]> Git Repo - linux.git/blame - drivers/md/dm-table.c
mm: use SWP_SYNCHRONOUS_IO more intelligently
[linux.git] / drivers / md / dm-table.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
d5816876 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
1da177e4
LT
4 *
5 * This file is released under the GPL.
6 */
7
4cc96131 8#include "dm-core.h"
1da177e4
LT
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
e7d2860b 15#include <linux/string.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/interrupt.h>
48c9c27b 18#include <linux/mutex.h>
d5816876 19#include <linux/delay.h>
60063497 20#include <linux/atomic.h>
bfebd1cd 21#include <linux/blk-mq.h>
644bda6f 22#include <linux/mount.h>
273752c9 23#include <linux/dax.h>
1da177e4 24
72d94861
AK
25#define DM_MSG_PREFIX "table"
26
1da177e4
LT
27#define MAX_DEPTH 16
28#define NODE_SIZE L1_CACHE_BYTES
29#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31
32struct dm_table {
1134e5ae 33 struct mapped_device *md;
7e0d574f 34 enum dm_queue_mode type;
1da177e4
LT
35
36 /* btree table */
37 unsigned int depth;
38 unsigned int counts[MAX_DEPTH]; /* in nodes */
39 sector_t *index[MAX_DEPTH];
40
41 unsigned int num_targets;
42 unsigned int num_allocated;
43 sector_t *highs;
44 struct dm_target *targets;
45
36a0456f 46 struct target_type *immutable_target_type;
e83068a5
MS
47
48 bool integrity_supported:1;
49 bool singleton:1;
9b4b5a79 50 unsigned integrity_added:1;
5ae89a87 51
1da177e4
LT
52 /*
53 * Indicates the rw permissions for the new logical
54 * device. This should be a combination of FMODE_READ
55 * and FMODE_WRITE.
56 */
aeb5d727 57 fmode_t mode;
1da177e4
LT
58
59 /* a list of devices used by this table */
60 struct list_head devices;
61
1da177e4
LT
62 /* events get handed up using this callback */
63 void (*event_fn)(void *);
64 void *event_context;
e6ee8c0b
KU
65
66 struct dm_md_mempools *mempools;
1da177e4
LT
67};
68
69/*
70 * Similar to ceiling(log_size(n))
71 */
72static unsigned int int_log(unsigned int n, unsigned int base)
73{
74 int result = 0;
75
76 while (n > 1) {
77 n = dm_div_up(n, base);
78 result++;
79 }
80
81 return result;
82}
83
1da177e4
LT
84/*
85 * Calculate the index of the child node of the n'th node k'th key.
86 */
87static inline unsigned int get_child(unsigned int n, unsigned int k)
88{
89 return (n * CHILDREN_PER_NODE) + k;
90}
91
92/*
93 * Return the n'th node of level l from table t.
94 */
95static inline sector_t *get_node(struct dm_table *t,
96 unsigned int l, unsigned int n)
97{
98 return t->index[l] + (n * KEYS_PER_NODE);
99}
100
101/*
102 * Return the highest key that you could lookup from the n'th
103 * node on level l of the btree.
104 */
105static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
106{
107 for (; l < t->depth - 1; l++)
108 n = get_child(n, CHILDREN_PER_NODE - 1);
109
110 if (n >= t->counts[l])
111 return (sector_t) - 1;
112
113 return get_node(t, l, n)[KEYS_PER_NODE - 1];
114}
115
116/*
117 * Fills in a level of the btree based on the highs of the level
118 * below it.
119 */
120static int setup_btree_index(unsigned int l, struct dm_table *t)
121{
122 unsigned int n, k;
123 sector_t *node;
124
125 for (n = 0U; n < t->counts[l]; n++) {
126 node = get_node(t, l, n);
127
128 for (k = 0U; k < KEYS_PER_NODE; k++)
129 node[k] = high(t, l + 1, get_child(n, k));
130 }
131
132 return 0;
133}
134
135void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
136{
137 unsigned long size;
138 void *addr;
139
140 /*
141 * Check that we're not going to overflow.
142 */
143 if (nmemb > (ULONG_MAX / elem_size))
144 return NULL;
145
146 size = nmemb * elem_size;
e29e65aa 147 addr = vzalloc(size);
1da177e4
LT
148
149 return addr;
150}
08649012 151EXPORT_SYMBOL(dm_vcalloc);
1da177e4
LT
152
153/*
154 * highs, and targets are managed as dynamic arrays during a
155 * table load.
156 */
157static int alloc_targets(struct dm_table *t, unsigned int num)
158{
159 sector_t *n_highs;
160 struct dm_target *n_targets;
1da177e4
LT
161
162 /*
163 * Allocate both the target array and offset array at once.
164 */
123d87d5 165 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
1da177e4
LT
166 sizeof(sector_t));
167 if (!n_highs)
168 return -ENOMEM;
169
170 n_targets = (struct dm_target *) (n_highs + num);
171
57a2f238 172 memset(n_highs, -1, sizeof(*n_highs) * num);
1da177e4
LT
173 vfree(t->highs);
174
175 t->num_allocated = num;
176 t->highs = n_highs;
177 t->targets = n_targets;
178
179 return 0;
180}
181
aeb5d727 182int dm_table_create(struct dm_table **result, fmode_t mode,
1134e5ae 183 unsigned num_targets, struct mapped_device *md)
1da177e4 184{
094262db 185 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
1da177e4
LT
186
187 if (!t)
188 return -ENOMEM;
189
1da177e4 190 INIT_LIST_HEAD(&t->devices);
1da177e4
LT
191
192 if (!num_targets)
193 num_targets = KEYS_PER_NODE;
194
195 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
196
5b2d0657
MP
197 if (!num_targets) {
198 kfree(t);
199 return -ENOMEM;
200 }
201
1da177e4
LT
202 if (alloc_targets(t, num_targets)) {
203 kfree(t);
1da177e4
LT
204 return -ENOMEM;
205 }
206
e83068a5 207 t->type = DM_TYPE_NONE;
1da177e4 208 t->mode = mode;
1134e5ae 209 t->md = md;
1da177e4
LT
210 *result = t;
211 return 0;
212}
213
86f1152b 214static void free_devices(struct list_head *devices, struct mapped_device *md)
1da177e4
LT
215{
216 struct list_head *tmp, *next;
217
afb24528 218 list_for_each_safe(tmp, next, devices) {
82b1519b
MP
219 struct dm_dev_internal *dd =
220 list_entry(tmp, struct dm_dev_internal, list);
86f1152b
BM
221 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
222 dm_device_name(md), dd->dm_dev->name);
223 dm_put_table_device(md, dd->dm_dev);
1da177e4
LT
224 kfree(dd);
225 }
226}
227
d5816876 228void dm_table_destroy(struct dm_table *t)
1da177e4
LT
229{
230 unsigned int i;
231
a7940155
AK
232 if (!t)
233 return;
234
26803b9f 235 /* free the indexes */
1da177e4
LT
236 if (t->depth >= 2)
237 vfree(t->index[t->depth - 2]);
238
239 /* free the targets */
240 for (i = 0; i < t->num_targets; i++) {
241 struct dm_target *tgt = t->targets + i;
242
243 if (tgt->type->dtr)
244 tgt->type->dtr(tgt);
245
246 dm_put_target_type(tgt->type);
247 }
248
249 vfree(t->highs);
250
251 /* free the device list */
86f1152b 252 free_devices(&t->devices, t->md);
1da177e4 253
e6ee8c0b
KU
254 dm_free_md_mempools(t->mempools);
255
1da177e4
LT
256 kfree(t);
257}
258
1da177e4
LT
259/*
260 * See if we've already got a device in the list.
261 */
82b1519b 262static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
1da177e4 263{
82b1519b 264 struct dm_dev_internal *dd;
1da177e4
LT
265
266 list_for_each_entry (dd, l, list)
86f1152b 267 if (dd->dm_dev->bdev->bd_dev == dev)
1da177e4
LT
268 return dd;
269
270 return NULL;
271}
272
1da177e4 273/*
f6a1ed10 274 * If possible, this checks an area of a destination device is invalid.
