Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
81819f0f CL |
2 | /* |
3 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
4 | * objects in per cpu and per node lists. | |
5 | * | |
881db7fb CL |
6 | * The allocator synchronizes using per slab locks or atomic operatios |
7 | * and only uses a centralized lock to manage a pool of partial slabs. | |
81819f0f | 8 | * |
cde53535 | 9 | * (C) 2007 SGI, Christoph Lameter |
881db7fb | 10 | * (C) 2011 Linux Foundation, Christoph Lameter |
81819f0f CL |
11 | */ |
12 | ||
13 | #include <linux/mm.h> | |
1eb5ac64 | 14 | #include <linux/swap.h> /* struct reclaim_state */ |
81819f0f CL |
15 | #include <linux/module.h> |
16 | #include <linux/bit_spinlock.h> | |
17 | #include <linux/interrupt.h> | |
18 | #include <linux/bitops.h> | |
19 | #include <linux/slab.h> | |
97d06609 | 20 | #include "slab.h" |
7b3c3a50 | 21 | #include <linux/proc_fs.h> |
81819f0f | 22 | #include <linux/seq_file.h> |
a79316c6 | 23 | #include <linux/kasan.h> |
81819f0f CL |
24 | #include <linux/cpu.h> |
25 | #include <linux/cpuset.h> | |
26 | #include <linux/mempolicy.h> | |
27 | #include <linux/ctype.h> | |
3ac7fe5a | 28 | #include <linux/debugobjects.h> |
81819f0f | 29 | #include <linux/kallsyms.h> |
b9049e23 | 30 | #include <linux/memory.h> |
f8bd2258 | 31 | #include <linux/math64.h> |
773ff60e | 32 | #include <linux/fault-inject.h> |
bfa71457 | 33 | #include <linux/stacktrace.h> |
4de900b4 | 34 | #include <linux/prefetch.h> |
2633d7a0 | 35 | #include <linux/memcontrol.h> |
2482ddec | 36 | #include <linux/random.h> |
81819f0f | 37 | |
4a92379b RK |
38 | #include <trace/events/kmem.h> |
39 | ||
072bb0aa MG |
40 | #include "internal.h" |
41 | ||
81819f0f CL |
42 | /* |
43 | * Lock order: | |
18004c5d | 44 | * 1. slab_mutex (Global Mutex) |
881db7fb CL |
45 | * 2. node->list_lock |
46 | * 3. slab_lock(page) (Only on some arches and for debugging) | |
81819f0f | 47 | * |
18004c5d | 48 | * slab_mutex |
881db7fb | 49 | * |
18004c5d | 50 | * The role of the slab_mutex is to protect the list of all the slabs |
881db7fb CL |
51 | * and to synchronize major metadata changes to slab cache structures. |
52 | * | |
53 | * The slab_lock is only used for debugging and on arches that do not | |
b7ccc7f8 | 54 | * have the ability to do a cmpxchg_double. It only protects: |
881db7fb | 55 | * A. page->freelist -> List of object free in a page |
b7ccc7f8 MW |
56 | * B. page->inuse -> Number of objects in use |
57 | * C. page->objects -> Number of objects in page | |
58 | * D. page->frozen -> frozen state | |
881db7fb CL |
59 | * |
60 | * If a slab is frozen then it is exempt from list management. It is not | |
632b2ef0 LX |
61 | * on any list except per cpu partial list. The processor that froze the |
62 | * slab is the one who can perform list operations on the page. Other | |
63 | * processors may put objects onto the freelist but the processor that | |
64 | * froze the slab is the only one that can retrieve the objects from the | |
65 | * page's freelist. | |
81819f0f CL |
66 | * |
67 | * The list_lock protects the partial and full list on each node and | |
68 | * the partial slab counter. If taken then no new slabs may be added or | |
69 | * removed from the lists nor make the number of partial slabs be modified. | |
70 | * (Note that the total number of slabs is an atomic value that may be | |
71 | * modified without taking the list lock). | |
72 | * | |
73 | * The list_lock is a centralized lock and thus we avoid taking it as | |
74 | * much as possible. As long as SLUB does not have to handle partial | |
75 | * slabs, operations can continue without any centralized lock. F.e. | |
76 | * allocating a long series of objects that fill up slabs does not require | |
77 | * the list lock. | |
81819f0f CL |
78 | * Interrupts are disabled during allocation and deallocation in order to |
79 | * make the slab allocator safe to use in the context of an irq. In addition | |
80 | * interrupts are disabled to ensure that the processor does not change | |
81 | * while handling per_cpu slabs, due to kernel preemption. | |
82 | * | |
83 | * SLUB assigns one slab for allocation to each processor. | |
84 | * Allocations only occur from these slabs called cpu slabs. | |
85 | * | |
672bba3a CL |
86 | * Slabs with free elements are kept on a partial list and during regular |
87 | * operations no list for full slabs is used. If an object in a full slab is | |
81819f0f | 88 | * freed then the slab will show up again on the partial lists. |
672bba3a CL |
89 | * We track full slabs for debugging purposes though because otherwise we |
90 | * cannot scan all objects. | |
81819f0f CL |
91 | * |
92 | * Slabs are freed when they become empty. Teardown and setup is | |
93 | * minimal so we rely on the page allocators per cpu caches for | |
94 | * fast frees and allocs. | |
95 | * | |
96 | * Overloading of page flags that are otherwise used for LRU management. | |
97 | * | |
4b6f0750 CL |
98 | * PageActive The slab is frozen and exempt from list processing. |
99 | * This means that the slab is dedicated to a purpose | |
100 | * such as satisfying allocations for a specific | |
101 | * processor. Objects may be freed in the slab while | |
102 | * it is frozen but slab_free will then skip the usual | |
103 | * list operations. It is up to the processor holding | |
104 | * the slab to integrate the slab into the slab lists | |
105 | * when the slab is no longer needed. | |
106 | * | |
107 | * One use of this flag is to mark slabs that are | |
108 | * used for allocations. Then such a slab becomes a cpu | |
109 | * slab. The cpu slab may be equipped with an additional | |
dfb4f096 | 110 | * freelist that allows lockless access to |
894b8788 CL |
111 | * free objects in addition to the regular freelist |
112 | * that requires the slab lock. | |
81819f0f CL |
113 | * |
114 | * PageError Slab requires special handling due to debug | |
115 | * options set. This moves slab handling out of | |
894b8788 | 116 | * the fast path and disables lockless freelists. |
81819f0f CL |
117 | */ |
118 | ||
af537b0a CL |
119 | static inline int kmem_cache_debug(struct kmem_cache *s) |
120 | { | |
5577bd8a | 121 | #ifdef CONFIG_SLUB_DEBUG |
af537b0a | 122 | return unlikely(s->flags & SLAB_DEBUG_FLAGS); |
5577bd8a | 123 | #else |
af537b0a | 124 | return 0; |
5577bd8a | 125 | #endif |
af537b0a | 126 | } |
5577bd8a | 127 | |
117d54df | 128 | void *fixup_red_left(struct kmem_cache *s, void *p) |
d86bd1be JK |
129 | { |
130 | if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) | |
131 | p += s->red_left_pad; | |
132 | ||
133 | return p; | |
134 | } | |
135 | ||
345c905d JK |
136 | static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) |
137 | { | |
138 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
139 | return !kmem_cache_debug(s); | |
140 | #else | |
141 | return false; | |
142 | #endif | |
143 | } | |
144 | ||
81819f0f CL |
145 | /* |
146 | * Issues still to be resolved: | |
147 | * | |
81819f0f CL |
148 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
149 | * | |
81819f0f CL |
150 | * - Variable sizing of the per node arrays |
151 | */ | |
152 | ||
153 | /* Enable to test recovery from slab corruption on boot */ | |
154 | #undef SLUB_RESILIENCY_TEST | |
155 | ||
b789ef51 CL |
156 | /* Enable to log cmpxchg failures */ |
157 | #undef SLUB_DEBUG_CMPXCHG | |
158 | ||
2086d26a CL |
159 | /* |
160 | * Mininum number of partial slabs. These will be left on the partial | |
161 | * lists even if they are empty. kmem_cache_shrink may reclaim them. | |
162 | */ | |
76be8950 | 163 | #define MIN_PARTIAL 5 |
e95eed57 | 164 | |
2086d26a CL |
165 | /* |
166 | * Maximum number of desirable partial slabs. | |
167 | * The existence of more partial slabs makes kmem_cache_shrink | |
721ae22a | 168 | * sort the partial list by the number of objects in use. |
2086d26a CL |
169 | */ |
170 | #define MAX_PARTIAL 10 | |
171 | ||
becfda68 | 172 | #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ |
81819f0f | 173 | SLAB_POISON | SLAB_STORE_USER) |
672bba3a | 174 | |
149daaf3 LA |
175 | /* |
176 | * These debug flags cannot use CMPXCHG because there might be consistency | |
177 | * issues when checking or reading debug information | |
178 | */ | |
179 | #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ | |
180 | SLAB_TRACE) | |
181 | ||
182 | ||
fa5ec8a1 | 183 | /* |
3de47213 DR |
184 | * Debugging flags that require metadata to be stored in the slab. These get |
185 | * disabled when slub_debug=O is used and a cache's min order increases with | |
186 | * metadata. | |
fa5ec8a1 | 187 | */ |
3de47213 | 188 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) |
fa5ec8a1 | 189 | |
210b5c06 CG |
190 | #define OO_SHIFT 16 |
191 | #define OO_MASK ((1 << OO_SHIFT) - 1) | |
50d5c41c | 192 | #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ |
210b5c06 | 193 | |
81819f0f | 194 | /* Internal SLUB flags */ |
d50112ed | 195 | /* Poison object */ |
4fd0b46e | 196 | #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) |
d50112ed | 197 | /* Use cmpxchg_double */ |
4fd0b46e | 198 | #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) |
81819f0f | 199 | |
02cbc874 CL |
200 | /* |
201 | * Tracking user of a slab. | |
202 | */ | |
d6543e39 | 203 | #define TRACK_ADDRS_COUNT 16 |
02cbc874 | 204 | struct track { |
ce71e27c | 205 | unsigned long addr; /* Called from address */ |
d6543e39 BG |
206 | #ifdef CONFIG_STACKTRACE |
207 | unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ | |
208 | #endif | |
02cbc874 CL |
209 | int cpu; /* Was running on cpu */ |
210 | int pid; /* Pid context */ | |
211 | unsigned long when; /* When did the operation occur */ | |
212 | }; | |
213 | ||
214 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
215 | ||
ab4d5ed5 | 216 | #ifdef CONFIG_SYSFS |
81819f0f CL |
217 | static int sysfs_slab_add(struct kmem_cache *); |
218 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
107dab5c | 219 | static void memcg_propagate_slab_attrs(struct kmem_cache *s); |
bf5eb3de | 220 | static void sysfs_slab_remove(struct kmem_cache *s); |
81819f0f | 221 | #else |
0c710013 CL |
222 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
223 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | |
224 | { return 0; } | |
107dab5c | 225 | static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } |
bf5eb3de | 226 | static inline void sysfs_slab_remove(struct kmem_cache *s) { } |
81819f0f CL |
227 | #endif |
228 | ||
4fdccdfb | 229 | static inline void stat(const struct kmem_cache *s, enum stat_item si) |
8ff12cfc CL |
230 | { |
231 | #ifdef CONFIG_SLUB_STATS | |
88da03a6 CL |
232 | /* |
233 | * The rmw is racy on a preemptible kernel but this is acceptable, so | |
234 | * avoid this_cpu_add()'s irq-disable overhead. | |
235 | */ | |
236 | raw_cpu_inc(s->cpu_slab->stat[si]); | |
8ff12cfc CL |
237 | #endif |
238 | } | |
239 | ||
81819f0f CL |
240 | /******************************************************************** |
241 | * Core slab cache functions | |
242 | *******************************************************************/ | |
243 | ||
2482ddec KC |
244 | /* |
245 | * Returns freelist pointer (ptr). With hardening, this is obfuscated | |
246 | * with an XOR of the address where the pointer is held and a per-cache | |
247 | * random number. | |
248 | */ | |
249 | static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, | |
250 | unsigned long ptr_addr) | |
251 | { | |
252 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | |
d36a63a9 AK |
253 | /* |
254 | * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. | |
255 | * Normally, this doesn't cause any issues, as both set_freepointer() | |
256 | * and get_freepointer() are called with a pointer with the same tag. | |
257 | * However, there are some issues with CONFIG_SLUB_DEBUG code. For | |
258 | * example, when __free_slub() iterates over objects in a cache, it | |
259 | * passes untagged pointers to check_object(). check_object() in turns | |
260 | * calls get_freepointer() with an untagged pointer, which causes the | |
261 | * freepointer to be restored incorrectly. | |
262 | */ | |
263 | return (void *)((unsigned long)ptr ^ s->random ^ | |
264 | (unsigned long)kasan_reset_tag((void *)ptr_addr)); | |
2482ddec KC |
265 | #else |
266 | return ptr; | |
267 | #endif | |
268 | } | |
269 | ||
270 | /* Returns the freelist pointer recorded at location ptr_addr. */ | |
271 | static inline void *freelist_dereference(const struct kmem_cache *s, | |
272 | void *ptr_addr) | |
273 | { | |
274 | return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), | |
275 | (unsigned long)ptr_addr); | |
276 | } | |
277 | ||
7656c72b CL |
278 | static inline void *get_freepointer(struct kmem_cache *s, void *object) |
279 | { | |
2482ddec | 280 | return freelist_dereference(s, object + s->offset); |
7656c72b CL |
281 | } |
282 | ||
0ad9500e ED |
283 | static void prefetch_freepointer(const struct kmem_cache *s, void *object) |
284 | { | |
0882ff91 | 285 | prefetch(object + s->offset); |
0ad9500e ED |
286 | } |
287 | ||
1393d9a1 CL |
288 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) |
289 | { | |
2482ddec | 290 | unsigned long freepointer_addr; |
1393d9a1 CL |
291 | void *p; |
292 | ||
922d566c JK |
293 | if (!debug_pagealloc_enabled()) |
294 | return get_freepointer(s, object); | |
295 | ||
2482ddec KC |
296 | freepointer_addr = (unsigned long)object + s->offset; |
297 | probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); | |
298 | return freelist_ptr(s, p, freepointer_addr); | |
1393d9a1 CL |
299 | } |
300 | ||
7656c72b CL |
301 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) |
302 | { | |
2482ddec KC |
303 | unsigned long freeptr_addr = (unsigned long)object + s->offset; |
304 | ||
ce6fa91b AP |
305 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
306 | BUG_ON(object == fp); /* naive detection of double free or corruption */ | |
307 | #endif | |
308 | ||
2482ddec | 309 | *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); |
7656c72b CL |
310 | } |
311 | ||
312 | /* Loop over all objects in a slab */ | |
224a88be | 313 | #define for_each_object(__p, __s, __addr, __objects) \ |
d86bd1be JK |
314 | for (__p = fixup_red_left(__s, __addr); \ |
315 | __p < (__addr) + (__objects) * (__s)->size; \ | |
316 | __p += (__s)->size) | |
7656c72b | 317 | |
7656c72b | 318 | /* Determine object index from a given position */ |
284b50dd | 319 | static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) |
7656c72b | 320 | { |
6373dca1 | 321 | return (kasan_reset_tag(p) - addr) / s->size; |
7656c72b CL |
322 | } |
323 | ||
9736d2a9 | 324 | static inline unsigned int order_objects(unsigned int order, unsigned int size) |
ab9a0f19 | 325 | { |
9736d2a9 | 326 | return ((unsigned int)PAGE_SIZE << order) / size; |
ab9a0f19 LJ |
327 | } |
328 | ||
19af27af | 329 | static inline struct kmem_cache_order_objects oo_make(unsigned int order, |
9736d2a9 | 330 | unsigned int size) |
834f3d11 CL |
331 | { |
332 | struct kmem_cache_order_objects x = { | |
9736d2a9 | 333 | (order << OO_SHIFT) + order_objects(order, size) |
834f3d11 CL |
334 | }; |
335 | ||
336 | return x; | |
337 | } | |
338 | ||
19af27af | 339 | static inline unsigned int oo_order(struct kmem_cache_order_objects x) |
834f3d11 | 340 | { |
210b5c06 | 341 | return x.x >> OO_SHIFT; |
834f3d11 CL |
342 | } |
343 | ||
19af27af | 344 | static inline unsigned int oo_objects(struct kmem_cache_order_objects x) |
834f3d11 | 345 | { |
210b5c06 | 346 | return x.x & OO_MASK; |
834f3d11 CL |
347 | } |
348 | ||
881db7fb CL |
349 | /* |
350 | * Per slab locking using the pagelock | |
351 | */ | |
352 | static __always_inline void slab_lock(struct page *page) | |
353 | { | |
48c935ad | 354 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
355 | bit_spin_lock(PG_locked, &page->flags); |
356 | } | |
357 | ||
358 | static __always_inline void slab_unlock(struct page *page) | |
359 | { | |
48c935ad | 360 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
361 | __bit_spin_unlock(PG_locked, &page->flags); |
362 | } | |
363 | ||
1d07171c CL |
364 | /* Interrupts must be disabled (for the fallback code to work right) */ |
365 | static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, | |
366 | void *freelist_old, unsigned long counters_old, | |
367 | void *freelist_new, unsigned long counters_new, | |
368 | const char *n) | |
369 | { | |
370 | VM_BUG_ON(!irqs_disabled()); | |
2565409f HC |
371 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
372 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
1d07171c | 373 | if (s->flags & __CMPXCHG_DOUBLE) { |
cdcd6298 | 374 | if (cmpxchg_double(&page->freelist, &page->counters, |
0aa9a13d DC |
375 | freelist_old, counters_old, |
376 | freelist_new, counters_new)) | |
6f6528a1 | 377 | return true; |
1d07171c CL |
378 | } else |
379 | #endif | |
380 | { | |
381 | slab_lock(page); | |
d0e0ac97 CG |
382 | if (page->freelist == freelist_old && |
383 | page->counters == counters_old) { | |
1d07171c | 384 | page->freelist = freelist_new; |
7d27a04b | 385 | page->counters = counters_new; |
1d07171c | 386 | slab_unlock(page); |
6f6528a1 | 387 | return true; |
1d07171c CL |
388 | } |
389 | slab_unlock(page); | |
390 | } | |
391 | ||
392 | cpu_relax(); | |
393 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
394 | ||
395 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 396 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
1d07171c CL |
397 | #endif |
398 | ||
6f6528a1 | 399 | return false; |
1d07171c CL |
400 | } |
401 | ||
b789ef51 CL |
402 | static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, |
403 | void *freelist_old, unsigned long counters_old, | |
404 | void *freelist_new, unsigned long counters_new, | |
405 | const char *n) | |
406 | { | |
2565409f HC |
407 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
408 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
b789ef51 | 409 | if (s->flags & __CMPXCHG_DOUBLE) { |
cdcd6298 | 410 | if (cmpxchg_double(&page->freelist, &page->counters, |
0aa9a13d DC |
411 | freelist_old, counters_old, |
412 | freelist_new, counters_new)) | |
6f6528a1 | 413 | return true; |
b789ef51 CL |
414 | } else |
415 | #endif | |
416 | { | |
1d07171c CL |
417 | unsigned long flags; |
418 | ||
419 | local_irq_save(flags); | |
881db7fb | 420 | slab_lock(page); |
d0e0ac97 CG |
421 | if (page->freelist == freelist_old && |
422 | page->counters == counters_old) { | |
b789ef51 | 423 | page->freelist = freelist_new; |
7d27a04b | 424 | page->counters = counters_new; |
881db7fb | 425 | slab_unlock(page); |
1d07171c | 426 | local_irq_restore(flags); |
6f6528a1 | 427 | return true; |
b789ef51 | 428 | } |
881db7fb | 429 | slab_unlock(page); |
1d07171c | 430 | local_irq_restore(flags); |
b789ef51 CL |
431 | } |
432 | ||
433 | cpu_relax(); | |
434 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
435 | ||
436 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 437 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
b789ef51 CL |
438 | #endif |
439 | ||
6f6528a1 | 440 | return false; |
b789ef51 CL |
441 | } |
442 | ||
41ecc55b | 443 | #ifdef CONFIG_SLUB_DEBUG |
5f80b13a CL |
444 | /* |
445 | * Determine a map of object in use on a page. | |
446 | * | |
881db7fb | 447 | * Node listlock must be held to guarantee that the page does |
5f80b13a CL |
448 | * not vanish from under us. |
449 | */ | |
450 | static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) | |
451 | { | |
452 | void *p; | |
453 | void *addr = page_address(page); | |
454 | ||
455 | for (p = page->freelist; p; p = get_freepointer(s, p)) | |
456 | set_bit(slab_index(p, s, addr), map); | |
457 | } | |
458 | ||
870b1fbb | 459 | static inline unsigned int size_from_object(struct kmem_cache *s) |
d86bd1be JK |
460 | { |
461 | if (s->flags & SLAB_RED_ZONE) | |
462 | return s->size - s->red_left_pad; | |
463 | ||
464 | return s->size; | |
465 | } | |
466 | ||
467 | static inline void *restore_red_left(struct kmem_cache *s, void *p) | |
468 | { | |
469 | if (s->flags & SLAB_RED_ZONE) | |
470 | p -= s->red_left_pad; | |
471 | ||
472 | return p; | |
473 | } | |
474 | ||
41ecc55b CL |
475 | /* |
476 | * Debug settings: | |
477 | */ | |
89d3c87e | 478 | #if defined(CONFIG_SLUB_DEBUG_ON) |
d50112ed | 479 | static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; |
f0630fff | 480 | #else |
d50112ed | 481 | static slab_flags_t slub_debug; |
f0630fff | 482 | #endif |
41ecc55b CL |
483 | |
484 | static char *slub_debug_slabs; | |
fa5ec8a1 | 485 | static int disable_higher_order_debug; |
41ecc55b | 486 | |
a79316c6 AR |
487 | /* |
488 | * slub is about to manipulate internal object metadata. This memory lies | |
489 | * outside the range of the allocated object, so accessing it would normally | |
490 | * be reported by kasan as a bounds error. metadata_access_enable() is used | |
491 | * to tell kasan that these accesses are OK. | |
492 | */ | |
493 | static inline void metadata_access_enable(void) | |
494 | { | |
495 | kasan_disable_current(); | |
496 | } | |
497 | ||
498 | static inline void metadata_access_disable(void) | |
499 | { | |
500 | kasan_enable_current(); | |
501 | } | |
502 | ||
81819f0f CL |
503 | /* |
504 | * Object debugging | |
505 | */ | |
d86bd1be JK |
506 | |
507 | /* Verify that a pointer has an address that is valid within a slab page */ | |
508 | static inline int check_valid_pointer(struct kmem_cache *s, | |
509 | struct page *page, void *object) | |
510 | { | |
511 | void *base; | |
512 | ||
513 | if (!object) | |
514 | return 1; | |
515 | ||
516 | base = page_address(page); | |
338cfaad | 517 | object = kasan_reset_tag(object); |
d86bd1be JK |
518 | object = restore_red_left(s, object); |
519 | if (object < base || object >= base + page->objects * s->size || | |
520 | (object - base) % s->size) { | |
521 | return 0; | |
522 | } | |
523 | ||
524 | return 1; | |
525 | } | |
526 | ||
aa2efd5e DT |
527 | static void print_section(char *level, char *text, u8 *addr, |
528 | unsigned int length) | |
81819f0f | 529 | { |
a79316c6 | 530 | metadata_access_enable(); |
aa2efd5e | 531 | print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, |
ffc79d28 | 532 | length, 1); |
a79316c6 | 533 | metadata_access_disable(); |
81819f0f CL |
534 | } |
535 | ||
81819f0f CL |
536 | static struct track *get_track(struct kmem_cache *s, void *object, |
537 | enum track_item alloc) | |
538 | { | |
539 | struct track *p; | |
540 | ||
541 | if (s->offset) | |
542 | p = object + s->offset + sizeof(void *); | |
543 | else | |
544 | p = object + s->inuse; | |
545 | ||
546 | return p + alloc; | |
547 | } | |
548 | ||
549 | static void set_track(struct kmem_cache *s, void *object, | |
ce71e27c | 550 | enum track_item alloc, unsigned long addr) |
81819f0f | 551 | { |
1a00df4a | 552 | struct track *p = get_track(s, object, alloc); |
81819f0f | 553 | |
81819f0f | 554 | if (addr) { |
d6543e39 | 555 | #ifdef CONFIG_STACKTRACE |
79716799 | 556 | unsigned int nr_entries; |
d6543e39 | 557 | |
a79316c6 | 558 | metadata_access_enable(); |
79716799 | 559 | nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3); |
a79316c6 | 560 | metadata_access_disable(); |
d6543e39 | 561 | |
79716799 TG |
562 | if (nr_entries < TRACK_ADDRS_COUNT) |
563 | p->addrs[nr_entries] = 0; | |
d6543e39 | 564 | #endif |
81819f0f CL |
565 | p->addr = addr; |
566 | p->cpu = smp_processor_id(); | |
88e4ccf2 | 567 | p->pid = current->pid; |
81819f0f | 568 | p->when = jiffies; |
b8ca7ff7 | 569 | } else { |
81819f0f | 570 | memset(p, 0, sizeof(struct track)); |
b8ca7ff7 | 571 | } |
81819f0f CL |
572 | } |
573 | ||
81819f0f CL |
574 | static void init_tracking(struct kmem_cache *s, void *object) |
575 | { | |
24922684 CL |
576 | if (!(s->flags & SLAB_STORE_USER)) |
577 | return; | |
578 | ||
ce71e27c EGM |
579 | set_track(s, object, TRACK_FREE, 0UL); |
580 | set_track(s, object, TRACK_ALLOC, 0UL); | |
81819f0f CL |
581 | } |
582 | ||
86609d33 | 583 | static void print_track(const char *s, struct track *t, unsigned long pr_time) |
81819f0f CL |
584 | { |
585 | if (!t->addr) | |
586 | return; | |
587 | ||
f9f58285 | 588 | pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", |
86609d33 | 589 | s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); |
d6543e39 BG |
590 | #ifdef CONFIG_STACKTRACE |
591 | { | |
592 | int i; | |
593 | for (i = 0; i < TRACK_ADDRS_COUNT; i++) | |
594 | if (t->addrs[i]) | |
f9f58285 | 595 | pr_err("\t%pS\n", (void *)t->addrs[i]); |
d6543e39 BG |
596 | else |
597 | break; | |
598 | } | |
599 | #endif | |
24922684 CL |
600 | } |
601 | ||
602 | static void print_tracking(struct kmem_cache *s, void *object) | |
603 | { | |
86609d33 | 604 | unsigned long pr_time = jiffies; |
24922684 CL |
605 | if (!(s->flags & SLAB_STORE_USER)) |
606 | return; | |
607 | ||
86609d33 CP |
608 | print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); |
609 | print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); | |
24922684 CL |
610 | } |
611 | ||
612 | static void print_page_info(struct page *page) | |
613 | { | |
f9f58285 | 614 | pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", |
d0e0ac97 | 615 | page, page->objects, page->inuse, page->freelist, page->flags); |
24922684 CL |
616 | |
617 | } | |
618 | ||
619 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | |
620 | { | |
ecc42fbe | 621 | struct va_format vaf; |
24922684 | 622 | va_list args; |
24922684 CL |
623 | |
624 | va_start(args, fmt); | |
ecc42fbe FF |
625 | vaf.fmt = fmt; |
626 | vaf.va = &args; | |
f9f58285 | 627 | pr_err("=============================================================================\n"); |
ecc42fbe | 628 | pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); |
f9f58285 | 629 | pr_err("-----------------------------------------------------------------------------\n\n"); |
645df230 | 630 | |
373d4d09 | 631 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
ecc42fbe | 632 | va_end(args); |
81819f0f CL |
633 | } |
634 | ||
24922684 CL |
635 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
636 | { | |
ecc42fbe | 637 | struct va_format vaf; |
24922684 | 638 | va_list args; |
24922684 CL |
639 | |
640 | va_start(args, fmt); | |
ecc42fbe FF |
641 | vaf.fmt = fmt; |
642 | vaf.va = &args; | |
643 | pr_err("FIX %s: %pV\n", s->name, &vaf); | |
24922684 | 644 | va_end(args); |
24922684 CL |
645 | } |
646 | ||
647 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | |
81819f0f CL |
648 | { |
649 | unsigned int off; /* Offset of last byte */ | |
a973e9dd | 650 | u8 *addr = page_address(page); |
24922684 CL |
651 | |
652 | print_tracking(s, p); | |
653 | ||
654 | print_page_info(page); | |
655 | ||
f9f58285 FF |
656 | pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", |
657 | p, p - addr, get_freepointer(s, p)); | |
24922684 | 658 | |
d86bd1be | 659 | if (s->flags & SLAB_RED_ZONE) |
aa2efd5e DT |
660 | print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, |
661 | s->red_left_pad); | |
d86bd1be | 662 | else if (p > addr + 16) |
aa2efd5e | 663 | print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); |
81819f0f | 664 | |
aa2efd5e | 665 | print_section(KERN_ERR, "Object ", p, |
1b473f29 | 666 | min_t(unsigned int, s->object_size, PAGE_SIZE)); |
81819f0f | 667 | if (s->flags & SLAB_RED_ZONE) |
aa2efd5e | 668 | print_section(KERN_ERR, "Redzone ", p + s->object_size, |
3b0efdfa | 669 | s->inuse - s->object_size); |
81819f0f | 670 | |
81819f0f CL |
671 | if (s->offset) |
672 | off = s->offset + sizeof(void *); | |
673 | else | |
674 | off = s->inuse; | |
675 | ||
24922684 | 676 | if (s->flags & SLAB_STORE_USER) |
81819f0f | 677 | off += 2 * sizeof(struct track); |
81819f0f | 678 | |
80a9201a AP |
679 | off += kasan_metadata_size(s); |
680 | ||
d86bd1be | 681 | if (off != size_from_object(s)) |
81819f0f | 682 | /* Beginning of the filler is the free pointer */ |
aa2efd5e DT |
683 | print_section(KERN_ERR, "Padding ", p + off, |
684 | size_from_object(s) - off); | |
24922684 CL |
685 | |
686 | dump_stack(); | |
81819f0f CL |
687 | } |
688 | ||
75c66def | 689 | void object_err(struct kmem_cache *s, struct page *page, |
81819f0f CL |
690 | u8 *object, char *reason) |
691 | { | |
3dc50637 | 692 | slab_bug(s, "%s", reason); |
