]>
Commit | Line | Data |
---|---|---|
029632fb PZ |
1 | |
2 | #include <linux/sched.h> | |
cf4aebc2 | 3 | #include <linux/sched/sysctl.h> |
8bd75c77 | 4 | #include <linux/sched/rt.h> |
029632fb PZ |
5 | #include <linux/mutex.h> |
6 | #include <linux/spinlock.h> | |
7 | #include <linux/stop_machine.h> | |
8 | ||
391e43da | 9 | #include "cpupri.h" |
029632fb PZ |
10 | |
11 | extern __read_mostly int scheduler_running; | |
12 | ||
13 | /* | |
14 | * Convert user-nice values [ -20 ... 0 ... 19 ] | |
15 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | |
16 | * and back. | |
17 | */ | |
18 | #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) | |
19 | #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) | |
20 | #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) | |
21 | ||
22 | /* | |
23 | * 'User priority' is the nice value converted to something we | |
24 | * can work with better when scaling various scheduler parameters, | |
25 | * it's a [ 0 ... 39 ] range. | |
26 | */ | |
27 | #define USER_PRIO(p) ((p)-MAX_RT_PRIO) | |
28 | #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) | |
29 | #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) | |
30 | ||
31 | /* | |
32 | * Helpers for converting nanosecond timing to jiffy resolution | |
33 | */ | |
34 | #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) | |
35 | ||
36 | #define NICE_0_LOAD SCHED_LOAD_SCALE | |
37 | #define NICE_0_SHIFT SCHED_LOAD_SHIFT | |
38 | ||
39 | /* | |
40 | * These are the 'tuning knobs' of the scheduler: | |
029632fb | 41 | */ |
029632fb PZ |
42 | |
43 | /* | |
44 | * single value that denotes runtime == period, ie unlimited time. | |
45 | */ | |
46 | #define RUNTIME_INF ((u64)~0ULL) | |
47 | ||
48 | static inline int rt_policy(int policy) | |
49 | { | |
50 | if (policy == SCHED_FIFO || policy == SCHED_RR) | |
51 | return 1; | |
52 | return 0; | |
53 | } | |
54 | ||
55 | static inline int task_has_rt_policy(struct task_struct *p) | |
56 | { | |
57 | return rt_policy(p->policy); | |
58 | } | |
59 | ||
60 | /* | |
61 | * This is the priority-queue data structure of the RT scheduling class: | |
62 | */ | |
63 | struct rt_prio_array { | |
64 | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | |
65 | struct list_head queue[MAX_RT_PRIO]; | |
66 | }; | |
67 | ||
68 | struct rt_bandwidth { | |
69 | /* nests inside the rq lock: */ | |
70 | raw_spinlock_t rt_runtime_lock; | |
71 | ktime_t rt_period; | |
72 | u64 rt_runtime; | |
73 | struct hrtimer rt_period_timer; | |
74 | }; | |
75 | ||
76 | extern struct mutex sched_domains_mutex; | |
77 | ||
78 | #ifdef CONFIG_CGROUP_SCHED | |
79 | ||
80 | #include <linux/cgroup.h> | |
81 | ||
82 | struct cfs_rq; | |
83 | struct rt_rq; | |
84 | ||
35cf4e50 | 85 | extern struct list_head task_groups; |
029632fb PZ |
86 | |
87 | struct cfs_bandwidth { | |
88 | #ifdef CONFIG_CFS_BANDWIDTH | |
89 | raw_spinlock_t lock; | |
90 | ktime_t period; | |
91 | u64 quota, runtime; | |
92 | s64 hierarchal_quota; | |
93 | u64 runtime_expires; | |
94 | ||
95 | int idle, timer_active; | |
96 | struct hrtimer period_timer, slack_timer; | |
97 | struct list_head throttled_cfs_rq; | |
98 | ||
99 | /* statistics */ | |
100 | int nr_periods, nr_throttled; | |
101 | u64 throttled_time; | |
102 | #endif | |
103 | }; | |
104 | ||
105 | /* task group related information */ | |
106 | struct task_group { | |
107 | struct cgroup_subsys_state css; | |
108 | ||
109 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
110 | /* schedulable entities of this group on each cpu */ | |
111 | struct sched_entity **se; | |
112 | /* runqueue "owned" by this group on each cpu */ | |
113 | struct cfs_rq **cfs_rq; | |
114 | unsigned long shares; | |
115 | ||
116 | atomic_t load_weight; | |
c566e8e9 | 117 | atomic64_t load_avg; |
bb17f655 | 118 | atomic_t runnable_avg; |
029632fb PZ |
119 | #endif |
120 | ||
121 | #ifdef CONFIG_RT_GROUP_SCHED | |
122 | struct sched_rt_entity **rt_se; | |
123 | struct rt_rq **rt_rq; | |
124 | ||
125 | struct rt_bandwidth rt_bandwidth; | |
126 | #endif | |
127 | ||
128 | struct rcu_head rcu; | |
129 | struct list_head list; | |
130 | ||
131 | struct task_group *parent; | |
132 | struct list_head siblings; | |
133 | struct list_head children; | |
134 | ||
135 | #ifdef CONFIG_SCHED_AUTOGROUP | |
136 | struct autogroup *autogroup; | |
137 | #endif | |
138 | ||
139 | struct cfs_bandwidth cfs_bandwidth; | |
140 | }; | |
141 | ||
142 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
143 | #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD | |
144 | ||
145 | /* | |
146 | * A weight of 0 or 1 can cause arithmetics problems. | |
147 | * A weight of a cfs_rq is the sum of weights of which entities | |
148 | * are queued on this cfs_rq, so a weight of a entity should not be | |
149 | * too large, so as the shares value of a task group. | |
150 | * (The default weight is 1024 - so there's no practical | |
151 | * limitation from this.) | |
152 | */ | |
153 | #define MIN_SHARES (1UL << 1) | |
154 | #define MAX_SHARES (1UL << 18) | |
155 | #endif | |
156 | ||
157 | /* Default task group. | |
158 | * Every task in system belong to this group at bootup. | |
159 | */ | |
160 | extern struct task_group root_task_group; | |
161 | ||
162 | typedef int (*tg_visitor)(struct task_group *, void *); | |
163 | ||
164 | extern int walk_tg_tree_from(struct task_group *from, | |
165 | tg_visitor down, tg_visitor up, void *data); | |
166 | ||
167 | /* | |