1da177e4 275 */
f6a1ed10
MP
276static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
277 sector_t start, sector_t len, void *data)
1da177e4 278{
754c5fc7
MS
279 struct queue_limits *limits = data;
280 struct block_device *bdev = dev->bdev;
281 sector_t dev_size =
282 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
02acc3a4 283 unsigned short logical_block_size_sectors =
754c5fc7 284 limits->logical_block_size >> SECTOR_SHIFT;
02acc3a4 285 char b[BDEVNAME_SIZE];
2cd54d9b
MA
286
287 if (!dev_size)
f6a1ed10 288 return 0;
2cd54d9b 289
5dea271b 290 if ((start >= dev_size) || (start + len > dev_size)) {
a963a956
MS
291 DMWARN("%s: %s too small for target: "
292 "start=%llu, len=%llu, dev_size=%llu",
293 dm_device_name(ti->table->md), bdevname(bdev, b),
294 (unsigned long long)start,
295 (unsigned long long)len,
296 (unsigned long long)dev_size);
f6a1ed10 297 return 1;
02acc3a4
MS
298 }
299
dd88d313
DLM
300 /*
301 * If the target is mapped to zoned block device(s), check
302 * that the zones are not partially mapped.
303 */
304 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
305 unsigned int zone_sectors = bdev_zone_sectors(bdev);
306
307 if (start & (zone_sectors - 1)) {
308 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
309 dm_device_name(ti->table->md),
310 (unsigned long long)start,
311 zone_sectors, bdevname(bdev, b));
312 return 1;
313 }
314
315 /*
316 * Note: The last zone of a zoned block device may be smaller
317 * than other zones. So for a target mapping the end of a
318 * zoned block device with such a zone, len would not be zone
319 * aligned. We do not allow such last smaller zone to be part
320 * of the mapping here to ensure that mappings with multiple
321 * devices do not end up with a smaller zone in the middle of
322 * the sector range.
323 */
324 if (len & (zone_sectors - 1)) {
325 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
326 dm_device_name(ti->table->md),
327 (unsigned long long)len,
328 zone_sectors, bdevname(bdev, b));
329 return 1;
330 }
331 }
332
02acc3a4 333 if (logical_block_size_sectors <= 1)
f6a1ed10 334 return 0;
02acc3a4
MS
335
336 if (start & (logical_block_size_sectors - 1)) {
337 DMWARN("%s: start=%llu not aligned to h/w "
a963a956 338 "logical block size %u of %s",
02acc3a4
MS
339 dm_device_name(ti->table->md),
340 (unsigned long long)start,
754c5fc7 341 limits->logical_block_size, bdevname(bdev, b));
f6a1ed10 342 return 1;
02acc3a4
MS
343 }
344
5dea271b 345 if (len & (logical_block_size_sectors - 1)) {
02acc3a4 346 DMWARN("%s: len=%llu not aligned to h/w "
a963a956 347 "logical block size %u of %s",
02acc3a4 348 dm_device_name(ti->table->md),
5dea271b 349 (unsigned long long)len,
754c5fc7 350 limits->logical_block_size, bdevname(bdev, b));
f6a1ed10 351 return 1;
02acc3a4
MS
352 }
353
f6a1ed10 354 return 0;
1da177e4
LT
355}
356
357/*
570b9d96 358 * This upgrades the mode on an already open dm_dev, being
1da177e4 359 * careful to leave things as they were if we fail to reopen the
570b9d96 360 * device and not to touch the existing bdev field in case
21cf8661 361 * it is accessed concurrently.
1da177e4 362 */
aeb5d727 363static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
82b1519b 364 struct mapped_device *md)
1da177e4
LT
365{
366 int r;
86f1152b 367 struct dm_dev *old_dev, *new_dev;
1da177e4 368
86f1152b 369 old_dev = dd->dm_dev;
570b9d96 370
86f1152b
BM
371 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
372 dd->dm_dev->mode | new_mode, &new_dev);
570b9d96
AK
373 if (r)
374 return r;
1da177e4 375
86f1152b
BM
376 dd->dm_dev = new_dev;
377 dm_put_table_device(md, old_dev);
1da177e4 378
570b9d96 379 return 0;
1da177e4
LT
380}
381
4df2bf46
D
382/*
383 * Convert the path to a device
384 */
385dev_t dm_get_dev_t(const char *path)
386{
3c120169 387 dev_t dev;
4df2bf46
D
388 struct block_device *bdev;
389
390 bdev = lookup_bdev(path);
391 if (IS_ERR(bdev))
392 dev = name_to_dev_t(path);
393 else {
394 dev = bdev->bd_dev;
395 bdput(bdev);
396 }
397
398 return dev;
399}
400EXPORT_SYMBOL_GPL(dm_get_dev_t);
401
1da177e4
LT
402/*
403 * Add a device to the list, or just increment the usage count if
404 * it's already present.
405 */
08649012
MS
406int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
407 struct dm_dev **result)
1da177e4
LT
408{
409 int r;
4df2bf46 410 dev_t dev;
82b1519b 411 struct dm_dev_internal *dd;
08649012 412 struct dm_table *t = ti->table;
1da177e4 413
547bc926 414 BUG_ON(!t);
1da177e4 415
4df2bf46
D
416 dev = dm_get_dev_t(path);
417 if (!dev)
418 return -ENODEV;
1da177e4
LT
419
420 dd = find_device(&t->devices, dev);
421 if (!dd) {
422 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
423 if (!dd)
424 return -ENOMEM;
425
86f1152b 426 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
1da177e4
LT
427 kfree(dd);
428 return r;
429 }
430
2a0b4682 431 refcount_set(&dd->count, 1);
1da177e4 432 list_add(&dd->list, &t->devices);
afc567a4 433 goto out;
1da177e4 434
86f1152b 435 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
f165921d 436 r = upgrade_mode(dd, mode, t->md);
1da177e4
LT
437 if (r)
438 return r;
439 }
afc567a4
MS
440 refcount_inc(&dd->count);
441out:
86f1152b 442 *result = dd->dm_dev;
1da177e4
LT
443 return 0;
444}
08649012 445EXPORT_SYMBOL(dm_get_device);
1da177e4 446
11f0431b
MS
447static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
448 sector_t start, sector_t len, void *data)
1da177e4 449{
754c5fc7
MS
450 struct queue_limits *limits = data;
451 struct block_device *bdev = dev->bdev;
165125e1 452 struct request_queue *q = bdev_get_queue(bdev);
0c2322e4
AK
453 char b[BDEVNAME_SIZE];
454
455 if (unlikely(!q)) {
456 DMWARN("%s: Cannot set limits for nonexistent device %s",
457 dm_device_name(ti->table->md), bdevname(bdev, b));
754c5fc7 458 return 0;
0c2322e4 459 }
3cb40214 460
9efa82ef
CH
461 if (blk_stack_limits(limits, &q->limits,
462 get_start_sect(bdev) + start) < 0)
b27d7f16 463 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
a963a956
MS
464 "physical_block_size=%u, logical_block_size=%u, "
465 "alignment_offset=%u, start=%llu",
466 dm_device_name(ti->table->md), bdevname(bdev, b),
467 q->limits.physical_block_size,
468 q->limits.logical_block_size,
469 q->limits.alignment_offset,
b27d7f16 470 (unsigned long long) start << SECTOR_SHIFT);
754c5fc7 471 return 0;
3cb40214 472}
969429b5 473
1da177e4 474/*
08649012 475 * Decrement a device's use count and remove it if necessary.
1da177e4 476 */
82b1519b 477void dm_put_device(struct dm_target *ti, struct dm_dev *d)
1da177e4 478{
86f1152b
BM
479 int found = 0;
480 struct list_head *devices = &ti->table->devices;
481 struct dm_dev_internal *dd;
82b1519b 482
86f1152b
BM
483 list_for_each_entry(dd, devices, list) {
484 if (dd->dm_dev == d) {
485 found = 1;
486 break;
487 }
488 }
489 if (!found) {
490 DMWARN("%s: device %s not in table devices list",
491 dm_device_name(ti->table->md), d->name);
492 return;
493 }
2a0b4682 494 if (refcount_dec_and_test(&dd->count)) {
86f1152b 495 dm_put_table_device(ti->table->md, d);
1da177e4
LT
496 list_del(&dd->list);
497 kfree(dd);
498 }
499}
08649012 500EXPORT_SYMBOL(dm_put_device);
1da177e4
LT
501
502/*
503 * Checks to see if the target joins onto the end of the table.
504 */
505static int adjoin(struct dm_table *table, struct dm_target *ti)
506{
507 struct dm_target *prev;
508
509 if (!table->num_targets)
510 return !ti->begin;
511
512 prev = &table->targets[table->num_targets - 1];
513 return (ti->begin == (prev->begin + prev->len));
514}
515
516/*
517 * Used to dynamically allocate the arg array.
f36afb39
MP
518 *
519 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
520 * process messages even if some device is suspended. These messages have a
521 * small fixed number of arguments.
522 *
523 * On the other hand, dm-switch needs to process bulk data using messages and
524 * excessive use of GFP_NOIO could cause trouble.