24922684 | 693 | print_trailer(s, page, object); |
81819f0f CL |
694 | } |
695 | ||
a38965bf | 696 | static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, |
d0e0ac97 | 697 | const char *fmt, ...) |
81819f0f CL |
698 | { |
699 | va_list args; | |
700 | char buf[100]; | |
701 | ||
24922684 CL |
702 | va_start(args, fmt); |
703 | vsnprintf(buf, sizeof(buf), fmt, args); | |
81819f0f | 704 | va_end(args); |
3dc50637 | 705 | slab_bug(s, "%s", buf); |
24922684 | 706 | print_page_info(page); |
81819f0f CL |
707 | dump_stack(); |
708 | } | |
709 | ||
f7cb1933 | 710 | static void init_object(struct kmem_cache *s, void *object, u8 val) |
81819f0f CL |
711 | { |
712 | u8 *p = object; | |
713 | ||
d86bd1be JK |
714 | if (s->flags & SLAB_RED_ZONE) |
715 | memset(p - s->red_left_pad, val, s->red_left_pad); | |
716 | ||
81819f0f | 717 | if (s->flags & __OBJECT_POISON) { |
3b0efdfa CL |
718 | memset(p, POISON_FREE, s->object_size - 1); |
719 | p[s->object_size - 1] = POISON_END; | |
81819f0f CL |
720 | } |
721 | ||
722 | if (s->flags & SLAB_RED_ZONE) | |
3b0efdfa | 723 | memset(p + s->object_size, val, s->inuse - s->object_size); |
81819f0f CL |
724 | } |
725 | ||
24922684 CL |
726 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, |
727 | void *from, void *to) | |
728 | { | |
729 | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | |
730 | memset(from, data, to - from); | |
731 | } | |
732 | ||
733 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | |
734 | u8 *object, char *what, | |
06428780 | 735 | u8 *start, unsigned int value, unsigned int bytes) |
24922684 CL |
736 | { |
737 | u8 *fault; | |
738 | u8 *end; | |
739 | ||
a79316c6 | 740 | metadata_access_enable(); |
79824820 | 741 | fault = memchr_inv(start, value, bytes); |
a79316c6 | 742 | metadata_access_disable(); |
24922684 CL |
743 | if (!fault) |
744 | return 1; | |
745 | ||
746 | end = start + bytes; | |
747 | while (end > fault && end[-1] == value) | |
748 | end--; | |
749 | ||
750 | slab_bug(s, "%s overwritten", what); | |
f9f58285 | 751 | pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", |
24922684 CL |
752 | fault, end - 1, fault[0], value); |
753 | print_trailer(s, page, object); | |
754 | ||
755 | restore_bytes(s, what, value, fault, end); | |
756 | return 0; | |
81819f0f CL |
757 | } |
758 | ||
81819f0f CL |
759 | /* |
760 | * Object layout: | |
761 | * | |
762 | * object address | |
763 | * Bytes of the object to be managed. | |
764 | * If the freepointer may overlay the object then the free | |
765 | * pointer is the first word of the object. | |
672bba3a | 766 | * |
81819f0f CL |
767 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
768 | * 0xa5 (POISON_END) | |
769 | * | |
3b0efdfa | 770 | * object + s->object_size |
81819f0f | 771 | * Padding to reach word boundary. This is also used for Redzoning. |
672bba3a | 772 | * Padding is extended by another word if Redzoning is enabled and |
3b0efdfa | 773 | * object_size == inuse. |
672bba3a | 774 | * |
81819f0f CL |
775 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
776 | * 0xcc (RED_ACTIVE) for objects in use. | |
777 | * | |
778 | * object + s->inuse | |
672bba3a CL |
779 | * Meta data starts here. |
780 | * | |
81819f0f CL |
781 | * A. Free pointer (if we cannot overwrite object on free) |
782 | * B. Tracking data for SLAB_STORE_USER | |
672bba3a | 783 | * C. Padding to reach required alignment boundary or at mininum |
6446faa2 | 784 | * one word if debugging is on to be able to detect writes |
672bba3a CL |
785 | * before the word boundary. |
786 | * | |
787 | * Padding is done using 0x5a (POISON_INUSE) | |
81819f0f CL |
788 | * |
789 | * object + s->size | |
672bba3a | 790 | * Nothing is used beyond s->size. |
81819f0f | 791 | * |
3b0efdfa | 792 | * If slabcaches are merged then the object_size and inuse boundaries are mostly |
672bba3a | 793 | * ignored. And therefore no slab options that rely on these boundaries |
81819f0f CL |
794 | * may be used with merged slabcaches. |
795 | */ | |
796 | ||
81819f0f CL |
797 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) |
798 | { | |
799 | unsigned long off = s->inuse; /* The end of info */ | |
800 | ||
801 | if (s->offset) | |
802 | /* Freepointer is placed after the object. */ | |
803 | off += sizeof(void *); | |
804 | ||
805 | if (s->flags & SLAB_STORE_USER) | |
806 | /* We also have user information there */ | |
807 | off += 2 * sizeof(struct track); | |
808 | ||
80a9201a AP |
809 | off += kasan_metadata_size(s); |
810 | ||
d86bd1be | 811 | if (size_from_object(s) == off) |
81819f0f CL |
812 | return 1; |
813 | ||
24922684 | 814 | return check_bytes_and_report(s, page, p, "Object padding", |
d86bd1be | 815 | p + off, POISON_INUSE, size_from_object(s) - off); |
81819f0f CL |
816 | } |
817 | ||
39b26464 | 818 | /* Check the pad bytes at the end of a slab page */ |
81819f0f CL |
819 | static int slab_pad_check(struct kmem_cache *s, struct page *page) |
820 | { | |
24922684 CL |
821 | u8 *start; |
822 | u8 *fault; | |
823 | u8 *end; | |
5d682681 | 824 | u8 *pad; |
24922684 CL |
825 | int length; |
826 | int remainder; | |
81819f0f CL |
827 | |
828 | if (!(s->flags & SLAB_POISON)) | |
829 | return 1; | |
830 | ||
a973e9dd | 831 | start = page_address(page); |
9736d2a9 | 832 | length = PAGE_SIZE << compound_order(page); |
39b26464 CL |
833 | end = start + length; |
834 | remainder = length % s->size; | |
81819f0f CL |
835 | if (!remainder) |
836 | return 1; | |
837 | ||
5d682681 | 838 | pad = end - remainder; |
a79316c6 | 839 | metadata_access_enable(); |
5d682681 | 840 | fault = memchr_inv(pad, POISON_INUSE, remainder); |
a79316c6 | 841 | metadata_access_disable(); |
24922684 CL |
842 | if (!fault) |
843 | return 1; | |
844 | while (end > fault && end[-1] == POISON_INUSE) | |
845 | end--; | |
846 | ||
847 | slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); | |
5d682681 | 848 | print_section(KERN_ERR, "Padding ", pad, remainder); |
24922684 | 849 | |
5d682681 | 850 | restore_bytes(s, "slab padding", POISON_INUSE, fault, end); |
24922684 | 851 | return 0; |
81819f0f CL |
852 | } |
853 | ||
854 | static int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 855 | void *object, u8 val) |
81819f0f CL |
856 | { |
857 | u8 *p = object; | |
3b0efdfa | 858 | u8 *endobject = object + s->object_size; |
81819f0f CL |
859 | |
860 | if (s->flags & SLAB_RED_ZONE) { | |
d86bd1be JK |
861 | if (!check_bytes_and_report(s, page, object, "Redzone", |
862 | object - s->red_left_pad, val, s->red_left_pad)) | |
863 | return 0; | |
864 | ||
24922684 | 865 | if (!check_bytes_and_report(s, page, object, "Redzone", |
3b0efdfa | 866 | endobject, val, s->inuse - s->object_size)) |
81819f0f | 867 | return 0; |
81819f0f | 868 | } else { |
3b0efdfa | 869 | if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { |
3adbefee | 870 | check_bytes_and_report(s, page, p, "Alignment padding", |
d0e0ac97 CG |
871 | endobject, POISON_INUSE, |
872 | s->inuse - s->object_size); | |
3adbefee | 873 | } |
81819f0f CL |
874 | } |
875 | ||
876 | if (s->flags & SLAB_POISON) { | |
f7cb1933 | 877 | if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && |
24922684 | 878 | (!check_bytes_and_report(s, page, p, "Poison", p, |
3b0efdfa | 879 | POISON_FREE, s->object_size - 1) || |
24922684 | 880 | !check_bytes_and_report(s, page, p, "Poison", |
3b0efdfa | 881 | p + s->object_size - 1, POISON_END, 1))) |
81819f0f | 882 | return 0; |
81819f0f CL |
883 | /* |
884 | * check_pad_bytes cleans up on its own. | |
885 | */ | |
886 | check_pad_bytes(s, page, p); | |
887 | } | |
888 | ||
f7cb1933 | 889 | if (!s->offset && val == SLUB_RED_ACTIVE) |
81819f0f CL |
890 | /* |
891 | * Object and freepointer overlap. Cannot check | |
892 | * freepointer while object is allocated. | |
893 | */ | |
894 | return 1; | |
895 | ||
896 | /* Check free pointer validity */ | |
897 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | |
898 | object_err(s, page, p, "Freepointer corrupt"); | |
899 | /* | |
9f6c708e | 900 | * No choice but to zap it and thus lose the remainder |
81819f0f | 901 | * of the free objects in this slab. May cause |
672bba3a | 902 | * another error because the object count is now wrong. |
81819f0f | 903 | */ |
a973e9dd | 904 | set_freepointer(s, p, NULL); |
81819f0f CL |
905 | return 0; |
906 | } | |
907 | return 1; | |
908 | } | |
909 | ||
910 | static int check_slab(struct kmem_cache *s, struct page *page) | |
911 | { | |
39b26464 CL |
912 | int maxobj; |
913 | ||
81819f0f CL |
914 | VM_BUG_ON(!irqs_disabled()); |
915 | ||
916 | if (!PageSlab(page)) { | |
24922684 | 917 | slab_err(s, page, "Not a valid slab page"); |
81819f0f CL |
918 | return 0; |
919 | } | |
39b26464 | 920 | |
9736d2a9 | 921 | maxobj = order_objects(compound_order(page), s->size); |
39b26464 CL |
922 | if (page->objects > maxobj) { |
923 | slab_err(s, page, "objects %u > max %u", | |
f6edde9c | 924 | page->objects, maxobj); |
39b26464 CL |
925 | return 0; |
926 | } | |
927 | if (page->inuse > page->objects) { | |
24922684 | 928 | slab_err(s, page, "inuse %u > max %u", |
f6edde9c | 929 | page->inuse, page->objects); |
81819f0f CL |
930 | return 0; |
931 | } | |
932 | /* Slab_pad_check fixes things up after itself */ | |
933 | slab_pad_check(s, page); | |
934 | return 1; | |
935 | } | |
936 | ||
937 | /* | |
672bba3a CL |
938 | * Determine if a certain object on a page is on the freelist. Must hold the |
939 | * slab lock to guarantee that the chains are in a consistent state. | |
81819f0f CL |
940 | */ |
941 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | |
942 | { | |
943 | int nr = 0; | |
881db7fb | 944 | void *fp; |
81819f0f | 945 | void *object = NULL; |
f6edde9c | 946 | int max_objects; |
81819f0f | 947 | |
881db7fb | 948 | fp = page->freelist; |
39b26464 | 949 | while (fp && nr <= page->objects) { |
81819f0f CL |
950 | if (fp == search) |
951 | return 1; | |
952 | if (!check_valid_pointer(s, page, fp)) { | |
953 | if (object) { | |
954 | object_err(s, page, object, | |
955 | "Freechain corrupt"); | |
a973e9dd | 956 | set_freepointer(s, object, NULL); |
81819f0f | 957 | } else { |
24922684 | 958 | slab_err(s, page, "Freepointer corrupt"); |
a973e9dd | 959 | page->freelist = NULL; |
39b26464 | 960 | page->inuse = page->objects; |
24922684 | 961 | slab_fix(s, "Freelist cleared"); |
81819f0f CL |
962 | return 0; |
963 | } | |
964 | break; | |
965 | } | |
966 | object = fp; | |
967 | fp = get_freepointer(s, object); | |
968 | nr++; | |
969 | } | |
970 | ||
9736d2a9 | 971 | max_objects = order_objects(compound_order(page), s->size); |
210b5c06 CG |
972 | if (max_objects > MAX_OBJS_PER_PAGE) |
973 | max_objects = MAX_OBJS_PER_PAGE; | |
224a88be CL |
974 | |
975 | if (page->objects != max_objects) { | |
756a025f JP |
976 | slab_err(s, page, "Wrong number of objects. Found %d but should be %d", |
977 | page->objects, max_objects); | |
224a88be CL |
978 | page->objects = max_objects; |
979 | slab_fix(s, "Number of objects adjusted."); | |
980 | } | |
39b26464 | 981 | if (page->inuse != page->objects - nr) { |
756a025f JP |
982 | slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", |
983 | page->inuse, page->objects - nr); | |
39b26464 | 984 | page->inuse = page->objects - nr; |
24922684 | 985 | slab_fix(s, "Object count adjusted."); |
81819f0f CL |
986 | } |
987 | return search == NULL; | |
988 | } | |
989 | ||
0121c619 CL |
990 | static void trace(struct kmem_cache *s, struct page *page, void *object, |
991 | int alloc) | |
3ec09742 CL |
992 | { |
993 | if (s->flags & SLAB_TRACE) { | |
f9f58285 | 994 | pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", |
3ec09742 CL |
995 | s->name, |
996 | alloc ? "alloc" : "free", | |
997 | object, page->inuse, | |
998 | page->freelist); | |
999 | ||
1000 | if (!alloc) | |
aa2efd5e | 1001 | print_section(KERN_INFO, "Object ", (void *)object, |
d0e0ac97 | 1002 | s->object_size); |
3ec09742 CL |
1003 | |
1004 | dump_stack(); | |
1005 | } | |
1006 | } | |
1007 | ||
643b1138 | 1008 | /* |
672bba3a | 1009 | * Tracking of fully allocated slabs for debugging purposes. |
643b1138 | 1010 | */ |
5cc6eee8 CL |
1011 | static void add_full(struct kmem_cache *s, |
1012 | struct kmem_cache_node *n, struct page *page) | |
643b1138 | 1013 | { |
5cc6eee8 CL |
1014 | if (!(s->flags & SLAB_STORE_USER)) |
1015 | return; | |
1016 | ||
255d0884 | 1017 | lockdep_assert_held(&n->list_lock); |
916ac052 | 1018 | list_add(&page->slab_list, &n->full); |
643b1138 CL |
1019 | } |
1020 | ||
c65c1877 | 1021 | static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) |
643b1138 | 1022 | { |
643b1138 CL |
1023 | if (!(s->flags & SLAB_STORE_USER)) |
1024 | return; | |
1025 | ||
255d0884 | 1026 | lockdep_assert_held(&n->list_lock); |
916ac052 | 1027 | list_del(&page->slab_list); |
643b1138 CL |
1028 | } |
1029 | ||
0f389ec6 CL |
1030 | /* Tracking of the number of slabs for debugging purposes */ |
1031 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | |
1032 | { | |
1033 | struct kmem_cache_node *n = get_node(s, node); | |
1034 | ||
1035 | return atomic_long_read(&n->nr_slabs); | |
1036 | } | |
1037 | ||
26c02cf0 AB |
1038 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1039 | { | |
1040 | return atomic_long_read(&n->nr_slabs); | |
1041 | } | |
1042 | ||
205ab99d | 1043 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1044 | { |
1045 | struct kmem_cache_node *n = get_node(s, node); | |
1046 | ||
1047 | /* | |
1048 | * May be called early in order to allocate a slab for the | |
1049 | * kmem_cache_node structure. Solve the chicken-egg | |
1050 | * dilemma by deferring the increment of the count during | |
1051 | * bootstrap (see early_kmem_cache_node_alloc). | |
1052 | */ | |
338b2642 | 1053 | if (likely(n)) { |
0f389ec6 | 1054 | atomic_long_inc(&n->nr_slabs); |
205ab99d CL |
1055 | atomic_long_add(objects, &n->total_objects); |
1056 | } | |
0f389ec6 | 1057 | } |
205ab99d | 1058 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1059 | { |
1060 | struct kmem_cache_node *n = get_node(s, node); | |
1061 | ||
1062 | atomic_long_dec(&n->nr_slabs); | |
205ab99d | 1063 | atomic_long_sub(objects, &n->total_objects); |
0f389ec6 CL |
1064 | } |
1065 | ||
1066 | /* Object debug checks for alloc/free paths */ | |
3ec09742 CL |
1067 | static void setup_object_debug(struct kmem_cache *s, struct page *page, |
1068 | void *object) | |
1069 | { | |
1070 | if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | |
1071 | return; | |
1072 | ||
f7cb1933 | 1073 | init_object(s, object, SLUB_RED_INACTIVE); |
3ec09742 CL |
1074 | init_tracking(s, object); |
1075 | } | |
1076 | ||
a7101224 AK |
1077 | static void setup_page_debug(struct kmem_cache *s, void *addr, int order) |
1078 | { | |
1079 | if (!(s->flags & SLAB_POISON)) | |
1080 | return; | |
1081 | ||
1082 | metadata_access_enable(); | |
1083 | memset(addr, POISON_INUSE, PAGE_SIZE << order); | |
1084 | metadata_access_disable(); | |
1085 | } | |
1086 | ||
becfda68 | 1087 | static inline int alloc_consistency_checks(struct kmem_cache *s, |
278d7756 | 1088 | struct page *page, void *object) |
81819f0f CL |
1089 | { |
1090 | if (!check_slab(s, page)) | |
becfda68 | 1091 | return 0; |
81819f0f | 1092 | |
81819f0f CL |
1093 | if (!check_valid_pointer(s, page, object)) { |
1094 | object_err(s, page, object, "Freelist Pointer check fails"); | |
becfda68 | 1095 | return 0; |
81819f0f CL |
1096 | } |
1097 | ||
f7cb1933 | 1098 | if (!check_object(s, page, object, SLUB_RED_INACTIVE)) |
becfda68 LA |
1099 | return 0; |
1100 | ||
1101 | return 1; | |
1102 | } | |
1103 | ||
1104 | static noinline int alloc_debug_processing(struct kmem_cache *s, | |
1105 | struct page *page, | |
1106 | void *object, unsigned long addr) | |
1107 | { | |
1108 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
278d7756 | 1109 | if (!alloc_consistency_checks(s, page, object)) |
becfda68 LA |
1110 | goto bad; |
1111 | } | |
81819f0f | 1112 | |
3ec09742 CL |
1113 | /* Success perform special debug activities for allocs */ |
1114 | if (s->flags & SLAB_STORE_USER) | |
1115 | set_track(s, object, TRACK_ALLOC, addr); | |
1116 | trace(s, page, object, 1); | |
f7cb1933 | 1117 | init_object(s, object, SLUB_RED_ACTIVE); |
81819f0f | 1118 | return 1; |
3ec09742 | 1119 | |
81819f0f CL |
1120 | bad: |
1121 | if (PageSlab(page)) { | |
1122 | /* | |
1123 | * If this is a slab page then lets do the best we can | |
1124 | * to avoid issues in the future. Marking all objects | |
672bba3a | 1125 | * as used avoids touching the remaining objects. |
81819f0f | 1126 | */ |
24922684 | 1127 | slab_fix(s, "Marking all objects used"); |
39b26464 | 1128 | page->inuse = page->objects; |
a973e9dd | 1129 | page->freelist = NULL; |
81819f0f CL |
1130 | } |
1131 | return 0; | |
1132 | } | |
1133 | ||
becfda68 LA |
1134 | static inline int free_consistency_checks(struct kmem_cache *s, |
1135 | struct page *page, void *object, unsigned long addr) | |
81819f0f | 1136 | { |
81819f0f | 1137 | if (!check_valid_pointer(s, page, object)) { |
70d71228 | 1138 | slab_err(s, page, "Invalid object pointer 0x%p", object); |
becfda68 | 1139 | return 0; |
81819f0f CL |
1140 | } |
1141 | ||
1142 | if (on_freelist(s, page, object)) { | |
24922684 | 1143 | object_err(s, page, object, "Object already free"); |
becfda68 | 1144 | return 0; |
81819f0f CL |
1145 | } |
1146 | ||
f7cb1933 | 1147 | if (!check_object(s, page, object, SLUB_RED_ACTIVE)) |
becfda68 | 1148 | return 0; |
81819f0f | 1149 | |
1b4f59e3 | 1150 | if (unlikely(s != page->slab_cache)) { |
3adbefee | 1151 | if (!PageSlab(page)) { |
756a025f JP |
1152 | slab_err(s, page, "Attempt to free object(0x%p) outside of slab", |
1153 | object); | |
1b4f59e3 | 1154 | } else if (!page->slab_cache) { |
f9f58285 FF |
1155 | pr_err("SLUB <none>: no slab for object 0x%p.\n", |
1156 | object); | |
70d71228 | 1157 | dump_stack(); |
06428780 | 1158 | } else |
24922684 CL |
1159 | object_err(s, page, object, |
1160 | "page slab pointer corrupt."); | |
becfda68 LA |
1161 | return 0; |
1162 | } | |
1163 | return 1; | |
1164 | } | |
1165 | ||
1166 | /* Supports checking bulk free of a constructed freelist */ | |
1167 | static noinline int free_debug_processing( | |
1168 | struct kmem_cache *s, struct page *page, | |
1169 | void *head, void *tail, int bulk_cnt, | |
1170 | unsigned long addr) | |
1171 | { | |
1172 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | |
1173 | void *object = head; | |
1174 | int cnt = 0; | |
1175 | unsigned long uninitialized_var(flags); | |
1176 | int ret = 0; | |
1177 | ||
1178 | spin_lock_irqsave(&n->list_lock, flags); | |
1179 | slab_lock(page); | |
1180 | ||
1181 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1182 | if (!check_slab(s, page)) | |
1183 | goto out; | |
1184 | } | |
1185 | ||
1186 | next_object: | |
1187 | cnt++; | |
1188 | ||
1189 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1190 | if (!free_consistency_checks(s, page, object, addr)) | |
1191 | goto out; | |
81819f0f | 1192 | } |
3ec09742 | 1193 | |
3ec09742 CL |
1194 | if (s->flags & SLAB_STORE_USER) |
1195 | set_track(s, object, TRACK_FREE, addr); | |
1196 | trace(s, page, object, 0); | |
81084651 | 1197 | /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ |
f7cb1933 | 1198 | init_object(s, object, SLUB_RED_INACTIVE); |
81084651 JDB |
1199 | |
1200 | /* Reached end of constructed freelist yet? */ | |
1201 | if (object != tail) { | |
1202 | object = get_freepointer(s, object); | |
1203 | goto next_object; | |
1204 | } | |
804aa132 LA |
1205 | ret = 1; |
1206 | ||
5c2e4bbb | 1207 | out: |
81084651 JDB |
1208 | if (cnt != bulk_cnt) |
1209 | slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", | |
1210 | bulk_cnt, cnt); | |
1211 | ||
881db7fb | 1212 | slab_unlock(page); |
282acb43 | 1213 | spin_unlock_irqrestore(&n->list_lock, flags); |
804aa132 LA |
1214 | if (!ret) |
1215 | slab_fix(s, "Object at 0x%p not freed", object); | |
1216 | return ret; | |
81819f0f CL |
1217 | } |
1218 | ||
41ecc55b CL |
1219 | static int __init setup_slub_debug(char *str) |
1220 | { | |
f0630fff CL |
1221 | slub_debug = DEBUG_DEFAULT_FLAGS; |
1222 | if (*str++ != '=' || !*str) | |
1223 | /* | |
1224 | * No options specified. Switch on full debugging. | |
1225 | */ | |
1226 | goto out; | |
1227 | ||
1228 | if (*str == ',') | |
1229 | /* | |
1230 | * No options but restriction on slabs. This means full | |
1231 | * debugging for slabs matching a pattern. | |
1232 | */ | |
1233 | goto check_slabs; | |
1234 | ||
1235 | slub_debug = 0; | |
1236 | if (*str == '-') | |
1237 | /* | |
1238 | * Switch off all debugging measures. | |
1239 | */ | |
1240 | goto out; | |
1241 | ||
1242 | /* | |
1243 | * Determine which debug features should be switched on | |
1244 | */ | |
06428780 | 1245 | for (; *str && *str != ','; str++) { |
f0630fff CL |
1246 | switch (tolower(*str)) { |
1247 | case 'f': | |
becfda68 | 1248 | slub_debug |= SLAB_CONSISTENCY_CHECKS; |
f0630fff CL |
1249 | break; |
1250 | case 'z': | |
1251 | slub_debug |= SLAB_RED_ZONE; | |
1252 | break; | |
1253 | case 'p': | |
1254 | slub_debug |= SLAB_POISON; | |
1255 | break; | |
1256 | case 'u': | |
1257 | slub_debug |= SLAB_STORE_USER; | |
1258 | break; | |
1259 | case 't': | |
1260 | slub_debug |= SLAB_TRACE; | |
1261 | break; | |
4c13dd3b DM |
1262 | case 'a': |
1263 | slub_debug |= SLAB_FAILSLAB; | |
1264 | break; | |
08303a73 CA |
1265 | case 'o': |
1266 | /* | |
1267 | * Avoid enabling debugging on caches if its minimum | |
1268 | * order would increase as a result. | |
1269 | */ | |
1270 | disable_higher_order_debug = 1; | |
1271 | break; | |
f0630fff | 1272 | default: |
f9f58285 FF |
1273 | pr_err("slub_debug option '%c' unknown. skipped\n", |
1274 | *str); | |
f0630fff | 1275 | } |
41ecc55b CL |
1276 | } |
1277 | ||
f0630fff | 1278 | check_slabs: |
41ecc55b CL |
1279 | if (*str == ',') |
1280 | slub_debug_slabs = str + 1; | |
f0630fff | 1281 | out: |
41ecc55b CL |
1282 | return 1; |
1283 | } | |
1284 | ||
1285 | __setup("slub_debug", setup_slub_debug); | |
1286 | ||
c5fd3ca0 AT |
1287 | /* |
1288 | * kmem_cache_flags - apply debugging options to the cache | |
1289 | * @object_size: the size of an object without meta data | |
1290 | * @flags: flags to set | |
1291 | * @name: name of the cache | |
1292 | * @ctor: constructor function | |
1293 | * | |
1294 | * Debug option(s) are applied to @flags. In addition to the debug | |
1295 | * option(s), if a slab name (or multiple) is specified i.e. | |
1296 | * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... | |
1297 | * then only the select slabs will receive the debug option(s). | |
1298 | */ | |
0293d1fd | 1299 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
d50112ed | 1300 | slab_flags_t flags, const char *name, |
51cc5068 | 1301 | void (*ctor)(void *)) |
41ecc55b | 1302 | { |
c5fd3ca0 AT |
1303 | char *iter; |
1304 | size_t len; | |
1305 | ||
1306 | /* If slub_debug = 0, it folds into the if conditional. */ | |
1307 | if (!slub_debug_slabs) | |
1308 | return flags | slub_debug; | |
1309 | ||
1310 | len = strlen(name); | |
1311 | iter = slub_debug_slabs; | |
1312 | while (*iter) { | |
1313 | char *end, *glob; | |
1314 | size_t cmplen; | |
1315 | ||
9cf3a8d8 | 1316 | end = strchrnul(iter, ','); |
c5fd3ca0 AT |
1317 | |
1318 | glob = strnchr(iter, end - iter, '*'); | |
1319 | if (glob) | |
1320 | cmplen = glob - iter; | |
1321 | else | |
1322 | cmplen = max_t(size_t, len, (end - iter)); | |
1323 | ||
1324 | if (!strncmp(name, iter, cmplen)) { | |
1325 | flags |= slub_debug; | |
1326 | break; | |
1327 | } | |
1328 | ||
1329 | if (!*end) | |
1330 | break; | |
1331 | iter = end + 1; | |
1332 | } | |
ba0268a8 CL |
1333 | |
1334 | return flags; | |
41ecc55b | 1335 | } |
b4a64718 | 1336 | #else /* !CONFIG_SLUB_DEBUG */ |
3ec09742 CL |
1337 | static inline void setup_object_debug(struct kmem_cache *s, |
1338 | struct page *page, void *object) {} | |
a7101224 AK |
1339 | static inline void setup_page_debug(struct kmem_cache *s, |
1340 | void *addr, int order) {} | |
41ecc55b | 1341 | |
3ec09742 | 1342 | static inline int alloc_debug_processing(struct kmem_cache *s, |
ce71e27c | 1343 | struct page *page, void *object, unsigned long addr) { return 0; } |
41ecc55b | 1344 | |
282acb43 | 1345 | static inline int free_debug_processing( |
81084651 JDB |
1346 | struct kmem_cache *s, struct page *page, |
1347 | void *head, void *tail, int bulk_cnt, | |
282acb43 | 1348 | unsigned long addr) { return 0; } |
41ecc55b | 1349 | |
41ecc55b CL |
1350 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) |
1351 | { return 1; } | |
1352 | static inline int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 1353 | void *object, u8 val) { return 1; } |
5cc6eee8 CL |
1354 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, |
1355 | struct page *page) {} | |
c65c1877 PZ |
1356 | static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, |
1357 | struct page *page) {} | |
0293d1fd | 1358 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
d50112ed | 1359 | slab_flags_t flags, const char *name, |
51cc5068 | 1360 | void (*ctor)(void *)) |
ba0268a8 CL |
1361 | { |
1362 | return flags; | |
1363 | } | |
41ecc55b | 1364 | #define slub_debug 0 |
0f389ec6 | 1365 | |
fdaa45e9 IM |
1366 | #define disable_higher_order_debug 0 |
1367 | ||
0f389ec6 CL |
1368 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
1369 | { return 0; } | |
26c02cf0 AB |
1370 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1371 | { return 0; } | |
205ab99d CL |
1372 | static inline void inc_slabs_node(struct kmem_cache *s, int node, |
1373 | int objects) {} | |
1374 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | |
1375 | int objects) {} | |
7d550c56 | 1376 | |
02e72cc6 AR |
1377 | #endif /* CONFIG_SLUB_DEBUG */ |
1378 | ||
1379 | /* | |
1380 | * Hooks for other subsystems that check memory allocations. In a typical | |
1381 | * production configuration these hooks all should produce no code at all. | |
1382 | */ | |
0116523c | 1383 | static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) |
d56791b3 | 1384 | { |
53128245 | 1385 | ptr = kasan_kmalloc_large(ptr, size, flags); |
a2f77575 | 1386 | /* As ptr might get tagged, call kmemleak hook after KASAN. */ |
d56791b3 | 1387 | kmemleak_alloc(ptr, size, 1, flags); |
53128245 | 1388 | return ptr; |
d56791b3 RB |
1389 | } |
1390 | ||
ee3ce779 | 1391 | static __always_inline void kfree_hook(void *x) |
d56791b3 RB |
1392 | { |
1393 | kmemleak_free(x); | |
ee3ce779 | 1394 | kasan_kfree_large(x, _RET_IP_); |
d56791b3 RB |
1395 | } |
1396 | ||
c3895391 | 1397 | static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) |
d56791b3 RB |
1398 | { |
1399 | kmemleak_free_recursive(x, s->flags); | |
7d550c56 | 1400 | |
02e72cc6 AR |
1401 | /* |
1402 | * Trouble is that we may no longer disable interrupts in the fast path | |
1403 | * So in order to make the debug calls that expect irqs to be | |
1404 | * disabled we need to disable interrupts temporarily. | |
1405 | */ | |
4675ff05 | 1406 | #ifdef CONFIG_LOCKDEP |
02e72cc6 AR |
1407 | { |
1408 | unsigned long flags; | |
1409 | ||
1410 | local_irq_save(flags); | |
02e72cc6 AR |
1411 | debug_check_no_locks_freed(x, s->object_size); |
1412 | local_irq_restore(flags); | |
1413 | } | |
1414 | #endif | |
1415 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) | |
1416 | debug_check_no_obj_freed(x, s->object_size); | |
0316bec2 | 1417 | |
c3895391 AK |
1418 | /* KASAN might put x into memory quarantine, delaying its reuse */ |
1419 | return kasan_slab_free(s, x, _RET_IP_); | |
02e72cc6 | 1420 | } |
205ab99d | 1421 | |
c3895391 AK |
1422 | static inline bool slab_free_freelist_hook(struct kmem_cache *s, |
1423 | void **head, void **tail) | |
81084651 JDB |
1424 | { |
1425 | /* | |
1426 | * Compiler cannot detect this function can be removed if slab_free_hook() | |
1427 | * evaluates to nothing. Thus, catch all relevant config debug options here. | |
1428 | */ | |
4675ff05 | 1429 | #if defined(CONFIG_LOCKDEP) || \ |
81084651 JDB |
1430 | defined(CONFIG_DEBUG_KMEMLEAK) || \ |
1431 | defined(CONFIG_DEBUG_OBJECTS_FREE) || \ | |
1432 | defined(CONFIG_KASAN) | |
1433 | ||
c3895391 AK |
1434 | void *object; |
1435 | void *next = *head; | |
1436 | void *old_tail = *tail ? *tail : *head; | |