168 | * Iterate the full tree, calling @down when first entering a node and @up when | |
169 | * leaving it for the final time. | |
170 | * | |
171 | * Caller must hold rcu_lock or sufficient equivalent. | |
172 | */ | |
173 | static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) | |
174 | { | |
175 | return walk_tg_tree_from(&root_task_group, down, up, data); | |
176 | } | |
177 | ||
178 | extern int tg_nop(struct task_group *tg, void *data); | |
179 | ||
180 | extern void free_fair_sched_group(struct task_group *tg); | |
181 | extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); | |
182 | extern void unregister_fair_sched_group(struct task_group *tg, int cpu); | |
183 | extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | |
184 | struct sched_entity *se, int cpu, | |
185 | struct sched_entity *parent); | |
186 | extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); | |
187 | extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); | |
188 | ||
189 | extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); | |
190 | extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); | |
191 | extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); | |
192 | ||
193 | extern void free_rt_sched_group(struct task_group *tg); | |
194 | extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); | |
195 | extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | |
196 | struct sched_rt_entity *rt_se, int cpu, | |
197 | struct sched_rt_entity *parent); | |
198 | ||
199 | #else /* CONFIG_CGROUP_SCHED */ | |
200 | ||
201 | struct cfs_bandwidth { }; | |
202 | ||
203 | #endif /* CONFIG_CGROUP_SCHED */ | |
204 | ||
205 | /* CFS-related fields in a runqueue */ | |
206 | struct cfs_rq { | |
207 | struct load_weight load; | |
c82513e5 | 208 | unsigned int nr_running, h_nr_running; |
029632fb PZ |
209 | |
210 | u64 exec_clock; | |
211 | u64 min_vruntime; | |
212 | #ifndef CONFIG_64BIT | |
213 | u64 min_vruntime_copy; | |
214 | #endif | |
215 | ||
216 | struct rb_root tasks_timeline; | |
217 | struct rb_node *rb_leftmost; | |
218 | ||
029632fb PZ |
219 | /* |
220 | * 'curr' points to currently running entity on this cfs_rq. | |
221 | * It is set to NULL otherwise (i.e when none are currently running). | |
222 | */ | |
223 | struct sched_entity *curr, *next, *last, *skip; | |
224 | ||
225 | #ifdef CONFIG_SCHED_DEBUG | |
226 | unsigned int nr_spread_over; | |
227 | #endif | |
228 | ||
2dac754e | 229 | #ifdef CONFIG_SMP |
f4e26b12 PT |
230 | /* |
231 | * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be | |
232 | * removed when useful for applications beyond shares distribution (e.g. | |
233 | * load-balance). | |
234 | */ | |
235 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
2dac754e PT |
236 | /* |
237 | * CFS Load tracking | |
238 | * Under CFS, load is tracked on a per-entity basis and aggregated up. | |
239 | * This allows for the description of both thread and group usage (in | |
240 | * the FAIR_GROUP_SCHED case). | |
241 | */ | |
9ee474f5 | 242 | u64 runnable_load_avg, blocked_load_avg; |
aff3e498 | 243 | atomic64_t decay_counter, removed_load; |
9ee474f5 | 244 | u64 last_decay; |
f4e26b12 PT |
245 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
246 | /* These always depend on CONFIG_FAIR_GROUP_SCHED */ | |
c566e8e9 | 247 | #ifdef CONFIG_FAIR_GROUP_SCHED |
bb17f655 | 248 | u32 tg_runnable_contrib; |
c566e8e9 | 249 | u64 tg_load_contrib; |
82958366 PT |
250 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
251 | ||
252 | /* | |
253 | * h_load = weight * f(tg) | |
254 | * | |
255 | * Where f(tg) is the recursive weight fraction assigned to | |
256 | * this group. | |
257 | */ | |
258 | unsigned long h_load; | |
259 | #endif /* CONFIG_SMP */ | |
260 | ||
029632fb PZ |
261 | #ifdef CONFIG_FAIR_GROUP_SCHED |
262 | struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ | |
263 | ||
264 | /* | |
265 | * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | |
266 | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities | |
267 | * (like users, containers etc.) | |
268 | * | |
269 | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This | |
270 | * list is used during load balance. | |
271 | */ | |
272 | int on_list; | |
273 | struct list_head leaf_cfs_rq_list; | |
274 | struct task_group *tg; /* group that "owns" this runqueue */ | |
275 | ||
029632fb PZ |
276 | #ifdef CONFIG_CFS_BANDWIDTH |
277 | int runtime_enabled; | |
278 | u64 runtime_expires; | |
279 | s64 runtime_remaining; | |
280 | ||
f1b17280 PT |
281 | u64 throttled_clock, throttled_clock_task; |
282 | u64 throttled_clock_task_time; | |
029632fb PZ |
283 | int throttled, throttle_count; |
284 | struct list_head throttled_list; | |
285 | #endif /* CONFIG_CFS_BANDWIDTH */ | |
286 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
287 | }; | |
288 | ||
289 | static inline int rt_bandwidth_enabled(void) | |
290 | { | |
291 | return sysctl_sched_rt_runtime >= 0; | |
292 | } | |
293 | ||
294 | /* Real-Time classes' related field in a runqueue: */ | |
295 | struct rt_rq { | |
296 | struct rt_prio_array active; | |
c82513e5 | 297 | unsigned int rt_nr_running; |
029632fb PZ |
298 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
299 | struct { | |
300 | int curr; /* highest queued rt task prio */ | |
301 | #ifdef CONFIG_SMP | |
302 | int next; /* next highest */ | |
303 | #endif | |
304 | } highest_prio; | |
305 | #endif | |
306 | #ifdef CONFIG_SMP | |
307 | unsigned long rt_nr_migratory; | |
