]>
Commit | Line | Data |
---|---|---|
16d69265 | 1 | #include <linux/mm.h> |
30992c97 MM |
2 | #include <linux/slab.h> |
3 | #include <linux/string.h> | |
3b32123d | 4 | #include <linux/compiler.h> |
b95f1b31 | 5 | #include <linux/export.h> |
96840aa0 | 6 | #include <linux/err.h> |
3b8f14b4 | 7 | #include <linux/sched.h> |
6e84f315 | 8 | #include <linux/sched/mm.h> |
68db0cf1 | 9 | #include <linux/sched/task_stack.h> |
eb36c587 | 10 | #include <linux/security.h> |
9800339b | 11 | #include <linux/swap.h> |
33806f06 | 12 | #include <linux/swapops.h> |
00619bcc JM |
13 | #include <linux/mman.h> |
14 | #include <linux/hugetlb.h> | |
39f1f78d | 15 | #include <linux/vmalloc.h> |
897ab3e0 | 16 | #include <linux/userfaultfd_k.h> |
00619bcc | 17 | |
7c0f6ba6 | 18 | #include <linux/uaccess.h> |
30992c97 | 19 | |
6038def0 NK |
20 | #include "internal.h" |
21 | ||
a4bb1e43 AH |
22 | /** |
23 | * kfree_const - conditionally free memory | |
24 | * @x: pointer to the memory | |
25 | * | |
26 | * Function calls kfree only if @x is not in .rodata section. | |
27 | */ | |
28 | void kfree_const(const void *x) | |
29 | { | |
30 | if (!is_kernel_rodata((unsigned long)x)) | |
31 | kfree(x); | |
32 | } | |
33 | EXPORT_SYMBOL(kfree_const); | |
34 | ||
30992c97 | 35 | /** |
30992c97 | 36 | * kstrdup - allocate space for and copy an existing string |
30992c97 MM |
37 | * @s: the string to duplicate |
38 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
39 | */ | |
40 | char *kstrdup(const char *s, gfp_t gfp) | |
41 | { | |
42 | size_t len; | |
43 | char *buf; | |
44 | ||
45 | if (!s) | |
46 | return NULL; | |
47 | ||
48 | len = strlen(s) + 1; | |
1d2c8eea | 49 | buf = kmalloc_track_caller(len, gfp); |
30992c97 MM |
50 | if (buf) |
51 | memcpy(buf, s, len); | |
52 | return buf; | |
53 | } | |
54 | EXPORT_SYMBOL(kstrdup); | |
96840aa0 | 55 | |
a4bb1e43 AH |
56 | /** |
57 | * kstrdup_const - conditionally duplicate an existing const string | |
58 | * @s: the string to duplicate | |
59 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
60 | * | |
61 | * Function returns source string if it is in .rodata section otherwise it | |
62 | * fallbacks to kstrdup. | |
63 | * Strings allocated by kstrdup_const should be freed by kfree_const. | |
64 | */ | |
65 | const char *kstrdup_const(const char *s, gfp_t gfp) | |
66 | { | |
67 | if (is_kernel_rodata((unsigned long)s)) | |
68 | return s; | |
69 | ||
70 | return kstrdup(s, gfp); | |
71 | } | |
72 | EXPORT_SYMBOL(kstrdup_const); | |
73 | ||
1e66df3e JF |
74 | /** |
75 | * kstrndup - allocate space for and copy an existing string | |
76 | * @s: the string to duplicate | |
77 | * @max: read at most @max chars from @s | |
78 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
f3515741 DH |
79 | * |
80 | * Note: Use kmemdup_nul() instead if the size is known exactly. | |
1e66df3e JF |
81 | */ |
82 | char *kstrndup(const char *s, size_t max, gfp_t gfp) | |
83 | { | |
84 | size_t len; | |
85 | char *buf; | |
86 | ||
87 | if (!s) | |
88 | return NULL; | |
89 | ||
90 | len = strnlen(s, max); | |
91 | buf = kmalloc_track_caller(len+1, gfp); | |
92 | if (buf) { | |
93 | memcpy(buf, s, len); | |
94 | buf[len] = '\0'; | |
95 | } | |
96 | return buf; | |
97 | } | |
98 | EXPORT_SYMBOL(kstrndup); | |
99 | ||
1a2f67b4 AD |
100 | /** |
101 | * kmemdup - duplicate region of memory | |
102 | * | |
103 | * @src: memory region to duplicate | |
104 | * @len: memory region length | |
105 | * @gfp: GFP mask to use | |
106 | */ | |
