedule_timeout_interruptible); | |
1248 | ||
294d5cc2 MW |
1249 | signed long __sched schedule_timeout_killable(signed long timeout) |
1250 | { | |
1251 | __set_current_state(TASK_KILLABLE); | |
1252 | return schedule_timeout(timeout); | |
1253 | } | |
1254 | EXPORT_SYMBOL(schedule_timeout_killable); | |
1255 | ||
64ed93a2 NA |
1256 | signed long __sched schedule_timeout_uninterruptible(signed long timeout) |
1257 | { | |
a5a0d52c AM |
1258 | __set_current_state(TASK_UNINTERRUPTIBLE); |
1259 | return schedule_timeout(timeout); | |
64ed93a2 NA |
1260 | } |
1261 | EXPORT_SYMBOL(schedule_timeout_uninterruptible); | |
1262 | ||
1da177e4 LT |
1263 | /* Thread ID - the internal kernel "pid" */ |
1264 | asmlinkage long sys_gettid(void) | |
1265 | { | |
b488893a | 1266 | return task_pid_vnr(current); |
1da177e4 LT |
1267 | } |
1268 | ||
2aae4a10 | 1269 | /** |
d4d23add | 1270 | * do_sysinfo - fill in sysinfo struct |
2aae4a10 | 1271 | * @info: pointer to buffer to fill |
6819457d | 1272 | */ |
d4d23add | 1273 | int do_sysinfo(struct sysinfo *info) |
1da177e4 | 1274 | { |
1da177e4 LT |
1275 | unsigned long mem_total, sav_total; |
1276 | unsigned int mem_unit, bitcount; | |
1277 | unsigned long seq; | |
1278 | ||
d4d23add | 1279 | memset(info, 0, sizeof(struct sysinfo)); |
1da177e4 LT |
1280 | |
1281 | do { | |
1282 | struct timespec tp; | |
1283 | seq = read_seqbegin(&xtime_lock); | |
1284 | ||
1285 | /* | |
1286 | * This is annoying. The below is the same thing | |
1287 | * posix_get_clock_monotonic() does, but it wants to | |
1288 | * take the lock which we want to cover the loads stuff | |
1289 | * too. | |
1290 | */ | |
1291 | ||
1292 | getnstimeofday(&tp); | |
1293 | tp.tv_sec += wall_to_monotonic.tv_sec; | |
1294 | tp.tv_nsec += wall_to_monotonic.tv_nsec; | |
d6214141 | 1295 | monotonic_to_bootbased(&tp); |
1da177e4 LT |
1296 | if (tp.tv_nsec - NSEC_PER_SEC >= 0) { |
1297 | tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC; | |
1298 | tp.tv_sec++; | |
1299 | } | |
d4d23add | 1300 | info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); |
1da177e4 | 1301 | |
d4d23add KM |
1302 | info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT); |
1303 | info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT); | |
1304 | info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT); | |
1da177e4 | 1305 | |
d4d23add | 1306 | info->procs = nr_threads; |
1da177e4 LT |
1307 | } while (read_seqretry(&xtime_lock, seq)); |
1308 | ||
d4d23add KM |
1309 | si_meminfo(info); |
1310 | si_swapinfo(info); | |
1da177e4 LT |
1311 | |
1312 | /* | |
1313 | * If the sum of all the available memory (i.e. ram + swap) | |
1314 | * is less than can be stored in a 32 bit unsigned long then | |
1315 | * we can be binary compatible with 2.2.x kernels. If not, | |
1316 | * well, in that case 2.2.x was broken anyways... | |
1317 | * | |
1318 | * -Erik Andersen <[email protected]> | |
1319 | */ | |
1320 | ||
d4d23add KM |
1321 | mem_total = info->totalram + info->totalswap; |
1322 | if (mem_total < info->totalram || mem_total < info->totalswap) | |
1da177e4 LT |
1323 | goto out; |
1324 | bitcount = 0; | |
d4d23add | 1325 | mem_unit = info->mem_unit; |
1da177e4 LT |
1326 | while (mem_unit > 1) { |
1327 | bitcount++; | |
1328 | mem_unit >>= 1; | |
1329 | sav_total = mem_total; | |
1330 | mem_total <<= 1; | |
1331 | if (mem_total < sav_total) | |
1332 | goto out; | |
1333 | } | |
1334 | ||
1335 | /* | |
1336 | * If mem_total did not overflow, multiply all memory values by | |
d4d23add | 1337 | * info->mem_unit and set it to 1. This leaves things compatible |
