]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
3e57ecf6 | 2 | * Copyright (c) 2000-2006 Silicon Graphics, Inc. |
7b718769 | 3 | * All Rights Reserved. |
1da177e4 | 4 | * |
7b718769 NS |
5 | * This program is free software; you can redistribute it and/or |
6 | * modify it under the terms of the GNU General Public License as | |
1da177e4 LT |
7 | * published by the Free Software Foundation. |
8 | * | |
7b718769 NS |
9 | * This program is distributed in the hope that it would be useful, |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
12 | * GNU General Public License for more details. | |
1da177e4 | 13 | * |
7b718769 NS |
14 | * You should have received a copy of the GNU General Public License |
15 | * along with this program; if not, write the Free Software Foundation, | |
16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |
1da177e4 | 17 | */ |
40ebd81d RD |
18 | #include <linux/log2.h> |
19 | ||
1da177e4 | 20 | #include "xfs.h" |
a844f451 | 21 | #include "xfs_fs.h" |
1da177e4 | 22 | #include "xfs_types.h" |
1da177e4 | 23 | #include "xfs_log.h" |
a844f451 | 24 | #include "xfs_inum.h" |
1da177e4 LT |
25 | #include "xfs_trans.h" |
26 | #include "xfs_trans_priv.h" | |
27 | #include "xfs_sb.h" | |
28 | #include "xfs_ag.h" | |
1da177e4 | 29 | #include "xfs_mount.h" |
1da177e4 | 30 | #include "xfs_bmap_btree.h" |
a844f451 | 31 | #include "xfs_alloc_btree.h" |
1da177e4 | 32 | #include "xfs_ialloc_btree.h" |
a844f451 | 33 | #include "xfs_attr_sf.h" |
1da177e4 | 34 | #include "xfs_dinode.h" |
1da177e4 | 35 | #include "xfs_inode.h" |
1da177e4 | 36 | #include "xfs_buf_item.h" |
a844f451 NS |
37 | #include "xfs_inode_item.h" |
38 | #include "xfs_btree.h" | |
39 | #include "xfs_alloc.h" | |
40 | #include "xfs_ialloc.h" | |
41 | #include "xfs_bmap.h" | |
1da177e4 | 42 | #include "xfs_error.h" |
1da177e4 | 43 | #include "xfs_utils.h" |
1da177e4 | 44 | #include "xfs_quota.h" |
2a82b8be | 45 | #include "xfs_filestream.h" |
739bfb2a | 46 | #include "xfs_vnodeops.h" |
0b1b213f | 47 | #include "xfs_trace.h" |
1da177e4 | 48 | |
1da177e4 LT |
49 | kmem_zone_t *xfs_ifork_zone; |
50 | kmem_zone_t *xfs_inode_zone; | |
1da177e4 LT |
51 | |
52 | /* | |
8f04c47a | 53 | * Used in xfs_itruncate_extents(). This is the maximum number of extents |
1da177e4 LT |
54 | * freed from a file in a single transaction. |
55 | */ | |
56 | #define XFS_ITRUNC_MAX_EXTENTS 2 | |
57 | ||
58 | STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); | |
59 | STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); | |
60 | STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); | |
61 | STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); | |
62 | ||
2a0ec1d9 DC |
63 | /* |
64 | * helper function to extract extent size hint from inode | |
65 | */ | |
66 | xfs_extlen_t | |
67 | xfs_get_extsz_hint( | |
68 | struct xfs_inode *ip) | |
69 | { | |
70 | if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) | |
71 | return ip->i_d.di_extsize; | |
72 | if (XFS_IS_REALTIME_INODE(ip)) | |
73 | return ip->i_mount->m_sb.sb_rextsize; | |
74 | return 0; | |
75 | } | |
76 | ||
1da177e4 LT |
77 | #ifdef DEBUG |
78 | /* | |
79 | * Make sure that the extents in the given memory buffer | |
80 | * are valid. | |
81 | */ | |
82 | STATIC void | |
83 | xfs_validate_extents( | |
4eea22f0 | 84 | xfs_ifork_t *ifp, |
1da177e4 | 85 | int nrecs, |
1da177e4 LT |
86 | xfs_exntfmt_t fmt) |
87 | { | |
88 | xfs_bmbt_irec_t irec; | |
a6f64d4a | 89 | xfs_bmbt_rec_host_t rec; |
1da177e4 LT |
90 | int i; |
91 | ||
92 | for (i = 0; i < nrecs; i++) { | |
a6f64d4a CH |
93 | xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); |
94 | rec.l0 = get_unaligned(&ep->l0); | |
95 | rec.l1 = get_unaligned(&ep->l1); | |
96 | xfs_bmbt_get_all(&rec, &irec); | |
1da177e4 LT |
97 | if (fmt == XFS_EXTFMT_NOSTATE) |
98 | ASSERT(irec.br_state == XFS_EXT_NORM); | |
1da177e4 LT |
99 | } |
100 | } | |
101 | #else /* DEBUG */ | |
a6f64d4a | 102 | #define xfs_validate_extents(ifp, nrecs, fmt) |
1da177e4 LT |
103 | #endif /* DEBUG */ |
104 | ||
105 | /* | |
106 | * Check that none of the inode's in the buffer have a next | |
107 | * unlinked field of 0. | |
108 | */ | |
109 | #if defined(DEBUG) | |
110 | void | |
111 | xfs_inobp_check( | |
112 | xfs_mount_t *mp, | |
113 | xfs_buf_t *bp) | |
114 | { | |
115 | int i; | |
116 | int j; | |
117 | xfs_dinode_t *dip; | |
118 | ||
119 | j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; | |
120 | ||
121 | for (i = 0; i < j; i++) { | |
122 | dip = (xfs_dinode_t *)xfs_buf_offset(bp, | |
123 | i * mp->m_sb.sb_inodesize); | |
124 | if (!dip->di_next_unlinked) { | |
53487786 DC |
125 | xfs_alert(mp, |
126 | "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.", | |
1da177e4 LT |
127 | bp); |
128 | ASSERT(dip->di_next_unlinked); | |
129 | } | |
130 | } | |
131 | } | |
132 | #endif | |
133 | ||
4ae29b43 | 134 | /* |
475ee413 CH |
135 | * This routine is called to map an inode to the buffer containing the on-disk |
136 | * version of the inode. It returns a pointer to the buffer containing the | |
137 | * on-disk inode in the bpp parameter, and in the dipp parameter it returns a | |
138 | * pointer to the on-disk inode within that buffer. | |
139 | * | |
140 | * If a non-zero error is returned, then the contents of bpp and dipp are | |
141 | * undefined. | |
4ae29b43 | 142 | */ |
475ee413 | 143 | int |
4ae29b43 | 144 | xfs_imap_to_bp( |
475ee413 CH |
145 | struct xfs_mount *mp, |
146 | struct xfs_trans *tp, | |
147 | struct xfs_imap *imap, | |
148 | struct xfs_dinode **dipp, | |
149 | struct xfs_buf **bpp, | |
150 | uint buf_flags, | |
151 | uint iget_flags) | |
4ae29b43 | 152 | { |
475ee413 CH |
153 | struct xfs_buf *bp; |
154 | int error; | |
155 | int i; | |
156 | int ni; | |
4ae29b43 | 157 | |
611c9946 | 158 | buf_flags |= XBF_UNMAPPED; |
4ae29b43 | 159 | error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno, |
a3f74ffb | 160 | (int)imap->im_len, buf_flags, &bp); |
4ae29b43 | 161 | if (error) { |
a3f74ffb | 162 | if (error != EAGAIN) { |
0b932ccc DC |
163 | xfs_warn(mp, |
164 | "%s: xfs_trans_read_buf() returned error %d.", | |
165 | __func__, error); | |
a3f74ffb | 166 | } else { |
0cadda1c | 167 | ASSERT(buf_flags & XBF_TRYLOCK); |
a3f74ffb | 168 | } |
4ae29b43 DC |
169 | return error; |
170 | } | |
171 | ||
172 | /* | |
173 | * Validate the magic number and version of every inode in the buffer | |
174 | * (if DEBUG kernel) or the first inode in the buffer, otherwise. | |
175 | */ | |
176 | #ifdef DEBUG | |
177 | ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog; | |
178 | #else /* usual case */ | |
179 | ni = 1; | |
180 | #endif | |
181 | ||
182 | for (i = 0; i < ni; i++) { | |
183 | int di_ok; | |
184 | xfs_dinode_t *dip; | |
185 | ||
186 | dip = (xfs_dinode_t *)xfs_buf_offset(bp, | |
187 | (i << mp->m_sb.sb_inodelog)); | |
69ef921b | 188 | di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) && |
81591fe2 | 189 | XFS_DINODE_GOOD_VERSION(dip->di_version); |
4ae29b43 DC |
190 | if (unlikely(XFS_TEST_ERROR(!di_ok, mp, |
191 | XFS_ERRTAG_ITOBP_INOTOBP, | |
192 | XFS_RANDOM_ITOBP_INOTOBP))) { | |
1920779e | 193 | if (iget_flags & XFS_IGET_UNTRUSTED) { |
4ae29b43 DC |
194 | xfs_trans_brelse(tp, bp); |
195 | return XFS_ERROR(EINVAL); | |
196 | } | |
475ee413 CH |
197 | XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_HIGH, |
198 | mp, dip); | |
4ae29b43 | 199 | #ifdef DEBUG |
0b932ccc DC |
200 | xfs_emerg(mp, |
201 | "bad inode magic/vsn daddr %lld #%d (magic=%x)", | |
4ae29b43 | 202 | (unsigned long long)imap->im_blkno, i, |
81591fe2 | 203 | be16_to_cpu(dip->di_magic)); |
0b932ccc | 204 | ASSERT(0); |
4ae29b43 DC |
205 | #endif |
206 | xfs_trans_brelse(tp, bp); | |
207 | return XFS_ERROR(EFSCORRUPTED); | |
208 | } | |
209 | } | |
210 | ||
211 | xfs_inobp_check(mp, bp); | |
475ee413 | 212 | |
4ae29b43 | 213 | *bpp = bp; |
475ee413 | 214 | *dipp = (struct xfs_dinode *)xfs_buf_offset(bp, imap->im_boffset); |
4ae29b43 DC |
215 | return 0; |
216 | } | |
217 | ||
1da177e4 LT |
218 | /* |
219 | * Move inode type and inode format specific information from the | |
220 | * on-disk inode to the in-core inode. For fifos, devs, and sockets | |
221 | * this means set if_rdev to the proper value. For files, directories, | |
222 | * and symlinks this means to bring in the in-line data or extent | |
223 | * pointers. For a file in B-tree format, only the root is immediately | |
224 | * brought in-core. The rest will be in-lined in if_extents when it | |
225 | * is first referenced (see xfs_iread_extents()). | |
226 | */ | |
227 | STATIC int | |
228 | xfs_iformat( | |
229 | xfs_inode_t *ip, | |
230 | xfs_dinode_t *dip) | |
231 | { | |
232 | xfs_attr_shortform_t *atp; | |
233 | int size; | |
8096b1eb | 234 | int error = 0; |
1da177e4 | 235 | xfs_fsize_t di_size; |
1da177e4 | 236 | |
81591fe2 CH |
237 | if (unlikely(be32_to_cpu(dip->di_nextents) + |
238 | be16_to_cpu(dip->di_anextents) > | |
239 | be64_to_cpu(dip->di_nblocks))) { | |
65333b4c | 240 | xfs_warn(ip->i_mount, |
3762ec6b | 241 | "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", |
1da177e4 | 242 | (unsigned long long)ip->i_ino, |
81591fe2 CH |
243 | (int)(be32_to_cpu(dip->di_nextents) + |
244 | be16_to_cpu(dip->di_anextents)), | |
1da177e4 | 245 | (unsigned long long) |
81591fe2 | 246 | be64_to_cpu(dip->di_nblocks)); |
1da177e4 LT |
247 | XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, |
248 | ip->i_mount, dip); | |
249 | return XFS_ERROR(EFSCORRUPTED); | |
250 | } | |
251 | ||
81591fe2 | 252 | if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) { |
65333b4c | 253 | xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.", |
1da177e4 | 254 | (unsigned long long)ip->i_ino, |
81591fe2 | 255 | dip->di_forkoff); |
1da177e4 LT |
256 | XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, |
257 | ip->i_mount, dip); | |
258 | return XFS_ERROR(EFSCORRUPTED); | |
259 | } | |
260 | ||
b89d4208 CH |
261 | if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) && |
262 | !ip->i_mount->m_rtdev_targp)) { | |
65333b4c | 263 | xfs_warn(ip->i_mount, |
b89d4208 CH |
264 | "corrupt dinode %Lu, has realtime flag set.", |
265 | ip->i_ino); | |
266 | XFS_CORRUPTION_ERROR("xfs_iformat(realtime)", | |
267 | XFS_ERRLEVEL_LOW, ip->i_mount, dip); | |
268 | return XFS_ERROR(EFSCORRUPTED); | |
269 | } | |
270 | ||
1da177e4 LT |
271 | switch (ip->i_d.di_mode & S_IFMT) { |
272 | case S_IFIFO: | |
273 | case S_IFCHR: | |
274 | case S_IFBLK: | |
275 | case S_IFSOCK: | |
81591fe2 | 276 | if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) { |
1da177e4 LT |
277 | XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, |
278 | ip->i_mount, dip); | |
279 | return XFS_ERROR(EFSCORRUPTED); | |
280 | } | |
281 | ip->i_d.di_size = 0; | |
81591fe2 | 282 | ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip); |
1da177e4 LT |
283 | break; |
284 | ||
285 | case S_IFREG: | |
286 | case S_IFLNK: | |
287 | case S_IFDIR: | |
81591fe2 | 288 | switch (dip->di_format) { |
1da177e4 LT |
289 | case XFS_DINODE_FMT_LOCAL: |
290 | /* | |
291 | * no local regular files yet | |
292 | */ | |
abbede1b | 293 | if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) { |
65333b4c DC |
294 | xfs_warn(ip->i_mount, |
295 | "corrupt inode %Lu (local format for regular file).", | |
1da177e4 LT |
296 | (unsigned long long) ip->i_ino); |
297 | XFS_CORRUPTION_ERROR("xfs_iformat(4)", | |
298 | XFS_ERRLEVEL_LOW, | |
299 | ip->i_mount, dip); | |
300 | return XFS_ERROR(EFSCORRUPTED); | |
301 | } | |
302 | ||
81591fe2 | 303 | di_size = be64_to_cpu(dip->di_size); |
1da177e4 | 304 | if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { |
65333b4c DC |
305 | xfs_warn(ip->i_mount, |
306 | "corrupt inode %Lu (bad size %Ld for local inode).", | |
1da177e4 LT |
307 | (unsigned long long) ip->i_ino, |
308 | (long long) di_size); | |
309 | XFS_CORRUPTION_ERROR("xfs_iformat(5)", | |
310 | XFS_ERRLEVEL_LOW, | |
311 | ip->i_mount, dip); | |
312 | return XFS_ERROR(EFSCORRUPTED); | |
313 | } | |
314 | ||
315 | size = (int)di_size; | |
316 | error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); | |
317 | break; | |
318 | case XFS_DINODE_FMT_EXTENTS: | |
319 | error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); | |
320 | break; | |
321 | case XFS_DINODE_FMT_BTREE: | |
322 | error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); | |
323 | break; | |
324 | default: | |
325 | XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, | |
326 | ip->i_mount); | |
327 | return XFS_ERROR(EFSCORRUPTED); | |
328 | } | |
329 | break; | |
330 | ||
331 | default: | |
332 | XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); | |
333 | return XFS_ERROR(EFSCORRUPTED); | |
334 | } | |
335 | if (error) { | |
336 | return error; | |
337 | } | |
338 | if (!XFS_DFORK_Q(dip)) | |
339 | return 0; | |
8096b1eb | 340 | |
1da177e4 | 341 | ASSERT(ip->i_afp == NULL); |
4a7edddc | 342 | ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS); |
8096b1eb | 343 | |
81591fe2 | 344 | switch (dip->di_aformat) { |
1da177e4 LT |
345 | case XFS_DINODE_FMT_LOCAL: |
346 | atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); | |
3b244aa8 | 347 | size = be16_to_cpu(atp->hdr.totsize); |
2809f76a CH |
348 | |
349 | if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) { | |
65333b4c DC |
350 | xfs_warn(ip->i_mount, |
351 | "corrupt inode %Lu (bad attr fork size %Ld).", | |
2809f76a CH |
352 | (unsigned long long) ip->i_ino, |
353 | (long long) size); | |
354 | XFS_CORRUPTION_ERROR("xfs_iformat(8)", | |
355 | XFS_ERRLEVEL_LOW, | |
356 | ip->i_mount, dip); | |
357 | return XFS_ERROR(EFSCORRUPTED); | |
358 | } | |
359 | ||
1da177e4 LT |
360 | error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); |
361 | break; | |
362 | case XFS_DINODE_FMT_EXTENTS: | |
363 | error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); | |
364 | break; | |
365 | case XFS_DINODE_FMT_BTREE: | |
366 | error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); | |
367 | break; | |
368 | default: | |
369 | error = XFS_ERROR(EFSCORRUPTED); | |
370 | break; | |
371 | } | |
372 | if (error) { | |
373 | kmem_zone_free(xfs_ifork_zone, ip->i_afp); | |
374 | ip->i_afp = NULL; | |
375 | xfs_idestroy_fork(ip, XFS_DATA_FORK); | |
376 | } | |
377 | return error; | |
378 | } | |
379 | ||
380 | /* | |
381 | * The file is in-lined in the on-disk inode. | |
382 | * If it fits into if_inline_data, then copy | |
383 | * it there, otherwise allocate a buffer for it | |
384 | * and copy the data there. Either way, set | |
385 | * if_data to point at the data. | |
386 | * If we allocate a buffer for the data, make | |
387 | * sure that its size is a multiple of 4 and | |
388 | * record the real size in i_real_bytes. | |
389 | */ | |
390 | STATIC int | |
391 | xfs_iformat_local( | |
392 | xfs_inode_t *ip, | |
393 | xfs_dinode_t *dip, | |
394 | int whichfork, | |
395 | int size) | |
396 | { | |
397 | xfs_ifork_t *ifp; | |
398 | int real_size; | |
399 | ||
400 | /* | |
401 | * If the size is unreasonable, then something | |
402 | * is wrong and we just bail out rather than crash in | |
403 | * kmem_alloc() or memcpy() below. | |
404 | */ | |
405 | if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { | |
65333b4c DC |
406 | xfs_warn(ip->i_mount, |
407 | "corrupt inode %Lu (bad size %d for local fork, size = %d).", | |
1da177e4 LT |
408 | (unsigned long long) ip->i_ino, size, |
409 | XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); | |
410 | XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, | |
411 | ip->i_mount, dip); | |
412 | return XFS_ERROR(EFSCORRUPTED); | |
413 | } | |
414 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
415 | real_size = 0; | |
416 | if (size == 0) | |
417 | ifp->if_u1.if_data = NULL; | |
418 | else if (size <= sizeof(ifp->if_u2.if_inline_data)) | |
419 | ifp->if_u1.if_data = ifp->if_u2.if_inline_data; | |
420 | else { | |
421 | real_size = roundup(size, 4); | |
4a7edddc | 422 | ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS); |
1da177e4 LT |
423 | } |
424 | ifp->if_bytes = size; | |
425 | ifp->if_real_bytes = real_size; | |
426 | if (size) | |
427 | memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); | |
428 | ifp->if_flags &= ~XFS_IFEXTENTS; | |
429 | ifp->if_flags |= XFS_IFINLINE; | |
430 | return 0; | |
431 | } | |
432 | ||
433 | /* | |
434 | * The file consists of a set of extents all | |
435 | * of which fit into the on-disk inode. | |
436 | * If there are few enough extents to fit into | |
437 | * the if_inline_ext, then copy them there. | |
438 | * Otherwise allocate a buffer for them and copy | |
439 | * them into it. Either way, set if_extents | |
440 | * to point at the extents. | |
441 | */ | |
442 | STATIC int | |
443 | xfs_iformat_extents( | |
444 | xfs_inode_t *ip, | |
445 | xfs_dinode_t *dip, | |
446 | int whichfork) | |
447 | { | |
a6f64d4a | 448 | xfs_bmbt_rec_t *dp; |
1da177e4 LT |
449 | xfs_ifork_t *ifp; |
450 | int nex; | |
1da177e4 LT |
451 | int size; |
452 | int i; | |
453 | ||
454 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
455 | nex = XFS_DFORK_NEXTENTS(dip, whichfork); | |
456 | size = nex * (uint)sizeof(xfs_bmbt_rec_t); | |
457 | ||
458 | /* | |
459 | * If the number of extents is unreasonable, then something | |
460 | * is wrong and we just bail out rather than crash in | |
461 | * kmem_alloc() or memcpy() below. | |
462 | */ | |
463 | if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { | |
65333b4c | 464 | xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).", |
1da177e4 LT |
465 | (unsigned long long) ip->i_ino, nex); |
466 | XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, | |
467 | ip->i_mount, dip); | |
468 | return XFS_ERROR(EFSCORRUPTED); | |
469 | } | |
470 | ||
4eea22f0 | 471 | ifp->if_real_bytes = 0; |
1da177e4 LT |
472 | if (nex == 0) |
473 | ifp->if_u1.if_extents = NULL; | |
474 | else if (nex <= XFS_INLINE_EXTS) | |
475 | ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; | |
4eea22f0 MK |
476 | else |
477 | xfs_iext_add(ifp, 0, nex); | |
478 | ||
1da177e4 | 479 | ifp->if_bytes = size; |
1da177e4 LT |
480 | if (size) { |
481 | dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); | |
a6f64d4a | 482 | xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip)); |
4eea22f0 | 483 | for (i = 0; i < nex; i++, dp++) { |
a6f64d4a | 484 | xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); |
597bca63 HH |
485 | ep->l0 = get_unaligned_be64(&dp->l0); |
486 | ep->l1 = get_unaligned_be64(&dp->l1); | |
1da177e4 | 487 | } |
3a59c94c | 488 | XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork); |
1da177e4 LT |
489 | if (whichfork != XFS_DATA_FORK || |
490 | XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) | |
491 | if (unlikely(xfs_check_nostate_extents( | |