107 | void *kmemdup(const void *src, size_t len, gfp_t gfp) | |
108 | { | |
109 | void *p; | |
110 | ||
1d2c8eea | 111 | p = kmalloc_track_caller(len, gfp); |
1a2f67b4 AD |
112 | if (p) |
113 | memcpy(p, src, len); | |
114 | return p; | |
115 | } | |
116 | EXPORT_SYMBOL(kmemdup); | |
117 | ||
f3515741 DH |
118 | /** |
119 | * kmemdup_nul - Create a NUL-terminated string from unterminated data | |
120 | * @s: The data to stringify | |
121 | * @len: The size of the data | |
122 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
123 | */ | |
124 | char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) | |
125 | { | |
126 | char *buf; | |
127 | ||
128 | if (!s) | |
129 | return NULL; | |
130 | ||
131 | buf = kmalloc_track_caller(len + 1, gfp); | |
132 | if (buf) { | |
133 | memcpy(buf, s, len); | |
134 | buf[len] = '\0'; | |
135 | } | |
136 | return buf; | |
137 | } | |
138 | EXPORT_SYMBOL(kmemdup_nul); | |
139 | ||
610a77e0 LZ |
140 | /** |
141 | * memdup_user - duplicate memory region from user space | |
142 | * | |
143 | * @src: source address in user space | |
144 | * @len: number of bytes to copy | |
145 | * | |
50fd2f29 AV |
146 | * Returns an ERR_PTR() on failure. Result is physically |
147 | * contiguous, to be freed by kfree(). | |
610a77e0 LZ |
148 | */ |
149 | void *memdup_user(const void __user *src, size_t len) | |
150 | { | |
151 | void *p; | |
152 | ||
6c2c97a2 | 153 | p = kmalloc_track_caller(len, GFP_USER); |
610a77e0 LZ |
154 | if (!p) |
155 | return ERR_PTR(-ENOMEM); | |
156 | ||
157 | if (copy_from_user(p, src, len)) { | |
158 | kfree(p); | |
159 | return ERR_PTR(-EFAULT); | |
160 | } | |
161 | ||
162 | return p; | |
163 | } | |
164 | EXPORT_SYMBOL(memdup_user); | |
165 | ||
50fd2f29 AV |
166 | /** |
167 | * vmemdup_user - duplicate memory region from user space | |
168 | * | |
169 | * @src: source address in user space | |
170 | * @len: number of bytes to copy | |
171 | * | |
172 | * Returns an ERR_PTR() on failure. Result may be not | |
173 | * physically contiguous. Use kvfree() to free. | |
174 | */ | |
175 | void *vmemdup_user(const void __user *src, size_t len) | |
176 | { | |
177 | void *p; | |
178 | ||
179 | p = kvmalloc(len, GFP_USER); | |
180 | if (!p) | |
181 | return ERR_PTR(-ENOMEM); | |
182 | ||
183 | if (copy_from_user(p, src, len)) { | |
184 | kvfree(p); | |
185 | return ERR_PTR(-EFAULT); | |
186 | } | |
187 | ||
188 | return p; | |
189 | } | |
190 | EXPORT_SYMBOL(vmemdup_user); | |
191 | ||
b86181f1 | 192 | /** |
96840aa0 | 193 | * strndup_user - duplicate an existing string from user space |
96840aa0 DA |
194 | * @s: The string to duplicate |
195 | * @n: Maximum number of bytes to copy, including the trailing NUL. | |
196 | */ | |
197 | char *strndup_user(const char __user *s, long n) | |
198 | { | |
199 | char *p; | |
200 | long length; | |
201 | ||
202 | length = strnlen_user(s, n); | |
203 | ||
204 | if (!length) | |
205 | return ERR_PTR(-EFAULT); | |
206 | ||
207 | if (length > n) | |
208 | return ERR_PTR(-EINVAL); | |
209 | ||
90d74045 | 210 | p = memdup_user(s, length); |
96840aa0 | 211 | |
90d74045 JL |
212 | if (IS_ERR(p)) |
213 | return p; | |
96840aa0 DA |
214 | |
215 | p[length - 1] = '\0'; | |
216 | ||
217 | return p; | |
218 | } | |
219 | EXPORT_SYMBOL(strndup_user); | |
16d69265 | 220 | |
e9d408e1 AV |
221 | /** |
222 | * memdup_user_nul - duplicate memory region from user space and NUL-terminate | |
223 | * | |
224 | * @src: source address in user space | |
225 | * @len: number of bytes to copy | |
226 | * | |