1437 | ||
1438 | /* Head and tail of the reconstructed freelist */ | |
1439 | *head = NULL; | |
1440 | *tail = NULL; | |
81084651 JDB |
1441 | |
1442 | do { | |
c3895391 AK |
1443 | object = next; |
1444 | next = get_freepointer(s, object); | |
1445 | /* If object's reuse doesn't have to be delayed */ | |
1446 | if (!slab_free_hook(s, object)) { | |
1447 | /* Move object to the new freelist */ | |
1448 | set_freepointer(s, object, *head); | |
1449 | *head = object; | |
1450 | if (!*tail) | |
1451 | *tail = object; | |
1452 | } | |
1453 | } while (object != old_tail); | |
1454 | ||
1455 | if (*head == *tail) | |
1456 | *tail = NULL; | |
1457 | ||
1458 | return *head != NULL; | |
1459 | #else | |
1460 | return true; | |
81084651 JDB |
1461 | #endif |
1462 | } | |
1463 | ||
4d176711 | 1464 | static void *setup_object(struct kmem_cache *s, struct page *page, |
588f8ba9 TG |
1465 | void *object) |
1466 | { | |
1467 | setup_object_debug(s, page, object); | |
4d176711 | 1468 | object = kasan_init_slab_obj(s, object); |
588f8ba9 TG |
1469 | if (unlikely(s->ctor)) { |
1470 | kasan_unpoison_object_data(s, object); | |
1471 | s->ctor(object); | |
1472 | kasan_poison_object_data(s, object); | |
1473 | } | |
4d176711 | 1474 | return object; |
588f8ba9 TG |
1475 | } |
1476 | ||
81819f0f CL |
1477 | /* |
1478 | * Slab allocation and freeing | |
1479 | */ | |
5dfb4175 VD |
1480 | static inline struct page *alloc_slab_page(struct kmem_cache *s, |
1481 | gfp_t flags, int node, struct kmem_cache_order_objects oo) | |
65c3376a | 1482 | { |
5dfb4175 | 1483 | struct page *page; |
19af27af | 1484 | unsigned int order = oo_order(oo); |
65c3376a | 1485 | |
2154a336 | 1486 | if (node == NUMA_NO_NODE) |
5dfb4175 | 1487 | page = alloc_pages(flags, order); |
65c3376a | 1488 | else |
96db800f | 1489 | page = __alloc_pages_node(node, flags, order); |
5dfb4175 | 1490 | |
f3ccb2c4 VD |
1491 | if (page && memcg_charge_slab(page, flags, order, s)) { |
1492 | __free_pages(page, order); | |
1493 | page = NULL; | |
1494 | } | |
5dfb4175 VD |
1495 | |
1496 | return page; | |
65c3376a CL |
1497 | } |
1498 | ||
210e7a43 TG |
1499 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
1500 | /* Pre-initialize the random sequence cache */ | |
1501 | static int init_cache_random_seq(struct kmem_cache *s) | |
1502 | { | |
19af27af | 1503 | unsigned int count = oo_objects(s->oo); |
210e7a43 | 1504 | int err; |
210e7a43 | 1505 | |
a810007a SR |
1506 | /* Bailout if already initialised */ |
1507 | if (s->random_seq) | |
1508 | return 0; | |
1509 | ||
210e7a43 TG |
1510 | err = cache_random_seq_create(s, count, GFP_KERNEL); |
1511 | if (err) { | |
1512 | pr_err("SLUB: Unable to initialize free list for %s\n", | |
1513 | s->name); | |
1514 | return err; | |
1515 | } | |
1516 | ||
1517 | /* Transform to an offset on the set of pages */ | |
1518 | if (s->random_seq) { | |
19af27af AD |
1519 | unsigned int i; |
1520 | ||
210e7a43 TG |
1521 | for (i = 0; i < count; i++) |
1522 | s->random_seq[i] *= s->size; | |
1523 | } | |
1524 | return 0; | |
1525 | } | |
1526 | ||
1527 | /* Initialize each random sequence freelist per cache */ | |
1528 | static void __init init_freelist_randomization(void) | |
1529 | { | |
1530 | struct kmem_cache *s; | |
1531 | ||
1532 | mutex_lock(&slab_mutex); | |
1533 | ||
1534 | list_for_each_entry(s, &slab_caches, list) | |
1535 | init_cache_random_seq(s); | |
1536 | ||
1537 | mutex_unlock(&slab_mutex); | |
1538 | } | |
1539 | ||
1540 | /* Get the next entry on the pre-computed freelist randomized */ | |
1541 | static void *next_freelist_entry(struct kmem_cache *s, struct page *page, | |
1542 | unsigned long *pos, void *start, | |
1543 | unsigned long page_limit, | |
1544 | unsigned long freelist_count) | |
1545 | { | |
1546 | unsigned int idx; | |
1547 | ||
1548 | /* | |
1549 | * If the target page allocation failed, the number of objects on the | |
1550 | * page might be smaller than the usual size defined by the cache. | |
1551 | */ | |
1552 | do { | |
1553 | idx = s->random_seq[*pos]; | |
1554 | *pos += 1; | |
1555 | if (*pos >= freelist_count) | |
1556 | *pos = 0; | |
1557 | } while (unlikely(idx >= page_limit)); | |
1558 | ||
1559 | return (char *)start + idx; | |
1560 | } | |
1561 | ||
1562 | /* Shuffle the single linked freelist based on a random pre-computed sequence */ | |
1563 | static bool shuffle_freelist(struct kmem_cache *s, struct page *page) | |
1564 | { | |
1565 | void *start; | |
1566 | void *cur; | |
1567 | void *next; | |
1568 | unsigned long idx, pos, page_limit, freelist_count; | |
1569 | ||
1570 | if (page->objects < 2 || !s->random_seq) | |
1571 | return false; | |
1572 | ||
1573 | freelist_count = oo_objects(s->oo); | |
1574 | pos = get_random_int() % freelist_count; | |
1575 | ||
1576 | page_limit = page->objects * s->size; | |
1577 | start = fixup_red_left(s, page_address(page)); | |
1578 | ||
1579 | /* First entry is used as the base of the freelist */ | |
1580 | cur = next_freelist_entry(s, page, &pos, start, page_limit, | |
1581 | freelist_count); | |
4d176711 | 1582 | cur = setup_object(s, page, cur); |
210e7a43 TG |
1583 | page->freelist = cur; |
1584 | ||
1585 | for (idx = 1; idx < page->objects; idx++) { | |
210e7a43 TG |
1586 | next = next_freelist_entry(s, page, &pos, start, page_limit, |
1587 | freelist_count); | |
4d176711 | 1588 | next = setup_object(s, page, next); |
210e7a43 TG |
1589 | set_freepointer(s, cur, next); |
1590 | cur = next; | |
1591 | } | |
210e7a43 TG |
1592 | set_freepointer(s, cur, NULL); |
1593 | ||
1594 | return true; | |
1595 | } | |
1596 | #else | |
1597 | static inline int init_cache_random_seq(struct kmem_cache *s) | |
1598 | { | |
1599 | return 0; | |
1600 | } | |
1601 | static inline void init_freelist_randomization(void) { } | |
1602 | static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) | |
1603 | { | |
1604 | return false; | |
1605 | } | |
1606 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
1607 | ||
81819f0f CL |
1608 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
1609 | { | |
06428780 | 1610 | struct page *page; |
834f3d11 | 1611 | struct kmem_cache_order_objects oo = s->oo; |
ba52270d | 1612 | gfp_t alloc_gfp; |
4d176711 | 1613 | void *start, *p, *next; |
588f8ba9 | 1614 | int idx, order; |
210e7a43 | 1615 | bool shuffle; |
81819f0f | 1616 | |
7e0528da CL |
1617 | flags &= gfp_allowed_mask; |
1618 | ||
d0164adc | 1619 | if (gfpflags_allow_blocking(flags)) |
7e0528da CL |
1620 | local_irq_enable(); |
1621 | ||
b7a49f0d | 1622 | flags |= s->allocflags; |
e12ba74d | 1623 | |
ba52270d PE |
1624 | /* |
1625 | * Let the initial higher-order allocation fail under memory pressure | |
1626 | * so we fall-back to the minimum order allocation. | |
1627 | */ | |
1628 | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | |
d0164adc | 1629 | if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) |
444eb2a4 | 1630 | alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); |
ba52270d | 1631 | |
5dfb4175 | 1632 | page = alloc_slab_page(s, alloc_gfp, node, oo); |
65c3376a CL |
1633 | if (unlikely(!page)) { |
1634 | oo = s->min; | |
80c3a998 | 1635 | alloc_gfp = flags; |
65c3376a CL |
1636 | /* |
1637 | * Allocation may have failed due to fragmentation. | |
1638 | * Try a lower order alloc if possible | |
1639 | */ | |
5dfb4175 | 1640 | page = alloc_slab_page(s, alloc_gfp, node, oo); |
588f8ba9 TG |
1641 | if (unlikely(!page)) |
1642 | goto out; | |
1643 | stat(s, ORDER_FALLBACK); | |
65c3376a | 1644 | } |
5a896d9e | 1645 | |
834f3d11 | 1646 | page->objects = oo_objects(oo); |
81819f0f | 1647 | |
1f458cbf | 1648 | order = compound_order(page); |
1b4f59e3 | 1649 | page->slab_cache = s; |
c03f94cc | 1650 | __SetPageSlab(page); |
2f064f34 | 1651 | if (page_is_pfmemalloc(page)) |
072bb0aa | 1652 | SetPageSlabPfmemalloc(page); |
81819f0f | 1653 | |
a7101224 | 1654 | kasan_poison_slab(page); |
81819f0f | 1655 | |
a7101224 | 1656 | start = page_address(page); |
81819f0f | 1657 | |
a7101224 | 1658 | setup_page_debug(s, start, order); |
0316bec2 | 1659 | |
210e7a43 TG |
1660 | shuffle = shuffle_freelist(s, page); |
1661 | ||
1662 | if (!shuffle) { | |
4d176711 AK |
1663 | start = fixup_red_left(s, start); |
1664 | start = setup_object(s, page, start); | |
1665 | page->freelist = start; | |
18e50661 AK |
1666 | for (idx = 0, p = start; idx < page->objects - 1; idx++) { |
1667 | next = p + s->size; | |
1668 | next = setup_object(s, page, next); | |
1669 | set_freepointer(s, p, next); | |
1670 | p = next; | |
1671 | } | |
1672 | set_freepointer(s, p, NULL); | |
81819f0f | 1673 | } |
81819f0f | 1674 | |
e6e82ea1 | 1675 | page->inuse = page->objects; |
8cb0a506 | 1676 | page->frozen = 1; |
588f8ba9 | 1677 | |
81819f0f | 1678 | out: |
d0164adc | 1679 | if (gfpflags_allow_blocking(flags)) |
588f8ba9 TG |
1680 | local_irq_disable(); |
1681 | if (!page) | |
1682 | return NULL; | |
1683 | ||
7779f212 | 1684 | mod_lruvec_page_state(page, |
588f8ba9 TG |
1685 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? |
1686 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
1687 | 1 << oo_order(oo)); | |
1688 | ||
1689 | inc_slabs_node(s, page_to_nid(page), page->objects); | |
1690 | ||
81819f0f CL |
1691 | return page; |
1692 | } | |
1693 | ||
588f8ba9 TG |
1694 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) |
1695 | { | |
1696 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) { | |
bacdcb34 | 1697 | gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; |
72baeef0 MH |
1698 | flags &= ~GFP_SLAB_BUG_MASK; |
1699 | pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", | |
1700 | invalid_mask, &invalid_mask, flags, &flags); | |
65b9de75 | 1701 | dump_stack(); |
588f8ba9 TG |
1702 | } |
1703 | ||
1704 | return allocate_slab(s, | |
1705 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | |
1706 | } | |
1707 | ||
81819f0f CL |
1708 | static void __free_slab(struct kmem_cache *s, struct page *page) |
1709 | { | |
834f3d11 CL |
1710 | int order = compound_order(page); |
1711 | int pages = 1 << order; | |
81819f0f | 1712 | |
becfda68 | 1713 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { |
81819f0f CL |
1714 | void *p; |
1715 | ||
1716 | slab_pad_check(s, page); | |
224a88be CL |
1717 | for_each_object(p, s, page_address(page), |
1718 | page->objects) | |
f7cb1933 | 1719 | check_object(s, page, p, SLUB_RED_INACTIVE); |
81819f0f CL |
1720 | } |
1721 | ||
7779f212 | 1722 | mod_lruvec_page_state(page, |
81819f0f CL |
1723 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? |
1724 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
06428780 | 1725 | -pages); |
81819f0f | 1726 | |
072bb0aa | 1727 | __ClearPageSlabPfmemalloc(page); |
49bd5221 | 1728 | __ClearPageSlab(page); |
1f458cbf | 1729 | |
d4fc5069 | 1730 | page->mapping = NULL; |
1eb5ac64 NP |
1731 | if (current->reclaim_state) |
1732 | current->reclaim_state->reclaimed_slab += pages; | |
27ee57c9 VD |
1733 | memcg_uncharge_slab(page, order, s); |
1734 | __free_pages(page, order); | |
81819f0f CL |
1735 | } |
1736 | ||
1737 | static void rcu_free_slab(struct rcu_head *h) | |
1738 | { | |
bf68c214 | 1739 | struct page *page = container_of(h, struct page, rcu_head); |
da9a638c | 1740 | |
1b4f59e3 | 1741 | __free_slab(page->slab_cache, page); |
81819f0f CL |
1742 | } |
1743 | ||
1744 | static void free_slab(struct kmem_cache *s, struct page *page) | |
1745 | { | |
5f0d5a3a | 1746 | if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { |
bf68c214 | 1747 | call_rcu(&page->rcu_head, rcu_free_slab); |
81819f0f CL |
1748 | } else |
1749 | __free_slab(s, page); | |
1750 | } | |
1751 | ||
1752 | static void discard_slab(struct kmem_cache *s, struct page *page) | |
1753 | { | |
205ab99d | 1754 | dec_slabs_node(s, page_to_nid(page), page->objects); |
81819f0f CL |
1755 | free_slab(s, page); |
1756 | } | |
1757 | ||
1758 | /* | |
5cc6eee8 | 1759 | * Management of partially allocated slabs. |
81819f0f | 1760 | */ |
1e4dd946 SR |
1761 | static inline void |
1762 | __add_partial(struct kmem_cache_node *n, struct page *page, int tail) | |
81819f0f | 1763 | { |
e95eed57 | 1764 | n->nr_partial++; |
136333d1 | 1765 | if (tail == DEACTIVATE_TO_TAIL) |
916ac052 | 1766 | list_add_tail(&page->slab_list, &n->partial); |
7c2e132c | 1767 | else |
916ac052 | 1768 | list_add(&page->slab_list, &n->partial); |
81819f0f CL |
1769 | } |
1770 | ||
1e4dd946 SR |
1771 | static inline void add_partial(struct kmem_cache_node *n, |
1772 | struct page *page, int tail) | |
62e346a8 | 1773 | { |
c65c1877 | 1774 | lockdep_assert_held(&n->list_lock); |
1e4dd946 SR |
1775 | __add_partial(n, page, tail); |
1776 | } | |
c65c1877 | 1777 | |
1e4dd946 SR |
1778 | static inline void remove_partial(struct kmem_cache_node *n, |
1779 | struct page *page) | |
1780 | { | |
1781 | lockdep_assert_held(&n->list_lock); | |
916ac052 | 1782 | list_del(&page->slab_list); |
52b4b950 | 1783 | n->nr_partial--; |
1e4dd946 SR |
1784 | } |
1785 | ||
81819f0f | 1786 | /* |
7ced3719 CL |
1787 | * Remove slab from the partial list, freeze it and |
1788 | * return the pointer to the freelist. | |
81819f0f | 1789 | * |
497b66f2 | 1790 | * Returns a list of objects or NULL if it fails. |
81819f0f | 1791 | */ |
497b66f2 | 1792 | static inline void *acquire_slab(struct kmem_cache *s, |
acd19fd1 | 1793 | struct kmem_cache_node *n, struct page *page, |
633b0764 | 1794 | int mode, int *objects) |
81819f0f | 1795 | { |
2cfb7455 CL |
1796 | void *freelist; |
1797 | unsigned long counters; | |
1798 | struct page new; | |
1799 | ||
c65c1877 PZ |
1800 | lockdep_assert_held(&n->list_lock); |
1801 | ||
2cfb7455 CL |
1802 | /* |
1803 | * Zap the freelist and set the frozen bit. | |
1804 | * The old freelist is the list of objects for the | |
1805 | * per cpu allocation list. | |
1806 | */ | |
7ced3719 CL |
1807 | freelist = page->freelist; |
1808 | counters = page->counters; | |
1809 | new.counters = counters; | |
633b0764 | 1810 | *objects = new.objects - new.inuse; |
23910c50 | 1811 | if (mode) { |
7ced3719 | 1812 | new.inuse = page->objects; |
23910c50 PE |
1813 | new.freelist = NULL; |
1814 | } else { | |
1815 | new.freelist = freelist; | |
1816 | } | |
2cfb7455 | 1817 | |
a0132ac0 | 1818 | VM_BUG_ON(new.frozen); |
7ced3719 | 1819 | new.frozen = 1; |
2cfb7455 | 1820 | |
7ced3719 | 1821 | if (!__cmpxchg_double_slab(s, page, |
2cfb7455 | 1822 | freelist, counters, |
02d7633f | 1823 | new.freelist, new.counters, |
7ced3719 | 1824 | "acquire_slab")) |
7ced3719 | 1825 | return NULL; |
2cfb7455 CL |
1826 | |
1827 | remove_partial(n, page); | |
7ced3719 | 1828 | WARN_ON(!freelist); |
49e22585 | 1829 | return freelist; |
81819f0f CL |
1830 | } |
1831 | ||
633b0764 | 1832 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); |
8ba00bb6 | 1833 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); |
49e22585 | 1834 | |
81819f0f | 1835 | /* |
672bba3a | 1836 | * Try to allocate a partial slab from a specific node. |
81819f0f | 1837 | */ |
8ba00bb6 JK |
1838 | static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, |
1839 | struct kmem_cache_cpu *c, gfp_t flags) | |
81819f0f | 1840 | { |
49e22585 CL |
1841 | struct page *page, *page2; |
1842 | void *object = NULL; | |
e5d9998f | 1843 | unsigned int available = 0; |
633b0764 | 1844 | int objects; |
81819f0f CL |
1845 | |
1846 | /* | |
1847 | * Racy check. If we mistakenly see no partial slabs then we | |
1848 | * just allocate an empty slab. If we mistakenly try to get a | |
672bba3a CL |
1849 | * partial slab and there is none available then get_partials() |
1850 | * will return NULL. | |
81819f0f CL |
1851 | */ |
1852 | if (!n || !n->nr_partial) | |
1853 | return NULL; | |
1854 | ||
1855 | spin_lock(&n->list_lock); | |
916ac052 | 1856 | list_for_each_entry_safe(page, page2, &n->partial, slab_list) { |
8ba00bb6 | 1857 | void *t; |
49e22585 | 1858 | |
8ba00bb6 JK |
1859 | if (!pfmemalloc_match(page, flags)) |
1860 | continue; | |
1861 | ||
633b0764 | 1862 | t = acquire_slab(s, n, page, object == NULL, &objects); |
49e22585 CL |
1863 | if (!t) |
1864 | break; | |
1865 | ||
633b0764 | 1866 | available += objects; |
12d79634 | 1867 | if (!object) { |
49e22585 | 1868 | c->page = page; |
49e22585 | 1869 | stat(s, ALLOC_FROM_PARTIAL); |
49e22585 | 1870 | object = t; |
49e22585 | 1871 | } else { |
633b0764 | 1872 | put_cpu_partial(s, page, 0); |
8028dcea | 1873 | stat(s, CPU_PARTIAL_NODE); |
49e22585 | 1874 | } |
345c905d | 1875 | if (!kmem_cache_has_cpu_partial(s) |
e6d0e1dc | 1876 | || available > slub_cpu_partial(s) / 2) |
49e22585 CL |
1877 | break; |
1878 | ||
497b66f2 | 1879 | } |
81819f0f | 1880 | spin_unlock(&n->list_lock); |
497b66f2 | 1881 | return object; |
81819f0f CL |
1882 | } |
1883 | ||
1884 | /* | |
672bba3a | 1885 | * Get a page from somewhere. Search in increasing NUMA distances. |
81819f0f | 1886 | */ |
de3ec035 | 1887 | static void *get_any_partial(struct kmem_cache *s, gfp_t flags, |
acd19fd1 | 1888 | struct kmem_cache_cpu *c) |
81819f0f CL |
1889 | { |
1890 | #ifdef CONFIG_NUMA | |
1891 | struct zonelist *zonelist; | |
dd1a239f | 1892 | struct zoneref *z; |
54a6eb5c MG |
1893 | struct zone *zone; |
1894 | enum zone_type high_zoneidx = gfp_zone(flags); | |
497b66f2 | 1895 | void *object; |
cc9a6c87 | 1896 | unsigned int cpuset_mems_cookie; |
81819f0f CL |
1897 | |
1898 | /* | |
672bba3a CL |
1899 | * The defrag ratio allows a configuration of the tradeoffs between |
1900 | * inter node defragmentation and node local allocations. A lower | |
1901 | * defrag_ratio increases the tendency to do local allocations | |
1902 | * instead of attempting to obtain partial slabs from other nodes. | |
81819f0f | 1903 | * |
672bba3a CL |
1904 | * If the defrag_ratio is set to 0 then kmalloc() always |
1905 | * returns node local objects. If the ratio is higher then kmalloc() | |
1906 | * may return off node objects because partial slabs are obtained | |
1907 | * from other nodes and filled up. | |
81819f0f | 1908 | * |
43efd3ea LP |
1909 | * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 |
1910 | * (which makes defrag_ratio = 1000) then every (well almost) | |
1911 | * allocation will first attempt to defrag slab caches on other nodes. | |
1912 | * This means scanning over all nodes to look for partial slabs which | |
1913 | * may be expensive if we do it every time we are trying to find a slab | |
672bba3a | 1914 | * with available objects. |
81819f0f | 1915 | */ |
9824601e CL |
1916 | if (!s->remote_node_defrag_ratio || |
1917 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | |
81819f0f CL |
1918 | return NULL; |
1919 | ||
cc9a6c87 | 1920 | do { |
d26914d1 | 1921 | cpuset_mems_cookie = read_mems_allowed_begin(); |
2a389610 | 1922 | zonelist = node_zonelist(mempolicy_slab_node(), flags); |
cc9a6c87 MG |
1923 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
1924 | struct kmem_cache_node *n; | |
1925 | ||
1926 | n = get_node(s, zone_to_nid(zone)); | |
1927 | ||
dee2f8aa | 1928 | if (n && cpuset_zone_allowed(zone, flags) && |
cc9a6c87 | 1929 | n->nr_partial > s->min_partial) { |
8ba00bb6 | 1930 | object = get_partial_node(s, n, c, flags); |
cc9a6c87 MG |
1931 | if (object) { |
1932 | /* | |
d26914d1 MG |
1933 | * Don't check read_mems_allowed_retry() |
1934 | * here - if mems_allowed was updated in | |
1935 | * parallel, that was a harmless race | |
1936 | * between allocation and the cpuset | |
1937 | * update | |
cc9a6c87 | 1938 | */ |
cc9a6c87 MG |
1939 | return object; |
1940 | } | |
c0ff7453 | 1941 | } |
81819f0f | 1942 | } |
d26914d1 | 1943 | } while (read_mems_allowed_retry(cpuset_mems_cookie)); |
6dfd1b65 | 1944 | #endif /* CONFIG_NUMA */ |
81819f0f CL |
1945 | return NULL; |
1946 | } | |
1947 | ||
1948 | /* | |
1949 | * Get a partial page, lock it and return it. | |
1950 | */ | |
497b66f2 | 1951 | static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, |
acd19fd1 | 1952 | struct kmem_cache_cpu *c) |
81819f0f | 1953 | { |
497b66f2 | 1954 | void *object; |
a561ce00 JK |
1955 | int searchnode = node; |
1956 | ||
1957 | if (node == NUMA_NO_NODE) | |
1958 | searchnode = numa_mem_id(); | |
1959 | else if (!node_present_pages(node)) | |
1960 | searchnode = node_to_mem_node(node); | |
81819f0f | 1961 | |
8ba00bb6 | 1962 | object = get_partial_node(s, get_node(s, searchnode), c, flags); |
497b66f2 CL |
1963 | if (object || node != NUMA_NO_NODE) |
1964 | return object; | |
81819f0f | 1965 | |
acd19fd1 | 1966 | return get_any_partial(s, flags, c); |
81819f0f CL |
1967 | } |
1968 | ||
8a5ec0ba CL |
1969 | #ifdef CONFIG_PREEMPT |
1970 | /* | |
1971 | * Calculate the next globally unique transaction for disambiguiation | |
1972 | * during cmpxchg. The transactions start with the cpu number and are then | |
1973 | * incremented by CONFIG_NR_CPUS. | |
1974 | */ | |
1975 | #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) | |
1976 | #else | |
1977 | /* | |
1978 | * No preemption supported therefore also no need to check for | |
1979 | * different cpus. | |
1980 | */ | |
1981 | #define TID_STEP 1 | |
1982 | #endif | |
1983 | ||
1984 | static inline unsigned long next_tid(unsigned long tid) | |
1985 | { | |
1986 | return tid + TID_STEP; | |
1987 | } | |
1988 | ||
1989 | static inline unsigned int tid_to_cpu(unsigned long tid) | |
1990 | { | |
1991 | return tid % TID_STEP; | |
1992 | } | |
1993 | ||
1994 | static inline unsigned long tid_to_event(unsigned long tid) | |
1995 | { | |
1996 | return tid / TID_STEP; | |
1997 | } | |
1998 | ||
1999 | static inline unsigned int init_tid(int cpu) | |
2000 | { | |
2001 | return cpu; | |
2002 | } | |
2003 | ||
2004 | static inline void note_cmpxchg_failure(const char *n, | |
2005 | const struct kmem_cache *s, unsigned long tid) | |
2006 | { | |
2007 | #ifdef SLUB_DEBUG_CMPXCHG | |
2008 | unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | |
2009 | ||
f9f58285 | 2010 | pr_info("%s %s: cmpxchg redo ", n, s->name); |
8a5ec0ba CL |
2011 | |
2012 | #ifdef CONFIG_PREEMPT | |
2013 | if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) | |
f9f58285 | 2014 | pr_warn("due to cpu change %d -> %d\n", |
8a5ec0ba CL |
2015 | tid_to_cpu(tid), tid_to_cpu(actual_tid)); |
2016 | else | |
2017 | #endif | |
2018 | if (tid_to_event(tid) != tid_to_event(actual_tid)) | |
f9f58285 | 2019 | pr_warn("due to cpu running other code. Event %ld->%ld\n", |
8a5ec0ba CL |
2020 | tid_to_event(tid), tid_to_event(actual_tid)); |
2021 | else | |
f9f58285 | 2022 | pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", |
8a5ec0ba CL |
2023 | actual_tid, tid, next_tid(tid)); |
2024 | #endif | |
4fdccdfb | 2025 | stat(s, CMPXCHG_DOUBLE_CPU_FAIL); |
8a5ec0ba CL |
2026 | } |
2027 | ||
788e1aad | 2028 | static void init_kmem_cache_cpus(struct kmem_cache *s) |
8a5ec0ba | 2029 | { |
8a5ec0ba CL |
2030 | int cpu; |
2031 | ||
2032 | for_each_possible_cpu(cpu) | |
2033 | per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); | |
8a5ec0ba | 2034 | } |
2cfb7455 | 2035 | |
81819f0f CL |
2036 | /* |
2037 | * Remove the cpu slab | |
2038 | */ | |
d0e0ac97 | 2039 | static void deactivate_slab(struct kmem_cache *s, struct page *page, |
d4ff6d35 | 2040 | void *freelist, struct kmem_cache_cpu *c) |
81819f0f | 2041 | { |
2cfb7455 | 2042 | enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; |
2cfb7455 CL |
2043 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
2044 | int lock = 0; | |
2045 | enum slab_modes l = M_NONE, m = M_NONE; | |
2cfb7455 | 2046 | void *nextfree; |
136333d1 | 2047 | int tail = DEACTIVATE_TO_HEAD; |
2cfb7455 CL |
2048 | struct page new; |
2049 | struct page old; | |
2050 | ||
2051 | if (page->freelist) { | |
84e554e6 | 2052 | stat(s, DEACTIVATE_REMOTE_FREES); |
136333d1 | 2053 | tail = DEACTIVATE_TO_TAIL; |
2cfb7455 CL |
2054 | } |
2055 | ||
894b8788 | 2056 | /* |
2cfb7455 CL |
2057 | * Stage one: Free all available per cpu objects back |
2058 | * to the page freelist while it is still frozen. Leave the | |
2059 | * last one. | |
2060 | * | |
2061 | * There is no need to take the list->lock because the page | |
2062 | * is still frozen. | |
2063 | */ | |
2064 | while (freelist && (nextfree = get_freepointer(s, freelist))) { | |
2065 | void *prior; | |
2066 | unsigned long counters; | |
2067 | ||
2068 | do { | |
2069 | prior = page->freelist; | |
2070 | counters = page->counters; | |
2071 | set_freepointer(s, freelist, prior); | |
2072 | new.counters = counters; | |
2073 | new.inuse--; | |
a0132ac0 | 2074 | VM_BUG_ON(!new.frozen); |
2cfb7455 | 2075 | |
1d07171c | 2076 | } while (!__cmpxchg_double_slab(s, page, |
2cfb7455 CL |
2077 | prior, counters, |
2078 | freelist, new.counters, | |
2079 | "drain percpu freelist")); | |
2080 | ||
2081 | freelist = nextfree; | |
2082 | } | |
2083 | ||
894b8788 | 2084 | /* |
2cfb7455 CL |
2085 | * Stage two: Ensure that the page is unfrozen while the |
2086 | * list presence reflects the actual number of objects | |
2087 | * during unfreeze. | |
2088 | * | |
2089 | * We setup the list membership and then perform a cmpxchg | |
2090 | * with the count. If there is a mismatch then the page | |
2091 | * is not unfrozen but the page is on the wrong list. | |
2092 | * | |
2093 | * Then we restart the process which may have to remove | |
2094 | * the page from the list that we just put it on again | |
2095 | * because the number of objects in the slab may have | |
2096 | * changed. | |
894b8788 | 2097 | */ |
2cfb7455 | 2098 | redo: |
894b8788 | 2099 | |
2cfb7455 CL |
2100 | old.freelist = page->freelist; |
2101 | old.counters = page->counters; | |
a0132ac0 | 2102 | VM_BUG_ON(!old.frozen); |
7c2e132c | 2103 | |
2cfb7455 CL |
2104 | /* Determine target state of the slab */ |
2105 | new.counters = old.counters; | |
2106 | if (freelist) { | |
2107 | new.inuse--; | |
2108 | set_freepointer(s, freelist, old.freelist); | |
2109 | new.freelist = freelist; | |
2110 | } else | |
2111 | new.freelist = old.freelist; | |
2112 | ||
2113 | new.frozen = 0; | |
2114 | ||
8a5b20ae | 2115 | if (!new.inuse && n->nr_partial >= s->min_partial) |
2cfb7455 CL |
2116 | m = M_FREE; |
2117 | else if (new.freelist) { | |
2118 | m = M_PARTIAL; | |
2119 | if (!lock) { | |
2120 | lock = 1; | |
2121 | /* | |
8bb4e7a2 | 2122 | * Taking the spinlock removes the possibility |
2cfb7455 CL |
2123 | * that acquire_slab() will see a slab page that |
2124 | * is frozen | |
2125 | */ | |
2126 | spin_lock(&n->list_lock); | |
2127 | } | |
2128 | } else { | |
2129 | m = M_FULL; | |
2130 | if (kmem_cache_debug(s) && !lock) { | |
2131 | lock = 1; | |
2132 | /* | |
2133 | * This also ensures that the scanning of full | |
2134 | * slabs from diagnostic functions will not see | |
2135 | * any frozen slabs. | |
2136 | */ | |
2137 | spin_lock(&n->list_lock); | |
2138 | } | |
2139 | } | |
2140 | ||
2141 | if (l != m) { | |
2cfb7455 | 2142 | if (l == M_PARTIAL) |
2cfb7455 | 2143 | remove_partial(n, page); |
2cfb7455 | 2144 | else if (l == M_FULL) |
c65c1877 | 2145 | remove_full(s, n, page); |
2cfb7455 | 2146 | |
88349a28 | 2147 | if (m == M_PARTIAL) |
2cfb7455 | 2148 | add_partial(n, page, tail); |
88349a28 | 2149 | else if (m == M_FULL) |
2cfb7455 | 2150 | add_full(s, n, page); |
2cfb7455 CL |
2151 | } |
2152 | ||
2153 | l = m; | |
1d07171c | 2154 | if (!__cmpxchg_double_slab(s, page, |
2cfb7455 CL |
2155 | old.freelist, old.counters, |
2156 | new.freelist, new.counters, | |
2157 | "unfreezing slab")) | |
2158 | goto redo; | |
2159 | ||
2cfb7455 CL |
2160 | if (lock) |
2161 | spin_unlock(&n->list_lock); | |
2162 | ||
88349a28 WY |
2163 | if (m == M_PARTIAL) |
2164 | stat(s, tail); | |
2165 | else if (m == M_FULL) | |
2166 | stat(s, DEACTIVATE_FULL); | |
2167 | else if (m == M_FREE) { | |
2cfb7455 CL |
2168 | stat(s, DEACTIVATE_EMPTY); |
2169 | discard_slab(s, page); | |
2170 | stat(s, FREE_SLAB); | |
894b8788 | 2171 | } |
d4ff6d35 WY |
2172 | |
2173 | c->page = NULL; | |
2174 | c->freelist = NULL; | |
81819f0f CL |
2175 | } |
2176 | ||
d24ac77f JK |
2177 | /* |
2178 | * Unfreeze all the cpu partial slabs. | |
2179 | * | |
59a09917 CL |
2180 | * This function must be called with interrupts disabled |
2181 | * for the cpu using c (or some other guarantee must be there | |
2182 | * to guarantee no concurrent accesses). | |
d24ac77f | 2183 | */ |
59a09917 CL |
2184 | static void unfreeze_partials(struct kmem_cache *s, |