1da177e4 LT |
1338 | * with 2.2.x, and also retains compatibility with earlier 2.4.x |
1339 | * kernels... | |
1340 | */ | |
1341 | ||
d4d23add KM |
1342 | info->mem_unit = 1; |
1343 | info->totalram <<= bitcount; | |
1344 | info->freeram <<= bitcount; | |
1345 | info->sharedram <<= bitcount; | |
1346 | info->bufferram <<= bitcount; | |
1347 | info->totalswap <<= bitcount; | |
1348 | info->freeswap <<= bitcount; | |
1349 | info->totalhigh <<= bitcount; | |
1350 | info->freehigh <<= bitcount; | |
1351 | ||
1352 | out: | |
1353 | return 0; | |
1354 | } | |
1355 | ||
1356 | asmlinkage long sys_sysinfo(struct sysinfo __user *info) | |
1357 | { | |
1358 | struct sysinfo val; | |
1359 | ||
1360 | do_sysinfo(&val); | |
1da177e4 | 1361 | |
1da177e4 LT |
1362 | if (copy_to_user(info, &val, sizeof(struct sysinfo))) |
1363 | return -EFAULT; | |
1364 | ||
1365 | return 0; | |
1366 | } | |
1367 | ||
b4be6258 | 1368 | static int __cpuinit init_timers_cpu(int cpu) |
1da177e4 LT |
1369 | { |
1370 | int j; | |
a6fa8e5a | 1371 | struct tvec_base *base; |
b4be6258 | 1372 | static char __cpuinitdata tvec_base_done[NR_CPUS]; |
55c888d6 | 1373 | |
ba6edfcd | 1374 | if (!tvec_base_done[cpu]) { |
a4a6198b JB |
1375 | static char boot_done; |
1376 | ||
a4a6198b | 1377 | if (boot_done) { |
ba6edfcd AM |
1378 | /* |
1379 | * The APs use this path later in boot | |
1380 | */ | |
94f6030c CL |
1381 | base = kmalloc_node(sizeof(*base), |
1382 | GFP_KERNEL | __GFP_ZERO, | |
a4a6198b JB |
1383 | cpu_to_node(cpu)); |
1384 | if (!base) | |
1385 | return -ENOMEM; | |
6e453a67 VP |
1386 | |
1387 | /* Make sure that tvec_base is 2 byte aligned */ | |
1388 | if (tbase_get_deferrable(base)) { | |
1389 | WARN_ON(1); | |
1390 | kfree(base); | |
1391 | return -ENOMEM; | |
1392 | } | |
ba6edfcd | 1393 | per_cpu(tvec_bases, cpu) = base; |
a4a6198b | 1394 | } else { |
ba6edfcd AM |
1395 | /* |
1396 | * This is for the boot CPU - we use compile-time | |
1397 | * static initialisation because per-cpu memory isn't | |
1398 | * ready yet and because the memory allocators are not | |
1399 | * initialised either. | |
1400 | */ | |
a4a6198b | 1401 | boot_done = 1; |
ba6edfcd | 1402 | base = &boot_tvec_bases; |
a4a6198b | 1403 | } |
ba6edfcd AM |
1404 | tvec_base_done[cpu] = 1; |
1405 | } else { | |
1406 | base = per_cpu(tvec_bases, cpu); | |
a4a6198b | 1407 | } |
ba6edfcd | 1408 | |
3691c519 | 1409 | spin_lock_init(&base->lock); |
d730e882 | 1410 | |
1da177e4 LT |
1411 | for (j = 0; j < TVN_SIZE; j++) { |
1412 | INIT_LIST_HEAD(base->tv5.vec + j); | |
1413 | INIT_LIST_HEAD(base->tv4.vec + j); | |
1414 | INIT_LIST_HEAD(base->tv3.vec + j); | |
1415 | INIT_LIST_HEAD(base->tv2.vec + j); | |
1416 | } | |
1417 | for (j = 0; j < TVR_SIZE; j++) | |
1418 | INIT_LIST_HEAD(base->tv1.vec + j); | |
1419 | ||
1420 | base->timer_jiffies = jiffies; | |
a4a6198b | 1421 | return 0; |
1da177e4 LT |
1422 | } |
1423 | ||
1424 | #ifdef CONFIG_HOTPLUG_CPU | |
a6fa8e5a | 1425 | static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head) |
1da177e4 LT |
1426 | { |
1427 | struct timer_list *timer; | |
1428 | ||
1429 | while (!list_empty(head)) { | |
b5e61818 | 1430 | timer = list_first_entry(head, struct timer_list, entry); |
55c888d6 | 1431 | detach_timer(timer, 0); |
6e453a67 | 1432 | timer_set_base(timer, new_base); |
1da177e4 | 1433 | internal_add_timer(new_base, timer); |
1da177e4 | 1434 | } |
1da177e4 LT |
1435 | } |
1436 | ||
48ccf3da | 1437 | static void __cpuinit migrate_timers(int cpu) |
1da177e4 | 1438 | { |
a6fa8e5a PM |
1439 | struct tvec_base *old_base; |