308 | unsigned long rt_nr_total; | |
309 | int overloaded; | |
310 | struct plist_head pushable_tasks; | |
311 | #endif | |
312 | int rt_throttled; | |
313 | u64 rt_time; | |
314 | u64 rt_runtime; | |
315 | /* Nests inside the rq lock: */ | |
316 | raw_spinlock_t rt_runtime_lock; | |
317 | ||
318 | #ifdef CONFIG_RT_GROUP_SCHED | |
319 | unsigned long rt_nr_boosted; | |
320 | ||
321 | struct rq *rq; | |
322 | struct list_head leaf_rt_rq_list; | |
323 | struct task_group *tg; | |
324 | #endif | |
325 | }; | |
326 | ||
327 | #ifdef CONFIG_SMP | |
328 | ||
329 | /* | |
330 | * We add the notion of a root-domain which will be used to define per-domain | |
331 | * variables. Each exclusive cpuset essentially defines an island domain by | |
332 | * fully partitioning the member cpus from any other cpuset. Whenever a new | |
333 | * exclusive cpuset is created, we also create and attach a new root-domain | |
334 | * object. | |
335 | * | |
336 | */ | |
337 | struct root_domain { | |
338 | atomic_t refcount; | |
339 | atomic_t rto_count; | |
340 | struct rcu_head rcu; | |
341 | cpumask_var_t span; | |
342 | cpumask_var_t online; | |
343 | ||
344 | /* | |
345 | * The "RT overload" flag: it gets set if a CPU has more than | |
346 | * one runnable RT task. | |
347 | */ | |
348 | cpumask_var_t rto_mask; | |
349 | struct cpupri cpupri; | |
350 | }; | |
351 | ||
352 | extern struct root_domain def_root_domain; | |
353 | ||
354 | #endif /* CONFIG_SMP */ | |
355 | ||
356 | /* | |
357 | * This is the main, per-CPU runqueue data structure. | |
358 | * | |
359 | * Locking rule: those places that want to lock multiple runqueues | |
360 | * (such as the load balancing or the thread migration code), lock | |
361 | * acquire operations must be ordered by ascending &runqueue. | |
362 | */ | |
363 | struct rq { | |
364 | /* runqueue lock: */ | |
365 | raw_spinlock_t lock; | |
366 | ||
367 | /* | |
368 | * nr_running and cpu_load should be in the same cacheline because | |
369 | * remote CPUs use both these fields when doing load calculation. | |
370 | */ | |
c82513e5 | 371 | unsigned int nr_running; |
029632fb PZ |
372 | #define CPU_LOAD_IDX_MAX 5 |
373 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | |
374 | unsigned long last_load_update_tick; | |
375 | #ifdef CONFIG_NO_HZ | |
376 | u64 nohz_stamp; | |
1c792db7 | 377 | unsigned long nohz_flags; |
029632fb PZ |
378 | #endif |
379 | int skip_clock_update; | |
380 | ||
381 | /* capture load from *all* tasks on this cpu: */ | |
382 | struct load_weight load; | |
383 | unsigned long nr_load_updates; | |
384 | u64 nr_switches; | |
385 | ||
386 | struct cfs_rq cfs; | |
387 | struct rt_rq rt; | |
388 | ||
389 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
390 | /* list of leaf cfs_rq on this cpu: */ | |
391 | struct list_head leaf_cfs_rq_list; | |
a35b6466 PZ |
392 | #ifdef CONFIG_SMP |
393 | unsigned long h_load_throttle; | |
394 | #endif /* CONFIG_SMP */ | |
395 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
396 | ||
029632fb PZ |
397 | #ifdef CONFIG_RT_GROUP_SCHED |
398 | struct list_head leaf_rt_rq_list; | |
399 | #endif | |
400 | ||
401 | /* | |
402 | * This is part of a global counter where only the total sum | |
403 | * over all CPUs matters. A task can increase this counter on | |
404 | * one CPU and if it got migrated afterwards it may decrease | |
405 | * it on another CPU. Always updated under the runqueue lock: | |
406 | */ | |
407 | unsigned long nr_uninterruptible; | |
408 | ||
409 | struct task_struct *curr, *idle, *stop; | |
410 | unsigned long next_balance; | |
411 | struct mm_struct *prev_mm; | |
412 | ||
413 | u64 clock; | |
414 | u64 clock_task; | |
415 | ||
416 | atomic_t nr_iowait; | |
417 | ||
418 | #ifdef CONFIG_SMP | |
419 | struct root_domain *rd; | |
420 | struct sched_domain *sd; | |
421 | ||
422 | unsigned long cpu_power; | |
423 | ||
424 | unsigned char idle_balance; | |
425 | /* For active balancing */ | |
426 | int post_schedule; | |
427 | int active_balance; | |
428 | int push_cpu; | |
429 | struct cpu_stop_work active_balance_work; | |
430 | /* cpu of this runqueue: */ | |
431 | int cpu; | |
432 | int online; | |
433 | ||
367456c7 PZ |
434 | struct list_head cfs_tasks; |
435 | ||
029632fb PZ |
436 | u64 rt_avg; |
437 | u64 age_stamp; | |
438 | u64 idle_stamp; | |
439 | u64 avg_idle; | |
440 | #endif | |
441 | ||
442 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | |
443 | u64 prev_irq_time; | |
444 | #endif | |
445 | #ifdef CONFIG_PARAVIRT | |
446 | u64 prev_steal_time; | |
447 | #endif | |
448 | #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING | |
449 | u64 prev_steal_time_rq; | |
450 | #endif | |
451 | ||
452 | /* calc_load related fields */ | |
453 | unsigned long calc_load_update; | |
454 | long calc_load_active; | |
455 | ||
456 | #ifdef CONFIG_SCHED_HRTICK | |
457 | #ifdef CONFIG_SMP | |
458 | int hrtick_csd_pending; | |
459 | struct call_single_data hrtick_csd; | |
460 | #endif | |
461 | struct hrtimer hrtick_timer; | |
462 | #endif | |
463 | ||
464 | #ifdef CONFIG_SCHEDSTATS | |
465 | /* latency stats */ | |
466 | struct sched_info rq_sched_info; | |
467 | unsigned long long rq_cpu_time; | |
468 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | |
469 | ||
470 | /* sys_sched_yield() stats */ | |
471 | unsigned int yld_count; | |
472 | ||
473 | /* schedule() stats */ | |
029632fb PZ |
474 | unsigned int sched_count; |
475 | unsigned int sched_goidle; | |
476 | ||
