]> Git Repo - linux.git/blame - kernel/sched/fair.c
sched/balancing: Rename load_balance() => sched_balance_rq()
[linux.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <[email protected]>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <[email protected]>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <[email protected]>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <[email protected]>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <[email protected]>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
c4ad6fcb
IM
23#include <linux/energy_model.h>
24#include <linux/mmap_lock.h>
25#include <linux/hugetlb_inline.h>
26#include <linux/jiffies.h>
27#include <linux/mm_api.h>
28#include <linux/highmem.h>
29#include <linux/spinlock_api.h>
30#include <linux/cpumask_api.h>
31#include <linux/lockdep_api.h>
32#include <linux/softirq.h>
33#include <linux/refcount_api.h>
34#include <linux/topology.h>
35#include <linux/sched/clock.h>
36#include <linux/sched/cond_resched.h>
37#include <linux/sched/cputime.h>
38#include <linux/sched/isolation.h>
d664e399 39#include <linux/sched/nohz.h>
c4ad6fcb
IM
40
41#include <linux/cpuidle.h>
42#include <linux/interrupt.h>
467b171a 43#include <linux/memory-tiers.h>
c4ad6fcb
IM
44#include <linux/mempolicy.h>
45#include <linux/mutex_api.h>
46#include <linux/profile.h>
47#include <linux/psi.h>
48#include <linux/ratelimit.h>
1930a6e7 49#include <linux/task_work.h>
147f3efa 50#include <linux/rbtree_augmented.h>
c4ad6fcb
IM
51
52#include <asm/switch_to.h>
53
325ea10c 54#include "sched.h"
b9e9c6ca
IM
55#include "stats.h"
56#include "autogroup.h"
029632fb 57
1983a922
CE
58/*
59 * The initial- and re-scaling of tunables is configurable
1983a922
CE
60 *
61 * Options are:
2b4d5b25
IM
62 *
63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
64 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66 *
67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 68 */
8a99b683 69unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 70
2bd8e6d4 71/*
b2be5e96 72 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 73 *
864616ee 74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 75 */
e4ec3318
PZ
76unsigned int sysctl_sched_base_slice = 750000ULL;
77static unsigned int normalized_sysctl_sched_base_slice = 750000ULL;
b2be5e96 78
2b4d5b25 79const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 80
05289b90
TG
81int sched_thermal_decay_shift;
82static int __init setup_sched_thermal_decay_shift(char *str)
83{
84 int _shift = 0;
85
86 if (kstrtoint(str, 0, &_shift))
87 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
88
89 sched_thermal_decay_shift = clamp(_shift, 0, 10);
90 return 1;
91}
92__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
93
afe06efd
TC
94#ifdef CONFIG_SMP
95/*
97fb7a0a 96 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
97 */
98int __weak arch_asym_cpu_priority(int cpu)
99{
100 return -cpu;
101}
6d101ba6
OJ
102
103/*
60e17f5c 104 * The margin used when comparing utilization with CPU capacity.
6d101ba6
OJ
105 *
106 * (default: ~20%)
107 */
60e17f5c
VK
108#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
109
4aed8aa4
VS
110/*
111 * The margin used when comparing CPU capacities.
112 * is 'cap1' noticeably greater than 'cap2'
113 *
114 * (default: ~5%)
115 */
116#define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
afe06efd
TC
117#endif
118
ec12cb7f
PT
119#ifdef CONFIG_CFS_BANDWIDTH
120/*
121 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
122 * each time a cfs_rq requests quota.
123 *
124 * Note: in the case that the slice exceeds the runtime remaining (either due
125 * to consumption or the quota being specified to be smaller than the slice)
126 * we will always only issue the remaining available time.
127 *
2b4d5b25
IM
128 * (default: 5 msec, units: microseconds)
129 */
d4ae80ff
ZN
130static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
131#endif
132
0dff89c4
KW
133#ifdef CONFIG_NUMA_BALANCING
134/* Restrict the NUMA promotion throughput (MB/s) for each target node. */
135static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
136#endif
137
d4ae80ff
ZN
138#ifdef CONFIG_SYSCTL
139static struct ctl_table sched_fair_sysctls[] = {
d4ae80ff
ZN
140#ifdef CONFIG_CFS_BANDWIDTH
141 {
142 .procname = "sched_cfs_bandwidth_slice_us",
143 .data = &sysctl_sched_cfs_bandwidth_slice,
144 .maxlen = sizeof(unsigned int),
145 .mode = 0644,
146 .proc_handler = proc_dointvec_minmax,
147 .extra1 = SYSCTL_ONE,
148 },
149#endif
0dff89c4
KW
150#ifdef CONFIG_NUMA_BALANCING
151 {
152 .procname = "numa_balancing_promote_rate_limit_MBps",
153 .data = &sysctl_numa_balancing_promote_rate_limit,
154 .maxlen = sizeof(unsigned int),
155 .mode = 0644,
156 .proc_handler = proc_dointvec_minmax,
157 .extra1 = SYSCTL_ZERO,
158 },
159#endif /* CONFIG_NUMA_BALANCING */
d4ae80ff
ZN
160 {}
161};
162
163static int __init sched_fair_sysctl_init(void)
164{
165 register_sysctl_init("kernel", sched_fair_sysctls);
166 return 0;
167}
168late_initcall(sched_fair_sysctl_init);
ec12cb7f
PT
169#endif
170
8527632d
PG
171static inline void update_load_add(struct load_weight *lw, unsigned long inc)
172{
173 lw->weight += inc;
174 lw->inv_weight = 0;
175}
176
177static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
178{
179 lw->weight -= dec;
180 lw->inv_weight = 0;
181}
182
183static inline void update_load_set(struct load_weight *lw, unsigned long w)
184{
185 lw->weight = w;
186 lw->inv_weight = 0;
187}
188
029632fb
PZ
189/*
190 * Increase the granularity value when there are more CPUs,
191 * because with more CPUs the 'effective latency' as visible
192 * to users decreases. But the relationship is not linear,
193 * so pick a second-best guess by going with the log2 of the
194 * number of CPUs.
195 *
196 * This idea comes from the SD scheduler of Con Kolivas:
197 */
58ac93e4 198static unsigned int get_update_sysctl_factor(void)
029632fb 199{
58ac93e4 200 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
201 unsigned int factor;
202
203 switch (sysctl_sched_tunable_scaling) {
204 case SCHED_TUNABLESCALING_NONE:
205 factor = 1;
206 break;
207 case SCHED_TUNABLESCALING_LINEAR:
208 factor = cpus;
209 break;
210 case SCHED_TUNABLESCALING_LOG:
211 default:
212 factor = 1 + ilog2(cpus);
213 break;
214 }
215
216 return factor;
217}
218
219static void update_sysctl(void)
220{
221 unsigned int factor = get_update_sysctl_factor();
222
223#define SET_SYSCTL(name) \
224 (sysctl_##name = (factor) * normalized_sysctl_##name)
e4ec3318 225 SET_SYSCTL(sched_base_slice);
029632fb
PZ
226#undef SET_SYSCTL
227}
228
f38f12d1 229void __init sched_init_granularity(void)
029632fb
PZ
230{
231 update_sysctl();
232}
233
9dbdb155 234#define WMULT_CONST (~0U)
029632fb
PZ
235#define WMULT_SHIFT 32
236
9dbdb155
PZ
237static void __update_inv_weight(struct load_weight *lw)
238{
239 unsigned long w;
240
241 if (likely(lw->inv_weight))
242 return;
243
244 w = scale_load_down(lw->weight);
245
246 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
247 lw->inv_weight = 1;
248 else if (unlikely(!w))
249 lw->inv_weight = WMULT_CONST;
250 else
251 lw->inv_weight = WMULT_CONST / w;
252}
029632fb
PZ
253
254/*
9dbdb155
PZ
255 * delta_exec * weight / lw.weight
256 * OR
257 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
258 *
1c3de5e1 259 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
260 * we're guaranteed shift stays positive because inv_weight is guaranteed to
261 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
262 *
263 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
264 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 265 */
9dbdb155 266static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 267{
9dbdb155 268 u64 fact = scale_load_down(weight);
1e17fb8e 269 u32 fact_hi = (u32)(fact >> 32);
9dbdb155 270 int shift = WMULT_SHIFT;
1e17fb8e 271 int fs;
029632fb 272
9dbdb155 273 __update_inv_weight(lw);
029632fb 274
1e17fb8e
CC
275 if (unlikely(fact_hi)) {
276 fs = fls(fact_hi);
277 shift -= fs;
278 fact >>= fs;
029632fb
PZ
279 }
280
2eeb01a2 281 fact = mul_u32_u32(fact, lw->inv_weight);
029632fb 282
1e17fb8e
CC
283 fact_hi = (u32)(fact >> 32);
284 if (fact_hi) {
285 fs = fls(fact_hi);
286 shift -= fs;
287 fact >>= fs;
9dbdb155 288 }
029632fb 289
9dbdb155 290 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
291}
292
147f3efa
PZ
293/*
294 * delta /= w
295 */
296static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
297{
298 if (unlikely(se->load.weight != NICE_0_LOAD))
299 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
300
301 return delta;
302}
029632fb
PZ
303
304const struct sched_class fair_sched_class;
a4c2f00f 305
bf0f6f24
IM
306/**************************************************************
307 * CFS operations on generic schedulable entities:
308 */
309
62160e3f 310#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f 311
b758149c
PZ
312/* Walk up scheduling entities hierarchy */
313#define for_each_sched_entity(se) \
314 for (; se; se = se->parent)
315
f6783319 316static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 317{
5d299eab
PZ
318 struct rq *rq = rq_of(cfs_rq);
319 int cpu = cpu_of(rq);
320
321 if (cfs_rq->on_list)
f6783319 322 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
323
324 cfs_rq->on_list = 1;
325
326 /*
327 * Ensure we either appear before our parent (if already
328 * enqueued) or force our parent to appear after us when it is
329 * enqueued. The fact that we always enqueue bottom-up
330 * reduces this to two cases and a special case for the root
331 * cfs_rq. Furthermore, it also means that we will always reset
332 * tmp_alone_branch either when the branch is connected
333 * to a tree or when we reach the top of the tree
334 */
335 if (cfs_rq->tg->parent &&
336 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 337 /*
5d299eab
PZ
338 * If parent is already on the list, we add the child
339 * just before. Thanks to circular linked property of
340 * the list, this means to put the child at the tail
341 * of the list that starts by parent.
67e86250 342 */
5d299eab
PZ
343 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
344 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
345 /*
346 * The branch is now connected to its tree so we can
347 * reset tmp_alone_branch to the beginning of the
348 * list.
349 */
350 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 351 return true;
5d299eab 352 }
3d4b47b4 353
5d299eab
PZ
354 if (!cfs_rq->tg->parent) {
355 /*
356 * cfs rq without parent should be put
357 * at the tail of the list.
358 */
359 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
360 &rq->leaf_cfs_rq_list);
361 /*
362 * We have reach the top of a tree so we can reset
363 * tmp_alone_branch to the beginning of the list.
364 */
365 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 366 return true;
3d4b47b4 367 }
5d299eab
PZ
368
369 /*
370 * The parent has not already been added so we want to
371 * make sure that it will be put after us.
372 * tmp_alone_branch points to the begin of the branch
373 * where we will add parent.
374 */
375 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
376 /*
377 * update tmp_alone_branch to points to the new begin
378 * of the branch
379 */
380 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 381 return false;
3d4b47b4
PZ
382}
383
384static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
385{
386 if (cfs_rq->on_list) {
31bc6aea
VG
387 struct rq *rq = rq_of(cfs_rq);
388
389 /*
390 * With cfs_rq being unthrottled/throttled during an enqueue,
391 * it can happen the tmp_alone_branch points the a leaf that
392 * we finally want to del. In this case, tmp_alone_branch moves
393 * to the prev element but it will point to rq->leaf_cfs_rq_list
394 * at the end of the enqueue.
395 */
396 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
397 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
398
3d4b47b4
PZ
399 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
400 cfs_rq->on_list = 0;
401 }
402}
403
5d299eab
PZ
404static inline void assert_list_leaf_cfs_rq(struct rq *rq)
405{
406 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
407}
408
039ae8bc
VG
409/* Iterate thr' all leaf cfs_rq's on a runqueue */
410#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
411 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
412 leaf_cfs_rq_list)
b758149c
PZ
413
414/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 415static inline struct cfs_rq *
b758149c
PZ
416is_same_group(struct sched_entity *se, struct sched_entity *pse)
417{
418 if (se->cfs_rq == pse->cfs_rq)
fed14d45 419 return se->cfs_rq;
b758149c 420
fed14d45 421 return NULL;
b758149c
PZ
422}
423
904cbab7 424static inline struct sched_entity *parent_entity(const struct sched_entity *se)
b758149c
PZ
425{
426 return se->parent;
427}
428
464b7527
PZ
429static void
430find_matching_se(struct sched_entity **se, struct sched_entity **pse)
431{
432 int se_depth, pse_depth;
433
434 /*
435 * preemption test can be made between sibling entities who are in the
436 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
437 * both tasks until we find their ancestors who are siblings of common
438 * parent.
439 */
440
441 /* First walk up until both entities are at same depth */
fed14d45
PZ
442 se_depth = (*se)->depth;
443 pse_depth = (*pse)->depth;
464b7527
PZ
444
445 while (se_depth > pse_depth) {
446 se_depth--;
447 *se = parent_entity(*se);
448 }
449
450 while (pse_depth > se_depth) {
451 pse_depth--;
452 *pse = parent_entity(*pse);
453 }
454
455 while (!is_same_group(*se, *pse)) {
456 *se = parent_entity(*se);
457 *pse = parent_entity(*pse);
458 }
459}
460
30400039
JD
461static int tg_is_idle(struct task_group *tg)
462{
463 return tg->idle > 0;
464}
465
466static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
467{
468 return cfs_rq->idle > 0;
469}
470
471static int se_is_idle(struct sched_entity *se)
472{
473 if (entity_is_task(se))
474 return task_has_idle_policy(task_of(se));
475 return cfs_rq_is_idle(group_cfs_rq(se));
476}
477
8f48894f
PZ
478#else /* !CONFIG_FAIR_GROUP_SCHED */
479
b758149c
PZ
480#define for_each_sched_entity(se) \
481 for (; se; se = NULL)
bf0f6f24 482
f6783319 483static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 484{
f6783319 485 return true;
3d4b47b4
PZ
486}
487
488static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
489{
490}
491
5d299eab
PZ
492static inline void assert_list_leaf_cfs_rq(struct rq *rq)
493{
494}
495
039ae8bc
VG
496#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
497 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 498
b758149c
PZ
499static inline struct sched_entity *parent_entity(struct sched_entity *se)
500{
501 return NULL;
502}
503
464b7527
PZ
504static inline void
505find_matching_se(struct sched_entity **se, struct sched_entity **pse)
506{
507}
508
366e7ad6 509static inline int tg_is_idle(struct task_group *tg)
30400039
JD
510{
511 return 0;
512}
513
514static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
515{
516 return 0;
517}
518
519static int se_is_idle(struct sched_entity *se)
520{
521 return 0;
522}
523
b758149c
PZ
524#endif /* CONFIG_FAIR_GROUP_SCHED */
525
6c16a6dc 526static __always_inline
9dbdb155 527void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
528
529/**************************************************************
530 * Scheduling class tree data structure manipulation methods:
531 */
532
1bf08230 533static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 534{
1bf08230 535 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 536 if (delta > 0)
1bf08230 537 max_vruntime = vruntime;
02e0431a 538
1bf08230 539 return max_vruntime;
02e0431a
PZ
540}
541
0702e3eb 542static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
543{
544 s64 delta = (s64)(vruntime - min_vruntime);
545 if (delta < 0)
546 min_vruntime = vruntime;
547
548 return min_vruntime;
549}
550
904cbab7
MWO
551static inline bool entity_before(const struct sched_entity *a,
552 const struct sched_entity *b)
54fdc581 553{
2227a957
AW
554 /*
555 * Tiebreak on vruntime seems unnecessary since it can
556 * hardly happen.
557 */
558 return (s64)(a->deadline - b->deadline) < 0;
54fdc581
FC
559}
560
af4cf404
PZ
561static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
562{
563 return (s64)(se->vruntime - cfs_rq->min_vruntime);
564}
565
bf9be9a1
PZ
566#define __node_2_se(node) \
567 rb_entry((node), struct sched_entity, run_node)
568
af4cf404
PZ
569/*
570 * Compute virtual time from the per-task service numbers:
571 *
572 * Fair schedulers conserve lag:
573 *
574 * \Sum lag_i = 0
575 *
576 * Where lag_i is given by:
577 *
578 * lag_i = S - s_i = w_i * (V - v_i)
579 *
580 * Where S is the ideal service time and V is it's virtual time counterpart.
581 * Therefore:
582 *
583 * \Sum lag_i = 0
584 * \Sum w_i * (V - v_i) = 0
585 * \Sum w_i * V - w_i * v_i = 0
586 *
587 * From which we can solve an expression for V in v_i (which we have in
588 * se->vruntime):
589 *
590 * \Sum v_i * w_i \Sum v_i * w_i
591 * V = -------------- = --------------
592 * \Sum w_i W
593 *
594 * Specifically, this is the weighted average of all entity virtual runtimes.
595 *
596 * [[ NOTE: this is only equal to the ideal scheduler under the condition
597 * that join/leave operations happen at lag_i = 0, otherwise the
598 * virtual time has non-continguous motion equivalent to:
599 *
600 * V +-= lag_i / W
601 *
602 * Also see the comment in place_entity() that deals with this. ]]
603 *
604 * However, since v_i is u64, and the multiplcation could easily overflow
605 * transform it into a relative form that uses smaller quantities:
606 *
607 * Substitute: v_i == (v_i - v0) + v0
608 *
609 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i
610 * V = ---------------------------- = --------------------- + v0
611 * W W
612 *
613 * Which we track using:
614 *
615 * v0 := cfs_rq->min_vruntime
616 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
617 * \Sum w_i := cfs_rq->avg_load
618 *
619 * Since min_vruntime is a monotonic increasing variable that closely tracks
620 * the per-task service, these deltas: (v_i - v), will be in the order of the
621 * maximal (virtual) lag induced in the system due to quantisation.
622 *
623 * Also, we use scale_load_down() to reduce the size.
624 *
625 * As measured, the max (key * weight) value was ~44 bits for a kernel build.
626 */
627static void
628avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
629{
630 unsigned long weight = scale_load_down(se->load.weight);
631 s64 key = entity_key(cfs_rq, se);
632
633 cfs_rq->avg_vruntime += key * weight;
634 cfs_rq->avg_load += weight;
635}
636
637static void
638avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
639{
640 unsigned long weight = scale_load_down(se->load.weight);
641 s64 key = entity_key(cfs_rq, se);
642
643 cfs_rq->avg_vruntime -= key * weight;
644 cfs_rq->avg_load -= weight;
645}
646
647static inline
648void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
649{
650 /*
651 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
652 */
653 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
654}
655
650cad56
PZ
656/*
657 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
658 * For this to be so, the result of this function must have a left bias.
659 */
af4cf404
PZ
660u64 avg_vruntime(struct cfs_rq *cfs_rq)
661{
662 struct sched_entity *curr = cfs_rq->curr;
663 s64 avg = cfs_rq->avg_vruntime;
664 long load = cfs_rq->avg_load;
665
666 if (curr && curr->on_rq) {
667 unsigned long weight = scale_load_down(curr->load.weight);
668
669 avg += entity_key(cfs_rq, curr) * weight;
670 load += weight;
671 }
672
650cad56
PZ
673 if (load) {
674 /* sign flips effective floor / ceil */
675 if (avg < 0)
676 avg -= (load - 1);
af4cf404 677 avg = div_s64(avg, load);
650cad56 678 }
af4cf404
PZ
679
680 return cfs_rq->min_vruntime + avg;
681}
682
86bfbb7c
PZ
683/*
684 * lag_i = S - s_i = w_i * (V - v_i)
147f3efa
PZ
685 *
686 * However, since V is approximated by the weighted average of all entities it
687 * is possible -- by addition/removal/reweight to the tree -- to move V around
688 * and end up with a larger lag than we started with.
689 *
690 * Limit this to either double the slice length with a minimum of TICK_NSEC
691 * since that is the timing granularity.
692 *
693 * EEVDF gives the following limit for a steady state system:
694 *
695 * -r_max < lag < max(r_max, q)
696 *
697 * XXX could add max_slice to the augmented data to track this.
86bfbb7c 698 */
c958ca20 699static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
86bfbb7c 700{
147f3efa
PZ
701 s64 lag, limit;
702
86bfbb7c 703 SCHED_WARN_ON(!se->on_rq);
147f3efa
PZ
704 lag = avg_vruntime(cfs_rq) - se->vruntime;
705
706 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
707 se->vlag = clamp(lag, -limit, limit);
708}
709
710/*
711 * Entity is eligible once it received less service than it ought to have,
712 * eg. lag >= 0.
713 *
714 * lag_i = S - s_i = w_i*(V - v_i)
715 *
716 * lag_i >= 0 -> V >= v_i
717 *
718 * \Sum (v_i - v)*w_i
719 * V = ------------------ + v
720 * \Sum w_i
721 *
722 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
723 *
724 * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
725 * to the loss in precision caused by the division.