227 | * Returns an ERR_PTR() on failure. | |
228 | */ | |
229 | void *memdup_user_nul(const void __user *src, size_t len) | |
230 | { | |
231 | char *p; | |
232 | ||
233 | /* | |
234 | * Always use GFP_KERNEL, since copy_from_user() can sleep and | |
235 | * cause pagefault, which makes it pointless to use GFP_NOFS | |
236 | * or GFP_ATOMIC. | |
237 | */ | |
238 | p = kmalloc_track_caller(len + 1, GFP_KERNEL); | |
239 | if (!p) | |
240 | return ERR_PTR(-ENOMEM); | |
241 | ||
242 | if (copy_from_user(p, src, len)) { | |
243 | kfree(p); | |
244 | return ERR_PTR(-EFAULT); | |
245 | } | |
246 | p[len] = '\0'; | |
247 | ||
248 | return p; | |
249 | } | |
250 | EXPORT_SYMBOL(memdup_user_nul); | |
251 | ||
6038def0 NK |
252 | void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, |
253 | struct vm_area_struct *prev, struct rb_node *rb_parent) | |
254 | { | |
255 | struct vm_area_struct *next; | |
256 | ||
257 | vma->vm_prev = prev; | |
258 | if (prev) { | |
259 | next = prev->vm_next; | |
260 | prev->vm_next = vma; | |
261 | } else { | |
262 | mm->mmap = vma; | |
263 | if (rb_parent) | |
264 | next = rb_entry(rb_parent, | |
265 | struct vm_area_struct, vm_rb); | |
266 | else | |
267 | next = NULL; | |
268 | } | |
269 | vma->vm_next = next; | |
270 | if (next) | |
271 | next->vm_prev = vma; | |
272 | } | |
273 | ||
b7643757 | 274 | /* Check if the vma is being used as a stack by this task */ |
d17af505 | 275 | int vma_is_stack_for_current(struct vm_area_struct *vma) |
b7643757 | 276 | { |
d17af505 AL |
277 | struct task_struct * __maybe_unused t = current; |
278 | ||
b7643757 SP |
279 | return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); |
280 | } | |
281 | ||
efc1a3b1 | 282 | #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) |
8f2af155 | 283 | void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) |
16d69265 AM |
284 | { |
285 | mm->mmap_base = TASK_UNMAPPED_BASE; | |
286 | mm->get_unmapped_area = arch_get_unmapped_area; | |
16d69265 AM |
287 | } |
288 | #endif | |
912985dc | 289 | |
45888a0c XG |
290 | /* |
291 | * Like get_user_pages_fast() except its IRQ-safe in that it won't fall | |
292 | * back to the regular GUP. | |
d0811078 MT |
293 | * Note a difference with get_user_pages_fast: this always returns the |
294 | * number of pages pinned, 0 if no pages were pinned. | |
295 | * If the architecture does not support this function, simply return with no | |
296 | * pages pinned. | |
45888a0c | 297 | */ |
3b32123d | 298 | int __weak __get_user_pages_fast(unsigned long start, |
45888a0c XG |
299 | int nr_pages, int write, struct page **pages) |
300 | { | |
301 | return 0; | |
302 | } | |
303 | EXPORT_SYMBOL_GPL(__get_user_pages_fast); | |
304 | ||
9de100d0 AG |
305 | /** |
306 | * get_user_pages_fast() - pin user pages in memory | |
307 | * @start: starting user address | |
308 | * @nr_pages: number of pages from start to pin | |
309 | * @write: whether pages will be written to | |
310 | * @pages: array that receives pointers to the pages pinned. | |
311 | * Should be at least nr_pages long. | |
312 | * | |
9de100d0 AG |
313 | * Returns number of pages pinned. This may be fewer than the number |
314 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
315 | * were pinned, returns -errno. | |
d2bf6be8 NP |
316 | * |
317 | * get_user_pages_fast provides equivalent functionality to get_user_pages, | |
318 | * operating on current and current->mm, with force=0 and vma=NULL. However | |
319 | * unlike get_user_pages, it must be called without mmap_sem held. | |