1da177e4 525 */
610b15c5 526static char **realloc_argv(unsigned *size, char **old_argv)
1da177e4
LT
527{
528 char **argv;
529 unsigned new_size;
f36afb39 530 gfp_t gfp;
1da177e4 531
610b15c5
KC
532 if (*size) {
533 new_size = *size * 2;
f36afb39
MP
534 gfp = GFP_KERNEL;
535 } else {
536 new_size = 8;
537 gfp = GFP_NOIO;
538 }
6da2ec56 539 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
a0651926 540 if (argv && old_argv) {
610b15c5
KC
541 memcpy(argv, old_argv, *size * sizeof(*argv));
542 *size = new_size;
1da177e4
LT
543 }
544
545 kfree(old_argv);
546 return argv;
547}
548
549/*
550 * Destructively splits up the argument list to pass to ctr.
551 */
552int dm_split_args(int *argc, char ***argvp, char *input)
553{
554 char *start, *end = input, *out, **argv = NULL;
555 unsigned array_size = 0;
556
557 *argc = 0;
814d6862
DT
558
559 if (!input) {
560 *argvp = NULL;
561 return 0;
562 }
563
1da177e4
LT
564 argv = realloc_argv(&array_size, argv);
565 if (!argv)
566 return -ENOMEM;
567
568 while (1) {
1da177e4 569 /* Skip whitespace */
e7d2860b 570 start = skip_spaces(end);
1da177e4
LT
571
572 if (!*start)
573 break; /* success, we hit the end */
574
575 /* 'out' is used to remove any back-quotes */
576 end = out = start;
577 while (*end) {
578 /* Everything apart from '\0' can be quoted */
579 if (*end == '\\' && *(end + 1)) {
580 *out++ = *(end + 1);
581 end += 2;
582 continue;
583 }
584
585 if (isspace(*end))
586 break; /* end of token */
587
588 *out++ = *end++;
589 }
590
591 /* have we already filled the array ? */
592 if ((*argc + 1) > array_size) {
593 argv = realloc_argv(&array_size, argv);
594 if (!argv)
595 return -ENOMEM;
596 }
597
598 /* we know this is whitespace */
599 if (*end)
600 end++;
601
602 /* terminate the string and put it in the array */
603 *out = '\0';
604 argv[*argc] = start;
605 (*argc)++;
606 }
607
608 *argvp = argv;
609 return 0;
610}
611
be6d4305
MS
612/*
613 * Impose necessary and sufficient conditions on a devices's table such
614 * that any incoming bio which respects its logical_block_size can be
615 * processed successfully. If it falls across the boundary between
616 * two or more targets, the size of each piece it gets split into must
617 * be compatible with the logical_block_size of the target processing it.
618 */
754c5fc7
MS
619static int validate_hardware_logical_block_alignment(struct dm_table *table,
620 struct queue_limits *limits)
be6d4305
MS
621{
622 /*
623 * This function uses arithmetic modulo the logical_block_size
624 * (in units of 512-byte sectors).
625 */
626 unsigned short device_logical_block_size_sects =
754c5fc7 627 limits->logical_block_size >> SECTOR_SHIFT;
be6d4305
MS
628
629 /*
630 * Offset of the start of the next table entry, mod logical_block_size.
631 */
632 unsigned short next_target_start = 0;
633
634 /*
635 * Given an aligned bio that extends beyond the end of a
636 * target, how many sectors must the next target handle?
637 */
638 unsigned short remaining = 0;
639
3f649ab7 640 struct dm_target *ti;
754c5fc7 641 struct queue_limits ti_limits;
3c120169 642 unsigned i;
be6d4305
MS
643
644 /*
645 * Check each entry in the table in turn.
646 */
3c120169
MP
647 for (i = 0; i < dm_table_get_num_targets(table); i++) {
648 ti = dm_table_get_target(table, i);
be6d4305 649
b1bd055d 650 blk_set_stacking_limits(&ti_limits);
754c5fc7
MS
651
652 /* combine all target devices' limits */
653 if (ti->type->iterate_devices)
654 ti->type->iterate_devices(ti, dm_set_device_limits,
655 &ti_limits);
656
be6d4305
MS
657 /*
658 * If the remaining sectors fall entirely within this
659 * table entry are they compatible with its logical_block_size?
660 */
661 if (remaining < ti->len &&
754c5fc7 662 remaining & ((ti_limits.logical_block_size >>
be6d4305
MS
663 SECTOR_SHIFT) - 1))
664 break; /* Error */
665
666 next_target_start =
667 (unsigned short) ((next_target_start + ti->len) &
668 (device_logical_block_size_sects - 1));
669 remaining = next_target_start ?
670 device_logical_block_size_sects - next_target_start : 0;
671 }
672
673 if (remaining) {
674 DMWARN("%s: table line %u (start sect %llu len %llu) "
a963a956 675 "not aligned to h/w logical block size %u",
be6d4305
MS
676 dm_device_name(table->md), i,
677 (unsigned long long) ti->begin,
678 (unsigned long long) ti->len,
754c5fc7 679 limits->logical_block_size);
be6d4305
MS
680 return -EINVAL;
681 }
682
683 return 0;
684}
685
1da177e4
LT
686int dm_table_add_target(struct dm_table *t, const char *type,
687 sector_t start, sector_t len, char *params)
688{
689 int r = -EINVAL, argc;
690 char **argv;
691 struct dm_target *tgt;
692
3791e2fc
AK
693 if (t->singleton) {
694 DMERR("%s: target type %s must appear alone in table",
695 dm_device_name(t->md), t->targets->type->name);
696 return -EINVAL;
697 }
698
57a2f238 699 BUG_ON(t->num_targets >= t->num_allocated);
1da177e4
LT
700
701 tgt = t->targets + t->num_targets;
702 memset(tgt, 0, sizeof(*tgt));
703
704 if (!len) {
72d94861 705 DMERR("%s: zero-length target", dm_device_name(t->md));
1da177e4
LT
706 return -EINVAL;
707 }
708
709 tgt->type = dm_get_target_type(type);
710 if (!tgt->type) {
dafa724b 711 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
1da177e4
LT
712 return -EINVAL;
713 }
714
3791e2fc
AK
715 if (dm_target_needs_singleton(tgt->type)) {
716 if (t->num_targets) {
dafa724b 717 tgt->error = "singleton target type must appear alone in table";
718 goto bad;
3791e2fc 719 }
e83068a5 720 t->singleton = true;
3791e2fc
AK
721 }
722
cc6cbe14 723 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
dafa724b 724 tgt->error = "target type may not be included in a read-only table";
725 goto bad;
cc6cbe14
AK
726 }
727
36a0456f
AK
728 if (t->immutable_target_type) {
729 if (t->immutable_target_type != tgt->type) {
dafa724b 730 tgt->error = "immutable target type cannot be mixed with other target types";
731 goto bad;
36a0456f
AK
732 }
733 } else if (dm_target_is_immutable(tgt->type)) {
734 if (t->num_targets) {
dafa724b 735 tgt->error = "immutable target type cannot be mixed with other target types";
736 goto bad;
36a0456f
AK
737 }
738 t->immutable_target_type = tgt->type;
739 }
740
9b4b5a79
MB
741 if (dm_target_has_integrity(tgt->type))
742 t->integrity_added = 1;
743
1da177e4
LT
744 tgt->table = t;
745 tgt->begin = start;
746 tgt->len = len;
747 tgt->error = "Unknown error";
748
749 /*
750 * Does this target adjoin the previous one ?
751 */
752 if (!adjoin(t, tgt)) {
753 tgt->error = "Gap in table";
1da177e4
LT
754 goto bad;
755 }
756
757 r = dm_split_args(&argc, &argv, params);
758 if (r) {
759 tgt->error = "couldn't split parameters (insufficient memory)";
760 goto bad;
761 }
762
763 r = tgt->type->ctr(tgt, argc, argv);
764 kfree(argv);
765 if (r)
766 goto bad;
767
768 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
769
55a62eef
AK
770 if (!tgt->num_discard_bios && tgt->discards_supported)
771 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
936688d7 772 dm_device_name(t->md), type);
5ae89a87 773
1da177e4
LT
774 return 0;
775
776 bad:
72d94861 777 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
1da177e4
LT
778 dm_put_target_type(tgt->type);
779 return r;
780}
781
498f0103
MS
782/*
783 * Target argument parsing helpers.