726 */
2227a957 727static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
147f3efa
PZ
728{
729 struct sched_entity *curr = cfs_rq->curr;
730 s64 avg = cfs_rq->avg_vruntime;
731 long load = cfs_rq->avg_load;
732
733 if (curr && curr->on_rq) {
734 unsigned long weight = scale_load_down(curr->load.weight);
735
736 avg += entity_key(cfs_rq, curr) * weight;
737 load += weight;
738 }
739
2227a957
AW
740 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
741}
742
743int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
744{
745 return vruntime_eligible(cfs_rq, se->vruntime);
86bfbb7c
PZ
746}
747
af4cf404
PZ
748static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
749{
750 u64 min_vruntime = cfs_rq->min_vruntime;
751 /*
752 * open coded max_vruntime() to allow updating avg_vruntime
753 */
754 s64 delta = (s64)(vruntime - min_vruntime);
755 if (delta > 0) {
756 avg_vruntime_update(cfs_rq, delta);
757 min_vruntime = vruntime;
758 }
759 return min_vruntime;
760}
761
1af5f730
PZ
762static void update_min_vruntime(struct cfs_rq *cfs_rq)
763{
2227a957 764 struct sched_entity *se = __pick_root_entity(cfs_rq);
b60205c7 765 struct sched_entity *curr = cfs_rq->curr;
1af5f730
PZ
766 u64 vruntime = cfs_rq->min_vruntime;
767
b60205c7
PZ
768 if (curr) {
769 if (curr->on_rq)
770 vruntime = curr->vruntime;
771 else
772 curr = NULL;
773 }
1af5f730 774
147f3efa 775 if (se) {
b60205c7 776 if (!curr)
2227a957 777 vruntime = se->min_vruntime;
1af5f730 778 else
2227a957 779 vruntime = min_vruntime(vruntime, se->min_vruntime);
1af5f730
PZ
780 }
781
1bf08230 782 /* ensure we never gain time by being placed backwards. */
d05b4305 783 u64_u32_store(cfs_rq->min_vruntime,
af4cf404 784 __update_min_vruntime(cfs_rq, vruntime));
1af5f730
PZ
785}
786
bf9be9a1
PZ
787static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
788{
789 return entity_before(__node_2_se(a), __node_2_se(b));
790}
791
2227a957 792#define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
147f3efa 793
2227a957 794static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
147f3efa
PZ
795{
796 if (node) {
797 struct sched_entity *rse = __node_2_se(node);
2227a957
AW
798 if (vruntime_gt(min_vruntime, se, rse))
799 se->min_vruntime = rse->min_vruntime;
147f3efa
PZ
800 }
801}
802
803/*
2227a957 804 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
147f3efa 805 */
2227a957 806static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
147f3efa 807{
2227a957 808 u64 old_min_vruntime = se->min_vruntime;
147f3efa
PZ
809 struct rb_node *node = &se->run_node;
810
2227a957
AW
811 se->min_vruntime = se->vruntime;
812 __min_vruntime_update(se, node->rb_right);
813 __min_vruntime_update(se, node->rb_left);
147f3efa 814
2227a957 815 return se->min_vruntime == old_min_vruntime;
147f3efa
PZ
816}
817
2227a957
AW
818RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
819 run_node, min_vruntime, min_vruntime_update);
147f3efa 820
bf0f6f24
IM
821/*
822 * Enqueue an entity into the rb-tree:
823 */
0702e3eb 824static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 825{
af4cf404 826 avg_vruntime_add(cfs_rq, se);
2227a957 827 se->min_vruntime = se->vruntime;
147f3efa 828 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
2227a957 829 __entity_less, &min_vruntime_cb);
bf0f6f24
IM
830}
831
0702e3eb 832static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 833{
147f3efa 834 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
2227a957 835 &min_vruntime_cb);
af4cf404 836 avg_vruntime_sub(cfs_rq, se);
bf0f6f24
IM
837}
838
2227a957
AW
839struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
840{
841 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
842
843 if (!root)
844 return NULL;
845
846 return __node_2_se(root);
847}
848
029632fb 849struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 850{
bfb06889 851 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
852
853 if (!left)
854 return NULL;
855
bf9be9a1 856 return __node_2_se(left);
bf0f6f24
IM
857}
858
147f3efa
PZ
859/*
860 * Earliest Eligible Virtual Deadline First
861 *
862 * In order to provide latency guarantees for different request sizes
863 * EEVDF selects the best runnable task from two criteria:
864 *
865 * 1) the task must be eligible (must be owed service)
866 *
867 * 2) from those tasks that meet 1), we select the one
868 * with the earliest virtual deadline.
869 *
870 * We can do this in O(log n) time due to an augmented RB-tree. The
2227a957
AW
871 * tree keeps the entries sorted on deadline, but also functions as a
872 * heap based on the vruntime by keeping:
147f3efa 873 *
2227a957 874 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
147f3efa 875 *
2227a957 876 * Which allows tree pruning through eligibility.
147f3efa 877 */
2227a957 878static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
ac53db59 879{
147f3efa 880 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
ee4373dc 881 struct sched_entity *se = __pick_first_entity(cfs_rq);
147f3efa
PZ
882 struct sched_entity *curr = cfs_rq->curr;
883 struct sched_entity *best = NULL;
2227a957
AW
884
885 /*
886 * We can safely skip eligibility check if there is only one entity
887 * in this cfs_rq, saving some cycles.
888 */
889 if (cfs_rq->nr_running == 1)
ee4373dc 890 return curr && curr->on_rq ? curr : se;
ac53db59 891
147f3efa
PZ
892 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
893 curr = NULL;
894
63304558
PZ
895 /*
896 * Once selected, run a task until it either becomes non-eligible or
897 * until it gets a new slice. See the HACK in set_next_entity().
898 */
899 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
900 return curr;
901
ee4373dc
AW
902 /* Pick the leftmost entity if it's eligible */
903 if (se && entity_eligible(cfs_rq, se)) {
904 best = se;
905 goto found;
906 }
907
2227a957 908 /* Heap search for the EEVD entity */
147f3efa 909 while (node) {
2227a957 910 struct rb_node *left = node->rb_left;
ac53db59 911
147f3efa 912 /*
2227a957
AW
913 * Eligible entities in left subtree are always better
914 * choices, since they have earlier deadlines.
147f3efa 915 */
2227a957
AW
916 if (left && vruntime_eligible(cfs_rq,
917 __node_2_se(left)->min_vruntime)) {
918 node = left;
147f3efa
PZ
919 continue;
920 }
921
ee4373dc
AW
922 se = __node_2_se(node);
923
147f3efa 924 /*
2227a957
AW
925 * The left subtree either is empty or has no eligible
926 * entity, so check the current node since it is the one
927 * with earliest deadline that might be eligible.
147f3efa 928 */
2227a957 929 if (entity_eligible(cfs_rq, se)) {
147f3efa 930 best = se;
b01db23d 931 break;
147f3efa
PZ
932 }
933
934 node = node->rb_right;
935 }
ee4373dc 936found:
2227a957
AW
937 if (!best || (curr && entity_before(curr, best)))
938 best = curr;
147f3efa 939
2227a957 940 return best;
ac53db59
RR
941}
942
943#ifdef CONFIG_SCHED_DEBUG
029632fb 944struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 945{
bfb06889 946 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 947
70eee74b
BS
948 if (!last)
949 return NULL;
7eee3e67 950
bf9be9a1 951 return __node_2_se(last);
aeb73b04
PZ
952}
953
bf0f6f24
IM
954/**************************************************************
955 * Scheduling class statistics methods:
956 */
22dc02f8 957#ifdef CONFIG_SMP
8a99b683 958int sched_update_scaling(void)
b2be5e96 959{
58ac93e4 960 unsigned int factor = get_update_sysctl_factor();
b2be5e96 961
acb4a848
CE
962#define WRT_SYSCTL(name) \
963 (normalized_sysctl_##name = sysctl_##name / (factor))
e4ec3318 964 WRT_SYSCTL(sched_base_slice);
acb4a848
CE
965#undef WRT_SYSCTL
966
b2be5e96
PZ
967 return 0;
968}
969#endif
22dc02f8 970#endif
647e7cac 971
147f3efa 972static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
51ce83ed 973
647e7cac 974/*
147f3efa
PZ
975 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
976 * this is probably good enough.
647e7cac 977 */
147f3efa 978static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 979{
147f3efa
PZ
980 if ((s64)(se->vruntime - se->deadline) < 0)
981 return;
0a582440 982
5e963f2b
PZ
983 /*
984 * For EEVDF the virtual time slope is determined by w_i (iow.
985 * nice) while the request time r_i is determined by
e4ec3318 986 * sysctl_sched_base_slice.
5e963f2b 987 */
e4ec3318 988 se->slice = sysctl_sched_base_slice;
0c2de3f0 989
147f3efa
PZ
990 /*
991 * EEVDF: vd_i = ve_i + r_i / w_i
992 */
993 se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
51ce83ed 994
5e963f2b
PZ
995 /*
996 * The task has consumed its request, reschedule.
997 */
998 if (cfs_rq->nr_running > 1) {
999 resched_curr(rq_of(cfs_rq));
1000 clear_buddies(cfs_rq, se);
51ce83ed 1001 }
a7be37ac
PZ
1002}
1003
c0796298 1004#include "pelt.h"
23127296 1005#ifdef CONFIG_SMP
283e2ed3 1006
772bd008 1007static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 1008static unsigned long task_h_load(struct task_struct *p);
3b1baa64 1009static unsigned long capacity_of(int cpu);
fb13c7ee 1010
540247fb
YD
1011/* Give new sched_entity start runnable values to heavy its load in infant time */
1012void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 1013{
540247fb 1014 struct sched_avg *sa = &se->avg;
a75cdaa9 1015
f207934f
PZ
1016 memset(sa, 0, sizeof(*sa));
1017
b5a9b340 1018 /*
dfcb245e 1019 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 1020 * they get a chance to stabilize to their real load level.
dfcb245e 1021 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
1022 * nothing has been attached to the task group yet.
1023 */
1024 if (entity_is_task(se))
0dacee1b 1025 sa->load_avg = scale_load_down(se->load.weight);
f207934f 1026
9d89c257 1027 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 1028}
7ea241af 1029
2b8c41da
YD
1030/*
1031 * With new tasks being created, their initial util_avgs are extrapolated
1032 * based on the cfs_rq's current util_avg:
1033 *
1034 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
1035 *
1036 * However, in many cases, the above util_avg does not give a desired
1037 * value. Moreover, the sum of the util_avgs may be divergent, such
1038 * as when the series is a harmonic series.
1039 *
1040 * To solve this problem, we also cap the util_avg of successive tasks to
1041 * only 1/2 of the left utilization budget:
1042 *
8fe5c5a9 1043 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 1044 *
8fe5c5a9 1045 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 1046 *
8fe5c5a9
QP
1047 * For example, for a CPU with 1024 of capacity, a simplest series from
1048 * the beginning would be like:
2b8c41da
YD
1049 *
1050 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
1051 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1052 *
1053 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1054 * if util_avg > util_avg_cap.
1055 */
d0fe0b9c 1056void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 1057{
d0fe0b9c 1058 struct sched_entity *se = &p->se;
2b8c41da
YD
1059 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1060 struct sched_avg *sa = &se->avg;
8ec59c0f 1061 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 1062 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da 1063
d0fe0b9c
DE
1064 if (p->sched_class != &fair_sched_class) {
1065 /*
1066 * For !fair tasks do:
1067 *
1068 update_cfs_rq_load_avg(now, cfs_rq);
a4f9a0e5 1069 attach_entity_load_avg(cfs_rq, se);
d0fe0b9c
DE
1070 switched_from_fair(rq, p);
1071 *
1072 * such that the next switched_to_fair() has the
1073 * expected state.
1074 */
1075 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1076 return;
7dc603c9 1077 }
e4fe074d
CZ
1078
1079 if (cap > 0) {
1080 if (cfs_rq->avg.util_avg != 0) {
1081 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
1082 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1083
1084 if (sa->util_avg > cap)
1085 sa->util_avg = cap;
1086 } else {
1087 sa->util_avg = cap;
1088 }
1089 }
1090
1091 sa->runnable_avg = sa->util_avg;
2b8c41da
YD
1092}
1093
7dc603c9 1094#else /* !CONFIG_SMP */
540247fb 1095void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
1096{
1097}
d0fe0b9c 1098void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
1099{
1100}
fe749158 1101static void update_tg_load_avg(struct cfs_rq *cfs_rq)
3d30544f
PZ
1102{
1103}
7dc603c9 1104#endif /* CONFIG_SMP */
a75cdaa9 1105
5d69eca5 1106static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
bf0f6f24 1107{
5d69eca5
PZ
1108 u64 now = rq_clock_task(rq);
1109 s64 delta_exec;
bf0f6f24 1110
9dbdb155 1111 delta_exec = now - curr->exec_start;
5d69eca5
PZ
1112 if (unlikely(delta_exec <= 0))
1113 return delta_exec;
bf0f6f24 1114
8ebc91d9 1115 curr->exec_start = now;
5d69eca5 1116 curr->sum_exec_runtime += delta_exec;
d842de87 1117
ceeadb83
YS
1118 if (schedstat_enabled()) {
1119 struct sched_statistics *stats;
1120
1121 stats = __schedstats_from_se(curr);
1122 __schedstat_set(stats->exec_max,
1123 max(delta_exec, stats->exec_max));
1124 }
9dbdb155 1125
5d69eca5
PZ
1126 return delta_exec;
1127}
1128
c708a4dc
PZ
1129static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1130{
1131 trace_sched_stat_runtime(p, delta_exec);
1132 account_group_exec_runtime(p, delta_exec);
1133 cgroup_account_cputime(p, delta_exec);
63ba8422
PZ
1134 if (p->dl_server)
1135 dl_server_update(p->dl_server, delta_exec);
c708a4dc
PZ
1136}
1137
5d69eca5
PZ
1138/*
1139 * Used by other classes to account runtime.
1140 */
1141s64 update_curr_common(struct rq *rq)
1142{
1143 struct task_struct *curr = rq->curr;
1144 s64 delta_exec;
1145
1146 delta_exec = update_curr_se(rq, &curr->se);
c708a4dc
PZ
1147 if (likely(delta_exec > 0))
1148 update_curr_task(curr, delta_exec);
5d69eca5
PZ
1149
1150 return delta_exec;
1151}
1152
1153/*
1154 * Update the current task's runtime statistics.
1155 */
1156static void update_curr(struct cfs_rq *cfs_rq)
1157{
1158 struct sched_entity *curr = cfs_rq->curr;
1159 s64 delta_exec;
1160
1161 if (unlikely(!curr))
1162 return;
1163
1164 delta_exec = update_curr_se(rq_of(cfs_rq), curr);
1165 if (unlikely(delta_exec <= 0))
1166 return;
9dbdb155
PZ
1167
1168 curr->vruntime += calc_delta_fair(delta_exec, curr);
147f3efa 1169 update_deadline(cfs_rq, curr);
9dbdb155
PZ
1170 update_min_vruntime(cfs_rq);
1171
c708a4dc
PZ
1172 if (entity_is_task(curr))
1173 update_curr_task(task_of(curr), delta_exec);
ec12cb7f
PT
1174
1175 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
1176}
1177
6e998916
SG
1178static void update_curr_fair(struct rq *rq)
1179{
1180 update_curr(cfs_rq_of(&rq->curr->se));
1181}
1182
bf0f6f24 1183static inline void
60f2415e 1184update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1185{
ceeadb83 1186 struct sched_statistics *stats;
60f2415e 1187 struct task_struct *p = NULL;
4fa8d299
JP
1188
1189 if (!schedstat_enabled())
1190 return;
1191
ceeadb83
YS
1192 stats = __schedstats_from_se(se);
1193
60f2415e
YS
1194 if (entity_is_task(se))
1195 p = task_of(se);
3ea94de1 1196
60f2415e 1197 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
bf0f6f24
IM
1198}
1199
4fa8d299 1200static inline void
60f2415e 1201update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
3ea94de1 1202{
ceeadb83
YS
1203 struct sched_statistics *stats;
1204 struct task_struct *p = NULL;
cb251765 1205
4fa8d299
JP
1206 if (!schedstat_enabled())
1207 return;
1208
ceeadb83
YS
1209 stats = __schedstats_from_se(se);
1210
b9c88f75 1211 /*
1212 * When the sched_schedstat changes from 0 to 1, some sched se
1213 * maybe already in the runqueue, the se->statistics.wait_start
1214 * will be 0.So it will let the delta wrong. We need to avoid this
1215 * scenario.
1216 */
ceeadb83 1217 if (unlikely(!schedstat_val(stats->wait_start)))
b9c88f75 1218 return;
1219
60f2415e 1220 if (entity_is_task(se))
3ea94de1 1221 p = task_of(se);
3ea94de1 1222
60f2415e 1223 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
3ea94de1 1224}
3ea94de1 1225
4fa8d299 1226static inline void
60f2415e 1227update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1a3d027c 1228{
ceeadb83 1229 struct sched_statistics *stats;
1a3d027c 1230 struct task_struct *tsk = NULL;
4fa8d299
JP
1231
1232 if (!schedstat_enabled())
1233 return;
1234
ceeadb83
YS
1235 stats = __schedstats_from_se(se);
1236
1a3d027c
JP
1237 if (entity_is_task(se))
1238 tsk = task_of(se);
1239
60f2415e 1240 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
3ea94de1 1241}
3ea94de1 1242
bf0f6f24
IM
1243/*
1244 * Task is being enqueued - update stats:
1245 */
cb251765 1246static inline void
60f2415e 1247update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1248{
4fa8d299
JP
1249 if (!schedstat_enabled())
1250 return;
1251
bf0f6f24
IM
1252 /*
1253 * Are we enqueueing a waiting task? (for current tasks
1254 * a dequeue/enqueue event is a NOP)
1255 */
429d43bc 1256 if (se != cfs_rq->curr)
60f2415e 1257 update_stats_wait_start_fair(cfs_rq, se);
1a3d027c
JP
1258
1259 if (flags & ENQUEUE_WAKEUP)
60f2415e 1260 update_stats_enqueue_sleeper_fair(cfs_rq, se);
bf0f6f24
IM
1261}
1262
bf0f6f24 1263static inline void
60f2415e 1264update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1265{
4fa8d299
JP
1266
1267 if (!schedstat_enabled())
1268 return;
1269
bf0f6f24
IM
1270 /*
1271 * Mark the end of the wait period if dequeueing a
1272 * waiting task:
1273 */
429d43bc 1274 if (se != cfs_rq->curr)
60f2415e 1275 update_stats_wait_end_fair(cfs_rq, se);
cb251765 1276
4fa8d299
JP
1277 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1278 struct task_struct *tsk = task_of(se);
2f064a59 1279 unsigned int state;
cb251765 1280
2f064a59
PZ
1281 /* XXX racy against TTWU */
1282 state = READ_ONCE(tsk->__state);
1283 if (state & TASK_INTERRUPTIBLE)
ceeadb83 1284 __schedstat_set(tsk->stats.sleep_start,
4fa8d299 1285 rq_clock(rq_of(cfs_rq)));
2f064a59 1286 if (state & TASK_UNINTERRUPTIBLE)
ceeadb83 1287 __schedstat_set(tsk->stats.block_start,
4fa8d299 1288 rq_clock(rq_of(cfs_rq)));
cb251765 1289 }
cb251765
MG
1290}
1291
bf0f6f24
IM
1292/*
1293 * We are picking a new current task - update its stats:
1294 */
1295static inline void
79303e9e 1296update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1297{
1298 /*
1299 * We are starting a new run period:
1300 */
78becc27 1301 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1302}
1303
bf0f6f24
IM
1304/**************************************************
1305 * Scheduling class queueing methods:
1306 */
1307
8b36d07f
RN
1308static inline bool is_core_idle(int cpu)
1309{
1310#ifdef CONFIG_SCHED_SMT
1311 int sibling;
1312
1313 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1314 if (cpu == sibling)
1315 continue;
1316
1317 if (!idle_cpu(sibling))
1318 return false;
1319 }
1320#endif
1321
1322 return true;
1323}
1324
cb29a5c1
MG
1325#ifdef CONFIG_NUMA
1326#define NUMA_IMBALANCE_MIN 2
1327
1328static inline long
1329adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1330{
1331 /*
1332 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1333 * threshold. Above this threshold, individual tasks may be contending
1334 * for both memory bandwidth and any shared HT resources. This is an
1335 * approximation as the number of running tasks may not be related to
1336 * the number of busy CPUs due to sched_setaffinity.
1337 */
1338 if (dst_running > imb_numa_nr)
1339 return imbalance;
1340
1341 /*
1342 * Allow a small imbalance based on a simple pair of communicating
1343 * tasks that remain local when the destination is lightly loaded.
1344 */
1345 if (imbalance <= NUMA_IMBALANCE_MIN)
1346 return 0;
1347
1348 return imbalance;
1349}
1350#endif /* CONFIG_NUMA */
1351
cbee9f88
PZ
1352#ifdef CONFIG_NUMA_BALANCING
1353/*
598f0ec0
MG
1354 * Approximate time to scan a full NUMA task in ms. The task scan period is
1355 * calculated based on the tasks virtual memory size and
1356 * numa_balancing_scan_size.
cbee9f88 1357 */
598f0ec0
MG
1358unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1359unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1360
1361/* Portion of address space to scan in MB */
1362unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1363
4b96a29b
PZ
1364/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1365unsigned int sysctl_numa_balancing_scan_delay = 1000;
1366
33024536
YH
1367/* The page with hint page fault latency < threshold in ms is considered hot */
1368unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1369
b5dd77c8 1370struct numa_group {
c45a7795 1371 refcount_t refcount;
b5dd77c8
RR
1372
1373 spinlock_t lock; /* nr_tasks, tasks */
1374 int nr_tasks;
1375 pid_t gid;
1376 int active_nodes;
1377
1378 struct rcu_head rcu;
1379 unsigned long total_faults;
1380 unsigned long max_faults_cpu;
1381 /*
5b763a14
BR
1382 * faults[] array is split into two regions: faults_mem and faults_cpu.
1383 *
b5dd77c8
RR
1384 * Faults_cpu is used to decide whether memory should move
1385 * towards the CPU. As a consequence, these stats are weighted
1386 * more by CPU use than by memory faults.
1387 */
04f5c362 1388 unsigned long faults[];
b5dd77c8
RR
1389};
1390
cb361d8c
JH
1391/*
1392 * For functions that can be called in multiple contexts that permit reading
1393 * ->numa_group (see struct task_struct for locking rules).