2185 | struct kmem_cache_cpu *c) | |
49e22585 | 2186 | { |
345c905d | 2187 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
43d77867 | 2188 | struct kmem_cache_node *n = NULL, *n2 = NULL; |
9ada1934 | 2189 | struct page *page, *discard_page = NULL; |
49e22585 CL |
2190 | |
2191 | while ((page = c->partial)) { | |
49e22585 CL |
2192 | struct page new; |
2193 | struct page old; | |
2194 | ||
2195 | c->partial = page->next; | |
43d77867 JK |
2196 | |
2197 | n2 = get_node(s, page_to_nid(page)); | |
2198 | if (n != n2) { | |
2199 | if (n) | |
2200 | spin_unlock(&n->list_lock); | |
2201 | ||
2202 | n = n2; | |
2203 | spin_lock(&n->list_lock); | |
2204 | } | |
49e22585 CL |
2205 | |
2206 | do { | |
2207 | ||
2208 | old.freelist = page->freelist; | |
2209 | old.counters = page->counters; | |
a0132ac0 | 2210 | VM_BUG_ON(!old.frozen); |
49e22585 CL |
2211 | |
2212 | new.counters = old.counters; | |
2213 | new.freelist = old.freelist; | |
2214 | ||
2215 | new.frozen = 0; | |
2216 | ||
d24ac77f | 2217 | } while (!__cmpxchg_double_slab(s, page, |
49e22585 CL |
2218 | old.freelist, old.counters, |
2219 | new.freelist, new.counters, | |
2220 | "unfreezing slab")); | |
2221 | ||
8a5b20ae | 2222 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { |
9ada1934 SL |
2223 | page->next = discard_page; |
2224 | discard_page = page; | |
43d77867 JK |
2225 | } else { |
2226 | add_partial(n, page, DEACTIVATE_TO_TAIL); | |
2227 | stat(s, FREE_ADD_PARTIAL); | |
49e22585 CL |
2228 | } |
2229 | } | |
2230 | ||
2231 | if (n) | |
2232 | spin_unlock(&n->list_lock); | |
9ada1934 SL |
2233 | |
2234 | while (discard_page) { | |
2235 | page = discard_page; | |
2236 | discard_page = discard_page->next; | |
2237 | ||
2238 | stat(s, DEACTIVATE_EMPTY); | |
2239 | discard_slab(s, page); | |
2240 | stat(s, FREE_SLAB); | |
2241 | } | |
6dfd1b65 | 2242 | #endif /* CONFIG_SLUB_CPU_PARTIAL */ |
49e22585 CL |
2243 | } |
2244 | ||
2245 | /* | |
9234bae9 WY |
2246 | * Put a page that was just frozen (in __slab_free|get_partial_node) into a |
2247 | * partial page slot if available. | |
49e22585 CL |
2248 | * |
2249 | * If we did not find a slot then simply move all the partials to the | |
2250 | * per node partial list. | |
2251 | */ | |
633b0764 | 2252 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) |
49e22585 | 2253 | { |
345c905d | 2254 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
49e22585 CL |
2255 | struct page *oldpage; |
2256 | int pages; | |
2257 | int pobjects; | |
2258 | ||
d6e0b7fa | 2259 | preempt_disable(); |
49e22585 CL |
2260 | do { |
2261 | pages = 0; | |
2262 | pobjects = 0; | |
2263 | oldpage = this_cpu_read(s->cpu_slab->partial); | |
2264 | ||
2265 | if (oldpage) { | |
2266 | pobjects = oldpage->pobjects; | |
2267 | pages = oldpage->pages; | |
2268 | if (drain && pobjects > s->cpu_partial) { | |
2269 | unsigned long flags; | |
2270 | /* | |
2271 | * partial array is full. Move the existing | |
2272 | * set to the per node partial list. | |
2273 | */ | |
2274 | local_irq_save(flags); | |
59a09917 | 2275 | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); |
49e22585 | 2276 | local_irq_restore(flags); |
e24fc410 | 2277 | oldpage = NULL; |
49e22585 CL |
2278 | pobjects = 0; |
2279 | pages = 0; | |
8028dcea | 2280 | stat(s, CPU_PARTIAL_DRAIN); |
49e22585 CL |
2281 | } |
2282 | } | |
2283 | ||
2284 | pages++; | |
2285 | pobjects += page->objects - page->inuse; | |
2286 | ||
2287 | page->pages = pages; | |
2288 | page->pobjects = pobjects; | |
2289 | page->next = oldpage; | |
2290 | ||
d0e0ac97 CG |
2291 | } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) |
2292 | != oldpage); | |
d6e0b7fa VD |
2293 | if (unlikely(!s->cpu_partial)) { |
2294 | unsigned long flags; | |
2295 | ||
2296 | local_irq_save(flags); | |
2297 | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); | |
2298 | local_irq_restore(flags); | |
2299 | } | |
2300 | preempt_enable(); | |
6dfd1b65 | 2301 | #endif /* CONFIG_SLUB_CPU_PARTIAL */ |
49e22585 CL |
2302 | } |
2303 | ||
dfb4f096 | 2304 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 2305 | { |
84e554e6 | 2306 | stat(s, CPUSLAB_FLUSH); |
d4ff6d35 | 2307 | deactivate_slab(s, c->page, c->freelist, c); |
c17dda40 CL |
2308 | |
2309 | c->tid = next_tid(c->tid); | |
81819f0f CL |
2310 | } |
2311 | ||
2312 | /* | |
2313 | * Flush cpu slab. | |
6446faa2 | 2314 | * |
81819f0f CL |
2315 | * Called from IPI handler with interrupts disabled. |
2316 | */ | |
0c710013 | 2317 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
81819f0f | 2318 | { |
9dfc6e68 | 2319 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
81819f0f | 2320 | |
1265ef2d WY |
2321 | if (c->page) |
2322 | flush_slab(s, c); | |
49e22585 | 2323 | |
1265ef2d | 2324 | unfreeze_partials(s, c); |
81819f0f CL |
2325 | } |
2326 | ||
2327 | static void flush_cpu_slab(void *d) | |
2328 | { | |
2329 | struct kmem_cache *s = d; | |
81819f0f | 2330 | |
dfb4f096 | 2331 | __flush_cpu_slab(s, smp_processor_id()); |
81819f0f CL |
2332 | } |
2333 | ||
a8364d55 GBY |
2334 | static bool has_cpu_slab(int cpu, void *info) |
2335 | { | |
2336 | struct kmem_cache *s = info; | |
2337 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | |
2338 | ||
a93cf07b | 2339 | return c->page || slub_percpu_partial(c); |
a8364d55 GBY |
2340 | } |
2341 | ||
81819f0f CL |
2342 | static void flush_all(struct kmem_cache *s) |
2343 | { | |
a8364d55 | 2344 | on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); |
81819f0f CL |
2345 | } |
2346 | ||
a96a87bf SAS |
2347 | /* |
2348 | * Use the cpu notifier to insure that the cpu slabs are flushed when | |
2349 | * necessary. | |
2350 | */ | |
2351 | static int slub_cpu_dead(unsigned int cpu) | |
2352 | { | |
2353 | struct kmem_cache *s; | |
2354 | unsigned long flags; | |
2355 | ||
2356 | mutex_lock(&slab_mutex); | |
2357 | list_for_each_entry(s, &slab_caches, list) { | |
2358 | local_irq_save(flags); | |
2359 | __flush_cpu_slab(s, cpu); | |
2360 | local_irq_restore(flags); | |
2361 | } | |
2362 | mutex_unlock(&slab_mutex); | |
2363 | return 0; | |
2364 | } | |
2365 | ||
dfb4f096 CL |
2366 | /* |
2367 | * Check if the objects in a per cpu structure fit numa | |
2368 | * locality expectations. | |
2369 | */ | |
57d437d2 | 2370 | static inline int node_match(struct page *page, int node) |
dfb4f096 CL |
2371 | { |
2372 | #ifdef CONFIG_NUMA | |
6159d0f5 | 2373 | if (node != NUMA_NO_NODE && page_to_nid(page) != node) |
dfb4f096 CL |
2374 | return 0; |
2375 | #endif | |
2376 | return 1; | |
2377 | } | |
2378 | ||
9a02d699 | 2379 | #ifdef CONFIG_SLUB_DEBUG |
781b2ba6 PE |
2380 | static int count_free(struct page *page) |
2381 | { | |
2382 | return page->objects - page->inuse; | |
2383 | } | |
2384 | ||
9a02d699 DR |
2385 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) |
2386 | { | |
2387 | return atomic_long_read(&n->total_objects); | |
2388 | } | |
2389 | #endif /* CONFIG_SLUB_DEBUG */ | |
2390 | ||
2391 | #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) | |
781b2ba6 PE |
2392 | static unsigned long count_partial(struct kmem_cache_node *n, |
2393 | int (*get_count)(struct page *)) | |
2394 | { | |
2395 | unsigned long flags; | |
2396 | unsigned long x = 0; | |
2397 | struct page *page; | |
2398 | ||
2399 | spin_lock_irqsave(&n->list_lock, flags); | |
916ac052 | 2400 | list_for_each_entry(page, &n->partial, slab_list) |
781b2ba6 PE |
2401 | x += get_count(page); |
2402 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2403 | return x; | |
2404 | } | |
9a02d699 | 2405 | #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ |
26c02cf0 | 2406 | |
781b2ba6 PE |
2407 | static noinline void |
2408 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | |
2409 | { | |
9a02d699 DR |
2410 | #ifdef CONFIG_SLUB_DEBUG |
2411 | static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, | |
2412 | DEFAULT_RATELIMIT_BURST); | |
781b2ba6 | 2413 | int node; |
fa45dc25 | 2414 | struct kmem_cache_node *n; |
781b2ba6 | 2415 | |
9a02d699 DR |
2416 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) |
2417 | return; | |
2418 | ||
5b3810e5 VB |
2419 | pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", |
2420 | nid, gfpflags, &gfpflags); | |
19af27af | 2421 | pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", |
f9f58285 FF |
2422 | s->name, s->object_size, s->size, oo_order(s->oo), |
2423 | oo_order(s->min)); | |
781b2ba6 | 2424 | |
3b0efdfa | 2425 | if (oo_order(s->min) > get_order(s->object_size)) |
f9f58285 FF |
2426 | pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", |
2427 | s->name); | |
fa5ec8a1 | 2428 | |
fa45dc25 | 2429 | for_each_kmem_cache_node(s, node, n) { |
781b2ba6 PE |
2430 | unsigned long nr_slabs; |
2431 | unsigned long nr_objs; | |
2432 | unsigned long nr_free; | |
2433 | ||
26c02cf0 AB |
2434 | nr_free = count_partial(n, count_free); |
2435 | nr_slabs = node_nr_slabs(n); | |
2436 | nr_objs = node_nr_objs(n); | |
781b2ba6 | 2437 | |
f9f58285 | 2438 | pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", |
781b2ba6 PE |
2439 | node, nr_slabs, nr_objs, nr_free); |
2440 | } | |
9a02d699 | 2441 | #endif |
781b2ba6 PE |
2442 | } |
2443 | ||
497b66f2 CL |
2444 | static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, |
2445 | int node, struct kmem_cache_cpu **pc) | |
2446 | { | |
6faa6833 | 2447 | void *freelist; |
188fd063 CL |
2448 | struct kmem_cache_cpu *c = *pc; |
2449 | struct page *page; | |
497b66f2 | 2450 | |
128227e7 MW |
2451 | WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); |
2452 | ||
188fd063 | 2453 | freelist = get_partial(s, flags, node, c); |
497b66f2 | 2454 | |
188fd063 CL |
2455 | if (freelist) |
2456 | return freelist; | |
2457 | ||
2458 | page = new_slab(s, flags, node); | |
497b66f2 | 2459 | if (page) { |
7c8e0181 | 2460 | c = raw_cpu_ptr(s->cpu_slab); |
497b66f2 CL |
2461 | if (c->page) |
2462 | flush_slab(s, c); | |
2463 | ||
2464 | /* | |
2465 | * No other reference to the page yet so we can | |
2466 | * muck around with it freely without cmpxchg | |
2467 | */ | |
6faa6833 | 2468 | freelist = page->freelist; |
497b66f2 CL |
2469 | page->freelist = NULL; |
2470 | ||
2471 | stat(s, ALLOC_SLAB); | |
497b66f2 CL |
2472 | c->page = page; |
2473 | *pc = c; | |
edde82b6 | 2474 | } |
497b66f2 | 2475 | |
6faa6833 | 2476 | return freelist; |
497b66f2 CL |
2477 | } |
2478 | ||
072bb0aa MG |
2479 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) |
2480 | { | |
2481 | if (unlikely(PageSlabPfmemalloc(page))) | |
2482 | return gfp_pfmemalloc_allowed(gfpflags); | |
2483 | ||
2484 | return true; | |
2485 | } | |
2486 | ||
213eeb9f | 2487 | /* |
d0e0ac97 CG |
2488 | * Check the page->freelist of a page and either transfer the freelist to the |
2489 | * per cpu freelist or deactivate the page. | |
213eeb9f CL |
2490 | * |
2491 | * The page is still frozen if the return value is not NULL. | |
2492 | * | |
2493 | * If this function returns NULL then the page has been unfrozen. | |
d24ac77f JK |
2494 | * |
2495 | * This function must be called with interrupt disabled. | |
213eeb9f CL |
2496 | */ |
2497 | static inline void *get_freelist(struct kmem_cache *s, struct page *page) | |
2498 | { | |
2499 | struct page new; | |
2500 | unsigned long counters; | |
2501 | void *freelist; | |
2502 | ||
2503 | do { | |
2504 | freelist = page->freelist; | |
2505 | counters = page->counters; | |
6faa6833 | 2506 | |
213eeb9f | 2507 | new.counters = counters; |
a0132ac0 | 2508 | VM_BUG_ON(!new.frozen); |
213eeb9f CL |
2509 | |
2510 | new.inuse = page->objects; | |
2511 | new.frozen = freelist != NULL; | |
2512 | ||
d24ac77f | 2513 | } while (!__cmpxchg_double_slab(s, page, |
213eeb9f CL |
2514 | freelist, counters, |
2515 | NULL, new.counters, | |
2516 | "get_freelist")); | |
2517 | ||
2518 | return freelist; | |
2519 | } | |
2520 | ||
81819f0f | 2521 | /* |
894b8788 CL |
2522 | * Slow path. The lockless freelist is empty or we need to perform |
2523 | * debugging duties. | |
2524 | * | |
894b8788 CL |
2525 | * Processing is still very fast if new objects have been freed to the |
2526 | * regular freelist. In that case we simply take over the regular freelist | |
2527 | * as the lockless freelist and zap the regular freelist. | |
81819f0f | 2528 | * |
894b8788 CL |
2529 | * If that is not working then we fall back to the partial lists. We take the |
2530 | * first element of the freelist as the object to allocate now and move the | |
2531 | * rest of the freelist to the lockless freelist. | |
81819f0f | 2532 | * |
894b8788 | 2533 | * And if we were unable to get a new slab from the partial slab lists then |
6446faa2 CL |
2534 | * we need to allocate a new slab. This is the slowest path since it involves |
2535 | * a call to the page allocator and the setup of a new slab. | |
a380a3c7 CL |
2536 | * |
2537 | * Version of __slab_alloc to use when we know that interrupts are | |
2538 | * already disabled (which is the case for bulk allocation). | |
81819f0f | 2539 | */ |
a380a3c7 | 2540 | static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
ce71e27c | 2541 | unsigned long addr, struct kmem_cache_cpu *c) |
81819f0f | 2542 | { |
6faa6833 | 2543 | void *freelist; |
f6e7def7 | 2544 | struct page *page; |
81819f0f | 2545 | |
f6e7def7 CL |
2546 | page = c->page; |
2547 | if (!page) | |
81819f0f | 2548 | goto new_slab; |
49e22585 | 2549 | redo: |
6faa6833 | 2550 | |
57d437d2 | 2551 | if (unlikely(!node_match(page, node))) { |
a561ce00 JK |
2552 | int searchnode = node; |
2553 | ||
2554 | if (node != NUMA_NO_NODE && !node_present_pages(node)) | |
2555 | searchnode = node_to_mem_node(node); | |
2556 | ||
2557 | if (unlikely(!node_match(page, searchnode))) { | |
2558 | stat(s, ALLOC_NODE_MISMATCH); | |
d4ff6d35 | 2559 | deactivate_slab(s, page, c->freelist, c); |
a561ce00 JK |
2560 | goto new_slab; |
2561 | } | |
fc59c053 | 2562 | } |
6446faa2 | 2563 | |
072bb0aa MG |
2564 | /* |
2565 | * By rights, we should be searching for a slab page that was | |
2566 | * PFMEMALLOC but right now, we are losing the pfmemalloc | |
2567 | * information when the page leaves the per-cpu allocator | |
2568 | */ | |
2569 | if (unlikely(!pfmemalloc_match(page, gfpflags))) { | |
d4ff6d35 | 2570 | deactivate_slab(s, page, c->freelist, c); |
072bb0aa MG |
2571 | goto new_slab; |
2572 | } | |
2573 | ||
73736e03 | 2574 | /* must check again c->freelist in case of cpu migration or IRQ */ |
6faa6833 CL |
2575 | freelist = c->freelist; |
2576 | if (freelist) | |
73736e03 | 2577 | goto load_freelist; |
03e404af | 2578 | |
f6e7def7 | 2579 | freelist = get_freelist(s, page); |
6446faa2 | 2580 | |
6faa6833 | 2581 | if (!freelist) { |
03e404af CL |
2582 | c->page = NULL; |
2583 | stat(s, DEACTIVATE_BYPASS); | |
fc59c053 | 2584 | goto new_slab; |
03e404af | 2585 | } |
6446faa2 | 2586 | |
84e554e6 | 2587 | stat(s, ALLOC_REFILL); |
6446faa2 | 2588 | |
894b8788 | 2589 | load_freelist: |
507effea CL |
2590 | /* |
2591 | * freelist is pointing to the list of objects to be used. | |
2592 | * page is pointing to the page from which the objects are obtained. | |
2593 | * That page must be frozen for per cpu allocations to work. | |
2594 | */ | |
a0132ac0 | 2595 | VM_BUG_ON(!c->page->frozen); |
6faa6833 | 2596 | c->freelist = get_freepointer(s, freelist); |
8a5ec0ba | 2597 | c->tid = next_tid(c->tid); |
6faa6833 | 2598 | return freelist; |
81819f0f | 2599 | |
81819f0f | 2600 | new_slab: |
2cfb7455 | 2601 | |
a93cf07b WY |
2602 | if (slub_percpu_partial(c)) { |
2603 | page = c->page = slub_percpu_partial(c); | |
2604 | slub_set_percpu_partial(c, page); | |
49e22585 | 2605 | stat(s, CPU_PARTIAL_ALLOC); |
49e22585 | 2606 | goto redo; |
81819f0f CL |
2607 | } |
2608 | ||
188fd063 | 2609 | freelist = new_slab_objects(s, gfpflags, node, &c); |
01ad8a7b | 2610 | |
f4697436 | 2611 | if (unlikely(!freelist)) { |
9a02d699 | 2612 | slab_out_of_memory(s, gfpflags, node); |
f4697436 | 2613 | return NULL; |
81819f0f | 2614 | } |
2cfb7455 | 2615 | |
f6e7def7 | 2616 | page = c->page; |
5091b74a | 2617 | if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) |
4b6f0750 | 2618 | goto load_freelist; |
2cfb7455 | 2619 | |
497b66f2 | 2620 | /* Only entered in the debug case */ |
d0e0ac97 CG |
2621 | if (kmem_cache_debug(s) && |
2622 | !alloc_debug_processing(s, page, freelist, addr)) | |
497b66f2 | 2623 | goto new_slab; /* Slab failed checks. Next slab needed */ |
894b8788 | 2624 | |
d4ff6d35 | 2625 | deactivate_slab(s, page, get_freepointer(s, freelist), c); |
6faa6833 | 2626 | return freelist; |
894b8788 CL |
2627 | } |
2628 | ||
a380a3c7 CL |
2629 | /* |
2630 | * Another one that disabled interrupt and compensates for possible | |
2631 | * cpu changes by refetching the per cpu area pointer. | |
2632 | */ | |
2633 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | |
2634 | unsigned long addr, struct kmem_cache_cpu *c) | |
2635 | { | |
2636 | void *p; | |
2637 | unsigned long flags; | |
2638 | ||
2639 | local_irq_save(flags); | |
2640 | #ifdef CONFIG_PREEMPT | |
2641 | /* | |
2642 | * We may have been preempted and rescheduled on a different | |
2643 | * cpu before disabling interrupts. Need to reload cpu area | |
2644 | * pointer. | |
2645 | */ | |
2646 | c = this_cpu_ptr(s->cpu_slab); | |
2647 | #endif | |
2648 | ||
2649 | p = ___slab_alloc(s, gfpflags, node, addr, c); | |
2650 | local_irq_restore(flags); | |
2651 | return p; | |
2652 | } | |
2653 | ||
894b8788 CL |
2654 | /* |
2655 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
2656 | * have the fastpath folded into their functions. So no function call | |
2657 | * overhead for requests that can be satisfied on the fastpath. | |
2658 | * | |
2659 | * The fastpath works by first checking if the lockless freelist can be used. | |
2660 | * If not then __slab_alloc is called for slow processing. | |
2661 | * | |
2662 | * Otherwise we can simply pick the next object from the lockless free list. | |
2663 | */ | |
2b847c3c | 2664 | static __always_inline void *slab_alloc_node(struct kmem_cache *s, |
ce71e27c | 2665 | gfp_t gfpflags, int node, unsigned long addr) |
894b8788 | 2666 | { |
03ec0ed5 | 2667 | void *object; |
dfb4f096 | 2668 | struct kmem_cache_cpu *c; |
57d437d2 | 2669 | struct page *page; |
8a5ec0ba | 2670 | unsigned long tid; |
1f84260c | 2671 | |
8135be5a VD |
2672 | s = slab_pre_alloc_hook(s, gfpflags); |
2673 | if (!s) | |
773ff60e | 2674 | return NULL; |
8a5ec0ba | 2675 | redo: |
8a5ec0ba CL |
2676 | /* |
2677 | * Must read kmem_cache cpu data via this cpu ptr. Preemption is | |
2678 | * enabled. We may switch back and forth between cpus while | |
2679 | * reading from one cpu area. That does not matter as long | |
2680 | * as we end up on the original cpu again when doing the cmpxchg. | |
7cccd80b | 2681 | * |
9aabf810 JK |
2682 | * We should guarantee that tid and kmem_cache are retrieved on |
2683 | * the same cpu. It could be different if CONFIG_PREEMPT so we need | |
2684 | * to check if it is matched or not. | |
8a5ec0ba | 2685 | */ |
9aabf810 JK |
2686 | do { |
2687 | tid = this_cpu_read(s->cpu_slab->tid); | |
2688 | c = raw_cpu_ptr(s->cpu_slab); | |
859b7a0e MR |
2689 | } while (IS_ENABLED(CONFIG_PREEMPT) && |
2690 | unlikely(tid != READ_ONCE(c->tid))); | |
9aabf810 JK |
2691 | |
2692 | /* | |
2693 | * Irqless object alloc/free algorithm used here depends on sequence | |
2694 | * of fetching cpu_slab's data. tid should be fetched before anything | |
2695 | * on c to guarantee that object and page associated with previous tid | |
2696 | * won't be used with current tid. If we fetch tid first, object and | |
2697 | * page could be one associated with next tid and our alloc/free | |
2698 | * request will be failed. In this case, we will retry. So, no problem. | |
2699 | */ | |
2700 | barrier(); | |
8a5ec0ba | 2701 | |
8a5ec0ba CL |
2702 | /* |
2703 | * The transaction ids are globally unique per cpu and per operation on | |
2704 | * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | |
2705 | * occurs on the right processor and that there was no operation on the | |
2706 | * linked list in between. | |
2707 | */ | |
8a5ec0ba | 2708 | |
9dfc6e68 | 2709 | object = c->freelist; |
57d437d2 | 2710 | page = c->page; |
8eae1492 | 2711 | if (unlikely(!object || !node_match(page, node))) { |
dfb4f096 | 2712 | object = __slab_alloc(s, gfpflags, node, addr, c); |
8eae1492 DH |
2713 | stat(s, ALLOC_SLOWPATH); |
2714 | } else { | |
0ad9500e ED |
2715 | void *next_object = get_freepointer_safe(s, object); |
2716 | ||
8a5ec0ba | 2717 | /* |
25985edc | 2718 | * The cmpxchg will only match if there was no additional |
8a5ec0ba CL |
2719 | * operation and if we are on the right processor. |
2720 | * | |
d0e0ac97 CG |
2721 | * The cmpxchg does the following atomically (without lock |
2722 | * semantics!) | |
8a5ec0ba CL |
2723 | * 1. Relocate first pointer to the current per cpu area. |
2724 | * 2. Verify that tid and freelist have not been changed | |
2725 | * 3. If they were not changed replace tid and freelist | |
2726 | * | |
d0e0ac97 CG |
2727 | * Since this is without lock semantics the protection is only |
2728 | * against code executing on this cpu *not* from access by | |
2729 | * other cpus. | |
8a5ec0ba | 2730 | */ |
933393f5 | 2731 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba CL |
2732 | s->cpu_slab->freelist, s->cpu_slab->tid, |
2733 | object, tid, | |
0ad9500e | 2734 | next_object, next_tid(tid)))) { |
8a5ec0ba CL |
2735 | |
2736 | note_cmpxchg_failure("slab_alloc", s, tid); | |
2737 | goto redo; | |
2738 | } | |
0ad9500e | 2739 | prefetch_freepointer(s, next_object); |
84e554e6 | 2740 | stat(s, ALLOC_FASTPATH); |
894b8788 | 2741 | } |
8a5ec0ba | 2742 | |
74e2134f | 2743 | if (unlikely(gfpflags & __GFP_ZERO) && object) |
3b0efdfa | 2744 | memset(object, 0, s->object_size); |
d07dbea4 | 2745 | |
03ec0ed5 | 2746 | slab_post_alloc_hook(s, gfpflags, 1, &object); |
5a896d9e | 2747 | |
894b8788 | 2748 | return object; |
81819f0f CL |
2749 | } |
2750 | ||
2b847c3c EG |
2751 | static __always_inline void *slab_alloc(struct kmem_cache *s, |
2752 | gfp_t gfpflags, unsigned long addr) | |
2753 | { | |
2754 | return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); | |
2755 | } | |
2756 | ||
81819f0f CL |
2757 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) |
2758 | { | |
2b847c3c | 2759 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
5b882be4 | 2760 | |
d0e0ac97 CG |
2761 | trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, |
2762 | s->size, gfpflags); | |
5b882be4 EGM |
2763 | |
2764 | return ret; | |
81819f0f CL |
2765 | } |
2766 | EXPORT_SYMBOL(kmem_cache_alloc); | |
2767 | ||
0f24f128 | 2768 | #ifdef CONFIG_TRACING |
4a92379b RK |
2769 | void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) |
2770 | { | |
2b847c3c | 2771 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
4a92379b | 2772 | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); |
0116523c | 2773 | ret = kasan_kmalloc(s, ret, size, gfpflags); |
4a92379b RK |
2774 | return ret; |
2775 | } | |
2776 | EXPORT_SYMBOL(kmem_cache_alloc_trace); | |
5b882be4 EGM |
2777 | #endif |
2778 | ||
81819f0f CL |
2779 | #ifdef CONFIG_NUMA |
2780 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | |
2781 | { | |
2b847c3c | 2782 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
5b882be4 | 2783 | |
ca2b84cb | 2784 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
3b0efdfa | 2785 | s->object_size, s->size, gfpflags, node); |
5b882be4 EGM |
2786 | |
2787 | return ret; | |
81819f0f CL |
2788 | } |
2789 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
81819f0f | 2790 | |
0f24f128 | 2791 | #ifdef CONFIG_TRACING |
4a92379b | 2792 | void *kmem_cache_alloc_node_trace(struct kmem_cache *s, |
5b882be4 | 2793 | gfp_t gfpflags, |
4a92379b | 2794 | int node, size_t size) |
5b882be4 | 2795 | { |
2b847c3c | 2796 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
4a92379b RK |
2797 | |
2798 | trace_kmalloc_node(_RET_IP_, ret, | |
2799 | size, s->size, gfpflags, node); | |
0316bec2 | 2800 | |
0116523c | 2801 | ret = kasan_kmalloc(s, ret, size, gfpflags); |
4a92379b | 2802 | return ret; |
5b882be4 | 2803 | } |
4a92379b | 2804 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
5b882be4 | 2805 | #endif |
6dfd1b65 | 2806 | #endif /* CONFIG_NUMA */ |
5b882be4 | 2807 | |
81819f0f | 2808 | /* |
94e4d712 | 2809 | * Slow path handling. This may still be called frequently since objects |
894b8788 | 2810 | * have a longer lifetime than the cpu slabs in most processing loads. |
81819f0f | 2811 | * |
894b8788 CL |
2812 | * So we still attempt to reduce cache line usage. Just take the slab |
2813 | * lock and free the item. If there is no additional partial page | |
2814 | * handling required then we can return immediately. | |
81819f0f | 2815 | */ |
894b8788 | 2816 | static void __slab_free(struct kmem_cache *s, struct page *page, |
81084651 JDB |
2817 | void *head, void *tail, int cnt, |
2818 | unsigned long addr) | |
2819 | ||
81819f0f CL |
2820 | { |
2821 | void *prior; | |
2cfb7455 | 2822 | int was_frozen; |
2cfb7455 CL |
2823 | struct page new; |
2824 | unsigned long counters; | |
2825 | struct kmem_cache_node *n = NULL; | |
61728d1e | 2826 | unsigned long uninitialized_var(flags); |
81819f0f | 2827 | |
8a5ec0ba | 2828 | stat(s, FREE_SLOWPATH); |
81819f0f | 2829 | |
19c7ff9e | 2830 | if (kmem_cache_debug(s) && |
282acb43 | 2831 | !free_debug_processing(s, page, head, tail, cnt, addr)) |
80f08c19 | 2832 | return; |
6446faa2 | 2833 | |
2cfb7455 | 2834 | do { |
837d678d JK |
2835 | if (unlikely(n)) { |
2836 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2837 | n = NULL; | |
2838 | } | |
2cfb7455 CL |
2839 | prior = page->freelist; |
2840 | counters = page->counters; | |
81084651 | 2841 | set_freepointer(s, tail, prior); |
2cfb7455 CL |
2842 | new.counters = counters; |
2843 | was_frozen = new.frozen; | |
81084651 | 2844 | new.inuse -= cnt; |
837d678d | 2845 | if ((!new.inuse || !prior) && !was_frozen) { |
49e22585 | 2846 | |
c65c1877 | 2847 | if (kmem_cache_has_cpu_partial(s) && !prior) { |
49e22585 CL |
2848 | |
2849 | /* | |
d0e0ac97 CG |
2850 | * Slab was on no list before and will be |
2851 | * partially empty | |
2852 | * We can defer the list move and instead | |
2853 | * freeze it. | |
49e22585 CL |
2854 | */ |
2855 | new.frozen = 1; | |
2856 | ||
c65c1877 | 2857 | } else { /* Needs to be taken off a list */ |
49e22585 | 2858 | |
b455def2 | 2859 | n = get_node(s, page_to_nid(page)); |
49e22585 CL |
2860 | /* |
2861 | * Speculatively acquire the list_lock. | |
2862 | * If the cmpxchg does not succeed then we may | |
2863 | * drop the list_lock without any processing. | |
2864 | * | |
2865 | * Otherwise the list_lock will synchronize with | |
2866 | * other processors updating the list of slabs. | |
2867 | */ | |
2868 | spin_lock_irqsave(&n->list_lock, flags); | |
2869 | ||
2870 | } | |
2cfb7455 | 2871 | } |
81819f0f | 2872 | |
2cfb7455 CL |
2873 | } while (!cmpxchg_double_slab(s, page, |
2874 | prior, counters, | |
81084651 | 2875 | head, new.counters, |
2cfb7455 | 2876 | "__slab_free")); |
81819f0f | 2877 | |
2cfb7455 | 2878 | if (likely(!n)) { |
49e22585 CL |
2879 | |
2880 | /* | |
2881 | * If we just froze the page then put it onto the | |
2882 | * per cpu partial list. | |
2883 | */ | |
8028dcea | 2884 | if (new.frozen && !was_frozen) { |
49e22585 | 2885 | put_cpu_partial(s, page, 1); |
8028dcea AS |
2886 | stat(s, CPU_PARTIAL_FREE); |
2887 | } | |
49e22585 | 2888 | /* |
2cfb7455 CL |
2889 | * The list lock was not taken therefore no list |
2890 | * activity can be necessary. | |
2891 | */ | |
b455def2 L |
2892 | if (was_frozen) |
2893 | stat(s, FREE_FROZEN); | |
2894 | return; | |
2895 | } | |
81819f0f | 2896 | |
8a5b20ae | 2897 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) |
837d678d JK |
2898 | goto slab_empty; |
2899 | ||
81819f0f | 2900 | /* |
837d678d JK |
2901 | * Objects left in the slab. If it was not on the partial list before |
2902 | * then add it. | |
81819f0f | 2903 | */ |
345c905d | 2904 | if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { |
a4d3f891 | 2905 | remove_full(s, n, page); |
837d678d JK |
2906 | add_partial(n, page, DEACTIVATE_TO_TAIL); |
2907 | stat(s, FREE_ADD_PARTIAL); | |