477 | /* try_to_wake_up() stats */ | |
478 | unsigned int ttwu_count; | |
479 | unsigned int ttwu_local; | |
480 | #endif | |
481 | ||
482 | #ifdef CONFIG_SMP | |
483 | struct llist_head wake_list; | |
484 | #endif | |
18bf2805 BS |
485 | |
486 | struct sched_avg avg; | |
029632fb PZ |
487 | }; |
488 | ||
489 | static inline int cpu_of(struct rq *rq) | |
490 | { | |
491 | #ifdef CONFIG_SMP | |
492 | return rq->cpu; | |
493 | #else | |
494 | return 0; | |
495 | #endif | |
496 | } | |
497 | ||
498 | DECLARE_PER_CPU(struct rq, runqueues); | |
499 | ||
518cd623 PZ |
500 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) |
501 | #define this_rq() (&__get_cpu_var(runqueues)) | |
502 | #define task_rq(p) cpu_rq(task_cpu(p)) | |
503 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | |
504 | #define raw_rq() (&__raw_get_cpu_var(runqueues)) | |
505 | ||
506 | #ifdef CONFIG_SMP | |
507 | ||
029632fb PZ |
508 | #define rcu_dereference_check_sched_domain(p) \ |
509 | rcu_dereference_check((p), \ | |
510 | lockdep_is_held(&sched_domains_mutex)) | |
511 | ||
512 | /* | |
513 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | |
514 | * See detach_destroy_domains: synchronize_sched for details. | |
515 | * | |
516 | * The domain tree of any CPU may only be accessed from within | |
517 | * preempt-disabled sections. | |
518 | */ | |
519 | #define for_each_domain(cpu, __sd) \ | |
518cd623 PZ |
520 | for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ |
521 | __sd; __sd = __sd->parent) | |
029632fb | 522 | |
77e81365 SS |
523 | #define for_each_lower_domain(sd) for (; sd; sd = sd->child) |
524 | ||
518cd623 PZ |
525 | /** |
526 | * highest_flag_domain - Return highest sched_domain containing flag. | |
527 | * @cpu: The cpu whose highest level of sched domain is to | |
528 | * be returned. | |
529 | * @flag: The flag to check for the highest sched_domain | |
530 | * for the given cpu. | |
531 | * | |
532 | * Returns the highest sched_domain of a cpu which contains the given flag. | |
533 | */ | |
534 | static inline struct sched_domain *highest_flag_domain(int cpu, int flag) | |
535 | { | |
536 | struct sched_domain *sd, *hsd = NULL; | |
537 | ||
538 | for_each_domain(cpu, sd) { | |
539 | if (!(sd->flags & flag)) | |
540 | break; | |
541 | hsd = sd; | |
542 | } | |
543 | ||
544 | return hsd; | |
545 | } | |
546 | ||
547 | DECLARE_PER_CPU(struct sched_domain *, sd_llc); | |
548 | DECLARE_PER_CPU(int, sd_llc_id); | |
549 | ||
c1174876 PZ |
550 | extern int group_balance_cpu(struct sched_group *sg); |
551 | ||
518cd623 | 552 | #endif /* CONFIG_SMP */ |
029632fb | 553 | |
391e43da PZ |
554 | #include "stats.h" |
555 | #include "auto_group.h" | |
029632fb PZ |
556 | |
557 | #ifdef CONFIG_CGROUP_SCHED | |
558 | ||
559 | /* | |
560 | * Return the group to which this tasks belongs. | |
561 | * | |
8323f26c PZ |
562 | * We cannot use task_subsys_state() and friends because the cgroup |
563 | * subsystem changes that value before the cgroup_subsys::attach() method | |
564 | * is called, therefore we cannot pin it and might observe the wrong value. | |
565 | * | |
566 | * The same is true for autogroup's p->signal->autogroup->tg, the autogroup | |
567 | * core changes this before calling sched_move_task(). | |
568 | * | |
569 | * Instead we use a 'copy' which is updated from sched_move_task() while | |
570 | * holding both task_struct::pi_lock and rq::lock. | |
029632fb PZ |
571 | */ |
572 | static inline struct task_group *task_group(struct task_struct *p) | |
573 | { | |
8323f26c | 574 | return p->sched_task_group; |
029632fb PZ |
575 | } |
576 | ||
577 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | |
578 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | |
579 | { | |
580 | #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) | |
581 | struct task_group *tg = task_group(p); | |
582 | #endif | |
583 | ||
584 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
585 | p->se.cfs_rq = tg->cfs_rq[cpu]; | |
586 | p->se.parent = tg->se[cpu]; | |
587 | #endif | |
588 | ||
589 | #ifdef CONFIG_RT_GROUP_SCHED | |
590 | p->rt.rt_rq = tg->rt_rq[cpu]; | |
591 | p->rt.parent = tg->rt_se[cpu]; | |
592 | #endif | |
593 | } | |
594 | ||
595 | #else /* CONFIG_CGROUP_SCHED */ | |
596 | ||
597 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | |
598 | static inline struct task_group *task_group(struct task_struct *p) | |
599 | { | |
600 | return NULL; | |
601 | } | |
602 | ||
603 | #endif /* CONFIG_CGROUP_SCHED */ | |
604 | ||
605 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | |
606 | { | |
607 | set_task_rq(p, cpu); | |
608 | #ifdef CONFIG_SMP | |
609 | /* | |
610 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | |
611 | * successfuly executed on another CPU. We must ensure that updates of | |
612 | * per-task data have been completed by this moment. | |
613 | */ | |
614 | smp_wmb(); | |
615 | task_thread_info(p)->cpu = cpu; | |
616 | #endif | |
617 | } | |
618 | ||
619 | /* | |
620 | * Tunables that become constants when CONFIG_SCHED_DEBUG is off: | |
621 | */ | |
622 | #ifdef CONFIG_SCHED_DEBUG | |
c5905afb | 623 | # include <linux/static_key.h> |
029632fb PZ |
624 | # define const_debug __read_mostly |
625 | #else | |
626 | # define const_debug const | |
627 | #endif | |
628 | ||
629 | extern const_debug unsigned int sysctl_sched_features; | |
630 | ||
631 | #define SCHED_FEAT(name, enabled) \ | |
632 | __SCHED_FEAT_##name , | |
633 | ||
634 | enum { | |