784 */
5916a22b
EB
785static int validate_next_arg(const struct dm_arg *arg,
786 struct dm_arg_set *arg_set,
498f0103
MS
787 unsigned *value, char **error, unsigned grouped)
788{
789 const char *arg_str = dm_shift_arg(arg_set);
31998ef1 790 char dummy;
498f0103
MS
791
792 if (!arg_str ||
31998ef1 793 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
498f0103
MS
794 (*value < arg->min) ||
795 (*value > arg->max) ||
796 (grouped && arg_set->argc < *value)) {
797 *error = arg->error;
798 return -EINVAL;
799 }
800
801 return 0;
802}
803
5916a22b 804int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
498f0103
MS
805 unsigned *value, char **error)
806{
807 return validate_next_arg(arg, arg_set, value, error, 0);
808}
809EXPORT_SYMBOL(dm_read_arg);
810
5916a22b 811int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
498f0103
MS
812 unsigned *value, char **error)
813{
814 return validate_next_arg(arg, arg_set, value, error, 1);
815}
816EXPORT_SYMBOL(dm_read_arg_group);
817
818const char *dm_shift_arg(struct dm_arg_set *as)
819{
820 char *r;
821
822 if (as->argc) {
823 as->argc--;
824 r = *as->argv;
825 as->argv++;
826 return r;
827 }
828
829 return NULL;
830}
831EXPORT_SYMBOL(dm_shift_arg);
832
833void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
834{
835 BUG_ON(as->argc < num_args);
836 as->argc -= num_args;
837 as->argv += num_args;
838}
839EXPORT_SYMBOL(dm_consume_args);
840
7e0d574f 841static bool __table_type_bio_based(enum dm_queue_mode table_type)
545ed20e
TK
842{
843 return (table_type == DM_TYPE_BIO_BASED ||
22c11858
MS
844 table_type == DM_TYPE_DAX_BIO_BASED ||
845 table_type == DM_TYPE_NVME_BIO_BASED);
545ed20e
TK
846}
847
7e0d574f 848static bool __table_type_request_based(enum dm_queue_mode table_type)
15b94a69 849{
953923c0 850 return table_type == DM_TYPE_REQUEST_BASED;
15b94a69
JN
851}
852
7e0d574f 853void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
e83068a5
MS
854{
855 t->type = type;
856}
857EXPORT_SYMBOL_GPL(dm_table_set_type);
858
7bf7eac8 859/* validate the dax capability of the target device span */
2e9ee095 860int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
9c50a98f 861 sector_t start, sector_t len, void *data)
545ed20e 862{
7bf7eac8
DW
863 int blocksize = *(int *) data;
864
865 return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize,
9c50a98f 866 start, len);
545ed20e
TK
867}
868
2e9ee095 869/* Check devices support synchronous DAX */
9c50a98f
MS
870static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
871 sector_t start, sector_t len, void *data)
2e9ee095 872{
5348deb1 873 return dev->dax_dev && dax_synchronous(dev->dax_dev);
2e9ee095
PG
874}
875
876bool dm_table_supports_dax(struct dm_table *t,
9c50a98f 877 iterate_devices_callout_fn iterate_fn, int *blocksize)
545ed20e
TK
878{
879 struct dm_target *ti;
3c120169 880 unsigned i;
545ed20e
TK
881
882 /* Ensure that all targets support DAX. */
3c120169
MP
883 for (i = 0; i < dm_table_get_num_targets(t); i++) {
884 ti = dm_table_get_target(t, i);
545ed20e
TK
885
886 if (!ti->type->direct_access)
887 return false;
888
889 if (!ti->type->iterate_devices ||
9c50a98f 890 !ti->type->iterate_devices(ti, iterate_fn, blocksize))
545ed20e
TK
891 return false;
892 }
893
894 return true;
895}
896
22c11858
MS
897static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
898
6ba01df7
MS
899static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
900 sector_t start, sector_t len, void *data)
eaa160ed 901{
6ba01df7
MS
902 struct block_device *bdev = dev->bdev;
903 struct request_queue *q = bdev_get_queue(bdev);
eaa160ed 904
6ba01df7
MS
905 /* request-based cannot stack on partitions! */
906 if (bdev != bdev->bd_contains)
907 return false;
eaa160ed 908
344e9ffc 909 return queue_is_mq(q);
eaa160ed
MS
910}
911
e83068a5 912static int dm_table_determine_type(struct dm_table *t)
e6ee8c0b
KU
913{
914 unsigned i;
169e2cc2 915 unsigned bio_based = 0, request_based = 0, hybrid = 0;
e6ee8c0b 916 struct dm_target *tgt;
e83068a5 917 struct list_head *devices = dm_table_get_devices(t);
7e0d574f 918 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
2e9ee095 919 int page_size = PAGE_SIZE;
e6ee8c0b 920
e83068a5
MS
921 if (t->type != DM_TYPE_NONE) {
922 /* target already set the table's type */
c934edad
MS
923 if (t->type == DM_TYPE_BIO_BASED) {
924 /* possibly upgrade to a variant of bio-based */
925 goto verify_bio_based;
22c11858 926 }
545ed20e 927 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
c934edad 928 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
e83068a5
MS
929 goto verify_rq_based;
930 }
931
e6ee8c0b
KU
932 for (i = 0; i < t->num_targets; i++) {
933 tgt = t->targets + i;
169e2cc2
MS
934 if (dm_target_hybrid(tgt))
935 hybrid = 1;
936 else if (dm_target_request_based(tgt))
e6ee8c0b
KU
937 request_based = 1;
938 else
939 bio_based = 1;
940
941 if (bio_based && request_based) {
22c11858
MS
942 DMERR("Inconsistent table: different target types"
943 " can't be mixed up");
e6ee8c0b
KU
944 return -EINVAL;
945 }
946 }
947
169e2cc2
MS
948 if (hybrid && !bio_based && !request_based) {
949 /*
950 * The targets can work either way.
951 * Determine the type from the live device.
952 * Default to bio-based if device is new.
953 */
15b94a69 954 if (__table_type_request_based(live_md_type))
169e2cc2
MS
955 request_based = 1;
956 else
957 bio_based = 1;
958 }
959
e6ee8c0b 960 if (bio_based) {
c934edad 961verify_bio_based:
e6ee8c0b
KU
962 /* We must use this table as bio-based */
963 t->type = DM_TYPE_BIO_BASED;
2e9ee095 964 if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
22c11858 965 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
545ed20e 966 t->type = DM_TYPE_DAX_BIO_BASED;
eaa160ed
MS
967 } else {
968 /* Check if upgrading to NVMe bio-based is valid or required */
969 tgt = dm_table_get_immutable_target(t);
970 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
971 t->type = DM_TYPE_NVME_BIO_BASED;
972 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
973 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
974 t->type = DM_TYPE_NVME_BIO_BASED;
975 }
22c11858 976 }
e6ee8c0b
KU
977 return 0;
978 }
979
980 BUG_ON(!request_based); /* No targets in this table */
981
e83068a5
MS
982 t->type = DM_TYPE_REQUEST_BASED;
983
984verify_rq_based:
65803c20
MS
985 /*
986 * Request-based dm supports only tables that have a single target now.
987 * To support multiple targets, request splitting support is needed,
988 * and that needs lots of changes in the block-layer.
989 * (e.g. request completion process for partial completion.)