1394 */
1395static struct numa_group *deref_task_numa_group(struct task_struct *p)
1396{
1397 return rcu_dereference_check(p->numa_group, p == current ||
9ef7e7e3 1398 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
cb361d8c
JH
1399}
1400
1401static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1402{
1403 return rcu_dereference_protected(p->numa_group, p == current);
1404}
1405
b5dd77c8
RR
1406static inline unsigned long group_faults_priv(struct numa_group *ng);
1407static inline unsigned long group_faults_shared(struct numa_group *ng);
1408
598f0ec0
MG
1409static unsigned int task_nr_scan_windows(struct task_struct *p)
1410{
1411 unsigned long rss = 0;
1412 unsigned long nr_scan_pages;
1413
1414 /*
1415 * Calculations based on RSS as non-present and empty pages are skipped
1416 * by the PTE scanner and NUMA hinting faults should be trapped based
1417 * on resident pages
1418 */
1419 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1420 rss = get_mm_rss(p->mm);
1421 if (!rss)
1422 rss = nr_scan_pages;
1423
1424 rss = round_up(rss, nr_scan_pages);
1425 return rss / nr_scan_pages;
1426}
1427
3b03706f 1428/* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
598f0ec0
MG
1429#define MAX_SCAN_WINDOW 2560
1430
1431static unsigned int task_scan_min(struct task_struct *p)
1432{
316c1608 1433 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1434 unsigned int scan, floor;
1435 unsigned int windows = 1;
1436
64192658
KT
1437 if (scan_size < MAX_SCAN_WINDOW)
1438 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1439 floor = 1000 / windows;
1440
1441 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1442 return max_t(unsigned int, floor, scan);
1443}
1444
b5dd77c8
RR
1445static unsigned int task_scan_start(struct task_struct *p)
1446{
1447 unsigned long smin = task_scan_min(p);
1448 unsigned long period = smin;
cb361d8c 1449 struct numa_group *ng;
b5dd77c8
RR
1450
1451 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1452 rcu_read_lock();
1453 ng = rcu_dereference(p->numa_group);
1454 if (ng) {
b5dd77c8
RR
1455 unsigned long shared = group_faults_shared(ng);
1456 unsigned long private = group_faults_priv(ng);
1457
c45a7795 1458 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1459 period *= shared + 1;
1460 period /= private + shared + 1;
1461 }
cb361d8c 1462 rcu_read_unlock();
b5dd77c8
RR
1463
1464 return max(smin, period);
1465}
1466
598f0ec0
MG
1467static unsigned int task_scan_max(struct task_struct *p)
1468{
b5dd77c8
RR
1469 unsigned long smin = task_scan_min(p);
1470 unsigned long smax;
cb361d8c 1471 struct numa_group *ng;
598f0ec0
MG
1472
1473 /* Watch for min being lower than max due to floor calculations */
1474 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1475
1476 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1477 ng = deref_curr_numa_group(p);
1478 if (ng) {
b5dd77c8
RR
1479 unsigned long shared = group_faults_shared(ng);
1480 unsigned long private = group_faults_priv(ng);
1481 unsigned long period = smax;
1482
c45a7795 1483 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1484 period *= shared + 1;
1485 period /= private + shared + 1;
1486
1487 smax = max(smax, period);
1488 }
1489
598f0ec0
MG
1490 return max(smin, smax);
1491}
1492
0ec8aa00
PZ
1493static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1494{
98fa15f3 1495 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1496 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1497}
1498
1499static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1500{
98fa15f3 1501 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1502 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1503}
1504
be1e4e76
RR
1505/* Shared or private faults. */
1506#define NR_NUMA_HINT_FAULT_TYPES 2
1507
1508/* Memory and CPU locality */
1509#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1510
1511/* Averaged statistics, and temporary buffers. */
1512#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1513
e29cf08b
MG
1514pid_t task_numa_group_id(struct task_struct *p)
1515{
cb361d8c
JH
1516 struct numa_group *ng;
1517 pid_t gid = 0;
1518
1519 rcu_read_lock();
1520 ng = rcu_dereference(p->numa_group);
1521 if (ng)
1522 gid = ng->gid;
1523 rcu_read_unlock();
1524
1525 return gid;
e29cf08b
MG
1526}
1527
44dba3d5 1528/*
97fb7a0a 1529 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1530 * occupy the first half of the array. The second half of the
1531 * array is for current counters, which are averaged into the
1532 * first set by task_numa_placement.
1533 */
1534static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1535{
44dba3d5 1536 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1537}
1538
1539static inline unsigned long task_faults(struct task_struct *p, int nid)
1540{
44dba3d5 1541 if (!p->numa_faults)
ac8e895b
MG
1542 return 0;
1543
44dba3d5
IM
1544 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1545 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1546}
1547
83e1d2cd
MG
1548static inline unsigned long group_faults(struct task_struct *p, int nid)
1549{
cb361d8c
JH
1550 struct numa_group *ng = deref_task_numa_group(p);
1551
1552 if (!ng)
83e1d2cd
MG
1553 return 0;
1554
cb361d8c
JH
1555 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1556 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1557}
1558
20e07dea
RR
1559static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1560{
5b763a14
BR
1561 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1562 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
20e07dea
RR
1563}
1564
b5dd77c8
RR
1565static inline unsigned long group_faults_priv(struct numa_group *ng)
1566{
1567 unsigned long faults = 0;
1568 int node;
1569
1570 for_each_online_node(node) {
1571 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1572 }
1573
1574 return faults;
1575}
1576
1577static inline unsigned long group_faults_shared(struct numa_group *ng)
1578{
1579 unsigned long faults = 0;
1580 int node;
1581
1582 for_each_online_node(node) {
1583 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1584 }
1585
1586 return faults;
1587}
1588
4142c3eb
RR
1589/*
1590 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1591 * considered part of a numa group's pseudo-interleaving set. Migrations
1592 * between these nodes are slowed down, to allow things to settle down.
1593 */
1594#define ACTIVE_NODE_FRACTION 3
1595
1596static bool numa_is_active_node(int nid, struct numa_group *ng)
1597{
1598 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1599}
1600
6c6b1193
RR
1601/* Handle placement on systems where not all nodes are directly connected. */
1602static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
0fb3978b 1603 int lim_dist, bool task)
6c6b1193
RR
1604{
1605 unsigned long score = 0;
0fb3978b 1606 int node, max_dist;
6c6b1193
RR
1607
1608 /*
1609 * All nodes are directly connected, and the same distance
1610 * from each other. No need for fancy placement algorithms.
1611 */
1612 if (sched_numa_topology_type == NUMA_DIRECT)
1613 return 0;
1614
0fb3978b
YH
1615 /* sched_max_numa_distance may be changed in parallel. */
1616 max_dist = READ_ONCE(sched_max_numa_distance);
6c6b1193
RR
1617 /*
1618 * This code is called for each node, introducing N^2 complexity,
1619 * which should be ok given the number of nodes rarely exceeds 8.
1620 */
1621 for_each_online_node(node) {
1622 unsigned long faults;
1623 int dist = node_distance(nid, node);
1624
1625 /*
1626 * The furthest away nodes in the system are not interesting
1627 * for placement; nid was already counted.
1628 */
0fb3978b 1629 if (dist >= max_dist || node == nid)
6c6b1193
RR
1630 continue;
1631
1632 /*
1633 * On systems with a backplane NUMA topology, compare groups
1634 * of nodes, and move tasks towards the group with the most
1635 * memory accesses. When comparing two nodes at distance
1636 * "hoplimit", only nodes closer by than "hoplimit" are part
1637 * of each group. Skip other nodes.
1638 */
0fb3978b 1639 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
6c6b1193
RR
1640 continue;
1641
1642 /* Add up the faults from nearby nodes. */
1643 if (task)
1644 faults = task_faults(p, node);
1645 else
1646 faults = group_faults(p, node);
1647
1648 /*
1649 * On systems with a glueless mesh NUMA topology, there are
1650 * no fixed "groups of nodes". Instead, nodes that are not
1651 * directly connected bounce traffic through intermediate
1652 * nodes; a numa_group can occupy any set of nodes.
1653 * The further away a node is, the less the faults count.
1654 * This seems to result in good task placement.
1655 */
1656 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
0fb3978b
YH
1657 faults *= (max_dist - dist);
1658 faults /= (max_dist - LOCAL_DISTANCE);
6c6b1193
RR
1659 }
1660
1661 score += faults;
1662 }
1663
1664 return score;
1665}
1666
83e1d2cd
MG
1667/*
1668 * These return the fraction of accesses done by a particular task, or
1669 * task group, on a particular numa node. The group weight is given a
1670 * larger multiplier, in order to group tasks together that are almost
1671 * evenly spread out between numa nodes.
1672 */
7bd95320
RR
1673static inline unsigned long task_weight(struct task_struct *p, int nid,
1674 int dist)
83e1d2cd 1675{
7bd95320 1676 unsigned long faults, total_faults;
83e1d2cd 1677
44dba3d5 1678 if (!p->numa_faults)
83e1d2cd
MG
1679 return 0;
1680
1681 total_faults = p->total_numa_faults;
1682
1683 if (!total_faults)
1684 return 0;
1685
7bd95320 1686 faults = task_faults(p, nid);
6c6b1193
RR
1687 faults += score_nearby_nodes(p, nid, dist, true);
1688
7bd95320 1689 return 1000 * faults / total_faults;
83e1d2cd
MG
1690}
1691
7bd95320
RR
1692static inline unsigned long group_weight(struct task_struct *p, int nid,
1693 int dist)
83e1d2cd 1694{
cb361d8c 1695 struct numa_group *ng = deref_task_numa_group(p);
7bd95320
RR
1696 unsigned long faults, total_faults;
1697
cb361d8c 1698 if (!ng)
7bd95320
RR
1699 return 0;
1700
cb361d8c 1701 total_faults = ng->total_faults;
7bd95320
RR
1702
1703 if (!total_faults)
83e1d2cd
MG
1704 return 0;
1705
7bd95320 1706 faults = group_faults(p, nid);
6c6b1193
RR
1707 faults += score_nearby_nodes(p, nid, dist, false);
1708
7bd95320 1709 return 1000 * faults / total_faults;
83e1d2cd
MG
1710}
1711
33024536
YH
1712/*
1713 * If memory tiering mode is enabled, cpupid of slow memory page is
1714 * used to record scan time instead of CPU and PID. When tiering mode
1715 * is disabled at run time, the scan time (in cpupid) will be
1716 * interpreted as CPU and PID. So CPU needs to be checked to avoid to
1717 * access out of array bound.
1718 */
1719static inline bool cpupid_valid(int cpupid)
1720{
1721 return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1722}
1723
1724/*
1725 * For memory tiering mode, if there are enough free pages (more than
1726 * enough watermark defined here) in fast memory node, to take full
1727 * advantage of fast memory capacity, all recently accessed slow
1728 * memory pages will be migrated to fast memory node without
1729 * considering hot threshold.
1730 */
1731static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1732{
1733 int z;
1734 unsigned long enough_wmark;
1735
1736 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1737 pgdat->node_present_pages >> 4);
1738 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1739 struct zone *zone = pgdat->node_zones + z;
1740
1741 if (!populated_zone(zone))
1742 continue;
1743
1744 if (zone_watermark_ok(zone, 0,
1745 wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1746 ZONE_MOVABLE, 0))
1747 return true;
1748 }
1749 return false;
1750}
1751
1752/*
1753 * For memory tiering mode, when page tables are scanned, the scan
1754 * time will be recorded in struct page in addition to make page
1755 * PROT_NONE for slow memory page. So when the page is accessed, in
1756 * hint page fault handler, the hint page fault latency is calculated
1757 * via,
1758 *
1759 * hint page fault latency = hint page fault time - scan time
1760 *
1761 * The smaller the hint page fault latency, the higher the possibility
1762 * for the page to be hot.
1763 */
8c9ae56d 1764static int numa_hint_fault_latency(struct folio *folio)
33024536
YH
1765{
1766 int last_time, time;
1767
1768 time = jiffies_to_msecs(jiffies);
0b201c36 1769 last_time = folio_xchg_access_time(folio, time);
33024536
YH
1770
1771 return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1772}
1773
c6833e10
YH
1774/*
1775 * For memory tiering mode, too high promotion/demotion throughput may
1776 * hurt application latency. So we provide a mechanism to rate limit
1777 * the number of pages that are tried to be promoted.
1778 */
1779static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1780 unsigned long rate_limit, int nr)
1781{
1782 unsigned long nr_cand;
1783 unsigned int now, start;
1784
1785 now = jiffies_to_msecs(jiffies);
1786 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1787 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1788 start = pgdat->nbp_rl_start;
1789 if (now - start > MSEC_PER_SEC &&
1790 cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1791 pgdat->nbp_rl_nr_cand = nr_cand;
1792 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1793 return true;
1794 return false;
1795}
1796
c959924b
YH
1797#define NUMA_MIGRATION_ADJUST_STEPS 16
1798
1799static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1800 unsigned long rate_limit,
1801 unsigned int ref_th)
1802{
1803 unsigned int now, start, th_period, unit_th, th;
1804 unsigned long nr_cand, ref_cand, diff_cand;
1805
1806 now = jiffies_to_msecs(jiffies);
1807 th_period = sysctl_numa_balancing_scan_period_max;
1808 start = pgdat->nbp_th_start;
1809 if (now - start > th_period &&
1810 cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1811 ref_cand = rate_limit *
1812 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1813 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1814 diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1815 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1816 th = pgdat->nbp_threshold ? : ref_th;
1817 if (diff_cand > ref_cand * 11 / 10)
1818 th = max(th - unit_th, unit_th);
1819 else if (diff_cand < ref_cand * 9 / 10)
1820 th = min(th + unit_th, ref_th * 2);
1821 pgdat->nbp_th_nr_cand = nr_cand;
1822 pgdat->nbp_threshold = th;
1823 }
1824}
1825
8c9ae56d 1826bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
10f39042
RR
1827 int src_nid, int dst_cpu)
1828{
cb361d8c 1829 struct numa_group *ng = deref_curr_numa_group(p);
10f39042
RR
1830 int dst_nid = cpu_to_node(dst_cpu);
1831 int last_cpupid, this_cpupid;
1832
33024536
YH
1833 /*
1834 * The pages in slow memory node should be migrated according
1835 * to hot/cold instead of private/shared.
1836 */
1837 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1838 !node_is_toptier(src_nid)) {
1839 struct pglist_data *pgdat;
c959924b
YH
1840 unsigned long rate_limit;
1841 unsigned int latency, th, def_th;
33024536
YH
1842
1843 pgdat = NODE_DATA(dst_nid);
c959924b
YH
1844 if (pgdat_free_space_enough(pgdat)) {
1845 /* workload changed, reset hot threshold */
1846 pgdat->nbp_threshold = 0;
33024536 1847 return true;
c959924b
YH
1848 }
1849
1850 def_th = sysctl_numa_balancing_hot_threshold;
1851 rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1852 (20 - PAGE_SHIFT);
1853 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
33024536 1854
c959924b 1855 th = pgdat->nbp_threshold ? : def_th;
8c9ae56d 1856 latency = numa_hint_fault_latency(folio);
33024536
YH
1857 if (latency >= th)
1858 return false;
1859
c6833e10 1860 return !numa_promotion_rate_limit(pgdat, rate_limit,
8c9ae56d 1861 folio_nr_pages(folio));
33024536
YH
1862 }
1863
10f39042 1864 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1b143cc7 1865 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
37355bdc 1866
33024536
YH
1867 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1868 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1869 return false;
1870
37355bdc
MG
1871 /*
1872 * Allow first faults or private faults to migrate immediately early in
1873 * the lifetime of a task. The magic number 4 is based on waiting for
1874 * two full passes of the "multi-stage node selection" test that is
1875 * executed below.
1876 */
98fa15f3 1877 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1878 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1879 return true;
10f39042
RR
1880
1881 /*
1882 * Multi-stage node selection is used in conjunction with a periodic
1883 * migration fault to build a temporal task<->page relation. By using
1884 * a two-stage filter we remove short/unlikely relations.
1885 *
1886 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1887 * a task's usage of a particular page (n_p) per total usage of this
1888 * page (n_t) (in a given time-span) to a probability.
1889 *
1890 * Our periodic faults will sample this probability and getting the
1891 * same result twice in a row, given these samples are fully
1892 * independent, is then given by P(n)^2, provided our sample period
1893 * is sufficiently short compared to the usage pattern.
1894 *
1895 * This quadric squishes small probabilities, making it less likely we
1896 * act on an unlikely task<->page relation.
1897 */
10f39042
RR
1898 if (!cpupid_pid_unset(last_cpupid) &&
1899 cpupid_to_nid(last_cpupid) != dst_nid)
1900 return false;
1901
1902 /* Always allow migrate on private faults */
1903 if (cpupid_match_pid(p, last_cpupid))
1904 return true;
1905
1906 /* A shared fault, but p->numa_group has not been set up yet. */
1907 if (!ng)
1908 return true;
1909
1910 /*
4142c3eb
RR
1911 * Destination node is much more heavily used than the source
1912 * node? Allow migration.
10f39042 1913 */
4142c3eb
RR
1914 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1915 ACTIVE_NODE_FRACTION)
10f39042
RR
1916 return true;
1917
1918 /*
4142c3eb
RR
1919 * Distribute memory according to CPU & memory use on each node,
1920 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1921 *
1922 * faults_cpu(dst) 3 faults_cpu(src)
1923 * --------------- * - > ---------------
1924 * faults_mem(dst) 4 faults_mem(src)
10f39042 1925 */
4142c3eb
RR
1926 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1927 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1928}
1929
6499b1b2
VG
1930/*
1931 * 'numa_type' describes the node at the moment of load balancing.
1932 */
1933enum numa_type {
1934 /* The node has spare capacity that can be used to run more tasks. */
1935 node_has_spare = 0,
1936 /*
1937 * The node is fully used and the tasks don't compete for more CPU
1938 * cycles. Nevertheless, some tasks might wait before running.
1939 */
1940 node_fully_busy,
1941 /*
1942 * The node is overloaded and can't provide expected CPU cycles to all
1943 * tasks.
1944 */
1945 node_overloaded
1946};
58d081b5 1947
fb13c7ee 1948/* Cached statistics for all CPUs within a node */
58d081b5
MG
1949struct numa_stats {
1950 unsigned long load;
8e0e0eda 1951 unsigned long runnable;
6499b1b2 1952 unsigned long util;
fb13c7ee 1953 /* Total compute capacity of CPUs on a node */
5ef20ca1 1954 unsigned long compute_capacity;
6499b1b2
VG
1955 unsigned int nr_running;
1956 unsigned int weight;
1957 enum numa_type node_type;
ff7db0bf 1958 int idle_cpu;
58d081b5 1959};
e6628d5b 1960
58d081b5
MG
1961struct task_numa_env {
1962 struct task_struct *p;
e6628d5b 1963
58d081b5
MG
1964 int src_cpu, src_nid;
1965 int dst_cpu, dst_nid;
e496132e 1966 int imb_numa_nr;
e6628d5b 1967
58d081b5 1968 struct numa_stats src_stats, dst_stats;
e6628d5b 1969
40ea2b42 1970 int imbalance_pct;
7bd95320 1971 int dist;
fb13c7ee
MG
1972
1973 struct task_struct *best_task;
1974 long best_imp;
58d081b5
MG
1975 int best_cpu;
1976};
1977
6499b1b2 1978static unsigned long cpu_load(struct rq *rq);
8e0e0eda 1979static unsigned long cpu_runnable(struct rq *rq);
6499b1b2
VG
1980
1981static inline enum
1982numa_type numa_classify(unsigned int imbalance_pct,
1983 struct numa_stats *ns)
1984{
1985 if ((ns->nr_running > ns->weight) &&
8e0e0eda
VG
1986 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1987 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
6499b1b2
VG
1988 return node_overloaded;
1989
1990 if ((ns->nr_running < ns->weight) ||
8e0e0eda
VG
1991 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1992 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
6499b1b2
VG
1993 return node_has_spare;
1994
1995 return node_fully_busy;
1996}
1997
76c389ab
VS
1998#ifdef CONFIG_SCHED_SMT
1999/* Forward declarations of select_idle_sibling helpers */
398ba2b0 2000static inline bool test_idle_cores(int cpu);
ff7db0bf
MG
2001static inline int numa_idle_core(int idle_core, int cpu)
2002{
ff7db0bf 2003 if (!static_branch_likely(&sched_smt_present) ||
398ba2b0 2004 idle_core >= 0 || !test_idle_cores(cpu))
ff7db0bf
MG
2005 return idle_core;
2006
2007 /*
2008 * Prefer cores instead of packing HT siblings
2009 * and triggering future load balancing.
2010 */
2011 if (is_core_idle(cpu))
2012 idle_core = cpu;
ff7db0bf
MG
2013
2014 return idle_core;
2015}
76c389ab
VS
2016#else
2017static inline int numa_idle_core(int idle_core, int cpu)
2018{
2019 return idle_core;
2020}
2021#endif
ff7db0bf 2022
6499b1b2 2023/*
ff7db0bf
MG
2024 * Gather all necessary information to make NUMA balancing placement
2025 * decisions that are compatible with standard load balancer. This
2026 * borrows code and logic from update_sg_lb_stats but sharing a
2027 * common implementation is impractical.
6499b1b2
VG
2028 */
2029static void update_numa_stats(struct task_numa_env *env,
ff7db0bf
MG
2030 struct numa_stats *ns, int nid,
2031 bool find_idle)
6499b1b2 2032{
ff7db0bf 2033 int cpu, idle_core = -1;
6499b1b2
VG
2034
2035 memset(ns, 0, sizeof(*ns));
ff7db0bf
MG
2036 ns->idle_cpu = -1;
2037
0621df31 2038 rcu_read_lock();
6499b1b2
VG
2039 for_each_cpu(cpu, cpumask_of_node(nid)) {
2040 struct rq *rq = cpu_rq(cpu);
2041
2042 ns->load += cpu_load(rq);
8e0e0eda 2043 ns->runnable += cpu_runnable(rq);
82762d2a 2044 ns->util += cpu_util_cfs(cpu);
6499b1b2
VG
2045 ns->nr_running += rq->cfs.h_nr_running;
2046 ns->compute_capacity += capacity_of(cpu);
ff7db0bf 2047
feaed763 2048 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
ff7db0bf
MG
2049 if (READ_ONCE(rq->numa_migrate_on) ||
2050 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2051 continue;
2052
2053 if (ns->idle_cpu == -1)
2054 ns->idle_cpu = cpu;
2055
2056 idle_core = numa_idle_core(idle_core, cpu);
2057 }
6499b1b2 2058 }
0621df31 2059 rcu_read_unlock();
6499b1b2
VG
2060
2061 ns->weight = cpumask_weight(cpumask_of_node(nid));
2062
2063 ns->node_type = numa_classify(env->imbalance_pct, ns);
ff7db0bf
MG
2064
2065 if (idle_core >= 0)
2066 ns->idle_cpu = idle_core;
6499b1b2
VG
2067}
2068
fb13c7ee
MG
2069static void task_numa_assign(struct task_numa_env *env,
2070 struct task_struct *p, long imp)
2071{
a4739eca
SD
2072 struct rq *rq = cpu_rq(env->dst_cpu);
2073
5fb52dd9
MG
2074 /* Check if run-queue part of active NUMA balance. */
2075 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2076 int cpu;
2077 int start = env->dst_cpu;
2078
2079 /* Find alternative idle CPU. */
8589018a 2080 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
5fb52dd9
MG
2081 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2082 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2083 continue;
2084 }
2085
2086 env->dst_cpu = cpu;
2087 rq = cpu_rq(env->dst_cpu);
2088 if (!xchg(&rq->numa_migrate_on, 1))
2089 goto assign;
2090 }
2091
2092 /* Failed to find an alternative idle CPU */
a4739eca 2093 return;
5fb52dd9 2094 }
a4739eca 2095
5fb52dd9 2096assign:
a4739eca
SD
2097 /*
2098 * Clear previous best_cpu/rq numa-migrate flag, since task now
2099 * found a better CPU to move/swap.
2100 */
5fb52dd9 2101 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
a4739eca
SD
2102 rq = cpu_rq(env->best_cpu);
2103 WRITE_ONCE(rq->numa_migrate_on, 0);
2104 }
2105
fb13c7ee
MG
2106 if (env->best_task)
2107 put_task_struct(env->best_task);
bac78573
ON
2108 if (p)
2109 get_task_struct(p);
fb13c7ee
MG
2110
2111 env->best_task = p;
2112 env->best_imp = imp;
2113 env->best_cpu = env->dst_cpu;
2114}
2115
28a21745 2116static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
2117 struct task_numa_env *env)
2118{
e4991b24
RR
2119 long imb, old_imb;
2120 long orig_src_load, orig_dst_load;
28a21745
RR
2121 long src_capacity, dst_capacity;
2122
2123 /*
2124 * The load is corrected for the CPU capacity available on each node.