8ff12cfc | 2908 | } |
80f08c19 | 2909 | spin_unlock_irqrestore(&n->list_lock, flags); |
81819f0f CL |
2910 | return; |
2911 | ||
2912 | slab_empty: | |
a973e9dd | 2913 | if (prior) { |
81819f0f | 2914 | /* |
6fbabb20 | 2915 | * Slab on the partial list. |
81819f0f | 2916 | */ |
5cc6eee8 | 2917 | remove_partial(n, page); |
84e554e6 | 2918 | stat(s, FREE_REMOVE_PARTIAL); |
c65c1877 | 2919 | } else { |
6fbabb20 | 2920 | /* Slab must be on the full list */ |
c65c1877 PZ |
2921 | remove_full(s, n, page); |
2922 | } | |
2cfb7455 | 2923 | |
80f08c19 | 2924 | spin_unlock_irqrestore(&n->list_lock, flags); |
84e554e6 | 2925 | stat(s, FREE_SLAB); |
81819f0f | 2926 | discard_slab(s, page); |
81819f0f CL |
2927 | } |
2928 | ||
894b8788 CL |
2929 | /* |
2930 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
2931 | * can perform fastpath freeing without additional function calls. | |
2932 | * | |
2933 | * The fastpath is only possible if we are freeing to the current cpu slab | |
2934 | * of this processor. This typically the case if we have just allocated | |
2935 | * the item before. | |
2936 | * | |
2937 | * If fastpath is not possible then fall back to __slab_free where we deal | |
2938 | * with all sorts of special processing. | |
81084651 JDB |
2939 | * |
2940 | * Bulk free of a freelist with several objects (all pointing to the | |
2941 | * same page) possible by specifying head and tail ptr, plus objects | |
2942 | * count (cnt). Bulk free indicated by tail pointer being set. | |
894b8788 | 2943 | */ |
80a9201a AP |
2944 | static __always_inline void do_slab_free(struct kmem_cache *s, |
2945 | struct page *page, void *head, void *tail, | |
2946 | int cnt, unsigned long addr) | |
894b8788 | 2947 | { |
81084651 | 2948 | void *tail_obj = tail ? : head; |
dfb4f096 | 2949 | struct kmem_cache_cpu *c; |
8a5ec0ba | 2950 | unsigned long tid; |
8a5ec0ba CL |
2951 | redo: |
2952 | /* | |
2953 | * Determine the currently cpus per cpu slab. | |
2954 | * The cpu may change afterward. However that does not matter since | |
2955 | * data is retrieved via this pointer. If we are on the same cpu | |
2ae44005 | 2956 | * during the cmpxchg then the free will succeed. |
8a5ec0ba | 2957 | */ |
9aabf810 JK |
2958 | do { |
2959 | tid = this_cpu_read(s->cpu_slab->tid); | |
2960 | c = raw_cpu_ptr(s->cpu_slab); | |
859b7a0e MR |
2961 | } while (IS_ENABLED(CONFIG_PREEMPT) && |
2962 | unlikely(tid != READ_ONCE(c->tid))); | |
c016b0bd | 2963 | |
9aabf810 JK |
2964 | /* Same with comment on barrier() in slab_alloc_node() */ |
2965 | barrier(); | |
c016b0bd | 2966 | |
442b06bc | 2967 | if (likely(page == c->page)) { |
81084651 | 2968 | set_freepointer(s, tail_obj, c->freelist); |
8a5ec0ba | 2969 | |
933393f5 | 2970 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba CL |
2971 | s->cpu_slab->freelist, s->cpu_slab->tid, |
2972 | c->freelist, tid, | |
81084651 | 2973 | head, next_tid(tid)))) { |
8a5ec0ba CL |
2974 | |
2975 | note_cmpxchg_failure("slab_free", s, tid); | |
2976 | goto redo; | |
2977 | } | |
84e554e6 | 2978 | stat(s, FREE_FASTPATH); |
894b8788 | 2979 | } else |
81084651 | 2980 | __slab_free(s, page, head, tail_obj, cnt, addr); |
894b8788 | 2981 | |
894b8788 CL |
2982 | } |
2983 | ||
80a9201a AP |
2984 | static __always_inline void slab_free(struct kmem_cache *s, struct page *page, |
2985 | void *head, void *tail, int cnt, | |
2986 | unsigned long addr) | |
2987 | { | |
80a9201a | 2988 | /* |
c3895391 AK |
2989 | * With KASAN enabled slab_free_freelist_hook modifies the freelist |
2990 | * to remove objects, whose reuse must be delayed. | |
80a9201a | 2991 | */ |
c3895391 AK |
2992 | if (slab_free_freelist_hook(s, &head, &tail)) |
2993 | do_slab_free(s, page, head, tail, cnt, addr); | |
80a9201a AP |
2994 | } |
2995 | ||
2bd926b4 | 2996 | #ifdef CONFIG_KASAN_GENERIC |
80a9201a AP |
2997 | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) |
2998 | { | |
2999 | do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); | |
3000 | } | |
3001 | #endif | |
3002 | ||
81819f0f CL |
3003 | void kmem_cache_free(struct kmem_cache *s, void *x) |
3004 | { | |
b9ce5ef4 GC |
3005 | s = cache_from_obj(s, x); |
3006 | if (!s) | |
79576102 | 3007 | return; |
81084651 | 3008 | slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); |
ca2b84cb | 3009 | trace_kmem_cache_free(_RET_IP_, x); |
81819f0f CL |
3010 | } |
3011 | EXPORT_SYMBOL(kmem_cache_free); | |
3012 | ||
d0ecd894 | 3013 | struct detached_freelist { |
fbd02630 | 3014 | struct page *page; |
d0ecd894 JDB |
3015 | void *tail; |
3016 | void *freelist; | |
3017 | int cnt; | |
376bf125 | 3018 | struct kmem_cache *s; |
d0ecd894 | 3019 | }; |
fbd02630 | 3020 | |
d0ecd894 JDB |
3021 | /* |
3022 | * This function progressively scans the array with free objects (with | |
3023 | * a limited look ahead) and extract objects belonging to the same | |
3024 | * page. It builds a detached freelist directly within the given | |
3025 | * page/objects. This can happen without any need for | |
3026 | * synchronization, because the objects are owned by running process. | |
3027 | * The freelist is build up as a single linked list in the objects. | |
3028 | * The idea is, that this detached freelist can then be bulk | |
3029 | * transferred to the real freelist(s), but only requiring a single | |
3030 | * synchronization primitive. Look ahead in the array is limited due | |
3031 | * to performance reasons. | |
3032 | */ | |
376bf125 JDB |
3033 | static inline |
3034 | int build_detached_freelist(struct kmem_cache *s, size_t size, | |
3035 | void **p, struct detached_freelist *df) | |
d0ecd894 JDB |
3036 | { |
3037 | size_t first_skipped_index = 0; | |
3038 | int lookahead = 3; | |
3039 | void *object; | |
ca257195 | 3040 | struct page *page; |
fbd02630 | 3041 | |
d0ecd894 JDB |
3042 | /* Always re-init detached_freelist */ |
3043 | df->page = NULL; | |
fbd02630 | 3044 | |
d0ecd894 JDB |
3045 | do { |
3046 | object = p[--size]; | |
ca257195 | 3047 | /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ |
d0ecd894 | 3048 | } while (!object && size); |
3eed034d | 3049 | |
d0ecd894 JDB |
3050 | if (!object) |
3051 | return 0; | |
fbd02630 | 3052 | |
ca257195 JDB |
3053 | page = virt_to_head_page(object); |
3054 | if (!s) { | |
3055 | /* Handle kalloc'ed objects */ | |
3056 | if (unlikely(!PageSlab(page))) { | |
3057 | BUG_ON(!PageCompound(page)); | |
3058 | kfree_hook(object); | |
4949148a | 3059 | __free_pages(page, compound_order(page)); |
ca257195 JDB |
3060 | p[size] = NULL; /* mark object processed */ |
3061 | return size; | |
3062 | } | |
3063 | /* Derive kmem_cache from object */ | |
3064 | df->s = page->slab_cache; | |
3065 | } else { | |
3066 | df->s = cache_from_obj(s, object); /* Support for memcg */ | |
3067 | } | |
376bf125 | 3068 | |
d0ecd894 | 3069 | /* Start new detached freelist */ |
ca257195 | 3070 | df->page = page; |
376bf125 | 3071 | set_freepointer(df->s, object, NULL); |
d0ecd894 JDB |
3072 | df->tail = object; |
3073 | df->freelist = object; | |
3074 | p[size] = NULL; /* mark object processed */ | |
3075 | df->cnt = 1; | |
3076 | ||
3077 | while (size) { | |
3078 | object = p[--size]; | |
3079 | if (!object) | |
3080 | continue; /* Skip processed objects */ | |
3081 | ||
3082 | /* df->page is always set at this point */ | |
3083 | if (df->page == virt_to_head_page(object)) { | |
3084 | /* Opportunity build freelist */ | |
376bf125 | 3085 | set_freepointer(df->s, object, df->freelist); |
d0ecd894 JDB |
3086 | df->freelist = object; |
3087 | df->cnt++; | |
3088 | p[size] = NULL; /* mark object processed */ | |
3089 | ||
3090 | continue; | |
fbd02630 | 3091 | } |
d0ecd894 JDB |
3092 | |
3093 | /* Limit look ahead search */ | |
3094 | if (!--lookahead) | |
3095 | break; | |
3096 | ||
3097 | if (!first_skipped_index) | |
3098 | first_skipped_index = size + 1; | |
fbd02630 | 3099 | } |
d0ecd894 JDB |
3100 | |
3101 | return first_skipped_index; | |
3102 | } | |
3103 | ||
d0ecd894 | 3104 | /* Note that interrupts must be enabled when calling this function. */ |
376bf125 | 3105 | void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) |
d0ecd894 JDB |
3106 | { |
3107 | if (WARN_ON(!size)) | |
3108 | return; | |
3109 | ||
3110 | do { | |
3111 | struct detached_freelist df; | |
3112 | ||
3113 | size = build_detached_freelist(s, size, p, &df); | |
84582c8a | 3114 | if (!df.page) |
d0ecd894 JDB |
3115 | continue; |
3116 | ||
376bf125 | 3117 | slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); |
d0ecd894 | 3118 | } while (likely(size)); |
484748f0 CL |
3119 | } |
3120 | EXPORT_SYMBOL(kmem_cache_free_bulk); | |
3121 | ||
994eb764 | 3122 | /* Note that interrupts must be enabled when calling this function. */ |
865762a8 JDB |
3123 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, |
3124 | void **p) | |
484748f0 | 3125 | { |
994eb764 JDB |
3126 | struct kmem_cache_cpu *c; |
3127 | int i; | |
3128 | ||
03ec0ed5 JDB |
3129 | /* memcg and kmem_cache debug support */ |
3130 | s = slab_pre_alloc_hook(s, flags); | |
3131 | if (unlikely(!s)) | |
3132 | return false; | |
994eb764 JDB |
3133 | /* |
3134 | * Drain objects in the per cpu slab, while disabling local | |
3135 | * IRQs, which protects against PREEMPT and interrupts | |
3136 | * handlers invoking normal fastpath. | |
3137 | */ | |
3138 | local_irq_disable(); | |
3139 | c = this_cpu_ptr(s->cpu_slab); | |
3140 | ||
3141 | for (i = 0; i < size; i++) { | |
3142 | void *object = c->freelist; | |
3143 | ||
ebe909e0 | 3144 | if (unlikely(!object)) { |
ebe909e0 JDB |
3145 | /* |
3146 | * Invoking slow path likely have side-effect | |
3147 | * of re-populating per CPU c->freelist | |
3148 | */ | |
87098373 | 3149 | p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, |
ebe909e0 | 3150 | _RET_IP_, c); |
87098373 CL |
3151 | if (unlikely(!p[i])) |
3152 | goto error; | |
3153 | ||
ebe909e0 JDB |
3154 | c = this_cpu_ptr(s->cpu_slab); |
3155 | continue; /* goto for-loop */ | |
3156 | } | |
994eb764 JDB |
3157 | c->freelist = get_freepointer(s, object); |
3158 | p[i] = object; | |
3159 | } | |
3160 | c->tid = next_tid(c->tid); | |
3161 | local_irq_enable(); | |
3162 | ||
3163 | /* Clear memory outside IRQ disabled fastpath loop */ | |
3164 | if (unlikely(flags & __GFP_ZERO)) { | |
3165 | int j; | |
3166 | ||
3167 | for (j = 0; j < i; j++) | |
3168 | memset(p[j], 0, s->object_size); | |
3169 | } | |
3170 | ||
03ec0ed5 JDB |
3171 | /* memcg and kmem_cache debug support */ |
3172 | slab_post_alloc_hook(s, flags, size, p); | |
865762a8 | 3173 | return i; |
87098373 | 3174 | error: |
87098373 | 3175 | local_irq_enable(); |
03ec0ed5 JDB |
3176 | slab_post_alloc_hook(s, flags, i, p); |
3177 | __kmem_cache_free_bulk(s, i, p); | |
865762a8 | 3178 | return 0; |
484748f0 CL |
3179 | } |
3180 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | |
3181 | ||
3182 | ||
81819f0f | 3183 | /* |
672bba3a CL |
3184 | * Object placement in a slab is made very easy because we always start at |
3185 | * offset 0. If we tune the size of the object to the alignment then we can | |
3186 | * get the required alignment by putting one properly sized object after | |
3187 | * another. | |
81819f0f CL |
3188 | * |
3189 | * Notice that the allocation order determines the sizes of the per cpu | |
3190 | * caches. Each processor has always one slab available for allocations. | |
3191 | * Increasing the allocation order reduces the number of times that slabs | |
672bba3a | 3192 | * must be moved on and off the partial lists and is therefore a factor in |
81819f0f | 3193 | * locking overhead. |
81819f0f CL |
3194 | */ |
3195 | ||
3196 | /* | |
3197 | * Mininum / Maximum order of slab pages. This influences locking overhead | |
3198 | * and slab fragmentation. A higher order reduces the number of partial slabs | |
3199 | * and increases the number of allocations possible without having to | |
3200 | * take the list_lock. | |
3201 | */ | |
19af27af AD |
3202 | static unsigned int slub_min_order; |
3203 | static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; | |
3204 | static unsigned int slub_min_objects; | |
81819f0f | 3205 | |
81819f0f CL |
3206 | /* |
3207 | * Calculate the order of allocation given an slab object size. | |
3208 | * | |
672bba3a CL |
3209 | * The order of allocation has significant impact on performance and other |
3210 | * system components. Generally order 0 allocations should be preferred since | |
3211 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
3212 | * be problematic to put into order 0 slabs because there may be too much | |
c124f5b5 | 3213 | * unused space left. We go to a higher order if more than 1/16th of the slab |
672bba3a CL |
3214 | * would be wasted. |
3215 | * | |
3216 | * In order to reach satisfactory performance we must ensure that a minimum | |
3217 | * number of objects is in one slab. Otherwise we may generate too much | |
3218 | * activity on the partial lists which requires taking the list_lock. This is | |
3219 | * less a concern for large slabs though which are rarely used. | |
81819f0f | 3220 | * |
672bba3a CL |
3221 | * slub_max_order specifies the order where we begin to stop considering the |
3222 | * number of objects in a slab as critical. If we reach slub_max_order then | |
3223 | * we try to keep the page order as low as possible. So we accept more waste | |
3224 | * of space in favor of a small page order. | |
81819f0f | 3225 | * |
672bba3a CL |
3226 | * Higher order allocations also allow the placement of more objects in a |
3227 | * slab and thereby reduce object handling overhead. If the user has | |
3228 | * requested a higher mininum order then we start with that one instead of | |
3229 | * the smallest order which will fit the object. | |
81819f0f | 3230 | */ |
19af27af AD |
3231 | static inline unsigned int slab_order(unsigned int size, |
3232 | unsigned int min_objects, unsigned int max_order, | |
9736d2a9 | 3233 | unsigned int fract_leftover) |
81819f0f | 3234 | { |
19af27af AD |
3235 | unsigned int min_order = slub_min_order; |
3236 | unsigned int order; | |
81819f0f | 3237 | |
9736d2a9 | 3238 | if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) |
210b5c06 | 3239 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; |
39b26464 | 3240 | |
9736d2a9 | 3241 | for (order = max(min_order, (unsigned int)get_order(min_objects * size)); |
5e6d444e | 3242 | order <= max_order; order++) { |
81819f0f | 3243 | |
19af27af AD |
3244 | unsigned int slab_size = (unsigned int)PAGE_SIZE << order; |
3245 | unsigned int rem; | |
81819f0f | 3246 | |
9736d2a9 | 3247 | rem = slab_size % size; |
81819f0f | 3248 | |
5e6d444e | 3249 | if (rem <= slab_size / fract_leftover) |
81819f0f | 3250 | break; |
81819f0f | 3251 | } |
672bba3a | 3252 | |
81819f0f CL |
3253 | return order; |
3254 | } | |
3255 | ||
9736d2a9 | 3256 | static inline int calculate_order(unsigned int size) |
5e6d444e | 3257 | { |
19af27af AD |
3258 | unsigned int order; |
3259 | unsigned int min_objects; | |
3260 | unsigned int max_objects; | |
5e6d444e CL |
3261 | |
3262 | /* | |
3263 | * Attempt to find best configuration for a slab. This | |
3264 | * works by first attempting to generate a layout with | |
3265 | * the best configuration and backing off gradually. | |
3266 | * | |
422ff4d7 | 3267 | * First we increase the acceptable waste in a slab. Then |
5e6d444e CL |
3268 | * we reduce the minimum objects required in a slab. |
3269 | */ | |
3270 | min_objects = slub_min_objects; | |
9b2cd506 CL |
3271 | if (!min_objects) |
3272 | min_objects = 4 * (fls(nr_cpu_ids) + 1); | |
9736d2a9 | 3273 | max_objects = order_objects(slub_max_order, size); |
e8120ff1 ZY |
3274 | min_objects = min(min_objects, max_objects); |
3275 | ||
5e6d444e | 3276 | while (min_objects > 1) { |
19af27af AD |
3277 | unsigned int fraction; |
3278 | ||
c124f5b5 | 3279 | fraction = 16; |
5e6d444e CL |
3280 | while (fraction >= 4) { |
3281 | order = slab_order(size, min_objects, | |
9736d2a9 | 3282 | slub_max_order, fraction); |
5e6d444e CL |
3283 | if (order <= slub_max_order) |
3284 | return order; | |
3285 | fraction /= 2; | |
3286 | } | |
5086c389 | 3287 | min_objects--; |
5e6d444e CL |
3288 | } |
3289 | ||
3290 | /* | |
3291 | * We were unable to place multiple objects in a slab. Now | |
3292 | * lets see if we can place a single object there. | |
3293 | */ | |
9736d2a9 | 3294 | order = slab_order(size, 1, slub_max_order, 1); |
5e6d444e CL |
3295 | if (order <= slub_max_order) |
3296 | return order; | |
3297 | ||
3298 | /* | |
3299 | * Doh this slab cannot be placed using slub_max_order. | |
3300 | */ | |
9736d2a9 | 3301 | order = slab_order(size, 1, MAX_ORDER, 1); |
818cf590 | 3302 | if (order < MAX_ORDER) |
5e6d444e CL |
3303 | return order; |
3304 | return -ENOSYS; | |
3305 | } | |
3306 | ||
5595cffc | 3307 | static void |
4053497d | 3308 | init_kmem_cache_node(struct kmem_cache_node *n) |
81819f0f CL |
3309 | { |
3310 | n->nr_partial = 0; | |
81819f0f CL |
3311 | spin_lock_init(&n->list_lock); |
3312 | INIT_LIST_HEAD(&n->partial); | |
8ab1372f | 3313 | #ifdef CONFIG_SLUB_DEBUG |
0f389ec6 | 3314 | atomic_long_set(&n->nr_slabs, 0); |
02b71b70 | 3315 | atomic_long_set(&n->total_objects, 0); |
643b1138 | 3316 | INIT_LIST_HEAD(&n->full); |
8ab1372f | 3317 | #endif |
81819f0f CL |
3318 | } |
3319 | ||
55136592 | 3320 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) |
4c93c355 | 3321 | { |
6c182dc0 | 3322 | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < |
95a05b42 | 3323 | KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); |
4c93c355 | 3324 | |
8a5ec0ba | 3325 | /* |
d4d84fef CM |
3326 | * Must align to double word boundary for the double cmpxchg |
3327 | * instructions to work; see __pcpu_double_call_return_bool(). | |
8a5ec0ba | 3328 | */ |
d4d84fef CM |
3329 | s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), |
3330 | 2 * sizeof(void *)); | |
8a5ec0ba CL |
3331 | |
3332 | if (!s->cpu_slab) | |
3333 | return 0; | |
3334 | ||
3335 | init_kmem_cache_cpus(s); | |
4c93c355 | 3336 | |
8a5ec0ba | 3337 | return 1; |
4c93c355 | 3338 | } |
4c93c355 | 3339 | |
51df1142 CL |
3340 | static struct kmem_cache *kmem_cache_node; |
3341 | ||
81819f0f CL |
3342 | /* |
3343 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
3344 | * slab on the node for this slabcache. There are no concurrent accesses | |
3345 | * possible. | |
3346 | * | |
721ae22a ZYW |
3347 | * Note that this function only works on the kmem_cache_node |
3348 | * when allocating for the kmem_cache_node. This is used for bootstrapping | |
4c93c355 | 3349 | * memory on a fresh node that has no slab structures yet. |
81819f0f | 3350 | */ |
55136592 | 3351 | static void early_kmem_cache_node_alloc(int node) |
81819f0f CL |
3352 | { |
3353 | struct page *page; | |
3354 | struct kmem_cache_node *n; | |
3355 | ||
51df1142 | 3356 | BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); |
81819f0f | 3357 | |
51df1142 | 3358 | page = new_slab(kmem_cache_node, GFP_NOWAIT, node); |
81819f0f CL |
3359 | |
3360 | BUG_ON(!page); | |
a2f92ee7 | 3361 | if (page_to_nid(page) != node) { |
f9f58285 FF |
3362 | pr_err("SLUB: Unable to allocate memory from node %d\n", node); |
3363 | pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); | |
a2f92ee7 CL |
3364 | } |
3365 | ||
81819f0f CL |
3366 | n = page->freelist; |
3367 | BUG_ON(!n); | |
8ab1372f | 3368 | #ifdef CONFIG_SLUB_DEBUG |
f7cb1933 | 3369 | init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); |
51df1142 | 3370 | init_tracking(kmem_cache_node, n); |
8ab1372f | 3371 | #endif |
12b22386 | 3372 | n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), |
505f5dcb | 3373 | GFP_KERNEL); |
12b22386 AK |
3374 | page->freelist = get_freepointer(kmem_cache_node, n); |
3375 | page->inuse = 1; | |
3376 | page->frozen = 0; | |
3377 | kmem_cache_node->node[node] = n; | |
4053497d | 3378 | init_kmem_cache_node(n); |
51df1142 | 3379 | inc_slabs_node(kmem_cache_node, node, page->objects); |
6446faa2 | 3380 | |
67b6c900 | 3381 | /* |
1e4dd946 SR |
3382 | * No locks need to be taken here as it has just been |
3383 | * initialized and there is no concurrent access. | |
67b6c900 | 3384 | */ |
1e4dd946 | 3385 | __add_partial(n, page, DEACTIVATE_TO_HEAD); |
81819f0f CL |
3386 | } |
3387 | ||
3388 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
3389 | { | |
3390 | int node; | |
fa45dc25 | 3391 | struct kmem_cache_node *n; |
81819f0f | 3392 | |
fa45dc25 | 3393 | for_each_kmem_cache_node(s, node, n) { |
81819f0f | 3394 | s->node[node] = NULL; |
ea37df54 | 3395 | kmem_cache_free(kmem_cache_node, n); |
81819f0f CL |
3396 | } |
3397 | } | |
3398 | ||
52b4b950 DS |
3399 | void __kmem_cache_release(struct kmem_cache *s) |
3400 | { | |
210e7a43 | 3401 | cache_random_seq_destroy(s); |
52b4b950 DS |
3402 | free_percpu(s->cpu_slab); |
3403 | free_kmem_cache_nodes(s); | |
3404 | } | |
3405 | ||
55136592 | 3406 | static int init_kmem_cache_nodes(struct kmem_cache *s) |
81819f0f CL |
3407 | { |
3408 | int node; | |
81819f0f | 3409 | |
f64dc58c | 3410 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
3411 | struct kmem_cache_node *n; |
3412 | ||
73367bd8 | 3413 | if (slab_state == DOWN) { |
55136592 | 3414 | early_kmem_cache_node_alloc(node); |
73367bd8 AD |
3415 | continue; |
3416 | } | |
51df1142 | 3417 | n = kmem_cache_alloc_node(kmem_cache_node, |
55136592 | 3418 | GFP_KERNEL, node); |
81819f0f | 3419 | |
73367bd8 AD |
3420 | if (!n) { |
3421 | free_kmem_cache_nodes(s); | |
3422 | return 0; | |
81819f0f | 3423 | } |
73367bd8 | 3424 | |
4053497d | 3425 | init_kmem_cache_node(n); |
ea37df54 | 3426 | s->node[node] = n; |
81819f0f CL |
3427 | } |
3428 | return 1; | |
3429 | } | |
81819f0f | 3430 | |
c0bdb232 | 3431 | static void set_min_partial(struct kmem_cache *s, unsigned long min) |
3b89d7d8 DR |
3432 | { |
3433 | if (min < MIN_PARTIAL) | |
3434 | min = MIN_PARTIAL; | |
3435 | else if (min > MAX_PARTIAL) | |
3436 | min = MAX_PARTIAL; | |
3437 | s->min_partial = min; | |
3438 | } | |
3439 | ||
e6d0e1dc WY |
3440 | static void set_cpu_partial(struct kmem_cache *s) |
3441 | { | |
3442 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
3443 | /* | |
3444 | * cpu_partial determined the maximum number of objects kept in the | |
3445 | * per cpu partial lists of a processor. | |
3446 | * | |
3447 | * Per cpu partial lists mainly contain slabs that just have one | |
3448 | * object freed. If they are used for allocation then they can be | |
3449 | * filled up again with minimal effort. The slab will never hit the | |
3450 | * per node partial lists and therefore no locking will be required. | |
3451 | * | |
3452 | * This setting also determines | |
3453 | * | |
3454 | * A) The number of objects from per cpu partial slabs dumped to the | |
3455 | * per node list when we reach the limit. | |
3456 | * B) The number of objects in cpu partial slabs to extract from the | |
3457 | * per node list when we run out of per cpu objects. We only fetch | |
3458 | * 50% to keep some capacity around for frees. | |
3459 | */ | |
3460 | if (!kmem_cache_has_cpu_partial(s)) | |
3461 | s->cpu_partial = 0; | |
3462 | else if (s->size >= PAGE_SIZE) | |
3463 | s->cpu_partial = 2; | |
3464 | else if (s->size >= 1024) | |
3465 | s->cpu_partial = 6; | |
3466 | else if (s->size >= 256) | |
3467 | s->cpu_partial = 13; | |
3468 | else | |
3469 | s->cpu_partial = 30; | |
3470 | #endif | |
3471 | } | |
3472 | ||
81819f0f CL |
3473 | /* |
3474 | * calculate_sizes() determines the order and the distribution of data within | |
3475 | * a slab object. | |
3476 | */ | |
06b285dc | 3477 | static int calculate_sizes(struct kmem_cache *s, int forced_order) |
81819f0f | 3478 | { |
d50112ed | 3479 | slab_flags_t flags = s->flags; |
be4a7988 | 3480 | unsigned int size = s->object_size; |
19af27af | 3481 | unsigned int order; |
81819f0f | 3482 | |
d8b42bf5 CL |
3483 | /* |
3484 | * Round up object size to the next word boundary. We can only | |
3485 | * place the free pointer at word boundaries and this determines | |
3486 | * the possible location of the free pointer. | |
3487 | */ | |
3488 | size = ALIGN(size, sizeof(void *)); | |
3489 | ||
3490 | #ifdef CONFIG_SLUB_DEBUG | |
81819f0f CL |
3491 | /* |
3492 | * Determine if we can poison the object itself. If the user of | |
3493 | * the slab may touch the object after free or before allocation | |
3494 | * then we should never poison the object itself. | |
3495 | */ | |
5f0d5a3a | 3496 | if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && |
c59def9f | 3497 | !s->ctor) |
81819f0f CL |
3498 | s->flags |= __OBJECT_POISON; |
3499 | else | |
3500 | s->flags &= ~__OBJECT_POISON; | |
3501 | ||
81819f0f CL |
3502 | |
3503 | /* | |
672bba3a | 3504 | * If we are Redzoning then check if there is some space between the |
81819f0f | 3505 | * end of the object and the free pointer. If not then add an |
672bba3a | 3506 | * additional word to have some bytes to store Redzone information. |
81819f0f | 3507 | */ |
3b0efdfa | 3508 | if ((flags & SLAB_RED_ZONE) && size == s->object_size) |
81819f0f | 3509 | size += sizeof(void *); |
41ecc55b | 3510 | #endif |
81819f0f CL |
3511 | |
3512 | /* | |
672bba3a CL |
3513 | * With that we have determined the number of bytes in actual use |
3514 | * by the object. This is the potential offset to the free pointer. | |
81819f0f CL |
3515 | */ |
3516 | s->inuse = size; | |
3517 | ||
5f0d5a3a | 3518 | if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || |
c59def9f | 3519 | s->ctor)) { |
81819f0f CL |
3520 | /* |
3521 | * Relocate free pointer after the object if it is not | |
3522 | * permitted to overwrite the first word of the object on | |
3523 | * kmem_cache_free. | |
3524 | * | |
3525 | * This is the case if we do RCU, have a constructor or | |
3526 | * destructor or are poisoning the objects. | |
3527 | */ | |
3528 | s->offset = size; | |
3529 | size += sizeof(void *); | |
3530 | } | |
3531 | ||
c12b3c62 | 3532 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
3533 | if (flags & SLAB_STORE_USER) |
3534 | /* | |
3535 | * Need to store information about allocs and frees after | |
3536 | * the object. | |
3537 | */ | |
3538 | size += 2 * sizeof(struct track); | |
80a9201a | 3539 | #endif |
81819f0f | 3540 | |
80a9201a AP |
3541 | kasan_cache_create(s, &size, &s->flags); |
3542 | #ifdef CONFIG_SLUB_DEBUG | |
d86bd1be | 3543 | if (flags & SLAB_RED_ZONE) { |
81819f0f CL |
3544 | /* |
3545 | * Add some empty padding so that we can catch | |
3546 | * overwrites from earlier objects rather than let | |
3547 | * tracking information or the free pointer be | |
0211a9c8 | 3548 | * corrupted if a user writes before the start |
81819f0f CL |
3549 | * of the object. |
3550 | */ | |
3551 | size += sizeof(void *); | |
d86bd1be JK |
3552 | |
3553 | s->red_left_pad = sizeof(void *); | |
3554 | s->red_left_pad = ALIGN(s->red_left_pad, s->align); | |
3555 | size += s->red_left_pad; | |
3556 | } | |
41ecc55b | 3557 | #endif |
672bba3a | 3558 | |
81819f0f CL |
3559 | /* |
3560 | * SLUB stores one object immediately after another beginning from | |
3561 | * offset 0. In order to align the objects we have to simply size | |
3562 | * each object to conform to the alignment. | |
3563 | */ | |
45906855 | 3564 | size = ALIGN(size, s->align); |
81819f0f | 3565 | s->size = size; |
06b285dc CL |
3566 | if (forced_order >= 0) |
3567 | order = forced_order; | |
3568 | else | |
9736d2a9 | 3569 | order = calculate_order(size); |
81819f0f | 3570 | |
19af27af | 3571 | if ((int)order < 0) |
81819f0f CL |
3572 | return 0; |
3573 | ||
b7a49f0d | 3574 | s->allocflags = 0; |
834f3d11 | 3575 | if (order) |
b7a49f0d CL |
3576 | s->allocflags |= __GFP_COMP; |
3577 | ||
3578 | if (s->flags & SLAB_CACHE_DMA) | |
2c59dd65 | 3579 | s->allocflags |= GFP_DMA; |
b7a49f0d | 3580 | |
6d6ea1e9 NB |
3581 | if (s->flags & SLAB_CACHE_DMA32) |
3582 | s->allocflags |= GFP_DMA32; | |
3583 | ||
b7a49f0d CL |
3584 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
3585 | s->allocflags |= __GFP_RECLAIMABLE; | |
3586 | ||
81819f0f CL |
3587 | /* |
3588 | * Determine the number of objects per slab | |
3589 | */ | |
9736d2a9 MW |
3590 | s->oo = oo_make(order, size); |
3591 | s->min = oo_make(get_order(size), size); | |
205ab99d CL |
3592 | if (oo_objects(s->oo) > oo_objects(s->max)) |