320 | * | |
321 | * get_user_pages_fast may take mmap_sem and page table locks, so no | |
322 | * assumptions can be made about lack of locking. get_user_pages_fast is to be | |
323 | * implemented in a way that is advantageous (vs get_user_pages()) when the | |
324 | * user memory area is already faulted in and present in ptes. However if the | |
325 | * pages have to be faulted in, it may turn out to be slightly slower so | |
326 | * callers need to carefully consider what to use. On many architectures, | |
327 | * get_user_pages_fast simply falls back to get_user_pages. | |
9de100d0 | 328 | */ |
3b32123d | 329 | int __weak get_user_pages_fast(unsigned long start, |
912985dc RR |
330 | int nr_pages, int write, struct page **pages) |
331 | { | |
c164154f LS |
332 | return get_user_pages_unlocked(start, nr_pages, pages, |
333 | write ? FOLL_WRITE : 0); | |
912985dc RR |
334 | } |
335 | EXPORT_SYMBOL_GPL(get_user_pages_fast); | |
ca2b84cb | 336 | |
eb36c587 AV |
337 | unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, |
338 | unsigned long len, unsigned long prot, | |
9fbeb5ab | 339 | unsigned long flag, unsigned long pgoff) |
eb36c587 AV |
340 | { |
341 | unsigned long ret; | |
342 | struct mm_struct *mm = current->mm; | |
41badc15 | 343 | unsigned long populate; |
897ab3e0 | 344 | LIST_HEAD(uf); |
eb36c587 AV |
345 | |
346 | ret = security_mmap_file(file, prot, flag); | |
347 | if (!ret) { | |
9fbeb5ab MH |
348 | if (down_write_killable(&mm->mmap_sem)) |
349 | return -EINTR; | |
bebeb3d6 | 350 | ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff, |
897ab3e0 | 351 | &populate, &uf); |
eb36c587 | 352 | up_write(&mm->mmap_sem); |
897ab3e0 | 353 | userfaultfd_unmap_complete(mm, &uf); |
41badc15 ML |
354 | if (populate) |
355 | mm_populate(ret, populate); | |
eb36c587 AV |
356 | } |
357 | return ret; | |
358 | } | |
359 | ||
360 | unsigned long vm_mmap(struct file *file, unsigned long addr, | |
361 | unsigned long len, unsigned long prot, | |
362 | unsigned long flag, unsigned long offset) | |
363 | { | |
364 | if (unlikely(offset + PAGE_ALIGN(len) < offset)) | |
365 | return -EINVAL; | |
ea53cde0 | 366 | if (unlikely(offset_in_page(offset))) |
eb36c587 AV |
367 | return -EINVAL; |
368 | ||
9fbeb5ab | 369 | return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); |
eb36c587 AV |
370 | } |
371 | EXPORT_SYMBOL(vm_mmap); | |
372 | ||
a7c3e901 MH |
373 | /** |
374 | * kvmalloc_node - attempt to allocate physically contiguous memory, but upon | |
375 | * failure, fall back to non-contiguous (vmalloc) allocation. | |
376 | * @size: size of the request. | |
377 | * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. | |
378 | * @node: numa node to allocate from | |
379 | * | |
380 | * Uses kmalloc to get the memory but if the allocation fails then falls back | |
381 | * to the vmalloc allocator. Use kvfree for freeing the memory. | |
382 | * | |
cc965a29 MH |
383 | * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported. |
384 | * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is | |
385 | * preferable to the vmalloc fallback, due to visible performance drawbacks. | |
a7c3e901 | 386 | * |
ce91f6ee MH |
387 | * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not |
388 | * fall back to vmalloc. | |
a7c3e901 MH |
389 | */ |
390 | void *kvmalloc_node(size_t size, gfp_t flags, int node) | |
391 | { | |
392 | gfp_t kmalloc_flags = flags; | |
393 | void *ret; | |
394 | ||
395 | /* | |
396 | * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables) | |