391e43da | 635 | #include "features.h" |
f8b6d1cc | 636 | __SCHED_FEAT_NR, |
029632fb PZ |
637 | }; |
638 | ||
639 | #undef SCHED_FEAT | |
640 | ||
f8b6d1cc | 641 | #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) |
c5905afb | 642 | static __always_inline bool static_branch__true(struct static_key *key) |
f8b6d1cc | 643 | { |
c5905afb | 644 | return static_key_true(key); /* Not out of line branch. */ |
f8b6d1cc PZ |
645 | } |
646 | ||
c5905afb | 647 | static __always_inline bool static_branch__false(struct static_key *key) |
f8b6d1cc | 648 | { |
c5905afb | 649 | return static_key_false(key); /* Out of line branch. */ |
f8b6d1cc PZ |
650 | } |
651 | ||
652 | #define SCHED_FEAT(name, enabled) \ | |
c5905afb | 653 | static __always_inline bool static_branch_##name(struct static_key *key) \ |
f8b6d1cc PZ |
654 | { \ |
655 | return static_branch__##enabled(key); \ | |
656 | } | |
657 | ||
658 | #include "features.h" | |
659 | ||
660 | #undef SCHED_FEAT | |
661 | ||
c5905afb | 662 | extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; |
f8b6d1cc PZ |
663 | #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) |
664 | #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ | |
029632fb | 665 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) |
f8b6d1cc | 666 | #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ |
029632fb | 667 | |
cbee9f88 PZ |
668 | #ifdef CONFIG_NUMA_BALANCING |
669 | #define sched_feat_numa(x) sched_feat(x) | |
3105b86a MG |
670 | #ifdef CONFIG_SCHED_DEBUG |
671 | #define numabalancing_enabled sched_feat_numa(NUMA) | |
672 | #else | |
673 | extern bool numabalancing_enabled; | |
674 | #endif /* CONFIG_SCHED_DEBUG */ | |
cbee9f88 PZ |
675 | #else |
676 | #define sched_feat_numa(x) (0) | |
3105b86a MG |
677 | #define numabalancing_enabled (0) |
678 | #endif /* CONFIG_NUMA_BALANCING */ | |
cbee9f88 | 679 | |
029632fb PZ |
680 | static inline u64 global_rt_period(void) |
681 | { | |
682 | return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; | |
683 | } | |
684 | ||
685 | static inline u64 global_rt_runtime(void) | |
686 | { | |
687 | if (sysctl_sched_rt_runtime < 0) | |
688 | return RUNTIME_INF; | |
689 | ||
690 | return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; | |
691 | } | |
692 | ||
693 | ||
694 | ||
695 | static inline int task_current(struct rq *rq, struct task_struct *p) | |
696 | { | |
697 | return rq->curr == p; | |
698 | } | |
699 | ||
700 | static inline int task_running(struct rq *rq, struct task_struct *p) | |
701 | { | |
702 | #ifdef CONFIG_SMP | |
703 | return p->on_cpu; | |
704 | #else | |
705 | return task_current(rq, p); | |
706 | #endif | |
707 | } | |
708 | ||
709 | ||
710 | #ifndef prepare_arch_switch | |
711 | # define prepare_arch_switch(next) do { } while (0) | |
712 | #endif | |
713 | #ifndef finish_arch_switch | |
714 | # define finish_arch_switch(prev) do { } while (0) | |
715 | #endif | |
01f23e16 CM |
716 | #ifndef finish_arch_post_lock_switch |
717 | # define finish_arch_post_lock_switch() do { } while (0) | |
718 | #endif | |
029632fb PZ |
719 | |
720 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | |
721 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | |
722 | { | |
723 | #ifdef CONFIG_SMP | |
724 | /* | |
725 | * We can optimise this out completely for !SMP, because the | |
726 | * SMP rebalancing from interrupt is the only thing that cares | |
727 | * here. | |
728 | */ | |
729 | next->on_cpu = 1; | |
730 | #endif | |
731 | } | |
732 | ||
733 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | |
734 | { | |
735 | #ifdef CONFIG_SMP | |
736 | /* | |
737 | * After ->on_cpu is cleared, the task can be moved to a different CPU. | |
738 | * We must ensure this doesn't happen until the switch is completely | |
739 | * finished. | |
740 | */ | |
741 | smp_wmb(); | |
742 | prev->on_cpu = 0; | |
743 | #endif | |
744 | #ifdef CONFIG_DEBUG_SPINLOCK | |
745 | /* this is a valid case when another task releases the spinlock */ | |
746 | rq->lock.owner = current; | |
747 | #endif | |
748 | /* | |
749 | * If we are tracking spinlock dependencies then we have to | |
750 | * fix up the runqueue lock - which gets 'carried over' from | |
751 | * prev into current: | |
752 | */ | |
753 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | |
754 | ||
755 | raw_spin_unlock_irq(&rq->lock); | |
756 | } | |
757 | ||
758 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | |
759 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | |
760 | { | |
761 | #ifdef CONFIG_SMP | |
762 | /* | |
763 | * We can optimise this out completely for !SMP, because the | |
764 | * SMP rebalancing from interrupt is the only thing that cares | |
765 | * here. | |
766 | */ | |
767 | next->on_cpu = 1; | |
768 | #endif | |
029632fb | 769 | raw_spin_unlock(&rq->lock); |
029632fb PZ |
770 | } |
771 | ||
772 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | |
773 | { | |
774 | #ifdef CONFIG_SMP | |
775 | /* | |
776 | * After ->on_cpu is cleared, the task can be moved to a different CPU. | |
777 | * We must ensure this doesn't happen until the switch is completely | |
778 | * finished. | |
779 | */ | |
780 | smp_wmb(); | |
781 | prev->on_cpu = 0; | |
782 | #endif | |
029632fb | 783 | local_irq_enable(); |
029632fb PZ |
784 | } |
785 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | |
786 | ||
787 | ||
788 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) | |
789 | { | |
790 | lw->weight += inc; | |
791 | lw->inv_weight = 0; | |