4eea22f0 | 492 | ifp, 0, nex))) { |
1da177e4 LT |
493 | XFS_ERROR_REPORT("xfs_iformat_extents(2)", |
494 | XFS_ERRLEVEL_LOW, | |
495 | ip->i_mount); | |
496 | return XFS_ERROR(EFSCORRUPTED); | |
497 | } | |
498 | } | |
499 | ifp->if_flags |= XFS_IFEXTENTS; | |
500 | return 0; | |
501 | } | |
502 | ||
503 | /* | |
504 | * The file has too many extents to fit into | |
505 | * the inode, so they are in B-tree format. | |
506 | * Allocate a buffer for the root of the B-tree | |
507 | * and copy the root into it. The i_extents | |
508 | * field will remain NULL until all of the | |
509 | * extents are read in (when they are needed). | |
510 | */ | |
511 | STATIC int | |
512 | xfs_iformat_btree( | |
513 | xfs_inode_t *ip, | |
514 | xfs_dinode_t *dip, | |
515 | int whichfork) | |
516 | { | |
517 | xfs_bmdr_block_t *dfp; | |
518 | xfs_ifork_t *ifp; | |
519 | /* REFERENCED */ | |
520 | int nrecs; | |
521 | int size; | |
522 | ||
523 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
524 | dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); | |
525 | size = XFS_BMAP_BROOT_SPACE(dfp); | |
60197e8d | 526 | nrecs = be16_to_cpu(dfp->bb_numrecs); |
1da177e4 LT |
527 | |
528 | /* | |
529 | * blow out if -- fork has less extents than can fit in | |
530 | * fork (fork shouldn't be a btree format), root btree | |
531 | * block has more records than can fit into the fork, | |
532 | * or the number of extents is greater than the number of | |
533 | * blocks. | |
534 | */ | |
8096b1eb CH |
535 | if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= |
536 | XFS_IFORK_MAXEXT(ip, whichfork) || | |
537 | XFS_BMDR_SPACE_CALC(nrecs) > | |
538 | XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) || | |
539 | XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { | |
65333b4c | 540 | xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).", |
1da177e4 | 541 | (unsigned long long) ip->i_ino); |
65333b4c DC |
542 | XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW, |
543 | ip->i_mount, dip); | |
1da177e4 LT |
544 | return XFS_ERROR(EFSCORRUPTED); |
545 | } | |
546 | ||
547 | ifp->if_broot_bytes = size; | |
4a7edddc | 548 | ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS); |
1da177e4 LT |
549 | ASSERT(ifp->if_broot != NULL); |
550 | /* | |
551 | * Copy and convert from the on-disk structure | |
552 | * to the in-memory structure. | |
553 | */ | |
60197e8d CH |
554 | xfs_bmdr_to_bmbt(ip->i_mount, dfp, |
555 | XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), | |
556 | ifp->if_broot, size); | |
1da177e4 LT |
557 | ifp->if_flags &= ~XFS_IFEXTENTS; |
558 | ifp->if_flags |= XFS_IFBROOT; | |
559 | ||
560 | return 0; | |
561 | } | |
562 | ||
d96f8f89 | 563 | STATIC void |
347d1c01 CH |
564 | xfs_dinode_from_disk( |
565 | xfs_icdinode_t *to, | |
81591fe2 | 566 | xfs_dinode_t *from) |
1da177e4 | 567 | { |
347d1c01 CH |
568 | to->di_magic = be16_to_cpu(from->di_magic); |
569 | to->di_mode = be16_to_cpu(from->di_mode); | |
570 | to->di_version = from ->di_version; | |
571 | to->di_format = from->di_format; | |
572 | to->di_onlink = be16_to_cpu(from->di_onlink); | |
573 | to->di_uid = be32_to_cpu(from->di_uid); | |
574 | to->di_gid = be32_to_cpu(from->di_gid); | |
575 | to->di_nlink = be32_to_cpu(from->di_nlink); | |
6743099c AM |
576 | to->di_projid_lo = be16_to_cpu(from->di_projid_lo); |
577 | to->di_projid_hi = be16_to_cpu(from->di_projid_hi); | |
347d1c01 CH |
578 | memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); |
579 | to->di_flushiter = be16_to_cpu(from->di_flushiter); | |
580 | to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec); | |
581 | to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec); | |
582 | to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec); | |
583 | to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec); | |
584 | to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec); | |
585 | to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec); | |
586 | to->di_size = be64_to_cpu(from->di_size); | |
587 | to->di_nblocks = be64_to_cpu(from->di_nblocks); | |
588 | to->di_extsize = be32_to_cpu(from->di_extsize); | |
589 | to->di_nextents = be32_to_cpu(from->di_nextents); | |
590 | to->di_anextents = be16_to_cpu(from->di_anextents); | |
591 | to->di_forkoff = from->di_forkoff; | |
592 | to->di_aformat = from->di_aformat; | |
593 | to->di_dmevmask = be32_to_cpu(from->di_dmevmask); | |
594 | to->di_dmstate = be16_to_cpu(from->di_dmstate); | |
595 | to->di_flags = be16_to_cpu(from->di_flags); | |
596 | to->di_gen = be32_to_cpu(from->di_gen); | |
597 | } | |
598 | ||
599 | void | |
600 | xfs_dinode_to_disk( | |
81591fe2 | 601 | xfs_dinode_t *to, |
347d1c01 CH |
602 | xfs_icdinode_t *from) |
603 | { | |
604 | to->di_magic = cpu_to_be16(from->di_magic); | |
605 | to->di_mode = cpu_to_be16(from->di_mode); | |
606 | to->di_version = from ->di_version; | |
607 | to->di_format = from->di_format; | |
608 | to->di_onlink = cpu_to_be16(from->di_onlink); | |
609 | to->di_uid = cpu_to_be32(from->di_uid); | |
610 | to->di_gid = cpu_to_be32(from->di_gid); | |
611 | to->di_nlink = cpu_to_be32(from->di_nlink); | |
6743099c AM |
612 | to->di_projid_lo = cpu_to_be16(from->di_projid_lo); |
613 | to->di_projid_hi = cpu_to_be16(from->di_projid_hi); | |
347d1c01 CH |
614 | memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); |
615 | to->di_flushiter = cpu_to_be16(from->di_flushiter); | |
616 | to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec); | |
617 | to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec); | |
618 | to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec); | |
619 | to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec); | |
620 | to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec); | |
621 | to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec); | |
622 | to->di_size = cpu_to_be64(from->di_size); | |
623 | to->di_nblocks = cpu_to_be64(from->di_nblocks); | |
624 | to->di_extsize = cpu_to_be32(from->di_extsize); | |
625 | to->di_nextents = cpu_to_be32(from->di_nextents); | |
626 | to->di_anextents = cpu_to_be16(from->di_anextents); | |
627 | to->di_forkoff = from->di_forkoff; | |
628 | to->di_aformat = from->di_aformat; | |
629 | to->di_dmevmask = cpu_to_be32(from->di_dmevmask); | |
630 | to->di_dmstate = cpu_to_be16(from->di_dmstate); | |
631 | to->di_flags = cpu_to_be16(from->di_flags); | |
632 | to->di_gen = cpu_to_be32(from->di_gen); | |
1da177e4 LT |
633 | } |
634 | ||
635 | STATIC uint | |
636 | _xfs_dic2xflags( | |
1da177e4 LT |
637 | __uint16_t di_flags) |
638 | { | |
639 | uint flags = 0; | |
640 | ||
641 | if (di_flags & XFS_DIFLAG_ANY) { | |
642 | if (di_flags & XFS_DIFLAG_REALTIME) | |
643 | flags |= XFS_XFLAG_REALTIME; | |
644 | if (di_flags & XFS_DIFLAG_PREALLOC) | |
645 | flags |= XFS_XFLAG_PREALLOC; | |
646 | if (di_flags & XFS_DIFLAG_IMMUTABLE) | |
647 | flags |= XFS_XFLAG_IMMUTABLE; | |
648 | if (di_flags & XFS_DIFLAG_APPEND) | |
649 | flags |= XFS_XFLAG_APPEND; | |
650 | if (di_flags & XFS_DIFLAG_SYNC) | |
651 | flags |= XFS_XFLAG_SYNC; | |
652 | if (di_flags & XFS_DIFLAG_NOATIME) | |
653 | flags |= XFS_XFLAG_NOATIME; | |
654 | if (di_flags & XFS_DIFLAG_NODUMP) | |
655 | flags |= XFS_XFLAG_NODUMP; | |
656 | if (di_flags & XFS_DIFLAG_RTINHERIT) | |
657 | flags |= XFS_XFLAG_RTINHERIT; | |
658 | if (di_flags & XFS_DIFLAG_PROJINHERIT) | |
659 | flags |= XFS_XFLAG_PROJINHERIT; | |
660 | if (di_flags & XFS_DIFLAG_NOSYMLINKS) | |
661 | flags |= XFS_XFLAG_NOSYMLINKS; | |
dd9f438e NS |
662 | if (di_flags & XFS_DIFLAG_EXTSIZE) |
663 | flags |= XFS_XFLAG_EXTSIZE; | |
664 | if (di_flags & XFS_DIFLAG_EXTSZINHERIT) | |
665 | flags |= XFS_XFLAG_EXTSZINHERIT; | |
d3446eac BN |
666 | if (di_flags & XFS_DIFLAG_NODEFRAG) |
667 | flags |= XFS_XFLAG_NODEFRAG; | |
2a82b8be DC |
668 | if (di_flags & XFS_DIFLAG_FILESTREAM) |
669 | flags |= XFS_XFLAG_FILESTREAM; | |
1da177e4 LT |
670 | } |
671 | ||
672 | return flags; | |
673 | } | |
674 | ||
675 | uint | |
676 | xfs_ip2xflags( | |
677 | xfs_inode_t *ip) | |
678 | { | |
347d1c01 | 679 | xfs_icdinode_t *dic = &ip->i_d; |
1da177e4 | 680 | |
a916e2bd | 681 | return _xfs_dic2xflags(dic->di_flags) | |
45ba598e | 682 | (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); |
1da177e4 LT |
683 | } |
684 | ||
685 | uint | |
686 | xfs_dic2xflags( | |
45ba598e | 687 | xfs_dinode_t *dip) |
1da177e4 | 688 | { |
81591fe2 | 689 | return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) | |
45ba598e | 690 | (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); |
1da177e4 LT |
691 | } |
692 | ||
07c8f675 | 693 | /* |
24f211ba | 694 | * Read the disk inode attributes into the in-core inode structure. |
1da177e4 LT |
695 | */ |
696 | int | |
697 | xfs_iread( | |
698 | xfs_mount_t *mp, | |
699 | xfs_trans_t *tp, | |
24f211ba | 700 | xfs_inode_t *ip, |
24f211ba | 701 | uint iget_flags) |
1da177e4 LT |
702 | { |
703 | xfs_buf_t *bp; | |
704 | xfs_dinode_t *dip; | |
1da177e4 LT |
705 | int error; |
706 | ||
1da177e4 | 707 | /* |
92bfc6e7 | 708 | * Fill in the location information in the in-core inode. |
1da177e4 | 709 | */ |
24f211ba | 710 | error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags); |
76d8b277 | 711 | if (error) |
24f211ba | 712 | return error; |
76d8b277 CH |
713 | |
714 | /* | |
92bfc6e7 | 715 | * Get pointers to the on-disk inode and the buffer containing it. |
76d8b277 | 716 | */ |
475ee413 | 717 | error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags); |
9ed0451e | 718 | if (error) |
24f211ba | 719 | return error; |
1da177e4 | 720 | |
1da177e4 LT |
721 | /* |
722 | * If we got something that isn't an inode it means someone | |
723 | * (nfs or dmi) has a stale handle. | |
724 | */ | |
69ef921b | 725 | if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) { |
1da177e4 | 726 | #ifdef DEBUG |
53487786 DC |
727 | xfs_alert(mp, |
728 | "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)", | |
729 | __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC); | |
1da177e4 | 730 | #endif /* DEBUG */ |
9ed0451e CH |
731 | error = XFS_ERROR(EINVAL); |
732 | goto out_brelse; | |
1da177e4 LT |
733 | } |
734 | ||
735 | /* | |
736 | * If the on-disk inode is already linked to a directory | |
737 | * entry, copy all of the inode into the in-core inode. | |
738 | * xfs_iformat() handles copying in the inode format | |
739 | * specific information. | |
740 | * Otherwise, just get the truly permanent information. | |
741 | */ | |
81591fe2 CH |
742 | if (dip->di_mode) { |
743 | xfs_dinode_from_disk(&ip->i_d, dip); | |
1da177e4 LT |
744 | error = xfs_iformat(ip, dip); |
745 | if (error) { | |
1da177e4 | 746 | #ifdef DEBUG |
53487786 DC |
747 | xfs_alert(mp, "%s: xfs_iformat() returned error %d", |
748 | __func__, error); | |
1da177e4 | 749 | #endif /* DEBUG */ |
9ed0451e | 750 | goto out_brelse; |
1da177e4 LT |
751 | } |
752 | } else { | |
81591fe2 CH |
753 | ip->i_d.di_magic = be16_to_cpu(dip->di_magic); |
754 | ip->i_d.di_version = dip->di_version; | |
755 | ip->i_d.di_gen = be32_to_cpu(dip->di_gen); | |
756 | ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter); | |
1da177e4 LT |
757 | /* |
758 | * Make sure to pull in the mode here as well in | |
759 | * case the inode is released without being used. | |
760 | * This ensures that xfs_inactive() will see that | |
761 | * the inode is already free and not try to mess | |
762 | * with the uninitialized part of it. | |
763 | */ | |
764 | ip->i_d.di_mode = 0; | |
1da177e4 LT |
765 | } |
766 | ||
1da177e4 LT |
767 | /* |
768 | * The inode format changed when we moved the link count and | |
769 | * made it 32 bits long. If this is an old format inode, | |
770 | * convert it in memory to look like a new one. If it gets | |
771 | * flushed to disk we will convert back before flushing or | |
772 | * logging it. We zero out the new projid field and the old link | |
773 | * count field. We'll handle clearing the pad field (the remains | |
774 | * of the old uuid field) when we actually convert the inode to | |
775 | * the new format. We don't change the version number so that we | |
776 | * can distinguish this from a real new format inode. | |
777 | */ | |
51ce16d5 | 778 | if (ip->i_d.di_version == 1) { |
1da177e4 LT |
779 | ip->i_d.di_nlink = ip->i_d.di_onlink; |
780 | ip->i_d.di_onlink = 0; | |
6743099c | 781 | xfs_set_projid(ip, 0); |
1da177e4 LT |
782 | } |
783 | ||
784 | ip->i_delayed_blks = 0; | |
785 | ||
786 | /* | |
787 | * Mark the buffer containing the inode as something to keep | |
788 | * around for a while. This helps to keep recently accessed | |
789 | * meta-data in-core longer. | |
790 | */ | |
821eb21d | 791 | xfs_buf_set_ref(bp, XFS_INO_REF); |
1da177e4 LT |
792 | |
793 | /* | |
794 | * Use xfs_trans_brelse() to release the buffer containing the | |
795 | * on-disk inode, because it was acquired with xfs_trans_read_buf() | |
475ee413 | 796 | * in xfs_imap_to_bp() above. If tp is NULL, this is just a normal |
1da177e4 LT |
797 | * brelse(). If we're within a transaction, then xfs_trans_brelse() |
798 | * will only release the buffer if it is not dirty within the | |
799 | * transaction. It will be OK to release the buffer in this case, | |
800 | * because inodes on disk are never destroyed and we will be | |
801 | * locking the new in-core inode before putting it in the hash | |
802 | * table where other processes can find it. Thus we don't have | |
803 | * to worry about the inode being changed just because we released | |
804 | * the buffer. | |
805 | */ | |
9ed0451e CH |
806 | out_brelse: |
807 | xfs_trans_brelse(tp, bp); | |
9ed0451e | 808 | return error; |
1da177e4 LT |
809 | } |
810 | ||
811 | /* | |
812 | * Read in extents from a btree-format inode. | |
813 | * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. | |
814 | */ | |
815 | int | |
816 | xfs_iread_extents( | |
817 | xfs_trans_t *tp, | |
818 | xfs_inode_t *ip, | |
819 | int whichfork) | |
820 | { | |
821 | int error; | |
822 | xfs_ifork_t *ifp; | |
4eea22f0 | 823 | xfs_extnum_t nextents; |
1da177e4 LT |
824 | |
825 | if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { | |
826 | XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, | |
827 | ip->i_mount); | |
828 | return XFS_ERROR(EFSCORRUPTED); | |
829 | } | |
4eea22f0 | 830 | nextents = XFS_IFORK_NEXTENTS(ip, whichfork); |
1da177e4 | 831 | ifp = XFS_IFORK_PTR(ip, whichfork); |
4eea22f0 | 832 | |
1da177e4 LT |
833 | /* |
834 | * We know that the size is valid (it's checked in iformat_btree) | |
835 | */ | |
4eea22f0 | 836 | ifp->if_bytes = ifp->if_real_bytes = 0; |
1da177e4 | 837 | ifp->if_flags |= XFS_IFEXTENTS; |
4eea22f0 | 838 | xfs_iext_add(ifp, 0, nextents); |
1da177e4 LT |
839 | error = xfs_bmap_read_extents(tp, ip, whichfork); |
840 | if (error) { | |
4eea22f0 | 841 | xfs_iext_destroy(ifp); |
1da177e4 LT |
842 | ifp->if_flags &= ~XFS_IFEXTENTS; |
843 | return error; | |
844 | } | |
a6f64d4a | 845 | xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip)); |
1da177e4 LT |
846 | return 0; |
847 | } | |
848 | ||
849 | /* | |
850 | * Allocate an inode on disk and return a copy of its in-core version. | |
851 | * The in-core inode is locked exclusively. Set mode, nlink, and rdev | |
852 | * appropriately within the inode. The uid and gid for the inode are | |
853 | * set according to the contents of the given cred structure. | |
854 | * | |
855 | * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() | |
856 | * has a free inode available, call xfs_iget() | |
857 | * to obtain the in-core version of the allocated inode. Finally, | |
858 | * fill in the inode and log its initial contents. In this case, | |
859 | * ialloc_context would be set to NULL and call_again set to false. | |
860 | * | |
861 | * If xfs_dialloc() does not have an available inode, | |
862 | * it will replenish its supply by doing an allocation. Since we can | |
863 | * only do one allocation within a transaction without deadlocks, we | |
864 | * must commit the current transaction before returning the inode itself. | |
865 | * In this case, therefore, we will set call_again to true and return. | |
866 | * The caller should then commit the current transaction, start a new | |
867 | * transaction, and call xfs_ialloc() again to actually get the inode. | |
868 | * | |
869 | * To ensure that some other process does not grab the inode that | |
870 | * was allocated during the first call to xfs_ialloc(), this routine | |
871 | * also returns the [locked] bp pointing to the head of the freelist | |
872 | * as ialloc_context. The caller should hold this buffer across | |
873 | * the commit and pass it back into this routine on the second call. | |
b11f94d5 DC |
874 | * |
875 | * If we are allocating quota inodes, we do not have a parent inode | |
876 | * to attach to or associate with (i.e. pip == NULL) because they | |
877 | * are not linked into the directory structure - they are attached | |
878 | * directly to the superblock - and so have no parent. | |
1da177e4 LT |
879 | */ |
880 | int | |
881 | xfs_ialloc( | |
882 | xfs_trans_t *tp, | |
883 | xfs_inode_t *pip, | |
576b1d67 | 884 | umode_t mode, |
31b084ae | 885 | xfs_nlink_t nlink, |
1da177e4 | 886 | xfs_dev_t rdev, |
6743099c | 887 | prid_t prid, |
1da177e4 LT |
888 | int okalloc, |
889 | xfs_buf_t **ialloc_context, | |
1da177e4 LT |
890 | xfs_inode_t **ipp) |
891 | { | |
892 | xfs_ino_t ino; | |
893 | xfs_inode_t *ip; | |
1da177e4 LT |
894 | uint flags; |
895 | int error; | |
dff35fd4 | 896 | timespec_t tv; |
bf904248 | 897 | int filestreams = 0; |
1da177e4 LT |
898 | |
899 | /* | |
900 | * Call the space management code to pick | |
901 | * the on-disk inode to be allocated. | |
902 | */ | |
b11f94d5 | 903 | error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, |
08358906 | 904 | ialloc_context, &ino); |
bf904248 | 905 | if (error) |
1da177e4 | 906 | return error; |
08358906 | 907 | if (*ialloc_context || ino == NULLFSINO) { |
1da177e4 LT |
908 | *ipp = NULL; |
909 | return 0; | |
910 | } | |
911 | ASSERT(*ialloc_context == NULL); | |
912 | ||
913 | /* | |
914 | * Get the in-core inode with the lock held exclusively. | |
915 | * This is because we're setting fields here we need | |
916 | * to prevent others from looking at until we're done. | |
917 | */ | |
ec3ba85f CH |
918 | error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE, |
919 | XFS_ILOCK_EXCL, &ip); | |
bf904248 | 920 | if (error) |
1da177e4 | 921 | return error; |
1da177e4 LT |
922 | ASSERT(ip != NULL); |
923 | ||
576b1d67 | 924 | ip->i_d.di_mode = mode; |
1da177e4 LT |
925 | ip->i_d.di_onlink = 0; |
926 | ip->i_d.di_nlink = nlink; | |
927 | ASSERT(ip->i_d.di_nlink == nlink); | |
9e2b2dc4 DH |
928 | ip->i_d.di_uid = current_fsuid(); |
929 | ip->i_d.di_gid = current_fsgid(); | |
6743099c | 930 | xfs_set_projid(ip, prid); |