397 | * so the given set of flags has to be compatible. | |
398 | */ | |
ce91f6ee MH |
399 | if ((flags & GFP_KERNEL) != GFP_KERNEL) |
400 | return kmalloc_node(size, flags, node); | |
a7c3e901 MH |
401 | |
402 | /* | |
4f4f2ba9 MH |
403 | * We want to attempt a large physically contiguous block first because |
404 | * it is less likely to fragment multiple larger blocks and therefore | |
405 | * contribute to a long term fragmentation less than vmalloc fallback. | |
406 | * However make sure that larger requests are not too disruptive - no | |
407 | * OOM killer and no allocation failure warnings as we have a fallback. | |
a7c3e901 | 408 | */ |
6c5ab651 MH |
409 | if (size > PAGE_SIZE) { |
410 | kmalloc_flags |= __GFP_NOWARN; | |
411 | ||
cc965a29 | 412 | if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) |
6c5ab651 MH |
413 | kmalloc_flags |= __GFP_NORETRY; |
414 | } | |
a7c3e901 MH |
415 | |
416 | ret = kmalloc_node(size, kmalloc_flags, node); | |
417 | ||
418 | /* | |
419 | * It doesn't really make sense to fallback to vmalloc for sub page | |
420 | * requests | |
421 | */ | |
422 | if (ret || size <= PAGE_SIZE) | |
423 | return ret; | |
424 | ||
8594a21c MH |
425 | return __vmalloc_node_flags_caller(size, node, flags, |
426 | __builtin_return_address(0)); | |
a7c3e901 MH |
427 | } |
428 | EXPORT_SYMBOL(kvmalloc_node); | |
429 | ||
ff4dc772 | 430 | /** |
04b8e946 AM |
431 | * kvfree() - Free memory. |
432 | * @addr: Pointer to allocated memory. | |
ff4dc772 | 433 | * |
04b8e946 AM |
434 | * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). |
435 | * It is slightly more efficient to use kfree() or vfree() if you are certain | |
436 | * that you know which one to use. | |
437 | * | |
52414d33 | 438 | * Context: Either preemptible task context or not-NMI interrupt. |
ff4dc772 | 439 | */ |
39f1f78d AV |
440 | void kvfree(const void *addr) |
441 | { | |
442 | if (is_vmalloc_addr(addr)) | |
443 | vfree(addr); | |
444 | else | |
445 | kfree(addr); | |
446 | } | |
447 | EXPORT_SYMBOL(kvfree); | |
448 | ||
e39155ea KS |
449 | static inline void *__page_rmapping(struct page *page) |
450 | { | |
451 | unsigned long mapping; | |
452 | ||
453 | mapping = (unsigned long)page->mapping; | |
454 | mapping &= ~PAGE_MAPPING_FLAGS; | |
455 | ||
456 | return (void *)mapping; | |
457 | } | |
458 | ||
459 | /* Neutral page->mapping pointer to address_space or anon_vma or other */ | |
460 | void *page_rmapping(struct page *page) | |
461 | { | |
462 | page = compound_head(page); | |
463 | return __page_rmapping(page); | |
464 | } | |
465 | ||
1aa8aea5 AM |
466 | /* |
467 | * Return true if this page is mapped into pagetables. | |
468 | * For compound page it returns true if any subpage of compound page is mapped. | |
469 | */ | |
470 | bool page_mapped(struct page *page) | |
471 | { | |
472 | int i; | |
473 | ||
474 | if (likely(!PageCompound(page))) | |
475 | return atomic_read(&page->_mapcount) >= 0; | |
476 | page = compound_head(page); | |
477 | if (atomic_read(compound_mapcount_ptr(page)) >= 0) | |
478 | return true; | |
479 | if (PageHuge(page)) | |
480 | return false; | |
8ab88c71 | 481 | for (i = 0; i < (1 << compound_order(page)); i++) { |
1aa8aea5 AM |
482 | if (atomic_read(&page[i]._mapcount) >= 0) |
483 | return true; | |
484 | } | |
485 | return false; | |
486 | } | |
487 | EXPORT_SYMBOL(page_mapped); | |
488 | ||
e39155ea KS |
489 | struct anon_vma *page_anon_vma(struct page *page) |
490 | { | |
491 | unsigned long mapping; | |