792 | } | |
793 | ||
794 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) | |
795 | { | |
796 | lw->weight -= dec; | |
797 | lw->inv_weight = 0; | |
798 | } | |
799 | ||
800 | static inline void update_load_set(struct load_weight *lw, unsigned long w) | |
801 | { | |
802 | lw->weight = w; | |
803 | lw->inv_weight = 0; | |
804 | } | |
805 | ||
806 | /* | |
807 | * To aid in avoiding the subversion of "niceness" due to uneven distribution | |
808 | * of tasks with abnormal "nice" values across CPUs the contribution that | |
809 | * each task makes to its run queue's load is weighted according to its | |
810 | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a | |
811 | * scaled version of the new time slice allocation that they receive on time | |
812 | * slice expiry etc. | |
813 | */ | |
814 | ||
815 | #define WEIGHT_IDLEPRIO 3 | |
816 | #define WMULT_IDLEPRIO 1431655765 | |
817 | ||
818 | /* | |
819 | * Nice levels are multiplicative, with a gentle 10% change for every | |
820 | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | |
821 | * nice 1, it will get ~10% less CPU time than another CPU-bound task | |
822 | * that remained on nice 0. | |
823 | * | |
824 | * The "10% effect" is relative and cumulative: from _any_ nice level, | |
825 | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | |
826 | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. | |
827 | * If a task goes up by ~10% and another task goes down by ~10% then | |
828 | * the relative distance between them is ~25%.) | |
829 | */ | |
830 | static const int prio_to_weight[40] = { | |
831 | /* -20 */ 88761, 71755, 56483, 46273, 36291, | |
832 | /* -15 */ 29154, 23254, 18705, 14949, 11916, | |
833 | /* -10 */ 9548, 7620, 6100, 4904, 3906, | |
834 | /* -5 */ 3121, 2501, 1991, 1586, 1277, | |
835 | /* 0 */ 1024, 820, 655, 526, 423, | |
836 | /* 5 */ 335, 272, 215, 172, 137, | |
837 | /* 10 */ 110, 87, 70, 56, 45, | |
838 | /* 15 */ 36, 29, 23, 18, 15, | |
839 | }; | |
840 | ||
841 | /* | |
842 | * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. | |
843 | * | |
844 | * In cases where the weight does not change often, we can use the | |
845 | * precalculated inverse to speed up arithmetics by turning divisions | |
846 | * into multiplications: | |
847 | */ | |
848 | static const u32 prio_to_wmult[40] = { | |
849 | /* -20 */ 48388, 59856, 76040, 92818, 118348, | |
850 | /* -15 */ 147320, 184698, 229616, 287308, 360437, | |
851 | /* -10 */ 449829, 563644, 704093, 875809, 1099582, | |
852 | /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, | |
853 | /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, | |
854 | /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, | |
855 | /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, | |
856 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | |
857 | }; | |
858 | ||
859 | /* Time spent by the tasks of the cpu accounting group executing in ... */ | |
860 | enum cpuacct_stat_index { | |
861 | CPUACCT_STAT_USER, /* ... user mode */ | |
862 | CPUACCT_STAT_SYSTEM, /* ... kernel mode */ | |
863 | ||
864 | CPUACCT_STAT_NSTATS, | |
865 | }; | |
866 | ||
867 | ||
868 | #define sched_class_highest (&stop_sched_class) | |
869 | #define for_each_class(class) \ | |
870 | for (class = sched_class_highest; class; class = class->next) | |
871 | ||
872 | extern const struct sched_class stop_sched_class; | |
873 | extern const struct sched_class rt_sched_class; | |
874 | extern const struct sched_class fair_sched_class; | |
875 | extern const struct sched_class idle_sched_class; | |
876 | ||
877 | ||
878 | #ifdef CONFIG_SMP | |
879 | ||
880 | extern void trigger_load_balance(struct rq *rq, int cpu); | |
881 | extern void idle_balance(int this_cpu, struct rq *this_rq); | |
882 | ||
883 | #else /* CONFIG_SMP */ | |
884 | ||
885 | static inline void idle_balance(int cpu, struct rq *rq) | |
886 | { | |
887 | } | |
888 | ||
889 | #endif | |
890 | ||
891 | extern void sysrq_sched_debug_show(void); | |
892 | extern void sched_init_granularity(void); | |
893 | extern void update_max_interval(void); | |
894 | extern void update_group_power(struct sched_domain *sd, int cpu); | |
895 | extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu); | |
896 | extern void init_sched_rt_class(void); | |
897 | extern void init_sched_fair_class(void); | |
898 | ||
899 | extern void resched_task(struct task_struct *p); | |
900 | extern void resched_cpu(int cpu); | |
901 | ||
902 | extern struct rt_bandwidth def_rt_bandwidth; | |
903 | extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); | |
904 | ||
556061b0 | 905 | extern void update_idle_cpu_load(struct rq *this_rq); |
029632fb PZ |
906 | |
907 | #ifdef CONFIG_CGROUP_CPUACCT | |
54c707e9 GC |
908 | #include <linux/cgroup.h> |
909 | /* track cpu usage of a group of tasks and its child groups */ | |
910 | struct cpuacct { | |
911 | struct cgroup_subsys_state css; | |
912 | /* cpuusage holds pointer to a u64-type object on every cpu */ | |
913 | u64 __percpu *cpuusage; | |
914 | struct kernel_cpustat __percpu *cpustat; | |
915 | }; | |
916 | ||
73fbec60 FW |
917 | extern struct cgroup_subsys cpuacct_subsys; |
918 | extern struct cpuacct root_cpuacct; | |
919 | ||
54c707e9 GC |
920 | /* return cpu accounting group corresponding to this container */ |
921 | static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) | |
922 | { | |
923 | return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), | |