1440 | struct tvec_base *new_base; | |
1da177e4 LT |
1441 | int i; |
1442 | ||
1443 | BUG_ON(cpu_online(cpu)); | |
a4a6198b JB |
1444 | old_base = per_cpu(tvec_bases, cpu); |
1445 | new_base = get_cpu_var(tvec_bases); | |
1da177e4 LT |
1446 | |
1447 | local_irq_disable(); | |
0d180406 ON |
1448 | spin_lock(&new_base->lock); |
1449 | spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); | |
3691c519 ON |
1450 | |
1451 | BUG_ON(old_base->running_timer); | |
1da177e4 | 1452 | |
1da177e4 | 1453 | for (i = 0; i < TVR_SIZE; i++) |
55c888d6 ON |
1454 | migrate_timer_list(new_base, old_base->tv1.vec + i); |
1455 | for (i = 0; i < TVN_SIZE; i++) { | |
1456 | migrate_timer_list(new_base, old_base->tv2.vec + i); | |
1457 | migrate_timer_list(new_base, old_base->tv3.vec + i); | |
1458 | migrate_timer_list(new_base, old_base->tv4.vec + i); | |
1459 | migrate_timer_list(new_base, old_base->tv5.vec + i); | |
1460 | } | |
1461 | ||
0d180406 ON |
1462 | spin_unlock(&old_base->lock); |
1463 | spin_unlock(&new_base->lock); | |
1da177e4 LT |
1464 | local_irq_enable(); |
1465 | put_cpu_var(tvec_bases); | |
1da177e4 LT |
1466 | } |
1467 | #endif /* CONFIG_HOTPLUG_CPU */ | |
1468 | ||
8c78f307 | 1469 | static int __cpuinit timer_cpu_notify(struct notifier_block *self, |
1da177e4 LT |
1470 | unsigned long action, void *hcpu) |
1471 | { | |
1472 | long cpu = (long)hcpu; | |
1473 | switch(action) { | |
1474 | case CPU_UP_PREPARE: | |
8bb78442 | 1475 | case CPU_UP_PREPARE_FROZEN: |
a4a6198b JB |
1476 | if (init_timers_cpu(cpu) < 0) |
1477 | return NOTIFY_BAD; | |
1da177e4 LT |
1478 | break; |
1479 | #ifdef CONFIG_HOTPLUG_CPU | |
1480 | case CPU_DEAD: | |
8bb78442 | 1481 | case CPU_DEAD_FROZEN: |
1da177e4 LT |
1482 | migrate_timers(cpu); |
1483 | break; | |
1484 | #endif | |
1485 | default: | |
1486 | break; | |
1487 | } | |
1488 | return NOTIFY_OK; | |
1489 | } | |
1490 | ||
8c78f307 | 1491 | static struct notifier_block __cpuinitdata timers_nb = { |
1da177e4 LT |
1492 | .notifier_call = timer_cpu_notify, |
1493 | }; | |
1494 | ||
1495 | ||
1496 | void __init init_timers(void) | |
1497 | { | |
07dccf33 | 1498 | int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, |
1da177e4 | 1499 | (void *)(long)smp_processor_id()); |
07dccf33 | 1500 | |
82f67cd9 IM |
1501 | init_timer_stats(); |
1502 | ||
07dccf33 | 1503 | BUG_ON(err == NOTIFY_BAD); |
1da177e4 LT |
1504 | register_cpu_notifier(&timers_nb); |
1505 | open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL); | |
1506 | } | |
1507 | ||
1da177e4 LT |
1508 | /** |
1509 | * msleep - sleep safely even with waitqueue interruptions | |
1510 | * @msecs: Time in milliseconds to sleep for | |
1511 | */ | |
1512 | void msleep(unsigned int msecs) | |
1513 | { | |
1514 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | |
1515 | ||
75bcc8c5 NA |
1516 | while (timeout) |
1517 | timeout = schedule_timeout_uninterruptible(timeout); | |
1da177e4 LT |
1518 | } |
1519 | ||
1520 | EXPORT_SYMBOL(msleep); | |
1521 | ||
1522 | /** | |
96ec3efd | 1523 | * msleep_interruptible - sleep waiting for signals |
1da177e4 LT |
1524 | * @msecs: Time in milliseconds to sleep for |
1525 | */ | |
1526 | unsigned long msleep_interruptible(unsigned int msecs) | |
1527 | { | |
1528 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | |
1529 | ||
75bcc8c5 NA |
1530 | while (timeout && !signal_pending(current)) |
1531 | timeout = schedule_timeout_interruptible(timeout); | |
1da177e4 LT |
1532 | return jiffies_to_msecs(timeout); |
1533 | } | |
1534 | ||
1535 | EXPORT_SYMBOL(msleep_interruptible); |