492 | ||
493 | page = compound_head(page); | |
494 | mapping = (unsigned long)page->mapping; | |
495 | if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) | |
496 | return NULL; | |
497 | return __page_rmapping(page); | |
498 | } | |
499 | ||
9800339b SL |
500 | struct address_space *page_mapping(struct page *page) |
501 | { | |
1c290f64 KS |
502 | struct address_space *mapping; |
503 | ||
504 | page = compound_head(page); | |
9800339b | 505 | |
03e5ac2f MP |
506 | /* This happens if someone calls flush_dcache_page on slab page */ |
507 | if (unlikely(PageSlab(page))) | |
508 | return NULL; | |
509 | ||
33806f06 SL |
510 | if (unlikely(PageSwapCache(page))) { |
511 | swp_entry_t entry; | |
512 | ||
513 | entry.val = page_private(page); | |
e39155ea KS |
514 | return swap_address_space(entry); |
515 | } | |
516 | ||
1c290f64 | 517 | mapping = page->mapping; |
bda807d4 | 518 | if ((unsigned long)mapping & PAGE_MAPPING_ANON) |
e39155ea | 519 | return NULL; |
bda807d4 MK |
520 | |
521 | return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS); | |
9800339b | 522 | } |
bda807d4 | 523 | EXPORT_SYMBOL(page_mapping); |
9800339b | 524 | |
cb9f753a YH |
525 | /* |
526 | * For file cache pages, return the address_space, otherwise return NULL | |
527 | */ | |
528 | struct address_space *page_mapping_file(struct page *page) | |
529 | { | |
530 | if (unlikely(PageSwapCache(page))) | |
531 | return NULL; | |
532 | return page_mapping(page); | |
533 | } | |
534 | ||
b20ce5e0 KS |
535 | /* Slow path of page_mapcount() for compound pages */ |
536 | int __page_mapcount(struct page *page) | |
537 | { | |
538 | int ret; | |
539 | ||
540 | ret = atomic_read(&page->_mapcount) + 1; | |
dd78fedd KS |
541 | /* |
542 | * For file THP page->_mapcount contains total number of mapping | |
543 | * of the page: no need to look into compound_mapcount. | |
544 | */ | |
545 | if (!PageAnon(page) && !PageHuge(page)) | |
546 | return ret; | |
b20ce5e0 KS |
547 | page = compound_head(page); |
548 | ret += atomic_read(compound_mapcount_ptr(page)) + 1; | |
549 | if (PageDoubleMap(page)) | |
550 | ret--; | |
551 | return ret; | |
552 | } | |
553 | EXPORT_SYMBOL_GPL(__page_mapcount); | |
554 | ||
39a1aa8e AR |
555 | int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; |
556 | int sysctl_overcommit_ratio __read_mostly = 50; | |
557 | unsigned long sysctl_overcommit_kbytes __read_mostly; | |
558 | int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; | |
559 | unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ | |
560 | unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ | |
561 | ||
49f0ce5f JM |
562 | int overcommit_ratio_handler(struct ctl_table *table, int write, |
563 | void __user *buffer, size_t *lenp, | |
564 | loff_t *ppos) | |
565 | { | |
566 | int ret; | |
567 | ||
568 | ret = proc_dointvec(table, write, buffer, lenp, ppos); | |
569 | if (ret == 0 && write) | |
570 | sysctl_overcommit_kbytes = 0; | |
571 | return ret; | |
572 | } | |
573 | ||
574 | int overcommit_kbytes_handler(struct ctl_table *table, int write, | |
575 | void __user *buffer, size_t *lenp, | |
576 | loff_t *ppos) | |
577 | { | |
578 | int ret; | |
579 | ||
580 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); | |
581 | if (ret == 0 && write) | |
582 | sysctl_overcommit_ratio = 0; | |
583 | return ret; | |
584 | } | |
585 | ||
00619bcc JM |
586 | /* |
587 | * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used | |
588 | */ | |
589 | unsigned long vm_commit_limit(void) | |
590 | { | |