924 | struct cpuacct, css); | |
925 | } | |
926 | ||
927 | /* return cpu accounting group to which this task belongs */ | |
928 | static inline struct cpuacct *task_ca(struct task_struct *tsk) | |
929 | { | |
930 | return container_of(task_subsys_state(tsk, cpuacct_subsys_id), | |
931 | struct cpuacct, css); | |
932 | } | |
933 | ||
934 | static inline struct cpuacct *parent_ca(struct cpuacct *ca) | |
935 | { | |
936 | if (!ca || !ca->css.cgroup->parent) | |
937 | return NULL; | |
938 | return cgroup_ca(ca->css.cgroup->parent); | |
939 | } | |
940 | ||
029632fb | 941 | extern void cpuacct_charge(struct task_struct *tsk, u64 cputime); |
029632fb PZ |
942 | #else |
943 | static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} | |
029632fb PZ |
944 | #endif |
945 | ||
73fbec60 FW |
946 | #ifdef CONFIG_PARAVIRT |
947 | static inline u64 steal_ticks(u64 steal) | |
948 | { | |
949 | if (unlikely(steal > NSEC_PER_SEC)) | |
950 | return div_u64(steal, TICK_NSEC); | |
951 | ||
952 | return __iter_div_u64_rem(steal, TICK_NSEC, &steal); | |
953 | } | |
954 | #endif | |
955 | ||
029632fb PZ |
956 | static inline void inc_nr_running(struct rq *rq) |
957 | { | |
958 | rq->nr_running++; | |
959 | } | |
960 | ||
961 | static inline void dec_nr_running(struct rq *rq) | |
962 | { | |
963 | rq->nr_running--; | |
964 | } | |
965 | ||
966 | extern void update_rq_clock(struct rq *rq); | |
967 | ||
968 | extern void activate_task(struct rq *rq, struct task_struct *p, int flags); | |
969 | extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); | |
970 | ||
971 | extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); | |
972 | ||
973 | extern const_debug unsigned int sysctl_sched_time_avg; | |
974 | extern const_debug unsigned int sysctl_sched_nr_migrate; | |
975 | extern const_debug unsigned int sysctl_sched_migration_cost; | |
976 | ||
977 | static inline u64 sched_avg_period(void) | |
978 | { | |
979 | return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; | |
980 | } | |
981 | ||
029632fb PZ |
982 | #ifdef CONFIG_SCHED_HRTICK |
983 | ||
984 | /* | |
985 | * Use hrtick when: | |
986 | * - enabled by features | |
987 | * - hrtimer is actually high res | |
988 | */ | |
989 | static inline int hrtick_enabled(struct rq *rq) | |
990 | { | |
991 | if (!sched_feat(HRTICK)) | |
992 | return 0; | |
993 | if (!cpu_active(cpu_of(rq))) | |
994 | return 0; | |
995 | return hrtimer_is_hres_active(&rq->hrtick_timer); | |
996 | } | |
997 | ||
998 | void hrtick_start(struct rq *rq, u64 delay); | |
999 | ||
b39e66ea MG |
1000 | #else |
1001 | ||
1002 | static inline int hrtick_enabled(struct rq *rq) | |
1003 | { | |
1004 | return 0; | |
1005 | } | |
1006 | ||
029632fb PZ |
1007 | #endif /* CONFIG_SCHED_HRTICK */ |
1008 | ||
1009 | #ifdef CONFIG_SMP | |
1010 | extern void sched_avg_update(struct rq *rq); | |
1011 | static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | |
1012 | { | |
1013 | rq->rt_avg += rt_delta; | |
1014 | sched_avg_update(rq); | |
1015 | } | |
1016 | #else | |
1017 | static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } | |
1018 | static inline void sched_avg_update(struct rq *rq) { } | |
1019 | #endif | |
1020 | ||
1021 | extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); | |
1022 | ||
1023 | #ifdef CONFIG_SMP | |
1024 | #ifdef CONFIG_PREEMPT | |
1025 | ||
1026 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); | |
1027 | ||
1028 | /* | |
1029 | * fair double_lock_balance: Safely acquires both rq->locks in a fair | |
1030 | * way at the expense of forcing extra atomic operations in all | |
1031 | * invocations. This assures that the double_lock is acquired using the | |
1032 | * same underlying policy as the spinlock_t on this architecture, which | |
1033 | * reduces latency compared to the unfair variant below. However, it | |
1034 | * also adds more overhead and therefore may reduce throughput. | |
1035 | */ | |
1036 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | |
1037 | __releases(this_rq->lock) | |
1038 | __acquires(busiest->lock) | |
1039 | __acquires(this_rq->lock) | |
1040 | { | |
1041 | raw_spin_unlock(&this_rq->lock); | |
1042 | double_rq_lock(this_rq, busiest); | |
1043 | ||
1044 | return 1; | |
1045 | } | |
1046 | ||
1047 | #else | |
1048 | /* | |
1049 | * Unfair double_lock_balance: Optimizes throughput at the expense of | |
1050 | * latency by eliminating extra atomic operations when the locks are | |
1051 | * already in proper order on entry. This favors lower cpu-ids and will | |
1052 | * grant the double lock to lower cpus over higher ids under contention, | |
1053 | * regardless of entry order into the function. | |
1054 | */ | |
1055 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | |
1056 | __releases(this_rq->lock) | |
1057 | __acquires(busiest->lock) | |
1058 | __acquires(this_rq->lock) | |
1059 | { | |
1060 | int ret = 0; | |
1061 | ||
1062 | if (unlikely(!raw_spin_trylock(&busiest->lock))) { | |
1063 | if (busiest < this_rq) { | |
1064 | raw_spin_unlock(&this_rq->lock); | |
1065 | raw_spin_lock(&busiest->lock); | |
1066 | raw_spin_lock_nested(&this_rq->lock, | |
1067 | SINGLE_DEPTH_NESTING); | |
1068 | ret = 1; | |
1069 | } else | |
1070 | raw_spin_lock_nested(&busiest->lock, | |
1071 | SINGLE_DEPTH_NESTING); | |
1072 | } | |
1073 | return ret; | |
1074 | } | |
1075 | ||
1076 | #endif /* CONFIG_PREEMPT */ | |
1077 | ||
1078 | /* | |
1079 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | |
1080 | */ | |