3593 | s->max = s->oo; | |
81819f0f | 3594 | |
834f3d11 | 3595 | return !!oo_objects(s->oo); |
81819f0f CL |
3596 | } |
3597 | ||
d50112ed | 3598 | static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) |
81819f0f | 3599 | { |
8a13a4cc | 3600 | s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); |
2482ddec KC |
3601 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
3602 | s->random = get_random_long(); | |
3603 | #endif | |
81819f0f | 3604 | |
06b285dc | 3605 | if (!calculate_sizes(s, -1)) |
81819f0f | 3606 | goto error; |
3de47213 DR |
3607 | if (disable_higher_order_debug) { |
3608 | /* | |
3609 | * Disable debugging flags that store metadata if the min slab | |
3610 | * order increased. | |
3611 | */ | |
3b0efdfa | 3612 | if (get_order(s->size) > get_order(s->object_size)) { |
3de47213 DR |
3613 | s->flags &= ~DEBUG_METADATA_FLAGS; |
3614 | s->offset = 0; | |
3615 | if (!calculate_sizes(s, -1)) | |
3616 | goto error; | |
3617 | } | |
3618 | } | |
81819f0f | 3619 | |
2565409f HC |
3620 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
3621 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
149daaf3 | 3622 | if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) |
b789ef51 CL |
3623 | /* Enable fast mode */ |
3624 | s->flags |= __CMPXCHG_DOUBLE; | |
3625 | #endif | |
3626 | ||
3b89d7d8 DR |
3627 | /* |
3628 | * The larger the object size is, the more pages we want on the partial | |
3629 | * list to avoid pounding the page allocator excessively. | |
3630 | */ | |
49e22585 CL |
3631 | set_min_partial(s, ilog2(s->size) / 2); |
3632 | ||
e6d0e1dc | 3633 | set_cpu_partial(s); |
49e22585 | 3634 | |
81819f0f | 3635 | #ifdef CONFIG_NUMA |
e2cb96b7 | 3636 | s->remote_node_defrag_ratio = 1000; |
81819f0f | 3637 | #endif |
210e7a43 TG |
3638 | |
3639 | /* Initialize the pre-computed randomized freelist if slab is up */ | |
3640 | if (slab_state >= UP) { | |
3641 | if (init_cache_random_seq(s)) | |
3642 | goto error; | |
3643 | } | |
3644 | ||
55136592 | 3645 | if (!init_kmem_cache_nodes(s)) |
dfb4f096 | 3646 | goto error; |
81819f0f | 3647 | |
55136592 | 3648 | if (alloc_kmem_cache_cpus(s)) |
278b1bb1 | 3649 | return 0; |
ff12059e | 3650 | |
4c93c355 | 3651 | free_kmem_cache_nodes(s); |
81819f0f | 3652 | error: |
278b1bb1 | 3653 | return -EINVAL; |
81819f0f | 3654 | } |
81819f0f | 3655 | |
33b12c38 CL |
3656 | static void list_slab_objects(struct kmem_cache *s, struct page *page, |
3657 | const char *text) | |
3658 | { | |
3659 | #ifdef CONFIG_SLUB_DEBUG | |
3660 | void *addr = page_address(page); | |
3661 | void *p; | |
0684e652 | 3662 | unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC); |
bbd7d57b ED |
3663 | if (!map) |
3664 | return; | |
945cf2b6 | 3665 | slab_err(s, page, text, s->name); |
33b12c38 | 3666 | slab_lock(page); |
33b12c38 | 3667 | |
5f80b13a | 3668 | get_map(s, page, map); |
33b12c38 CL |
3669 | for_each_object(p, s, addr, page->objects) { |
3670 | ||
3671 | if (!test_bit(slab_index(p, s, addr), map)) { | |
f9f58285 | 3672 | pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); |
33b12c38 CL |
3673 | print_tracking(s, p); |
3674 | } | |
3675 | } | |
3676 | slab_unlock(page); | |
0684e652 | 3677 | bitmap_free(map); |
33b12c38 CL |
3678 | #endif |
3679 | } | |
3680 | ||
81819f0f | 3681 | /* |
599870b1 | 3682 | * Attempt to free all partial slabs on a node. |
52b4b950 DS |
3683 | * This is called from __kmem_cache_shutdown(). We must take list_lock |
3684 | * because sysfs file might still access partial list after the shutdowning. | |
81819f0f | 3685 | */ |
599870b1 | 3686 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
81819f0f | 3687 | { |
60398923 | 3688 | LIST_HEAD(discard); |
81819f0f CL |
3689 | struct page *page, *h; |
3690 | ||
52b4b950 DS |
3691 | BUG_ON(irqs_disabled()); |
3692 | spin_lock_irq(&n->list_lock); | |
916ac052 | 3693 | list_for_each_entry_safe(page, h, &n->partial, slab_list) { |
81819f0f | 3694 | if (!page->inuse) { |
52b4b950 | 3695 | remove_partial(n, page); |
916ac052 | 3696 | list_add(&page->slab_list, &discard); |
33b12c38 CL |
3697 | } else { |
3698 | list_slab_objects(s, page, | |
52b4b950 | 3699 | "Objects remaining in %s on __kmem_cache_shutdown()"); |
599870b1 | 3700 | } |
33b12c38 | 3701 | } |
52b4b950 | 3702 | spin_unlock_irq(&n->list_lock); |
60398923 | 3703 | |
916ac052 | 3704 | list_for_each_entry_safe(page, h, &discard, slab_list) |
60398923 | 3705 | discard_slab(s, page); |
81819f0f CL |
3706 | } |
3707 | ||
f9e13c0a SB |
3708 | bool __kmem_cache_empty(struct kmem_cache *s) |
3709 | { | |
3710 | int node; | |
3711 | struct kmem_cache_node *n; | |
3712 | ||
3713 | for_each_kmem_cache_node(s, node, n) | |
3714 | if (n->nr_partial || slabs_node(s, node)) | |
3715 | return false; | |
3716 | return true; | |
3717 | } | |
3718 | ||
81819f0f | 3719 | /* |
672bba3a | 3720 | * Release all resources used by a slab cache. |
81819f0f | 3721 | */ |
52b4b950 | 3722 | int __kmem_cache_shutdown(struct kmem_cache *s) |
81819f0f CL |
3723 | { |
3724 | int node; | |
fa45dc25 | 3725 | struct kmem_cache_node *n; |
81819f0f CL |
3726 | |
3727 | flush_all(s); | |
81819f0f | 3728 | /* Attempt to free all objects */ |
fa45dc25 | 3729 | for_each_kmem_cache_node(s, node, n) { |
599870b1 CL |
3730 | free_partial(s, n); |
3731 | if (n->nr_partial || slabs_node(s, node)) | |
81819f0f CL |
3732 | return 1; |
3733 | } | |
bf5eb3de | 3734 | sysfs_slab_remove(s); |
81819f0f CL |
3735 | return 0; |
3736 | } | |
3737 | ||
81819f0f CL |
3738 | /******************************************************************** |
3739 | * Kmalloc subsystem | |
3740 | *******************************************************************/ | |
3741 | ||
81819f0f CL |
3742 | static int __init setup_slub_min_order(char *str) |
3743 | { | |
19af27af | 3744 | get_option(&str, (int *)&slub_min_order); |
81819f0f CL |
3745 | |
3746 | return 1; | |
3747 | } | |
3748 | ||
3749 | __setup("slub_min_order=", setup_slub_min_order); | |
3750 | ||
3751 | static int __init setup_slub_max_order(char *str) | |
3752 | { | |
19af27af AD |
3753 | get_option(&str, (int *)&slub_max_order); |
3754 | slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); | |
81819f0f CL |
3755 | |
3756 | return 1; | |
3757 | } | |
3758 | ||
3759 | __setup("slub_max_order=", setup_slub_max_order); | |
3760 | ||
3761 | static int __init setup_slub_min_objects(char *str) | |
3762 | { | |
19af27af | 3763 | get_option(&str, (int *)&slub_min_objects); |
81819f0f CL |
3764 | |
3765 | return 1; | |
3766 | } | |
3767 | ||
3768 | __setup("slub_min_objects=", setup_slub_min_objects); | |
3769 | ||
81819f0f CL |
3770 | void *__kmalloc(size_t size, gfp_t flags) |
3771 | { | |
aadb4bc4 | 3772 | struct kmem_cache *s; |
5b882be4 | 3773 | void *ret; |
81819f0f | 3774 | |
95a05b42 | 3775 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef | 3776 | return kmalloc_large(size, flags); |
aadb4bc4 | 3777 | |
2c59dd65 | 3778 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
3779 | |
3780 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
3781 | return s; |
3782 | ||
2b847c3c | 3783 | ret = slab_alloc(s, flags, _RET_IP_); |
5b882be4 | 3784 | |
ca2b84cb | 3785 | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); |
5b882be4 | 3786 | |
0116523c | 3787 | ret = kasan_kmalloc(s, ret, size, flags); |
0316bec2 | 3788 | |
5b882be4 | 3789 | return ret; |
81819f0f CL |
3790 | } |
3791 | EXPORT_SYMBOL(__kmalloc); | |
3792 | ||
5d1f57e4 | 3793 | #ifdef CONFIG_NUMA |
f619cfe1 CL |
3794 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) |
3795 | { | |
b1eeab67 | 3796 | struct page *page; |
e4f7c0b4 | 3797 | void *ptr = NULL; |
f619cfe1 | 3798 | |
75f296d9 | 3799 | flags |= __GFP_COMP; |
4949148a | 3800 | page = alloc_pages_node(node, flags, get_order(size)); |
f619cfe1 | 3801 | if (page) |
e4f7c0b4 CM |
3802 | ptr = page_address(page); |
3803 | ||
0116523c | 3804 | return kmalloc_large_node_hook(ptr, size, flags); |
f619cfe1 CL |
3805 | } |
3806 | ||
81819f0f CL |
3807 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3808 | { | |
aadb4bc4 | 3809 | struct kmem_cache *s; |
5b882be4 | 3810 | void *ret; |
81819f0f | 3811 | |
95a05b42 | 3812 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
5b882be4 EGM |
3813 | ret = kmalloc_large_node(size, flags, node); |
3814 | ||
ca2b84cb EGM |
3815 | trace_kmalloc_node(_RET_IP_, ret, |
3816 | size, PAGE_SIZE << get_order(size), | |
3817 | flags, node); | |
5b882be4 EGM |
3818 | |
3819 | return ret; | |
3820 | } | |
aadb4bc4 | 3821 | |
2c59dd65 | 3822 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
3823 | |
3824 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
3825 | return s; |
3826 | ||
2b847c3c | 3827 | ret = slab_alloc_node(s, flags, node, _RET_IP_); |
5b882be4 | 3828 | |
ca2b84cb | 3829 | trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); |
5b882be4 | 3830 | |
0116523c | 3831 | ret = kasan_kmalloc(s, ret, size, flags); |
0316bec2 | 3832 | |
5b882be4 | 3833 | return ret; |
81819f0f CL |
3834 | } |
3835 | EXPORT_SYMBOL(__kmalloc_node); | |
6dfd1b65 | 3836 | #endif /* CONFIG_NUMA */ |
81819f0f | 3837 | |
ed18adc1 KC |
3838 | #ifdef CONFIG_HARDENED_USERCOPY |
3839 | /* | |
afcc90f8 KC |
3840 | * Rejects incorrectly sized objects and objects that are to be copied |
3841 | * to/from userspace but do not fall entirely within the containing slab | |
3842 | * cache's usercopy region. | |
ed18adc1 KC |
3843 | * |
3844 | * Returns NULL if check passes, otherwise const char * to name of cache | |
3845 | * to indicate an error. | |
3846 | */ | |
f4e6e289 KC |
3847 | void __check_heap_object(const void *ptr, unsigned long n, struct page *page, |
3848 | bool to_user) | |
ed18adc1 KC |
3849 | { |
3850 | struct kmem_cache *s; | |
44065b2e | 3851 | unsigned int offset; |
ed18adc1 KC |
3852 | size_t object_size; |
3853 | ||
96fedce2 AK |
3854 | ptr = kasan_reset_tag(ptr); |
3855 | ||
ed18adc1 KC |
3856 | /* Find object and usable object size. */ |
3857 | s = page->slab_cache; | |
ed18adc1 KC |
3858 | |
3859 | /* Reject impossible pointers. */ | |
3860 | if (ptr < page_address(page)) | |
f4e6e289 KC |
3861 | usercopy_abort("SLUB object not in SLUB page?!", NULL, |
3862 | to_user, 0, n); | |
ed18adc1 KC |
3863 | |
3864 | /* Find offset within object. */ | |
3865 | offset = (ptr - page_address(page)) % s->size; | |
3866 | ||
3867 | /* Adjust for redzone and reject if within the redzone. */ | |
3868 | if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { | |
3869 | if (offset < s->red_left_pad) | |
f4e6e289 KC |
3870 | usercopy_abort("SLUB object in left red zone", |
3871 | s->name, to_user, offset, n); | |
ed18adc1 KC |
3872 | offset -= s->red_left_pad; |
3873 | } | |
3874 | ||
afcc90f8 KC |
3875 | /* Allow address range falling entirely within usercopy region. */ |
3876 | if (offset >= s->useroffset && | |
3877 | offset - s->useroffset <= s->usersize && | |
3878 | n <= s->useroffset - offset + s->usersize) | |
f4e6e289 | 3879 | return; |
ed18adc1 | 3880 | |
afcc90f8 KC |
3881 | /* |
3882 | * If the copy is still within the allocated object, produce | |
3883 | * a warning instead of rejecting the copy. This is intended | |
3884 | * to be a temporary method to find any missing usercopy | |
3885 | * whitelists. | |
3886 | */ | |
3887 | object_size = slab_ksize(s); | |
2d891fbc KC |
3888 | if (usercopy_fallback && |
3889 | offset <= object_size && n <= object_size - offset) { | |
afcc90f8 KC |
3890 | usercopy_warn("SLUB object", s->name, to_user, offset, n); |
3891 | return; | |
3892 | } | |
ed18adc1 | 3893 | |
f4e6e289 | 3894 | usercopy_abort("SLUB object", s->name, to_user, offset, n); |
ed18adc1 KC |
3895 | } |
3896 | #endif /* CONFIG_HARDENED_USERCOPY */ | |
3897 | ||
10d1f8cb | 3898 | size_t __ksize(const void *object) |
81819f0f | 3899 | { |
272c1d21 | 3900 | struct page *page; |
81819f0f | 3901 | |
ef8b4520 | 3902 | if (unlikely(object == ZERO_SIZE_PTR)) |
272c1d21 CL |
3903 | return 0; |
3904 | ||
294a80a8 | 3905 | page = virt_to_head_page(object); |
294a80a8 | 3906 | |
76994412 PE |
3907 | if (unlikely(!PageSlab(page))) { |
3908 | WARN_ON(!PageCompound(page)); | |
294a80a8 | 3909 | return PAGE_SIZE << compound_order(page); |
76994412 | 3910 | } |
81819f0f | 3911 | |
1b4f59e3 | 3912 | return slab_ksize(page->slab_cache); |
81819f0f | 3913 | } |
10d1f8cb | 3914 | EXPORT_SYMBOL(__ksize); |
81819f0f CL |
3915 | |
3916 | void kfree(const void *x) | |
3917 | { | |
81819f0f | 3918 | struct page *page; |
5bb983b0 | 3919 | void *object = (void *)x; |
81819f0f | 3920 | |
2121db74 PE |
3921 | trace_kfree(_RET_IP_, x); |
3922 | ||
2408c550 | 3923 | if (unlikely(ZERO_OR_NULL_PTR(x))) |
81819f0f CL |
3924 | return; |
3925 | ||
b49af68f | 3926 | page = virt_to_head_page(x); |
aadb4bc4 | 3927 | if (unlikely(!PageSlab(page))) { |
0937502a | 3928 | BUG_ON(!PageCompound(page)); |
47adccce | 3929 | kfree_hook(object); |
4949148a | 3930 | __free_pages(page, compound_order(page)); |
aadb4bc4 CL |
3931 | return; |
3932 | } | |
81084651 | 3933 | slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); |
81819f0f CL |
3934 | } |
3935 | EXPORT_SYMBOL(kfree); | |
3936 | ||
832f37f5 VD |
3937 | #define SHRINK_PROMOTE_MAX 32 |
3938 | ||
2086d26a | 3939 | /* |
832f37f5 VD |
3940 | * kmem_cache_shrink discards empty slabs and promotes the slabs filled |
3941 | * up most to the head of the partial lists. New allocations will then | |
3942 | * fill those up and thus they can be removed from the partial lists. | |
672bba3a CL |
3943 | * |
3944 | * The slabs with the least items are placed last. This results in them | |
3945 | * being allocated from last increasing the chance that the last objects | |
3946 | * are freed in them. | |
2086d26a | 3947 | */ |
c9fc5864 | 3948 | int __kmem_cache_shrink(struct kmem_cache *s) |
2086d26a CL |
3949 | { |
3950 | int node; | |
3951 | int i; | |
3952 | struct kmem_cache_node *n; | |
3953 | struct page *page; | |
3954 | struct page *t; | |
832f37f5 VD |
3955 | struct list_head discard; |
3956 | struct list_head promote[SHRINK_PROMOTE_MAX]; | |
2086d26a | 3957 | unsigned long flags; |
ce3712d7 | 3958 | int ret = 0; |
2086d26a | 3959 | |
2086d26a | 3960 | flush_all(s); |
fa45dc25 | 3961 | for_each_kmem_cache_node(s, node, n) { |
832f37f5 VD |
3962 | INIT_LIST_HEAD(&discard); |
3963 | for (i = 0; i < SHRINK_PROMOTE_MAX; i++) | |
3964 | INIT_LIST_HEAD(promote + i); | |
2086d26a CL |
3965 | |
3966 | spin_lock_irqsave(&n->list_lock, flags); | |
3967 | ||
3968 | /* | |
832f37f5 | 3969 | * Build lists of slabs to discard or promote. |
2086d26a | 3970 | * |
672bba3a CL |
3971 | * Note that concurrent frees may occur while we hold the |
3972 | * list_lock. page->inuse here is the upper limit. | |
2086d26a | 3973 | */ |
916ac052 | 3974 | list_for_each_entry_safe(page, t, &n->partial, slab_list) { |
832f37f5 VD |
3975 | int free = page->objects - page->inuse; |
3976 | ||
3977 | /* Do not reread page->inuse */ | |
3978 | barrier(); | |
3979 | ||
3980 | /* We do not keep full slabs on the list */ | |
3981 | BUG_ON(free <= 0); | |
3982 | ||
3983 | if (free == page->objects) { | |
916ac052 | 3984 | list_move(&page->slab_list, &discard); |
69cb8e6b | 3985 | n->nr_partial--; |
832f37f5 | 3986 | } else if (free <= SHRINK_PROMOTE_MAX) |
916ac052 | 3987 | list_move(&page->slab_list, promote + free - 1); |
2086d26a CL |
3988 | } |
3989 | ||
2086d26a | 3990 | /* |
832f37f5 VD |
3991 | * Promote the slabs filled up most to the head of the |
3992 | * partial list. | |
2086d26a | 3993 | */ |
832f37f5 VD |
3994 | for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) |
3995 | list_splice(promote + i, &n->partial); | |
2086d26a | 3996 | |
2086d26a | 3997 | spin_unlock_irqrestore(&n->list_lock, flags); |
69cb8e6b CL |
3998 | |
3999 | /* Release empty slabs */ | |
916ac052 | 4000 | list_for_each_entry_safe(page, t, &discard, slab_list) |
69cb8e6b | 4001 | discard_slab(s, page); |
ce3712d7 VD |
4002 | |
4003 | if (slabs_node(s, node)) | |
4004 | ret = 1; | |
2086d26a CL |
4005 | } |
4006 | ||
ce3712d7 | 4007 | return ret; |
2086d26a | 4008 | } |
2086d26a | 4009 | |
c9fc5864 | 4010 | #ifdef CONFIG_MEMCG |
01fb58bc TH |
4011 | static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) |
4012 | { | |
50862ce7 TH |
4013 | /* |
4014 | * Called with all the locks held after a sched RCU grace period. | |
4015 | * Even if @s becomes empty after shrinking, we can't know that @s | |
4016 | * doesn't have allocations already in-flight and thus can't | |
4017 | * destroy @s until the associated memcg is released. | |
4018 | * | |
4019 | * However, let's remove the sysfs files for empty caches here. | |
4020 | * Each cache has a lot of interface files which aren't | |
4021 | * particularly useful for empty draining caches; otherwise, we can | |
4022 | * easily end up with millions of unnecessary sysfs files on | |
4023 | * systems which have a lot of memory and transient cgroups. | |
4024 | */ | |
4025 | if (!__kmem_cache_shrink(s)) | |
4026 | sysfs_slab_remove(s); | |
01fb58bc TH |
4027 | } |
4028 | ||
c9fc5864 TH |
4029 | void __kmemcg_cache_deactivate(struct kmem_cache *s) |
4030 | { | |
4031 | /* | |
4032 | * Disable empty slabs caching. Used to avoid pinning offline | |
4033 | * memory cgroups by kmem pages that can be freed. | |
4034 | */ | |
e6d0e1dc | 4035 | slub_set_cpu_partial(s, 0); |
c9fc5864 TH |
4036 | s->min_partial = 0; |
4037 | ||
4038 | /* | |
4039 | * s->cpu_partial is checked locklessly (see put_cpu_partial), so | |
01fb58bc | 4040 | * we have to make sure the change is visible before shrinking. |
c9fc5864 | 4041 | */ |
01fb58bc | 4042 | slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu); |
c9fc5864 | 4043 | } |
6dfd1b65 | 4044 | #endif /* CONFIG_MEMCG */ |
c9fc5864 | 4045 | |
b9049e23 YG |
4046 | static int slab_mem_going_offline_callback(void *arg) |
4047 | { | |
4048 | struct kmem_cache *s; | |
4049 | ||
18004c5d | 4050 | mutex_lock(&slab_mutex); |
b9049e23 | 4051 | list_for_each_entry(s, &slab_caches, list) |
c9fc5864 | 4052 | __kmem_cache_shrink(s); |
18004c5d | 4053 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4054 | |
4055 | return 0; | |
4056 | } | |
4057 | ||
4058 | static void slab_mem_offline_callback(void *arg) | |
4059 | { | |
4060 | struct kmem_cache_node *n; | |
4061 | struct kmem_cache *s; | |
4062 | struct memory_notify *marg = arg; | |
4063 | int offline_node; | |
4064 | ||
b9d5ab25 | 4065 | offline_node = marg->status_change_nid_normal; |
b9049e23 YG |
4066 | |
4067 | /* | |
4068 | * If the node still has available memory. we need kmem_cache_node | |
4069 | * for it yet. | |
4070 | */ | |
4071 | if (offline_node < 0) | |
4072 | return; | |
4073 | ||
18004c5d | 4074 | mutex_lock(&slab_mutex); |
b9049e23 YG |
4075 | list_for_each_entry(s, &slab_caches, list) { |
4076 | n = get_node(s, offline_node); | |
4077 | if (n) { | |
4078 | /* | |
4079 | * if n->nr_slabs > 0, slabs still exist on the node | |
4080 | * that is going down. We were unable to free them, | |
c9404c9c | 4081 | * and offline_pages() function shouldn't call this |
b9049e23 YG |
4082 | * callback. So, we must fail. |
4083 | */ | |
0f389ec6 | 4084 | BUG_ON(slabs_node(s, offline_node)); |
b9049e23 YG |
4085 | |
4086 | s->node[offline_node] = NULL; | |
8de66a0c | 4087 | kmem_cache_free(kmem_cache_node, n); |
b9049e23 YG |
4088 | } |
4089 | } | |
18004c5d | 4090 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4091 | } |
4092 | ||
4093 | static int slab_mem_going_online_callback(void *arg) | |
4094 | { | |
4095 | struct kmem_cache_node *n; | |
4096 | struct kmem_cache *s; | |
4097 | struct memory_notify *marg = arg; | |
b9d5ab25 | 4098 | int nid = marg->status_change_nid_normal; |
b9049e23 YG |
4099 | int ret = 0; |
4100 | ||
4101 | /* | |
4102 | * If the node's memory is already available, then kmem_cache_node is | |
4103 | * already created. Nothing to do. | |
4104 | */ | |
4105 | if (nid < 0) | |
4106 | return 0; | |
4107 | ||
4108 | /* | |
0121c619 | 4109 | * We are bringing a node online. No memory is available yet. We must |
b9049e23 YG |
4110 | * allocate a kmem_cache_node structure in order to bring the node |
4111 | * online. | |
4112 | */ | |
18004c5d | 4113 | mutex_lock(&slab_mutex); |
b9049e23 YG |
4114 | list_for_each_entry(s, &slab_caches, list) { |
4115 | /* | |
4116 | * XXX: kmem_cache_alloc_node will fallback to other nodes | |
4117 | * since memory is not yet available from the node that | |
4118 | * is brought up. | |
4119 | */ | |
8de66a0c | 4120 | n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); |
b9049e23 YG |
4121 | if (!n) { |
4122 | ret = -ENOMEM; | |
4123 | goto out; | |
4124 | } | |
4053497d | 4125 | init_kmem_cache_node(n); |
b9049e23 YG |
4126 | s->node[nid] = n; |
4127 | } | |
4128 | out: | |
18004c5d | 4129 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4130 | return ret; |
4131 | } | |
4132 | ||
4133 | static int slab_memory_callback(struct notifier_block *self, | |
4134 | unsigned long action, void *arg) | |
4135 | { | |
4136 | int ret = 0; | |
4137 | ||
4138 | switch (action) { | |
4139 | case MEM_GOING_ONLINE: | |
4140 | ret = slab_mem_going_online_callback(arg); | |
4141 | break; | |
4142 | case MEM_GOING_OFFLINE: | |
4143 | ret = slab_mem_going_offline_callback(arg); | |
4144 | break; | |
4145 | case MEM_OFFLINE: | |
4146 | case MEM_CANCEL_ONLINE: | |
4147 | slab_mem_offline_callback(arg); | |
4148 | break; | |
4149 | case MEM_ONLINE: | |
4150 | case MEM_CANCEL_OFFLINE: | |
4151 | break; | |
4152 | } | |
dc19f9db KH |
4153 | if (ret) |
4154 | ret = notifier_from_errno(ret); | |
4155 | else | |
4156 | ret = NOTIFY_OK; | |
b9049e23 YG |
4157 | return ret; |
4158 | } | |
4159 | ||
3ac38faa AM |
4160 | static struct notifier_block slab_memory_callback_nb = { |
4161 | .notifier_call = slab_memory_callback, | |
4162 | .priority = SLAB_CALLBACK_PRI, | |
4163 | }; | |
b9049e23 | 4164 | |
81819f0f CL |
4165 | /******************************************************************** |
4166 | * Basic setup of slabs | |
4167 | *******************************************************************/ | |
4168 | ||
51df1142 CL |
4169 | /* |
4170 | * Used for early kmem_cache structures that were allocated using | |
dffb4d60 CL |
4171 | * the page allocator. Allocate them properly then fix up the pointers |
4172 | * that may be pointing to the wrong kmem_cache structure. | |
51df1142 CL |
4173 | */ |
4174 | ||
dffb4d60 | 4175 | static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) |
51df1142 CL |
4176 | { |
4177 | int node; | |
dffb4d60 | 4178 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
fa45dc25 | 4179 | struct kmem_cache_node *n; |
51df1142 | 4180 | |
dffb4d60 | 4181 | memcpy(s, static_cache, kmem_cache->object_size); |
51df1142 | 4182 | |
7d557b3c GC |
4183 | /* |
4184 | * This runs very early, and only the boot processor is supposed to be | |
4185 | * up. Even if it weren't true, IRQs are not up so we couldn't fire | |
4186 | * IPIs around. | |
4187 | */ | |
4188 | __flush_cpu_slab(s, smp_processor_id()); | |
fa45dc25 | 4189 | for_each_kmem_cache_node(s, node, n) { |
51df1142 CL |
4190 | struct page *p; |
4191 | ||
916ac052 | 4192 | list_for_each_entry(p, &n->partial, slab_list) |
fa45dc25 | 4193 | p->slab_cache = s; |
51df1142 | 4194 | |
607bf324 | 4195 | #ifdef CONFIG_SLUB_DEBUG |
916ac052 | 4196 | list_for_each_entry(p, &n->full, slab_list) |
fa45dc25 | 4197 | p->slab_cache = s; |
51df1142 | 4198 | #endif |
51df1142 | 4199 | } |
f7ce3190 | 4200 | slab_init_memcg_params(s); |
dffb4d60 | 4201 | list_add(&s->list, &slab_caches); |
510ded33 | 4202 | memcg_link_cache(s); |
dffb4d60 | 4203 | return s; |
51df1142 CL |
4204 | } |
4205 | ||
81819f0f CL |
4206 | void __init kmem_cache_init(void) |
4207 | { | |
dffb4d60 CL |
4208 | static __initdata struct kmem_cache boot_kmem_cache, |
4209 | boot_kmem_cache_node; | |
51df1142 | 4210 | |
fc8d8620 SG |
4211 | if (debug_guardpage_minorder()) |
4212 | slub_max_order = 0; | |
4213 | ||
dffb4d60 CL |
4214 | kmem_cache_node = &boot_kmem_cache_node; |
4215 | kmem_cache = &boot_kmem_cache; | |
51df1142 | 4216 | |
dffb4d60 | 4217 | create_boot_cache(kmem_cache_node, "kmem_cache_node", |
8eb8284b | 4218 | sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); |
b9049e23 | 4219 | |
3ac38faa | 4220 | register_hotmemory_notifier(&slab_memory_callback_nb); |
81819f0f CL |
4221 | |
4222 | /* Able to allocate the per node structures */ | |
4223 | slab_state = PARTIAL; | |
4224 | ||
dffb4d60 CL |
4225 | create_boot_cache(kmem_cache, "kmem_cache", |
4226 | offsetof(struct kmem_cache, node) + | |
4227 | nr_node_ids * sizeof(struct kmem_cache_node *), | |
8eb8284b | 4228 | SLAB_HWCACHE_ALIGN, 0, 0); |
8a13a4cc | 4229 | |
dffb4d60 | 4230 | kmem_cache = bootstrap(&boot_kmem_cache); |
dffb4d60 | 4231 | kmem_cache_node = bootstrap(&boot_kmem_cache_node); |
51df1142 CL |
4232 | |
4233 | /* Now we can use the kmem_cache to allocate kmalloc slabs */ | |
34cc6990 | 4234 | setup_kmalloc_cache_index_table(); |
f97d5f63 | 4235 | create_kmalloc_caches(0); |
81819f0f | 4236 | |
210e7a43 TG |
4237 | /* Setup random freelists for each cache */ |
4238 | init_freelist_randomization(); | |
4239 | ||
a96a87bf SAS |
4240 | cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, |
4241 | slub_cpu_dead); | |
81819f0f | 4242 | |
b9726c26 | 4243 | pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", |
f97d5f63 | 4244 | cache_line_size(), |
81819f0f CL |
4245 | slub_min_order, slub_max_order, slub_min_objects, |
4246 | nr_cpu_ids, nr_node_ids); | |
4247 | } | |
4248 | ||
7e85ee0c PE |
4249 | void __init kmem_cache_init_late(void) |
4250 | { | |
7e85ee0c PE |
4251 | } |
4252 | ||
2633d7a0 | 4253 | struct kmem_cache * |
f4957d5b | 4254 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
d50112ed | 4255 | slab_flags_t flags, void (*ctor)(void *)) |
81819f0f | 4256 | { |
426589f5 | 4257 | struct kmem_cache *s, *c; |
81819f0f | 4258 | |
a44cb944 | 4259 | s = find_mergeable(size, align, flags, name, ctor); |
81819f0f CL |
4260 | if (s) { |
4261 | s->refcount++; | |
84d0ddd6 | 4262 | |
81819f0f CL |
4263 | /* |
4264 | * Adjust the object sizes so that we clear | |
4265 | * the complete object on kzalloc. | |
4266 | */ | |
1b473f29 | 4267 | s->object_size = max(s->object_size, size); |
52ee6d74 | 4268 | s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); |
6446faa2 | 4269 | |
426589f5 | 4270 | for_each_memcg_cache(c, s) { |
84d0ddd6 | 4271 | c->object_size = s->object_size; |
52ee6d74 | 4272 | c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); |
84d0ddd6 VD |
4273 | } |
4274 | ||
7b8f3b66 | 4275 | if (sysfs_slab_alias(s, name)) { |
7b8f3b66 | 4276 | s->refcount--; |
cbb79694 | 4277 | s = NULL; |
7b8f3b66 | 4278 | } |
a0e1d1be | 4279 | } |
6446faa2 | 4280 | |
cbb79694 CL |
4281 | return s; |
4282 | } | |
84c1cf62 | 4283 | |
d50112ed | 4284 | int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) |
cbb79694 | 4285 | { |
aac3a166 PE |
4286 | int err; |
4287 | ||
4288 | err = kmem_cache_open(s, flags); | |
4289 | if (err) | |
4290 | return err; | |
20cea968 | 4291 | |
45530c44 CL |
4292 | /* Mutex is not taken during early boot */ |
4293 | if (slab_state <= UP) | |
4294 | return 0; | |
4295 | ||
107dab5c | 4296 | memcg_propagate_slab_attrs(s); |
aac3a166 | 4297 | err = sysfs_slab_add(s); |
aac3a166 | 4298 | if (err) |
52b4b950 | 4299 | __kmem_cache_release(s); |
20cea968 | 4300 | |
aac3a166 | 4301 | return err; |
81819f0f | 4302 | } |
81819f0f | 4303 | |
ce71e27c | 4304 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) |
81819f0f | 4305 | { |
aadb4bc4 | 4306 | struct kmem_cache *s; |
94b528d0 | 4307 | void *ret; |
aadb4bc4 | 4308 | |
95a05b42 | 4309 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef PE |
4310 | return kmalloc_large(size, gfpflags); |
4311 | ||
2c59dd65 | 4312 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 4313 | |
2408c550 | 4314 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 4315 | return s; |
81819f0f | 4316 | |
2b847c3c | 4317 | ret = slab_alloc(s, gfpflags, caller); |
94b528d0 | 4318 | |
25985edc | 4319 | /* Honor the call site pointer we received. */ |
ca2b84cb | 4320 | trace_kmalloc(caller, ret, size, s->size, gfpflags); |
94b528d0 EGM |
4321 | |
4322 | return ret; | |