49f0ce5f JM |
591 | unsigned long allowed; |
592 | ||
593 | if (sysctl_overcommit_kbytes) | |
594 | allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); | |
595 | else | |
ca79b0c2 | 596 | allowed = ((totalram_pages() - hugetlb_total_pages()) |
49f0ce5f JM |
597 | * sysctl_overcommit_ratio / 100); |
598 | allowed += total_swap_pages; | |
599 | ||
600 | return allowed; | |
00619bcc JM |
601 | } |
602 | ||
39a1aa8e AR |
603 | /* |
604 | * Make sure vm_committed_as in one cacheline and not cacheline shared with | |
605 | * other variables. It can be updated by several CPUs frequently. | |
606 | */ | |
607 | struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; | |
608 | ||
609 | /* | |
610 | * The global memory commitment made in the system can be a metric | |
611 | * that can be used to drive ballooning decisions when Linux is hosted | |
612 | * as a guest. On Hyper-V, the host implements a policy engine for dynamically | |
613 | * balancing memory across competing virtual machines that are hosted. | |
614 | * Several metrics drive this policy engine including the guest reported | |
615 | * memory commitment. | |
616 | */ | |
617 | unsigned long vm_memory_committed(void) | |
618 | { | |
619 | return percpu_counter_read_positive(&vm_committed_as); | |
620 | } | |
621 | EXPORT_SYMBOL_GPL(vm_memory_committed); | |
622 | ||
623 | /* | |
624 | * Check that a process has enough memory to allocate a new virtual | |
625 | * mapping. 0 means there is enough memory for the allocation to | |
626 | * succeed and -ENOMEM implies there is not. | |
627 | * | |
628 | * We currently support three overcommit policies, which are set via the | |
ad56b738 | 629 | * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst |
39a1aa8e AR |
630 | * |
631 | * Strict overcommit modes added 2002 Feb 26 by Alan Cox. | |
632 | * Additional code 2002 Jul 20 by Robert Love. | |
633 | * | |
634 | * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. | |
635 | * | |
636 | * Note this is a helper function intended to be used by LSMs which | |
637 | * wish to use this logic. | |
638 | */ | |
639 | int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) | |
640 | { | |
641 | long free, allowed, reserve; | |
642 | ||
643 | VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < | |
644 | -(s64)vm_committed_as_batch * num_online_cpus(), | |
645 | "memory commitment underflow"); | |
646 | ||
647 | vm_acct_memory(pages); | |
648 | ||
649 | /* | |
650 | * Sometimes we want to use more memory than we have | |
651 | */ | |
652 | if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) | |
653 | return 0; | |
654 | ||
655 | if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { | |
c41f012a | 656 | free = global_zone_page_state(NR_FREE_PAGES); |
11fb9989 | 657 | free += global_node_page_state(NR_FILE_PAGES); |
39a1aa8e AR |
658 | |
659 | /* | |
660 | * shmem pages shouldn't be counted as free in this | |
661 | * case, they can't be purged, only swapped out, and | |
662 | * that won't affect the overall amount of available | |
663 | * memory in the system. | |
664 | */ | |
11fb9989 | 665 | free -= global_node_page_state(NR_SHMEM); |
39a1aa8e AR |
666 | |
667 | free += get_nr_swap_pages(); | |
668 | ||
669 | /* | |
670 | * Any slabs which are created with the | |
671 | * SLAB_RECLAIM_ACCOUNT flag claim to have contents | |
672 | * which are reclaimable, under pressure. The dentry | |
673 | * cache and most inode caches should fall into this | |
674 | */ | |