1081 | static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) | |
1082 | { | |
1083 | if (unlikely(!irqs_disabled())) { | |
1084 | /* printk() doesn't work good under rq->lock */ | |
1085 | raw_spin_unlock(&this_rq->lock); | |
1086 | BUG_ON(1); | |
1087 | } | |
1088 | ||
1089 | return _double_lock_balance(this_rq, busiest); | |
1090 | } | |
1091 | ||
1092 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | |
1093 | __releases(busiest->lock) | |
1094 | { | |
1095 | raw_spin_unlock(&busiest->lock); | |
1096 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | |
1097 | } | |
1098 | ||
1099 | /* | |
1100 | * double_rq_lock - safely lock two runqueues | |
1101 | * | |
1102 | * Note this does not disable interrupts like task_rq_lock, | |
1103 | * you need to do so manually before calling. | |
1104 | */ | |
1105 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) | |
1106 | __acquires(rq1->lock) | |
1107 | __acquires(rq2->lock) | |
1108 | { | |
1109 | BUG_ON(!irqs_disabled()); | |
1110 | if (rq1 == rq2) { | |
1111 | raw_spin_lock(&rq1->lock); | |
1112 | __acquire(rq2->lock); /* Fake it out ;) */ | |
1113 | } else { | |
1114 | if (rq1 < rq2) { | |
1115 | raw_spin_lock(&rq1->lock); | |
1116 | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | |
1117 | } else { | |
1118 | raw_spin_lock(&rq2->lock); | |
1119 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | |
1120 | } | |
1121 | } | |
1122 | } | |
1123 | ||
1124 | /* | |
1125 | * double_rq_unlock - safely unlock two runqueues | |
1126 | * | |
1127 | * Note this does not restore interrupts like task_rq_unlock, | |
1128 | * you need to do so manually after calling. | |
1129 | */ | |
1130 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) | |
1131 | __releases(rq1->lock) | |
1132 | __releases(rq2->lock) | |
1133 | { | |
1134 | raw_spin_unlock(&rq1->lock); | |
1135 | if (rq1 != rq2) | |
1136 | raw_spin_unlock(&rq2->lock); | |
1137 | else | |
1138 | __release(rq2->lock); | |
1139 | } | |
1140 | ||
1141 | #else /* CONFIG_SMP */ | |
1142 | ||
1143 | /* | |
1144 | * double_rq_lock - safely lock two runqueues | |
1145 | * | |
1146 | * Note this does not disable interrupts like task_rq_lock, | |
1147 | * you need to do so manually before calling. | |
1148 | */ | |
1149 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) | |
1150 | __acquires(rq1->lock) | |
1151 | __acquires(rq2->lock) | |
1152 | { | |
1153 | BUG_ON(!irqs_disabled()); | |
1154 | BUG_ON(rq1 != rq2); | |
1155 | raw_spin_lock(&rq1->lock); | |
1156 | __acquire(rq2->lock); /* Fake it out ;) */ | |
1157 | } | |
1158 | ||
1159 | /* | |
1160 | * double_rq_unlock - safely unlock two runqueues | |
1161 | * | |
1162 | * Note this does not restore interrupts like task_rq_unlock, | |
1163 | * you need to do so manually after calling. | |
1164 | */ | |
1165 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) | |
1166 | __releases(rq1->lock) | |
1167 | __releases(rq2->lock) | |
1168 | { | |
1169 | BUG_ON(rq1 != rq2); | |
1170 | raw_spin_unlock(&rq1->lock); | |
1171 | __release(rq2->lock); | |
1172 | } | |
1173 | ||
1174 | #endif | |
1175 | ||
1176 | extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); | |
1177 | extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); | |
1178 | extern void print_cfs_stats(struct seq_file *m, int cpu); | |
1179 | extern void print_rt_stats(struct seq_file *m, int cpu); | |
1180 | ||
1181 | extern void init_cfs_rq(struct cfs_rq *cfs_rq); | |
1182 | extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); | |
029632fb PZ |
1183 | |
1184 | extern void account_cfs_bandwidth_used(int enabled, int was_enabled); | |
1c792db7 SS |
1185 | |
1186 | #ifdef CONFIG_NO_HZ | |
1187 | enum rq_nohz_flag_bits { | |
1188 | NOHZ_TICK_STOPPED, | |
1189 | NOHZ_BALANCE_KICK, | |
69e1e811 | 1190 | NOHZ_IDLE, |
1c792db7 SS |
1191 | }; |
1192 | ||
1193 | #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) | |
1194 | #endif | |
73fbec60 FW |
1195 | |
1196 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | |
1197 | ||
1198 | DECLARE_PER_CPU(u64, cpu_hardirq_time); | |
1199 | DECLARE_PER_CPU(u64, cpu_softirq_time); | |
1200 | ||
1201 | #ifndef CONFIG_64BIT | |
1202 | DECLARE_PER_CPU(seqcount_t, irq_time_seq); | |
1203 | ||
1204 | static inline void irq_time_write_begin(void) | |
1205 | { | |
1206 | __this_cpu_inc(irq_time_seq.sequence); | |
1207 | smp_wmb(); | |
1208 | } | |
1209 | ||
1210 | static inline void irq_time_write_end(void) | |
1211 | { | |
1212 | smp_wmb(); | |
1213 | __this_cpu_inc(irq_time_seq.sequence); | |
1214 | } | |
1215 | ||
1216 | static inline u64 irq_time_read(int cpu) | |
1217 | { | |
1218 | u64 irq_time; | |
1219 | unsigned seq; | |
1220 | ||
1221 | do { | |
1222 | seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); | |
1223 | irq_time = per_cpu(cpu_softirq_time, cpu) + | |
1224 | per_cpu(cpu_hardirq_time, cpu); | |
1225 | } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); | |
1226 | ||
1227 | return irq_time; | |
1228 | } | |
1229 | #else /* CONFIG_64BIT */ | |
1230 | static inline void irq_time_write_begin(void) | |
1231 | { | |
1232 | } | |
1233 | ||
1234 | static inline void irq_time_write_end(void) | |
1235 | { | |
1236 | } | |
1237 | ||
1238 | static inline u64 irq_time_read(int cpu) | |
1239 | { | |
1240 | return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); | |
1241 | } | |
1242 | #endif /* CONFIG_64BIT */ | |
1243 | #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ |