]>
Commit | Line | Data |
---|---|---|
ccd979bd MF |
1 | /* -*- mode: c; c-basic-offset: 8; -*- |
2 | * vim: noexpandtab sw=8 ts=8 sts=0: | |
3 | * | |
4 | * Copyright (C) 2002, 2004 Oracle. All rights reserved. | |
5 | * | |
6 | * This program is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This program is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU General Public | |
17 | * License along with this program; if not, write to the | |
18 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
19 | * Boston, MA 021110-1307, USA. | |
20 | */ | |
21 | ||
22 | #include <linux/fs.h> | |
23 | #include <linux/slab.h> | |
24 | #include <linux/highmem.h> | |
25 | #include <linux/pagemap.h> | |
26 | #include <asm/byteorder.h> | |
9517bac6 | 27 | #include <linux/swap.h> |
ccd979bd MF |
28 | |
29 | #define MLOG_MASK_PREFIX ML_FILE_IO | |
30 | #include <cluster/masklog.h> | |
31 | ||
32 | #include "ocfs2.h" | |
33 | ||
34 | #include "alloc.h" | |
35 | #include "aops.h" | |
36 | #include "dlmglue.h" | |
37 | #include "extent_map.h" | |
38 | #include "file.h" | |
39 | #include "inode.h" | |
40 | #include "journal.h" | |
9517bac6 | 41 | #include "suballoc.h" |
ccd979bd MF |
42 | #include "super.h" |
43 | #include "symlink.h" | |
44 | ||
45 | #include "buffer_head_io.h" | |
46 | ||
47 | static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, | |
48 | struct buffer_head *bh_result, int create) | |
49 | { | |
50 | int err = -EIO; | |
51 | int status; | |
52 | struct ocfs2_dinode *fe = NULL; | |
53 | struct buffer_head *bh = NULL; | |
54 | struct buffer_head *buffer_cache_bh = NULL; | |
55 | struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); | |
56 | void *kaddr; | |
57 | ||
58 | mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode, | |
59 | (unsigned long long)iblock, bh_result, create); | |
60 | ||
61 | BUG_ON(ocfs2_inode_is_fast_symlink(inode)); | |
62 | ||
63 | if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { | |
64 | mlog(ML_ERROR, "block offset > PATH_MAX: %llu", | |
65 | (unsigned long long)iblock); | |
66 | goto bail; | |
67 | } | |
68 | ||
69 | status = ocfs2_read_block(OCFS2_SB(inode->i_sb), | |
70 | OCFS2_I(inode)->ip_blkno, | |
71 | &bh, OCFS2_BH_CACHED, inode); | |
72 | if (status < 0) { | |
73 | mlog_errno(status); | |
74 | goto bail; | |
75 | } | |
76 | fe = (struct ocfs2_dinode *) bh->b_data; | |
77 | ||
78 | if (!OCFS2_IS_VALID_DINODE(fe)) { | |
b0697053 MF |
79 | mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n", |
80 | (unsigned long long)fe->i_blkno, 7, fe->i_signature); | |
ccd979bd MF |
81 | goto bail; |
82 | } | |
83 | ||
84 | if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, | |
85 | le32_to_cpu(fe->i_clusters))) { | |
86 | mlog(ML_ERROR, "block offset is outside the allocated size: " | |
87 | "%llu\n", (unsigned long long)iblock); | |
88 | goto bail; | |
89 | } | |
90 | ||
91 | /* We don't use the page cache to create symlink data, so if | |
92 | * need be, copy it over from the buffer cache. */ | |
93 | if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { | |
94 | u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + | |
95 | iblock; | |
96 | buffer_cache_bh = sb_getblk(osb->sb, blkno); | |
97 | if (!buffer_cache_bh) { | |
98 | mlog(ML_ERROR, "couldn't getblock for symlink!\n"); | |
99 | goto bail; | |
100 | } | |
101 | ||
102 | /* we haven't locked out transactions, so a commit | |
103 | * could've happened. Since we've got a reference on | |
104 | * the bh, even if it commits while we're doing the | |
105 | * copy, the data is still good. */ | |
106 | if (buffer_jbd(buffer_cache_bh) | |
107 | && ocfs2_inode_is_new(inode)) { | |
108 | kaddr = kmap_atomic(bh_result->b_page, KM_USER0); | |
109 | if (!kaddr) { | |
110 | mlog(ML_ERROR, "couldn't kmap!\n"); | |
111 | goto bail; | |
112 | } | |
113 | memcpy(kaddr + (bh_result->b_size * iblock), | |
114 | buffer_cache_bh->b_data, | |
115 | bh_result->b_size); | |
116 | kunmap_atomic(kaddr, KM_USER0); | |
117 | set_buffer_uptodate(bh_result); | |
118 | } | |
119 | brelse(buffer_cache_bh); | |
120 | } | |
121 | ||
122 | map_bh(bh_result, inode->i_sb, | |
123 | le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); | |
124 | ||
125 | err = 0; | |
126 | ||
127 | bail: | |
128 | if (bh) | |
129 | brelse(bh); | |
130 | ||
131 | mlog_exit(err); | |
132 | return err; | |
133 | } | |
134 | ||
135 | static int ocfs2_get_block(struct inode *inode, sector_t iblock, | |
136 | struct buffer_head *bh_result, int create) | |
137 | { | |
138 | int err = 0; | |
139 | u64 p_blkno, past_eof; | |
140 | ||
141 | mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode, | |
142 | (unsigned long long)iblock, bh_result, create); | |
143 | ||
144 | if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) | |
145 | mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", | |
146 | inode, inode->i_ino); | |
147 | ||
148 | if (S_ISLNK(inode->i_mode)) { | |
149 | /* this always does I/O for some reason. */ | |
150 | err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); | |
151 | goto bail; | |
152 | } | |
153 | ||
154 | /* this can happen if another node truncs after our extend! */ | |
155 | spin_lock(&OCFS2_I(inode)->ip_lock); | |
156 | if (iblock >= ocfs2_clusters_to_blocks(inode->i_sb, | |
157 | OCFS2_I(inode)->ip_clusters)) | |
158 | err = -EIO; | |
159 | spin_unlock(&OCFS2_I(inode)->ip_lock); | |
160 | if (err) | |
161 | goto bail; | |
162 | ||
363041a5 | 163 | err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL); |
ccd979bd MF |
164 | if (err) { |
165 | mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " | |
b0697053 MF |
166 | "%llu, NULL)\n", err, inode, (unsigned long long)iblock, |
167 | (unsigned long long)p_blkno); | |
ccd979bd MF |
168 | goto bail; |
169 | } | |
170 | ||
171 | map_bh(bh_result, inode->i_sb, p_blkno); | |
172 | ||
173 | if (bh_result->b_blocknr == 0) { | |
174 | err = -EIO; | |
b0697053 MF |
175 | mlog(ML_ERROR, "iblock = %llu p_blkno = %llu blkno=(%llu)\n", |
176 | (unsigned long long)iblock, | |
177 | (unsigned long long)p_blkno, | |
178 | (unsigned long long)OCFS2_I(inode)->ip_blkno); | |
ccd979bd MF |
179 | } |
180 | ||
181 | past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); | |
b0697053 MF |
182 | mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino, |
183 | (unsigned long long)past_eof); | |
ccd979bd MF |
184 | |
185 | if (create && (iblock >= past_eof)) | |
186 | set_buffer_new(bh_result); | |
187 | ||
188 | bail: | |
189 | if (err < 0) | |
190 | err = -EIO; | |
191 | ||
192 | mlog_exit(err); | |
193 | return err; | |
194 | } | |
195 | ||
196 | static int ocfs2_readpage(struct file *file, struct page *page) | |
197 | { | |
198 | struct inode *inode = page->mapping->host; | |
199 | loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; | |
200 | int ret, unlock = 1; | |
201 | ||
202 | mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0)); | |
203 | ||
4bcec184 | 204 | ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page); |
ccd979bd MF |
205 | if (ret != 0) { |
206 | if (ret == AOP_TRUNCATED_PAGE) | |
207 | unlock = 0; | |
208 | mlog_errno(ret); | |
209 | goto out; | |
210 | } | |
211 | ||
212 | down_read(&OCFS2_I(inode)->ip_alloc_sem); | |
213 | ||
214 | /* | |
215 | * i_size might have just been updated as we grabed the meta lock. We | |
216 | * might now be discovering a truncate that hit on another node. | |
217 | * block_read_full_page->get_block freaks out if it is asked to read | |
218 | * beyond the end of a file, so we check here. Callers | |
219 | * (generic_file_read, fault->nopage) are clever enough to check i_size | |
220 | * and notice that the page they just read isn't needed. | |
221 | * | |
222 | * XXX sys_readahead() seems to get that wrong? | |
223 | */ | |
224 | if (start >= i_size_read(inode)) { | |
225 | char *addr = kmap(page); | |
226 | memset(addr, 0, PAGE_SIZE); | |
227 | flush_dcache_page(page); | |
228 | kunmap(page); | |
229 | SetPageUptodate(page); | |
230 | ret = 0; | |
231 | goto out_alloc; | |
232 | } | |
233 | ||
234 | ret = ocfs2_data_lock_with_page(inode, 0, page); | |
235 | if (ret != 0) { | |
236 | if (ret == AOP_TRUNCATED_PAGE) | |
237 | unlock = 0; | |
238 | mlog_errno(ret); | |
239 | goto out_alloc; | |
240 | } | |
241 | ||
242 | ret = block_read_full_page(page, ocfs2_get_block); | |
243 | unlock = 0; | |
244 | ||
245 | ocfs2_data_unlock(inode, 0); | |
246 | out_alloc: | |
247 | up_read(&OCFS2_I(inode)->ip_alloc_sem); | |
248 | ocfs2_meta_unlock(inode, 0); | |
249 | out: | |
250 | if (unlock) | |
251 | unlock_page(page); | |
252 | mlog_exit(ret); | |
253 | return ret; | |
254 | } | |
255 | ||
256 | /* Note: Because we don't support holes, our allocation has | |
257 | * already happened (allocation writes zeros to the file data) | |
258 | * so we don't have to worry about ordered writes in | |
259 | * ocfs2_writepage. | |
260 | * | |
261 | * ->writepage is called during the process of invalidating the page cache | |
262 | * during blocked lock processing. It can't block on any cluster locks | |
263 | * to during block mapping. It's relying on the fact that the block | |
264 | * mapping can't have disappeared under the dirty pages that it is | |
265 | * being asked to write back. | |
266 | */ | |
267 | static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) | |
268 | { | |
269 | int ret; | |
270 | ||
271 | mlog_entry("(0x%p)\n", page); | |
272 | ||
273 | ret = block_write_full_page(page, ocfs2_get_block, wbc); | |
274 | ||
275 | mlog_exit(ret); | |
276 | ||
277 | return ret; | |
278 | } | |
279 | ||
5069120b MF |
280 | /* |
281 | * This is called from ocfs2_write_zero_page() which has handled it's | |
282 | * own cluster locking and has ensured allocation exists for those | |
283 | * blocks to be written. | |
284 | */ | |
53013cba MF |
285 | int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page, |
286 | unsigned from, unsigned to) | |
287 | { | |
288 | int ret; | |
289 | ||
290 | down_read(&OCFS2_I(inode)->ip_alloc_sem); | |
291 | ||
292 | ret = block_prepare_write(page, from, to, ocfs2_get_block); | |
293 | ||
294 | up_read(&OCFS2_I(inode)->ip_alloc_sem); | |
295 | ||
296 | return ret; | |
297 | } | |
298 | ||
ccd979bd MF |
299 | /* Taken from ext3. We don't necessarily need the full blown |
300 | * functionality yet, but IMHO it's better to cut and paste the whole | |
301 | * thing so we can avoid introducing our own bugs (and easily pick up | |
302 | * their fixes when they happen) --Mark */ | |
303 | static int walk_page_buffers( handle_t *handle, | |
304 | struct buffer_head *head, | |
305 | unsigned from, | |
306 | unsigned to, | |
307 | int *partial, | |
308 | int (*fn)( handle_t *handle, | |
309 | struct buffer_head *bh)) | |
310 | { | |
311 | struct buffer_head *bh; | |
312 | unsigned block_start, block_end; | |
313 | unsigned blocksize = head->b_size; | |
314 | int err, ret = 0; | |
315 | struct buffer_head *next; | |
316 | ||
317 | for ( bh = head, block_start = 0; | |
318 | ret == 0 && (bh != head || !block_start); | |
319 | block_start = block_end, bh = next) | |
320 | { | |
321 | next = bh->b_this_page; | |
322 | block_end = block_start + blocksize; | |
323 | if (block_end <= from || block_start >= to) { | |
324 | if (partial && !buffer_uptodate(bh)) | |
325 | *partial = 1; | |
326 | continue; | |
327 | } | |
328 | err = (*fn)(handle, bh); | |
329 | if (!ret) | |
330 | ret = err; | |
331 | } | |
332 | return ret; | |
333 | } | |
334 | ||
1fabe148 | 335 | handle_t *ocfs2_start_walk_page_trans(struct inode *inode, |
ccd979bd MF |
336 | struct page *page, |
337 | unsigned from, | |
338 | unsigned to) | |
339 | { | |
340 | struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); | |
1fabe148 | 341 | handle_t *handle = NULL; |
ccd979bd MF |
342 | int ret = 0; |
343 | ||
65eff9cc | 344 | handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); |
ccd979bd MF |
345 | if (!handle) { |
346 | ret = -ENOMEM; | |
347 | mlog_errno(ret); | |
348 | goto out; | |
349 | } | |
350 | ||
351 | if (ocfs2_should_order_data(inode)) { | |
1fabe148 | 352 | ret = walk_page_buffers(handle, |
ccd979bd MF |
353 | page_buffers(page), |
354 | from, to, NULL, | |
355 | ocfs2_journal_dirty_data); | |
356 | if (ret < 0) | |
357 | mlog_errno(ret); | |
358 | } | |
359 | out: | |
360 | if (ret) { | |
361 | if (handle) | |
02dc1af4 | 362 | ocfs2_commit_trans(osb, handle); |
ccd979bd MF |
363 | handle = ERR_PTR(ret); |
364 | } | |
365 | return handle; | |
366 | } | |
367 | ||
ccd979bd MF |
368 | static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) |
369 | { | |
370 | sector_t status; | |
371 | u64 p_blkno = 0; | |
372 | int err = 0; | |
373 | struct inode *inode = mapping->host; | |
374 | ||
375 | mlog_entry("(block = %llu)\n", (unsigned long long)block); | |
376 | ||
377 | /* We don't need to lock journal system files, since they aren't | |
378 | * accessed concurrently from multiple nodes. | |
379 | */ | |
380 | if (!INODE_JOURNAL(inode)) { | |
4bcec184 | 381 | err = ocfs2_meta_lock(inode, NULL, 0); |
ccd979bd MF |
382 | if (err) { |
383 | if (err != -ENOENT) | |
384 | mlog_errno(err); | |
385 | goto bail; | |
386 | } | |
387 | down_read(&OCFS2_I(inode)->ip_alloc_sem); | |
388 | } | |
389 | ||
363041a5 | 390 | err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL); |
ccd979bd MF |
391 | |
392 | if (!INODE_JOURNAL(inode)) { | |
393 | up_read(&OCFS2_I(inode)->ip_alloc_sem); | |
394 | ocfs2_meta_unlock(inode, 0); | |
395 | } | |
396 | ||
397 | if (err) { | |
398 | mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", | |
399 | (unsigned long long)block); | |
400 | mlog_errno(err); | |
401 | goto bail; | |
402 | } | |
403 | ||
404 | ||
405 | bail: | |
406 | status = err ? 0 : p_blkno; | |
407 | ||
408 | mlog_exit((int)status); | |
409 | ||
410 | return status; | |
411 | } | |
412 | ||
413 | /* | |
414 | * TODO: Make this into a generic get_blocks function. | |
415 | * | |
416 | * From do_direct_io in direct-io.c: | |
417 | * "So what we do is to permit the ->get_blocks function to populate | |
418 | * bh.b_size with the size of IO which is permitted at this offset and | |
419 | * this i_blkbits." | |
420 | * | |
421 | * This function is called directly from get_more_blocks in direct-io.c. | |
422 | * | |
423 | * called like this: dio->get_blocks(dio->inode, fs_startblk, | |
424 | * fs_count, map_bh, dio->rw == WRITE); | |
425 | */ | |
426 | static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, | |
ccd979bd MF |
427 | struct buffer_head *bh_result, int create) |
428 | { | |
429 | int ret; | |
564f8a32 | 430 | u64 p_blkno, inode_blocks; |
ccd979bd | 431 | int contig_blocks; |
184d7d20 | 432 | unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; |
1d8fa7a2 | 433 | unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; |
ccd979bd | 434 | |
ccd979bd MF |
435 | /* This function won't even be called if the request isn't all |
436 | * nicely aligned and of the right size, so there's no need | |
437 | * for us to check any of that. */ | |
438 | ||
ccd979bd | 439 | spin_lock(&OCFS2_I(inode)->ip_lock); |
564f8a32 MF |
440 | inode_blocks = ocfs2_clusters_to_blocks(inode->i_sb, |
441 | OCFS2_I(inode)->ip_clusters); | |
442 | ||
443 | /* | |
444 | * For a read which begins past the end of file, we return a hole. | |
445 | */ | |
446 | if (!create && (iblock >= inode_blocks)) { | |
447 | spin_unlock(&OCFS2_I(inode)->ip_lock); | |
448 | ret = 0; | |
449 | goto bail; | |
450 | } | |
451 | ||
452 | /* | |
453 | * Any write past EOF is not allowed because we'd be extending. | |
454 | */ | |
455 | if (create && (iblock + max_blocks) > inode_blocks) { | |
ccd979bd MF |
456 | spin_unlock(&OCFS2_I(inode)->ip_lock); |
457 | ret = -EIO; | |
458 | goto bail; | |
459 | } | |
460 | spin_unlock(&OCFS2_I(inode)->ip_lock); | |
461 | ||
462 | /* This figures out the size of the next contiguous block, and | |
463 | * our logical offset */ | |
363041a5 | 464 | ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, |
ccd979bd MF |
465 | &contig_blocks); |
466 | if (ret) { | |
467 | mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", | |
468 | (unsigned long long)iblock); | |
469 | ret = -EIO; | |
470 | goto bail; | |
471 | } | |
472 | ||
473 | map_bh(bh_result, inode->i_sb, p_blkno); | |
474 | ||
475 | /* make sure we don't map more than max_blocks blocks here as | |
476 | that's all the kernel will handle at this point. */ | |
477 | if (max_blocks < contig_blocks) | |
478 | contig_blocks = max_blocks; | |
479 | bh_result->b_size = contig_blocks << blocksize_bits; | |
480 | bail: | |
481 | return ret; | |
482 | } | |
483 | ||
484 | /* | |
485 | * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're | |
486 | * particularly interested in the aio/dio case. Like the core uses | |
487 | * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from | |
488 | * truncation on another. | |
489 | */ | |
490 | static void ocfs2_dio_end_io(struct kiocb *iocb, | |
491 | loff_t offset, | |
492 | ssize_t bytes, | |
493 | void *private) | |
494 | { | |
d28c9174 | 495 | struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; |
ccd979bd MF |
496 | |
497 | /* this io's submitter should not have unlocked this before we could */ | |
498 | BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); | |
499 | ocfs2_iocb_clear_rw_locked(iocb); | |
500 | up_read(&inode->i_alloc_sem); | |
501 | ocfs2_rw_unlock(inode, 0); | |
502 | } | |
503 | ||
03f981cf JB |
504 | /* |
505 | * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen | |
506 | * from ext3. PageChecked() bits have been removed as OCFS2 does not | |
507 | * do journalled data. | |
508 | */ | |
509 | static void ocfs2_invalidatepage(struct page *page, unsigned long offset) | |
510 | { | |
511 | journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; | |
512 | ||
513 | journal_invalidatepage(journal, page, offset); | |
514 | } | |
515 | ||
516 | static int ocfs2_releasepage(struct page *page, gfp_t wait) | |
517 | { | |
518 | journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; | |
519 | ||
520 | if (!page_has_buffers(page)) | |
521 | return 0; | |
522 | return journal_try_to_free_buffers(journal, page, wait); | |
523 | } | |
524 | ||
ccd979bd MF |
525 | static ssize_t ocfs2_direct_IO(int rw, |
526 | struct kiocb *iocb, | |
527 | const struct iovec *iov, | |
528 | loff_t offset, | |
529 | unsigned long nr_segs) | |
530 | { | |
531 | struct file *file = iocb->ki_filp; | |
d28c9174 | 532 | struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host; |
ccd979bd MF |
533 | int ret; |
534 | ||
535 | mlog_entry_void(); | |
53013cba | 536 | |
9517bac6 MF |
537 | if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) { |
538 | /* | |
539 | * We get PR data locks even for O_DIRECT. This | |
540 | * allows concurrent O_DIRECT I/O but doesn't let | |
541 | * O_DIRECT with extending and buffered zeroing writes | |
542 | * race. If they did race then the buffered zeroing | |
543 | * could be written back after the O_DIRECT I/O. It's | |
544 | * one thing to tell people not to mix buffered and | |
545 | * O_DIRECT writes, but expecting them to understand | |
546 | * that file extension is also an implicit buffered | |
547 | * write is too much. By getting the PR we force | |
548 | * writeback of the buffered zeroing before | |
549 | * proceeding. | |
550 | */ | |
551 | ret = ocfs2_data_lock(inode, 0); | |
552 | if (ret < 0) { | |
553 | mlog_errno(ret); | |
554 | goto out; | |
555 | } | |
556 | ocfs2_data_unlock(inode, 0); | |
53013cba | 557 | } |
53013cba | 558 | |
ccd979bd MF |
559 | ret = blockdev_direct_IO_no_locking(rw, iocb, inode, |
560 | inode->i_sb->s_bdev, iov, offset, | |
561 | nr_segs, | |
562 | ocfs2_direct_IO_get_blocks, | |
563 | ocfs2_dio_end_io); | |
53013cba | 564 | out: |
ccd979bd MF |
565 | mlog_exit(ret); |
566 | return ret; | |
567 | } | |
568 | ||
9517bac6 MF |
569 | static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, |
570 | u32 cpos, | |
571 | unsigned int *start, | |
572 | unsigned int *end) | |
573 | { | |
574 | unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; | |
575 | ||
576 | if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { | |
577 | unsigned int cpp; | |
578 | ||
579 | cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); | |
580 | ||
581 | cluster_start = cpos % cpp; | |
582 | cluster_start = cluster_start << osb->s_clustersize_bits; | |
583 | ||
584 | cluster_end = cluster_start + osb->s_clustersize; | |
585 | } | |
586 | ||
587 | BUG_ON(cluster_start > PAGE_SIZE); | |
588 | BUG_ON(cluster_end > PAGE_SIZE); | |
589 | ||
590 | if (start) | |
591 | *start = cluster_start; | |
592 | if (end) | |
593 | *end = cluster_end; | |
594 | } | |
595 | ||
596 | /* | |
597 | * 'from' and 'to' are the region in the page to avoid zeroing. | |
598 | * | |
599 | * If pagesize > clustersize, this function will avoid zeroing outside | |
600 | * of the cluster boundary. | |
601 | * | |
602 | * from == to == 0 is code for "zero the entire cluster region" | |
603 | */ | |
604 | static void ocfs2_clear_page_regions(struct page *page, | |
605 | struct ocfs2_super *osb, u32 cpos, | |
606 | unsigned from, unsigned to) | |
607 | { | |
608 | void *kaddr; | |
609 | unsigned int cluster_start, cluster_end; | |
610 | ||
611 | ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); | |
612 | ||
613 | kaddr = kmap_atomic(page, KM_USER0); | |
614 | ||
615 | if (from || to) { | |
616 | if (from > cluster_start) | |
617 | memset(kaddr + cluster_start, 0, from - cluster_start); | |
618 | if (to < cluster_end) | |
619 | memset(kaddr + to, 0, cluster_end - to); | |
620 | } else { | |
621 | memset(kaddr + cluster_start, 0, cluster_end - cluster_start); | |
622 | } | |
623 | ||
624 | kunmap_atomic(kaddr, KM_USER0); | |
625 | } | |
626 | ||
627 | /* | |
628 | * Some of this taken from block_prepare_write(). We already have our | |
629 | * mapping by now though, and the entire write will be allocating or | |
630 | * it won't, so not much need to use BH_New. | |
631 | * | |
632 | * This will also skip zeroing, which is handled externally. | |
633 | */ | |
634 | static int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, | |
635 | struct inode *inode, unsigned int from, | |
636 | unsigned int to, int new) | |
637 | { | |
638 | int ret = 0; | |
639 | struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; | |
640 | unsigned int block_end, block_start; | |
641 | unsigned int bsize = 1 << inode->i_blkbits; | |
642 | ||
643 | if (!page_has_buffers(page)) | |
644 | create_empty_buffers(page, bsize, 0); | |
645 | ||
646 | head = page_buffers(page); | |
647 | for (bh = head, block_start = 0; bh != head || !block_start; | |
648 | bh = bh->b_this_page, block_start += bsize) { | |
649 | block_end = block_start + bsize; | |
650 | ||
651 | /* | |
652 | * Ignore blocks outside of our i/o range - | |
653 | * they may belong to unallocated clusters. | |
654 | */ | |
655 | if (block_start >= to || | |
656 | (block_start + bsize) <= from) { | |
657 | if (PageUptodate(page)) | |
658 | set_buffer_uptodate(bh); | |
659 | continue; | |
660 | } | |
661 | ||
662 | /* | |
663 | * For an allocating write with cluster size >= page | |
664 | * size, we always write the entire page. | |
665 | */ | |
666 | ||
667 | if (buffer_new(bh)) | |
668 | clear_buffer_new(bh); | |
669 | ||
670 | if (!buffer_mapped(bh)) { | |
671 | map_bh(bh, inode->i_sb, *p_blkno); | |
672 | unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); | |
673 | } | |
674 | ||
675 | if (PageUptodate(page)) { | |
676 | if (!buffer_uptodate(bh)) | |
677 | set_buffer_uptodate(bh); | |
678 | } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && | |
679 | (block_start < from || block_end > to)) { | |
680 | ll_rw_block(READ, 1, &bh); | |
681 | *wait_bh++=bh; | |
682 | } | |
683 | ||
684 | *p_blkno = *p_blkno + 1; | |
685 | } | |
686 | ||
687 | /* | |
688 | * If we issued read requests - let them complete. | |
689 | */ | |
690 | while(wait_bh > wait) { | |
691 | wait_on_buffer(*--wait_bh); | |
692 | if (!buffer_uptodate(*wait_bh)) | |
693 | ret = -EIO; | |
694 | } | |
695 | ||
696 | if (ret == 0 || !new) | |
697 | return ret; | |
698 | ||
699 | /* | |
700 | * If we get -EIO above, zero out any newly allocated blocks | |
701 | * to avoid exposing stale data. | |
702 | */ | |
703 | bh = head; | |
704 | block_start = 0; | |
705 | do { | |
706 | void *kaddr; | |
707 | ||
708 | block_end = block_start + bsize; | |
709 | if (block_end <= from) | |
710 | goto next_bh; | |
711 | if (block_start >= to) | |
712 | break; | |
713 | ||
714 | kaddr = kmap_atomic(page, KM_USER0); | |
715 | memset(kaddr+block_start, 0, bh->b_size); | |
716 | flush_dcache_page(page); | |
717 | kunmap_atomic(kaddr, KM_USER0); | |
718 | set_buffer_uptodate(bh); | |
719 | mark_buffer_dirty(bh); | |
720 | ||
721 | next_bh: | |
722 | block_start = block_end; | |
723 | bh = bh->b_this_page; | |
724 | } while (bh != head); | |
725 | ||
726 | return ret; | |
727 | } | |
728 | ||
729 | /* | |
730 | * This will copy user data from the iovec in the buffered write | |
731 | * context. | |
732 | */ | |
733 | int ocfs2_map_and_write_user_data(struct inode *inode, | |
734 | struct ocfs2_write_ctxt *wc, u64 *p_blkno, | |
735 | unsigned int *ret_from, unsigned int *ret_to) | |
736 | { | |
737 | int ret; | |
738 | unsigned int to, from, cluster_start, cluster_end; | |
739 | unsigned long bytes, src_from; | |
740 | char *dst; | |
741 | struct ocfs2_buffered_write_priv *bp = wc->w_private; | |
742 | const struct iovec *cur_iov = bp->b_cur_iov; | |
743 | char __user *buf; | |
744 | struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); | |
745 | ||
746 | ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start, | |
747 | &cluster_end); | |
748 | ||
749 | buf = cur_iov->iov_base + bp->b_cur_off; | |
750 | src_from = (unsigned long)buf & ~PAGE_CACHE_MASK; | |
751 | ||
752 | from = wc->w_pos & (PAGE_CACHE_SIZE - 1); | |
753 | ||
754 | /* | |
755 | * This is a lot of comparisons, but it reads quite | |
756 | * easily, which is important here. | |
757 | */ | |
758 | /* Stay within the src page */ | |
759 | bytes = PAGE_SIZE - src_from; | |
760 | /* Stay within the vector */ | |
761 | bytes = min(bytes, | |
762 | (unsigned long)(cur_iov->iov_len - bp->b_cur_off)); | |
763 | /* Stay within count */ | |
764 | bytes = min(bytes, (unsigned long)wc->w_count); | |
765 | /* | |
766 | * For clustersize > page size, just stay within | |
767 | * target page, otherwise we have to calculate pos | |
768 | * within the cluster and obey the rightmost | |
769 | * boundary. | |
770 | */ | |
771 | if (wc->w_large_pages) { | |
772 | /* | |
773 | * For cluster size < page size, we have to | |
774 | * calculate pos within the cluster and obey | |
775 | * the rightmost boundary. | |
776 | */ | |
777 | bytes = min(bytes, (unsigned long)(osb->s_clustersize | |
778 | - (wc->w_pos & (osb->s_clustersize - 1)))); | |
779 | } else { | |
780 | /* | |
781 | * cluster size > page size is the most common | |
782 | * case - we just stay within the target page | |
783 | * boundary. | |
784 | */ | |
785 | bytes = min(bytes, PAGE_CACHE_SIZE - from); | |
786 | } | |
787 | ||
788 | to = from + bytes; | |
789 | ||
790 | if (wc->w_this_page_new) | |
791 | ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode, | |
792 | cluster_start, cluster_end, 1); | |
793 | else | |
794 | ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode, | |
795 | from, to, 0); | |
796 | if (ret) { | |
797 | mlog_errno(ret); | |
798 | goto out; | |
799 | } | |
800 | ||
801 | BUG_ON(from > PAGE_CACHE_SIZE); | |
802 | BUG_ON(to > PAGE_CACHE_SIZE); | |
803 | BUG_ON(from > osb->s_clustersize); | |
804 | BUG_ON(to > osb->s_clustersize); | |
805 | ||
806 | dst = kmap(wc->w_this_page); | |
807 | memcpy(dst + from, bp->b_src_buf + src_from, bytes); | |
808 | kunmap(wc->w_this_page); | |
809 | ||
810 | /* | |
811 | * XXX: This is slow, but simple. The caller of | |
812 | * ocfs2_buffered_write_cluster() is responsible for | |
813 | * passing through the iovecs, so it's difficult to | |
814 | * predict what our next step is in here after our | |
815 | * initial write. A future version should be pushing | |
816 | * that iovec manipulation further down. | |
817 | * | |
818 | * By setting this, we indicate that a copy from user | |
819 | * data was done, and subsequent calls for this | |
820 | * cluster will skip copying more data. | |
821 | */ | |
822 | wc->w_finished_copy = 1; | |
823 | ||
824 | *ret_from = from; | |
825 | *ret_to = to; | |
826 | out: | |
827 | ||
828 | return bytes ? (unsigned int)bytes : ret; | |
829 | } | |
830 | ||
831 | /* | |
832 | * Map, fill and write a page to disk. | |
833 | * | |
834 | * The work of copying data is done via callback. Newly allocated | |
835 | * pages which don't take user data will be zero'd (set 'new' to | |
836 | * indicate an allocating write) | |
837 | * | |
838 | * Returns a negative error code or the number of bytes copied into | |
839 | * the page. | |
840 | */ | |
841 | int ocfs2_write_data_page(struct inode *inode, handle_t *handle, | |
842 | u64 *p_blkno, struct page *page, | |
843 | struct ocfs2_write_ctxt *wc, int new) | |
844 | { | |
845 | int ret, copied = 0; | |
846 | unsigned int from = 0, to = 0; | |
847 | unsigned int cluster_start, cluster_end; | |
848 | unsigned int zero_from = 0, zero_to = 0; | |
849 | ||
850 | ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), wc->w_cpos, | |
851 | &cluster_start, &cluster_end); | |
852 | ||
853 | if ((wc->w_pos >> PAGE_CACHE_SHIFT) == page->index | |
854 | && !wc->w_finished_copy) { | |
855 | ||
856 | wc->w_this_page = page; | |
857 | wc->w_this_page_new = new; | |
858 | ret = wc->w_write_data_page(inode, wc, p_blkno, &from, &to); | |
859 | if (ret < 0) { | |
860 | mlog_errno(ret); | |
861 | goto out; | |
862 | } | |
863 | ||
864 | copied = ret; | |
865 | ||
866 | zero_from = from; | |
867 | zero_to = to; | |
868 | if (new) { | |
869 | from = cluster_start; | |
870 | to = cluster_end; | |
871 | } | |
872 | } else { | |
873 | /* | |
874 | * If we haven't allocated the new page yet, we | |
875 | * shouldn't be writing it out without copying user | |
876 | * data. This is likely a math error from the caller. | |
877 | */ | |
878 | BUG_ON(!new); | |
879 | ||
880 | from = cluster_start; | |
881 | to = cluster_end; | |
882 | ||
883 | ret = ocfs2_map_page_blocks(page, p_blkno, inode, | |
884 | cluster_start, cluster_end, 1); | |
885 | if (ret) { | |
886 | mlog_errno(ret); | |
887 | goto out; | |
888 | } | |
889 | } | |
890 | ||
891 | /* | |
892 | * Parts of newly allocated pages need to be zero'd. | |
893 | * | |
894 | * Above, we have also rewritten 'to' and 'from' - as far as | |
895 | * the rest of the function is concerned, the entire cluster | |
896 | * range inside of a page needs to be written. | |
897 | * | |
898 | * We can skip this if the page is up to date - it's already | |
899 | * been zero'd from being read in as a hole. | |
900 | */ | |
901 | if (new && !PageUptodate(page)) | |
902 | ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), | |
903 | wc->w_cpos, zero_from, zero_to); | |
904 | ||
905 | flush_dcache_page(page); | |
906 | ||
907 | if (ocfs2_should_order_data(inode)) { | |
908 | ret = walk_page_buffers(handle, | |
909 | page_buffers(page), | |
910 | from, to, NULL, | |
911 | ocfs2_journal_dirty_data); | |
912 | if (ret < 0) | |
913 | mlog_errno(ret); | |
914 | } | |
915 | ||
916 | /* | |
917 | * We don't use generic_commit_write() because we need to | |
918 | * handle our own i_size update. | |
919 | */ | |
920 | ret = block_commit_write(page, from, to); | |
921 | if (ret) | |
922 | mlog_errno(ret); | |
923 | out: | |
924 | ||
925 | return copied ? copied : ret; | |
926 | } | |
927 | ||
928 | /* | |
929 | * Do the actual write of some data into an inode. Optionally allocate | |
930 | * in order to fulfill the write. | |
931 | * | |
932 | * cpos is the logical cluster offset within the file to write at | |
933 | * | |
934 | * 'phys' is the physical mapping of that offset. a 'phys' value of | |
935 | * zero indicates that allocation is required. In this case, data_ac | |
936 | * and meta_ac should be valid (meta_ac can be null if metadata | |
937 | * allocation isn't required). | |
938 | */ | |
939 | static ssize_t ocfs2_write(struct file *file, u32 phys, handle_t *handle, | |
940 | struct buffer_head *di_bh, | |
941 | struct ocfs2_alloc_context *data_ac, | |
942 | struct ocfs2_alloc_context *meta_ac, | |
943 | struct ocfs2_write_ctxt *wc) | |
944 | { | |
945 | int ret, i, numpages = 1, new; | |
946 | unsigned int copied = 0; | |
947 | u32 tmp_pos; | |
948 | u64 v_blkno, p_blkno; | |
949 | struct address_space *mapping = file->f_mapping; | |
950 | struct inode *inode = mapping->host; | |
951 | unsigned int cbits = OCFS2_SB(inode->i_sb)->s_clustersize_bits; | |
952 | unsigned long index, start; | |
953 | struct page **cpages; | |
954 | ||
955 | new = phys == 0 ? 1 : 0; | |
956 | ||
957 | /* | |
958 | * Figure out how many pages we'll be manipulating here. For | |
959 | * non-allocating write, or any writes where cluster size is | |
960 | * less than page size, we only need one page. Otherwise, | |
961 | * allocating writes of cluster size larger than page size | |
962 | * need cluster size pages. | |
963 | */ | |
964 | if (new && !wc->w_large_pages) | |
965 | numpages = (1 << cbits) / PAGE_SIZE; | |
966 | ||
967 | cpages = kzalloc(sizeof(*cpages) * numpages, GFP_NOFS); | |
968 | if (!cpages) { | |
969 | ret = -ENOMEM; | |
970 | mlog_errno(ret); | |
971 | return ret; | |
972 | } | |
973 | ||
974 | /* | |
975 | * Fill our page array first. That way we've grabbed enough so | |
976 | * that we can zero and flush if we error after adding the | |
977 | * extent. | |
978 | */ | |
979 | if (new) { | |
980 | start = ocfs2_align_clusters_to_page_index(inode->i_sb, | |
981 | wc->w_cpos); | |
982 | v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, wc->w_cpos); | |
983 | } else { | |
984 | start = wc->w_pos >> PAGE_CACHE_SHIFT; | |
985 | v_blkno = wc->w_pos >> inode->i_sb->s_blocksize_bits; | |
986 | } | |
987 | ||
988 | for(i = 0; i < numpages; i++) { | |
989 | index = start + i; | |
990 | ||
991 | cpages[i] = grab_cache_page(mapping, index); | |
992 | if (!cpages[i]) { | |
993 | ret = -ENOMEM; | |
994 | mlog_errno(ret); | |
995 | goto out; | |
996 | } | |
997 | } | |
998 | ||
999 | if (new) { | |
1000 | /* | |
1001 | * This is safe to call with the page locks - it won't take | |
1002 | * any additional semaphores or cluster locks. | |
1003 | */ | |
1004 | tmp_pos = wc->w_cpos; | |
1005 | ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode, | |
1006 | &tmp_pos, 1, di_bh, handle, | |
1007 | data_ac, meta_ac, NULL); | |
1008 | /* | |
1009 | * This shouldn't happen because we must have already | |
1010 | * calculated the correct meta data allocation required. The | |
1011 | * internal tree allocation code should know how to increase | |
1012 | * transaction credits itself. | |
1013 | * | |
1014 | * If need be, we could handle -EAGAIN for a | |
1015 | * RESTART_TRANS here. | |
1016 | */ | |
1017 | mlog_bug_on_msg(ret == -EAGAIN, | |
1018 | "Inode %llu: EAGAIN return during allocation.\n", | |
1019 | (unsigned long long)OCFS2_I(inode)->ip_blkno); | |
1020 | if (ret < 0) { | |
1021 | mlog_errno(ret); | |
1022 | goto out; | |
1023 | } | |
1024 | } | |
1025 | ||
1026 | ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL); | |
1027 | if (ret < 0) { | |
1028 | ||
1029 | /* | |
1030 | * XXX: Should we go readonly here? | |
1031 | */ | |
1032 | ||
1033 | mlog_errno(ret); | |
1034 | goto out; | |
1035 | } | |
1036 | ||
1037 | BUG_ON(p_blkno == 0); | |
1038 | ||
1039 | for(i = 0; i < numpages; i++) { | |
1040 | ret = ocfs2_write_data_page(inode, handle, &p_blkno, cpages[i], | |
1041 | wc, new); | |
1042 | if (ret < 0) { | |
1043 | mlog_errno(ret); | |
1044 | goto out; | |
1045 | } | |
1046 | ||
1047 | copied += ret; | |
1048 | } | |
1049 | ||
1050 | out: | |
1051 | for(i = 0; i < numpages; i++) { | |
1052 | unlock_page(cpages[i]); | |
1053 | mark_page_accessed(cpages[i]); | |
1054 | page_cache_release(cpages[i]); | |
1055 | } | |
1056 | kfree(cpages); | |
1057 | ||
1058 | return copied ? copied : ret; | |
1059 | } | |
1060 | ||
1061 | static void ocfs2_write_ctxt_init(struct ocfs2_write_ctxt *wc, | |
1062 | struct ocfs2_super *osb, loff_t pos, | |
1063 | size_t count, ocfs2_page_writer *cb, | |
1064 | void *cb_priv) | |
1065 | { | |
1066 | wc->w_count = count; | |
1067 | wc->w_pos = pos; | |
1068 | wc->w_cpos = wc->w_pos >> osb->s_clustersize_bits; | |
1069 | wc->w_finished_copy = 0; | |
1070 | ||
1071 | if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) | |
1072 | wc->w_large_pages = 1; | |
1073 | else | |
1074 | wc->w_large_pages = 0; | |
1075 | ||
1076 | wc->w_write_data_page = cb; | |
1077 | wc->w_private = cb_priv; | |
1078 | } | |
1079 | ||
1080 | /* | |
1081 | * Write a cluster to an inode. The cluster may not be allocated yet, | |
1082 | * in which case it will be. This only exists for buffered writes - | |
1083 | * O_DIRECT takes a more "traditional" path through the kernel. | |
1084 | * | |
1085 | * The caller is responsible for incrementing pos, written counts, etc | |
1086 | * | |
1087 | * For file systems that don't support sparse files, pre-allocation | |
1088 | * and page zeroing up until cpos should be done prior to this | |
1089 | * function call. | |
1090 | * | |
1091 | * Callers should be holding i_sem, and the rw cluster lock. | |
1092 | * | |
1093 | * Returns the number of user bytes written, or less than zero for | |
1094 | * error. | |
1095 | */ | |
1096 | ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos, | |
1097 | size_t count, ocfs2_page_writer *actor, | |
1098 | void *priv) | |
1099 | { | |
1100 | int ret, credits = OCFS2_INODE_UPDATE_CREDITS; | |
1101 | ssize_t written = 0; | |
1102 | u32 phys; | |
1103 | struct inode *inode = file->f_mapping->host; | |
1104 | struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); | |
1105 | struct buffer_head *di_bh = NULL; | |
1106 | struct ocfs2_dinode *di; | |
1107 | struct ocfs2_alloc_context *data_ac = NULL; | |
1108 | struct ocfs2_alloc_context *meta_ac = NULL; | |
1109 | handle_t *handle; | |
1110 | struct ocfs2_write_ctxt wc; | |
1111 | ||
1112 | ocfs2_write_ctxt_init(&wc, osb, pos, count, actor, priv); | |
1113 | ||
1114 | ret = ocfs2_meta_lock(inode, &di_bh, 1); | |
1115 | if (ret) { | |
1116 | mlog_errno(ret); | |
1117 | goto out; | |
1118 | } | |
1119 | di = (struct ocfs2_dinode *)di_bh->b_data; | |
1120 | ||
1121 | /* | |
1122 | * Take alloc sem here to prevent concurrent lookups. That way | |
1123 | * the mapping, zeroing and tree manipulation within | |
1124 | * ocfs2_write() will be safe against ->readpage(). This | |
1125 | * should also serve to lock out allocation from a shared | |
1126 | * writeable region. | |
1127 | */ | |
1128 | down_write(&OCFS2_I(inode)->ip_alloc_sem); | |
1129 | ||
1130 | ret = ocfs2_get_clusters(inode, wc.w_cpos, &phys, NULL); | |
1131 | if (ret) { | |
1132 | mlog_errno(ret); | |
1133 | goto out_meta; | |
1134 | } | |
1135 | ||
1136 | /* phys == 0 means that allocation is required. */ | |
1137 | if (phys == 0) { | |
1138 | ret = ocfs2_lock_allocators(inode, di, 1, &data_ac, &meta_ac); | |
1139 | if (ret) { | |
1140 | mlog_errno(ret); | |
1141 | goto out_meta; | |
1142 | } | |
1143 | ||
1144 | credits = ocfs2_calc_extend_credits(inode->i_sb, di, 1); | |
1145 | } | |
1146 | ||
1147 | ret = ocfs2_data_lock(inode, 1); | |
1148 | if (ret) { | |
1149 | mlog_errno(ret); | |
1150 | goto out_meta; | |
1151 | } | |
1152 | ||
1153 | handle = ocfs2_start_trans(osb, credits); | |
1154 | if (IS_ERR(handle)) { | |
1155 | ret = PTR_ERR(handle); | |
1156 | mlog_errno(ret); | |
1157 | goto out_data; | |
1158 | } | |
1159 | ||
1160 | written = ocfs2_write(file, phys, handle, di_bh, data_ac, | |
1161 | meta_ac, &wc); | |
1162 | if (written < 0) { | |
1163 | ret = written; | |
1164 | mlog_errno(ret); | |
1165 | goto out_commit; | |
1166 | } | |
1167 | ||
1168 | ret = ocfs2_journal_access(handle, inode, di_bh, | |
1169 | OCFS2_JOURNAL_ACCESS_WRITE); | |
1170 | if (ret) { | |
1171 | mlog_errno(ret); | |
1172 | goto out_commit; | |
1173 | } | |
1174 | ||
1175 | pos += written; | |
1176 | if (pos > inode->i_size) { | |
1177 | i_size_write(inode, pos); | |
1178 | mark_inode_dirty(inode); | |
1179 | } | |
1180 | inode->i_blocks = ocfs2_align_bytes_to_sectors((u64)(i_size_read(inode))); | |
1181 | di->i_size = cpu_to_le64((u64)i_size_read(inode)); | |
1182 | inode->i_mtime = inode->i_ctime = CURRENT_TIME; | |
1183 | di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); | |
1184 | di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); | |
1185 | ||
1186 | ret = ocfs2_journal_dirty(handle, di_bh); | |
1187 | if (ret) | |
1188 | mlog_errno(ret); | |
1189 | ||
1190 | out_commit: | |
1191 | ocfs2_commit_trans(osb, handle); | |
1192 | ||
1193 | out_data: | |
1194 | ocfs2_data_unlock(inode, 1); | |
1195 | ||
1196 | out_meta: | |
1197 | up_write(&OCFS2_I(inode)->ip_alloc_sem); | |
1198 | ocfs2_meta_unlock(inode, 1); | |
1199 | ||
1200 | out: | |
1201 | brelse(di_bh); | |
1202 | if (data_ac) | |
1203 | ocfs2_free_alloc_context(data_ac); | |
1204 | if (meta_ac) | |
1205 | ocfs2_free_alloc_context(meta_ac); | |
1206 | ||
1207 | return written ? written : ret; | |
1208 | } | |
1209 | ||
f5e54d6e | 1210 | const struct address_space_operations ocfs2_aops = { |
ccd979bd MF |
1211 | .readpage = ocfs2_readpage, |
1212 | .writepage = ocfs2_writepage, | |
ccd979bd MF |
1213 | .bmap = ocfs2_bmap, |
1214 | .sync_page = block_sync_page, | |
03f981cf JB |
1215 | .direct_IO = ocfs2_direct_IO, |
1216 | .invalidatepage = ocfs2_invalidatepage, | |
1217 | .releasepage = ocfs2_releasepage, | |
1218 | .migratepage = buffer_migrate_page, | |
ccd979bd | 1219 | }; |