d507e2eb | 675 | free += global_node_page_state(NR_SLAB_RECLAIMABLE); |
39a1aa8e | 676 | |
d79f7aa4 RG |
677 | /* |
678 | * Part of the kernel memory, which can be released | |
679 | * under memory pressure. | |
680 | */ | |
b29940c1 | 681 | free += global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); |
d79f7aa4 | 682 | |
39a1aa8e AR |
683 | /* |
684 | * Leave reserved pages. The pages are not for anonymous pages. | |
685 | */ | |
686 | if (free <= totalreserve_pages) | |
687 | goto error; | |
688 | else | |
689 | free -= totalreserve_pages; | |
690 | ||
691 | /* | |
692 | * Reserve some for root | |
693 | */ | |
694 | if (!cap_sys_admin) | |
695 | free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); | |
696 | ||
697 | if (free > pages) | |
698 | return 0; | |
699 | ||
700 | goto error; | |
701 | } | |
702 | ||
703 | allowed = vm_commit_limit(); | |
704 | /* | |
705 | * Reserve some for root | |
706 | */ | |
707 | if (!cap_sys_admin) | |
708 | allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); | |
709 | ||
710 | /* | |
711 | * Don't let a single process grow so big a user can't recover | |
712 | */ | |
713 | if (mm) { | |
714 | reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); | |
715 | allowed -= min_t(long, mm->total_vm / 32, reserve); | |
716 | } | |
717 | ||
718 | if (percpu_counter_read_positive(&vm_committed_as) < allowed) | |
719 | return 0; | |
720 | error: | |
721 | vm_unacct_memory(pages); | |
722 | ||
723 | return -ENOMEM; | |
724 | } | |
725 | ||
a9090253 WR |
726 | /** |
727 | * get_cmdline() - copy the cmdline value to a buffer. | |
728 | * @task: the task whose cmdline value to copy. | |
729 | * @buffer: the buffer to copy to. | |
730 | * @buflen: the length of the buffer. Larger cmdline values are truncated | |
731 | * to this length. | |
732 | * Returns the size of the cmdline field copied. Note that the copy does | |
733 | * not guarantee an ending NULL byte. | |
734 | */ | |
735 | int get_cmdline(struct task_struct *task, char *buffer, int buflen) | |
736 | { | |
737 | int res = 0; | |
738 | unsigned int len; | |
739 | struct mm_struct *mm = get_task_mm(task); | |
a3b609ef | 740 | unsigned long arg_start, arg_end, env_start, env_end; |
a9090253 WR |
741 | if (!mm) |
742 | goto out; | |
743 | if (!mm->arg_end) | |
744 | goto out_mm; /* Shh! No looking before we're done */ | |
745 | ||
a3b609ef MG |
746 | down_read(&mm->mmap_sem); |
747 | arg_start = mm->arg_start; | |
748 | arg_end = mm->arg_end; | |
749 | env_start = mm->env_start; | |
750 | env_end = mm->env_end; | |
751 | up_read(&mm->mmap_sem); | |
752 | ||
753 | len = arg_end - arg_start; | |
a9090253 WR |
754 | |
755 | if (len > buflen) | |
756 | len = buflen; | |
757 | ||
f307ab6d | 758 | res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); |
a9090253 WR |
759 | |
760 | /* | |
761 | * If the nul at the end of args has been overwritten, then | |
762 | * assume application is using setproctitle(3). | |
763 | */ | |
764 | if (res > 0 && buffer[res-1] != '\0' && len < buflen) { | |
765 | len = strnlen(buffer, res); | |
766 | if (len < res) { | |
767 | res = len; | |
768 | } else { | |
a3b609ef | 769 | len = env_end - env_start; |
a9090253 WR |
770 | if (len > buflen - res) |
771 | len = buflen - res; | |
a3b609ef | 772 | res += access_process_vm(task, env_start, |
f307ab6d LS |
773 | buffer+res, len, |
774 | FOLL_FORCE); | |
a9090253 WR |
775 | res = strnlen(buffer, res); |
776 | } | |
777 | } | |
778 | out_mm: | |
779 | mmput(mm); | |
780 | out: | |
781 | return res; | |
782 | } |