2125 *
2126 * src_load dst_load
2127 * ------------ vs ---------
2128 * src_capacity dst_capacity
2129 */
2130 src_capacity = env->src_stats.compute_capacity;
2131 dst_capacity = env->dst_stats.compute_capacity;
e63da036 2132
5f95ba7a 2133 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 2134
28a21745 2135 orig_src_load = env->src_stats.load;
e4991b24 2136 orig_dst_load = env->dst_stats.load;
28a21745 2137
5f95ba7a 2138 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
2139
2140 /* Would this change make things worse? */
2141 return (imb > old_imb);
e63da036
RR
2142}
2143
6fd98e77
SD
2144/*
2145 * Maximum NUMA importance can be 1998 (2*999);
2146 * SMALLIMP @ 30 would be close to 1998/64.
2147 * Used to deter task migration.
2148 */
2149#define SMALLIMP 30
2150
fb13c7ee
MG
2151/*
2152 * This checks if the overall compute and NUMA accesses of the system would
2153 * be improved if the source tasks was migrated to the target dst_cpu taking
2154 * into account that it might be best if task running on the dst_cpu should
2155 * be exchanged with the source task
2156 */
a0f03b61 2157static bool task_numa_compare(struct task_numa_env *env,
305c1fac 2158 long taskimp, long groupimp, bool maymove)
fb13c7ee 2159{
cb361d8c 2160 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
fb13c7ee 2161 struct rq *dst_rq = cpu_rq(env->dst_cpu);
cb361d8c 2162 long imp = p_ng ? groupimp : taskimp;
fb13c7ee 2163 struct task_struct *cur;
28a21745 2164 long src_load, dst_load;
7bd95320 2165 int dist = env->dist;
cb361d8c
JH
2166 long moveimp = imp;
2167 long load;
a0f03b61 2168 bool stopsearch = false;
fb13c7ee 2169
a4739eca 2170 if (READ_ONCE(dst_rq->numa_migrate_on))
a0f03b61 2171 return false;
a4739eca 2172
fb13c7ee 2173 rcu_read_lock();
154abafc 2174 cur = rcu_dereference(dst_rq->curr);
bac78573 2175 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
2176 cur = NULL;
2177
7af68335
PZ
2178 /*
2179 * Because we have preemption enabled we can get migrated around and
2180 * end try selecting ourselves (current == env->p) as a swap candidate.
2181 */
a0f03b61
MG
2182 if (cur == env->p) {
2183 stopsearch = true;
7af68335 2184 goto unlock;
a0f03b61 2185 }
7af68335 2186
305c1fac 2187 if (!cur) {
6fd98e77 2188 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
2189 goto assign;
2190 else
2191 goto unlock;
2192 }
2193
88cca72c
MG
2194 /* Skip this swap candidate if cannot move to the source cpu. */
2195 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2196 goto unlock;
2197
2198 /*
2199 * Skip this swap candidate if it is not moving to its preferred
2200 * node and the best task is.
2201 */
2202 if (env->best_task &&
2203 env->best_task->numa_preferred_nid == env->src_nid &&
2204 cur->numa_preferred_nid != env->src_nid) {
2205 goto unlock;
2206 }
2207
fb13c7ee
MG
2208 /*
2209 * "imp" is the fault differential for the source task between the
2210 * source and destination node. Calculate the total differential for
2211 * the source task and potential destination task. The more negative
305c1fac 2212 * the value is, the more remote accesses that would be expected to
fb13c7ee 2213 * be incurred if the tasks were swapped.
88cca72c 2214 *
305c1fac
SD
2215 * If dst and source tasks are in the same NUMA group, or not
2216 * in any group then look only at task weights.
2217 */
cb361d8c
JH
2218 cur_ng = rcu_dereference(cur->numa_group);
2219 if (cur_ng == p_ng) {
13ede331
MG
2220 /*
2221 * Do not swap within a group or between tasks that have
2222 * no group if there is spare capacity. Swapping does
2223 * not address the load imbalance and helps one task at
2224 * the cost of punishing another.
2225 */
2226 if (env->dst_stats.node_type == node_has_spare)
2227 goto unlock;
2228
305c1fac
SD
2229 imp = taskimp + task_weight(cur, env->src_nid, dist) -
2230 task_weight(cur, env->dst_nid, dist);
887c290e 2231 /*
305c1fac
SD
2232 * Add some hysteresis to prevent swapping the
2233 * tasks within a group over tiny differences.
887c290e 2234 */
cb361d8c 2235 if (cur_ng)
305c1fac
SD
2236 imp -= imp / 16;
2237 } else {
2238 /*
2239 * Compare the group weights. If a task is all by itself
2240 * (not part of a group), use the task weight instead.
2241 */
cb361d8c 2242 if (cur_ng && p_ng)
305c1fac
SD
2243 imp += group_weight(cur, env->src_nid, dist) -
2244 group_weight(cur, env->dst_nid, dist);
2245 else
2246 imp += task_weight(cur, env->src_nid, dist) -
2247 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
2248 }
2249
88cca72c
MG
2250 /* Discourage picking a task already on its preferred node */
2251 if (cur->numa_preferred_nid == env->dst_nid)
2252 imp -= imp / 16;
2253
2254 /*
2255 * Encourage picking a task that moves to its preferred node.
2256 * This potentially makes imp larger than it's maximum of
2257 * 1998 (see SMALLIMP and task_weight for why) but in this
2258 * case, it does not matter.
2259 */
2260 if (cur->numa_preferred_nid == env->src_nid)
2261 imp += imp / 8;
2262
305c1fac 2263 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 2264 imp = moveimp;
305c1fac 2265 cur = NULL;
fb13c7ee 2266 goto assign;
305c1fac 2267 }
fb13c7ee 2268
88cca72c
MG
2269 /*
2270 * Prefer swapping with a task moving to its preferred node over a
2271 * task that is not.
2272 */
2273 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2274 env->best_task->numa_preferred_nid != env->src_nid) {
2275 goto assign;
2276 }
2277
6fd98e77
SD
2278 /*
2279 * If the NUMA importance is less than SMALLIMP,
2280 * task migration might only result in ping pong
2281 * of tasks and also hurt performance due to cache
2282 * misses.
2283 */
2284 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2285 goto unlock;
2286
fb13c7ee
MG
2287 /*
2288 * In the overloaded case, try and keep the load balanced.
2289 */
305c1fac
SD
2290 load = task_h_load(env->p) - task_h_load(cur);
2291 if (!load)
2292 goto assign;
2293
e720fff6
PZ
2294 dst_load = env->dst_stats.load + load;
2295 src_load = env->src_stats.load - load;
fb13c7ee 2296
28a21745 2297 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
2298 goto unlock;
2299
305c1fac 2300assign:
ff7db0bf 2301 /* Evaluate an idle CPU for a task numa move. */
10e2f1ac 2302 if (!cur) {
ff7db0bf
MG
2303 int cpu = env->dst_stats.idle_cpu;
2304
2305 /* Nothing cached so current CPU went idle since the search. */
2306 if (cpu < 0)
2307 cpu = env->dst_cpu;
2308
10e2f1ac 2309 /*
ff7db0bf
MG
2310 * If the CPU is no longer truly idle and the previous best CPU
2311 * is, keep using it.
10e2f1ac 2312 */
ff7db0bf
MG
2313 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2314 idle_cpu(env->best_cpu)) {
2315 cpu = env->best_cpu;
2316 }
2317
ff7db0bf 2318 env->dst_cpu = cpu;
10e2f1ac 2319 }
ba7e5a27 2320
fb13c7ee 2321 task_numa_assign(env, cur, imp);
a0f03b61
MG
2322
2323 /*
2324 * If a move to idle is allowed because there is capacity or load
2325 * balance improves then stop the search. While a better swap
2326 * candidate may exist, a search is not free.
2327 */
2328 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2329 stopsearch = true;
2330
2331 /*
2332 * If a swap candidate must be identified and the current best task
2333 * moves its preferred node then stop the search.
2334 */
2335 if (!maymove && env->best_task &&
2336 env->best_task->numa_preferred_nid == env->src_nid) {
2337 stopsearch = true;
2338 }
fb13c7ee
MG
2339unlock:
2340 rcu_read_unlock();
a0f03b61
MG
2341
2342 return stopsearch;
fb13c7ee
MG
2343}
2344
887c290e
RR
2345static void task_numa_find_cpu(struct task_numa_env *env,
2346 long taskimp, long groupimp)
2c8a50aa 2347{
305c1fac 2348 bool maymove = false;
2c8a50aa
MG
2349 int cpu;
2350
305c1fac 2351 /*
fb86f5b2
MG
2352 * If dst node has spare capacity, then check if there is an
2353 * imbalance that would be overruled by the load balancer.
305c1fac 2354 */
fb86f5b2
MG
2355 if (env->dst_stats.node_type == node_has_spare) {
2356 unsigned int imbalance;
2357 int src_running, dst_running;
2358
2359 /*
2360 * Would movement cause an imbalance? Note that if src has
2361 * more running tasks that the imbalance is ignored as the
2362 * move improves the imbalance from the perspective of the
2363 * CPU load balancer.
2364 * */
2365 src_running = env->src_stats.nr_running - 1;
2366 dst_running = env->dst_stats.nr_running + 1;
2367 imbalance = max(0, dst_running - src_running);
7d2b5dd0 2368 imbalance = adjust_numa_imbalance(imbalance, dst_running,
e496132e 2369 env->imb_numa_nr);
fb86f5b2
MG
2370
2371 /* Use idle CPU if there is no imbalance */
ff7db0bf 2372 if (!imbalance) {
fb86f5b2 2373 maymove = true;
ff7db0bf
MG
2374 if (env->dst_stats.idle_cpu >= 0) {
2375 env->dst_cpu = env->dst_stats.idle_cpu;
2376 task_numa_assign(env, NULL, 0);
2377 return;
2378 }
2379 }
fb86f5b2
MG
2380 } else {
2381 long src_load, dst_load, load;
2382 /*
2383 * If the improvement from just moving env->p direction is better
2384 * than swapping tasks around, check if a move is possible.
2385 */
2386 load = task_h_load(env->p);
2387 dst_load = env->dst_stats.load + load;
2388 src_load = env->src_stats.load - load;
2389 maymove = !load_too_imbalanced(src_load, dst_load, env);
2390 }
305c1fac 2391
2c8a50aa
MG
2392 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2393 /* Skip this CPU if the source task cannot migrate */
3bd37062 2394 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
2395 continue;
2396
2397 env->dst_cpu = cpu;
a0f03b61
MG
2398 if (task_numa_compare(env, taskimp, groupimp, maymove))
2399 break;
2c8a50aa
MG
2400 }
2401}
2402
58d081b5
MG
2403static int task_numa_migrate(struct task_struct *p)
2404{
58d081b5
MG
2405 struct task_numa_env env = {
2406 .p = p,
fb13c7ee 2407
58d081b5 2408 .src_cpu = task_cpu(p),
b32e86b4 2409 .src_nid = task_node(p),
fb13c7ee
MG
2410
2411 .imbalance_pct = 112,
2412
2413 .best_task = NULL,
2414 .best_imp = 0,
4142c3eb 2415 .best_cpu = -1,
58d081b5 2416 };
cb361d8c 2417 unsigned long taskweight, groupweight;
58d081b5 2418 struct sched_domain *sd;
cb361d8c
JH
2419 long taskimp, groupimp;
2420 struct numa_group *ng;
a4739eca 2421 struct rq *best_rq;
7bd95320 2422 int nid, ret, dist;
e6628d5b 2423
58d081b5 2424 /*
fb13c7ee
MG
2425 * Pick the lowest SD_NUMA domain, as that would have the smallest
2426 * imbalance and would be the first to start moving tasks about.
2427 *
2428 * And we want to avoid any moving of tasks about, as that would create
2429 * random movement of tasks -- counter the numa conditions we're trying
2430 * to satisfy here.
58d081b5
MG
2431 */
2432 rcu_read_lock();
fb13c7ee 2433 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
e496132e 2434 if (sd) {
46a73e8a 2435 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e496132e
MG
2436 env.imb_numa_nr = sd->imb_numa_nr;
2437 }
e6628d5b
MG
2438 rcu_read_unlock();
2439
46a73e8a
RR
2440 /*
2441 * Cpusets can break the scheduler domain tree into smaller
2442 * balance domains, some of which do not cross NUMA boundaries.
2443 * Tasks that are "trapped" in such domains cannot be migrated
2444 * elsewhere, so there is no point in (re)trying.
2445 */
2446 if (unlikely(!sd)) {
8cd45eee 2447 sched_setnuma(p, task_node(p));
46a73e8a
RR
2448 return -EINVAL;
2449 }
2450
2c8a50aa 2451 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
2452 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2453 taskweight = task_weight(p, env.src_nid, dist);
2454 groupweight = group_weight(p, env.src_nid, dist);
ff7db0bf 2455 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
7bd95320
RR
2456 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2457 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
ff7db0bf 2458 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
58d081b5 2459
a43455a1 2460 /* Try to find a spot on the preferred nid. */
2d4056fa 2461 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 2462
9de05d48
RR
2463 /*
2464 * Look at other nodes in these cases:
2465 * - there is no space available on the preferred_nid
2466 * - the task is part of a numa_group that is interleaved across
2467 * multiple NUMA nodes; in order to better consolidate the group,
2468 * we need to check other locations.
2469 */
cb361d8c
JH
2470 ng = deref_curr_numa_group(p);
2471 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
5c7b1aaf 2472 for_each_node_state(nid, N_CPU) {
2c8a50aa
MG
2473 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2474 continue;
58d081b5 2475
7bd95320 2476 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
2477 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2478 dist != env.dist) {
2479 taskweight = task_weight(p, env.src_nid, dist);
2480 groupweight = group_weight(p, env.src_nid, dist);
2481 }
7bd95320 2482
83e1d2cd 2483 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
2484 taskimp = task_weight(p, nid, dist) - taskweight;
2485 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 2486 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
2487 continue;
2488
7bd95320 2489 env.dist = dist;
2c8a50aa 2490 env.dst_nid = nid;
ff7db0bf 2491 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2d4056fa 2492 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
2493 }
2494 }
2495
68d1b02a
RR
2496 /*
2497 * If the task is part of a workload that spans multiple NUMA nodes,
2498 * and is migrating into one of the workload's active nodes, remember
2499 * this node as the task's preferred numa node, so the workload can
2500 * settle down.
2501 * A task that migrated to a second choice node will be better off
2502 * trying for a better one later. Do not set the preferred node here.
2503 */
cb361d8c 2504 if (ng) {
db015dae
RR
2505 if (env.best_cpu == -1)
2506 nid = env.src_nid;
2507 else
8cd45eee 2508 nid = cpu_to_node(env.best_cpu);
db015dae 2509
8cd45eee
SD
2510 if (nid != p->numa_preferred_nid)
2511 sched_setnuma(p, nid);
db015dae
RR
2512 }
2513
2514 /* No better CPU than the current one was found. */
f22aef4a 2515 if (env.best_cpu == -1) {
b2b2042b 2516 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
db015dae 2517 return -EAGAIN;
f22aef4a 2518 }
0ec8aa00 2519
a4739eca 2520 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 2521 if (env.best_task == NULL) {
286549dc 2522 ret = migrate_task_to(p, env.best_cpu);
a4739eca 2523 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc 2524 if (ret != 0)
b2b2042b 2525 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
fb13c7ee
MG
2526 return ret;
2527 }
2528
0ad4e3df 2529 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 2530 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 2531
286549dc 2532 if (ret != 0)
b2b2042b 2533 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
fb13c7ee
MG
2534 put_task_struct(env.best_task);
2535 return ret;
e6628d5b
MG
2536}
2537
6b9a7460
MG
2538/* Attempt to migrate a task to a CPU on the preferred node. */
2539static void numa_migrate_preferred(struct task_struct *p)
2540{
5085e2a3
RR
2541 unsigned long interval = HZ;
2542
2739d3ee 2543 /* This task has no NUMA fault statistics yet */
98fa15f3 2544 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
2545 return;
2546
2739d3ee 2547 /* Periodically retry migrating the task to the preferred node */
5085e2a3 2548 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 2549 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
2550
2551 /* Success if task is already running on preferred CPU */
de1b301a 2552 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
2553 return;
2554
2555 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 2556 task_numa_migrate(p);
6b9a7460
MG
2557}
2558
20e07dea 2559/*
7d380f24 2560 * Find out how many nodes the workload is actively running on. Do this by
20e07dea
RR
2561 * tracking the nodes from which NUMA hinting faults are triggered. This can
2562 * be different from the set of nodes where the workload's memory is currently
2563 * located.
20e07dea 2564 */
4142c3eb 2565static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
2566{
2567 unsigned long faults, max_faults = 0;
4142c3eb 2568 int nid, active_nodes = 0;
20e07dea 2569
5c7b1aaf 2570 for_each_node_state(nid, N_CPU) {
20e07dea
RR
2571 faults = group_faults_cpu(numa_group, nid);
2572 if (faults > max_faults)
2573 max_faults = faults;
2574 }
2575
5c7b1aaf 2576 for_each_node_state(nid, N_CPU) {
20e07dea 2577 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
2578 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2579 active_nodes++;
20e07dea 2580 }
4142c3eb
RR
2581
2582 numa_group->max_faults_cpu = max_faults;
2583 numa_group->active_nodes = active_nodes;
20e07dea
RR
2584}
2585
04bb2f94
RR
2586/*
2587 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2588 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
2589 * period will be for the next scan window. If local/(local+remote) ratio is
2590 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2591 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
2592 */
2593#define NUMA_PERIOD_SLOTS 10
a22b4b01 2594#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
2595
2596/*
2597 * Increase the scan period (slow down scanning) if the majority of
2598 * our memory is already on our local node, or if the majority of
2599 * the page accesses are shared with other processes.
2600 * Otherwise, decrease the scan period.
2601 */
2602static void update_task_scan_period(struct task_struct *p,
2603 unsigned long shared, unsigned long private)
2604{
2605 unsigned int period_slot;
37ec97de 2606 int lr_ratio, ps_ratio;
04bb2f94
RR
2607 int diff;
2608
2609 unsigned long remote = p->numa_faults_locality[0];
2610 unsigned long local = p->numa_faults_locality[1];
2611
2612 /*
2613 * If there were no record hinting faults then either the task is
7d380f24 2614 * completely idle or all activity is in areas that are not of interest
074c2381
MG
2615 * to automatic numa balancing. Related to that, if there were failed
2616 * migration then it implies we are migrating too quickly or the local
2617 * node is overloaded. In either case, scan slower
04bb2f94 2618 */
074c2381 2619 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
2620 p->numa_scan_period = min(p->numa_scan_period_max,
2621 p->numa_scan_period << 1);
2622
2623 p->mm->numa_next_scan = jiffies +
2624 msecs_to_jiffies(p->numa_scan_period);
2625
2626 return;
2627 }
2628
2629 /*
2630 * Prepare to scale scan period relative to the current period.
2631 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2632 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2633 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2634 */
2635 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
2636 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2637 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2638
2639 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2640 /*
2641 * Most memory accesses are local. There is no need to
2642 * do fast NUMA scanning, since memory is already local.
2643 */
2644 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2645 if (!slot)
2646 slot = 1;
2647 diff = slot * period_slot;
2648 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2649 /*
2650 * Most memory accesses are shared with other tasks.
2651 * There is no point in continuing fast NUMA scanning,
2652 * since other tasks may just move the memory elsewhere.
2653 */
2654 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
2655 if (!slot)
2656 slot = 1;
2657 diff = slot * period_slot;
2658 } else {
04bb2f94 2659 /*
37ec97de
RR
2660 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2661 * yet they are not on the local NUMA node. Speed up
2662 * NUMA scanning to get the memory moved over.
04bb2f94 2663 */
37ec97de
RR
2664 int ratio = max(lr_ratio, ps_ratio);
2665 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2666 }
2667
2668 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2669 task_scan_min(p), task_scan_max(p));
2670 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2671}
2672
7e2703e6
RR
2673/*
2674 * Get the fraction of time the task has been running since the last
2675 * NUMA placement cycle. The scheduler keeps similar statistics, but
2676 * decays those on a 32ms period, which is orders of magnitude off
2677 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2678 * stats only if the task is so new there are no NUMA statistics yet.
2679 */
2680static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2681{
2682 u64 runtime, delta, now;
2683 /* Use the start of this time slice to avoid calculations. */
2684 now = p->se.exec_start;
2685 runtime = p->se.sum_exec_runtime;
2686
2687 if (p->last_task_numa_placement) {
2688 delta = runtime - p->last_sum_exec_runtime;
2689 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2690
2691 /* Avoid time going backwards, prevent potential divide error: */
2692 if (unlikely((s64)*period < 0))
2693 *period = 0;
7e2703e6 2694 } else {
c7b50216 2695 delta = p->se.avg.load_sum;
9d89c257 2696 *period = LOAD_AVG_MAX;
7e2703e6
RR
2697 }
2698
2699 p->last_sum_exec_runtime = runtime;
2700 p->last_task_numa_placement = now;
2701
2702 return delta;
2703}
2704
54009416
RR
2705/*
2706 * Determine the preferred nid for a task in a numa_group. This needs to
2707 * be done in a way that produces consistent results with group_weight,
2708 * otherwise workloads might not converge.
2709 */
2710static int preferred_group_nid(struct task_struct *p, int nid)
2711{
2712 nodemask_t nodes;
2713 int dist;
2714
2715 /* Direct connections between all NUMA nodes. */
2716 if (sched_numa_topology_type == NUMA_DIRECT)
2717 return nid;
2718
2719 /*
2720 * On a system with glueless mesh NUMA topology, group_weight
2721 * scores nodes according to the number of NUMA hinting faults on
2722 * both the node itself, and on nearby nodes.
2723 */
2724 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2725 unsigned long score, max_score = 0;
2726 int node, max_node = nid;
2727
2728 dist = sched_max_numa_distance;
2729
5c7b1aaf 2730 for_each_node_state(node, N_CPU) {
54009416
RR
2731 score = group_weight(p, node, dist);
2732 if (score > max_score) {
2733 max_score = score;
2734 max_node = node;
2735 }
2736 }
2737 return max_node;
2738 }
2739
2740 /*
2741 * Finding the preferred nid in a system with NUMA backplane
2742 * interconnect topology is more involved. The goal is to locate
2743 * tasks from numa_groups near each other in the system, and
2744 * untangle workloads from different sides of the system. This requires
2745 * searching down the hierarchy of node groups, recursively searching
2746 * inside the highest scoring group of nodes. The nodemask tricks
2747 * keep the complexity of the search down.