990 */
991 if (t->num_targets > 1) {
22c11858
MS
992 DMERR("%s DM doesn't support multiple targets",
993 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
65803c20
MS
994 return -EINVAL;
995 }
996
6936c12c
MS
997 if (list_empty(devices)) {
998 int srcu_idx;
999 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1000
6a23e05c
JA
1001 /* inherit live table's type */
1002 if (live_table)
6936c12c 1003 t->type = live_table->type;
6936c12c
MS
1004 dm_put_live_table(t->md, srcu_idx);
1005 return 0;
1006 }
1007
22c11858
MS
1008 tgt = dm_table_get_immutable_target(t);
1009 if (!tgt) {
1010 DMERR("table load rejected: immutable target is required");
1011 return -EINVAL;
1012 } else if (tgt->max_io_len) {
1013 DMERR("table load rejected: immutable target that splits IO is not supported");
1014 return -EINVAL;
1015 }
1016
e6ee8c0b 1017 /* Non-request-stackable devices can't be used for request-based dm */
eaa160ed 1018 if (!tgt->type->iterate_devices ||
6ba01df7 1019 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
eaa160ed
MS
1020 DMERR("table load rejected: including non-request-stackable devices");
1021 return -EINVAL;
e5863d9a 1022 }
301fc3f5 1023
e6ee8c0b
KU
1024 return 0;
1025}
1026
7e0d574f 1027enum dm_queue_mode dm_table_get_type(struct dm_table *t)
e6ee8c0b
KU
1028{
1029 return t->type;
1030}
1031
36a0456f
AK
1032struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1033{
1034 return t->immutable_target_type;
1035}
1036
16f12266
MS
1037struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1038{
1039 /* Immutable target is implicitly a singleton */
1040 if (t->num_targets > 1 ||
1041 !dm_target_is_immutable(t->targets[0].type))
1042 return NULL;
1043
1044 return t->targets;
1045}
1046
f083b09b
MS
1047struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1048{
3c120169
MP
1049 struct dm_target *ti;
1050 unsigned i;
f083b09b 1051
3c120169
MP
1052 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1053 ti = dm_table_get_target(t, i);
f083b09b
MS
1054 if (dm_target_is_wildcard(ti->type))
1055 return ti;
1056 }
1057
1058 return NULL;
1059}
1060
545ed20e
TK
1061bool dm_table_bio_based(struct dm_table *t)
1062{
1063 return __table_type_bio_based(dm_table_get_type(t));
1064}
1065
e6ee8c0b
KU
1066bool dm_table_request_based(struct dm_table *t)
1067{
15b94a69 1068 return __table_type_request_based(dm_table_get_type(t));
e5863d9a
MS
1069}
1070
17e149b8 1071static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
e6ee8c0b 1072{
7e0d574f 1073 enum dm_queue_mode type = dm_table_get_type(t);
30187e1d 1074 unsigned per_io_data_size = 0;
0776aa0e
MS
1075 unsigned min_pool_size = 0;
1076 struct dm_target *ti;
c0820cf5 1077 unsigned i;
e6ee8c0b 1078
78d8e58a 1079 if (unlikely(type == DM_TYPE_NONE)) {
e6ee8c0b
KU
1080 DMWARN("no table type is set, can't allocate mempools");
1081 return -EINVAL;
1082 }
1083
545ed20e 1084 if (__table_type_bio_based(type))
78d8e58a 1085 for (i = 0; i < t->num_targets; i++) {
0776aa0e
MS
1086 ti = t->targets + i;
1087 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1088 min_pool_size = max(min_pool_size, ti->num_flush_bios);
78d8e58a
MS
1089 }
1090
0776aa0e
MS
1091 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1092 per_io_data_size, min_pool_size);
4e6e36c3
MS
1093 if (!t->mempools)
1094 return -ENOMEM;
e6ee8c0b
KU
1095
1096 return 0;
1097}
1098
1099void dm_table_free_md_mempools(struct dm_table *t)
1100{
1101 dm_free_md_mempools(t->mempools);
1102 t->mempools = NULL;
1103}
1104
1105struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1106{
1107 return t->mempools;
1108}
1109
1da177e4
LT
1110static int setup_indexes(struct dm_table *t)
1111{
1112 int i;
1113 unsigned int total = 0;
1114 sector_t *indexes;
1115
1116 /* allocate the space for *all* the indexes */
1117 for (i = t->depth - 2; i >= 0; i--) {
1118 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1119 total += t->counts[i];
1120 }
1121
1122 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1123 if (!indexes)
1124 return -ENOMEM;
1125
1126 /* set up internal nodes, bottom-up */
82d601dc 1127 for (i = t->depth - 2; i >= 0; i--) {
1da177e4
LT
1128 t->index[i] = indexes;
1129 indexes += (KEYS_PER_NODE * t->counts[i]);
1130 setup_btree_index(i, t);
1131 }
1132
1133 return 0;
1134}
1135
1136/*
1137 * Builds the btree to index the map.
1138 */
26803b9f 1139static int dm_table_build_index(struct dm_table *t)
1da177e4
LT
1140{
1141 int r = 0;
1142 unsigned int leaf_nodes;
1143
1da177e4
LT
1144 /* how many indexes will the btree have ? */
1145 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1146 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1147
1148 /* leaf layer has already been set up */
1149 t->counts[t->depth - 1] = leaf_nodes;
1150 t->index[t->depth - 1] = t->highs;
1151
1152 if (t->depth >= 2)
1153 r = setup_indexes(t);
1154
1155 return r;
1156}
1157
25520d55
MP
1158static bool integrity_profile_exists(struct gendisk *disk)
1159{
1160 return !!blk_get_integrity(disk);
1161}
1162
a63a5cf8
MS
1163/*
1164 * Get a disk whose integrity profile reflects the table's profile.
a63a5cf8
MS
1165 * Returns NULL if integrity support was inconsistent or unavailable.
1166 */
25520d55 1167static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
a63a5cf8
MS
1168{
1169 struct list_head *devices = dm_table_get_devices(t);
1170 struct dm_dev_internal *dd = NULL;
1171 struct gendisk *prev_disk = NULL, *template_disk = NULL;
e2460f2a
MP
1172 unsigned i;
1173
1174 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1175 struct dm_target *ti = dm_table_get_target(t, i);
1176 if (!dm_target_passes_integrity(ti->type))
1177 goto no_integrity;
1178 }
a63a5cf8
MS
1179
1180 list_for_each_entry(dd, devices, list) {
86f1152b 1181 template_disk = dd->dm_dev->bdev->bd_disk;
25520d55 1182 if (!integrity_profile_exists(template_disk))
a63a5cf8 1183 goto no_integrity;
a63a5cf8
MS
1184 else if (prev_disk &&
1185 blk_integrity_compare(prev_disk, template_disk) < 0)
1186 goto no_integrity;
1187 prev_disk = template_disk;
1188 }
1189
1190 return template_disk;
1191
1192no_integrity:
1193 if (prev_disk)
1194 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1195 dm_device_name(t->md),
1196 prev_disk->disk_name,
1197 template_disk->disk_name);
1198 return NULL;
1199}
1200
26803b9f 1201/*
25520d55
MP
1202 * Register the mapped device for blk_integrity support if the
1203 * underlying devices have an integrity profile. But all devices may
1204 * not have matching profiles (checking all devices isn't reliable
a63a5cf8 1205 * during table load because this table may use other DM device(s) which
25520d55
MP
1206 * must be resumed before they will have an initialized integity
1207 * profile). Consequently, stacked DM devices force a 2 stage integrity
1208 * profile validation: First pass during table load, final pass during
1209 * resume.
26803b9f 1210 */
25520d55 1211static int dm_table_register_integrity(struct dm_table *t)
26803b9f 1212{
25520d55 1213 struct mapped_device *md = t->md;
a63a5cf8 1214 struct gendisk *template_disk = NULL;
26803b9f 1215
9b4b5a79
MB
1216 /* If target handles integrity itself do not register it here. */
1217 if (t->integrity_added)
1218 return 0;
1219
25520d55 1220 template_disk = dm_table_get_integrity_disk(t);
a63a5cf8
MS
1221 if (!template_disk)
1222 return 0;
26803b9f 1223
25520d55 1224 if (!integrity_profile_exists(dm_disk(md))) {
e83068a5 1225 t->integrity_supported = true;
25520d55
MP
1226 /*
1227 * Register integrity profile during table load; we can do
1228 * this because the final profile must match during resume.
1229 */
1230 blk_integrity_register(dm_disk(md),
1231 blk_get_integrity(template_disk));
1232 return 0;
a63a5cf8
MS
1233 }
1234
1235 /*
25520d55 1236 * If DM device already has an initialized integrity
a63a5cf8
MS
1237 * profile the new profile should not conflict.
1238 */
25520d55 1239 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
a63a5cf8
MS
1240 DMWARN("%s: conflict with existing integrity profile: "
1241 "%s profile mismatch",
1242 dm_device_name(t->md),
1243 template_disk->disk_name);
1244 return 1;
1245 }
1246
25520d55 1247 /* Preserve existing integrity profile */
e83068a5 1248 t->integrity_supported = true;
26803b9f
WD
1249 return 0;
1250}
1251
1252/*
1253 * Prepares the table for use by building the indices,
1254 * setting the type, and allocating mempools.
1255 */
1256int dm_table_complete(struct dm_table *t)
1257{
1258 int r;
1259
e83068a5 1260 r = dm_table_determine_type(t);
26803b9f 1261 if (r) {
e83068a5 1262 DMERR("unable to determine table type");
26803b9f
WD
1263 return r;
1264 }
1265
1266 r = dm_table_build_index(t);
1267 if (r) {
1268 DMERR("unable to build btrees");
1269 return r;
1270 }
1271
25520d55 1272 r = dm_table_register_integrity(t);
26803b9f
WD
1273 if (r) {
1274 DMERR("could not register integrity profile.");
1275 return r;
1276 }
1277
17e149b8 1278 r = dm_table_alloc_md_mempools(t, t->md);
26803b9f
WD
1279 if (r)
1280 DMERR("unable to allocate mempools");
1281
1282 return r;
1283}
1284
48c9c27b 1285static DEFINE_MUTEX(_event_lock);
1da177e4
LT
1286void dm_table_event_callback(struct dm_table *t,
1287 void (*fn)(void *), void *context)
1288{
48c9c27b 1289 mutex_lock(&_event_lock);
1da177e4
LT
1290 t->event_fn = fn;
1291 t->event_context = context;
48c9c27b 1292 mutex_unlock(&_event_lock);
1da177e4
LT
1293}
1294
1295void dm_table_event(struct dm_table *t)
1296{
1297 /*
1298 * You can no longer call dm_table_event() from interrupt
1299 * context, use a bottom half instead.