1da177e4 LT |
931 | memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); |
932 | ||
933 | /* | |
934 | * If the superblock version is up to where we support new format | |
935 | * inodes and this is currently an old format inode, then change | |
936 | * the inode version number now. This way we only do the conversion | |
937 | * here rather than here and in the flush/logging code. | |
938 | */ | |
62118709 | 939 | if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) && |
51ce16d5 CH |
940 | ip->i_d.di_version == 1) { |
941 | ip->i_d.di_version = 2; | |
1da177e4 LT |
942 | /* |
943 | * We've already zeroed the old link count, the projid field, | |
944 | * and the pad field. | |
945 | */ | |
946 | } | |
947 | ||
948 | /* | |
949 | * Project ids won't be stored on disk if we are using a version 1 inode. | |
950 | */ | |
51ce16d5 | 951 | if ((prid != 0) && (ip->i_d.di_version == 1)) |
1da177e4 LT |
952 | xfs_bump_ino_vers2(tp, ip); |
953 | ||
bd186aa9 | 954 | if (pip && XFS_INHERIT_GID(pip)) { |
1da177e4 | 955 | ip->i_d.di_gid = pip->i_d.di_gid; |
abbede1b | 956 | if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) { |
1da177e4 LT |
957 | ip->i_d.di_mode |= S_ISGID; |
958 | } | |
959 | } | |
960 | ||
961 | /* | |
962 | * If the group ID of the new file does not match the effective group | |
963 | * ID or one of the supplementary group IDs, the S_ISGID bit is cleared | |
964 | * (and only if the irix_sgid_inherit compatibility variable is set). | |
965 | */ | |
966 | if ((irix_sgid_inherit) && | |
967 | (ip->i_d.di_mode & S_ISGID) && | |
968 | (!in_group_p((gid_t)ip->i_d.di_gid))) { | |
969 | ip->i_d.di_mode &= ~S_ISGID; | |
970 | } | |
971 | ||
972 | ip->i_d.di_size = 0; | |
973 | ip->i_d.di_nextents = 0; | |
974 | ASSERT(ip->i_d.di_nblocks == 0); | |
dff35fd4 CH |
975 | |
976 | nanotime(&tv); | |
977 | ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; | |
978 | ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; | |
979 | ip->i_d.di_atime = ip->i_d.di_mtime; | |
980 | ip->i_d.di_ctime = ip->i_d.di_mtime; | |
981 | ||
1da177e4 LT |
982 | /* |
983 | * di_gen will have been taken care of in xfs_iread. | |
984 | */ | |
985 | ip->i_d.di_extsize = 0; | |
986 | ip->i_d.di_dmevmask = 0; | |
987 | ip->i_d.di_dmstate = 0; | |
988 | ip->i_d.di_flags = 0; | |
989 | flags = XFS_ILOG_CORE; | |
990 | switch (mode & S_IFMT) { | |
991 | case S_IFIFO: | |
992 | case S_IFCHR: | |
993 | case S_IFBLK: | |
994 | case S_IFSOCK: | |
995 | ip->i_d.di_format = XFS_DINODE_FMT_DEV; | |
996 | ip->i_df.if_u2.if_rdev = rdev; | |
997 | ip->i_df.if_flags = 0; | |
998 | flags |= XFS_ILOG_DEV; | |
999 | break; | |
1000 | case S_IFREG: | |
bf904248 DC |
1001 | /* |
1002 | * we can't set up filestreams until after the VFS inode | |
1003 | * is set up properly. | |
1004 | */ | |
1005 | if (pip && xfs_inode_is_filestream(pip)) | |
1006 | filestreams = 1; | |
2a82b8be | 1007 | /* fall through */ |
1da177e4 | 1008 | case S_IFDIR: |
b11f94d5 | 1009 | if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { |
365ca83d NS |
1010 | uint di_flags = 0; |
1011 | ||
abbede1b | 1012 | if (S_ISDIR(mode)) { |
365ca83d NS |
1013 | if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) |
1014 | di_flags |= XFS_DIFLAG_RTINHERIT; | |
dd9f438e NS |
1015 | if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { |
1016 | di_flags |= XFS_DIFLAG_EXTSZINHERIT; | |
1017 | ip->i_d.di_extsize = pip->i_d.di_extsize; | |
1018 | } | |
abbede1b | 1019 | } else if (S_ISREG(mode)) { |
613d7043 | 1020 | if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) |
365ca83d | 1021 | di_flags |= XFS_DIFLAG_REALTIME; |
dd9f438e NS |
1022 | if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { |
1023 | di_flags |= XFS_DIFLAG_EXTSIZE; | |
1024 | ip->i_d.di_extsize = pip->i_d.di_extsize; | |
1025 | } | |
1da177e4 LT |
1026 | } |
1027 | if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && | |
1028 | xfs_inherit_noatime) | |
365ca83d | 1029 | di_flags |= XFS_DIFLAG_NOATIME; |
1da177e4 LT |
1030 | if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && |
1031 | xfs_inherit_nodump) | |
365ca83d | 1032 | di_flags |= XFS_DIFLAG_NODUMP; |
1da177e4 LT |
1033 | if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && |
1034 | xfs_inherit_sync) | |
365ca83d | 1035 | di_flags |= XFS_DIFLAG_SYNC; |
1da177e4 LT |
1036 | if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && |
1037 | xfs_inherit_nosymlinks) | |
365ca83d NS |
1038 | di_flags |= XFS_DIFLAG_NOSYMLINKS; |
1039 | if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) | |
1040 | di_flags |= XFS_DIFLAG_PROJINHERIT; | |
d3446eac BN |
1041 | if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && |
1042 | xfs_inherit_nodefrag) | |
1043 | di_flags |= XFS_DIFLAG_NODEFRAG; | |
2a82b8be DC |
1044 | if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) |
1045 | di_flags |= XFS_DIFLAG_FILESTREAM; | |
365ca83d | 1046 | ip->i_d.di_flags |= di_flags; |
1da177e4 LT |
1047 | } |
1048 | /* FALLTHROUGH */ | |
1049 | case S_IFLNK: | |
1050 | ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; | |
1051 | ip->i_df.if_flags = XFS_IFEXTENTS; | |
1052 | ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; | |
1053 | ip->i_df.if_u1.if_extents = NULL; | |
1054 | break; | |
1055 | default: | |
1056 | ASSERT(0); | |
1057 | } | |
1058 | /* | |
1059 | * Attribute fork settings for new inode. | |
1060 | */ | |
1061 | ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; | |
1062 | ip->i_d.di_anextents = 0; | |
1063 | ||
1064 | /* | |
1065 | * Log the new values stuffed into the inode. | |
1066 | */ | |
ddc3415a | 1067 | xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
1da177e4 LT |
1068 | xfs_trans_log_inode(tp, ip, flags); |
1069 | ||
b83bd138 | 1070 | /* now that we have an i_mode we can setup inode ops and unlock */ |
41be8bed | 1071 | xfs_setup_inode(ip); |
1da177e4 | 1072 | |
bf904248 DC |
1073 | /* now we have set up the vfs inode we can associate the filestream */ |
1074 | if (filestreams) { | |
1075 | error = xfs_filestream_associate(pip, ip); | |
1076 | if (error < 0) | |
1077 | return -error; | |
1078 | if (!error) | |
1079 | xfs_iflags_set(ip, XFS_IFILESTREAM); | |
1080 | } | |
1081 | ||
1da177e4 LT |
1082 | *ipp = ip; |
1083 | return 0; | |
1084 | } | |
1085 | ||
1da177e4 | 1086 | /* |
8f04c47a CH |
1087 | * Free up the underlying blocks past new_size. The new size must be smaller |
1088 | * than the current size. This routine can be used both for the attribute and | |
1089 | * data fork, and does not modify the inode size, which is left to the caller. | |
1da177e4 | 1090 | * |
f6485057 DC |
1091 | * The transaction passed to this routine must have made a permanent log |
1092 | * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the | |
1093 | * given transaction and start new ones, so make sure everything involved in | |
1094 | * the transaction is tidy before calling here. Some transaction will be | |
1095 | * returned to the caller to be committed. The incoming transaction must | |
1096 | * already include the inode, and both inode locks must be held exclusively. | |
1097 | * The inode must also be "held" within the transaction. On return the inode | |
1098 | * will be "held" within the returned transaction. This routine does NOT | |
1099 | * require any disk space to be reserved for it within the transaction. | |
1da177e4 | 1100 | * |
f6485057 DC |
1101 | * If we get an error, we must return with the inode locked and linked into the |
1102 | * current transaction. This keeps things simple for the higher level code, | |
1103 | * because it always knows that the inode is locked and held in the transaction | |
1104 | * that returns to it whether errors occur or not. We don't mark the inode | |
1105 | * dirty on error so that transactions can be easily aborted if possible. | |
1da177e4 LT |
1106 | */ |
1107 | int | |
8f04c47a CH |
1108 | xfs_itruncate_extents( |
1109 | struct xfs_trans **tpp, | |
1110 | struct xfs_inode *ip, | |
1111 | int whichfork, | |
1112 | xfs_fsize_t new_size) | |
1da177e4 | 1113 | { |
8f04c47a CH |
1114 | struct xfs_mount *mp = ip->i_mount; |
1115 | struct xfs_trans *tp = *tpp; | |
1116 | struct xfs_trans *ntp; | |
1117 | xfs_bmap_free_t free_list; | |
1118 | xfs_fsblock_t first_block; | |
1119 | xfs_fileoff_t first_unmap_block; | |
1120 | xfs_fileoff_t last_block; | |
1121 | xfs_filblks_t unmap_len; | |
1122 | int committed; | |
1123 | int error = 0; | |
1124 | int done = 0; | |
1da177e4 | 1125 | |
0b56185b CH |
1126 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
1127 | ASSERT(!atomic_read(&VFS_I(ip)->i_count) || | |
1128 | xfs_isilocked(ip, XFS_IOLOCK_EXCL)); | |
ce7ae151 | 1129 | ASSERT(new_size <= XFS_ISIZE(ip)); |
8f04c47a | 1130 | ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); |
1da177e4 | 1131 | ASSERT(ip->i_itemp != NULL); |
898621d5 | 1132 | ASSERT(ip->i_itemp->ili_lock_flags == 0); |
8f04c47a | 1133 | ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); |
1da177e4 | 1134 | |
673e8e59 CH |
1135 | trace_xfs_itruncate_extents_start(ip, new_size); |
1136 | ||
1da177e4 LT |
1137 | /* |
1138 | * Since it is possible for space to become allocated beyond | |
1139 | * the end of the file (in a crash where the space is allocated | |
1140 | * but the inode size is not yet updated), simply remove any | |
1141 | * blocks which show up between the new EOF and the maximum | |
1142 | * possible file size. If the first block to be removed is | |
1143 | * beyond the maximum file size (ie it is the same as last_block), | |
1144 | * then there is nothing to do. | |
1145 | */ | |
8f04c47a | 1146 | first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); |
32972383 | 1147 | last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); |
8f04c47a CH |
1148 | if (first_unmap_block == last_block) |
1149 | return 0; | |
1150 | ||
1151 | ASSERT(first_unmap_block < last_block); | |
1152 | unmap_len = last_block - first_unmap_block + 1; | |
1da177e4 | 1153 | while (!done) { |
9d87c319 | 1154 | xfs_bmap_init(&free_list, &first_block); |
8f04c47a | 1155 | error = xfs_bunmapi(tp, ip, |
3e57ecf6 | 1156 | first_unmap_block, unmap_len, |
8f04c47a | 1157 | xfs_bmapi_aflag(whichfork), |
1da177e4 | 1158 | XFS_ITRUNC_MAX_EXTENTS, |
3e57ecf6 | 1159 | &first_block, &free_list, |
b4e9181e | 1160 | &done); |
8f04c47a CH |
1161 | if (error) |
1162 | goto out_bmap_cancel; | |
1da177e4 LT |
1163 | |
1164 | /* | |
1165 | * Duplicate the transaction that has the permanent | |
1166 | * reservation and commit the old transaction. | |
1167 | */ | |
8f04c47a | 1168 | error = xfs_bmap_finish(&tp, &free_list, &committed); |
898621d5 | 1169 | if (committed) |
ddc3415a | 1170 | xfs_trans_ijoin(tp, ip, 0); |
8f04c47a CH |
1171 | if (error) |
1172 | goto out_bmap_cancel; | |
1da177e4 LT |
1173 | |
1174 | if (committed) { | |
1175 | /* | |
f6485057 | 1176 | * Mark the inode dirty so it will be logged and |
e5720eec | 1177 | * moved forward in the log as part of every commit. |
1da177e4 | 1178 | */ |
8f04c47a | 1179 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
1da177e4 | 1180 | } |
f6485057 | 1181 | |
8f04c47a CH |
1182 | ntp = xfs_trans_dup(tp); |
1183 | error = xfs_trans_commit(tp, 0); | |
1184 | tp = ntp; | |
e5720eec | 1185 | |
ddc3415a | 1186 | xfs_trans_ijoin(tp, ip, 0); |
f6485057 | 1187 | |
cc09c0dc | 1188 | if (error) |
8f04c47a CH |
1189 | goto out; |
1190 | ||
cc09c0dc | 1191 | /* |
8f04c47a | 1192 | * Transaction commit worked ok so we can drop the extra ticket |
cc09c0dc DC |
1193 | * reference that we gained in xfs_trans_dup() |
1194 | */ | |
8f04c47a CH |
1195 | xfs_log_ticket_put(tp->t_ticket); |
1196 | error = xfs_trans_reserve(tp, 0, | |
f6485057 DC |
1197 | XFS_ITRUNCATE_LOG_RES(mp), 0, |
1198 | XFS_TRANS_PERM_LOG_RES, | |
1199 | XFS_ITRUNCATE_LOG_COUNT); | |
1200 | if (error) | |
8f04c47a | 1201 | goto out; |
1da177e4 | 1202 | } |
8f04c47a | 1203 | |
673e8e59 CH |
1204 | /* |
1205 | * Always re-log the inode so that our permanent transaction can keep | |
1206 | * on rolling it forward in the log. | |
1207 | */ | |
1208 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | |
1209 | ||
1210 | trace_xfs_itruncate_extents_end(ip, new_size); | |
1211 | ||
8f04c47a CH |
1212 | out: |
1213 | *tpp = tp; | |
1214 | return error; | |
1215 | out_bmap_cancel: | |
1da177e4 | 1216 | /* |
8f04c47a CH |
1217 | * If the bunmapi call encounters an error, return to the caller where |
1218 | * the transaction can be properly aborted. We just need to make sure | |
1219 | * we're not holding any resources that we were not when we came in. | |
1da177e4 | 1220 | */ |
8f04c47a CH |
1221 | xfs_bmap_cancel(&free_list); |
1222 | goto out; | |
1223 | } | |
1224 | ||
1da177e4 LT |
1225 | /* |
1226 | * This is called when the inode's link count goes to 0. | |
1227 | * We place the on-disk inode on a list in the AGI. It | |
1228 | * will be pulled from this list when the inode is freed. | |
1229 | */ | |
1230 | int | |
1231 | xfs_iunlink( | |
1232 | xfs_trans_t *tp, | |
1233 | xfs_inode_t *ip) | |
1234 | { | |
1235 | xfs_mount_t *mp; | |
1236 | xfs_agi_t *agi; | |
1237 | xfs_dinode_t *dip; | |
1238 | xfs_buf_t *agibp; | |
1239 | xfs_buf_t *ibp; | |
1da177e4 LT |
1240 | xfs_agino_t agino; |
1241 | short bucket_index; | |
1242 | int offset; | |
1243 | int error; | |
1da177e4 LT |
1244 | |
1245 | ASSERT(ip->i_d.di_nlink == 0); | |
1246 | ASSERT(ip->i_d.di_mode != 0); | |
1da177e4 LT |
1247 | |
1248 | mp = tp->t_mountp; | |
1249 | ||
1da177e4 LT |
1250 | /* |
1251 | * Get the agi buffer first. It ensures lock ordering | |
1252 | * on the list. | |
1253 | */ | |
5e1be0fb | 1254 | error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); |
859d7182 | 1255 | if (error) |
1da177e4 | 1256 | return error; |
1da177e4 | 1257 | agi = XFS_BUF_TO_AGI(agibp); |
5e1be0fb | 1258 | |
1da177e4 LT |
1259 | /* |
1260 | * Get the index into the agi hash table for the | |
1261 | * list this inode will go on. | |
1262 | */ | |
1263 | agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | |
1264 | ASSERT(agino != 0); | |
1265 | bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; | |
1266 | ASSERT(agi->agi_unlinked[bucket_index]); | |
16259e7d | 1267 | ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); |
1da177e4 | 1268 | |
69ef921b | 1269 | if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { |
1da177e4 LT |
1270 | /* |
1271 | * There is already another inode in the bucket we need | |
1272 | * to add ourselves to. Add us at the front of the list. | |
1273 | * Here we put the head pointer into our next pointer, | |
1274 | * and then we fall through to point the head at us. | |
1275 | */ | |
475ee413 CH |
1276 | error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, |
1277 | 0, 0); | |
c319b58b VA |
1278 | if (error) |
1279 | return error; | |
1280 | ||
69ef921b | 1281 | ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); |
1da177e4 | 1282 | dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; |
92bfc6e7 | 1283 | offset = ip->i_imap.im_boffset + |
1da177e4 LT |
1284 | offsetof(xfs_dinode_t, di_next_unlinked); |
1285 | xfs_trans_inode_buf(tp, ibp); | |
1286 | xfs_trans_log_buf(tp, ibp, offset, | |
1287 | (offset + sizeof(xfs_agino_t) - 1)); | |
1288 | xfs_inobp_check(mp, ibp); | |
1289 | } | |
1290 | ||
1291 | /* | |
1292 | * Point the bucket head pointer at the inode being inserted. | |
1293 | */ | |
1294 | ASSERT(agino != 0); | |
16259e7d | 1295 | agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); |
1da177e4 LT |
1296 | offset = offsetof(xfs_agi_t, agi_unlinked) + |
1297 | (sizeof(xfs_agino_t) * bucket_index); | |
1298 | xfs_trans_log_buf(tp, agibp, offset, | |
1299 | (offset + sizeof(xfs_agino_t) - 1)); | |
1300 | return 0; | |
1301 | } | |
1302 | ||
1303 | /* | |
1304 | * Pull the on-disk inode from the AGI unlinked list. | |
1305 | */ | |
1306 | STATIC int | |
1307 | xfs_iunlink_remove( | |
1308 | xfs_trans_t *tp, | |
1309 | xfs_inode_t *ip) | |
1310 | { | |
1311 | xfs_ino_t next_ino; | |
1312 | xfs_mount_t *mp; | |
1313 | xfs_agi_t *agi; | |
1314 | xfs_dinode_t *dip; | |
1315 | xfs_buf_t *agibp; | |
1316 | xfs_buf_t *ibp; | |
1317 | xfs_agnumber_t agno; | |
1da177e4 LT |
1318 | xfs_agino_t agino; |
1319 | xfs_agino_t next_agino; | |
1320 | xfs_buf_t *last_ibp; | |
6fdf8ccc | 1321 | xfs_dinode_t *last_dip = NULL; |
1da177e4 | 1322 | short bucket_index; |
6fdf8ccc | 1323 | int offset, last_offset = 0; |
1da177e4 | 1324 | int error; |
1da177e4 | 1325 | |
1da177e4 | 1326 | mp = tp->t_mountp; |
1da177e4 | 1327 | agno = XFS_INO_TO_AGNO(mp, ip->i_ino); |
1da177e4 LT |
1328 | |
1329 | /* | |
1330 | * Get the agi buffer first. It ensures lock ordering | |
1331 | * on the list. | |
1332 | */ | |
5e1be0fb CH |
1333 | error = xfs_read_agi(mp, tp, agno, &agibp); |
1334 | if (error) | |
1da177e4 | 1335 | return error; |
5e1be0fb | 1336 | |
1da177e4 | 1337 | agi = XFS_BUF_TO_AGI(agibp); |
5e1be0fb | 1338 | |
1da177e4 LT |
1339 | /* |
1340 | * Get the index into the agi hash table for the | |
1341 | * list this inode will go on. | |
1342 | */ | |
1343 | agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | |
1344 | ASSERT(agino != 0); | |
1345 | bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; | |
69ef921b | 1346 | ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); |
1da177e4 LT |
1347 | ASSERT(agi->agi_unlinked[bucket_index]); |
1348 | ||
16259e7d | 1349 | if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { |
1da177e4 | 1350 | /* |
475ee413 CH |
1351 | * We're at the head of the list. Get the inode's on-disk |
1352 | * buffer to see if there is anyone after us on the list. | |
1353 | * Only modify our next pointer if it is not already NULLAGINO. | |
1354 | * This saves us the overhead of dealing with the buffer when | |
1355 | * there is no need to change it. | |
1da177e4 | 1356 | */ |
475ee413 CH |
1357 | error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, |
1358 | 0, 0); | |
1da177e4 | 1359 | if (error) { |
475ee413 | 1360 | xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", |
0b932ccc | 1361 | __func__, error); |
1da177e4 LT |
1362 | return error; |
1363 | } | |
347d1c01 | 1364 | next_agino = be32_to_cpu(dip->di_next_unlinked); |
1da177e4 LT |
1365 | ASSERT(next_agino != 0); |
1366 | if (next_agino != NULLAGINO) { | |
347d1c01 | 1367 | dip->di_next_unlinked = cpu_to_be32(NULLAGINO); |
92bfc6e7 | 1368 | offset = ip->i_imap.im_boffset + |
1da177e4 LT |
1369 | offsetof(xfs_dinode_t, di_next_unlinked); |
1370 | xfs_trans_inode_buf(tp, ibp); | |
1371 | xfs_trans_log_buf(tp, ibp, offset, | |
1372 | (offset + sizeof(xfs_agino_t) - 1)); | |
1373 | xfs_inobp_check(mp, ibp); | |
1374 | } else { | |
1375 | xfs_trans_brelse(tp, ibp); | |
1376 | } | |
1377 | /* | |
1378 | * Point the bucket head pointer at the next inode. | |