2748 */
5c7b1aaf 2749 nodes = node_states[N_CPU];
54009416
RR
2750 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2751 unsigned long max_faults = 0;
81907478 2752 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2753 int a, b;
2754
2755 /* Are there nodes at this distance from each other? */
2756 if (!find_numa_distance(dist))
2757 continue;
2758
2759 for_each_node_mask(a, nodes) {
2760 unsigned long faults = 0;
2761 nodemask_t this_group;
2762 nodes_clear(this_group);
2763
2764 /* Sum group's NUMA faults; includes a==b case. */
2765 for_each_node_mask(b, nodes) {
2766 if (node_distance(a, b) < dist) {
2767 faults += group_faults(p, b);
2768 node_set(b, this_group);
2769 node_clear(b, nodes);
2770 }
2771 }
2772
2773 /* Remember the top group. */
2774 if (faults > max_faults) {
2775 max_faults = faults;
2776 max_group = this_group;
2777 /*
2778 * subtle: at the smallest distance there is
2779 * just one node left in each "group", the
2780 * winner is the preferred nid.
2781 */
2782 nid = a;
2783 }
2784 }
2785 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2786 if (!max_faults)
2787 break;
54009416
RR
2788 nodes = max_group;
2789 }
2790 return nid;
2791}
2792
cbee9f88
PZ
2793static void task_numa_placement(struct task_struct *p)
2794{
98fa15f3 2795 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2796 unsigned long max_faults = 0;
04bb2f94 2797 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2798 unsigned long total_faults;
2799 u64 runtime, period;
7dbd13ed 2800 spinlock_t *group_lock = NULL;
cb361d8c 2801 struct numa_group *ng;
cbee9f88 2802
7e5a2c17
JL
2803 /*
2804 * The p->mm->numa_scan_seq field gets updated without
2805 * exclusive access. Use READ_ONCE() here to ensure
2806 * that the field is read in a single access:
2807 */
316c1608 2808 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2809 if (p->numa_scan_seq == seq)
2810 return;
2811 p->numa_scan_seq = seq;
598f0ec0 2812 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2813
7e2703e6
RR
2814 total_faults = p->numa_faults_locality[0] +
2815 p->numa_faults_locality[1];
2816 runtime = numa_get_avg_runtime(p, &period);
2817
7dbd13ed 2818 /* If the task is part of a group prevent parallel updates to group stats */
cb361d8c
JH
2819 ng = deref_curr_numa_group(p);
2820 if (ng) {
2821 group_lock = &ng->lock;
60e69eed 2822 spin_lock_irq(group_lock);
7dbd13ed
MG
2823 }
2824
688b7585
MG
2825 /* Find the node with the highest number of faults */
2826 for_each_online_node(nid) {
44dba3d5
IM
2827 /* Keep track of the offsets in numa_faults array */
2828 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2829 unsigned long faults = 0, group_faults = 0;
44dba3d5 2830 int priv;
745d6147 2831
be1e4e76 2832 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2833 long diff, f_diff, f_weight;
8c8a743c 2834
44dba3d5
IM
2835 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2836 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2837 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2838 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2839
ac8e895b 2840 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2841 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2842 fault_types[priv] += p->numa_faults[membuf_idx];
2843 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2844
7e2703e6
RR
2845 /*
2846 * Normalize the faults_from, so all tasks in a group
2847 * count according to CPU use, instead of by the raw
2848 * number of faults. Tasks with little runtime have
2849 * little over-all impact on throughput, and thus their
2850 * faults are less important.
2851 */
2852 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2853 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2854 (total_faults + 1);
44dba3d5
IM
2855 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2856 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2857
44dba3d5
IM
2858 p->numa_faults[mem_idx] += diff;
2859 p->numa_faults[cpu_idx] += f_diff;
2860 faults += p->numa_faults[mem_idx];
83e1d2cd 2861 p->total_numa_faults += diff;
cb361d8c 2862 if (ng) {
44dba3d5
IM
2863 /*
2864 * safe because we can only change our own group
2865 *
2866 * mem_idx represents the offset for a given
2867 * nid and priv in a specific region because it
2868 * is at the beginning of the numa_faults array.
2869 */
cb361d8c 2870 ng->faults[mem_idx] += diff;
5b763a14 2871 ng->faults[cpu_idx] += f_diff;
cb361d8c
JH
2872 ng->total_faults += diff;
2873 group_faults += ng->faults[mem_idx];
8c8a743c 2874 }
ac8e895b
MG
2875 }
2876
cb361d8c 2877 if (!ng) {
f03bb676
SD
2878 if (faults > max_faults) {
2879 max_faults = faults;
2880 max_nid = nid;
2881 }
2882 } else if (group_faults > max_faults) {
2883 max_faults = group_faults;
688b7585
MG
2884 max_nid = nid;
2885 }
83e1d2cd
MG
2886 }
2887
5c7b1aaf 2888 /* Cannot migrate task to CPU-less node */
d1db9fb4 2889 max_nid = numa_nearest_node(max_nid, N_CPU);
5c7b1aaf 2890
cb361d8c
JH
2891 if (ng) {
2892 numa_group_count_active_nodes(ng);
60e69eed 2893 spin_unlock_irq(group_lock);
f03bb676 2894 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2895 }
2896
bb97fc31
RR
2897 if (max_faults) {
2898 /* Set the new preferred node */
2899 if (max_nid != p->numa_preferred_nid)
2900 sched_setnuma(p, max_nid);
3a7053b3 2901 }
30619c89
SD
2902
2903 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2904}
2905
8c8a743c
PZ
2906static inline int get_numa_group(struct numa_group *grp)
2907{
c45a7795 2908 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2909}
2910
2911static inline void put_numa_group(struct numa_group *grp)
2912{
c45a7795 2913 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2914 kfree_rcu(grp, rcu);
2915}
2916
3e6a9418
MG
2917static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2918 int *priv)
8c8a743c
PZ
2919{
2920 struct numa_group *grp, *my_grp;
2921 struct task_struct *tsk;
2922 bool join = false;
2923 int cpu = cpupid_to_cpu(cpupid);
2924 int i;
2925
cb361d8c 2926 if (unlikely(!deref_curr_numa_group(p))) {
8c8a743c 2927 unsigned int size = sizeof(struct numa_group) +
7a2341fc
BR
2928 NR_NUMA_HINT_FAULT_STATS *
2929 nr_node_ids * sizeof(unsigned long);
8c8a743c
PZ
2930
2931 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2932 if (!grp)
2933 return;
2934
c45a7795 2935 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2936 grp->active_nodes = 1;
2937 grp->max_faults_cpu = 0;
8c8a743c 2938 spin_lock_init(&grp->lock);
e29cf08b 2939 grp->gid = p->pid;
8c8a743c 2940
be1e4e76 2941 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2942 grp->faults[i] = p->numa_faults[i];
8c8a743c 2943
989348b5 2944 grp->total_faults = p->total_numa_faults;
83e1d2cd 2945
8c8a743c
PZ
2946 grp->nr_tasks++;
2947 rcu_assign_pointer(p->numa_group, grp);
2948 }
2949
2950 rcu_read_lock();
316c1608 2951 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2952
2953 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2954 goto no_join;
8c8a743c
PZ
2955
2956 grp = rcu_dereference(tsk->numa_group);
2957 if (!grp)
3354781a 2958 goto no_join;
8c8a743c 2959
cb361d8c 2960 my_grp = deref_curr_numa_group(p);
8c8a743c 2961 if (grp == my_grp)
3354781a 2962 goto no_join;
8c8a743c
PZ
2963
2964 /*
2965 * Only join the other group if its bigger; if we're the bigger group,
2966 * the other task will join us.
2967 */
2968 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2969 goto no_join;
8c8a743c
PZ
2970
2971 /*
2972 * Tie-break on the grp address.
2973 */
2974 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2975 goto no_join;
8c8a743c 2976
dabe1d99
RR
2977 /* Always join threads in the same process. */
2978 if (tsk->mm == current->mm)
2979 join = true;
2980
2981 /* Simple filter to avoid false positives due to PID collisions */
2982 if (flags & TNF_SHARED)
2983 join = true;
8c8a743c 2984
3e6a9418
MG
2985 /* Update priv based on whether false sharing was detected */
2986 *priv = !join;
2987
dabe1d99 2988 if (join && !get_numa_group(grp))
3354781a 2989 goto no_join;
8c8a743c 2990
8c8a743c
PZ
2991 rcu_read_unlock();
2992
2993 if (!join)
2994 return;
2995
09348d75 2996 WARN_ON_ONCE(irqs_disabled());
60e69eed 2997 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2998
be1e4e76 2999 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
3000 my_grp->faults[i] -= p->numa_faults[i];
3001 grp->faults[i] += p->numa_faults[i];
8c8a743c 3002 }
989348b5
MG
3003 my_grp->total_faults -= p->total_numa_faults;
3004 grp->total_faults += p->total_numa_faults;
8c8a743c 3005
8c8a743c
PZ
3006 my_grp->nr_tasks--;
3007 grp->nr_tasks++;
3008
3009 spin_unlock(&my_grp->lock);
60e69eed 3010 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
3011
3012 rcu_assign_pointer(p->numa_group, grp);
3013
3014 put_numa_group(my_grp);
3354781a
PZ
3015 return;
3016
3017no_join:
3018 rcu_read_unlock();
3019 return;
8c8a743c
PZ
3020}
3021
16d51a59 3022/*
3b03706f 3023 * Get rid of NUMA statistics associated with a task (either current or dead).
16d51a59
JH
3024 * If @final is set, the task is dead and has reached refcount zero, so we can
3025 * safely free all relevant data structures. Otherwise, there might be
3026 * concurrent reads from places like load balancing and procfs, and we should
3027 * reset the data back to default state without freeing ->numa_faults.
3028 */
3029void task_numa_free(struct task_struct *p, bool final)
8c8a743c 3030{
cb361d8c
JH
3031 /* safe: p either is current or is being freed by current */
3032 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
16d51a59 3033 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
3034 unsigned long flags;
3035 int i;
8c8a743c 3036
16d51a59
JH
3037 if (!numa_faults)
3038 return;
3039
8c8a743c 3040 if (grp) {
e9dd685c 3041 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 3042 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 3043 grp->faults[i] -= p->numa_faults[i];
989348b5 3044 grp->total_faults -= p->total_numa_faults;
83e1d2cd 3045
8c8a743c 3046 grp->nr_tasks--;
e9dd685c 3047 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 3048 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
3049 put_numa_group(grp);
3050 }
3051
16d51a59
JH
3052 if (final) {
3053 p->numa_faults = NULL;
3054 kfree(numa_faults);
3055 } else {
3056 p->total_numa_faults = 0;
3057 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3058 numa_faults[i] = 0;
3059 }
8c8a743c
PZ
3060}
3061
cbee9f88
PZ
3062/*
3063 * Got a PROT_NONE fault for a page on @node.
3064 */
58b46da3 3065void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
3066{
3067 struct task_struct *p = current;
6688cc05 3068 bool migrated = flags & TNF_MIGRATED;
58b46da3 3069 int cpu_node = task_node(current);
792568ec 3070 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 3071 struct numa_group *ng;
ac8e895b 3072 int priv;
cbee9f88 3073
2a595721 3074 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
3075 return;
3076
9ff1d9ff
MG
3077 /* for example, ksmd faulting in a user's mm */
3078 if (!p->mm)
3079 return;
3080
33024536
YH
3081 /*
3082 * NUMA faults statistics are unnecessary for the slow memory
3083 * node for memory tiering mode.
3084 */
3085 if (!node_is_toptier(mem_node) &&
3086 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3087 !cpupid_valid(last_cpupid)))
3088 return;
3089
f809ca9a 3090 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
3091 if (unlikely(!p->numa_faults)) {
3092 int size = sizeof(*p->numa_faults) *
be1e4e76 3093 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 3094
44dba3d5
IM
3095 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3096 if (!p->numa_faults)
f809ca9a 3097 return;
745d6147 3098
83e1d2cd 3099 p->total_numa_faults = 0;
04bb2f94 3100 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 3101 }
cbee9f88 3102
8c8a743c
PZ
3103 /*
3104 * First accesses are treated as private, otherwise consider accesses
3105 * to be private if the accessing pid has not changed
3106 */
3107 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3108 priv = 1;
3109 } else {
3110 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 3111 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 3112 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
3113 }
3114
792568ec
RR
3115 /*
3116 * If a workload spans multiple NUMA nodes, a shared fault that
3117 * occurs wholly within the set of nodes that the workload is
3118 * actively using should be counted as local. This allows the
3119 * scan rate to slow down when a workload has settled down.
3120 */
cb361d8c 3121 ng = deref_curr_numa_group(p);
4142c3eb
RR
3122 if (!priv && !local && ng && ng->active_nodes > 1 &&
3123 numa_is_active_node(cpu_node, ng) &&
3124 numa_is_active_node(mem_node, ng))
792568ec
RR
3125 local = 1;
3126
2739d3ee 3127 /*
e1ff516a
YW
3128 * Retry to migrate task to preferred node periodically, in case it
3129 * previously failed, or the scheduler moved us.
2739d3ee 3130 */
b6a60cf3
SD
3131 if (time_after(jiffies, p->numa_migrate_retry)) {
3132 task_numa_placement(p);
6b9a7460 3133 numa_migrate_preferred(p);
b6a60cf3 3134 }
6b9a7460 3135
b32e86b4
IM
3136 if (migrated)
3137 p->numa_pages_migrated += pages;
074c2381
MG
3138 if (flags & TNF_MIGRATE_FAIL)
3139 p->numa_faults_locality[2] += pages;
b32e86b4 3140
44dba3d5
IM
3141 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3142 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 3143 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
3144}
3145
6e5fb223
PZ
3146static void reset_ptenuma_scan(struct task_struct *p)
3147{
7e5a2c17
JL
3148 /*
3149 * We only did a read acquisition of the mmap sem, so
3150 * p->mm->numa_scan_seq is written to without exclusive access
3151 * and the update is not guaranteed to be atomic. That's not
3152 * much of an issue though, since this is just used for
3153 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3154 * expensive, to avoid any form of compiler optimizations:
3155 */
316c1608 3156 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
3157 p->mm->numa_scan_offset = 0;
3158}
3159
b7a5b537 3160static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
fc137c0d 3161{
20f58648 3162 unsigned long pids;
fc137c0d
R
3163 /*
3164 * Allow unconditional access first two times, so that all the (pages)
3165 * of VMAs get prot_none fault introduced irrespective of accesses.
3166 * This is also done to avoid any side effect of task scanning
3167 * amplifying the unfairness of disjoint set of VMAs' access.
3168 */
84db47ca 3169 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
fc137c0d
R
3170 return true;
3171
f3a6c979 3172 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
b7a5b537
MG
3173 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3174 return true;
3175
3176 /*
3177 * Complete a scan that has already started regardless of PID access, or
3178 * some VMAs may never be scanned in multi-threaded applications:
3179 */
3180 if (mm->numa_scan_offset > vma->vm_start) {
3181 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3182 return true;
3183 }
3184
3185 return false;
fc137c0d
R
3186}
3187
20f58648
R
3188#define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3189
cbee9f88
PZ
3190/*
3191 * The expensive part of numa migration is done from task_work context.
3192 * Triggered from task_tick_numa().
3193 */
9434f9f5 3194static void task_numa_work(struct callback_head *work)
cbee9f88
PZ
3195{
3196 unsigned long migrate, next_scan, now = jiffies;
3197 struct task_struct *p = current;
3198 struct mm_struct *mm = p->mm;
51170840 3199 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 3200 struct vm_area_struct *vma;
9f40604c 3201 unsigned long start, end;
598f0ec0 3202 unsigned long nr_pte_updates = 0;
4620f8c1 3203 long pages, virtpages;
214dbc42 3204 struct vma_iterator vmi;
f169c62f
MG
3205 bool vma_pids_skipped;
3206 bool vma_pids_forced = false;
cbee9f88 3207
9148a3a1 3208 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88 3209
b34920d4 3210 work->next = work;
cbee9f88
PZ
3211 /*
3212 * Who cares about NUMA placement when they're dying.
3213 *
3214 * NOTE: make sure not to dereference p->mm before this check,
3215 * exit_task_work() happens _after_ exit_mm() so we could be called
3216 * without p->mm even though we still had it when we enqueued this
3217 * work.
3218 */
3219 if (p->flags & PF_EXITING)
3220 return;
3221
930aa174 3222 if (!mm->numa_next_scan) {
7e8d16b6
MG
3223 mm->numa_next_scan = now +
3224 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
3225 }
3226
cbee9f88
PZ
3227 /*
3228 * Enforce maximal scan/migration frequency..
3229 */
3230 migrate = mm->numa_next_scan;
3231 if (time_before(now, migrate))
3232 return;
3233
598f0ec0
MG
3234 if (p->numa_scan_period == 0) {
3235 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 3236 p->numa_scan_period = task_scan_start(p);
598f0ec0 3237 }
cbee9f88 3238
fb003b80 3239 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
8baceabc 3240 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
cbee9f88
PZ
3241 return;
3242
19a78d11
PZ
3243 /*
3244 * Delay this task enough that another task of this mm will likely win
3245 * the next time around.
3246 */
3247 p->node_stamp += 2 * TICK_NSEC;
3248
9f40604c
MG
3249 pages = sysctl_numa_balancing_scan_size;
3250 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 3251 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
3252 if (!pages)
3253 return;
cbee9f88 3254
4620f8c1 3255
d8ed45c5 3256 if (!mmap_read_trylock(mm))
8655d549 3257 return;
f169c62f
MG
3258
3259 /*
3260 * VMAs are skipped if the current PID has not trapped a fault within
3261 * the VMA recently. Allow scanning to be forced if there is no
3262 * suitable VMA remaining.
3263 */
3264 vma_pids_skipped = false;
3265
3266retry_pids:
3267 start = mm->numa_scan_offset;
214dbc42
LH
3268 vma_iter_init(&vmi, mm, start);
3269 vma = vma_next(&vmi);
6e5fb223
PZ
3270 if (!vma) {
3271 reset_ptenuma_scan(p);
9f40604c 3272 start = 0;
214dbc42
LH
3273 vma_iter_set(&vmi, start);
3274 vma = vma_next(&vmi);
6e5fb223 3275 }
0cd4d02c 3276
214dbc42 3277 do {
6b79c57b 3278 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 3279 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
ed2da8b7 3280 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
6e5fb223 3281 continue;
6b79c57b 3282 }
6e5fb223 3283
4591ce4f
MG
3284 /*
3285 * Shared library pages mapped by multiple processes are not
3286 * migrated as it is expected they are cache replicated. Avoid
3287 * hinting faults in read-only file-backed mappings or the vdso
3288 * as migrating the pages will be of marginal benefit.
3289 */
3290 if (!vma->vm_mm ||
ed2da8b7
MG
3291 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3292 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
4591ce4f 3293 continue;
ed2da8b7 3294 }
4591ce4f 3295
3c67f474
MG
3296 /*
3297 * Skip inaccessible VMAs to avoid any confusion between
3298 * PROT_NONE and NUMA hinting ptes
3299 */
ed2da8b7
MG
3300 if (!vma_is_accessible(vma)) {
3301 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3c67f474 3302 continue;
ed2da8b7 3303 }
4591ce4f 3304
ef6a22b7
MG
3305 /* Initialise new per-VMA NUMAB state. */
3306 if (!vma->numab_state) {
3307 vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3308 GFP_KERNEL);
3309 if (!vma->numab_state)
3310 continue;
3311
84db47ca
R
3312 vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3313
ef6a22b7
MG
3314 vma->numab_state->next_scan = now +
3315 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
20f58648
R
3316
3317 /* Reset happens after 4 times scan delay of scan start */
f3a6c979 3318 vma->numab_state->pids_active_reset = vma->numab_state->next_scan +
20f58648 3319 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
f169c62f
MG
3320
3321 /*
3322 * Ensure prev_scan_seq does not match numa_scan_seq,
3323 * to prevent VMAs being skipped prematurely on the
3324 * first scan:
3325 */
3326 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
ef6a22b7
MG
3327 }
3328
3329 /*
3330 * Scanning the VMA's of short lived tasks add more overhead. So
3331 * delay the scan for new VMAs.
3332 */
3333 if (mm->numa_scan_seq && time_before(jiffies,
ed2da8b7
MG
3334 vma->numab_state->next_scan)) {
3335 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
ef6a22b7 3336 continue;
ed2da8b7 3337 }
ef6a22b7 3338
2e2675db 3339 /* RESET access PIDs regularly for old VMAs. */
20f58648 3340 if (mm->numa_scan_seq &&
f3a6c979
MG
3341 time_after(jiffies, vma->numab_state->pids_active_reset)) {
3342 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
20f58648 3343 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
f3a6c979
MG
3344 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3345 vma->numab_state->pids_active[1] = 0;
20f58648
R
3346 }
3347
f169c62f
MG
3348 /* Do not rescan VMAs twice within the same sequence. */
3349 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3350 mm->numa_scan_offset = vma->vm_end;
3351 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3352 continue;
3353 }
3354
3355 /*
3356 * Do not scan the VMA if task has not accessed it, unless no other
3357 * VMA candidate exists.
3358 */
3359 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3360 vma_pids_skipped = true;
2e2675db
R
3361 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3362 continue;
3363 }
3364
9f40604c
MG
3365 do {
3366 start = max(start, vma->vm_start);
3367 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3368 end = min(end, vma->vm_end);
4620f8c1 3369 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
3370
3371 /*
4620f8c1
RR
3372 * Try to scan sysctl_numa_balancing_size worth of
3373 * hpages that have at least one present PTE that
3374 * is not already pte-numa. If the VMA contains
3375 * areas that are unused or already full of prot_numa
3376 * PTEs, scan up to virtpages, to skip through those
3377 * areas faster.
598f0ec0
MG
3378 */
3379 if (nr_pte_updates)
3380 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 3381 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 3382
9f40604c 3383 start = end;
4620f8c1 3384 if (pages <= 0 || virtpages <= 0)
9f40604c 3385 goto out;
3cf1962c
RR
3386
3387 cond_resched();
9f40604c 3388 } while (end != vma->vm_end);
f169c62f
MG
3389
3390 /* VMA scan is complete, do not scan until next sequence. */
3391 vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3392
3393 /*
3394 * Only force scan within one VMA at a time, to limit the
3395 * cost of scanning a potentially uninteresting VMA.
3396 */
3397 if (vma_pids_forced)
3398 break;
214dbc42 3399 } for_each_vma(vmi, vma);
6e5fb223 3400
f169c62f
MG
3401 /*
3402 * If no VMAs are remaining and VMAs were skipped due to the PID
3403 * not accessing the VMA previously, then force a scan to ensure
3404 * forward progress:
3405 */
3406 if (!vma && !vma_pids_forced && vma_pids_skipped) {
3407 vma_pids_forced = true;
3408 goto retry_pids;
3409 }
3410
9f40604c 3411out:
6e5fb223 3412 /*
c69307d5
PZ
3413 * It is possible to reach the end of the VMA list but the last few
3414 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3415 * would find the !migratable VMA on the next scan but not reset the
3416 * scanner to the start so check it now.