1300 */
1301 BUG_ON(in_interrupt());
1302
48c9c27b 1303 mutex_lock(&_event_lock);
1da177e4
LT
1304 if (t->event_fn)
1305 t->event_fn(t->event_context);
48c9c27b 1306 mutex_unlock(&_event_lock);
1da177e4 1307}
08649012 1308EXPORT_SYMBOL(dm_table_event);
1da177e4 1309
1cfd5d33 1310inline sector_t dm_table_get_size(struct dm_table *t)
1da177e4
LT
1311{
1312 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1313}
08649012 1314EXPORT_SYMBOL(dm_table_get_size);
1da177e4
LT
1315
1316struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1317{
14353539 1318 if (index >= t->num_targets)
1da177e4
LT
1319 return NULL;
1320
1321 return t->targets + index;
1322}
1323
1324/*
1325 * Search the btree for the correct target.
512875bd 1326 *
123d87d5 1327 * Caller should check returned pointer for NULL
512875bd 1328 * to trap I/O beyond end of device.
1da177e4
LT
1329 */
1330struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1331{
1332 unsigned int l, n = 0, k = 0;
1333 sector_t *node;
1334
1cfd5d33 1335 if (unlikely(sector >= dm_table_get_size(t)))
123d87d5 1336 return NULL;
1cfd5d33 1337
1da177e4
LT
1338 for (l = 0; l < t->depth; l++) {
1339 n = get_child(n, k);
1340 node = get_node(t, l, n);
1341
1342 for (k = 0; k < KEYS_PER_NODE; k++)
1343 if (node[k] >= sector)
1344 break;
1345 }
1346
1347 return &t->targets[(KEYS_PER_NODE * n) + k];
1348}
1349
3ae70656
MS
1350static int count_device(struct dm_target *ti, struct dm_dev *dev,
1351 sector_t start, sector_t len, void *data)
1352{
1353 unsigned *num_devices = data;
1354
1355 (*num_devices)++;
1356
1357 return 0;
1358}
1359
1360/*
1361 * Check whether a table has no data devices attached using each
1362 * target's iterate_devices method.
1363 * Returns false if the result is unknown because a target doesn't
1364 * support iterate_devices.
1365 */
1366bool dm_table_has_no_data_devices(struct dm_table *table)
1367{
3c120169
MP
1368 struct dm_target *ti;
1369 unsigned i, num_devices;
3ae70656 1370
3c120169
MP
1371 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1372 ti = dm_table_get_target(table, i);
3ae70656
MS
1373
1374 if (!ti->type->iterate_devices)
1375 return false;
1376
3c120169 1377 num_devices = 0;
3ae70656
MS
1378 ti->type->iterate_devices(ti, count_device, &num_devices);
1379 if (num_devices)
1380 return false;
1381 }
1382
1383 return true;
1384}
1385
dd88d313
DLM
1386static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1387 sector_t start, sector_t len, void *data)
1388{
1389 struct request_queue *q = bdev_get_queue(dev->bdev);
1390 enum blk_zoned_model *zoned_model = data;
1391
1392 return q && blk_queue_zoned_model(q) == *zoned_model;
1393}
1394
1395static bool dm_table_supports_zoned_model(struct dm_table *t,
1396 enum blk_zoned_model zoned_model)
1397{
1398 struct dm_target *ti;
1399 unsigned i;
1400
1401 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1402 ti = dm_table_get_target(t, i);
1403
1404 if (zoned_model == BLK_ZONED_HM &&
1405 !dm_target_supports_zoned_hm(ti->type))
1406 return false;
1407
1408 if (!ti->type->iterate_devices ||
1409 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1410 return false;
1411 }
1412
1413 return true;
1414}
1415
1416static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1417 sector_t start, sector_t len, void *data)
1418{
1419 struct request_queue *q = bdev_get_queue(dev->bdev);
1420 unsigned int *zone_sectors = data;
1421
1422 return q && blk_queue_zone_sectors(q) == *zone_sectors;
1423}
1424
1425static bool dm_table_matches_zone_sectors(struct dm_table *t,
1426 unsigned int zone_sectors)
1427{
1428 struct dm_target *ti;
1429 unsigned i;
1430
1431 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1432 ti = dm_table_get_target(t, i);
1433
1434 if (!ti->type->iterate_devices ||
1435 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1436 return false;
1437 }
1438
1439 return true;
1440}
1441
1442static int validate_hardware_zoned_model(struct dm_table *table,
1443 enum blk_zoned_model zoned_model,
1444 unsigned int zone_sectors)
1445{
1446 if (zoned_model == BLK_ZONED_NONE)
1447 return 0;
1448
1449 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1450 DMERR("%s: zoned model is not consistent across all devices",
1451 dm_device_name(table->md));
1452 return -EINVAL;
1453 }
1454
1455 /* Check zone size validity and compatibility */
1456 if (!zone_sectors || !is_power_of_2(zone_sectors))
1457 return -EINVAL;
1458
1459 if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1460 DMERR("%s: zone sectors is not consistent across all devices",
1461 dm_device_name(table->md));
1462 return -EINVAL;
1463 }
1464
1465 return 0;
1466}
1467
754c5fc7
MS
1468/*
1469 * Establish the new table's queue_limits and validate them.
1470 */
1471int dm_calculate_queue_limits(struct dm_table *table,
1472 struct queue_limits *limits)
1473{
3c120169 1474 struct dm_target *ti;
754c5fc7 1475 struct queue_limits ti_limits;
3c120169 1476 unsigned i;
dd88d313
DLM
1477 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1478 unsigned int zone_sectors = 0;
754c5fc7 1479
b1bd055d 1480 blk_set_stacking_limits(limits);
754c5fc7 1481
3c120169 1482 for (i = 0; i < dm_table_get_num_targets(table); i++) {
b1bd055d 1483 blk_set_stacking_limits(&ti_limits);
754c5fc7 1484
3c120169 1485 ti = dm_table_get_target(table, i);
754c5fc7
MS
1486
1487 if (!ti->type->iterate_devices)
1488 goto combine_limits;
1489
1490 /*
1491 * Combine queue limits of all the devices this target uses.
1492 */
1493 ti->type->iterate_devices(ti, dm_set_device_limits,
1494 &ti_limits);
1495
dd88d313
DLM
1496 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1497 /*
1498 * After stacking all limits, validate all devices
1499 * in table support this zoned model and zone sectors.
1500 */
1501 zoned_model = ti_limits.zoned;
1502 zone_sectors = ti_limits.chunk_sectors;
1503 }
1504
40bea431
MS
1505 /* Set I/O hints portion of queue limits */
1506 if (ti->type->io_hints)
1507 ti->type->io_hints(ti, &ti_limits);
1508
754c5fc7
MS
1509 /*
1510 * Check each device area is consistent with the target's
1511 * overall queue limits.
1512 */
f6a1ed10
MP
1513 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1514 &ti_limits))
754c5fc7
MS
1515 return -EINVAL;
1516
1517combine_limits:
1518 /*
1519 * Merge this target's queue limits into the overall limits
1520 * for the table.
1521 */
1522 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
b27d7f16 1523 DMWARN("%s: adding target device "
754c5fc7 1524 "(start sect %llu len %llu) "
b27d7f16 1525 "caused an alignment inconsistency",
754c5fc7
MS
1526 dm_device_name(table->md),
1527 (unsigned long long) ti->begin,
1528 (unsigned long long) ti->len);
1529 }
1530
dd88d313
DLM
1531 /*
1532 * Verify that the zoned model and zone sectors, as determined before
1533 * any .io_hints override, are the same across all devices in the table.
1534 * - this is especially relevant if .io_hints is emulating a disk-managed
1535 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1536 * BUT...
1537 */
1538 if (limits->zoned != BLK_ZONED_NONE) {
1539 /*
1540 * ...IF the above limits stacking determined a zoned model
1541 * validate that all of the table's devices conform to it.