1379 | */ | |
1380 | ASSERT(next_agino != 0); | |
1381 | ASSERT(next_agino != agino); | |
16259e7d | 1382 | agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); |
1da177e4 LT |
1383 | offset = offsetof(xfs_agi_t, agi_unlinked) + |
1384 | (sizeof(xfs_agino_t) * bucket_index); | |
1385 | xfs_trans_log_buf(tp, agibp, offset, | |
1386 | (offset + sizeof(xfs_agino_t) - 1)); | |
1387 | } else { | |
1388 | /* | |
1389 | * We need to search the list for the inode being freed. | |
1390 | */ | |
16259e7d | 1391 | next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); |
1da177e4 LT |
1392 | last_ibp = NULL; |
1393 | while (next_agino != agino) { | |
129dbc9a CH |
1394 | struct xfs_imap imap; |
1395 | ||
1396 | if (last_ibp) | |
1da177e4 | 1397 | xfs_trans_brelse(tp, last_ibp); |
129dbc9a CH |
1398 | |
1399 | imap.im_blkno = 0; | |
1da177e4 | 1400 | next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); |
129dbc9a CH |
1401 | |
1402 | error = xfs_imap(mp, tp, next_ino, &imap, 0); | |
1403 | if (error) { | |
1404 | xfs_warn(mp, | |
1405 | "%s: xfs_imap returned error %d.", | |
1406 | __func__, error); | |
1407 | return error; | |
1408 | } | |
1409 | ||
1410 | error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, | |
1411 | &last_ibp, 0, 0); | |
1da177e4 | 1412 | if (error) { |
0b932ccc | 1413 | xfs_warn(mp, |
129dbc9a | 1414 | "%s: xfs_imap_to_bp returned error %d.", |
0b932ccc | 1415 | __func__, error); |
1da177e4 LT |
1416 | return error; |
1417 | } | |
129dbc9a CH |
1418 | |
1419 | last_offset = imap.im_boffset; | |
347d1c01 | 1420 | next_agino = be32_to_cpu(last_dip->di_next_unlinked); |
1da177e4 LT |
1421 | ASSERT(next_agino != NULLAGINO); |
1422 | ASSERT(next_agino != 0); | |
1423 | } | |
475ee413 | 1424 | |
1da177e4 | 1425 | /* |
475ee413 CH |
1426 | * Now last_ibp points to the buffer previous to us on the |
1427 | * unlinked list. Pull us from the list. | |
1da177e4 | 1428 | */ |
475ee413 CH |
1429 | error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, |
1430 | 0, 0); | |
1da177e4 | 1431 | if (error) { |
475ee413 | 1432 | xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", |
0b932ccc | 1433 | __func__, error); |
1da177e4 LT |
1434 | return error; |
1435 | } | |
347d1c01 | 1436 | next_agino = be32_to_cpu(dip->di_next_unlinked); |
1da177e4 LT |
1437 | ASSERT(next_agino != 0); |
1438 | ASSERT(next_agino != agino); | |
1439 | if (next_agino != NULLAGINO) { | |
347d1c01 | 1440 | dip->di_next_unlinked = cpu_to_be32(NULLAGINO); |
92bfc6e7 | 1441 | offset = ip->i_imap.im_boffset + |
1da177e4 LT |
1442 | offsetof(xfs_dinode_t, di_next_unlinked); |
1443 | xfs_trans_inode_buf(tp, ibp); | |
1444 | xfs_trans_log_buf(tp, ibp, offset, | |
1445 | (offset + sizeof(xfs_agino_t) - 1)); | |
1446 | xfs_inobp_check(mp, ibp); | |
1447 | } else { | |
1448 | xfs_trans_brelse(tp, ibp); | |
1449 | } | |
1450 | /* | |
1451 | * Point the previous inode on the list to the next inode. | |
1452 | */ | |
347d1c01 | 1453 | last_dip->di_next_unlinked = cpu_to_be32(next_agino); |
1da177e4 LT |
1454 | ASSERT(next_agino != 0); |
1455 | offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); | |
1456 | xfs_trans_inode_buf(tp, last_ibp); | |
1457 | xfs_trans_log_buf(tp, last_ibp, offset, | |
1458 | (offset + sizeof(xfs_agino_t) - 1)); | |
1459 | xfs_inobp_check(mp, last_ibp); | |
1460 | } | |
1461 | return 0; | |
1462 | } | |
1463 | ||
5b3eed75 DC |
1464 | /* |
1465 | * A big issue when freeing the inode cluster is is that we _cannot_ skip any | |
1466 | * inodes that are in memory - they all must be marked stale and attached to | |
1467 | * the cluster buffer. | |
1468 | */ | |
2a30f36d | 1469 | STATIC int |
1da177e4 LT |
1470 | xfs_ifree_cluster( |
1471 | xfs_inode_t *free_ip, | |
1472 | xfs_trans_t *tp, | |
1473 | xfs_ino_t inum) | |
1474 | { | |
1475 | xfs_mount_t *mp = free_ip->i_mount; | |
1476 | int blks_per_cluster; | |
1477 | int nbufs; | |
1478 | int ninodes; | |
5b257b4a | 1479 | int i, j; |
1da177e4 LT |
1480 | xfs_daddr_t blkno; |
1481 | xfs_buf_t *bp; | |
5b257b4a | 1482 | xfs_inode_t *ip; |
1da177e4 LT |
1483 | xfs_inode_log_item_t *iip; |
1484 | xfs_log_item_t *lip; | |
5017e97d | 1485 | struct xfs_perag *pag; |
1da177e4 | 1486 | |
5017e97d | 1487 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); |
1da177e4 LT |
1488 | if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { |
1489 | blks_per_cluster = 1; | |
1490 | ninodes = mp->m_sb.sb_inopblock; | |
1491 | nbufs = XFS_IALLOC_BLOCKS(mp); | |
1492 | } else { | |
1493 | blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / | |
1494 | mp->m_sb.sb_blocksize; | |
1495 | ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; | |
1496 | nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; | |
1497 | } | |
1498 | ||
1da177e4 LT |
1499 | for (j = 0; j < nbufs; j++, inum += ninodes) { |
1500 | blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), | |
1501 | XFS_INO_TO_AGBNO(mp, inum)); | |
1502 | ||
5b257b4a DC |
1503 | /* |
1504 | * We obtain and lock the backing buffer first in the process | |
1505 | * here, as we have to ensure that any dirty inode that we | |
1506 | * can't get the flush lock on is attached to the buffer. | |
1507 | * If we scan the in-memory inodes first, then buffer IO can | |
1508 | * complete before we get a lock on it, and hence we may fail | |
1509 | * to mark all the active inodes on the buffer stale. | |
1510 | */ | |
1511 | bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, | |
a8acad70 | 1512 | mp->m_bsize * blks_per_cluster, 0); |
5b257b4a | 1513 | |
2a30f36d CS |
1514 | if (!bp) |
1515 | return ENOMEM; | |
5b257b4a DC |
1516 | /* |
1517 | * Walk the inodes already attached to the buffer and mark them | |
1518 | * stale. These will all have the flush locks held, so an | |
5b3eed75 DC |
1519 | * in-memory inode walk can't lock them. By marking them all |
1520 | * stale first, we will not attempt to lock them in the loop | |
1521 | * below as the XFS_ISTALE flag will be set. | |
5b257b4a | 1522 | */ |
adadbeef | 1523 | lip = bp->b_fspriv; |
5b257b4a DC |
1524 | while (lip) { |
1525 | if (lip->li_type == XFS_LI_INODE) { | |
1526 | iip = (xfs_inode_log_item_t *)lip; | |
1527 | ASSERT(iip->ili_logged == 1); | |
ca30b2a7 | 1528 | lip->li_cb = xfs_istale_done; |
5b257b4a DC |
1529 | xfs_trans_ail_copy_lsn(mp->m_ail, |
1530 | &iip->ili_flush_lsn, | |
1531 | &iip->ili_item.li_lsn); | |
1532 | xfs_iflags_set(iip->ili_inode, XFS_ISTALE); | |
5b257b4a DC |
1533 | } |
1534 | lip = lip->li_bio_list; | |
1535 | } | |
1da177e4 | 1536 | |
5b3eed75 | 1537 | |
1da177e4 | 1538 | /* |
5b257b4a DC |
1539 | * For each inode in memory attempt to add it to the inode |
1540 | * buffer and set it up for being staled on buffer IO | |
1541 | * completion. This is safe as we've locked out tail pushing | |
1542 | * and flushing by locking the buffer. | |
1da177e4 | 1543 | * |
5b257b4a DC |
1544 | * We have already marked every inode that was part of a |
1545 | * transaction stale above, which means there is no point in | |
1546 | * even trying to lock them. | |
1da177e4 | 1547 | */ |
1da177e4 | 1548 | for (i = 0; i < ninodes; i++) { |
5b3eed75 | 1549 | retry: |
1a3e8f3d | 1550 | rcu_read_lock(); |
da353b0d DC |
1551 | ip = radix_tree_lookup(&pag->pag_ici_root, |
1552 | XFS_INO_TO_AGINO(mp, (inum + i))); | |
1da177e4 | 1553 | |
1a3e8f3d DC |
1554 | /* Inode not in memory, nothing to do */ |
1555 | if (!ip) { | |
1556 | rcu_read_unlock(); | |
1da177e4 LT |
1557 | continue; |
1558 | } | |
1559 | ||
1a3e8f3d DC |
1560 | /* |
1561 | * because this is an RCU protected lookup, we could | |
1562 | * find a recently freed or even reallocated inode | |
1563 | * during the lookup. We need to check under the | |
1564 | * i_flags_lock for a valid inode here. Skip it if it | |
1565 | * is not valid, the wrong inode or stale. | |
1566 | */ | |
1567 | spin_lock(&ip->i_flags_lock); | |
1568 | if (ip->i_ino != inum + i || | |
1569 | __xfs_iflags_test(ip, XFS_ISTALE)) { | |
1570 | spin_unlock(&ip->i_flags_lock); | |
1571 | rcu_read_unlock(); | |
1572 | continue; | |
1573 | } | |
1574 | spin_unlock(&ip->i_flags_lock); | |
1575 | ||
5b3eed75 DC |
1576 | /* |
1577 | * Don't try to lock/unlock the current inode, but we | |
1578 | * _cannot_ skip the other inodes that we did not find | |
1579 | * in the list attached to the buffer and are not | |
1580 | * already marked stale. If we can't lock it, back off | |
1581 | * and retry. | |
1582 | */ | |
5b257b4a DC |
1583 | if (ip != free_ip && |
1584 | !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { | |
1a3e8f3d | 1585 | rcu_read_unlock(); |
5b3eed75 DC |
1586 | delay(1); |
1587 | goto retry; | |
1da177e4 | 1588 | } |
1a3e8f3d | 1589 | rcu_read_unlock(); |
1da177e4 | 1590 | |
5b3eed75 | 1591 | xfs_iflock(ip); |
5b257b4a | 1592 | xfs_iflags_set(ip, XFS_ISTALE); |
1da177e4 | 1593 | |
5b3eed75 DC |
1594 | /* |
1595 | * we don't need to attach clean inodes or those only | |
1596 | * with unlogged changes (which we throw away, anyway). | |
1597 | */ | |
1da177e4 | 1598 | iip = ip->i_itemp; |
5b3eed75 | 1599 | if (!iip || xfs_inode_clean(ip)) { |
5b257b4a | 1600 | ASSERT(ip != free_ip); |
1da177e4 LT |
1601 | xfs_ifunlock(ip); |
1602 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | |
1603 | continue; | |
1604 | } | |
1605 | ||
f5d8d5c4 CH |
1606 | iip->ili_last_fields = iip->ili_fields; |
1607 | iip->ili_fields = 0; | |
1da177e4 | 1608 | iip->ili_logged = 1; |
7b2e2a31 DC |
1609 | xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, |
1610 | &iip->ili_item.li_lsn); | |
1da177e4 | 1611 | |
ca30b2a7 CH |
1612 | xfs_buf_attach_iodone(bp, xfs_istale_done, |
1613 | &iip->ili_item); | |
5b257b4a DC |
1614 | |
1615 | if (ip != free_ip) | |
1da177e4 | 1616 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
1da177e4 LT |
1617 | } |
1618 | ||
5b3eed75 | 1619 | xfs_trans_stale_inode_buf(tp, bp); |
1da177e4 LT |
1620 | xfs_trans_binval(tp, bp); |
1621 | } | |
1622 | ||
5017e97d | 1623 | xfs_perag_put(pag); |
2a30f36d | 1624 | return 0; |
1da177e4 LT |
1625 | } |
1626 | ||
1627 | /* | |
1628 | * This is called to return an inode to the inode free list. | |
1629 | * The inode should already be truncated to 0 length and have | |
1630 | * no pages associated with it. This routine also assumes that | |
1631 | * the inode is already a part of the transaction. | |
1632 | * | |
1633 | * The on-disk copy of the inode will have been added to the list | |
1634 | * of unlinked inodes in the AGI. We need to remove the inode from | |
1635 | * that list atomically with respect to freeing it here. | |
1636 | */ | |
1637 | int | |
1638 | xfs_ifree( | |
1639 | xfs_trans_t *tp, | |
1640 | xfs_inode_t *ip, | |
1641 | xfs_bmap_free_t *flist) | |
1642 | { | |
1643 | int error; | |
1644 | int delete; | |
1645 | xfs_ino_t first_ino; | |
c319b58b VA |
1646 | xfs_dinode_t *dip; |
1647 | xfs_buf_t *ibp; | |
1da177e4 | 1648 | |
579aa9ca | 1649 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
1da177e4 LT |
1650 | ASSERT(ip->i_d.di_nlink == 0); |
1651 | ASSERT(ip->i_d.di_nextents == 0); | |
1652 | ASSERT(ip->i_d.di_anextents == 0); | |
ce7ae151 | 1653 | ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode)); |
1da177e4 LT |
1654 | ASSERT(ip->i_d.di_nblocks == 0); |
1655 | ||
1656 | /* | |
1657 | * Pull the on-disk inode from the AGI unlinked list. | |
1658 | */ | |
1659 | error = xfs_iunlink_remove(tp, ip); | |
1660 | if (error != 0) { | |
1661 | return error; | |
1662 | } | |
1663 | ||
1664 | error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); | |
1665 | if (error != 0) { | |
1666 | return error; | |
1667 | } | |
1668 | ip->i_d.di_mode = 0; /* mark incore inode as free */ | |
1669 | ip->i_d.di_flags = 0; | |
1670 | ip->i_d.di_dmevmask = 0; | |
1671 | ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ | |
1da177e4 LT |
1672 | ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; |
1673 | ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; | |
1674 | /* | |
1675 | * Bump the generation count so no one will be confused | |
1676 | * by reincarnations of this inode. | |
1677 | */ | |
1678 | ip->i_d.di_gen++; | |
c319b58b | 1679 | |
1da177e4 LT |
1680 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
1681 | ||
475ee413 CH |
1682 | error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &dip, &ibp, |
1683 | 0, 0); | |
c319b58b VA |
1684 | if (error) |
1685 | return error; | |
1686 | ||
1687 | /* | |
1688 | * Clear the on-disk di_mode. This is to prevent xfs_bulkstat | |
1689 | * from picking up this inode when it is reclaimed (its incore state | |
1690 | * initialzed but not flushed to disk yet). The in-core di_mode is | |
1691 | * already cleared and a corresponding transaction logged. | |
1692 | * The hack here just synchronizes the in-core to on-disk | |
1693 | * di_mode value in advance before the actual inode sync to disk. | |
1694 | * This is OK because the inode is already unlinked and would never | |
1695 | * change its di_mode again for this inode generation. | |
1696 | * This is a temporary hack that would require a proper fix | |
1697 | * in the future. | |
1698 | */ | |
81591fe2 | 1699 | dip->di_mode = 0; |
c319b58b | 1700 | |
1da177e4 | 1701 | if (delete) { |
2a30f36d | 1702 | error = xfs_ifree_cluster(ip, tp, first_ino); |
1da177e4 LT |
1703 | } |
1704 | ||
2a30f36d | 1705 | return error; |
1da177e4 LT |
1706 | } |
1707 | ||
1708 | /* | |
1709 | * Reallocate the space for if_broot based on the number of records | |
1710 | * being added or deleted as indicated in rec_diff. Move the records | |
1711 | * and pointers in if_broot to fit the new size. When shrinking this | |
1712 | * will eliminate holes between the records and pointers created by | |
1713 | * the caller. When growing this will create holes to be filled in | |
1714 | * by the caller. | |
1715 | * | |
1716 | * The caller must not request to add more records than would fit in | |
1717 | * the on-disk inode root. If the if_broot is currently NULL, then | |
1718 | * if we adding records one will be allocated. The caller must also | |
1719 | * not request that the number of records go below zero, although | |
1720 | * it can go to zero. | |
1721 | * | |
1722 | * ip -- the inode whose if_broot area is changing | |
1723 | * ext_diff -- the change in the number of records, positive or negative, | |
1724 | * requested for the if_broot array. | |
1725 | */ | |
1726 | void | |
1727 | xfs_iroot_realloc( | |
1728 | xfs_inode_t *ip, | |
1729 | int rec_diff, | |
1730 | int whichfork) | |
1731 | { | |
60197e8d | 1732 | struct xfs_mount *mp = ip->i_mount; |
1da177e4 LT |
1733 | int cur_max; |
1734 | xfs_ifork_t *ifp; | |
7cc95a82 | 1735 | struct xfs_btree_block *new_broot; |
1da177e4 LT |
1736 | int new_max; |
1737 | size_t new_size; | |
1738 | char *np; | |
1739 | char *op; | |
1740 | ||
1741 | /* | |
1742 | * Handle the degenerate case quietly. | |
1743 | */ | |
1744 | if (rec_diff == 0) { | |
1745 | return; | |
1746 | } | |
1747 | ||
1748 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
1749 | if (rec_diff > 0) { | |
1750 | /* | |
1751 | * If there wasn't any memory allocated before, just | |
1752 | * allocate it now and get out. | |
1753 | */ | |
1754 | if (ifp->if_broot_bytes == 0) { | |
1755 | new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); | |
4a7edddc | 1756 | ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); |
1da177e4 LT |
1757 | ifp->if_broot_bytes = (int)new_size; |
1758 | return; | |
1759 | } | |
1760 | ||
1761 | /* | |
1762 | * If there is already an existing if_broot, then we need | |
1763 | * to realloc() it and shift the pointers to their new | |
1764 | * location. The records don't change location because | |
1765 | * they are kept butted up against the btree block header. | |
1766 | */ | |
60197e8d | 1767 | cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); |
1da177e4 LT |
1768 | new_max = cur_max + rec_diff; |
1769 | new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); | |
7cc95a82 | 1770 | ifp->if_broot = kmem_realloc(ifp->if_broot, new_size, |
1da177e4 | 1771 | (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ |
4a7edddc | 1772 | KM_SLEEP | KM_NOFS); |
60197e8d CH |
1773 | op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, |
1774 | ifp->if_broot_bytes); | |
1775 | np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, | |
1776 | (int)new_size); | |
1da177e4 LT |
1777 | ifp->if_broot_bytes = (int)new_size; |
1778 | ASSERT(ifp->if_broot_bytes <= | |
1779 | XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); | |
1780 | memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); | |
1781 | return; | |
1782 | } | |
1783 | ||
1784 | /* | |
1785 | * rec_diff is less than 0. In this case, we are shrinking the | |
1786 | * if_broot buffer. It must already exist. If we go to zero | |
1787 | * records, just get rid of the root and clear the status bit. | |
1788 | */ | |
1789 | ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); | |
60197e8d | 1790 | cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); |
1da177e4 LT |
1791 | new_max = cur_max + rec_diff; |
1792 | ASSERT(new_max >= 0); | |
1793 | if (new_max > 0) | |
1794 | new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); | |
1795 | else | |
1796 | new_size = 0; | |
1797 | if (new_size > 0) { | |
4a7edddc | 1798 | new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); |
1da177e4 LT |
1799 | /* |
1800 | * First copy over the btree block header. | |
1801 | */ | |
7cc95a82 | 1802 | memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN); |
1da177e4 LT |
1803 | } else { |
1804 | new_broot = NULL; | |
1805 | ifp->if_flags &= ~XFS_IFBROOT; | |
1806 | } | |
1807 | ||
1808 | /* | |
1809 | * Only copy the records and pointers if there are any. | |
1810 | */ | |
1811 | if (new_max > 0) { | |
1812 | /* | |
1813 | * First copy the records. | |
1814 | */ | |
136341b4 CH |
1815 | op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); |
1816 | np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); | |
1da177e4 LT |
1817 | memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); |
1818 | ||
1819 | /* | |
1820 | * Then copy the pointers. | |
1821 | */ | |
60197e8d | 1822 | op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, |
1da177e4 | 1823 | ifp->if_broot_bytes); |
60197e8d | 1824 | np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, |
1da177e4 LT |
1825 | (int)new_size); |
1826 | memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); | |
1827 | } | |
f0e2d93c | 1828 | kmem_free(ifp->if_broot); |
1da177e4 LT |
1829 | ifp->if_broot = new_broot; |
1830 | ifp->if_broot_bytes = (int)new_size; | |
1831 | ASSERT(ifp->if_broot_bytes <= | |
1832 | XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); | |
1833 | return; | |
1834 | } | |