6e5fb223
PZ
3417 */
3418 if (vma)
9f40604c 3419 mm->numa_scan_offset = start;
6e5fb223
PZ
3420 else
3421 reset_ptenuma_scan(p);
d8ed45c5 3422 mmap_read_unlock(mm);
51170840
RR
3423
3424 /*
3425 * Make sure tasks use at least 32x as much time to run other code
3426 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3427 * Usually update_task_scan_period slows down scanning enough; on an
3428 * overloaded system we need to limit overhead on a per task basis.
3429 */
3430 if (unlikely(p->se.sum_exec_runtime != runtime)) {
3431 u64 diff = p->se.sum_exec_runtime - runtime;
3432 p->node_stamp += 32 * diff;
3433 }
cbee9f88
PZ
3434}
3435
d35927a1
VS
3436void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3437{
3438 int mm_users = 0;
3439 struct mm_struct *mm = p->mm;
3440
3441 if (mm) {
3442 mm_users = atomic_read(&mm->mm_users);
3443 if (mm_users == 1) {
3444 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3445 mm->numa_scan_seq = 0;
3446 }
3447 }
3448 p->node_stamp = 0;
3449 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
3450 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
70ce3ea9 3451 p->numa_migrate_retry = 0;
b34920d4 3452 /* Protect against double add, see task_tick_numa and task_numa_work */
d35927a1
VS
3453 p->numa_work.next = &p->numa_work;
3454 p->numa_faults = NULL;
12bf8a7e
HW
3455 p->numa_pages_migrated = 0;
3456 p->total_numa_faults = 0;
d35927a1
VS
3457 RCU_INIT_POINTER(p->numa_group, NULL);
3458 p->last_task_numa_placement = 0;
3459 p->last_sum_exec_runtime = 0;
3460
b34920d4
VS
3461 init_task_work(&p->numa_work, task_numa_work);
3462
d35927a1
VS
3463 /* New address space, reset the preferred nid */
3464 if (!(clone_flags & CLONE_VM)) {
3465 p->numa_preferred_nid = NUMA_NO_NODE;
3466 return;
3467 }
3468
3469 /*
3470 * New thread, keep existing numa_preferred_nid which should be copied
3471 * already by arch_dup_task_struct but stagger when scans start.
3472 */
3473 if (mm) {
3474 unsigned int delay;
3475
3476 delay = min_t(unsigned int, task_scan_max(current),
3477 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3478 delay += 2 * TICK_NSEC;
3479 p->node_stamp = delay;
3480 }
3481}
3482
cbee9f88
PZ
3483/*
3484 * Drive the periodic memory faults..
3485 */
b1546edc 3486static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
3487{
3488 struct callback_head *work = &curr->numa_work;
3489 u64 period, now;
3490
3491 /*
3492 * We don't care about NUMA placement if we don't have memory.
3493 */
b3f9916d 3494 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
cbee9f88
PZ
3495 return;
3496
3497 /*
3498 * Using runtime rather than walltime has the dual advantage that
3499 * we (mostly) drive the selection from busy threads and that the
3500 * task needs to have done some actual work before we bother with
3501 * NUMA placement.
3502 */
3503 now = curr->se.sum_exec_runtime;
3504 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3505
25b3e5a3 3506 if (now > curr->node_stamp + period) {
4b96a29b 3507 if (!curr->node_stamp)
b5dd77c8 3508 curr->numa_scan_period = task_scan_start(curr);
19a78d11 3509 curr->node_stamp += period;
cbee9f88 3510
b34920d4 3511 if (!time_before(jiffies, curr->mm->numa_next_scan))
91989c70 3512 task_work_add(curr, work, TWA_RESUME);
cbee9f88
PZ
3513 }
3514}
3fed382b 3515
3f9672ba
SD
3516static void update_scan_period(struct task_struct *p, int new_cpu)
3517{
3518 int src_nid = cpu_to_node(task_cpu(p));
3519 int dst_nid = cpu_to_node(new_cpu);
3520
05cbdf4f
MG
3521 if (!static_branch_likely(&sched_numa_balancing))
3522 return;
3523
3f9672ba
SD
3524 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3525 return;
3526
05cbdf4f
MG
3527 if (src_nid == dst_nid)
3528 return;
3529
3530 /*
3531 * Allow resets if faults have been trapped before one scan
3532 * has completed. This is most likely due to a new task that
3533 * is pulled cross-node due to wakeups or load balancing.
3534 */
3535 if (p->numa_scan_seq) {
3536 /*
3537 * Avoid scan adjustments if moving to the preferred
3538 * node or if the task was not previously running on
3539 * the preferred node.
3540 */
3541 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
3542 (p->numa_preferred_nid != NUMA_NO_NODE &&
3543 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
3544 return;
3545 }
3546
3547 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
3548}
3549
cbee9f88
PZ
3550#else
3551static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3552{
3553}
0ec8aa00
PZ
3554
3555static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3556{
3557}
3558
3559static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3560{
3561}
3fed382b 3562
3f9672ba
SD
3563static inline void update_scan_period(struct task_struct *p, int new_cpu)
3564{
3565}
3566
cbee9f88
PZ
3567#endif /* CONFIG_NUMA_BALANCING */
3568
30cfdcfc
DA
3569static void
3570account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3571{
3572 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 3573#ifdef CONFIG_SMP
0ec8aa00
PZ
3574 if (entity_is_task(se)) {
3575 struct rq *rq = rq_of(cfs_rq);
3576
3577 account_numa_enqueue(rq, task_of(se));
3578 list_add(&se->group_node, &rq->cfs_tasks);
3579 }
367456c7 3580#endif
30cfdcfc 3581 cfs_rq->nr_running++;
a480adde
JD
3582 if (se_is_idle(se))
3583 cfs_rq->idle_nr_running++;
30cfdcfc
DA
3584}
3585
3586static void
3587account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3588{
3589 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 3590#ifdef CONFIG_SMP
0ec8aa00
PZ
3591 if (entity_is_task(se)) {
3592 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 3593 list_del_init(&se->group_node);
0ec8aa00 3594 }
bfdb198c 3595#endif
30cfdcfc 3596 cfs_rq->nr_running--;
a480adde
JD
3597 if (se_is_idle(se))
3598 cfs_rq->idle_nr_running--;
30cfdcfc
DA
3599}
3600
8d5b9025
PZ
3601/*
3602 * Signed add and clamp on underflow.
3603 *
3604 * Explicitly do a load-store to ensure the intermediate value never hits
3605 * memory. This allows lockless observations without ever seeing the negative
3606 * values.
3607 */
3608#define add_positive(_ptr, _val) do { \
3609 typeof(_ptr) ptr = (_ptr); \
3610 typeof(_val) val = (_val); \
3611 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3612 \
3613 res = var + val; \
3614 \
3615 if (val < 0 && res > var) \
3616 res = 0; \
3617 \
3618 WRITE_ONCE(*ptr, res); \
3619} while (0)
3620
3621/*
3622 * Unsigned subtract and clamp on underflow.
3623 *
3624 * Explicitly do a load-store to ensure the intermediate value never hits
3625 * memory. This allows lockless observations without ever seeing the negative
3626 * values.
3627 */
3628#define sub_positive(_ptr, _val) do { \
3629 typeof(_ptr) ptr = (_ptr); \
3630 typeof(*ptr) val = (_val); \
3631 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3632 res = var - val; \
3633 if (res > var) \
3634 res = 0; \
3635 WRITE_ONCE(*ptr, res); \
3636} while (0)
3637
b5c0ce7b
PB
3638/*
3639 * Remove and clamp on negative, from a local variable.
3640 *
3641 * A variant of sub_positive(), which does not use explicit load-store
3642 * and is thus optimized for local variable updates.
3643 */
3644#define lsub_positive(_ptr, _val) do { \
3645 typeof(_ptr) ptr = (_ptr); \
3646 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3647} while (0)
3648
8d5b9025 3649#ifdef CONFIG_SMP
8d5b9025
PZ
3650static inline void
3651enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3652{
3653 cfs_rq->avg.load_avg += se->avg.load_avg;
3654 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3655}
3656
3657static inline void
3658dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3659{
3660 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2d02fa8c
VG
3661 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3662 /* See update_cfs_rq_load_avg() */
3663 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3664 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
8d5b9025
PZ
3665}
3666#else
3667static inline void
8d5b9025
PZ
3668enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3669static inline void
3670dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3671#endif
3672
eab03c23
AW
3673static void reweight_eevdf(struct cfs_rq *cfs_rq, struct sched_entity *se,
3674 unsigned long weight)
3675{
3676 unsigned long old_weight = se->load.weight;
3677 u64 avruntime = avg_vruntime(cfs_rq);
3678 s64 vlag, vslice;
3679
3680 /*
3681 * VRUNTIME
be8858db 3682 * --------
eab03c23
AW
3683 *
3684 * COROLLARY #1: The virtual runtime of the entity needs to be
3685 * adjusted if re-weight at !0-lag point.
3686 *
3687 * Proof: For contradiction assume this is not true, so we can
3688 * re-weight without changing vruntime at !0-lag point.
3689 *
3690 * Weight VRuntime Avg-VRuntime
3691 * before w v V
3692 * after w' v' V'
3693 *
3694 * Since lag needs to be preserved through re-weight:
3695 *
3696 * lag = (V - v)*w = (V'- v')*w', where v = v'
3697 * ==> V' = (V - v)*w/w' + v (1)
3698 *
3699 * Let W be the total weight of the entities before reweight,
3700 * since V' is the new weighted average of entities:
3701 *
3702 * V' = (WV + w'v - wv) / (W + w' - w) (2)
3703 *
3704 * by using (1) & (2) we obtain:
3705 *
3706 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3707 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3708 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3709 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3710 *
3711 * Since we are doing at !0-lag point which means V != v, we
3712 * can simplify (3):
3713 *
3714 * ==> W / (W + w' - w) = w / w'
3715 * ==> Ww' = Ww + ww' - ww
3716 * ==> W * (w' - w) = w * (w' - w)
3717 * ==> W = w (re-weight indicates w' != w)
3718 *
3719 * So the cfs_rq contains only one entity, hence vruntime of
3720 * the entity @v should always equal to the cfs_rq's weighted
3721 * average vruntime @V, which means we will always re-weight
3722 * at 0-lag point, thus breach assumption. Proof completed.
3723 *
3724 *
3725 * COROLLARY #2: Re-weight does NOT affect weighted average
3726 * vruntime of all the entities.
3727 *
3728 * Proof: According to corollary #1, Eq. (1) should be:
3729 *
3730 * (V - v)*w = (V' - v')*w'
3731 * ==> v' = V' - (V - v)*w/w' (4)
3732 *
3733 * According to the weighted average formula, we have:
3734 *
3735 * V' = (WV - wv + w'v') / (W - w + w')
3736 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3737 * = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3738 * = (WV + w'V' - Vw) / (W - w + w')
3739 *
3740 * ==> V'*(W - w + w') = WV + w'V' - Vw
3741 * ==> V' * (W - w) = (W - w) * V (5)
3742 *
3743 * If the entity is the only one in the cfs_rq, then reweight
3744 * always occurs at 0-lag point, so V won't change. Or else
3745 * there are other entities, hence W != w, then Eq. (5) turns
3746 * into V' = V. So V won't change in either case, proof done.
3747 *
3748 *
3749 * So according to corollary #1 & #2, the effect of re-weight
3750 * on vruntime should be:
3751 *
3752 * v' = V' - (V - v) * w / w' (4)
3753 * = V - (V - v) * w / w'
3754 * = V - vl * w / w'
3755 * = V - vl'
3756 */
3757 if (avruntime != se->vruntime) {
3758 vlag = (s64)(avruntime - se->vruntime);
3759 vlag = div_s64(vlag * old_weight, weight);
3760 se->vruntime = avruntime - vlag;
3761 }
3762
3763 /*
3764 * DEADLINE
be8858db 3765 * --------
eab03c23
AW
3766 *
3767 * When the weight changes, the virtual time slope changes and
3768 * we should adjust the relative virtual deadline accordingly.
3769 *
3770 * d' = v' + (d - v)*w/w'
3771 * = V' - (V - v)*w/w' + (d - v)*w/w'
3772 * = V - (V - v)*w/w' + (d - v)*w/w'
3773 * = V + (d - V)*w/w'
3774 */
3775 vslice = (s64)(se->deadline - avruntime);
3776 vslice = div_s64(vslice * old_weight, weight);
3777 se->deadline = avruntime + vslice;
3778}
3779
9059393e 3780static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
0dacee1b 3781 unsigned long weight)
9059393e 3782{
eab03c23 3783 bool curr = cfs_rq->curr == se;
86bfbb7c 3784
9059393e
VG
3785 if (se->on_rq) {
3786 /* commit outstanding execution time */
eab03c23 3787 if (curr)
9059393e 3788 update_curr(cfs_rq);
af4cf404 3789 else
eab03c23 3790 __dequeue_entity(cfs_rq, se);
1724b95b 3791 update_load_sub(&cfs_rq->load, se->load.weight);
9059393e
VG
3792 }
3793 dequeue_load_avg(cfs_rq, se);
3794
86bfbb7c
PZ
3795 if (!se->on_rq) {
3796 /*
3797 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3798 * we need to scale se->vlag when w_i changes.
3799 */
eab03c23 3800 se->vlag = div_s64(se->vlag * se->load.weight, weight);
147f3efa 3801 } else {
eab03c23 3802 reweight_eevdf(cfs_rq, se, weight);
86bfbb7c
PZ
3803 }
3804
eab03c23
AW
3805 update_load_set(&se->load, weight);
3806
9059393e 3807#ifdef CONFIG_SMP
1ea6c46a 3808 do {
87e867b4 3809 u32 divider = get_pelt_divider(&se->avg);
1ea6c46a
PZ
3810
3811 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
1ea6c46a 3812 } while (0);
9059393e
VG
3813#endif
3814
3815 enqueue_load_avg(cfs_rq, se);
af4cf404 3816 if (se->on_rq) {
1724b95b 3817 update_load_add(&cfs_rq->load, se->load.weight);
5068d840 3818 if (!curr)
eab03c23 3819 __enqueue_entity(cfs_rq, se);
5068d840
YL
3820
3821 /*
3822 * The entity's vruntime has been adjusted, so let's check
3823 * whether the rq-wide min_vruntime needs updated too. Since
3824 * the calculations above require stable min_vruntime rather
3825 * than up-to-date one, we do the update at the end of the
3826 * reweight process.
3827 */
3828 update_min_vruntime(cfs_rq);
af4cf404 3829 }
9059393e
VG
3830}
3831
3832void reweight_task(struct task_struct *p, int prio)
3833{
3834 struct sched_entity *se = &p->se;
3835 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3836 struct load_weight *load = &se->load;
3837 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3838
0dacee1b 3839 reweight_entity(cfs_rq, se, weight);
9059393e
VG
3840 load->inv_weight = sched_prio_to_wmult[prio];
3841}
3842
51bf903b
CZ
3843static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3844
3ff6dcac 3845#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 3846#ifdef CONFIG_SMP
cef27403
PZ
3847/*
3848 * All this does is approximate the hierarchical proportion which includes that
3849 * global sum we all love to hate.
3850 *
3851 * That is, the weight of a group entity, is the proportional share of the
3852 * group weight based on the group runqueue weights. That is:
3853 *
3854 * tg->weight * grq->load.weight
3855 * ge->load.weight = ----------------------------- (1)
08f7c2f4 3856 * \Sum grq->load.weight
cef27403
PZ
3857 *
3858 * Now, because computing that sum is prohibitively expensive to compute (been
3859 * there, done that) we approximate it with this average stuff. The average
3860 * moves slower and therefore the approximation is cheaper and more stable.
3861 *
3862 * So instead of the above, we substitute:
3863 *
3864 * grq->load.weight -> grq->avg.load_avg (2)
3865 *
3866 * which yields the following:
3867 *
3868 * tg->weight * grq->avg.load_avg
3869 * ge->load.weight = ------------------------------ (3)
08f7c2f4 3870 * tg->load_avg
cef27403
PZ
3871 *
3872 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3873 *
3874 * That is shares_avg, and it is right (given the approximation (2)).
3875 *
3876 * The problem with it is that because the average is slow -- it was designed
3877 * to be exactly that of course -- this leads to transients in boundary
3878 * conditions. In specific, the case where the group was idle and we start the
3879 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3880 * yielding bad latency etc..
3881 *
3882 * Now, in that special case (1) reduces to:
3883 *
3884 * tg->weight * grq->load.weight
17de4ee0 3885 * ge->load.weight = ----------------------------- = tg->weight (4)
08f7c2f4 3886 * grp->load.weight
cef27403
PZ
3887 *
3888 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3889 *
3890 * So what we do is modify our approximation (3) to approach (4) in the (near)
3891 * UP case, like:
3892 *
3893 * ge->load.weight =
3894 *
3895 * tg->weight * grq->load.weight
3896 * --------------------------------------------------- (5)
3897 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3898 *
17de4ee0
PZ
3899 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3900 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3901 *
3902 *
3903 * tg->weight * grq->load.weight
3904 * ge->load.weight = ----------------------------- (6)
08f7c2f4 3905 * tg_load_avg'
17de4ee0
PZ
3906 *
3907 * Where:
3908 *
3909 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3910 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
3911 *
3912 * And that is shares_weight and is icky. In the (near) UP case it approaches
3913 * (4) while in the normal case it approaches (3). It consistently
3914 * overestimates the ge->load.weight and therefore:
3915 *
3916 * \Sum ge->load.weight >= tg->weight
3917 *
3918 * hence icky!
3919 */
2c8e4dce 3920static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 3921{
7c80cfc9
PZ
3922 long tg_weight, tg_shares, load, shares;
3923 struct task_group *tg = cfs_rq->tg;
3924
3925 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 3926
3d4b60d3 3927 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 3928
ea1dc6fc 3929 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 3930
ea1dc6fc
PZ
3931 /* Ensure tg_weight >= load */
3932 tg_weight -= cfs_rq->tg_load_avg_contrib;
3933 tg_weight += load;
3ff6dcac 3934
7c80cfc9 3935 shares = (tg_shares * load);
cf5f0acf
PZ
3936 if (tg_weight)
3937 shares /= tg_weight;
3ff6dcac 3938
b8fd8423
DE
3939 /*
3940 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3941 * of a group with small tg->shares value. It is a floor value which is
3942 * assigned as a minimum load.weight to the sched_entity representing
3943 * the group on a CPU.
3944 *
3945 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3946 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3947 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3948 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3949 * instead of 0.
3950 */
7c80cfc9 3951 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 3952}
387f77cc 3953#endif /* CONFIG_SMP */
ea1dc6fc 3954
1ea6c46a
PZ
3955/*
3956 * Recomputes the group entity based on the current state of its group
3957 * runqueue.
3958 */
3959static void update_cfs_group(struct sched_entity *se)
2069dd75 3960{
1ea6c46a 3961 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
0dacee1b 3962 long shares;
2069dd75 3963
1ea6c46a 3964 if (!gcfs_rq)
89ee048f
VG
3965 return;
3966
1ea6c46a 3967 if (throttled_hierarchy(gcfs_rq))
2069dd75 3968 return;
89ee048f 3969
3ff6dcac 3970#ifndef CONFIG_SMP
0dacee1b 3971 shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9 3972#else
eab03c23 3973 shares = calc_group_shares(gcfs_rq);
3ff6dcac 3974#endif
eab03c23
AW
3975 if (unlikely(se->load.weight != shares))
3976 reweight_entity(cfs_rq_of(se), se, shares);
2069dd75 3977}
89ee048f 3978
2069dd75 3979#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3980static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3981{
3982}
3983#endif /* CONFIG_FAIR_GROUP_SCHED */
3984
ea14b57e 3985static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3986{
43964409
LT
3987 struct rq *rq = rq_of(cfs_rq);
3988
a4f9a0e5 3989 if (&rq->cfs == cfs_rq) {
a030d738
VK
3990 /*
3991 * There are a few boundary cases this might miss but it should
3992 * get called often enough that that should (hopefully) not be
9783be2c 3993 * a real problem.
a030d738
VK
3994 *
3995 * It will not get called when we go idle, because the idle
3996 * thread is a different class (!fair), nor will the utilization
3997 * number include things like RT tasks.
3998 *
3999 * As is, the util number is not freq-invariant (we'd have to
4000 * implement arch_scale_freq_capacity() for that).
4001 *
82762d2a 4002 * See cpu_util_cfs().
a030d738 4003 */
ea14b57e 4004 cpufreq_update_util(rq, flags);
a030d738
VK
4005 }
4006}
4007
141965c7 4008#ifdef CONFIG_SMP
e2f3e35f
VD
4009static inline bool load_avg_is_decayed(struct sched_avg *sa)
4010{
4011 if (sa->load_sum)
4012 return false;
4013
4014 if (sa->util_sum)
4015 return false;
4016
4017 if (sa->runnable_sum)
4018 return false;
4019
4020 /*
4021 * _avg must be null when _sum are null because _avg = _sum / divider
4022 * Make sure that rounding and/or propagation of PELT values never
4023 * break this.
4024 */
4025 SCHED_WARN_ON(sa->load_avg ||
4026 sa->util_avg ||
4027 sa->runnable_avg);
4028
4029 return true;
4030}
4031
d05b4305
VD
4032static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4033{
4034 return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4035 cfs_rq->last_update_time_copy);
4036}
c566e8e9 4037#ifdef CONFIG_FAIR_GROUP_SCHED
fdaba61e
RR
4038/*
4039 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4040 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4041 * bottom-up, we only have to test whether the cfs_rq before us on the list
4042 * is our child.
4043 * If cfs_rq is not on the list, test whether a child needs its to be added to
4044 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
4045 */
4046static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4047{
4048 struct cfs_rq *prev_cfs_rq;
4049 struct list_head *prev;
4050
4051 if (cfs_rq->on_list) {
4052 prev = cfs_rq->leaf_cfs_rq_list.prev;
4053 } else {
4054 struct rq *rq = rq_of(cfs_rq);
4055
4056 prev = rq->tmp_alone_branch;
4057 }
4058
4059 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4060
4061 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4062}
a7b359fc
OU
4063
4064static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4065{
4066 if (cfs_rq->load.weight)
4067 return false;
4068
e2f3e35f 4069 if (!load_avg_is_decayed(&cfs_rq->avg))
a7b359fc
OU
4070 return false;
4071
fdaba61e
RR
4072 if (child_cfs_rq_on_list(cfs_rq))
4073 return false;
4074
a7b359fc
OU
4075 return true;
4076}
4077
7c3edd2c
PZ
4078/**
4079 * update_tg_load_avg - update the tg's load avg
4080 * @cfs_rq: the cfs_rq whose avg changed
7c3edd2c
PZ
4081 *
4082 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4083 * However, because tg->load_avg is a global value there are performance
4084 * considerations.