81819f0f CL |
4323 | } |
4324 | ||
5d1f57e4 | 4325 | #ifdef CONFIG_NUMA |
81819f0f | 4326 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, |
ce71e27c | 4327 | int node, unsigned long caller) |
81819f0f | 4328 | { |
aadb4bc4 | 4329 | struct kmem_cache *s; |
94b528d0 | 4330 | void *ret; |
aadb4bc4 | 4331 | |
95a05b42 | 4332 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
d3e14aa3 XF |
4333 | ret = kmalloc_large_node(size, gfpflags, node); |
4334 | ||
4335 | trace_kmalloc_node(caller, ret, | |
4336 | size, PAGE_SIZE << get_order(size), | |
4337 | gfpflags, node); | |
4338 | ||
4339 | return ret; | |
4340 | } | |
eada35ef | 4341 | |
2c59dd65 | 4342 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 4343 | |
2408c550 | 4344 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 4345 | return s; |
81819f0f | 4346 | |
2b847c3c | 4347 | ret = slab_alloc_node(s, gfpflags, node, caller); |
94b528d0 | 4348 | |
25985edc | 4349 | /* Honor the call site pointer we received. */ |
ca2b84cb | 4350 | trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); |
94b528d0 EGM |
4351 | |
4352 | return ret; | |
81819f0f | 4353 | } |
5d1f57e4 | 4354 | #endif |
81819f0f | 4355 | |
ab4d5ed5 | 4356 | #ifdef CONFIG_SYSFS |
205ab99d CL |
4357 | static int count_inuse(struct page *page) |
4358 | { | |
4359 | return page->inuse; | |
4360 | } | |
4361 | ||
4362 | static int count_total(struct page *page) | |
4363 | { | |
4364 | return page->objects; | |
4365 | } | |
ab4d5ed5 | 4366 | #endif |
205ab99d | 4367 | |
ab4d5ed5 | 4368 | #ifdef CONFIG_SLUB_DEBUG |
434e245d CL |
4369 | static int validate_slab(struct kmem_cache *s, struct page *page, |
4370 | unsigned long *map) | |
53e15af0 CL |
4371 | { |
4372 | void *p; | |
a973e9dd | 4373 | void *addr = page_address(page); |
53e15af0 CL |
4374 | |
4375 | if (!check_slab(s, page) || | |
4376 | !on_freelist(s, page, NULL)) | |
4377 | return 0; | |
4378 | ||
4379 | /* Now we know that a valid freelist exists */ | |
39b26464 | 4380 | bitmap_zero(map, page->objects); |
53e15af0 | 4381 | |
5f80b13a CL |
4382 | get_map(s, page, map); |
4383 | for_each_object(p, s, addr, page->objects) { | |
4384 | if (test_bit(slab_index(p, s, addr), map)) | |
4385 | if (!check_object(s, page, p, SLUB_RED_INACTIVE)) | |
4386 | return 0; | |
53e15af0 CL |
4387 | } |
4388 | ||
224a88be | 4389 | for_each_object(p, s, addr, page->objects) |
7656c72b | 4390 | if (!test_bit(slab_index(p, s, addr), map)) |
37d57443 | 4391 | if (!check_object(s, page, p, SLUB_RED_ACTIVE)) |
53e15af0 CL |
4392 | return 0; |
4393 | return 1; | |
4394 | } | |
4395 | ||
434e245d CL |
4396 | static void validate_slab_slab(struct kmem_cache *s, struct page *page, |
4397 | unsigned long *map) | |
53e15af0 | 4398 | { |
881db7fb CL |
4399 | slab_lock(page); |
4400 | validate_slab(s, page, map); | |
4401 | slab_unlock(page); | |
53e15af0 CL |
4402 | } |
4403 | ||
434e245d CL |
4404 | static int validate_slab_node(struct kmem_cache *s, |
4405 | struct kmem_cache_node *n, unsigned long *map) | |
53e15af0 CL |
4406 | { |
4407 | unsigned long count = 0; | |
4408 | struct page *page; | |
4409 | unsigned long flags; | |
4410 | ||
4411 | spin_lock_irqsave(&n->list_lock, flags); | |
4412 | ||
916ac052 | 4413 | list_for_each_entry(page, &n->partial, slab_list) { |
434e245d | 4414 | validate_slab_slab(s, page, map); |
53e15af0 CL |
4415 | count++; |
4416 | } | |
4417 | if (count != n->nr_partial) | |
f9f58285 FF |
4418 | pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", |
4419 | s->name, count, n->nr_partial); | |
53e15af0 CL |
4420 | |
4421 | if (!(s->flags & SLAB_STORE_USER)) | |
4422 | goto out; | |
4423 | ||
916ac052 | 4424 | list_for_each_entry(page, &n->full, slab_list) { |
434e245d | 4425 | validate_slab_slab(s, page, map); |
53e15af0 CL |
4426 | count++; |
4427 | } | |
4428 | if (count != atomic_long_read(&n->nr_slabs)) | |
f9f58285 FF |
4429 | pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", |
4430 | s->name, count, atomic_long_read(&n->nr_slabs)); | |
53e15af0 CL |
4431 | |
4432 | out: | |
4433 | spin_unlock_irqrestore(&n->list_lock, flags); | |
4434 | return count; | |
4435 | } | |
4436 | ||
434e245d | 4437 | static long validate_slab_cache(struct kmem_cache *s) |
53e15af0 CL |
4438 | { |
4439 | int node; | |
4440 | unsigned long count = 0; | |
fa45dc25 | 4441 | struct kmem_cache_node *n; |
0684e652 | 4442 | unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); |
434e245d CL |
4443 | |
4444 | if (!map) | |
4445 | return -ENOMEM; | |
53e15af0 CL |
4446 | |
4447 | flush_all(s); | |
fa45dc25 | 4448 | for_each_kmem_cache_node(s, node, n) |
434e245d | 4449 | count += validate_slab_node(s, n, map); |
0684e652 | 4450 | bitmap_free(map); |
53e15af0 CL |
4451 | return count; |
4452 | } | |
88a420e4 | 4453 | /* |
672bba3a | 4454 | * Generate lists of code addresses where slabcache objects are allocated |
88a420e4 CL |
4455 | * and freed. |
4456 | */ | |
4457 | ||
4458 | struct location { | |
4459 | unsigned long count; | |
ce71e27c | 4460 | unsigned long addr; |
45edfa58 CL |
4461 | long long sum_time; |
4462 | long min_time; | |
4463 | long max_time; | |
4464 | long min_pid; | |
4465 | long max_pid; | |
174596a0 | 4466 | DECLARE_BITMAP(cpus, NR_CPUS); |
45edfa58 | 4467 | nodemask_t nodes; |
88a420e4 CL |
4468 | }; |
4469 | ||
4470 | struct loc_track { | |
4471 | unsigned long max; | |
4472 | unsigned long count; | |
4473 | struct location *loc; | |
4474 | }; | |
4475 | ||
4476 | static void free_loc_track(struct loc_track *t) | |
4477 | { | |
4478 | if (t->max) | |
4479 | free_pages((unsigned long)t->loc, | |
4480 | get_order(sizeof(struct location) * t->max)); | |
4481 | } | |
4482 | ||
68dff6a9 | 4483 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
88a420e4 CL |
4484 | { |
4485 | struct location *l; | |
4486 | int order; | |
4487 | ||
88a420e4 CL |
4488 | order = get_order(sizeof(struct location) * max); |
4489 | ||
68dff6a9 | 4490 | l = (void *)__get_free_pages(flags, order); |
88a420e4 CL |
4491 | if (!l) |
4492 | return 0; | |
4493 | ||
4494 | if (t->count) { | |
4495 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
4496 | free_loc_track(t); | |
4497 | } | |
4498 | t->max = max; | |
4499 | t->loc = l; | |
4500 | return 1; | |
4501 | } | |
4502 | ||
4503 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
45edfa58 | 4504 | const struct track *track) |
88a420e4 CL |
4505 | { |
4506 | long start, end, pos; | |
4507 | struct location *l; | |
ce71e27c | 4508 | unsigned long caddr; |
45edfa58 | 4509 | unsigned long age = jiffies - track->when; |
88a420e4 CL |
4510 | |
4511 | start = -1; | |
4512 | end = t->count; | |
4513 | ||
4514 | for ( ; ; ) { | |
4515 | pos = start + (end - start + 1) / 2; | |
4516 | ||
4517 | /* | |
4518 | * There is nothing at "end". If we end up there | |
4519 | * we need to add something to before end. | |
4520 | */ | |
4521 | if (pos == end) | |
4522 | break; | |
4523 | ||
4524 | caddr = t->loc[pos].addr; | |
45edfa58 CL |
4525 | if (track->addr == caddr) { |
4526 | ||
4527 | l = &t->loc[pos]; | |
4528 | l->count++; | |
4529 | if (track->when) { | |
4530 | l->sum_time += age; | |
4531 | if (age < l->min_time) | |
4532 | l->min_time = age; | |
4533 | if (age > l->max_time) | |
4534 | l->max_time = age; | |
4535 | ||
4536 | if (track->pid < l->min_pid) | |
4537 | l->min_pid = track->pid; | |
4538 | if (track->pid > l->max_pid) | |
4539 | l->max_pid = track->pid; | |
4540 | ||
174596a0 RR |
4541 | cpumask_set_cpu(track->cpu, |
4542 | to_cpumask(l->cpus)); | |
45edfa58 CL |
4543 | } |
4544 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
4545 | return 1; |
4546 | } | |
4547 | ||
45edfa58 | 4548 | if (track->addr < caddr) |
88a420e4 CL |
4549 | end = pos; |
4550 | else | |
4551 | start = pos; | |
4552 | } | |
4553 | ||
4554 | /* | |
672bba3a | 4555 | * Not found. Insert new tracking element. |
88a420e4 | 4556 | */ |
68dff6a9 | 4557 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
88a420e4 CL |
4558 | return 0; |
4559 | ||
4560 | l = t->loc + pos; | |
4561 | if (pos < t->count) | |
4562 | memmove(l + 1, l, | |
4563 | (t->count - pos) * sizeof(struct location)); | |
4564 | t->count++; | |
4565 | l->count = 1; | |
45edfa58 CL |
4566 | l->addr = track->addr; |
4567 | l->sum_time = age; | |
4568 | l->min_time = age; | |
4569 | l->max_time = age; | |
4570 | l->min_pid = track->pid; | |
4571 | l->max_pid = track->pid; | |
174596a0 RR |
4572 | cpumask_clear(to_cpumask(l->cpus)); |
4573 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | |
45edfa58 CL |
4574 | nodes_clear(l->nodes); |
4575 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
4576 | return 1; |
4577 | } | |
4578 | ||
4579 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
bbd7d57b | 4580 | struct page *page, enum track_item alloc, |
a5dd5c11 | 4581 | unsigned long *map) |
88a420e4 | 4582 | { |
a973e9dd | 4583 | void *addr = page_address(page); |
88a420e4 CL |
4584 | void *p; |
4585 | ||
39b26464 | 4586 | bitmap_zero(map, page->objects); |
5f80b13a | 4587 | get_map(s, page, map); |
88a420e4 | 4588 | |
224a88be | 4589 | for_each_object(p, s, addr, page->objects) |
45edfa58 CL |
4590 | if (!test_bit(slab_index(p, s, addr), map)) |
4591 | add_location(t, s, get_track(s, p, alloc)); | |
88a420e4 CL |
4592 | } |
4593 | ||
4594 | static int list_locations(struct kmem_cache *s, char *buf, | |
4595 | enum track_item alloc) | |
4596 | { | |
e374d483 | 4597 | int len = 0; |
88a420e4 | 4598 | unsigned long i; |
68dff6a9 | 4599 | struct loc_track t = { 0, 0, NULL }; |
88a420e4 | 4600 | int node; |
fa45dc25 | 4601 | struct kmem_cache_node *n; |
0684e652 | 4602 | unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); |
88a420e4 | 4603 | |
bbd7d57b | 4604 | if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), |
0ee931c4 | 4605 | GFP_KERNEL)) { |
0684e652 | 4606 | bitmap_free(map); |
68dff6a9 | 4607 | return sprintf(buf, "Out of memory\n"); |
bbd7d57b | 4608 | } |
88a420e4 CL |
4609 | /* Push back cpu slabs */ |
4610 | flush_all(s); | |
4611 | ||
fa45dc25 | 4612 | for_each_kmem_cache_node(s, node, n) { |
88a420e4 CL |
4613 | unsigned long flags; |
4614 | struct page *page; | |
4615 | ||
9e86943b | 4616 | if (!atomic_long_read(&n->nr_slabs)) |
88a420e4 CL |
4617 | continue; |
4618 | ||
4619 | spin_lock_irqsave(&n->list_lock, flags); | |
916ac052 | 4620 | list_for_each_entry(page, &n->partial, slab_list) |
bbd7d57b | 4621 | process_slab(&t, s, page, alloc, map); |
916ac052 | 4622 | list_for_each_entry(page, &n->full, slab_list) |
bbd7d57b | 4623 | process_slab(&t, s, page, alloc, map); |
88a420e4 CL |
4624 | spin_unlock_irqrestore(&n->list_lock, flags); |
4625 | } | |
4626 | ||
4627 | for (i = 0; i < t.count; i++) { | |
45edfa58 | 4628 | struct location *l = &t.loc[i]; |
88a420e4 | 4629 | |
9c246247 | 4630 | if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) |
88a420e4 | 4631 | break; |
e374d483 | 4632 | len += sprintf(buf + len, "%7ld ", l->count); |
45edfa58 CL |
4633 | |
4634 | if (l->addr) | |
62c70bce | 4635 | len += sprintf(buf + len, "%pS", (void *)l->addr); |
88a420e4 | 4636 | else |
e374d483 | 4637 | len += sprintf(buf + len, "<not-available>"); |
45edfa58 CL |
4638 | |
4639 | if (l->sum_time != l->min_time) { | |
e374d483 | 4640 | len += sprintf(buf + len, " age=%ld/%ld/%ld", |
f8bd2258 RZ |
4641 | l->min_time, |
4642 | (long)div_u64(l->sum_time, l->count), | |
4643 | l->max_time); | |
45edfa58 | 4644 | } else |
e374d483 | 4645 | len += sprintf(buf + len, " age=%ld", |
45edfa58 CL |
4646 | l->min_time); |
4647 | ||
4648 | if (l->min_pid != l->max_pid) | |
e374d483 | 4649 | len += sprintf(buf + len, " pid=%ld-%ld", |
45edfa58 CL |
4650 | l->min_pid, l->max_pid); |
4651 | else | |
e374d483 | 4652 | len += sprintf(buf + len, " pid=%ld", |
45edfa58 CL |
4653 | l->min_pid); |
4654 | ||
174596a0 RR |
4655 | if (num_online_cpus() > 1 && |
4656 | !cpumask_empty(to_cpumask(l->cpus)) && | |
5024c1d7 TH |
4657 | len < PAGE_SIZE - 60) |
4658 | len += scnprintf(buf + len, PAGE_SIZE - len - 50, | |
4659 | " cpus=%*pbl", | |
4660 | cpumask_pr_args(to_cpumask(l->cpus))); | |
45edfa58 | 4661 | |
62bc62a8 | 4662 | if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && |
5024c1d7 TH |
4663 | len < PAGE_SIZE - 60) |
4664 | len += scnprintf(buf + len, PAGE_SIZE - len - 50, | |
4665 | " nodes=%*pbl", | |
4666 | nodemask_pr_args(&l->nodes)); | |
45edfa58 | 4667 | |
e374d483 | 4668 | len += sprintf(buf + len, "\n"); |
88a420e4 CL |
4669 | } |
4670 | ||
4671 | free_loc_track(&t); | |
0684e652 | 4672 | bitmap_free(map); |
88a420e4 | 4673 | if (!t.count) |
e374d483 HH |
4674 | len += sprintf(buf, "No data\n"); |
4675 | return len; | |
88a420e4 | 4676 | } |
6dfd1b65 | 4677 | #endif /* CONFIG_SLUB_DEBUG */ |
88a420e4 | 4678 | |
a5a84755 | 4679 | #ifdef SLUB_RESILIENCY_TEST |
c07b8183 | 4680 | static void __init resiliency_test(void) |
a5a84755 CL |
4681 | { |
4682 | u8 *p; | |
cc252eae | 4683 | int type = KMALLOC_NORMAL; |
a5a84755 | 4684 | |
95a05b42 | 4685 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); |
a5a84755 | 4686 | |
f9f58285 FF |
4687 | pr_err("SLUB resiliency testing\n"); |
4688 | pr_err("-----------------------\n"); | |
4689 | pr_err("A. Corruption after allocation\n"); | |
a5a84755 CL |
4690 | |
4691 | p = kzalloc(16, GFP_KERNEL); | |
4692 | p[16] = 0x12; | |
f9f58285 FF |
4693 | pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", |
4694 | p + 16); | |
a5a84755 | 4695 | |
cc252eae | 4696 | validate_slab_cache(kmalloc_caches[type][4]); |
a5a84755 CL |
4697 | |
4698 | /* Hmmm... The next two are dangerous */ | |
4699 | p = kzalloc(32, GFP_KERNEL); | |
4700 | p[32 + sizeof(void *)] = 0x34; | |
f9f58285 FF |
4701 | pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", |
4702 | p); | |
4703 | pr_err("If allocated object is overwritten then not detectable\n\n"); | |
a5a84755 | 4704 | |
cc252eae | 4705 | validate_slab_cache(kmalloc_caches[type][5]); |
a5a84755 CL |
4706 | p = kzalloc(64, GFP_KERNEL); |
4707 | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | |
4708 | *p = 0x56; | |
f9f58285 FF |
4709 | pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", |
4710 | p); | |
4711 | pr_err("If allocated object is overwritten then not detectable\n\n"); | |
cc252eae | 4712 | validate_slab_cache(kmalloc_caches[type][6]); |
a5a84755 | 4713 | |
f9f58285 | 4714 | pr_err("\nB. Corruption after free\n"); |
a5a84755 CL |
4715 | p = kzalloc(128, GFP_KERNEL); |
4716 | kfree(p); | |
4717 | *p = 0x78; | |
f9f58285 | 4718 | pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); |
cc252eae | 4719 | validate_slab_cache(kmalloc_caches[type][7]); |
a5a84755 CL |
4720 | |
4721 | p = kzalloc(256, GFP_KERNEL); | |
4722 | kfree(p); | |
4723 | p[50] = 0x9a; | |
f9f58285 | 4724 | pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); |
cc252eae | 4725 | validate_slab_cache(kmalloc_caches[type][8]); |
a5a84755 CL |
4726 | |
4727 | p = kzalloc(512, GFP_KERNEL); | |
4728 | kfree(p); | |
4729 | p[512] = 0xab; | |
f9f58285 | 4730 | pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); |
cc252eae | 4731 | validate_slab_cache(kmalloc_caches[type][9]); |
a5a84755 CL |
4732 | } |
4733 | #else | |
4734 | #ifdef CONFIG_SYSFS | |
4735 | static void resiliency_test(void) {}; | |
4736 | #endif | |
6dfd1b65 | 4737 | #endif /* SLUB_RESILIENCY_TEST */ |
a5a84755 | 4738 | |
ab4d5ed5 | 4739 | #ifdef CONFIG_SYSFS |
81819f0f | 4740 | enum slab_stat_type { |
205ab99d CL |
4741 | SL_ALL, /* All slabs */ |
4742 | SL_PARTIAL, /* Only partially allocated slabs */ | |
4743 | SL_CPU, /* Only slabs used for cpu caches */ | |
4744 | SL_OBJECTS, /* Determine allocated objects not slabs */ | |
4745 | SL_TOTAL /* Determine object capacity not slabs */ | |
81819f0f CL |
4746 | }; |
4747 | ||
205ab99d | 4748 | #define SO_ALL (1 << SL_ALL) |
81819f0f CL |
4749 | #define SO_PARTIAL (1 << SL_PARTIAL) |
4750 | #define SO_CPU (1 << SL_CPU) | |
4751 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
205ab99d | 4752 | #define SO_TOTAL (1 << SL_TOTAL) |
81819f0f | 4753 | |
1663f26d TH |
4754 | #ifdef CONFIG_MEMCG |
4755 | static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); | |
4756 | ||
4757 | static int __init setup_slub_memcg_sysfs(char *str) | |
4758 | { | |
4759 | int v; | |
4760 | ||
4761 | if (get_option(&str, &v) > 0) | |
4762 | memcg_sysfs_enabled = v; | |
4763 | ||
4764 | return 1; | |
4765 | } | |
4766 | ||
4767 | __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); | |
4768 | #endif | |
4769 | ||
62e5c4b4 CG |
4770 | static ssize_t show_slab_objects(struct kmem_cache *s, |
4771 | char *buf, unsigned long flags) | |
81819f0f CL |
4772 | { |
4773 | unsigned long total = 0; | |
81819f0f CL |
4774 | int node; |
4775 | int x; | |
4776 | unsigned long *nodes; | |
81819f0f | 4777 | |
6396bb22 | 4778 | nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); |
62e5c4b4 CG |
4779 | if (!nodes) |
4780 | return -ENOMEM; | |
81819f0f | 4781 | |
205ab99d CL |
4782 | if (flags & SO_CPU) { |
4783 | int cpu; | |
81819f0f | 4784 | |
205ab99d | 4785 | for_each_possible_cpu(cpu) { |
d0e0ac97 CG |
4786 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, |
4787 | cpu); | |
ec3ab083 | 4788 | int node; |
49e22585 | 4789 | struct page *page; |
dfb4f096 | 4790 | |
4db0c3c2 | 4791 | page = READ_ONCE(c->page); |
ec3ab083 CL |
4792 | if (!page) |
4793 | continue; | |
205ab99d | 4794 | |
ec3ab083 CL |
4795 | node = page_to_nid(page); |
4796 | if (flags & SO_TOTAL) | |
4797 | x = page->objects; | |
4798 | else if (flags & SO_OBJECTS) | |
4799 | x = page->inuse; | |
4800 | else | |
4801 | x = 1; | |
49e22585 | 4802 | |
ec3ab083 CL |
4803 | total += x; |
4804 | nodes[node] += x; | |
4805 | ||
a93cf07b | 4806 | page = slub_percpu_partial_read_once(c); |
49e22585 | 4807 | if (page) { |
8afb1474 LZ |
4808 | node = page_to_nid(page); |
4809 | if (flags & SO_TOTAL) | |
4810 | WARN_ON_ONCE(1); | |
4811 | else if (flags & SO_OBJECTS) | |
4812 | WARN_ON_ONCE(1); | |
4813 | else | |
4814 | x = page->pages; | |
bc6697d8 ED |
4815 | total += x; |
4816 | nodes[node] += x; | |
49e22585 | 4817 | } |
81819f0f CL |
4818 | } |
4819 | } | |
4820 | ||
bfc8c901 | 4821 | get_online_mems(); |
ab4d5ed5 | 4822 | #ifdef CONFIG_SLUB_DEBUG |
205ab99d | 4823 | if (flags & SO_ALL) { |
fa45dc25 CL |
4824 | struct kmem_cache_node *n; |
4825 | ||
4826 | for_each_kmem_cache_node(s, node, n) { | |
205ab99d | 4827 | |
d0e0ac97 CG |
4828 | if (flags & SO_TOTAL) |
4829 | x = atomic_long_read(&n->total_objects); | |
4830 | else if (flags & SO_OBJECTS) | |
4831 | x = atomic_long_read(&n->total_objects) - | |
4832 | count_partial(n, count_free); | |
81819f0f | 4833 | else |
205ab99d | 4834 | x = atomic_long_read(&n->nr_slabs); |
81819f0f CL |
4835 | total += x; |
4836 | nodes[node] += x; | |
4837 | } | |
4838 | ||
ab4d5ed5 CL |
4839 | } else |
4840 | #endif | |
4841 | if (flags & SO_PARTIAL) { | |
fa45dc25 | 4842 | struct kmem_cache_node *n; |
81819f0f | 4843 | |
fa45dc25 | 4844 | for_each_kmem_cache_node(s, node, n) { |
205ab99d CL |
4845 | if (flags & SO_TOTAL) |
4846 | x = count_partial(n, count_total); | |
4847 | else if (flags & SO_OBJECTS) | |
4848 | x = count_partial(n, count_inuse); | |
81819f0f | 4849 | else |
205ab99d | 4850 | x = n->nr_partial; |
81819f0f CL |
4851 | total += x; |
4852 | nodes[node] += x; | |
4853 | } | |
4854 | } | |
81819f0f CL |
4855 | x = sprintf(buf, "%lu", total); |
4856 | #ifdef CONFIG_NUMA | |
fa45dc25 | 4857 | for (node = 0; node < nr_node_ids; node++) |
81819f0f CL |
4858 | if (nodes[node]) |
4859 | x += sprintf(buf + x, " N%d=%lu", | |
4860 | node, nodes[node]); | |
4861 | #endif | |
bfc8c901 | 4862 | put_online_mems(); |
81819f0f CL |
4863 | kfree(nodes); |
4864 | return x + sprintf(buf + x, "\n"); | |
4865 | } | |
4866 | ||
ab4d5ed5 | 4867 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
4868 | static int any_slab_objects(struct kmem_cache *s) |
4869 | { | |
4870 | int node; | |
fa45dc25 | 4871 | struct kmem_cache_node *n; |
81819f0f | 4872 | |
fa45dc25 | 4873 | for_each_kmem_cache_node(s, node, n) |
4ea33e2d | 4874 | if (atomic_long_read(&n->total_objects)) |
81819f0f | 4875 | return 1; |
fa45dc25 | 4876 | |
81819f0f CL |
4877 | return 0; |
4878 | } | |
ab4d5ed5 | 4879 | #endif |
81819f0f CL |
4880 | |
4881 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | |
497888cf | 4882 | #define to_slab(n) container_of(n, struct kmem_cache, kobj) |
81819f0f CL |
4883 | |
4884 | struct slab_attribute { | |
4885 | struct attribute attr; | |
4886 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
4887 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
4888 | }; | |
4889 | ||
4890 | #define SLAB_ATTR_RO(_name) \ | |
ab067e99 VK |
4891 | static struct slab_attribute _name##_attr = \ |
4892 | __ATTR(_name, 0400, _name##_show, NULL) | |
81819f0f CL |
4893 | |
4894 | #define SLAB_ATTR(_name) \ | |
4895 | static struct slab_attribute _name##_attr = \ | |
ab067e99 | 4896 | __ATTR(_name, 0600, _name##_show, _name##_store) |
81819f0f | 4897 | |
81819f0f CL |
4898 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
4899 | { | |
44065b2e | 4900 | return sprintf(buf, "%u\n", s->size); |
81819f0f CL |
4901 | } |
4902 | SLAB_ATTR_RO(slab_size); | |
4903 | ||
4904 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
4905 | { | |
3a3791ec | 4906 | return sprintf(buf, "%u\n", s->align); |
81819f0f CL |
4907 | } |
4908 | SLAB_ATTR_RO(align); | |
4909 | ||
4910 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
4911 | { | |
1b473f29 | 4912 | return sprintf(buf, "%u\n", s->object_size); |
81819f0f CL |
4913 | } |
4914 | SLAB_ATTR_RO(object_size); | |
4915 | ||
4916 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
4917 | { | |
19af27af | 4918 | return sprintf(buf, "%u\n", oo_objects(s->oo)); |
81819f0f CL |
4919 | } |
4920 | SLAB_ATTR_RO(objs_per_slab); | |
4921 | ||
06b285dc CL |
4922 | static ssize_t order_store(struct kmem_cache *s, |
4923 | const char *buf, size_t length) | |
4924 | { | |
19af27af | 4925 | unsigned int order; |
0121c619 CL |
4926 | int err; |
4927 | ||
19af27af | 4928 | err = kstrtouint(buf, 10, &order); |
0121c619 CL |
4929 | if (err) |
4930 | return err; | |
06b285dc CL |
4931 | |
4932 | if (order > slub_max_order || order < slub_min_order) | |
4933 | return -EINVAL; | |
4934 | ||
4935 | calculate_sizes(s, order); | |
4936 | return length; | |
4937 | } | |
4938 | ||
81819f0f CL |
4939 | static ssize_t order_show(struct kmem_cache *s, char *buf) |
4940 | { | |
19af27af | 4941 | return sprintf(buf, "%u\n", oo_order(s->oo)); |
81819f0f | 4942 | } |
06b285dc | 4943 | SLAB_ATTR(order); |
81819f0f | 4944 | |
73d342b1 DR |
4945 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) |
4946 | { | |
4947 | return sprintf(buf, "%lu\n", s->min_partial); | |
4948 | } | |
4949 | ||
4950 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | |
4951 | size_t length) | |
4952 | { | |
4953 | unsigned long min; | |
4954 | int err; | |
4955 | ||
3dbb95f7 | 4956 | err = kstrtoul(buf, 10, &min); |
73d342b1 DR |
4957 | if (err) |
4958 | return err; | |
4959 | ||
c0bdb232 | 4960 | set_min_partial(s, min); |
73d342b1 DR |
4961 | return length; |
4962 | } | |
4963 | SLAB_ATTR(min_partial); | |
4964 | ||
49e22585 CL |
4965 | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) |
4966 | { | |
e6d0e1dc | 4967 | return sprintf(buf, "%u\n", slub_cpu_partial(s)); |
49e22585 CL |
4968 | } |
4969 | ||
4970 | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, | |
4971 | size_t length) | |
4972 | { | |
e5d9998f | 4973 | unsigned int objects; |
49e22585 CL |
4974 | int err; |
4975 | ||
e5d9998f | 4976 | err = kstrtouint(buf, 10, &objects); |
49e22585 CL |
4977 | if (err) |
4978 | return err; | |
345c905d | 4979 | if (objects && !kmem_cache_has_cpu_partial(s)) |
74ee4ef1 | 4980 | return -EINVAL; |
49e22585 | 4981 | |
e6d0e1dc | 4982 | slub_set_cpu_partial(s, objects); |
49e22585 CL |
4983 | flush_all(s); |
4984 | return length; | |
4985 | } | |
4986 | SLAB_ATTR(cpu_partial); | |
4987 | ||
81819f0f CL |
4988 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
4989 | { | |
62c70bce JP |
4990 | if (!s->ctor) |
4991 | return 0; | |
4992 | return sprintf(buf, "%pS\n", s->ctor); | |
81819f0f CL |
4993 | } |
4994 | SLAB_ATTR_RO(ctor); | |
4995 | ||
81819f0f CL |
4996 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
4997 | { | |
4307c14f | 4998 | return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); |
81819f0f CL |
4999 | } |
5000 | SLAB_ATTR_RO(aliases); | |
5001 | ||
81819f0f CL |
5002 | static ssize_t partial_show(struct kmem_cache *s, char *buf) |
5003 | { | |
d9acf4b7 | 5004 | return show_slab_objects(s, buf, SO_PARTIAL); |
81819f0f CL |
5005 | } |
5006 | SLAB_ATTR_RO(partial); | |
5007 | ||
5008 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
5009 | { | |
d9acf4b7 | 5010 | return show_slab_objects(s, buf, SO_CPU); |
81819f0f CL |
5011 | } |
5012 | SLAB_ATTR_RO(cpu_slabs); | |
5013 | ||
5014 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | |
5015 | { | |
205ab99d | 5016 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); |
81819f0f CL |
5017 | } |
5018 | SLAB_ATTR_RO(objects); | |
5019 | ||
205ab99d CL |
5020 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
5021 | { | |
5022 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | |
5023 | } | |
5024 | SLAB_ATTR_RO(objects_partial); | |
5025 | ||
49e22585 CL |
5026 | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) |
5027 | { | |
5028 | int objects = 0; | |
5029 | int pages = 0; | |
5030 | int cpu; | |
5031 | int len; | |
5032 | ||
5033 | for_each_online_cpu(cpu) { | |
a93cf07b WY |
5034 | struct page *page; |
5035 | ||
5036 | page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | |
49e22585 CL |
5037 | |
5038 | if (page) { | |
5039 | pages += page->pages; | |
5040 | objects += page->pobjects; | |
5041 | } | |
5042 | } | |
5043 | ||
5044 | len = sprintf(buf, "%d(%d)", objects, pages); | |
5045 | ||
5046 | #ifdef CONFIG_SMP | |
5047 | for_each_online_cpu(cpu) { | |
a93cf07b WY |
5048 | struct page *page; |
5049 | ||
5050 | page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | |
49e22585 CL |
5051 | |
5052 | if (page && len < PAGE_SIZE - 20) | |
5053 | len += sprintf(buf + len, " C%d=%d(%d)", cpu, | |
5054 | page->pobjects, page->pages); | |
5055 | } | |
5056 | #endif | |
5057 | return len + sprintf(buf + len, "\n"); | |
5058 | } | |
5059 | SLAB_ATTR_RO(slabs_cpu_partial); | |
5060 | ||
a5a84755 CL |
5061 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) |
5062 | { | |
5063 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | |
5064 | } | |
5065 | ||
5066 | static ssize_t reclaim_account_store(struct kmem_cache *s, | |
5067 | const char *buf, size_t length) | |
5068 | { | |
5069 | s->flags &= ~SLAB_RECLAIM_ACCOUNT; | |
5070 | if (buf[0] == '1') | |
5071 | s->flags |= SLAB_RECLAIM_ACCOUNT; | |
5072 | return length; | |
5073 | } | |
5074 | SLAB_ATTR(reclaim_account); | |
5075 | ||
5076 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
5077 | { | |
5078 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); | |
5079 | } | |
5080 | SLAB_ATTR_RO(hwcache_align); | |
5081 | ||
5082 | #ifdef CONFIG_ZONE_DMA | |
5083 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
5084 | { | |
5085 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | |
5086 | } | |
5087 | SLAB_ATTR_RO(cache_dma); | |
5088 | #endif | |
5089 | ||
8eb8284b DW |
5090 | static ssize_t usersize_show(struct kmem_cache *s, char *buf) |
5091 | { | |
7bbdb81e | 5092 | return sprintf(buf, "%u\n", s->usersize); |
8eb8284b DW |
5093 | } |
5094 | SLAB_ATTR_RO(usersize); | |
5095 | ||
a5a84755 CL |
5096 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) |
5097 | { | |
5f0d5a3a | 5098 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); |
a5a84755 CL |
5099 | } |
5100 | SLAB_ATTR_RO(destroy_by_rcu); | |
5101 | ||
ab4d5ed5 | 5102 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5103 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) |
5104 | { | |
5105 | return show_slab_objects(s, buf, SO_ALL); | |
5106 | } | |
5107 | SLAB_ATTR_RO(slabs); | |
5108 | ||
205ab99d CL |
5109 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) |
5110 | { | |
5111 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | |
5112 | } | |
5113 | SLAB_ATTR_RO(total_objects); | |
5114 | ||
81819f0f CL |
5115 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
5116 | { | |
becfda68 | 5117 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); |
81819f0f CL |
5118 | } |
5119 | ||
5120 | static ssize_t sanity_checks_store(struct kmem_cache *s, | |
5121 | const char *buf, size_t length) | |
5122 | { | |
becfda68 | 5123 | s->flags &= ~SLAB_CONSISTENCY_CHECKS; |
b789ef51 CL |
5124 | if (buf[0] == '1') { |
5125 | s->flags &= ~__CMPXCHG_DOUBLE; | |
becfda68 | 5126 | s->flags |= SLAB_CONSISTENCY_CHECKS; |
b789ef51 | 5127 | } |
81819f0f CL |
5128 | return length; |
5129 | } | |
5130 | SLAB_ATTR(sanity_checks); | |
5131 | ||
5132 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
5133 | { | |
5134 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | |
5135 | } | |
5136 | ||
5137 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | |
5138 | size_t length) | |
5139 | { | |
c9e16131 CL |
5140 | /* |
5141 | * Tracing a merged cache is going to give confusing results | |
5142 | * as well as cause other issues like converting a mergeable | |
5143 | * cache into an umergeable one. | |
5144 | */ | |
5145 | if (s->refcount > 1) | |
5146 | return -EINVAL; | |
5147 | ||
81819f0f | 5148 | s->flags &= ~SLAB_TRACE; |
b789ef51 CL |
5149 | if (buf[0] == '1') { |
5150 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 5151 | s->flags |= SLAB_TRACE; |
b789ef51 | 5152 | } |
81819f0f CL |
5153 | return length; |
5154 | } | |
5155 | SLAB_ATTR(trace); | |
5156 | ||
81819f0f CL |
5157 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) |
5158 | { | |
5159 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | |
5160 | } | |
5161 | ||
5162 | static ssize_t red_zone_store(struct kmem_cache *s, | |
5163 | const char *buf, size_t length) | |
5164 | { | |
5165 | if (any_slab_objects(s)) | |
5166 | return -EBUSY; | |
5167 | ||
5168 | s->flags &= ~SLAB_RED_ZONE; | |
b789ef51 | 5169 | if (buf[0] == '1') { |
81819f0f | 5170 | s->flags |= SLAB_RED_ZONE; |
b789ef51 | 5171 | } |
06b285dc | 5172 | calculate_sizes(s, -1); |
81819f0f CL |
5173 | return length; |
5174 | } | |
5175 | SLAB_ATTR(red_zone); | |
5176 | ||
5177 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
5178 | { | |
5179 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | |
5180 | } | |
5181 | ||
5182 | static ssize_t poison_store(struct kmem_cache *s, | |
5183 | const char *buf, size_t length) | |
5184 | { | |
5185 | if (any_slab_objects(s)) | |
5186 | return -EBUSY; | |
5187 | ||
5188 | s->flags &= ~SLAB_POISON; | |
b789ef51 | 5189 | if (buf[0] == '1') { |
81819f0f | 5190 | s->flags |= SLAB_POISON; |
b789ef51 | 5191 | } |
06b285dc | 5192 | calculate_sizes(s, -1); |
81819f0f CL |
5193 | return length; |
5194 | } | |
5195 | SLAB_ATTR(poison); | |
5196 | ||
5197 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
5198 | { | |
5199 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | |
5200 | } | |
5201 | ||
5202 | static ssize_t store_user_store(struct kmem_cache *s, | |
5203 | const char *buf, size_t length) | |
5204 | { | |
5205 | if (any_slab_objects(s)) | |
5206 | return -EBUSY; | |
5207 | ||
5208 | s->flags &= ~SLAB_STORE_USER; | |
b789ef51 CL |
5209 | if (buf[0] == '1') { |
5210 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 5211 | s->flags |= SLAB_STORE_USER; |
b789ef51 | 5212 | } |
06b285dc | 5213 | calculate_sizes(s, -1); |
81819f0f CL |
5214 | return length; |
5215 | } | |
5216 | SLAB_ATTR(store_user); | |
5217 | ||
53e15af0 CL |
5218 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
5219 | { | |
5220 | return 0; | |
5221 | } | |
5222 | ||
5223 | static ssize_t validate_store(struct kmem_cache *s, | |
5224 | const char *buf, size_t length) | |
5225 | { | |
434e245d CL |
5226 | int ret = -EINVAL; |
5227 | ||
5228 | if (buf[0] == '1') { | |
5229 | ret = validate_slab_cache(s); | |
5230 | if (ret >= 0) | |
5231 | ret = length; | |
5232 | } | |
5233 | return ret; | |
53e15af0 CL |
5234 | } |
5235 | SLAB_ATTR(validate); | |
a5a84755 CL |
5236 | |
5237 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) | |
5238 | { | |
5239 | if (!(s->flags & SLAB_STORE_USER)) | |
5240 | return -ENOSYS; | |
5241 | return list_locations(s, buf, TRACK_ALLOC); | |
5242 | } | |
5243 | SLAB_ATTR_RO(alloc_calls); | |
5244 | ||
5245 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | |
5246 | { | |
5247 | if (!(s->flags & SLAB_STORE_USER)) | |
5248 | return -ENOSYS; | |
5249 | return list_locations(s, buf, TRACK_FREE); | |
5250 | } | |
5251 | SLAB_ATTR_RO(free_calls); | |
5252 | #endif /* CONFIG_SLUB_DEBUG */ | |
5253 | ||
5254 | #ifdef CONFIG_FAILSLAB | |
5255 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | |
5256 | { | |
5257 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); | |
5258 | } | |
5259 | ||
5260 | static ssize_t failslab_store(struct kmem_cache *s, const char *buf, | |
5261 | size_t length) | |
5262 | { | |
c9e16131 CL |
5263 | if (s->refcount > 1) |
5264 | return -EINVAL; | |
5265 | ||
a5a84755 CL |
5266 | s->flags &= ~SLAB_FAILSLAB; |
5267 | if (buf[0] == '1') | |
5268 | s->flags |= SLAB_FAILSLAB; | |
5269 | return length; | |
5270 | } | |
5271 | SLAB_ATTR(failslab); | |
ab4d5ed5 | 5272 | #endif |
53e15af0 | 5273 | |
2086d26a CL |
5274 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
5275 | { | |
5276 | return 0; | |
5277 | } | |
5278 | ||
5279 | static ssize_t shrink_store(struct kmem_cache *s, | |
5280 | const char *buf, size_t length) | |
5281 | { | |
832f37f5 VD |
5282 | if (buf[0] == '1') |
5283 | kmem_cache_shrink(s); | |
5284 | else | |
2086d26a CL |
5285 | return -EINVAL; |
5286 | return length; | |
5287 | } | |
5288 | SLAB_ATTR(shrink); | |
5289 | ||
81819f0f | 5290 | #ifdef CONFIG_NUMA |
9824601e | 5291 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
81819f0f | 5292 | { |
eb7235eb | 5293 | return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); |
81819f0f CL |
5294 | } |
5295 | ||
9824601e | 5296 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
81819f0f CL |
5297 | const char *buf, size_t length) |
5298 | { | |
eb7235eb | 5299 | unsigned int ratio; |
0121c619 CL |
5300 | int err; |
5301 | ||
eb7235eb | 5302 | err = kstrtouint(buf, 10, &ratio); |
0121c619 CL |
5303 | if (err) |
5304 | return err; | |
eb7235eb AD |
5305 | if (ratio > 100) |
5306 | return -ERANGE; | |
0121c619 | 5307 | |
eb7235eb | 5308 | s->remote_node_defrag_ratio = ratio * 10; |
81819f0f | 5309 | |
81819f0f CL |
5310 | return length; |
5311 | } | |
9824601e | 5312 | SLAB_ATTR(remote_node_defrag_ratio); |
81819f0f CL |
5313 | #endif |
5314 | ||
8ff12cfc | 5315 | #ifdef CONFIG_SLUB_STATS |
8ff12cfc CL |
5316 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
5317 | { | |
5318 | unsigned long sum = 0; | |
5319 | int cpu; | |
5320 | int len; | |
6da2ec56 | 5321 | int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); |
8ff12cfc CL |
5322 | |
5323 | if (!data) | |
5324 | return -ENOMEM; | |
5325 | ||
5326 | for_each_online_cpu(cpu) { | |
9dfc6e68 | 5327 | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; |
8ff12cfc CL |
5328 | |
5329 | data[cpu] = x; | |
5330 | sum += x; | |
5331 | } | |
5332 | ||
5333 | len = sprintf(buf, "%lu", sum); | |
5334 | ||
50ef37b9 | 5335 | #ifdef CONFIG_SMP |
8ff12cfc CL |
5336 | for_each_online_cpu(cpu) { |
5337 | if (data[cpu] && len < PAGE_SIZE - 20) | |
50ef37b9 | 5338 | len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); |
8ff12cfc | 5339 | } |
50ef37b9 | 5340 | #endif |
8ff12cfc CL |
5341 | kfree(data); |
5342 | return len + sprintf(buf + len, "\n"); | |
5343 | } | |
5344 | ||
78eb00cc DR |
5345 | static void clear_stat(struct kmem_cache *s, enum stat_item si) |
5346 | { | |
5347 | int cpu; | |
5348 | ||
5349 | for_each_online_cpu(cpu) | |
9dfc6e68 | 5350 | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; |
78eb00cc DR |
5351 | } |
5352 | ||
8ff12cfc CL |
5353 | #define STAT_ATTR(si, text) \ |
5354 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ | |
5355 | { \ | |
5356 | return show_stat(s, buf, si); \ | |
5357 | } \ | |
78eb00cc DR |
5358 | static ssize_t text##_store(struct kmem_cache *s, \ |
5359 | const char *buf, size_t length) \ | |
5360 | { \ | |
5361 | if (buf[0] != '0') \ | |
5362 | return -EINVAL; \ | |
5363 | clear_stat(s, si); \ | |
5364 | return length; \ | |
5365 | } \ | |
5366 | SLAB_ATTR(text); \ | |
8ff12cfc CL |
5367 | |
5368 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | |
5369 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | |
5370 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | |
5371 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | |
5372 | STAT_ATTR(FREE_FROZEN, free_frozen); | |
5373 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | |
5374 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | |
5375 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | |
5376 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | |
5377 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | |
e36a2652 | 5378 | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); |
8ff12cfc CL |
5379 | STAT_ATTR(FREE_SLAB, free_slab); |
5380 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | |
5381 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | |
5382 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | |
5383 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | |
5384 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | |
5385 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | |
03e404af | 5386 | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); |
65c3376a | 5387 | STAT_ATTR(ORDER_FALLBACK, order_fallback); |
b789ef51 CL |
5388 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); |
5389 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | |
49e22585 CL |
5390 | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); |
5391 | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); | |
8028dcea AS |
5392 | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); |
5393 | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); | |
6dfd1b65 | 5394 | #endif /* CONFIG_SLUB_STATS */ |
8ff12cfc | 5395 | |
06428780 | 5396 | static struct attribute *slab_attrs[] = { |
81819f0f CL |
5397 | &slab_size_attr.attr, |
5398 | &object_size_attr.attr, | |
5399 | &objs_per_slab_attr.attr, | |
5400 | &order_attr.attr, | |
73d342b1 | 5401 | &min_partial_attr.attr, |
49e22585 | 5402 | &cpu_partial_attr.attr, |
81819f0f | 5403 | &objects_attr.attr, |
205ab99d | 5404 | &objects_partial_attr.attr, |
81819f0f CL |
5405 | &partial_attr.attr, |
5406 | &cpu_slabs_attr.attr, | |
5407 | &ctor_attr.attr, | |
81819f0f CL |
5408 | &aliases_attr.attr, |
5409 | &align_attr.attr, | |
81819f0f CL |
5410 | &hwcache_align_attr.attr, |
5411 | &reclaim_account_attr.attr, | |
5412 | &destroy_by_rcu_attr.attr, | |
a5a84755 | 5413 | &shrink_attr.attr, |
49e22585 | 5414 | &slabs_cpu_partial_attr.attr, |
ab4d5ed5 | 5415 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5416 | &total_objects_attr.attr, |
5417 | &slabs_attr.attr, | |
5418 | &sanity_checks_attr.attr, | |
5419 | &trace_attr.attr, | |
81819f0f CL |
5420 | &red_zone_attr.attr, |
5421 | &poison_attr.attr, | |
5422 | &store_user_attr.attr, | |
53e15af0 | 5423 | &validate_attr.attr, |
88a420e4 CL |
5424 | &alloc_calls_attr.attr, |
5425 | &free_calls_attr.attr, | |
ab4d5ed5 | 5426 | #endif |
81819f0f CL |
5427 | #ifdef CONFIG_ZONE_DMA |
5428 | &cache_dma_attr.attr, | |
5429 | #endif | |
5430 | #ifdef CONFIG_NUMA | |
9824601e | 5431 | &remote_node_defrag_ratio_attr.attr, |
8ff12cfc CL |
5432 | #endif |
5433 | #ifdef CONFIG_SLUB_STATS | |
5434 | &alloc_fastpath_attr.attr, | |
5435 | &alloc_slowpath_attr.attr, | |
5436 | &free_fastpath_attr.attr, | |
5437 | &free_slowpath_attr.attr, | |
5438 | &free_frozen_attr.attr, | |
5439 | &free_add_partial_attr.attr, | |
5440 | &free_remove_partial_attr.attr, | |
5441 | &alloc_from_partial_attr.attr, | |
5442 | &alloc_slab_attr.attr, | |
5443 | &alloc_refill_attr.attr, | |
e36a2652 | 5444 | &alloc_node_mismatch_attr.attr, |
8ff12cfc CL |
5445 | &free_slab_attr.attr, |
5446 | &cpuslab_flush_attr.attr, | |
5447 | &deactivate_full_attr.attr, | |
5448 | &deactivate_empty_attr.attr, | |
5449 | &deactivate_to_head_attr.attr, | |
5450 | &deactivate_to_tail_attr.attr, | |
5451 | &deactivate_remote_frees_attr.attr, | |
03e404af | 5452 | &deactivate_bypass_attr.attr, |
65c3376a | 5453 | &order_fallback_attr.attr, |
b789ef51 CL |
5454 | &cmpxchg_double_fail_attr.attr, |
5455 | &cmpxchg_double_cpu_fail_attr.attr, | |
49e22585 CL |
5456 | &cpu_partial_alloc_attr.attr, |
5457 | &cpu_partial_free_attr.attr, | |
8028dcea AS |
5458 | &cpu_partial_node_attr.attr, |
5459 | &cpu_partial_drain_attr.attr, | |
81819f0f | 5460 | #endif |
4c13dd3b DM |
5461 | #ifdef CONFIG_FAILSLAB |
5462 | &failslab_attr.attr, | |
5463 | #endif | |
8eb8284b | 5464 | &usersize_attr.attr, |
4c13dd3b | 5465 | |
81819f0f CL |
5466 | NULL |
5467 | }; | |
5468 | ||
1fdaaa23 | 5469 | static const struct attribute_group slab_attr_group = { |
81819f0f CL |
5470 | .attrs = slab_attrs, |
5471 | }; | |
5472 | ||
5473 | static ssize_t slab_attr_show(struct kobject *kobj, | |
5474 | struct attribute *attr, | |
5475 | char *buf) | |
5476 | { | |
5477 | struct slab_attribute *attribute; | |
5478 | struct kmem_cache *s; | |
5479 | int err; | |
5480 | ||
5481 | attribute = to_slab_attr(attr); | |
5482 | s = to_slab(kobj); | |
5483 | ||
5484 | if (!attribute->show) | |
5485 | return -EIO; | |
5486 | ||
5487 | err = attribute->show(s, buf); | |
5488 | ||
5489 | return err; | |
5490 | } | |
5491 | ||
5492 | static ssize_t slab_attr_store(struct kobject *kobj, | |
5493 | struct attribute *attr, | |
5494 | const char *buf, size_t len) | |
5495 | { | |
5496 | struct slab_attribute *attribute; | |
5497 | struct kmem_cache *s; | |
5498 | int err; | |
5499 | ||
5500 | attribute = to_slab_attr(attr); | |
5501 | s = to_slab(kobj); | |
5502 | ||
5503 | if (!attribute->store) | |
5504 | return -EIO; | |
5505 | ||
5506 | err = attribute->store(s, buf, len); | |
127424c8 | 5507 | #ifdef CONFIG_MEMCG |
107dab5c | 5508 | if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { |
426589f5 | 5509 | struct kmem_cache *c; |
81819f0f | 5510 | |
107dab5c GC |
5511 | mutex_lock(&slab_mutex); |
5512 | if (s->max_attr_size < len) | |
5513 | s->max_attr_size = len; | |
5514 | ||
ebe945c2 GC |
5515 | /* |
5516 | * This is a best effort propagation, so this function's return | |
5517 | * value will be determined by the parent cache only. This is | |
5518 | * basically because not all attributes will have a well | |
5519 | * defined semantics for rollbacks - most of the actions will | |
5520 | * have permanent effects. | |
5521 | * | |
5522 | * Returning the error value of any of the children that fail | |
5523 | * is not 100 % defined, in the sense that users seeing the | |
5524 | * error code won't be able to know anything about the state of | |
5525 | * the cache. | |
5526 | * | |
5527 | * Only returning the error code for the parent cache at least | |
5528 | * has well defined semantics. The cache being written to | |
5529 | * directly either failed or succeeded, in which case we loop | |
5530 | * through the descendants with best-effort propagation. | |
5531 | */ | |
426589f5 VD |
5532 | for_each_memcg_cache(c, s) |
5533 | attribute->store(c, buf, len); | |
107dab5c GC |
5534 | mutex_unlock(&slab_mutex); |
5535 | } | |
5536 | #endif | |
81819f0f CL |
5537 | return err; |
5538 | } | |
5539 | ||
107dab5c GC |
5540 | static void memcg_propagate_slab_attrs(struct kmem_cache *s) |
5541 | { | |
127424c8 | 5542 | #ifdef CONFIG_MEMCG |
107dab5c GC |
5543 | int i; |
5544 | char *buffer = NULL; | |
93030d83 | 5545 | struct kmem_cache *root_cache; |
107dab5c | 5546 | |
93030d83 | 5547 | if (is_root_cache(s)) |
107dab5c GC |
5548 | return; |
5549 | ||
f7ce3190 | 5550 | root_cache = s->memcg_params.root_cache; |
93030d83 | 5551 | |
107dab5c GC |
5552 | /* |
5553 | * This mean this cache had no attribute written. Therefore, no point | |
5554 | * in copying default values around | |
5555 | */ | |
93030d83 | 5556 | if (!root_cache->max_attr_size) |
107dab5c GC |
5557 | return; |
5558 | ||
5559 | for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { | |
5560 | char mbuf[64]; | |
5561 | char *buf; | |
5562 | struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); | |
478fe303 | 5563 | ssize_t len; |
107dab5c GC |
5564 | |
5565 | if (!attr || !attr->store || !attr->show) | |
5566 | continue; | |
5567 | ||
5568 | /* | |
5569 | * It is really bad that we have to allocate here, so we will | |
5570 | * do it only as a fallback. If we actually allocate, though, | |
5571 | * we can just use the allocated buffer until the end. | |
5572 | * | |
5573 | * Most of the slub attributes will tend to be very small in | |
5574 | * size, but sysfs allows buffers up to a page, so they can | |
5575 | * theoretically happen. | |
5576 | */ | |
5577 | if (buffer) | |
5578 | buf = buffer; | |
93030d83 | 5579 | else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) |
107dab5c GC |
5580 | buf = mbuf; |
5581 | else { | |
5582 | buffer = (char *) get_zeroed_page(GFP_KERNEL); | |
5583 | if (WARN_ON(!buffer)) | |
5584 | continue; | |
5585 | buf = buffer; | |
5586 | } | |
5587 | ||
478fe303 TG |
5588 | len = attr->show(root_cache, buf); |
5589 | if (len > 0) | |
5590 | attr->store(s, buf, len); | |
107dab5c GC |
5591 | } |
5592 | ||
5593 | if (buffer) | |
5594 | free_page((unsigned long)buffer); | |
6dfd1b65 | 5595 | #endif /* CONFIG_MEMCG */ |
107dab5c GC |
5596 | } |
5597 | ||
41a21285 CL |
5598 | static void kmem_cache_release(struct kobject *k) |
5599 | { | |
5600 | slab_kmem_cache_release(to_slab(k)); | |
5601 | } | |
5602 | ||
52cf25d0 | 5603 | static const struct sysfs_ops slab_sysfs_ops = { |
81819f0f CL |
5604 | .show = slab_attr_show, |
5605 | .store = slab_attr_store, | |
5606 | }; | |
5607 | ||
5608 | static struct kobj_type slab_ktype = { | |
5609 | .sysfs_ops = &slab_sysfs_ops, | |
41a21285 | 5610 | .release = kmem_cache_release, |
81819f0f CL |
5611 | }; |
5612 | ||
5613 | static int uevent_filter(struct kset *kset, struct kobject *kobj) | |
5614 | { | |
5615 | struct kobj_type *ktype = get_ktype(kobj); | |
5616 | ||
5617 | if (ktype == &slab_ktype) | |
5618 | return 1; | |
5619 | return 0; | |
5620 | } | |
5621 | ||
9cd43611 | 5622 | static const struct kset_uevent_ops slab_uevent_ops = { |
81819f0f CL |
5623 | .filter = uevent_filter, |
5624 | }; | |
5625 | ||
27c3a314 | 5626 | static struct kset *slab_kset; |
81819f0f | 5627 | |
9a41707b VD |
5628 | static inline struct kset *cache_kset(struct kmem_cache *s) |
5629 | { | |
127424c8 | 5630 | #ifdef CONFIG_MEMCG |
9a41707b | 5631 | if (!is_root_cache(s)) |
f7ce3190 | 5632 | return s->memcg_params.root_cache->memcg_kset; |
9a41707b VD |
5633 | #endif |
5634 | return slab_kset; | |
5635 | } | |
5636 | ||
81819f0f CL |
5637 | #define ID_STR_LENGTH 64 |
5638 | ||
5639 | /* Create a unique string id for a slab cache: | |
6446faa2 CL |
5640 | * |
5641 | * Format :[flags-]size | |
81819f0f CL |
5642 | */ |
5643 | static char *create_unique_id(struct kmem_cache *s) | |
5644 | { | |
5645 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
5646 | char *p = name; | |
5647 | ||
5648 | BUG_ON(!name); | |
5649 | ||
5650 | *p++ = ':'; | |
5651 | /* | |
5652 | * First flags affecting slabcache operations. We will only | |
5653 | * get here for aliasable slabs so we do not need to support | |
5654 | * too many flags. The flags here must cover all flags that | |
5655 | * are matched during merging to guarantee that the id is | |
5656 | * unique. | |
5657 | */ | |
5658 | if (s->flags & SLAB_CACHE_DMA) | |
5659 | *p++ = 'd'; | |
6d6ea1e9 NB |
5660 | if (s->flags & SLAB_CACHE_DMA32) |
5661 | *p++ = 'D'; | |
81819f0f CL |
5662 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
5663 | *p++ = 'a'; | |
becfda68 | 5664 | if (s->flags & SLAB_CONSISTENCY_CHECKS) |
81819f0f | 5665 | *p++ = 'F'; |
230e9fc2 VD |
5666 | if (s->flags & SLAB_ACCOUNT) |
5667 | *p++ = 'A'; | |
81819f0f CL |
5668 | if (p != name + 1) |
5669 | *p++ = '-'; | |
44065b2e | 5670 | p += sprintf(p, "%07u", s->size); |
2633d7a0 | 5671 | |
81819f0f CL |
5672 | BUG_ON(p > name + ID_STR_LENGTH - 1); |
5673 | return name; | |
5674 | } | |
5675 | ||
3b7b3140 TH |
5676 | static void sysfs_slab_remove_workfn(struct work_struct *work) |
5677 | { | |
5678 | struct kmem_cache *s = | |
5679 | container_of(work, struct kmem_cache, kobj_remove_work); | |
5680 | ||
5681 | if (!s->kobj.state_in_sysfs) | |
5682 | /* | |
5683 | * For a memcg cache, this may be called during | |
5684 | * deactivation and again on shutdown. Remove only once. | |
5685 | * A cache is never shut down before deactivation is | |
5686 | * complete, so no need to worry about synchronization. | |
5687 | */ | |
f6ba4880 | 5688 | goto out; |
3b7b3140 TH |
5689 | |
5690 | #ifdef CONFIG_MEMCG | |
5691 | kset_unregister(s->memcg_kset); | |
5692 | #endif | |
5693 | kobject_uevent(&s->kobj, KOBJ_REMOVE); | |
f6ba4880 | 5694 | out: |
3b7b3140 TH |
5695 | kobject_put(&s->kobj); |
5696 | } | |
5697 | ||
81819f0f CL |
5698 | static int sysfs_slab_add(struct kmem_cache *s) |
5699 | { | |
5700 | int err; | |
5701 | const char *name; | |
1663f26d | 5702 | struct kset *kset = cache_kset(s); |
45530c44 | 5703 | int unmergeable = slab_unmergeable(s); |
81819f0f | 5704 | |
3b7b3140 TH |
5705 | INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); |
5706 | ||
1663f26d TH |
5707 | if (!kset) { |
5708 | kobject_init(&s->kobj, &slab_ktype); | |
5709 | return 0; | |
5710 | } | |
5711 | ||
11066386 MC |
5712 | if (!unmergeable && disable_higher_order_debug && |
5713 | (slub_debug & DEBUG_METADATA_FLAGS)) | |
5714 | unmergeable = 1; | |
5715 | ||
81819f0f CL |
5716 | if (unmergeable) { |
5717 | /* | |
5718 | * Slabcache can never be merged so we can use the name proper. | |
5719 | * This is typically the case for debug situations. In that | |
5720 | * case we can catch duplicate names easily. | |
5721 | */ | |
27c3a314 | 5722 | sysfs_remove_link(&slab_kset->kobj, s->name); |
81819f0f CL |
5723 | name = s->name; |
5724 | } else { | |
5725 | /* | |
5726 | * Create a unique name for the slab as a target | |
5727 | * for the symlinks. | |
5728 | */ | |
5729 | name = create_unique_id(s); | |
5730 | } | |
5731 | ||
1663f26d | 5732 | s->kobj.kset = kset; |
26e4f205 | 5733 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); |
54b6a731 | 5734 | if (err) |
80da026a | 5735 | goto out; |
81819f0f CL |
5736 | |
5737 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
54b6a731 DJ |
5738 | if (err) |
5739 | goto out_del_kobj; | |
9a41707b | 5740 | |
127424c8 | 5741 | #ifdef CONFIG_MEMCG |
1663f26d | 5742 | if (is_root_cache(s) && memcg_sysfs_enabled) { |
9a41707b VD |
5743 | s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); |
5744 | if (!s->memcg_kset) { | |
54b6a731 DJ |
5745 | err = -ENOMEM; |
5746 | goto out_del_kobj; | |
9a41707b VD |
5747 | } |
5748 | } | |
5749 | #endif | |
5750 | ||
81819f0f CL |
5751 | kobject_uevent(&s->kobj, KOBJ_ADD); |
5752 | if (!unmergeable) { | |
5753 | /* Setup first alias */ | |
5754 | sysfs_slab_alias(s, s->name); | |
81819f0f | 5755 | } |
54b6a731 DJ |
5756 | out: |
5757 | if (!unmergeable) | |
5758 | kfree(name); | |
5759 | return err; | |
5760 | out_del_kobj: | |
5761 | kobject_del(&s->kobj); | |
54b6a731 | 5762 | goto out; |
81819f0f CL |
5763 | } |
5764 | ||
bf5eb3de | 5765 | static void sysfs_slab_remove(struct kmem_cache *s) |
81819f0f | 5766 | { |
97d06609 | 5767 | if (slab_state < FULL) |
2bce6485 CL |
5768 | /* |
5769 | * Sysfs has not been setup yet so no need to remove the | |
5770 | * cache from sysfs. | |
5771 | */ | |
5772 | return; | |
5773 | ||
3b7b3140 TH |
5774 | kobject_get(&s->kobj); |
5775 | schedule_work(&s->kobj_remove_work); | |
bf5eb3de TH |
5776 | } |
5777 | ||
d50d82fa MP |
5778 | void sysfs_slab_unlink(struct kmem_cache *s) |
5779 | { | |
5780 | if (slab_state >= FULL) | |
5781 | kobject_del(&s->kobj); | |
5782 | } | |
5783 | ||
bf5eb3de TH |
5784 | void sysfs_slab_release(struct kmem_cache *s) |
5785 | { | |
5786 | if (slab_state >= FULL) | |
5787 | kobject_put(&s->kobj); | |
81819f0f CL |
5788 | } |
5789 | ||
5790 | /* | |
5791 | * Need to buffer aliases during bootup until sysfs becomes | |
9f6c708e | 5792 | * available lest we lose that information. |
81819f0f CL |
5793 | */ |
5794 | struct saved_alias { | |
5795 | struct kmem_cache *s; | |
5796 | const char *name; | |
5797 | struct saved_alias *next; | |
5798 | }; | |
5799 | ||
5af328a5 | 5800 | static struct saved_alias *alias_list; |
81819f0f CL |
5801 | |
5802 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
5803 | { | |
5804 | struct saved_alias *al; | |
5805 | ||
97d06609 | 5806 | if (slab_state == FULL) { |
81819f0f CL |
5807 | /* |
5808 | * If we have a leftover link then remove it. | |
5809 | */ | |
27c3a314 GKH |
5810 | sysfs_remove_link(&slab_kset->kobj, name); |
5811 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | |
81819f0f CL |
5812 | } |
5813 | ||
5814 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
5815 | if (!al) | |
5816 | return -ENOMEM; | |
5817 | ||
5818 | al->s = s; | |
5819 | al->name = name; | |
5820 | al->next = alias_list; | |
5821 | alias_list = al; | |
5822 | return 0; | |
5823 | } | |
5824 | ||
5825 | static int __init slab_sysfs_init(void) | |
5826 | { | |
5b95a4ac | 5827 | struct kmem_cache *s; |
81819f0f CL |
5828 | int err; |
5829 | ||
18004c5d | 5830 | mutex_lock(&slab_mutex); |
2bce6485 | 5831 | |
0ff21e46 | 5832 | slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); |
27c3a314 | 5833 | if (!slab_kset) { |
18004c5d | 5834 | mutex_unlock(&slab_mutex); |
f9f58285 | 5835 | pr_err("Cannot register slab subsystem.\n"); |
81819f0f CL |
5836 | return -ENOSYS; |
5837 | } | |
5838 | ||
97d06609 | 5839 | slab_state = FULL; |
26a7bd03 | 5840 | |
5b95a4ac | 5841 | list_for_each_entry(s, &slab_caches, list) { |
26a7bd03 | 5842 | err = sysfs_slab_add(s); |
5d540fb7 | 5843 | if (err) |
f9f58285 FF |
5844 | pr_err("SLUB: Unable to add boot slab %s to sysfs\n", |
5845 | s->name); | |
26a7bd03 | 5846 | } |
81819f0f CL |
5847 | |
5848 | while (alias_list) { | |
5849 | struct saved_alias *al = alias_list; | |
5850 | ||
5851 | alias_list = alias_list->next; | |
5852 | err = sysfs_slab_alias(al->s, al->name); | |
5d540fb7 | 5853 | if (err) |
f9f58285 FF |
5854 | pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", |
5855 | al->name); | |
81819f0f CL |
5856 | kfree(al); |
5857 | } | |
5858 | ||
18004c5d | 5859 | mutex_unlock(&slab_mutex); |
81819f0f CL |
5860 | resiliency_test(); |
5861 | return 0; | |
5862 | } | |
5863 | ||
5864 | __initcall(slab_sysfs_init); | |
ab4d5ed5 | 5865 | #endif /* CONFIG_SYSFS */ |
57ed3eda PE |
5866 | |
5867 | /* | |
5868 | * The /proc/slabinfo ABI | |
5869 | */ | |
5b365771 | 5870 | #ifdef CONFIG_SLUB_DEBUG |
0d7561c6 | 5871 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) |
57ed3eda | 5872 | { |
57ed3eda | 5873 | unsigned long nr_slabs = 0; |
205ab99d CL |
5874 | unsigned long nr_objs = 0; |
5875 | unsigned long nr_free = 0; | |
57ed3eda | 5876 | int node; |
fa45dc25 | 5877 | struct kmem_cache_node *n; |
57ed3eda | 5878 | |
fa45dc25 | 5879 | for_each_kmem_cache_node(s, node, n) { |
c17fd13e WL |
5880 | nr_slabs += node_nr_slabs(n); |
5881 | nr_objs += node_nr_objs(n); | |
205ab99d | 5882 | nr_free += count_partial(n, count_free); |
57ed3eda PE |
5883 | } |
5884 | ||
0d7561c6 GC |
5885 | sinfo->active_objs = nr_objs - nr_free; |
5886 | sinfo->num_objs = nr_objs; | |
5887 | sinfo->active_slabs = nr_slabs; | |
5888 | sinfo->num_slabs = nr_slabs; | |
5889 | sinfo->objects_per_slab = oo_objects(s->oo); | |
5890 | sinfo->cache_order = oo_order(s->oo); | |
57ed3eda PE |
5891 | } |
5892 | ||
0d7561c6 | 5893 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) |
7b3c3a50 | 5894 | { |
7b3c3a50 AD |
5895 | } |
5896 | ||
b7454ad3 GC |
5897 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
5898 | size_t count, loff_t *ppos) | |
7b3c3a50 | 5899 | { |
b7454ad3 | 5900 | return -EIO; |
7b3c3a50 | 5901 | } |
5b365771 | 5902 | #endif /* CONFIG_SLUB_DEBUG */ |