1835 | ||
1836 | ||
1da177e4 LT |
1837 | /* |
1838 | * This is called when the amount of space needed for if_data | |
1839 | * is increased or decreased. The change in size is indicated by | |
1840 | * the number of bytes that need to be added or deleted in the | |
1841 | * byte_diff parameter. | |
1842 | * | |
1843 | * If the amount of space needed has decreased below the size of the | |
1844 | * inline buffer, then switch to using the inline buffer. Otherwise, | |
1845 | * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer | |
1846 | * to what is needed. | |
1847 | * | |
1848 | * ip -- the inode whose if_data area is changing | |
1849 | * byte_diff -- the change in the number of bytes, positive or negative, | |
1850 | * requested for the if_data array. | |
1851 | */ | |
1852 | void | |
1853 | xfs_idata_realloc( | |
1854 | xfs_inode_t *ip, | |
1855 | int byte_diff, | |
1856 | int whichfork) | |
1857 | { | |
1858 | xfs_ifork_t *ifp; | |
1859 | int new_size; | |
1860 | int real_size; | |
1861 | ||
1862 | if (byte_diff == 0) { | |
1863 | return; | |
1864 | } | |
1865 | ||
1866 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
1867 | new_size = (int)ifp->if_bytes + byte_diff; | |
1868 | ASSERT(new_size >= 0); | |
1869 | ||
1870 | if (new_size == 0) { | |
1871 | if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { | |
f0e2d93c | 1872 | kmem_free(ifp->if_u1.if_data); |
1da177e4 LT |
1873 | } |
1874 | ifp->if_u1.if_data = NULL; | |
1875 | real_size = 0; | |
1876 | } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { | |
1877 | /* | |
1878 | * If the valid extents/data can fit in if_inline_ext/data, | |
1879 | * copy them from the malloc'd vector and free it. | |
1880 | */ | |
1881 | if (ifp->if_u1.if_data == NULL) { | |
1882 | ifp->if_u1.if_data = ifp->if_u2.if_inline_data; | |
1883 | } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { | |
1884 | ASSERT(ifp->if_real_bytes != 0); | |
1885 | memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, | |
1886 | new_size); | |
f0e2d93c | 1887 | kmem_free(ifp->if_u1.if_data); |
1da177e4 LT |
1888 | ifp->if_u1.if_data = ifp->if_u2.if_inline_data; |
1889 | } | |
1890 | real_size = 0; | |
1891 | } else { | |
1892 | /* | |
1893 | * Stuck with malloc/realloc. | |
1894 | * For inline data, the underlying buffer must be | |
1895 | * a multiple of 4 bytes in size so that it can be | |
1896 | * logged and stay on word boundaries. We enforce | |
1897 | * that here. | |
1898 | */ | |
1899 | real_size = roundup(new_size, 4); | |
1900 | if (ifp->if_u1.if_data == NULL) { | |
1901 | ASSERT(ifp->if_real_bytes == 0); | |
4a7edddc DC |
1902 | ifp->if_u1.if_data = kmem_alloc(real_size, |
1903 | KM_SLEEP | KM_NOFS); | |
1da177e4 LT |
1904 | } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { |
1905 | /* | |
1906 | * Only do the realloc if the underlying size | |
1907 | * is really changing. | |
1908 | */ | |
1909 | if (ifp->if_real_bytes != real_size) { | |
1910 | ifp->if_u1.if_data = | |
1911 | kmem_realloc(ifp->if_u1.if_data, | |
1912 | real_size, | |
1913 | ifp->if_real_bytes, | |
4a7edddc | 1914 | KM_SLEEP | KM_NOFS); |
1da177e4 LT |
1915 | } |
1916 | } else { | |
1917 | ASSERT(ifp->if_real_bytes == 0); | |
4a7edddc DC |
1918 | ifp->if_u1.if_data = kmem_alloc(real_size, |
1919 | KM_SLEEP | KM_NOFS); | |
1da177e4 LT |
1920 | memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, |
1921 | ifp->if_bytes); | |
1922 | } | |
1923 | } | |
1924 | ifp->if_real_bytes = real_size; | |
1925 | ifp->if_bytes = new_size; | |
1926 | ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); | |
1927 | } | |
1928 | ||
1da177e4 LT |
1929 | void |
1930 | xfs_idestroy_fork( | |
1931 | xfs_inode_t *ip, | |
1932 | int whichfork) | |
1933 | { | |
1934 | xfs_ifork_t *ifp; | |
1935 | ||
1936 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
1937 | if (ifp->if_broot != NULL) { | |
f0e2d93c | 1938 | kmem_free(ifp->if_broot); |
1da177e4 LT |
1939 | ifp->if_broot = NULL; |
1940 | } | |
1941 | ||
1942 | /* | |
1943 | * If the format is local, then we can't have an extents | |
1944 | * array so just look for an inline data array. If we're | |
1945 | * not local then we may or may not have an extents list, | |
1946 | * so check and free it up if we do. | |
1947 | */ | |
1948 | if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { | |
1949 | if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && | |
1950 | (ifp->if_u1.if_data != NULL)) { | |
1951 | ASSERT(ifp->if_real_bytes != 0); | |
f0e2d93c | 1952 | kmem_free(ifp->if_u1.if_data); |
1da177e4 LT |
1953 | ifp->if_u1.if_data = NULL; |
1954 | ifp->if_real_bytes = 0; | |
1955 | } | |
1956 | } else if ((ifp->if_flags & XFS_IFEXTENTS) && | |
0293ce3a MK |
1957 | ((ifp->if_flags & XFS_IFEXTIREC) || |
1958 | ((ifp->if_u1.if_extents != NULL) && | |
1959 | (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) { | |
1da177e4 | 1960 | ASSERT(ifp->if_real_bytes != 0); |
4eea22f0 | 1961 | xfs_iext_destroy(ifp); |
1da177e4 LT |
1962 | } |
1963 | ASSERT(ifp->if_u1.if_extents == NULL || | |
1964 | ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); | |
1965 | ASSERT(ifp->if_real_bytes == 0); | |
1966 | if (whichfork == XFS_ATTR_FORK) { | |
1967 | kmem_zone_free(xfs_ifork_zone, ip->i_afp); | |
1968 | ip->i_afp = NULL; | |
1969 | } | |
1970 | } | |
1971 | ||
1da177e4 | 1972 | /* |
60ec6783 CH |
1973 | * This is called to unpin an inode. The caller must have the inode locked |
1974 | * in at least shared mode so that the buffer cannot be subsequently pinned | |
1975 | * once someone is waiting for it to be unpinned. | |
1da177e4 | 1976 | */ |
60ec6783 | 1977 | static void |
f392e631 | 1978 | xfs_iunpin( |
60ec6783 | 1979 | struct xfs_inode *ip) |
1da177e4 | 1980 | { |
579aa9ca | 1981 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
1da177e4 | 1982 | |
4aaf15d1 DC |
1983 | trace_xfs_inode_unpin_nowait(ip, _RET_IP_); |
1984 | ||
a3f74ffb | 1985 | /* Give the log a push to start the unpinning I/O */ |
60ec6783 | 1986 | xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); |
a14a348b | 1987 | |
a3f74ffb | 1988 | } |
1da177e4 | 1989 | |
f392e631 CH |
1990 | static void |
1991 | __xfs_iunpin_wait( | |
1992 | struct xfs_inode *ip) | |
1993 | { | |
1994 | wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); | |
1995 | DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); | |
1996 | ||
1997 | xfs_iunpin(ip); | |
1998 | ||
1999 | do { | |
2000 | prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); | |
2001 | if (xfs_ipincount(ip)) | |
2002 | io_schedule(); | |
2003 | } while (xfs_ipincount(ip)); | |
2004 | finish_wait(wq, &wait.wait); | |
2005 | } | |
2006 | ||
777df5af | 2007 | void |
a3f74ffb | 2008 | xfs_iunpin_wait( |
60ec6783 | 2009 | struct xfs_inode *ip) |
a3f74ffb | 2010 | { |
f392e631 CH |
2011 | if (xfs_ipincount(ip)) |
2012 | __xfs_iunpin_wait(ip); | |
1da177e4 LT |
2013 | } |
2014 | ||
1da177e4 LT |
2015 | /* |
2016 | * xfs_iextents_copy() | |
2017 | * | |
2018 | * This is called to copy the REAL extents (as opposed to the delayed | |
2019 | * allocation extents) from the inode into the given buffer. It | |
2020 | * returns the number of bytes copied into the buffer. | |
2021 | * | |
2022 | * If there are no delayed allocation extents, then we can just | |
2023 | * memcpy() the extents into the buffer. Otherwise, we need to | |
2024 | * examine each extent in turn and skip those which are delayed. | |
2025 | */ | |
2026 | int | |
2027 | xfs_iextents_copy( | |
2028 | xfs_inode_t *ip, | |
a6f64d4a | 2029 | xfs_bmbt_rec_t *dp, |
1da177e4 LT |
2030 | int whichfork) |
2031 | { | |
2032 | int copied; | |
1da177e4 LT |
2033 | int i; |
2034 | xfs_ifork_t *ifp; | |
2035 | int nrecs; | |
2036 | xfs_fsblock_t start_block; | |
2037 | ||
2038 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
579aa9ca | 2039 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
1da177e4 LT |
2040 | ASSERT(ifp->if_bytes > 0); |
2041 | ||
2042 | nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | |
3a59c94c | 2043 | XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork); |
1da177e4 LT |
2044 | ASSERT(nrecs > 0); |
2045 | ||
2046 | /* | |
2047 | * There are some delayed allocation extents in the | |
2048 | * inode, so copy the extents one at a time and skip | |
2049 | * the delayed ones. There must be at least one | |
2050 | * non-delayed extent. | |
2051 | */ | |
1da177e4 LT |
2052 | copied = 0; |
2053 | for (i = 0; i < nrecs; i++) { | |
a6f64d4a | 2054 | xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); |
1da177e4 | 2055 | start_block = xfs_bmbt_get_startblock(ep); |
9d87c319 | 2056 | if (isnullstartblock(start_block)) { |
1da177e4 LT |
2057 | /* |
2058 | * It's a delayed allocation extent, so skip it. | |
2059 | */ | |
1da177e4 LT |
2060 | continue; |
2061 | } | |
2062 | ||
2063 | /* Translate to on disk format */ | |
cd8b0a97 CH |
2064 | put_unaligned(cpu_to_be64(ep->l0), &dp->l0); |
2065 | put_unaligned(cpu_to_be64(ep->l1), &dp->l1); | |
a6f64d4a | 2066 | dp++; |
1da177e4 LT |
2067 | copied++; |
2068 | } | |
2069 | ASSERT(copied != 0); | |
a6f64d4a | 2070 | xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip)); |
1da177e4 LT |
2071 | |
2072 | return (copied * (uint)sizeof(xfs_bmbt_rec_t)); | |
2073 | } | |
2074 | ||
2075 | /* | |
2076 | * Each of the following cases stores data into the same region | |
2077 | * of the on-disk inode, so only one of them can be valid at | |
2078 | * any given time. While it is possible to have conflicting formats | |
2079 | * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is | |
2080 | * in EXTENTS format, this can only happen when the fork has | |
2081 | * changed formats after being modified but before being flushed. | |
2082 | * In these cases, the format always takes precedence, because the | |
2083 | * format indicates the current state of the fork. | |
2084 | */ | |
2085 | /*ARGSUSED*/ | |
e4ac967b | 2086 | STATIC void |
1da177e4 LT |
2087 | xfs_iflush_fork( |
2088 | xfs_inode_t *ip, | |
2089 | xfs_dinode_t *dip, | |
2090 | xfs_inode_log_item_t *iip, | |
2091 | int whichfork, | |
2092 | xfs_buf_t *bp) | |
2093 | { | |
2094 | char *cp; | |
2095 | xfs_ifork_t *ifp; | |
2096 | xfs_mount_t *mp; | |
2097 | #ifdef XFS_TRANS_DEBUG | |
2098 | int first; | |
2099 | #endif | |
2100 | static const short brootflag[2] = | |
2101 | { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; | |
2102 | static const short dataflag[2] = | |
2103 | { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; | |
2104 | static const short extflag[2] = | |
2105 | { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; | |
2106 | ||
e4ac967b DC |
2107 | if (!iip) |
2108 | return; | |
1da177e4 LT |
2109 | ifp = XFS_IFORK_PTR(ip, whichfork); |
2110 | /* | |
2111 | * This can happen if we gave up in iformat in an error path, | |
2112 | * for the attribute fork. | |
2113 | */ | |
e4ac967b | 2114 | if (!ifp) { |
1da177e4 | 2115 | ASSERT(whichfork == XFS_ATTR_FORK); |
e4ac967b | 2116 | return; |
1da177e4 LT |
2117 | } |
2118 | cp = XFS_DFORK_PTR(dip, whichfork); | |
2119 | mp = ip->i_mount; | |
2120 | switch (XFS_IFORK_FORMAT(ip, whichfork)) { | |
2121 | case XFS_DINODE_FMT_LOCAL: | |
f5d8d5c4 | 2122 | if ((iip->ili_fields & dataflag[whichfork]) && |
1da177e4 LT |
2123 | (ifp->if_bytes > 0)) { |
2124 | ASSERT(ifp->if_u1.if_data != NULL); | |
2125 | ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); | |
2126 | memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); | |
2127 | } | |
1da177e4 LT |
2128 | break; |
2129 | ||
2130 | case XFS_DINODE_FMT_EXTENTS: | |
2131 | ASSERT((ifp->if_flags & XFS_IFEXTENTS) || | |
f5d8d5c4 CH |
2132 | !(iip->ili_fields & extflag[whichfork])); |
2133 | if ((iip->ili_fields & extflag[whichfork]) && | |
1da177e4 | 2134 | (ifp->if_bytes > 0)) { |
ab1908a5 | 2135 | ASSERT(xfs_iext_get_ext(ifp, 0)); |
1da177e4 LT |
2136 | ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); |
2137 | (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, | |
2138 | whichfork); | |
2139 | } | |
2140 | break; | |
2141 | ||
2142 | case XFS_DINODE_FMT_BTREE: | |
f5d8d5c4 | 2143 | if ((iip->ili_fields & brootflag[whichfork]) && |
1da177e4 LT |
2144 | (ifp->if_broot_bytes > 0)) { |
2145 | ASSERT(ifp->if_broot != NULL); | |
2146 | ASSERT(ifp->if_broot_bytes <= | |
2147 | (XFS_IFORK_SIZE(ip, whichfork) + | |
2148 | XFS_BROOT_SIZE_ADJ)); | |
60197e8d | 2149 | xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, |
1da177e4 LT |
2150 | (xfs_bmdr_block_t *)cp, |
2151 | XFS_DFORK_SIZE(dip, mp, whichfork)); | |
2152 | } | |
2153 | break; | |
2154 | ||
2155 | case XFS_DINODE_FMT_DEV: | |
f5d8d5c4 | 2156 | if (iip->ili_fields & XFS_ILOG_DEV) { |
1da177e4 | 2157 | ASSERT(whichfork == XFS_DATA_FORK); |
81591fe2 | 2158 | xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev); |
1da177e4 LT |
2159 | } |
2160 | break; | |
2161 | ||
2162 | case XFS_DINODE_FMT_UUID: | |
f5d8d5c4 | 2163 | if (iip->ili_fields & XFS_ILOG_UUID) { |
1da177e4 | 2164 | ASSERT(whichfork == XFS_DATA_FORK); |
81591fe2 CH |
2165 | memcpy(XFS_DFORK_DPTR(dip), |
2166 | &ip->i_df.if_u2.if_uuid, | |
2167 | sizeof(uuid_t)); | |
1da177e4 LT |
2168 | } |
2169 | break; | |
2170 | ||
2171 | default: | |
2172 | ASSERT(0); | |
2173 | break; | |
2174 | } | |
1da177e4 LT |
2175 | } |
2176 | ||
bad55843 DC |
2177 | STATIC int |
2178 | xfs_iflush_cluster( | |
2179 | xfs_inode_t *ip, | |
2180 | xfs_buf_t *bp) | |
2181 | { | |
2182 | xfs_mount_t *mp = ip->i_mount; | |
5017e97d | 2183 | struct xfs_perag *pag; |
bad55843 | 2184 | unsigned long first_index, mask; |
c8f5f12e | 2185 | unsigned long inodes_per_cluster; |
bad55843 DC |
2186 | int ilist_size; |
2187 | xfs_inode_t **ilist; | |
2188 | xfs_inode_t *iq; | |
bad55843 DC |
2189 | int nr_found; |
2190 | int clcount = 0; | |
2191 | int bufwasdelwri; | |
2192 | int i; | |
2193 | ||
5017e97d | 2194 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); |
bad55843 | 2195 | |
c8f5f12e DC |
2196 | inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog; |
2197 | ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); | |
49383b0e | 2198 | ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); |
bad55843 | 2199 | if (!ilist) |
44b56e0a | 2200 | goto out_put; |
bad55843 DC |
2201 | |
2202 | mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1); | |
2203 | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; | |
1a3e8f3d | 2204 | rcu_read_lock(); |
bad55843 DC |
2205 | /* really need a gang lookup range call here */ |
2206 | nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, | |
c8f5f12e | 2207 | first_index, inodes_per_cluster); |
bad55843 DC |
2208 | if (nr_found == 0) |
2209 | goto out_free; | |
2210 | ||
2211 | for (i = 0; i < nr_found; i++) { | |
2212 | iq = ilist[i]; | |
2213 | if (iq == ip) | |
2214 | continue; | |
1a3e8f3d DC |
2215 | |
2216 | /* | |
2217 | * because this is an RCU protected lookup, we could find a | |
2218 | * recently freed or even reallocated inode during the lookup. | |
2219 | * We need to check under the i_flags_lock for a valid inode | |
2220 | * here. Skip it if it is not valid or the wrong inode. | |
2221 | */ | |
2222 | spin_lock(&ip->i_flags_lock); | |
2223 | if (!ip->i_ino || | |
2224 | (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) { | |
2225 | spin_unlock(&ip->i_flags_lock); | |
2226 | continue; | |
2227 | } | |
2228 | spin_unlock(&ip->i_flags_lock); | |
2229 | ||
bad55843 DC |
2230 | /* |
2231 | * Do an un-protected check to see if the inode is dirty and | |
2232 | * is a candidate for flushing. These checks will be repeated | |
2233 | * later after the appropriate locks are acquired. | |
2234 | */ | |
33540408 | 2235 | if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) |
bad55843 | 2236 | continue; |
bad55843 DC |
2237 | |
2238 | /* | |
2239 | * Try to get locks. If any are unavailable or it is pinned, | |
2240 | * then this inode cannot be flushed and is skipped. | |
2241 | */ | |
2242 | ||
2243 | if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) | |
2244 | continue; | |
2245 | if (!xfs_iflock_nowait(iq)) { | |
2246 | xfs_iunlock(iq, XFS_ILOCK_SHARED); | |
2247 | continue; | |
2248 | } | |
2249 | if (xfs_ipincount(iq)) { | |
2250 | xfs_ifunlock(iq); | |
2251 | xfs_iunlock(iq, XFS_ILOCK_SHARED); | |
2252 | continue; | |
2253 | } | |
2254 | ||
2255 | /* | |
2256 | * arriving here means that this inode can be flushed. First | |
2257 | * re-check that it's dirty before flushing. | |
2258 | */ | |
33540408 DC |
2259 | if (!xfs_inode_clean(iq)) { |
2260 | int error; | |
bad55843 DC |
2261 | error = xfs_iflush_int(iq, bp); |
2262 | if (error) { | |
2263 | xfs_iunlock(iq, XFS_ILOCK_SHARED); | |
2264 | goto cluster_corrupt_out; | |
2265 | } | |
2266 | clcount++; | |
2267 | } else { | |
2268 | xfs_ifunlock(iq); | |
2269 | } | |
2270 | xfs_iunlock(iq, XFS_ILOCK_SHARED); | |
2271 | } | |
2272 | ||
2273 | if (clcount) { | |
2274 | XFS_STATS_INC(xs_icluster_flushcnt); | |
2275 | XFS_STATS_ADD(xs_icluster_flushinode, clcount); | |
2276 | } | |
2277 | ||
2278 | out_free: | |
1a3e8f3d | 2279 | rcu_read_unlock(); |
f0e2d93c | 2280 | kmem_free(ilist); |
44b56e0a DC |
2281 | out_put: |
2282 | xfs_perag_put(pag); | |
bad55843 DC |
2283 | return 0; |
2284 | ||
2285 | ||
2286 | cluster_corrupt_out: | |
2287 | /* | |
2288 | * Corruption detected in the clustering loop. Invalidate the | |
2289 | * inode buffer and shut down the filesystem. | |
2290 | */ | |
1a3e8f3d | 2291 | rcu_read_unlock(); |
bad55843 | 2292 | /* |
43ff2122 | 2293 | * Clean up the buffer. If it was delwri, just release it -- |
bad55843 DC |
2294 | * brelse can handle it with no problems. If not, shut down the |
2295 | * filesystem before releasing the buffer. | |
2296 | */ | |
43ff2122 | 2297 | bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); |
bad55843 DC |
2298 | if (bufwasdelwri) |
2299 | xfs_buf_relse(bp); | |
2300 | ||
2301 | xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); | |
2302 | ||
2303 | if (!bufwasdelwri) { | |
2304 | /* | |
2305 | * Just like incore_relse: if we have b_iodone functions, | |
2306 | * mark the buffer as an error and call them. Otherwise | |
2307 | * mark it as stale and brelse. | |
2308 | */ | |
cb669ca5 | 2309 | if (bp->b_iodone) { |
bad55843 | 2310 | XFS_BUF_UNDONE(bp); |
c867cb61 | 2311 | xfs_buf_stale(bp); |
5a52c2a5 | 2312 | xfs_buf_ioerror(bp, EIO); |
1a1a3e97 | 2313 | xfs_buf_ioend(bp, 0); |
bad55843 | 2314 | } else { |
c867cb61 | 2315 | xfs_buf_stale(bp); |
bad55843 DC |
2316 | xfs_buf_relse(bp); |
2317 | } | |
2318 | } | |
2319 | ||
2320 | /* | |
2321 | * Unlocks the flush lock | |
2322 | */ | |
04913fdd | 2323 | xfs_iflush_abort(iq, false); |
f0e2d93c | 2324 | kmem_free(ilist); |
44b56e0a | 2325 | xfs_perag_put(pag); |
bad55843 DC |
2326 | return XFS_ERROR(EFSCORRUPTED); |