4085 *
4086 * In order to avoid having to look at the other cfs_rq's, we use a
4087 * differential update where we store the last value we propagated. This in
4088 * turn allows skipping updates if the differential is 'small'.
4089 *
815abf5a 4090 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 4091 */
fe749158 4092static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
bb17f655 4093{
1528c661
AL
4094 long delta;
4095 u64 now;
bb17f655 4096
aa0b7ae0
WL
4097 /*
4098 * No need to update load_avg for root_task_group as it is not used.
4099 */
4100 if (cfs_rq->tg == &root_task_group)
4101 return;
4102
f60a631a
VG
4103 /* rq has been offline and doesn't contribute to the share anymore: */
4104 if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4105 return;
4106
1528c661
AL
4107 /*
4108 * For migration heavy workloads, access to tg->load_avg can be
4109 * unbound. Limit the update rate to at most once per ms.
4110 */
4111 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4112 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4113 return;
4114
4115 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
fe749158 4116 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
9d89c257
YD
4117 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4118 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
1528c661 4119 cfs_rq->last_update_tg_load_avg = now;
bb17f655 4120 }
8165e145 4121}
f5f9739d 4122
f60a631a
VG
4123static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4124{
4125 long delta;
4126 u64 now;
4127
4128 /*
4129 * No need to update load_avg for root_task_group, as it is not used.
4130 */
4131 if (cfs_rq->tg == &root_task_group)
4132 return;
4133
4134 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4135 delta = 0 - cfs_rq->tg_load_avg_contrib;
4136 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4137 cfs_rq->tg_load_avg_contrib = 0;
4138 cfs_rq->last_update_tg_load_avg = now;
4139}
4140
4141/* CPU offline callback: */
4142static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4143{
4144 struct task_group *tg;
4145
4146 lockdep_assert_rq_held(rq);
4147
4148 /*
4149 * The rq clock has already been updated in
4150 * set_rq_offline(), so we should skip updating
4151 * the rq clock again in unthrottle_cfs_rq().
4152 */
4153 rq_clock_start_loop_update(rq);
4154
4155 rcu_read_lock();
4156 list_for_each_entry_rcu(tg, &task_groups, list) {
4157 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4158
4159 clear_tg_load_avg(cfs_rq);
4160 }
4161 rcu_read_unlock();
4162
4163 rq_clock_stop_loop_update(rq);
4164}
4165
ad936d86 4166/*
97fb7a0a 4167 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
4168 * caller only guarantees p->pi_lock is held; no other assumptions,
4169 * including the state of rq->lock, should be made.
4170 */
4171void set_task_rq_fair(struct sched_entity *se,
4172 struct cfs_rq *prev, struct cfs_rq *next)
4173{
0ccb977f
PZ
4174 u64 p_last_update_time;
4175 u64 n_last_update_time;
4176
ad936d86
BP
4177 if (!sched_feat(ATTACH_AGE_LOAD))
4178 return;
4179
4180 /*
4181 * We are supposed to update the task to "current" time, then its up to
4182 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4183 * getting what current time is, so simply throw away the out-of-date
4184 * time. This will result in the wakee task is less decayed, but giving
4185 * the wakee more load sounds not bad.
4186 */
0ccb977f
PZ
4187 if (!(se->avg.last_update_time && prev))
4188 return;
ad936d86 4189
d05b4305
VD
4190 p_last_update_time = cfs_rq_last_update_time(prev);
4191 n_last_update_time = cfs_rq_last_update_time(next);
ad936d86 4192
23127296 4193 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 4194 se->avg.last_update_time = n_last_update_time;
ad936d86 4195}
09a43ace 4196
0e2d2aaa
PZ
4197/*
4198 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4199 * propagate its contribution. The key to this propagation is the invariant
4200 * that for each group:
4201 *
4202 * ge->avg == grq->avg (1)
4203 *
4204 * _IFF_ we look at the pure running and runnable sums. Because they
4205 * represent the very same entity, just at different points in the hierarchy.
4206 *
9f683953
VG
4207 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4208 * and simply copies the running/runnable sum over (but still wrong, because
4209 * the group entity and group rq do not have their PELT windows aligned).
0e2d2aaa 4210 *
0dacee1b 4211 * However, update_tg_cfs_load() is more complex. So we have:
0e2d2aaa
PZ
4212 *
4213 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
4214 *
4215 * And since, like util, the runnable part should be directly transferable,
4216 * the following would _appear_ to be the straight forward approach:
4217 *
a4c3c049 4218 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
4219 *
4220 * And per (1) we have:
4221 *
a4c3c049 4222 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
4223 *
4224 * Which gives:
4225 *
4226 * ge->load.weight * grq->avg.load_avg
4227 * ge->avg.load_avg = ----------------------------------- (4)
4228 * grq->load.weight
4229 *
4230 * Except that is wrong!
4231 *
4232 * Because while for entities historical weight is not important and we
4233 * really only care about our future and therefore can consider a pure
4234 * runnable sum, runqueues can NOT do this.
4235 *
4236 * We specifically want runqueues to have a load_avg that includes
4237 * historical weights. Those represent the blocked load, the load we expect
4238 * to (shortly) return to us. This only works by keeping the weights as
4239 * integral part of the sum. We therefore cannot decompose as per (3).
4240 *
a4c3c049
VG
4241 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4242 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4243 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4244 * runnable section of these tasks overlap (or not). If they were to perfectly
4245 * align the rq as a whole would be runnable 2/3 of the time. If however we
4246 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 4247 *
a4c3c049 4248 * So we'll have to approximate.. :/
0e2d2aaa 4249 *
a4c3c049 4250 * Given the constraint:
0e2d2aaa 4251 *
a4c3c049 4252 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 4253 *
a4c3c049
VG
4254 * We can construct a rule that adds runnable to a rq by assuming minimal
4255 * overlap.
0e2d2aaa 4256 *
a4c3c049 4257 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 4258 *
a4c3c049 4259 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 4260 *
a4c3c049 4261 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 4262 *
0e2d2aaa 4263 */
09a43ace 4264static inline void
0e2d2aaa 4265update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 4266{
7ceb7710
VG
4267 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4268 u32 new_sum, divider;
09a43ace
VG
4269
4270 /* Nothing to update */
7ceb7710 4271 if (!delta_avg)
09a43ace
VG
4272 return;
4273
87e867b4
VG
4274 /*
4275 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4276 * See ___update_load_avg() for details.
4277 */
4278 divider = get_pelt_divider(&cfs_rq->avg);
4279
7ceb7710 4280
09a43ace
VG
4281 /* Set new sched_entity's utilization */
4282 se->avg.util_avg = gcfs_rq->avg.util_avg;
7ceb7710
VG
4283 new_sum = se->avg.util_avg * divider;
4284 delta_sum = (long)new_sum - (long)se->avg.util_sum;
4285 se->avg.util_sum = new_sum;
09a43ace
VG
4286
4287 /* Update parent cfs_rq utilization */
7ceb7710
VG
4288 add_positive(&cfs_rq->avg.util_avg, delta_avg);
4289 add_positive(&cfs_rq->avg.util_sum, delta_sum);
4290
4291 /* See update_cfs_rq_load_avg() */
4292 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4293 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
09a43ace
VG
4294}
4295
9f683953
VG
4296static inline void
4297update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4298{
95246d1e
VG
4299 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4300 u32 new_sum, divider;
9f683953
VG
4301
4302 /* Nothing to update */
95246d1e 4303 if (!delta_avg)
9f683953
VG
4304 return;
4305
87e867b4
VG
4306 /*
4307 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4308 * See ___update_load_avg() for details.
4309 */
4310 divider = get_pelt_divider(&cfs_rq->avg);
4311
9f683953
VG
4312 /* Set new sched_entity's runnable */
4313 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
95246d1e
VG
4314 new_sum = se->avg.runnable_avg * divider;
4315 delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4316 se->avg.runnable_sum = new_sum;
9f683953
VG
4317
4318 /* Update parent cfs_rq runnable */
95246d1e
VG
4319 add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4320 add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4321 /* See update_cfs_rq_load_avg() */
4322 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4323 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
9f683953
VG
4324}
4325
09a43ace 4326static inline void
0dacee1b 4327update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 4328{
2d02fa8c 4329 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
0dacee1b
VG
4330 unsigned long load_avg;
4331 u64 load_sum = 0;
2d02fa8c 4332 s64 delta_sum;
95d68593 4333 u32 divider;
09a43ace 4334
0e2d2aaa
PZ
4335 if (!runnable_sum)
4336 return;
09a43ace 4337
0e2d2aaa 4338 gcfs_rq->prop_runnable_sum = 0;
09a43ace 4339
95d68593
VG
4340 /*
4341 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4342 * See ___update_load_avg() for details.
4343 */
87e867b4 4344 divider = get_pelt_divider(&cfs_rq->avg);
95d68593 4345
a4c3c049
VG
4346 if (runnable_sum >= 0) {
4347 /*
4348 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4349 * the CPU is saturated running == runnable.
4350 */
4351 runnable_sum += se->avg.load_sum;
95d68593 4352 runnable_sum = min_t(long, runnable_sum, divider);
a4c3c049
VG
4353 } else {
4354 /*
4355 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4356 * assuming all tasks are equally runnable.
4357 */
4358 if (scale_load_down(gcfs_rq->load.weight)) {
2d02fa8c 4359 load_sum = div_u64(gcfs_rq->avg.load_sum,
a4c3c049
VG
4360 scale_load_down(gcfs_rq->load.weight));
4361 }
4362
4363 /* But make sure to not inflate se's runnable */
4364 runnable_sum = min(se->avg.load_sum, load_sum);
4365 }
4366
4367 /*
4368 * runnable_sum can't be lower than running_sum
23127296
VG
4369 * Rescale running sum to be in the same range as runnable sum
4370 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
4371 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 4372 */
23127296 4373 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
4374 runnable_sum = max(runnable_sum, running_sum);
4375
2d02fa8c
VG
4376 load_sum = se_weight(se) * runnable_sum;
4377 load_avg = div_u64(load_sum, divider);
83c5e9d5 4378
2d02fa8c
VG
4379 delta_avg = load_avg - se->avg.load_avg;
4380 if (!delta_avg)
83c5e9d5 4381 return;
09a43ace 4382
2d02fa8c 4383 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
7c7ad626 4384
2d02fa8c
VG
4385 se->avg.load_sum = runnable_sum;
4386 se->avg.load_avg = load_avg;
4387 add_positive(&cfs_rq->avg.load_avg, delta_avg);
4388 add_positive(&cfs_rq->avg.load_sum, delta_sum);
4389 /* See update_cfs_rq_load_avg() */
4390 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4391 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
09a43ace
VG
4392}
4393
0e2d2aaa 4394static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 4395{
0e2d2aaa
PZ
4396 cfs_rq->propagate = 1;
4397 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
4398}
4399
4400/* Update task and its cfs_rq load average */
4401static inline int propagate_entity_load_avg(struct sched_entity *se)
4402{
0e2d2aaa 4403 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
4404
4405 if (entity_is_task(se))
4406 return 0;
4407
0e2d2aaa
PZ
4408 gcfs_rq = group_cfs_rq(se);
4409 if (!gcfs_rq->propagate)
09a43ace
VG
4410 return 0;
4411
0e2d2aaa
PZ
4412 gcfs_rq->propagate = 0;
4413
09a43ace
VG
4414 cfs_rq = cfs_rq_of(se);
4415
0e2d2aaa 4416 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 4417
0e2d2aaa 4418 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
9f683953 4419 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
0dacee1b 4420 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
09a43ace 4421
ba19f51f 4422 trace_pelt_cfs_tp(cfs_rq);
8de6242c 4423 trace_pelt_se_tp(se);
ba19f51f 4424
09a43ace
VG
4425 return 1;
4426}
4427
bc427898
VG
4428/*
4429 * Check if we need to update the load and the utilization of a blocked
4430 * group_entity:
4431 */
4432static inline bool skip_blocked_update(struct sched_entity *se)
4433{
4434 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4435
4436 /*
4437 * If sched_entity still have not zero load or utilization, we have to
4438 * decay it:
4439 */
4440 if (se->avg.load_avg || se->avg.util_avg)
4441 return false;
4442
4443 /*
4444 * If there is a pending propagation, we have to update the load and
4445 * the utilization of the sched_entity:
4446 */
0e2d2aaa 4447 if (gcfs_rq->propagate)
bc427898
VG
4448 return false;
4449
4450 /*
4451 * Otherwise, the load and the utilization of the sched_entity is
4452 * already zero and there is no pending propagation, so it will be a
4453 * waste of time to try to decay it:
4454 */
4455 return true;
4456}
4457
6e83125c 4458#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 4459
fe749158 4460static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
09a43ace 4461
f60a631a
VG
4462static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4463
09a43ace
VG
4464static inline int propagate_entity_load_avg(struct sched_entity *se)
4465{
4466 return 0;
4467}
4468
0e2d2aaa 4469static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 4470
6e83125c 4471#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 4472
e2f3e35f
VD
4473#ifdef CONFIG_NO_HZ_COMMON
4474static inline void migrate_se_pelt_lag(struct sched_entity *se)
4475{
4476 u64 throttled = 0, now, lut;
4477 struct cfs_rq *cfs_rq;
4478 struct rq *rq;
4479 bool is_idle;
4480
4481 if (load_avg_is_decayed(&se->avg))
4482 return;
4483
4484 cfs_rq = cfs_rq_of(se);
4485 rq = rq_of(cfs_rq);
4486
4487 rcu_read_lock();
4488 is_idle = is_idle_task(rcu_dereference(rq->curr));
4489 rcu_read_unlock();
4490
4491 /*
4492 * The lag estimation comes with a cost we don't want to pay all the
4493 * time. Hence, limiting to the case where the source CPU is idle and
4494 * we know we are at the greatest risk to have an outdated clock.
4495 */
4496 if (!is_idle)
4497 return;
4498
4499 /*
4500 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4501 *
4502 * last_update_time (the cfs_rq's last_update_time)
4503 * = cfs_rq_clock_pelt()@cfs_rq_idle
4504 * = rq_clock_pelt()@cfs_rq_idle
4505 * - cfs->throttled_clock_pelt_time@cfs_rq_idle
4506 *
4507 * cfs_idle_lag (delta between rq's update and cfs_rq's update)
4508 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4509 *
4510 * rq_idle_lag (delta between now and rq's update)
4511 * = sched_clock_cpu() - rq_clock()@rq_idle
4512 *
4513 * We can then write:
4514 *
4515 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4516 * sched_clock_cpu() - rq_clock()@rq_idle
4517 * Where:
4518 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4519 * rq_clock()@rq_idle is rq->clock_idle
4520 * cfs->throttled_clock_pelt_time@cfs_rq_idle
4521 * is cfs_rq->throttled_pelt_idle
4522 */
4523
4524#ifdef CONFIG_CFS_BANDWIDTH
4525 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4526 /* The clock has been stopped for throttling */
4527 if (throttled == U64_MAX)
4528 return;
4529#endif
4530 now = u64_u32_load(rq->clock_pelt_idle);
4531 /*
4532 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4533 * is observed the old clock_pelt_idle value and the new clock_idle,
4534 * which lead to an underestimation. The opposite would lead to an
4535 * overestimation.
4536 */
4537 smp_rmb();
4538 lut = cfs_rq_last_update_time(cfs_rq);
4539
4540 now -= throttled;
4541 if (now < lut)
4542 /*
4543 * cfs_rq->avg.last_update_time is more recent than our
4544 * estimation, let's use it.
4545 */
4546 now = lut;
4547 else
4548 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4549
4550 __update_load_avg_blocked_se(now, se);
4551}
4552#else
4553static void migrate_se_pelt_lag(struct sched_entity *se) {}
4554#endif
4555
3d30544f
PZ
4556/**
4557 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 4558 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 4559 * @cfs_rq: cfs_rq to update
3d30544f
PZ
4560 *
4561 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
d6531ab6 4562 * avg. The immediate corollary is that all (fair) tasks must be attached.
3d30544f
PZ
4563 *
4564 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4565 *
a315da5e 4566 * Return: true if the load decayed or we removed load.
7c3edd2c
PZ
4567 *
4568 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4569 * call update_tg_load_avg() when this function returns true.
3d30544f 4570 */
a2c6c91f 4571static inline int
3a123bbb 4572update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 4573{
9f683953 4574 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
9d89c257 4575 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 4576 int decayed = 0;
2dac754e 4577
2a2f5d4e
PZ
4578 if (cfs_rq->removed.nr) {
4579 unsigned long r;
87e867b4 4580 u32 divider = get_pelt_divider(&cfs_rq->avg);
2a2f5d4e
PZ
4581
4582 raw_spin_lock(&cfs_rq->removed.lock);
4583 swap(cfs_rq->removed.util_avg, removed_util);
4584 swap(cfs_rq->removed.load_avg, removed_load);
9f683953 4585 swap(cfs_rq->removed.runnable_avg, removed_runnable);
2a2f5d4e
PZ
4586 cfs_rq->removed.nr = 0;
4587 raw_spin_unlock(&cfs_rq->removed.lock);
4588
2a2f5d4e 4589 r = removed_load;
89741892 4590 sub_positive(&sa->load_avg, r);
2d02fa8c
VG
4591 sub_positive(&sa->load_sum, r * divider);
4592 /* See sa->util_sum below */
4593 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
2dac754e 4594
2a2f5d4e 4595 r = removed_util;
89741892 4596 sub_positive(&sa->util_avg, r);
98b0d890
VG
4597 sub_positive(&sa->util_sum, r * divider);
4598 /*
4599 * Because of rounding, se->util_sum might ends up being +1 more than
4600 * cfs->util_sum. Although this is not a problem by itself, detaching
4601 * a lot of tasks with the rounding problem between 2 updates of
4602 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4603 * cfs_util_avg is not.
4604 * Check that util_sum is still above its lower bound for the new
4605 * util_avg. Given that period_contrib might have moved since the last
4606 * sync, we are only sure that util_sum must be above or equal to
4607 * util_avg * minimum possible divider
4608 */
4609 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
2a2f5d4e 4610
9f683953
VG
4611 r = removed_runnable;
4612 sub_positive(&sa->runnable_avg, r);
95246d1e
VG
4613 sub_positive(&sa->runnable_sum, r * divider);
4614 /* See sa->util_sum above */
4615 sa->runnable_sum = max_t(u32, sa->runnable_sum,
4616 sa->runnable_avg * PELT_MIN_DIVIDER);
9f683953
VG
4617
4618 /*
4619 * removed_runnable is the unweighted version of removed_load so we
4620 * can use it to estimate removed_load_sum.
4621 */
4622 add_tg_cfs_propagate(cfs_rq,
4623 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
2a2f5d4e
PZ
4624
4625 decayed = 1;
9d89c257 4626 }
36ee28e4 4627
23127296 4628 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
d05b4305
VD
4629 u64_u32_store_copy(sa->last_update_time,
4630 cfs_rq->last_update_time_copy,
4631 sa->last_update_time);
2a2f5d4e 4632 return decayed;
21e96f88
SM
4633}
4634
3d30544f
PZ
4635/**
4636 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4637 * @cfs_rq: cfs_rq to attach to
4638 * @se: sched_entity to attach
4639 *
4640 * Must call update_cfs_rq_load_avg() before this, since we rely on
4641 * cfs_rq->avg.last_update_time being current.
4642 */
a4f9a0e5 4643static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
a05e8c51 4644{
95d68593
VG
4645 /*
4646 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4647 * See ___update_load_avg() for details.
4648 */
87e867b4 4649 u32 divider = get_pelt_divider(&cfs_rq->avg);
f207934f
PZ
4650
4651 /*
4652 * When we attach the @se to the @cfs_rq, we must align the decay
4653 * window because without that, really weird and wonderful things can
4654 * happen.
4655 *
4656 * XXX illustrate
4657 */
a05e8c51 4658 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
4659 se->avg.period_contrib = cfs_rq->avg.period_contrib;
4660
4661 /*
4662 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4663 * period_contrib. This isn't strictly correct, but since we're
4664 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4665 * _sum a little.
4666 */
4667 se->avg.util_sum = se->avg.util_avg * divider;
4668
9f683953
VG
4669 se->avg.runnable_sum = se->avg.runnable_avg * divider;
4670
40f5aa4c 4671 se->avg.load_sum = se->avg.load_avg * divider;
4672 if (se_weight(se) < se->avg.load_sum)
4673 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4674 else
4675 se->avg.load_sum = 1;
f207934f 4676
8d5b9025 4677 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
4678 cfs_rq->avg.util_avg += se->avg.util_avg;
4679 cfs_rq->avg.util_sum += se->avg.util_sum;
9f683953
VG
4680 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4681 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
0e2d2aaa
PZ
4682
4683 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 4684
a4f9a0e5 4685 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
4686
4687 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
4688}
4689
3d30544f
PZ
4690/**
4691 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4692 * @cfs_rq: cfs_rq to detach from
4693 * @se: sched_entity to detach
4694 *
4695 * Must call update_cfs_rq_load_avg() before this, since we rely on
4696 * cfs_rq->avg.last_update_time being current.
4697 */
a05e8c51
BP
4698static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4699{
8d5b9025 4700 dequeue_load_avg(cfs_rq, se);
89741892 4701 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
7ceb7710
VG
4702 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4703 /* See update_cfs_rq_load_avg() */
4704 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4705 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4706
9f683953 4707 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
95246d1e
VG
4708 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4709 /* See update_cfs_rq_load_avg() */
4710 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4711 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
0e2d2aaa
PZ
4712
4713 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 4714
ea14b57e 4715 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
4716
4717 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
4718}
4719
b382a531
PZ
4720/*
4721 * Optional action to be done while updating the load average
4722 */
4723#define UPDATE_TG 0x1
4724#define SKIP_AGE_LOAD 0x2
4725#define DO_ATTACH 0x4
e1f078f5 4726#define DO_DETACH 0x8
b382a531
PZ
4727
4728/* Update task and its cfs_rq load average */
4729static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4730{
23127296 4731 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
4732 int decayed;
4733
4734 /*
4735 * Track task load average for carrying it to new CPU after migrated, and
4736 * track group sched_entity load average for task_h_load calc in migration
4737 */
4738 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 4739 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
4740
4741 decayed = update_cfs_rq_load_avg(now, cfs_rq);
4742 decayed |= propagate_entity_load_avg(se);
4743
4744 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4745
ea14b57e
PZ
4746 /*
4747 * DO_ATTACH means we're here from enqueue_entity().
4748 * !last_update_time means we've passed through
4749 * migrate_task_rq_fair() indicating we migrated.
4750 *
4751 * IOW we're enqueueing a task on a new CPU.