1542 */
1543 zoned_model = limits->zoned;
1544 zone_sectors = limits->chunk_sectors;
1545 }
1546 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1547 return -EINVAL;
1548
754c5fc7
MS
1549 return validate_hardware_logical_block_alignment(table, limits);
1550}
1551
9c47008d 1552/*
25520d55
MP
1553 * Verify that all devices have an integrity profile that matches the
1554 * DM device's registered integrity profile. If the profiles don't
1555 * match then unregister the DM device's integrity profile.
9c47008d 1556 */
25520d55 1557static void dm_table_verify_integrity(struct dm_table *t)
9c47008d 1558{
a63a5cf8 1559 struct gendisk *template_disk = NULL;
9c47008d 1560
9b4b5a79
MB
1561 if (t->integrity_added)
1562 return;
1563
25520d55
MP
1564 if (t->integrity_supported) {
1565 /*
1566 * Verify that the original integrity profile
1567 * matches all the devices in this table.
1568 */
1569 template_disk = dm_table_get_integrity_disk(t);
1570 if (template_disk &&
1571 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1572 return;
1573 }
9c47008d 1574
25520d55 1575 if (integrity_profile_exists(dm_disk(t->md))) {
876fbba1
MS
1576 DMWARN("%s: unable to establish an integrity profile",
1577 dm_device_name(t->md));
25520d55
MP
1578 blk_integrity_unregister(dm_disk(t->md));
1579 }
9c47008d
MP
1580}
1581
ed8b752b
MS
1582static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1583 sector_t start, sector_t len, void *data)
1584{
c888a8f9 1585 unsigned long flush = (unsigned long) data;
ed8b752b
MS
1586 struct request_queue *q = bdev_get_queue(dev->bdev);
1587
c888a8f9 1588 return q && (q->queue_flags & flush);
ed8b752b
MS
1589}
1590
c888a8f9 1591static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
ed8b752b
MS
1592{
1593 struct dm_target *ti;
3c120169 1594 unsigned i;
ed8b752b
MS
1595
1596 /*
1597 * Require at least one underlying device to support flushes.
1598 * t->devices includes internal dm devices such as mirror logs
1599 * so we need to use iterate_devices here, which targets
1600 * supporting flushes must provide.
1601 */
3c120169
MP
1602 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1603 ti = dm_table_get_target(t, i);
ed8b752b 1604
55a62eef 1605 if (!ti->num_flush_bios)
ed8b752b
MS
1606 continue;
1607
0e9c24ed 1608 if (ti->flush_supported)
7f61f5a0 1609 return true;
0e9c24ed 1610
ed8b752b 1611 if (ti->type->iterate_devices &&
c888a8f9 1612 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
7f61f5a0 1613 return true;
ed8b752b
MS
1614 }
1615
7f61f5a0 1616 return false;
ed8b752b
MS
1617}
1618
273752c9
VG
1619static int device_dax_write_cache_enabled(struct dm_target *ti,
1620 struct dm_dev *dev, sector_t start,
1621 sector_t len, void *data)
1622{
1623 struct dax_device *dax_dev = dev->dax_dev;
1624
1625 if (!dax_dev)
1626 return false;
1627
1628 if (dax_write_cache_enabled(dax_dev))
1629 return true;
1630 return false;
1631}
1632
1633static int dm_table_supports_dax_write_cache(struct dm_table *t)
1634{
1635 struct dm_target *ti;
1636 unsigned i;
1637
1638 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1639 ti = dm_table_get_target(t, i);
1640
1641 if (ti->type->iterate_devices &&
1642 ti->type->iterate_devices(ti,
1643 device_dax_write_cache_enabled, NULL))
1644 return true;
1645 }
1646
1647 return false;
1648}
1649
4693c966
MSB
1650static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1651 sector_t start, sector_t len, void *data)
1652{
1653 struct request_queue *q = bdev_get_queue(dev->bdev);
1654
1655 return q && blk_queue_nonrot(q);
1656}
1657
c3c4555e
MB
1658static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1659 sector_t start, sector_t len, void *data)
1660{
1661 struct request_queue *q = bdev_get_queue(dev->bdev);
1662
1663 return q && !blk_queue_add_random(q);
1664}
1665
1666static bool dm_table_all_devices_attribute(struct dm_table *t,
1667 iterate_devices_callout_fn func)
4693c966
MSB
1668{
1669 struct dm_target *ti;
3c120169 1670 unsigned i;
4693c966 1671
3c120169
MP
1672 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1673 ti = dm_table_get_target(t, i);
4693c966
MSB
1674
1675 if (!ti->type->iterate_devices ||
c3c4555e 1676 !ti->type->iterate_devices(ti, func, NULL))
7f61f5a0 1677 return false;
4693c966
MSB
1678 }
1679
7f61f5a0 1680 return true;
4693c966
MSB
1681}
1682
22c11858
MS
1683static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1684 sector_t start, sector_t len, void *data)
1685{
1686 char b[BDEVNAME_SIZE];
1687
1688 /* For now, NVMe devices are the only devices of this class */
99243b92 1689 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
22c11858
MS
1690}
1691
1692static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1693{
1694 return dm_table_all_devices_attribute(t, device_no_partial_completion);
1695}
1696
d54eaa5a
MS
1697static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1698 sector_t start, sector_t len, void *data)
1699{
1700 struct request_queue *q = bdev_get_queue(dev->bdev);
1701
1702 return q && !q->limits.max_write_same_sectors;
1703}
1704
1705static bool dm_table_supports_write_same(struct dm_table *t)
1706{
1707 struct dm_target *ti;
3c120169 1708 unsigned i;
d54eaa5a 1709
3c120169
MP
1710 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1711 ti = dm_table_get_target(t, i);
d54eaa5a 1712
55a62eef 1713 if (!ti->num_write_same_bios)
d54eaa5a
MS
1714 return false;
1715
1716 if (!ti->type->iterate_devices ||
dc019b21 1717 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
d54eaa5a
MS
1718 return false;
1719 }
1720
1721 return true;
1722}
1723
ac62d620
CH
1724static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1725 sector_t start, sector_t len, void *data)
1726{
1727 struct request_queue *q = bdev_get_queue(dev->bdev);
1728
1729 return q && !q->limits.max_write_zeroes_sectors;
1730}
1731
1732static bool dm_table_supports_write_zeroes(struct dm_table *t)
1733{
1734 struct dm_target *ti;
1735 unsigned i = 0;
1736
1737 while (i < dm_table_get_num_targets(t)) {
1738 ti = dm_table_get_target(t, i++);
1739
1740 if (!ti->num_write_zeroes_bios)
1741 return false;
1742
1743 if (!ti->type->iterate_devices ||
1744 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1745 return false;
1746 }
1747
1748 return true;
1749}
1750
8a74d29d
MS
1751static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1752 sector_t start, sector_t len, void *data)
a7ffb6a5
MP
1753{
1754 struct request_queue *q = bdev_get_queue(dev->bdev);
1755
8a74d29d 1756 return q && !blk_queue_discard(q);
a7ffb6a5
MP
1757}
1758
1759static bool dm_table_supports_discards(struct dm_table *t)
1760{
1761 struct dm_target *ti;
3c120169 1762 unsigned i;
a7ffb6a5 1763
3c120169
MP
1764 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1765 ti = dm_table_get_target(t, i);
a7ffb6a5
MP
1766
1767 if (!ti->num_discard_bios)
8a74d29d 1768 return false;
a7ffb6a5 1769
8a74d29d
MS
1770 /*
1771 * Either the target provides discard support (as implied by setting
1772 * 'discards_supported') or it relies on _all_ data devices having
1773 * discard support.
1774 */
1775 if (!ti->discards_supported &&
1776 (!ti->type->iterate_devices ||
1777 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1778 return false;
a7ffb6a5
MP
1779 }
1780
8a74d29d 1781 return true;
a7ffb6a5
MP
1782}
1783
00716545
DS
1784static int device_not_secure_erase_capable(struct dm_target *ti,
1785 struct dm_dev *dev, sector_t start,
1786 sector_t len, void *data)
1787{
1788 struct request_queue *q = bdev_get_queue(dev->bdev);
1789
1790 return q && !blk_queue_secure_erase(q);
1791}
1792
1793static bool dm_table_supports_secure_erase(struct dm_table *t)
1794{
1795 struct dm_target *ti;
1796 unsigned int i;
1797
1798 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1799 ti = dm_table_get_target(t, i);
1800
1801 if (!ti->num_secure_erase_bios)
1802 return false;
1803
1804 if (!ti->type->iterate_devices ||
1805 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1806 return false;
1807 }
1808
1809 return true;
1810}
1811
eb40c0ac
ID
1812static int device_requires_stable_pages(struct dm_target *ti,
1813 struct dm_dev *dev, sector_t start,
1814 sector_t len, void *data)
1815{
1816 struct request_queue *q = bdev_get_queue(dev->bdev);
1817
1818 return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1819}
1820
1821/*
1822 * If any underlying device requires stable pages, a table must require
1823 * them as well. Only targets that support iterate_devices are considered:
1824 * don't want error, zero, etc to require stable pages.
1825 */
1826static bool dm_table_requires_stable_pages(struct dm_table *t)
1827{
1828 struct dm_target *ti;
1829 unsigned i;
1830
1831 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1832 ti = dm_table_get_target(t, i);
1833
1834 if (ti->type->iterate_devices &&
1835 ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1836 return true;
1837 }
1838
1839 return false;
1840}
1841
754c5fc7
MS
1842void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1843 struct queue_limits *limits)
1da177e4 1844{
519a7e16 1845 bool wc = false, fua = false;
2e9ee095 1846 int page_size = PAGE_SIZE;
ed8b752b 1847
1da177e4 1848 /*
1197764e 1849 * Copy table's limits to the DM device's request_queue
1da177e4 1850 */
754c5fc7 1851 q->limits = *limits;
c9a3f6d6 1852
5d47c89f 1853 if (!dm_table_supports_discards(t)) {
8b904b5b 1854 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
5d47c89f
MS
1855 /* Must also clear discard limits... */
1856 q->limits.max_discard_sectors = 0;
1857 q->limits.max_hw_discard_sectors = 0;
1858 q->limits.discard_granularity = 0;
1859 q->limits.discard_alignment = 0;
1860 q->limits.discard_misaligned = 0;
1861 } else
8b904b5b 1862 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
5ae89a87 1863
00716545 1864 if (dm_table_supports_secure_erase(t))
83c7c18b 1865 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
00716545 1866
c888a8f9 1867 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
519a7e16 1868 wc = true;
c888a8f9 1869 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
519a7e16 1870 fua = true;
ed8b752b 1871 }
519a7e16 1872 blk_queue_write_cache(q, wc, fua);
ed8b752b 1873
2e9ee095 1874 if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
8b904b5b 1875 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
9c50a98f 1876 if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
2e9ee095
PG
1877 set_dax_synchronous(t->md->dax_dev);
1878 }
dbc62659
RZ
1879 else
1880 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1881
273752c9
VG
1882 if (dm_table_supports_dax_write_cache(t))
1883 dax_write_cache(t->md->dax_dev, true);
1884
c3c4555e
MB
1885 /* Ensure that all underlying devices are non-rotational. */
1886 if (dm_table_all_devices_attribute(t, device_is_nonrot))
8b904b5b 1887 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4693c966 1888 else
8b904b5b 1889 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
4693c966 1890
d54eaa5a
MS
1891 if (!dm_table_supports_write_same(t))
1892 q->limits.max_write_same_sectors = 0;
ac62d620
CH
1893 if (!dm_table_supports_write_zeroes(t))
1894 q->limits.max_write_zeroes_sectors = 0;
c1a94672 1895
25520d55 1896 dm_table_verify_integrity(t);
e6ee8c0b 1897
eb40c0ac
ID
1898 /*
1899 * Some devices don't use blk_integrity but still want stable pages
1900 * because they do their own checksumming.
1901 */
1902 if (dm_table_requires_stable_pages(t))
1903 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
1904 else
1905 q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
1906
c3c4555e
MB
1907 /*
1908 * Determine whether or not this queue's I/O timings contribute
1909 * to the entropy pool, Only request-based targets use this.
1910 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1911 * have it set.
1912 */
1913 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
8b904b5b 1914 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
bf505456
DLM
1915
1916 /*
1917 * For a zoned target, the number of zones should be updated for the
1918 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
ae58954d 1919 * target, this is all that is needed.
bf505456 1920 */
ae58954d
CH
1921#ifdef CONFIG_BLK_DEV_ZONED
1922 if (blk_queue_is_zoned(q)) {
1923 WARN_ON_ONCE(queue_is_mq(q));
1924 q->nr_zones = blkdev_nr_zones(t->md->disk);
1925 }
1926#endif
c6d6e9b0 1927
c2e4cd57 1928 blk_queue_update_readahead(q);
1da177e4
LT
1929}
1930
1931unsigned int dm_table_get_num_targets(struct dm_table *t)
1932{
1933 return t->num_targets;
1934}
1935
1936struct list_head *dm_table_get_devices(struct dm_table *t)
1937{
1938 return &t->devices;
1939}
1940
aeb5d727 1941fmode_t dm_table_get_mode(struct dm_table *t)
1da177e4
LT
1942{
1943 return t->mode;
1944}
08649012 1945EXPORT_SYMBOL(dm_table_get_mode);
1da177e4 1946
d67ee213
MS
1947enum suspend_mode {
1948 PRESUSPEND,
1949 PRESUSPEND_UNDO,
1950 POSTSUSPEND,
1951};
1952
1953static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1da177e4
LT
1954{
1955 int i = t->num_targets;
1956 struct dm_target *ti = t->targets;
1957
1ea0654e
BVA
1958 lockdep_assert_held(&t->md->suspend_lock);
1959
1da177e4 1960 while (i--) {
d67ee213
MS
1961 switch (mode) {
1962 case PRESUSPEND:
1963 if (ti->type->presuspend)
1964 ti->type->presuspend(ti);
1965 break;
1966 case PRESUSPEND_UNDO:
1967 if (ti->type->presuspend_undo)
1968 ti->type->presuspend_undo(ti);
1969 break;
1970 case POSTSUSPEND:
1da177e4
LT
1971 if (ti->type->postsuspend)
1972 ti->type->postsuspend(ti);
d67ee213
MS
1973 break;
1974 }
1da177e4
LT
1975 ti++;
1976 }
1977}
1978
1979void dm_table_presuspend_targets(struct dm_table *t)
1980{
cf222b37
AK
1981 if (!t)
1982 return;
1983
d67ee213
MS
1984 suspend_targets(t, PRESUSPEND);
1985}
1986
1987void dm_table_presuspend_undo_targets(struct dm_table *t)
1988{
1989 if (!t)
1990 return;
1991
1992 suspend_targets(t, PRESUSPEND_UNDO);
1da177e4
LT
1993}
1994
1995void dm_table_postsuspend_targets(struct dm_table *t)
1996{
cf222b37
AK
1997 if (!t)
1998 return;
1999
d67ee213 2000 suspend_targets(t, POSTSUSPEND);
1da177e4
LT
2001}
2002
8757b776 2003int dm_table_resume_targets(struct dm_table *t)
1da177e4 2004{
8757b776
MB
2005 int i, r = 0;
2006
1ea0654e
BVA
2007 lockdep_assert_held(&t->md->suspend_lock);
2008
8757b776
MB
2009 for (i = 0; i < t->num_targets; i++) {
2010 struct dm_target *ti = t->targets + i;
2011
2012 if (!ti->type->preresume)
2013 continue;
2014
2015 r = ti->type->preresume(ti);
7833b08e
MS
2016 if (r) {
2017 DMERR("%s: %s: preresume failed, error = %d",
2018 dm_device_name(t->md), ti->type->name, r);
8757b776 2019 return r;
7833b08e 2020 }
8757b776 2021 }
1da177e4
LT
2022
2023 for (i = 0; i < t->num_targets; i++) {
2024 struct dm_target *ti = t->targets + i;
2025
2026 if (ti->type->resume)
2027 ti->type->resume(ti);
2028 }
8757b776
MB
2029
2030 return 0;
1da177e4
LT
2031}
2032
1134e5ae
MA
2033struct mapped_device *dm_table_get_md(struct dm_table *t)
2034{
1134e5ae
MA
2035 return t->md;
2036}
08649012 2037EXPORT_SYMBOL(dm_table_get_md);
1134e5ae 2038
f349b0a3
MM
2039const char *dm_table_device_name(struct dm_table *t)
2040{
2041 return dm_device_name(t->md);
2042}
2043EXPORT_SYMBOL_GPL(dm_table_device_name);
2044
9974fa2c
MS
2045void dm_table_run_md_queue_async(struct dm_table *t)
2046{
2047 struct mapped_device *md;
2048 struct request_queue *queue;
9974fa2c
MS
2049
2050 if (!dm_table_request_based(t))
2051 return;
2052
2053 md = dm_table_get_md(t);
2054 queue = dm_get_md_queue(md);
6a23e05c
JA
2055 if (queue)
2056 blk_mq_run_hw_queues(queue, true);
9974fa2c
MS
2057}
2058EXPORT_SYMBOL(dm_table_run_md_queue_async);
2059
This page took 1.438107 seconds and 4 git commands to generate.