2327 | } | |
2328 | ||
1da177e4 | 2329 | /* |
4c46819a CH |
2330 | * Flush dirty inode metadata into the backing buffer. |
2331 | * | |
2332 | * The caller must have the inode lock and the inode flush lock held. The | |
2333 | * inode lock will still be held upon return to the caller, and the inode | |
2334 | * flush lock will be released after the inode has reached the disk. | |
2335 | * | |
2336 | * The caller must write out the buffer returned in *bpp and release it. | |
1da177e4 LT |
2337 | */ |
2338 | int | |
2339 | xfs_iflush( | |
4c46819a CH |
2340 | struct xfs_inode *ip, |
2341 | struct xfs_buf **bpp) | |
1da177e4 | 2342 | { |
4c46819a CH |
2343 | struct xfs_mount *mp = ip->i_mount; |
2344 | struct xfs_buf *bp; | |
2345 | struct xfs_dinode *dip; | |
1da177e4 | 2346 | int error; |
1da177e4 LT |
2347 | |
2348 | XFS_STATS_INC(xs_iflush_count); | |
2349 | ||
579aa9ca | 2350 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
474fce06 | 2351 | ASSERT(xfs_isiflocked(ip)); |
1da177e4 | 2352 | ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || |
8096b1eb | 2353 | ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); |
1da177e4 | 2354 | |
4c46819a | 2355 | *bpp = NULL; |
1da177e4 | 2356 | |
1da177e4 LT |
2357 | xfs_iunpin_wait(ip); |
2358 | ||
4b6a4688 DC |
2359 | /* |
2360 | * For stale inodes we cannot rely on the backing buffer remaining | |
2361 | * stale in cache for the remaining life of the stale inode and so | |
475ee413 | 2362 | * xfs_imap_to_bp() below may give us a buffer that no longer contains |
4b6a4688 DC |
2363 | * inodes below. We have to check this after ensuring the inode is |
2364 | * unpinned so that it is safe to reclaim the stale inode after the | |
2365 | * flush call. | |
2366 | */ | |
2367 | if (xfs_iflags_test(ip, XFS_ISTALE)) { | |
2368 | xfs_ifunlock(ip); | |
2369 | return 0; | |
2370 | } | |
2371 | ||
1da177e4 LT |
2372 | /* |
2373 | * This may have been unpinned because the filesystem is shutting | |
2374 | * down forcibly. If that's the case we must not write this inode | |
32ce90a4 CH |
2375 | * to disk, because the log record didn't make it to disk. |
2376 | * | |
2377 | * We also have to remove the log item from the AIL in this case, | |
2378 | * as we wait for an empty AIL as part of the unmount process. | |
1da177e4 LT |
2379 | */ |
2380 | if (XFS_FORCED_SHUTDOWN(mp)) { | |
32ce90a4 CH |
2381 | error = XFS_ERROR(EIO); |
2382 | goto abort_out; | |
1da177e4 LT |
2383 | } |
2384 | ||
a3f74ffb DC |
2385 | /* |
2386 | * Get the buffer containing the on-disk inode. | |
2387 | */ | |
475ee413 CH |
2388 | error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, |
2389 | 0); | |
a3f74ffb DC |
2390 | if (error || !bp) { |
2391 | xfs_ifunlock(ip); | |
2392 | return error; | |
2393 | } | |
2394 | ||
1da177e4 LT |
2395 | /* |
2396 | * First flush out the inode that xfs_iflush was called with. | |
2397 | */ | |
2398 | error = xfs_iflush_int(ip, bp); | |
bad55843 | 2399 | if (error) |
1da177e4 | 2400 | goto corrupt_out; |
1da177e4 | 2401 | |
a3f74ffb DC |
2402 | /* |
2403 | * If the buffer is pinned then push on the log now so we won't | |
2404 | * get stuck waiting in the write for too long. | |
2405 | */ | |
811e64c7 | 2406 | if (xfs_buf_ispinned(bp)) |
a14a348b | 2407 | xfs_log_force(mp, 0); |
a3f74ffb | 2408 | |
1da177e4 LT |
2409 | /* |
2410 | * inode clustering: | |
2411 | * see if other inodes can be gathered into this write | |
2412 | */ | |
bad55843 DC |
2413 | error = xfs_iflush_cluster(ip, bp); |
2414 | if (error) | |
2415 | goto cluster_corrupt_out; | |
1da177e4 | 2416 | |
4c46819a CH |
2417 | *bpp = bp; |
2418 | return 0; | |
1da177e4 LT |
2419 | |
2420 | corrupt_out: | |
2421 | xfs_buf_relse(bp); | |
7d04a335 | 2422 | xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
1da177e4 | 2423 | cluster_corrupt_out: |
32ce90a4 CH |
2424 | error = XFS_ERROR(EFSCORRUPTED); |
2425 | abort_out: | |
1da177e4 LT |
2426 | /* |
2427 | * Unlocks the flush lock | |
2428 | */ | |
04913fdd | 2429 | xfs_iflush_abort(ip, false); |
32ce90a4 | 2430 | return error; |
1da177e4 LT |
2431 | } |
2432 | ||
2433 | ||
2434 | STATIC int | |
2435 | xfs_iflush_int( | |
2436 | xfs_inode_t *ip, | |
2437 | xfs_buf_t *bp) | |
2438 | { | |
2439 | xfs_inode_log_item_t *iip; | |
2440 | xfs_dinode_t *dip; | |
2441 | xfs_mount_t *mp; | |
2442 | #ifdef XFS_TRANS_DEBUG | |
2443 | int first; | |
2444 | #endif | |
1da177e4 | 2445 | |
579aa9ca | 2446 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
474fce06 | 2447 | ASSERT(xfs_isiflocked(ip)); |
1da177e4 | 2448 | ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || |
8096b1eb | 2449 | ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); |
1da177e4 LT |
2450 | |
2451 | iip = ip->i_itemp; | |
2452 | mp = ip->i_mount; | |
2453 | ||
1da177e4 | 2454 | /* set *dip = inode's place in the buffer */ |
92bfc6e7 | 2455 | dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); |
1da177e4 | 2456 | |
69ef921b | 2457 | if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), |
1da177e4 | 2458 | mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { |
6a19d939 DC |
2459 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
2460 | "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", | |
2461 | __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); | |
1da177e4 LT |
2462 | goto corrupt_out; |
2463 | } | |
2464 | if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, | |
2465 | mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { | |
6a19d939 DC |
2466 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
2467 | "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x", | |
2468 | __func__, ip->i_ino, ip, ip->i_d.di_magic); | |
1da177e4 LT |
2469 | goto corrupt_out; |
2470 | } | |
abbede1b | 2471 | if (S_ISREG(ip->i_d.di_mode)) { |
1da177e4 LT |
2472 | if (XFS_TEST_ERROR( |
2473 | (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && | |
2474 | (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), | |
2475 | mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { | |
6a19d939 DC |
2476 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
2477 | "%s: Bad regular inode %Lu, ptr 0x%p", | |
2478 | __func__, ip->i_ino, ip); | |
1da177e4 LT |
2479 | goto corrupt_out; |
2480 | } | |
abbede1b | 2481 | } else if (S_ISDIR(ip->i_d.di_mode)) { |
1da177e4 LT |
2482 | if (XFS_TEST_ERROR( |
2483 | (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && | |
2484 | (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && | |
2485 | (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), | |
2486 | mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { | |
6a19d939 DC |
2487 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
2488 | "%s: Bad directory inode %Lu, ptr 0x%p", | |
2489 | __func__, ip->i_ino, ip); | |
1da177e4 LT |
2490 | goto corrupt_out; |
2491 | } | |
2492 | } | |
2493 | if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > | |
2494 | ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, | |
2495 | XFS_RANDOM_IFLUSH_5)) { | |
6a19d939 DC |
2496 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
2497 | "%s: detected corrupt incore inode %Lu, " | |
2498 | "total extents = %d, nblocks = %Ld, ptr 0x%p", | |
2499 | __func__, ip->i_ino, | |
1da177e4 | 2500 | ip->i_d.di_nextents + ip->i_d.di_anextents, |
6a19d939 | 2501 | ip->i_d.di_nblocks, ip); |
1da177e4 LT |
2502 | goto corrupt_out; |
2503 | } | |
2504 | if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, | |
2505 | mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { | |
6a19d939 DC |
2506 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
2507 | "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", | |
2508 | __func__, ip->i_ino, ip->i_d.di_forkoff, ip); | |
1da177e4 LT |
2509 | goto corrupt_out; |
2510 | } | |
2511 | /* | |
2512 | * bump the flush iteration count, used to detect flushes which | |
2513 | * postdate a log record during recovery. | |
2514 | */ | |
2515 | ||
2516 | ip->i_d.di_flushiter++; | |
2517 | ||
2518 | /* | |
2519 | * Copy the dirty parts of the inode into the on-disk | |
2520 | * inode. We always copy out the core of the inode, | |
2521 | * because if the inode is dirty at all the core must | |
2522 | * be. | |
2523 | */ | |
81591fe2 | 2524 | xfs_dinode_to_disk(dip, &ip->i_d); |
1da177e4 LT |
2525 | |
2526 | /* Wrap, we never let the log put out DI_MAX_FLUSH */ | |
2527 | if (ip->i_d.di_flushiter == DI_MAX_FLUSH) | |
2528 | ip->i_d.di_flushiter = 0; | |
2529 | ||
2530 | /* | |
2531 | * If this is really an old format inode and the superblock version | |
2532 | * has not been updated to support only new format inodes, then | |
2533 | * convert back to the old inode format. If the superblock version | |
2534 | * has been updated, then make the conversion permanent. | |
2535 | */ | |
51ce16d5 CH |
2536 | ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); |
2537 | if (ip->i_d.di_version == 1) { | |
62118709 | 2538 | if (!xfs_sb_version_hasnlink(&mp->m_sb)) { |
1da177e4 LT |
2539 | /* |
2540 | * Convert it back. | |
2541 | */ | |
2542 | ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); | |
81591fe2 | 2543 | dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink); |
1da177e4 LT |
2544 | } else { |
2545 | /* | |
2546 | * The superblock version has already been bumped, | |
2547 | * so just make the conversion to the new inode | |
2548 | * format permanent. | |
2549 | */ | |
51ce16d5 CH |
2550 | ip->i_d.di_version = 2; |
2551 | dip->di_version = 2; | |
1da177e4 | 2552 | ip->i_d.di_onlink = 0; |
81591fe2 | 2553 | dip->di_onlink = 0; |
1da177e4 | 2554 | memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); |
81591fe2 CH |
2555 | memset(&(dip->di_pad[0]), 0, |
2556 | sizeof(dip->di_pad)); | |
6743099c | 2557 | ASSERT(xfs_get_projid(ip) == 0); |
1da177e4 LT |
2558 | } |
2559 | } | |
2560 | ||
e4ac967b DC |
2561 | xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp); |
2562 | if (XFS_IFORK_Q(ip)) | |
2563 | xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); | |
1da177e4 LT |
2564 | xfs_inobp_check(mp, bp); |
2565 | ||
2566 | /* | |
f5d8d5c4 CH |
2567 | * We've recorded everything logged in the inode, so we'd like to clear |
2568 | * the ili_fields bits so we don't log and flush things unnecessarily. | |
2569 | * However, we can't stop logging all this information until the data | |
2570 | * we've copied into the disk buffer is written to disk. If we did we | |
2571 | * might overwrite the copy of the inode in the log with all the data | |
2572 | * after re-logging only part of it, and in the face of a crash we | |
2573 | * wouldn't have all the data we need to recover. | |
1da177e4 | 2574 | * |
f5d8d5c4 CH |
2575 | * What we do is move the bits to the ili_last_fields field. When |
2576 | * logging the inode, these bits are moved back to the ili_fields field. | |
2577 | * In the xfs_iflush_done() routine we clear ili_last_fields, since we | |
2578 | * know that the information those bits represent is permanently on | |
2579 | * disk. As long as the flush completes before the inode is logged | |
2580 | * again, then both ili_fields and ili_last_fields will be cleared. | |
1da177e4 | 2581 | * |
f5d8d5c4 CH |
2582 | * We can play with the ili_fields bits here, because the inode lock |
2583 | * must be held exclusively in order to set bits there and the flush | |
2584 | * lock protects the ili_last_fields bits. Set ili_logged so the flush | |
2585 | * done routine can tell whether or not to look in the AIL. Also, store | |
2586 | * the current LSN of the inode so that we can tell whether the item has | |
2587 | * moved in the AIL from xfs_iflush_done(). In order to read the lsn we | |
2588 | * need the AIL lock, because it is a 64 bit value that cannot be read | |
2589 | * atomically. | |
1da177e4 | 2590 | */ |
f5d8d5c4 CH |
2591 | if (iip != NULL && iip->ili_fields != 0) { |
2592 | iip->ili_last_fields = iip->ili_fields; | |
2593 | iip->ili_fields = 0; | |
1da177e4 LT |
2594 | iip->ili_logged = 1; |
2595 | ||
7b2e2a31 DC |
2596 | xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, |
2597 | &iip->ili_item.li_lsn); | |
1da177e4 LT |
2598 | |
2599 | /* | |
2600 | * Attach the function xfs_iflush_done to the inode's | |
2601 | * buffer. This will remove the inode from the AIL | |
2602 | * and unlock the inode's flush lock when the inode is | |
2603 | * completely written to disk. | |
2604 | */ | |
ca30b2a7 | 2605 | xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); |
1da177e4 | 2606 | |
adadbeef | 2607 | ASSERT(bp->b_fspriv != NULL); |
cb669ca5 | 2608 | ASSERT(bp->b_iodone != NULL); |
1da177e4 LT |
2609 | } else { |
2610 | /* | |
2611 | * We're flushing an inode which is not in the AIL and has | |
8a9c9980 | 2612 | * not been logged. For this case we can immediately drop |
1da177e4 LT |
2613 | * the inode flush lock because we can avoid the whole |
2614 | * AIL state thing. It's OK to drop the flush lock now, | |
2615 | * because we've already locked the buffer and to do anything | |
2616 | * you really need both. | |
2617 | */ | |
2618 | if (iip != NULL) { | |
2619 | ASSERT(iip->ili_logged == 0); | |
2620 | ASSERT(iip->ili_last_fields == 0); | |
2621 | ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); | |
2622 | } | |
2623 | xfs_ifunlock(ip); | |
2624 | } | |
2625 | ||
2626 | return 0; | |
2627 | ||
2628 | corrupt_out: | |
2629 | return XFS_ERROR(EFSCORRUPTED); | |
2630 | } | |
2631 | ||
4eea22f0 MK |
2632 | /* |
2633 | * Return a pointer to the extent record at file index idx. | |
2634 | */ | |
a6f64d4a | 2635 | xfs_bmbt_rec_host_t * |
4eea22f0 MK |
2636 | xfs_iext_get_ext( |
2637 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
2638 | xfs_extnum_t idx) /* index of target extent */ | |
2639 | { | |
2640 | ASSERT(idx >= 0); | |
87bef181 CH |
2641 | ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t)); |
2642 | ||
0293ce3a MK |
2643 | if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) { |
2644 | return ifp->if_u1.if_ext_irec->er_extbuf; | |
2645 | } else if (ifp->if_flags & XFS_IFEXTIREC) { | |
2646 | xfs_ext_irec_t *erp; /* irec pointer */ | |
2647 | int erp_idx = 0; /* irec index */ | |
2648 | xfs_extnum_t page_idx = idx; /* ext index in target list */ | |
2649 | ||
2650 | erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); | |
2651 | return &erp->er_extbuf[page_idx]; | |
2652 | } else if (ifp->if_bytes) { | |
4eea22f0 MK |
2653 | return &ifp->if_u1.if_extents[idx]; |
2654 | } else { | |
2655 | return NULL; | |
2656 | } | |
2657 | } | |
2658 | ||
2659 | /* | |
2660 | * Insert new item(s) into the extent records for incore inode | |
2661 | * fork 'ifp'. 'count' new items are inserted at index 'idx'. | |
2662 | */ | |
2663 | void | |
2664 | xfs_iext_insert( | |
6ef35544 | 2665 | xfs_inode_t *ip, /* incore inode pointer */ |
4eea22f0 MK |
2666 | xfs_extnum_t idx, /* starting index of new items */ |
2667 | xfs_extnum_t count, /* number of inserted items */ | |
6ef35544 CH |
2668 | xfs_bmbt_irec_t *new, /* items to insert */ |
2669 | int state) /* type of extent conversion */ | |
4eea22f0 | 2670 | { |
6ef35544 | 2671 | xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df; |
4eea22f0 MK |
2672 | xfs_extnum_t i; /* extent record index */ |
2673 | ||
0b1b213f CH |
2674 | trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_); |
2675 | ||
4eea22f0 MK |
2676 | ASSERT(ifp->if_flags & XFS_IFEXTENTS); |
2677 | xfs_iext_add(ifp, idx, count); | |
a6f64d4a CH |
2678 | for (i = idx; i < idx + count; i++, new++) |
2679 | xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new); | |
4eea22f0 MK |
2680 | } |
2681 | ||
2682 | /* | |
2683 | * This is called when the amount of space required for incore file | |
2684 | * extents needs to be increased. The ext_diff parameter stores the | |
2685 | * number of new extents being added and the idx parameter contains | |
2686 | * the extent index where the new extents will be added. If the new | |
2687 | * extents are being appended, then we just need to (re)allocate and | |
2688 | * initialize the space. Otherwise, if the new extents are being | |
2689 | * inserted into the middle of the existing entries, a bit more work | |
2690 | * is required to make room for the new extents to be inserted. The | |
2691 | * caller is responsible for filling in the new extent entries upon | |
2692 | * return. | |
2693 | */ | |
2694 | void | |
2695 | xfs_iext_add( | |
2696 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
2697 | xfs_extnum_t idx, /* index to begin adding exts */ | |
c41564b5 | 2698 | int ext_diff) /* number of extents to add */ |
4eea22f0 MK |
2699 | { |
2700 | int byte_diff; /* new bytes being added */ | |
2701 | int new_size; /* size of extents after adding */ | |
2702 | xfs_extnum_t nextents; /* number of extents in file */ | |
2703 | ||
2704 | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | |
2705 | ASSERT((idx >= 0) && (idx <= nextents)); | |
2706 | byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t); | |
2707 | new_size = ifp->if_bytes + byte_diff; | |
2708 | /* | |
2709 | * If the new number of extents (nextents + ext_diff) | |
2710 | * fits inside the inode, then continue to use the inline | |
2711 | * extent buffer. | |
2712 | */ | |
2713 | if (nextents + ext_diff <= XFS_INLINE_EXTS) { | |
2714 | if (idx < nextents) { | |
2715 | memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff], | |
2716 | &ifp->if_u2.if_inline_ext[idx], | |
2717 | (nextents - idx) * sizeof(xfs_bmbt_rec_t)); | |
2718 | memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff); | |
2719 | } | |
2720 | ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; | |
2721 | ifp->if_real_bytes = 0; | |
2722 | } | |
2723 | /* | |
2724 | * Otherwise use a linear (direct) extent list. | |
2725 | * If the extents are currently inside the inode, | |
2726 | * xfs_iext_realloc_direct will switch us from | |
2727 | * inline to direct extent allocation mode. | |
2728 | */ | |
0293ce3a | 2729 | else if (nextents + ext_diff <= XFS_LINEAR_EXTS) { |
4eea22f0 MK |
2730 | xfs_iext_realloc_direct(ifp, new_size); |
2731 | if (idx < nextents) { | |
2732 | memmove(&ifp->if_u1.if_extents[idx + ext_diff], | |
2733 | &ifp->if_u1.if_extents[idx], | |
2734 | (nextents - idx) * sizeof(xfs_bmbt_rec_t)); | |
2735 | memset(&ifp->if_u1.if_extents[idx], 0, byte_diff); | |
2736 | } | |
2737 | } | |
0293ce3a MK |
2738 | /* Indirection array */ |
2739 | else { | |
2740 | xfs_ext_irec_t *erp; | |
2741 | int erp_idx = 0; | |
2742 | int page_idx = idx; | |
2743 | ||
2744 | ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS); | |
2745 | if (ifp->if_flags & XFS_IFEXTIREC) { | |
2746 | erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1); | |
2747 | } else { | |
2748 | xfs_iext_irec_init(ifp); | |
2749 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
2750 | erp = ifp->if_u1.if_ext_irec; | |
2751 | } | |
2752 | /* Extents fit in target extent page */ | |
2753 | if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) { | |
2754 | if (page_idx < erp->er_extcount) { | |
2755 | memmove(&erp->er_extbuf[page_idx + ext_diff], | |
2756 | &erp->er_extbuf[page_idx], | |
2757 | (erp->er_extcount - page_idx) * | |
2758 | sizeof(xfs_bmbt_rec_t)); | |
2759 | memset(&erp->er_extbuf[page_idx], 0, byte_diff); | |
2760 | } | |
2761 | erp->er_extcount += ext_diff; | |
2762 | xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); | |
2763 | } | |
2764 | /* Insert a new extent page */ | |
2765 | else if (erp) { | |
2766 | xfs_iext_add_indirect_multi(ifp, | |
2767 | erp_idx, page_idx, ext_diff); | |
2768 | } | |
2769 | /* | |
2770 | * If extent(s) are being appended to the last page in | |
2771 | * the indirection array and the new extent(s) don't fit | |
2772 | * in the page, then erp is NULL and erp_idx is set to | |
2773 | * the next index needed in the indirection array. | |
2774 | */ | |
2775 | else { | |
2776 | int count = ext_diff; | |
2777 | ||
2778 | while (count) { | |
2779 | erp = xfs_iext_irec_new(ifp, erp_idx); | |
2780 | erp->er_extcount = count; | |
2781 | count -= MIN(count, (int)XFS_LINEAR_EXTS); | |
2782 | if (count) { | |
2783 | erp_idx++; | |
2784 | } | |
2785 | } | |
2786 | } | |
2787 | } | |
4eea22f0 MK |
2788 | ifp->if_bytes = new_size; |
2789 | } | |
2790 | ||
0293ce3a MK |
2791 | /* |
2792 | * This is called when incore extents are being added to the indirection | |
2793 | * array and the new extents do not fit in the target extent list. The | |
2794 | * erp_idx parameter contains the irec index for the target extent list | |
2795 | * in the indirection array, and the idx parameter contains the extent | |
2796 | * index within the list. The number of extents being added is stored | |
2797 | * in the count parameter. | |
2798 | * | |
2799 | * |-------| |-------| | |
2800 | * | | | | idx - number of extents before idx | |
2801 | * | idx | | count | | |
2802 | * | | | | count - number of extents being inserted at idx | |
2803 | * |-------| |-------| | |
2804 | * | count | | nex2 | nex2 - number of extents after idx + count | |
2805 | * |-------| |-------| | |
2806 | */ | |
2807 | void | |
2808 | xfs_iext_add_indirect_multi( | |
2809 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
2810 | int erp_idx, /* target extent irec index */ | |
2811 | xfs_extnum_t idx, /* index within target list */ | |
2812 | int count) /* new extents being added */ | |
2813 | { | |
2814 | int byte_diff; /* new bytes being added */ | |
2815 | xfs_ext_irec_t *erp; /* pointer to irec entry */ | |
2816 | xfs_extnum_t ext_diff; /* number of extents to add */ | |
2817 | xfs_extnum_t ext_cnt; /* new extents still needed */ | |
2818 | xfs_extnum_t nex2; /* extents after idx + count */ | |
2819 | xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */ | |
2820 | int nlists; /* number of irec's (lists) */ | |
2821 | ||
2822 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
2823 | erp = &ifp->if_u1.if_ext_irec[erp_idx]; | |
2824 | nex2 = erp->er_extcount - idx; | |
2825 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | |
2826 | ||
2827 | /* | |
2828 | * Save second part of target extent list | |
2829 | * (all extents past */ | |
2830 | if (nex2) { | |
2831 | byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); | |
6785073b | 2832 | nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS); |
0293ce3a MK |
2833 | memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff); |
2834 | erp->er_extcount -= nex2; | |
2835 | xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2); | |
2836 | memset(&erp->er_extbuf[idx], 0, byte_diff); | |
2837 | } | |
2838 | ||
2839 | /* | |
2840 | * Add the new extents to the end of the target | |
2841 | * list, then allocate new irec record(s) and | |
2842 | * extent buffer(s) as needed to store the rest | |
2843 | * of the new extents. | |
2844 | */ | |
2845 | ext_cnt = count; | |
2846 | ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount); | |
2847 | if (ext_diff) { | |
2848 | erp->er_extcount += ext_diff; | |
2849 | xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); | |
2850 | ext_cnt -= ext_diff; | |
2851 | } | |
2852 | while (ext_cnt) { | |
2853 | erp_idx++; | |
2854 | erp = xfs_iext_irec_new(ifp, erp_idx); | |
2855 | ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS); | |
2856 | erp->er_extcount = ext_diff; | |
2857 | xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); | |
2858 | ext_cnt -= ext_diff; | |
2859 | } | |
2860 | ||
2861 | /* Add nex2 extents back to indirection array */ | |
2862 | if (nex2) { | |
2863 | xfs_extnum_t ext_avail; | |
2864 | int i; | |
2865 | ||
2866 | byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); | |
2867 | ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; | |
2868 | i = 0; | |
2869 | /* | |
2870 | * If nex2 extents fit in the current page, append | |
2871 | * nex2_ep after the new extents. | |
2872 | */ | |
2873 | if (nex2 <= ext_avail) { | |
2874 | i = erp->er_extcount; | |
2875 | } | |
2876 | /* | |
2877 | * Otherwise, check if space is available in the | |
2878 | * next page. | |
2879 | */ | |
2880 | else if ((erp_idx < nlists - 1) && | |
2881 | (nex2 <= (ext_avail = XFS_LINEAR_EXTS - | |
2882 | ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) { | |
2883 | erp_idx++; | |
2884 | erp++; | |
2885 | /* Create a hole for nex2 extents */ | |
2886 | memmove(&erp->er_extbuf[nex2], erp->er_extbuf, | |
2887 | erp->er_extcount * sizeof(xfs_bmbt_rec_t)); | |
2888 | } | |
2889 | /* | |
2890 | * Final choice, create a new extent page for | |
2891 | * nex2 extents. | |
2892 | */ | |
2893 | else { | |
2894 | erp_idx++; | |
2895 | erp = xfs_iext_irec_new(ifp, erp_idx); | |
2896 | } | |
2897 | memmove(&erp->er_extbuf[i], nex2_ep, byte_diff); | |
f0e2d93c | 2898 | kmem_free(nex2_ep); |
0293ce3a MK |
2899 | erp->er_extcount += nex2; |
2900 | xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2); | |
2901 | } | |
2902 | } | |
2903 | ||
4eea22f0 MK |
2904 | /* |
2905 | * This is called when the amount of space required for incore file | |
2906 | * extents needs to be decreased. The ext_diff parameter stores the | |
2907 | * number of extents to be removed and the idx parameter contains | |
2908 | * the extent index where the extents will be removed from. | |
0293ce3a MK |
2909 | * |
2910 | * If the amount of space needed has decreased below the linear | |
2911 | * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous | |
2912 | * extent array. Otherwise, use kmem_realloc() to adjust the | |
2913 | * size to what is needed. | |
4eea22f0 MK |
2914 | */ |
2915 | void | |
2916 | xfs_iext_remove( | |
6ef35544 | 2917 | xfs_inode_t *ip, /* incore inode pointer */ |
4eea22f0 | 2918 | xfs_extnum_t idx, /* index to begin removing exts */ |
6ef35544 CH |
2919 | int ext_diff, /* number of extents to remove */ |
2920 | int state) /* type of extent conversion */ | |
4eea22f0 | 2921 | { |
6ef35544 | 2922 | xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df; |
4eea22f0 MK |
2923 | xfs_extnum_t nextents; /* number of extents in file */ |
2924 | int new_size; /* size of extents after removal */ | |
2925 | ||
0b1b213f CH |
2926 | trace_xfs_iext_remove(ip, idx, state, _RET_IP_); |
2927 | ||
4eea22f0 MK |
2928 | ASSERT(ext_diff > 0); |
2929 | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | |
2930 | new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t); | |
2931 | ||
2932 | if (new_size == 0) { | |
2933 | xfs_iext_destroy(ifp); | |
0293ce3a MK |
2934 | } else if (ifp->if_flags & XFS_IFEXTIREC) { |
2935 | xfs_iext_remove_indirect(ifp, idx, ext_diff); | |
4eea22f0 MK |
2936 | } else if (ifp->if_real_bytes) { |
2937 | xfs_iext_remove_direct(ifp, idx, ext_diff); | |
2938 | } else { | |
2939 | xfs_iext_remove_inline(ifp, idx, ext_diff); | |
2940 | } | |
2941 | ifp->if_bytes = new_size; | |
2942 | } | |
2943 | ||
2944 | /* | |
2945 | * This removes ext_diff extents from the inline buffer, beginning | |
2946 | * at extent index idx. | |
2947 | */ | |
2948 | void | |
2949 | xfs_iext_remove_inline( | |
2950 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
2951 | xfs_extnum_t idx, /* index to begin removing exts */ | |
2952 | int ext_diff) /* number of extents to remove */ | |
2953 | { | |
2954 | int nextents; /* number of extents in file */ | |
2955 | ||
0293ce3a | 2956 | ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); |
4eea22f0 MK |
2957 | ASSERT(idx < XFS_INLINE_EXTS); |
2958 | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | |
2959 | ASSERT(((nextents - ext_diff) > 0) && | |
2960 | (nextents - ext_diff) < XFS_INLINE_EXTS); | |
2961 | ||
2962 | if (idx + ext_diff < nextents) { | |
2963 | memmove(&ifp->if_u2.if_inline_ext[idx], | |
2964 | &ifp->if_u2.if_inline_ext[idx + ext_diff], | |
2965 | (nextents - (idx + ext_diff)) * | |
2966 | sizeof(xfs_bmbt_rec_t)); | |
2967 | memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff], | |
2968 | 0, ext_diff * sizeof(xfs_bmbt_rec_t)); | |
2969 | } else { | |
2970 | memset(&ifp->if_u2.if_inline_ext[idx], 0, | |
2971 | ext_diff * sizeof(xfs_bmbt_rec_t)); | |
2972 | } | |
2973 | } | |
2974 | ||
2975 | /* | |
2976 | * This removes ext_diff extents from a linear (direct) extent list, | |
2977 | * beginning at extent index idx. If the extents are being removed | |
2978 | * from the end of the list (ie. truncate) then we just need to re- | |
2979 | * allocate the list to remove the extra space. Otherwise, if the | |
2980 | * extents are being removed from the middle of the existing extent | |
2981 | * entries, then we first need to move the extent records beginning | |
2982 | * at idx + ext_diff up in the list to overwrite the records being | |
2983 | * removed, then remove the extra space via kmem_realloc. | |
2984 | */ | |
2985 | void | |
2986 | xfs_iext_remove_direct( | |
2987 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
2988 | xfs_extnum_t idx, /* index to begin removing exts */ | |
2989 | int ext_diff) /* number of extents to remove */ | |
2990 | { | |
2991 | xfs_extnum_t nextents; /* number of extents in file */ | |
2992 | int new_size; /* size of extents after removal */ | |
2993 | ||
0293ce3a | 2994 | ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); |
4eea22f0 MK |
2995 | new_size = ifp->if_bytes - |
2996 | (ext_diff * sizeof(xfs_bmbt_rec_t)); | |
2997 | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | |
2998 | ||
2999 | if (new_size == 0) { | |
3000 | xfs_iext_destroy(ifp); | |
3001 | return; | |
3002 | } | |
3003 | /* Move extents up in the list (if needed) */ | |
3004 | if (idx + ext_diff < nextents) { | |
3005 | memmove(&ifp->if_u1.if_extents[idx], | |
3006 | &ifp->if_u1.if_extents[idx + ext_diff], | |
3007 | (nextents - (idx + ext_diff)) * | |
3008 | sizeof(xfs_bmbt_rec_t)); | |
3009 | } | |
3010 | memset(&ifp->if_u1.if_extents[nextents - ext_diff], | |
3011 | 0, ext_diff * sizeof(xfs_bmbt_rec_t)); | |
3012 | /* | |
3013 | * Reallocate the direct extent list. If the extents | |
3014 | * will fit inside the inode then xfs_iext_realloc_direct | |
3015 | * will switch from direct to inline extent allocation | |
3016 | * mode for us. | |
3017 | */ | |
3018 | xfs_iext_realloc_direct(ifp, new_size); | |
3019 | ifp->if_bytes = new_size; | |
3020 | } | |
3021 | ||
0293ce3a MK |
3022 | /* |
3023 | * This is called when incore extents are being removed from the | |
3024 | * indirection array and the extents being removed span multiple extent | |
3025 | * buffers. The idx parameter contains the file extent index where we | |
3026 | * want to begin removing extents, and the count parameter contains | |
3027 | * how many extents need to be removed. | |
3028 | * | |
3029 | * |-------| |-------| | |
3030 | * | nex1 | | | nex1 - number of extents before idx | |
3031 | * |-------| | count | | |
3032 | * | | | | count - number of extents being removed at idx | |
3033 | * | count | |-------| | |
3034 | * | | | nex2 | nex2 - number of extents after idx + count | |
3035 | * |-------| |-------| | |
3036 | */ | |
3037 | void | |
3038 | xfs_iext_remove_indirect( | |
3039 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3040 | xfs_extnum_t idx, /* index to begin removing extents */ | |
3041 | int count) /* number of extents to remove */ | |
3042 | { | |
3043 | xfs_ext_irec_t *erp; /* indirection array pointer */ | |
3044 | int erp_idx = 0; /* indirection array index */ | |
3045 | xfs_extnum_t ext_cnt; /* extents left to remove */ | |
3046 | xfs_extnum_t ext_diff; /* extents to remove in current list */ | |
3047 | xfs_extnum_t nex1; /* number of extents before idx */ | |
3048 | xfs_extnum_t nex2; /* extents after idx + count */ | |
0293ce3a MK |
3049 | int page_idx = idx; /* index in target extent list */ |
3050 | ||
3051 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
3052 | erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); | |
3053 | ASSERT(erp != NULL); | |
0293ce3a MK |
3054 | nex1 = page_idx; |
3055 | ext_cnt = count; | |
3056 | while (ext_cnt) { | |
3057 | nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0); | |
3058 | ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1)); | |
3059 | /* | |
3060 | * Check for deletion of entire list; | |
3061 | * xfs_iext_irec_remove() updates extent offsets. | |
3062 | */ | |
3063 | if (ext_diff == erp->er_extcount) { | |
3064 | xfs_iext_irec_remove(ifp, erp_idx); | |
3065 | ext_cnt -= ext_diff; | |
3066 | nex1 = 0; | |
3067 | if (ext_cnt) { | |
3068 | ASSERT(erp_idx < ifp->if_real_bytes / | |
3069 | XFS_IEXT_BUFSZ); | |
3070 | erp = &ifp->if_u1.if_ext_irec[erp_idx]; | |
3071 | nex1 = 0; | |
3072 | continue; | |
3073 | } else { | |
3074 | break; | |
3075 | } | |
3076 | } | |
3077 | /* Move extents up (if needed) */ | |
3078 | if (nex2) { | |
3079 | memmove(&erp->er_extbuf[nex1], | |
3080 | &erp->er_extbuf[nex1 + ext_diff], | |
3081 | nex2 * sizeof(xfs_bmbt_rec_t)); | |
3082 | } | |
3083 | /* Zero out rest of page */ | |
3084 | memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ - | |
3085 | ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t)))); | |
3086 | /* Update remaining counters */ | |
3087 | erp->er_extcount -= ext_diff; | |
3088 | xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff); | |
3089 | ext_cnt -= ext_diff; | |
3090 | nex1 = 0; | |
3091 | erp_idx++; | |
3092 | erp++; | |
3093 | } | |
3094 | ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t); | |
3095 | xfs_iext_irec_compact(ifp); | |
3096 | } | |
3097 | ||
4eea22f0 MK |
3098 | /* |
3099 | * Create, destroy, or resize a linear (direct) block of extents. | |
3100 | */ | |
3101 | void | |
3102 | xfs_iext_realloc_direct( | |
3103 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3104 | int new_size) /* new size of extents */ | |
3105 | { | |
3106 | int rnew_size; /* real new size of extents */ | |
3107 | ||
3108 | rnew_size = new_size; | |
3109 | ||
0293ce3a MK |
3110 | ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) || |
3111 | ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) && | |
3112 | (new_size != ifp->if_real_bytes))); | |
3113 | ||
4eea22f0 MK |
3114 | /* Free extent records */ |
3115 | if (new_size == 0) { | |
3116 | xfs_iext_destroy(ifp); | |
3117 | } | |
3118 | /* Resize direct extent list and zero any new bytes */ | |
3119 | else if (ifp->if_real_bytes) { | |
3120 | /* Check if extents will fit inside the inode */ | |
3121 | if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) { | |
3122 | xfs_iext_direct_to_inline(ifp, new_size / | |
3123 | (uint)sizeof(xfs_bmbt_rec_t)); | |
3124 | ifp->if_bytes = new_size; | |
3125 | return; | |
3126 | } | |
16a087d8 | 3127 | if (!is_power_of_2(new_size)){ |
40ebd81d | 3128 | rnew_size = roundup_pow_of_two(new_size); |
4eea22f0 MK |
3129 | } |
3130 | if (rnew_size != ifp->if_real_bytes) { | |
a6f64d4a | 3131 | ifp->if_u1.if_extents = |
4eea22f0 MK |
3132 | kmem_realloc(ifp->if_u1.if_extents, |
3133 | rnew_size, | |
6785073b | 3134 | ifp->if_real_bytes, KM_NOFS); |
4eea22f0 MK |
3135 | } |
3136 | if (rnew_size > ifp->if_real_bytes) { | |
3137 | memset(&ifp->if_u1.if_extents[ifp->if_bytes / | |
3138 | (uint)sizeof(xfs_bmbt_rec_t)], 0, | |
3139 | rnew_size - ifp->if_real_bytes); | |
3140 | } | |
3141 | } | |
3142 | /* | |
3143 | * Switch from the inline extent buffer to a direct | |
3144 | * extent list. Be sure to include the inline extent | |
3145 | * bytes in new_size. | |
3146 | */ | |
3147 | else { | |
3148 | new_size += ifp->if_bytes; | |
16a087d8 | 3149 | if (!is_power_of_2(new_size)) { |
40ebd81d | 3150 | rnew_size = roundup_pow_of_two(new_size); |
4eea22f0 MK |
3151 | } |
3152 | xfs_iext_inline_to_direct(ifp, rnew_size); | |
3153 | } | |
3154 | ifp->if_real_bytes = rnew_size; | |
3155 | ifp->if_bytes = new_size; | |
3156 | } | |
3157 | ||
3158 | /* | |
3159 | * Switch from linear (direct) extent records to inline buffer. | |
3160 | */ | |
3161 | void | |
3162 | xfs_iext_direct_to_inline( | |
3163 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3164 | xfs_extnum_t nextents) /* number of extents in file */ | |
3165 | { | |
3166 | ASSERT(ifp->if_flags & XFS_IFEXTENTS); | |
3167 | ASSERT(nextents <= XFS_INLINE_EXTS); | |
3168 | /* | |
3169 | * The inline buffer was zeroed when we switched | |
3170 | * from inline to direct extent allocation mode, | |
3171 | * so we don't need to clear it here. | |
3172 | */ | |
3173 | memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, | |
3174 | nextents * sizeof(xfs_bmbt_rec_t)); | |
f0e2d93c | 3175 | kmem_free(ifp->if_u1.if_extents); |
4eea22f0 MK |
3176 | ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; |
3177 | ifp->if_real_bytes = 0; | |
3178 | } | |
3179 | ||
3180 | /* | |
3181 | * Switch from inline buffer to linear (direct) extent records. | |
3182 | * new_size should already be rounded up to the next power of 2 | |
3183 | * by the caller (when appropriate), so use new_size as it is. | |
3184 | * However, since new_size may be rounded up, we can't update | |
3185 | * if_bytes here. It is the caller's responsibility to update | |
3186 | * if_bytes upon return. | |
3187 | */ | |
3188 | void | |
3189 | xfs_iext_inline_to_direct( | |
3190 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3191 | int new_size) /* number of extents in file */ | |
3192 | { | |
6785073b | 3193 | ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS); |
4eea22f0 MK |
3194 | memset(ifp->if_u1.if_extents, 0, new_size); |
3195 | if (ifp->if_bytes) { | |
3196 | memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, | |
3197 | ifp->if_bytes); | |
3198 | memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * | |
3199 | sizeof(xfs_bmbt_rec_t)); | |
3200 | } | |
3201 | ifp->if_real_bytes = new_size; | |
3202 | } | |
3203 | ||
0293ce3a MK |
3204 | /* |
3205 | * Resize an extent indirection array to new_size bytes. | |
3206 | */ | |
d96f8f89 | 3207 | STATIC void |
0293ce3a MK |
3208 | xfs_iext_realloc_indirect( |
3209 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3210 | int new_size) /* new indirection array size */ | |
3211 | { | |
3212 | int nlists; /* number of irec's (ex lists) */ | |
3213 | int size; /* current indirection array size */ | |
3214 | ||
3215 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
3216 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | |
3217 | size = nlists * sizeof(xfs_ext_irec_t); | |
3218 | ASSERT(ifp->if_real_bytes); | |
3219 | ASSERT((new_size >= 0) && (new_size != size)); | |
3220 | if (new_size == 0) { | |
3221 | xfs_iext_destroy(ifp); | |
3222 | } else { | |
3223 | ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *) | |
3224 | kmem_realloc(ifp->if_u1.if_ext_irec, | |
6785073b | 3225 | new_size, size, KM_NOFS); |
0293ce3a MK |
3226 | } |
3227 | } | |
3228 | ||
3229 | /* | |
3230 | * Switch from indirection array to linear (direct) extent allocations. | |
3231 | */ | |
d96f8f89 | 3232 | STATIC void |
0293ce3a MK |
3233 | xfs_iext_indirect_to_direct( |
3234 | xfs_ifork_t *ifp) /* inode fork pointer */ | |
3235 | { | |
a6f64d4a | 3236 | xfs_bmbt_rec_host_t *ep; /* extent record pointer */ |
0293ce3a MK |
3237 | xfs_extnum_t nextents; /* number of extents in file */ |
3238 | int size; /* size of file extents */ | |
3239 | ||
3240 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
3241 | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | |
3242 | ASSERT(nextents <= XFS_LINEAR_EXTS); | |
3243 | size = nextents * sizeof(xfs_bmbt_rec_t); | |
3244 | ||
71a8c87f | 3245 | xfs_iext_irec_compact_pages(ifp); |
0293ce3a MK |
3246 | ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ); |
3247 | ||
3248 | ep = ifp->if_u1.if_ext_irec->er_extbuf; | |
f0e2d93c | 3249 | kmem_free(ifp->if_u1.if_ext_irec); |
0293ce3a MK |
3250 | ifp->if_flags &= ~XFS_IFEXTIREC; |
3251 | ifp->if_u1.if_extents = ep; | |
3252 | ifp->if_bytes = size; | |
3253 | if (nextents < XFS_LINEAR_EXTS) { | |
3254 | xfs_iext_realloc_direct(ifp, size); | |
3255 | } | |
3256 | } | |
3257 | ||
4eea22f0 MK |
3258 | /* |
3259 | * Free incore file extents. | |
3260 | */ | |
3261 | void | |
3262 | xfs_iext_destroy( | |
3263 | xfs_ifork_t *ifp) /* inode fork pointer */ | |
3264 | { | |
0293ce3a MK |
3265 | if (ifp->if_flags & XFS_IFEXTIREC) { |
3266 | int erp_idx; | |
3267 | int nlists; | |
3268 | ||
3269 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | |
3270 | for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) { | |
3271 | xfs_iext_irec_remove(ifp, erp_idx); | |
3272 | } | |
3273 | ifp->if_flags &= ~XFS_IFEXTIREC; | |
3274 | } else if (ifp->if_real_bytes) { | |
f0e2d93c | 3275 | kmem_free(ifp->if_u1.if_extents); |
4eea22f0 MK |
3276 | } else if (ifp->if_bytes) { |
3277 | memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * | |
3278 | sizeof(xfs_bmbt_rec_t)); | |
3279 | } | |
3280 | ifp->if_u1.if_extents = NULL; | |
3281 | ifp->if_real_bytes = 0; | |
3282 | ifp->if_bytes = 0; | |
3283 | } | |
0293ce3a | 3284 | |
8867bc9b MK |
3285 | /* |
3286 | * Return a pointer to the extent record for file system block bno. | |
3287 | */ | |
a6f64d4a | 3288 | xfs_bmbt_rec_host_t * /* pointer to found extent record */ |
8867bc9b MK |
3289 | xfs_iext_bno_to_ext( |
3290 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3291 | xfs_fileoff_t bno, /* block number to search for */ | |
3292 | xfs_extnum_t *idxp) /* index of target extent */ | |
3293 | { | |
a6f64d4a | 3294 | xfs_bmbt_rec_host_t *base; /* pointer to first extent */ |
8867bc9b | 3295 | xfs_filblks_t blockcount = 0; /* number of blocks in extent */ |
a6f64d4a | 3296 | xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */ |
8867bc9b | 3297 | xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ |
c41564b5 | 3298 | int high; /* upper boundary in search */ |
8867bc9b | 3299 | xfs_extnum_t idx = 0; /* index of target extent */ |
c41564b5 | 3300 | int low; /* lower boundary in search */ |
8867bc9b MK |
3301 | xfs_extnum_t nextents; /* number of file extents */ |
3302 | xfs_fileoff_t startoff = 0; /* start offset of extent */ | |
3303 | ||
3304 | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | |
3305 | if (nextents == 0) { | |
3306 | *idxp = 0; | |
3307 | return NULL; | |
3308 | } | |
3309 | low = 0; | |
3310 | if (ifp->if_flags & XFS_IFEXTIREC) { | |
3311 | /* Find target extent list */ | |
3312 | int erp_idx = 0; | |
3313 | erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx); | |
3314 | base = erp->er_extbuf; | |
3315 | high = erp->er_extcount - 1; | |
3316 | } else { | |
3317 | base = ifp->if_u1.if_extents; | |
3318 | high = nextents - 1; | |
3319 | } | |
3320 | /* Binary search extent records */ | |
3321 | while (low <= high) { | |
3322 | idx = (low + high) >> 1; | |
3323 | ep = base + idx; | |
3324 | startoff = xfs_bmbt_get_startoff(ep); | |
3325 | blockcount = xfs_bmbt_get_blockcount(ep); | |
3326 | if (bno < startoff) { | |
3327 | high = idx - 1; | |
3328 | } else if (bno >= startoff + blockcount) { | |
3329 | low = idx + 1; | |
3330 | } else { | |
3331 | /* Convert back to file-based extent index */ | |
3332 | if (ifp->if_flags & XFS_IFEXTIREC) { | |
3333 | idx += erp->er_extoff; | |
3334 | } | |
3335 | *idxp = idx; | |
3336 | return ep; | |
3337 | } | |
3338 | } | |
3339 | /* Convert back to file-based extent index */ | |
3340 | if (ifp->if_flags & XFS_IFEXTIREC) { | |
3341 | idx += erp->er_extoff; | |
3342 | } | |
3343 | if (bno >= startoff + blockcount) { | |
3344 | if (++idx == nextents) { | |
3345 | ep = NULL; | |
3346 | } else { | |
3347 | ep = xfs_iext_get_ext(ifp, idx); | |
3348 | } | |
3349 | } | |
3350 | *idxp = idx; | |
3351 | return ep; | |
3352 | } | |
3353 | ||
0293ce3a MK |
3354 | /* |
3355 | * Return a pointer to the indirection array entry containing the | |
3356 | * extent record for filesystem block bno. Store the index of the | |
3357 | * target irec in *erp_idxp. | |
3358 | */ | |
8867bc9b | 3359 | xfs_ext_irec_t * /* pointer to found extent record */ |
0293ce3a MK |
3360 | xfs_iext_bno_to_irec( |
3361 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3362 | xfs_fileoff_t bno, /* block number to search for */ | |
3363 | int *erp_idxp) /* irec index of target ext list */ | |
3364 | { | |
3365 | xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ | |
3366 | xfs_ext_irec_t *erp_next; /* next indirection array entry */ | |
8867bc9b | 3367 | int erp_idx; /* indirection array index */ |
0293ce3a MK |
3368 | int nlists; /* number of extent irec's (lists) */ |
3369 | int high; /* binary search upper limit */ | |
3370 | int low; /* binary search lower limit */ | |
3371 | ||
3372 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
3373 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | |
3374 | erp_idx = 0; | |
3375 | low = 0; | |
3376 | high = nlists - 1; | |
3377 | while (low <= high) { | |
3378 | erp_idx = (low + high) >> 1; | |
3379 | erp = &ifp->if_u1.if_ext_irec[erp_idx]; | |
3380 | erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL; | |
3381 | if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) { | |
3382 | high = erp_idx - 1; | |
3383 | } else if (erp_next && bno >= | |
3384 | xfs_bmbt_get_startoff(erp_next->er_extbuf)) { | |
3385 | low = erp_idx + 1; | |
3386 | } else { | |
3387 | break; | |
3388 | } | |
3389 | } | |
3390 | *erp_idxp = erp_idx; | |
3391 | return erp; | |
3392 | } | |
3393 | ||
3394 | /* | |
3395 | * Return a pointer to the indirection array entry containing the | |
3396 | * extent record at file extent index *idxp. Store the index of the | |
3397 | * target irec in *erp_idxp and store the page index of the target | |
3398 | * extent record in *idxp. | |
3399 | */ | |
3400 | xfs_ext_irec_t * | |
3401 | xfs_iext_idx_to_irec( | |
3402 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3403 | xfs_extnum_t *idxp, /* extent index (file -> page) */ | |
3404 | int *erp_idxp, /* pointer to target irec */ | |
3405 | int realloc) /* new bytes were just added */ | |
3406 | { | |
3407 | xfs_ext_irec_t *prev; /* pointer to previous irec */ | |
3408 | xfs_ext_irec_t *erp = NULL; /* pointer to current irec */ | |
3409 | int erp_idx; /* indirection array index */ | |
3410 | int nlists; /* number of irec's (ex lists) */ | |
3411 | int high; /* binary search upper limit */ | |
3412 | int low; /* binary search lower limit */ | |
3413 | xfs_extnum_t page_idx = *idxp; /* extent index in target list */ | |
3414 | ||
3415 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
87bef181 CH |
3416 | ASSERT(page_idx >= 0); |
3417 | ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t)); | |
3418 | ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc); | |
3419 | ||
0293ce3a MK |
3420 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; |
3421 | erp_idx = 0; | |
3422 | low = 0; | |
3423 | high = nlists - 1; | |
3424 | ||
3425 | /* Binary search extent irec's */ | |
3426 | while (low <= high) { | |
3427 | erp_idx = (low + high) >> 1; | |
3428 | erp = &ifp->if_u1.if_ext_irec[erp_idx]; | |
3429 | prev = erp_idx > 0 ? erp - 1 : NULL; | |
3430 | if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff && | |
3431 | realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) { | |
3432 | high = erp_idx - 1; | |
3433 | } else if (page_idx > erp->er_extoff + erp->er_extcount || | |
3434 | (page_idx == erp->er_extoff + erp->er_extcount && | |
3435 | !realloc)) { | |
3436 | low = erp_idx + 1; | |
3437 | } else if (page_idx == erp->er_extoff + erp->er_extcount && | |
3438 | erp->er_extcount == XFS_LINEAR_EXTS) { | |
3439 | ASSERT(realloc); | |
3440 | page_idx = 0; | |
3441 | erp_idx++; | |
3442 | erp = erp_idx < nlists ? erp + 1 : NULL; | |
3443 | break; | |
3444 | } else { | |
3445 | page_idx -= erp->er_extoff; | |
3446 | break; | |
3447 | } | |
3448 | } | |
3449 | *idxp = page_idx; | |
3450 | *erp_idxp = erp_idx; | |
3451 | return(erp); | |
3452 | } | |
3453 | ||
3454 | /* | |
3455 | * Allocate and initialize an indirection array once the space needed | |
3456 | * for incore extents increases above XFS_IEXT_BUFSZ. | |
3457 | */ | |
3458 | void | |
3459 | xfs_iext_irec_init( | |
3460 | xfs_ifork_t *ifp) /* inode fork pointer */ | |
3461 | { | |
3462 | xfs_ext_irec_t *erp; /* indirection array pointer */ | |
3463 | xfs_extnum_t nextents; /* number of extents in file */ | |
3464 | ||
3465 | ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); | |
3466 | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | |
3467 | ASSERT(nextents <= XFS_LINEAR_EXTS); | |
3468 | ||
6785073b | 3469 | erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS); |
0293ce3a MK |
3470 | |
3471 | if (nextents == 0) { | |
6785073b | 3472 | ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); |
0293ce3a MK |
3473 | } else if (!ifp->if_real_bytes) { |
3474 | xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ); | |
3475 | } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) { | |
3476 | xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ); | |
3477 | } | |
3478 | erp->er_extbuf = ifp->if_u1.if_extents; | |
3479 | erp->er_extcount = nextents; | |
3480 | erp->er_extoff = 0; | |
3481 | ||
3482 | ifp->if_flags |= XFS_IFEXTIREC; | |
3483 | ifp->if_real_bytes = XFS_IEXT_BUFSZ; | |
3484 | ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t); | |
3485 | ifp->if_u1.if_ext_irec = erp; | |
3486 | ||
3487 | return; | |
3488 | } | |
3489 | ||
3490 | /* | |
3491 | * Allocate and initialize a new entry in the indirection array. | |
3492 | */ | |
3493 | xfs_ext_irec_t * | |
3494 | xfs_iext_irec_new( | |
3495 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3496 | int erp_idx) /* index for new irec */ | |
3497 | { | |
3498 | xfs_ext_irec_t *erp; /* indirection array pointer */ | |
3499 | int i; /* loop counter */ | |
3500 | int nlists; /* number of irec's (ex lists) */ | |
3501 | ||
3502 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
3503 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | |
3504 | ||
3505 | /* Resize indirection array */ | |
3506 | xfs_iext_realloc_indirect(ifp, ++nlists * | |
3507 | sizeof(xfs_ext_irec_t)); | |
3508 | /* | |
3509 | * Move records down in the array so the | |
3510 | * new page can use erp_idx. | |
3511 | */ | |
3512 | erp = ifp->if_u1.if_ext_irec; | |
3513 | for (i = nlists - 1; i > erp_idx; i--) { | |
3514 | memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t)); | |
3515 | } | |
3516 | ASSERT(i == erp_idx); | |
3517 | ||
3518 | /* Initialize new extent record */ | |
3519 | erp = ifp->if_u1.if_ext_irec; | |
6785073b | 3520 | erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); |
0293ce3a MK |
3521 | ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; |
3522 | memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ); | |
3523 | erp[erp_idx].er_extcount = 0; | |
3524 | erp[erp_idx].er_extoff = erp_idx > 0 ? | |
3525 | erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0; | |
3526 | return (&erp[erp_idx]); | |
3527 | } | |
3528 | ||
3529 | /* | |
3530 | * Remove a record from the indirection array. | |
3531 | */ | |
3532 | void | |
3533 | xfs_iext_irec_remove( | |
3534 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3535 | int erp_idx) /* irec index to remove */ | |
3536 | { | |
3537 | xfs_ext_irec_t *erp; /* indirection array pointer */ | |
3538 | int i; /* loop counter */ | |
3539 | int nlists; /* number of irec's (ex lists) */ | |
3540 | ||
3541 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
3542 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | |
3543 | erp = &ifp->if_u1.if_ext_irec[erp_idx]; | |
3544 | if (erp->er_extbuf) { | |
3545 | xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, | |
3546 | -erp->er_extcount); | |
f0e2d93c | 3547 | kmem_free(erp->er_extbuf); |
0293ce3a MK |
3548 | } |
3549 | /* Compact extent records */ | |
3550 | erp = ifp->if_u1.if_ext_irec; | |
3551 | for (i = erp_idx; i < nlists - 1; i++) { | |
3552 | memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t)); | |
3553 | } | |
3554 | /* | |
3555 | * Manually free the last extent record from the indirection | |
3556 | * array. A call to xfs_iext_realloc_indirect() with a size | |
3557 | * of zero would result in a call to xfs_iext_destroy() which | |
3558 | * would in turn call this function again, creating a nasty | |
3559 | * infinite loop. | |
3560 | */ | |
3561 | if (--nlists) { | |
3562 | xfs_iext_realloc_indirect(ifp, | |
3563 | nlists * sizeof(xfs_ext_irec_t)); | |
3564 | } else { | |
f0e2d93c | 3565 | kmem_free(ifp->if_u1.if_ext_irec); |
0293ce3a MK |
3566 | } |
3567 | ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; | |
3568 | } | |
3569 | ||
3570 | /* | |
3571 | * This is called to clean up large amounts of unused memory allocated | |
3572 | * by the indirection array. Before compacting anything though, verify | |
3573 | * that the indirection array is still needed and switch back to the | |
3574 | * linear extent list (or even the inline buffer) if possible. The | |
3575 | * compaction policy is as follows: | |
3576 | * | |
3577 | * Full Compaction: Extents fit into a single page (or inline buffer) | |
71a8c87f | 3578 | * Partial Compaction: Extents occupy less than 50% of allocated space |
0293ce3a MK |
3579 | * No Compaction: Extents occupy at least 50% of allocated space |
3580 | */ | |
3581 | void | |
3582 | xfs_iext_irec_compact( | |
3583 | xfs_ifork_t *ifp) /* inode fork pointer */ | |
3584 | { | |
3585 | xfs_extnum_t nextents; /* number of extents in file */ | |
3586 | int nlists; /* number of irec's (ex lists) */ | |
3587 | ||
3588 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
3589 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | |
3590 | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | |
3591 | ||
3592 | if (nextents == 0) { | |
3593 | xfs_iext_destroy(ifp); | |
3594 | } else if (nextents <= XFS_INLINE_EXTS) { | |
3595 | xfs_iext_indirect_to_direct(ifp); | |
3596 | xfs_iext_direct_to_inline(ifp, nextents); | |
3597 | } else if (nextents <= XFS_LINEAR_EXTS) { | |
3598 | xfs_iext_indirect_to_direct(ifp); | |
0293ce3a MK |
3599 | } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) { |
3600 | xfs_iext_irec_compact_pages(ifp); | |
3601 | } | |
3602 | } | |
3603 | ||
3604 | /* | |
3605 | * Combine extents from neighboring extent pages. | |
3606 | */ | |
3607 | void | |
3608 | xfs_iext_irec_compact_pages( | |
3609 | xfs_ifork_t *ifp) /* inode fork pointer */ | |
3610 | { | |
3611 | xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */ | |
3612 | int erp_idx = 0; /* indirection array index */ | |
3613 | int nlists; /* number of irec's (ex lists) */ | |
3614 | ||
3615 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
3616 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | |
3617 | while (erp_idx < nlists - 1) { | |
3618 | erp = &ifp->if_u1.if_ext_irec[erp_idx]; | |
3619 | erp_next = erp + 1; | |
3620 | if (erp_next->er_extcount <= | |
3621 | (XFS_LINEAR_EXTS - erp->er_extcount)) { | |
71a8c87f | 3622 | memcpy(&erp->er_extbuf[erp->er_extcount], |
0293ce3a MK |
3623 | erp_next->er_extbuf, erp_next->er_extcount * |
3624 | sizeof(xfs_bmbt_rec_t)); | |
3625 | erp->er_extcount += erp_next->er_extcount; | |
3626 | /* | |
3627 | * Free page before removing extent record | |
3628 | * so er_extoffs don't get modified in | |
3629 | * xfs_iext_irec_remove. | |
3630 | */ | |
f0e2d93c | 3631 | kmem_free(erp_next->er_extbuf); |
0293ce3a MK |
3632 | erp_next->er_extbuf = NULL; |
3633 | xfs_iext_irec_remove(ifp, erp_idx + 1); | |
3634 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | |
3635 | } else { | |
3636 | erp_idx++; | |
3637 | } | |
3638 | } | |
3639 | } | |
3640 | ||
0293ce3a MK |
3641 | /* |
3642 | * This is called to update the er_extoff field in the indirection | |
3643 | * array when extents have been added or removed from one of the | |
3644 | * extent lists. erp_idx contains the irec index to begin updating | |
3645 | * at and ext_diff contains the number of extents that were added | |
3646 | * or removed. | |
3647 | */ | |
3648 | void | |
3649 | xfs_iext_irec_update_extoffs( | |
3650 | xfs_ifork_t *ifp, /* inode fork pointer */ | |
3651 | int erp_idx, /* irec index to update */ | |
3652 | int ext_diff) /* number of new extents */ | |
3653 | { | |
3654 | int i; /* loop counter */ | |
3655 | int nlists; /* number of irec's (ex lists */ | |
3656 | ||
3657 | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | |
3658 | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | |
3659 | for (i = erp_idx; i < nlists; i++) { | |
3660 | ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff; | |
3661 | } | |
3662 | } |