]>
Commit | Line | Data |
---|---|---|
8759ef32 OS |
1 | /* |
2 | * rational fractions | |
3 | * | |
4 | * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <[email protected]> | |
5 | * | |
6 | * helper functions when coping with rational numbers | |
7 | */ | |
8 | ||
9 | #include <linux/rational.h> | |
10 | ||
11 | /* | |
12 | * calculate best rational approximation for a given fraction | |
13 | * taking into account restricted register size, e.g. to find | |
14 | * appropriate values for a pll with 5 bit denominator and | |
15 | * 8 bit numerator register fields, trying to set up with a | |
16 | * frequency ratio of 3.1415, one would say: | |
17 | * | |
18 | * rational_best_approximation(31415, 10000, | |
19 | * (1 << 8) - 1, (1 << 5) - 1, &n, &d); | |
20 | * | |
21 | * you may look at given_numerator as a fixed point number, | |
22 | * with the fractional part size described in given_denominator. | |
23 | * | |
24 | * for theoretical background, see: | |
25 | * http://en.wikipedia.org/wiki/Continued_fraction | |
26 | */ | |
27 | ||
28 | void rational_best_approximation( | |
29 | unsigned long given_numerator, unsigned long given_denominator, | |
30 | unsigned long max_numerator, unsigned long max_denominator, | |
31 | unsigned long *best_numerator, unsigned long *best_denominator) | |
32 | { | |
33 | unsigned long n, d, n0, d0, n1, d1; | |
34 | n = given_numerator; | |
35 | d = given_denominator; | |
36 | n0 = d1 = 0; | |
37 | n1 = d0 = 1; | |
38 | for (;;) { | |
39 | unsigned long t, a; | |
40 | if ((n1 > max_numerator) || (d1 > max_denominator)) { | |
41 | n1 = n0; | |
42 | d1 = d0; | |
43 | break; | |
44 | } | |
45 | if (d == 0) | |
46 | break; | |
47 | t = d; | |
48 | a = n / d; | |
49 | d = n % d; | |
50 | n = t; | |
51 | t = n0 + a * n1; | |
52 | n0 = n1; | |
53 | n1 = t; | |
54 | t = d0 + a * d1; | |
55 | d0 = d1; | |
56 | d1 = t; | |
57 | } | |
58 | *best_numerator = n1; | |
59 | *best_denominator = d1; | |
60 | } | |
61 | ||
62 | EXPORT_SYMBOL(rational_best_approximation); |