4752 */
a4f9a0e5 4753 attach_entity_load_avg(cfs_rq, se);
fe749158 4754 update_tg_load_avg(cfs_rq);
b382a531 4755
e1f078f5
CZ
4756 } else if (flags & DO_DETACH) {
4757 /*
4758 * DO_DETACH means we're here from dequeue_entity()
4759 * and we are migrating task out of the CPU.
4760 */
4761 detach_entity_load_avg(cfs_rq, se);
4762 update_tg_load_avg(cfs_rq);
bef69dd8
VG
4763 } else if (decayed) {
4764 cfs_rq_util_change(cfs_rq, 0);
4765
4766 if (flags & UPDATE_TG)
fe749158 4767 update_tg_load_avg(cfs_rq);
bef69dd8 4768 }
b382a531
PZ
4769}
4770
104cb16d
MR
4771/*
4772 * Synchronize entity load avg of dequeued entity without locking
4773 * the previous rq.
4774 */
71b47eaf 4775static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
4776{
4777 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4778 u64 last_update_time;
4779
4780 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 4781 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
4782}
4783
0905f04e
YD
4784/*
4785 * Task first catches up with cfs_rq, and then subtract
4786 * itself from the cfs_rq (task must be off the queue now).
4787 */
71b47eaf 4788static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
4789{
4790 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 4791 unsigned long flags;
0905f04e
YD
4792
4793 /*
7dc603c9 4794 * tasks cannot exit without having gone through wake_up_new_task() ->
d6531ab6
CZ
4795 * enqueue_task_fair() which will have added things to the cfs_rq,
4796 * so we can remove unconditionally.
0905f04e 4797 */
0905f04e 4798
104cb16d 4799 sync_entity_load_avg(se);
2a2f5d4e
PZ
4800
4801 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4802 ++cfs_rq->removed.nr;
4803 cfs_rq->removed.util_avg += se->avg.util_avg;
4804 cfs_rq->removed.load_avg += se->avg.load_avg;
9f683953 4805 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
2a2f5d4e 4806 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 4807}
642dbc39 4808
9f683953
VG
4809static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4810{
4811 return cfs_rq->avg.runnable_avg;
4812}
4813
7ea241af
YD
4814static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4815{
4816 return cfs_rq->avg.load_avg;
4817}
4818
d91cecc1
CY
4819static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4820
7f65ea42
PB
4821static inline unsigned long task_util(struct task_struct *p)
4822{
4823 return READ_ONCE(p->se.avg.util_avg);
4824}
4825
50181c0c
VG
4826static inline unsigned long task_runnable(struct task_struct *p)
4827{
4828 return READ_ONCE(p->se.avg.runnable_avg);
4829}
4830
7f65ea42
PB
4831static inline unsigned long _task_util_est(struct task_struct *p)
4832{
11137d38 4833 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
7f65ea42
PB
4834}
4835
4836static inline unsigned long task_util_est(struct task_struct *p)
4837{
4838 return max(task_util(p), _task_util_est(p));
4839}
4840
4841static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4842 struct task_struct *p)
4843{
4844 unsigned int enqueued;
4845
4846 if (!sched_feat(UTIL_EST))
4847 return;
4848
4849 /* Update root cfs_rq's estimated utilization */
11137d38 4850 enqueued = cfs_rq->avg.util_est;
92a801e5 4851 enqueued += _task_util_est(p);
11137d38 4852 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4581bea8
VD
4853
4854 trace_sched_util_est_cfs_tp(cfs_rq);
7f65ea42
PB
4855}
4856
8c1f560c
XY
4857static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4858 struct task_struct *p)
4859{
4860 unsigned int enqueued;
4861
4862 if (!sched_feat(UTIL_EST))
4863 return;
4864
4865 /* Update root cfs_rq's estimated utilization */
11137d38 4866 enqueued = cfs_rq->avg.util_est;
8c1f560c 4867 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
11137d38 4868 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
8c1f560c
XY
4869
4870 trace_sched_util_est_cfs_tp(cfs_rq);
4871}
4872
b89997aa
VD
4873#define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4874
8c1f560c
XY
4875static inline void util_est_update(struct cfs_rq *cfs_rq,
4876 struct task_struct *p,
4877 bool task_sleep)
7f65ea42 4878{
11137d38 4879 unsigned int ewma, dequeued, last_ewma_diff;
7f65ea42
PB
4880
4881 if (!sched_feat(UTIL_EST))
4882 return;
4883
7f65ea42
PB
4884 /*
4885 * Skip update of task's estimated utilization when the task has not
4886 * yet completed an activation, e.g. being migrated.
4887 */
4888 if (!task_sleep)
4889 return;
4890
11137d38
VG
4891 /* Get current estimate of utilization */
4892 ewma = READ_ONCE(p->se.avg.util_est);
4893
d519329f
PB
4894 /*
4895 * If the PELT values haven't changed since enqueue time,
4896 * skip the util_est update.
4897 */
11137d38 4898 if (ewma & UTIL_AVG_UNCHANGED)
d519329f
PB
4899 return;
4900
11137d38
VG
4901 /* Get utilization at dequeue */
4902 dequeued = task_util(p);
b89997aa 4903
b8c96361
PB
4904 /*
4905 * Reset EWMA on utilization increases, the moving average is used only
4906 * to smooth utilization decreases.
4907 */
11137d38
VG
4908 if (ewma <= dequeued) {
4909 ewma = dequeued;
7736ae55 4910 goto done;
b8c96361
PB
4911 }
4912
7f65ea42 4913 /*
b89997aa 4914 * Skip update of task's estimated utilization when its members are
7f65ea42
PB
4915 * already ~1% close to its last activation value.
4916 */
11137d38
VG
4917 last_ewma_diff = ewma - dequeued;
4918 if (last_ewma_diff < UTIL_EST_MARGIN)
4919 goto done;
7f65ea42 4920
10a35e68
VG
4921 /*
4922 * To avoid overestimation of actual task utilization, skip updates if
4923 * we cannot grant there is idle time in this CPU.
4924 */
11137d38 4925 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
10a35e68
VG
4926 return;
4927
50181c0c
VG
4928 /*
4929 * To avoid underestimate of task utilization, skip updates of EWMA if
4930 * we cannot grant that thread got all CPU time it wanted.
4931 */
11137d38 4932 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
50181c0c
VG
4933 goto done;
4934
4935
7f65ea42
PB
4936 /*
4937 * Update Task's estimated utilization
4938 *
4939 * When *p completes an activation we can consolidate another sample
11137d38
VG
4940 * of the task size. This is done by using this value to update the
4941 * Exponential Weighted Moving Average (EWMA):
7f65ea42
PB
4942 *
4943 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4944 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4945 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
11137d38
VG
4946 * = w * ( -last_ewma_diff ) + ewma(t-1)
4947 * = w * (-last_ewma_diff + ewma(t-1) / w)
7f65ea42
PB
4948 *
4949 * Where 'w' is the weight of new samples, which is configured to be
4950 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4951 */
11137d38
VG
4952 ewma <<= UTIL_EST_WEIGHT_SHIFT;
4953 ewma -= last_ewma_diff;
4954 ewma >>= UTIL_EST_WEIGHT_SHIFT;
b8c96361 4955done:
11137d38
VG
4956 ewma |= UTIL_AVG_UNCHANGED;
4957 WRITE_ONCE(p->se.avg.util_est, ewma);
4581bea8
VD
4958
4959 trace_sched_util_est_se_tp(&p->se);
7f65ea42
PB
4960}
4961
48d5e9da
QY
4962static inline int util_fits_cpu(unsigned long util,
4963 unsigned long uclamp_min,
4964 unsigned long uclamp_max,
4965 int cpu)
4966{
4967 unsigned long capacity_orig, capacity_orig_thermal;
4968 unsigned long capacity = capacity_of(cpu);
4969 bool fits, uclamp_max_fits;
4970
4971 /*
4972 * Check if the real util fits without any uclamp boost/cap applied.
4973 */
4974 fits = fits_capacity(util, capacity);
4975
4976 if (!uclamp_is_used())
4977 return fits;
4978
4979 /*
7bc26384 4980 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
48d5e9da
QY
4981 * uclamp_max. We only care about capacity pressure (by using
4982 * capacity_of()) for comparing against the real util.
4983 *
4984 * If a task is boosted to 1024 for example, we don't want a tiny
4985 * pressure to skew the check whether it fits a CPU or not.
4986 *
7bc26384 4987 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
48d5e9da
QY
4988 * should fit a little cpu even if there's some pressure.
4989 *
4990 * Only exception is for thermal pressure since it has a direct impact
4991 * on available OPP of the system.
4992 *
4993 * We honour it for uclamp_min only as a drop in performance level
4994 * could result in not getting the requested minimum performance level.
4995 *
4996 * For uclamp_max, we can tolerate a drop in performance level as the
4997 * goal is to cap the task. So it's okay if it's getting less.
48d5e9da 4998 */
7bc26384 4999 capacity_orig = arch_scale_cpu_capacity(cpu);
a2e90611 5000 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
48d5e9da
QY
5001
5002 /*
5003 * We want to force a task to fit a cpu as implied by uclamp_max.
5004 * But we do have some corner cases to cater for..
5005 *
5006 *
5007 * C=z
5008 * | ___
5009 * | C=y | |
5010 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5011 * | C=x | | | |
5012 * | ___ | | | |
5013 * | | | | | | | (util somewhere in this region)
5014 * | | | | | | |
5015 * | | | | | | |
5016 * +----------------------------------------
5017 * cpu0 cpu1 cpu2
5018 *
5019 * In the above example if a task is capped to a specific performance
5020 * point, y, then when:
5021 *
5022 * * util = 80% of x then it does not fit on cpu0 and should migrate
5023 * to cpu1
5024 * * util = 80% of y then it is forced to fit on cpu1 to honour
5025 * uclamp_max request.
5026 *
5027 * which is what we're enforcing here. A task always fits if
5028 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5029 * the normal upmigration rules should withhold still.
5030 *
5031 * Only exception is when we are on max capacity, then we need to be
5032 * careful not to block overutilized state. This is so because:
5033 *
5034 * 1. There's no concept of capping at max_capacity! We can't go
5035 * beyond this performance level anyway.
5036 * 2. The system is being saturated when we're operating near
5037 * max capacity, it doesn't make sense to block overutilized.
5038 */
5039 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5040 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5041 fits = fits || uclamp_max_fits;
5042
5043 /*
5044 *
5045 * C=z
5046 * | ___ (region a, capped, util >= uclamp_max)
5047 * | C=y | |
5048 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5049 * | C=x | | | |
5050 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
5051 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5052 * | | | | | | |
5053 * | | | | | | | (region c, boosted, util < uclamp_min)
5054 * +----------------------------------------
5055 * cpu0 cpu1 cpu2
5056 *
5057 * a) If util > uclamp_max, then we're capped, we don't care about
5058 * actual fitness value here. We only care if uclamp_max fits
5059 * capacity without taking margin/pressure into account.
5060 * See comment above.
5061 *
5062 * b) If uclamp_min <= util <= uclamp_max, then the normal
5063 * fits_capacity() rules apply. Except we need to ensure that we
5064 * enforce we remain within uclamp_max, see comment above.
5065 *
5066 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5067 * need to take into account the boosted value fits the CPU without
5068 * taking margin/pressure into account.
5069 *
5070 * Cases (a) and (b) are handled in the 'fits' variable already. We
5071 * just need to consider an extra check for case (c) after ensuring we
5072 * handle the case uclamp_min > uclamp_max.
5073 */
5074 uclamp_min = min(uclamp_min, uclamp_max);
e5ed0550
VG
5075 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
5076 return -1;
48d5e9da
QY
5077
5078 return fits;
5079}
5080
b48e16a6 5081static inline int task_fits_cpu(struct task_struct *p, int cpu)
3b1baa64 5082{
b48e16a6
QY
5083 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5084 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5085 unsigned long util = task_util_est(p);
e5ed0550
VG
5086 /*
5087 * Return true only if the cpu fully fits the task requirements, which
5088 * include the utilization but also the performance hints.
5089 */
5090 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
3b1baa64
MR
5091}
5092
5093static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5094{
740cf8a7 5095 if (!sched_asym_cpucap_active())
3b1baa64
MR
5096 return;
5097
0ae78eec 5098 if (!p || p->nr_cpus_allowed == 1) {
3b1baa64
MR
5099 rq->misfit_task_load = 0;
5100 return;
5101 }
5102
b48e16a6 5103 if (task_fits_cpu(p, cpu_of(rq))) {
3b1baa64
MR
5104 rq->misfit_task_load = 0;
5105 return;
5106 }
5107
01cfcde9
VG
5108 /*
5109 * Make sure that misfit_task_load will not be null even if
5110 * task_h_load() returns 0.
5111 */
5112 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
3b1baa64
MR
5113}
5114
38033c37
PZ
5115#else /* CONFIG_SMP */
5116
a7b359fc
OU
5117static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5118{
c0490bc9 5119 return !cfs_rq->nr_running;
a7b359fc
OU
5120}
5121
d31b1a66
VG
5122#define UPDATE_TG 0x0
5123#define SKIP_AGE_LOAD 0x0
b382a531 5124#define DO_ATTACH 0x0
e1f078f5 5125#define DO_DETACH 0x0
d31b1a66 5126
88c0616e 5127static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 5128{
ea14b57e 5129 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
5130}
5131
9d89c257 5132static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 5133
a05e8c51 5134static inline void
a4f9a0e5 5135attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
a05e8c51
BP
5136static inline void
5137detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5138
d91cecc1 5139static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
5140{
5141 return 0;
5142}
5143
7f65ea42
PB
5144static inline void
5145util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5146
5147static inline void
8c1f560c
XY
5148util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5149
5150static inline void
5151util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5152 bool task_sleep) {}
3b1baa64 5153static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 5154
38033c37 5155#endif /* CONFIG_SMP */
9d85f21c 5156
aeb73b04 5157static void
d07f09a1 5158place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
a53ce18c 5159{
2f2fc17b 5160 u64 vslice, vruntime = avg_vruntime(cfs_rq);
86bfbb7c 5161 s64 lag = 0;
a53ce18c 5162
2f2fc17b
PZ
5163 se->slice = sysctl_sched_base_slice;
5164 vslice = calc_delta_fair(se->slice, se);
5165
86bfbb7c
PZ
5166 /*
5167 * Due to how V is constructed as the weighted average of entities,
5168 * adding tasks with positive lag, or removing tasks with negative lag
5169 * will move 'time' backwards, this can screw around with the lag of
5170 * other tasks.
5171 *
5172 * EEVDF: placement strategy #1 / #2
5173 */
e8f331bc 5174 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
86bfbb7c
PZ
5175 struct sched_entity *curr = cfs_rq->curr;
5176 unsigned long load;
a53ce18c 5177
86bfbb7c 5178 lag = se->vlag;
a53ce18c 5179
a2e7a7eb 5180 /*
86bfbb7c
PZ
5181 * If we want to place a task and preserve lag, we have to
5182 * consider the effect of the new entity on the weighted
5183 * average and compensate for this, otherwise lag can quickly
5184 * evaporate.
5185 *
5186 * Lag is defined as:
5187 *
5188 * lag_i = S - s_i = w_i * (V - v_i)
5189 *
5190 * To avoid the 'w_i' term all over the place, we only track
5191 * the virtual lag:
5192 *
5193 * vl_i = V - v_i <=> v_i = V - vl_i
5194 *
5195 * And we take V to be the weighted average of all v:
5196 *
5197 * V = (\Sum w_j*v_j) / W
5198 *
5199 * Where W is: \Sum w_j
5200 *
5201 * Then, the weighted average after adding an entity with lag
5202 * vl_i is given by:
5203 *
5204 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5205 * = (W*V + w_i*(V - vl_i)) / (W + w_i)
5206 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5207 * = (V*(W + w_i) - w_i*l) / (W + w_i)
5208 * = V - w_i*vl_i / (W + w_i)
5209 *
5210 * And the actual lag after adding an entity with vl_i is:
5211 *
5212 * vl'_i = V' - v_i
5213 * = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5214 * = vl_i - w_i*vl_i / (W + w_i)
5215 *
5216 * Which is strictly less than vl_i. So in order to preserve lag
5217 * we should inflate the lag before placement such that the
5218 * effective lag after placement comes out right.
5219 *
5220 * As such, invert the above relation for vl'_i to get the vl_i
5221 * we need to use such that the lag after placement is the lag
5222 * we computed before dequeue.
5223 *
5224 * vl'_i = vl_i - w_i*vl_i / (W + w_i)
5225 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5226 *
5227 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5228 * = W*vl_i
5229 *
5230 * vl_i = (W + w_i)*vl'_i / W
a2e7a7eb 5231 */
86bfbb7c
PZ
5232 load = cfs_rq->avg_load;
5233 if (curr && curr->on_rq)
147f3efa 5234 load += scale_load_down(curr->load.weight);
a53ce18c 5235
147f3efa 5236 lag *= load + scale_load_down(se->load.weight);
86bfbb7c
PZ
5237 if (WARN_ON_ONCE(!load))
5238 load = 1;
5239 lag = div_s64(lag, load);
86bfbb7c 5240 }
a53ce18c 5241
76cae9db 5242 se->vruntime = vruntime - lag;
94dfb5e7 5243
2cb8600e 5244 /*
147f3efa
PZ
5245 * When joining the competition; the exisiting tasks will be,
5246 * on average, halfway through their slice, as such start tasks
5247 * off with half a slice to ease into the competition.
2cb8600e 5248 */
d07f09a1 5249 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
147f3efa 5250 vslice /= 2;
2cae3948 5251
147f3efa
PZ
5252 /*
5253 * EEVDF: vd_i = ve_i + r_i/w_i
5254 */
5255 se->deadline = se->vruntime + vslice;
aeb73b04
PZ
5256}
5257
d3d9dc33 5258static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
79462e8c 5259static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
d3d9dc33 5260
fe61468b 5261static inline bool cfs_bandwidth_used(void);
b5179ac7 5262
bf0f6f24 5263static void
88ec22d3 5264enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 5265{
2f950354
PZ
5266 bool curr = cfs_rq->curr == se;
5267
88ec22d3 5268 /*
2f950354
PZ
5269 * If we're the current task, we must renormalise before calling
5270 * update_curr().
88ec22d3 5271 */
e8f331bc 5272 if (curr)
d07f09a1 5273 place_entity(cfs_rq, se, flags);
88ec22d3 5274
2f950354
PZ
5275 update_curr(cfs_rq);
5276
89ee048f
VG
5277 /*
5278 * When enqueuing a sched_entity, we must:
5279 * - Update loads to have both entity and cfs_rq synced with now.
859f2062
CZ
5280 * - For group_entity, update its runnable_weight to reflect the new
5281 * h_nr_running of its group cfs_rq.
89ee048f
VG
5282 * - For group_entity, update its weight to reflect the new share of
5283 * its group cfs_rq
5284 * - Add its new weight to cfs_rq->load.weight
5285 */
b382a531 5286 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
9f683953 5287 se_update_runnable(se);
e8f331bc
PZ
5288 /*
5289 * XXX update_load_avg() above will have attached us to the pelt sum;
5290 * but update_cfs_group() here will re-adjust the weight and have to
5291 * undo/redo all that. Seems wasteful.
5292 */
1ea6c46a 5293 update_cfs_group(se);
bf0f6f24 5294
e8f331bc
PZ
5295 /*
5296 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5297 * we can place the entity.
5298 */
5299 if (!curr)
d07f09a1 5300 place_entity(cfs_rq, se, flags);
e8f331bc 5301
17bc14b7 5302 account_entity_enqueue(cfs_rq, se);
bf0f6f24 5303
a53ce18c
VG
5304 /* Entity has migrated, no longer consider this task hot */
5305 if (flags & ENQUEUE_MIGRATED)
5306 se->exec_start = 0;
bf0f6f24 5307
cb251765 5308 check_schedstat_required();
60f2415e 5309 update_stats_enqueue_fair(cfs_rq, se, flags);
2f950354 5310 if (!curr)
83b699ed 5311 __enqueue_entity(cfs_rq, se);
2069dd75 5312 se->on_rq = 1;
3d4b47b4 5313
51bf903b 5314 if (cfs_rq->nr_running == 1) {
d3d9dc33 5315 check_enqueue_throttle(cfs_rq);
79462e8c 5316 if (!throttled_hierarchy(cfs_rq)) {
51bf903b 5317 list_add_leaf_cfs_rq(cfs_rq);
79462e8c
JD
5318 } else {
5319#ifdef CONFIG_CFS_BANDWIDTH
677ea015 5320 struct rq *rq = rq_of(cfs_rq);
f1044799 5321
79462e8c 5322 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
677ea015
JD
5323 cfs_rq->throttled_clock = rq_clock(rq);
5324 if (!cfs_rq->throttled_clock_self)
5325 cfs_rq->throttled_clock_self = rq_clock(rq);
79462e8c
JD
5326#endif
5327 }
2c13c919
RR
5328 }
5329}
2002c695 5330
2c13c919
RR
5331static void __clear_buddies_next(struct sched_entity *se)
5332{
5333 for_each_sched_entity(se) {
5334 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 5335 if (cfs_rq->next != se)
2c13c919 5336 break;
f1044799
PZ
5337
5338 cfs_rq->next = NULL;
2c13c919 5339 }
2002c695
PZ
5340}
5341
a571bbea
PZ
5342static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5343{
2c13c919
RR
5344 if (cfs_rq->next == se)
5345 __clear_buddies_next(se);
a571bbea
PZ
5346}
5347
6c16a6dc 5348static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 5349
bf0f6f24 5350static void
371fd7e7 5351dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 5352{
e1f078f5
CZ
5353 int action = UPDATE_TG;
5354
5355 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5356 action |= DO_DETACH;
5357
a2a2d680
DA
5358 /*
5359 * Update run-time statistics of the 'current'.
5360 */
5361 update_curr(cfs_rq);
89ee048f
VG
5362
5363 /*
5364 * When dequeuing a sched_entity, we must:
5365 * - Update loads to have both entity and cfs_rq synced with now.
859f2062
CZ
5366 * - For group_entity, update its runnable_weight to reflect the new
5367 * h_nr_running of its group cfs_rq.
dfcb245e 5368 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
5369 * - For group entity, update its weight to reflect the new share
5370 * of its group cfs_rq.
5371 */
e1f078f5 5372 update_load_avg(cfs_rq, se, action);
9f683953 5373 se_update_runnable(se);
a2a2d680 5374
60f2415e 5375 update_stats_dequeue_fair(cfs_rq, se, flags);
67e9fb2a 5376
2002c695 5377 clear_buddies(cfs_rq, se);
4793241b 5378
e8f331bc 5379 update_entity_lag(cfs_rq, se);
83b699ed 5380 if (se != cfs_rq->curr)
30cfdcfc 5381 __dequeue_entity(cfs_rq, se);
17bc14b7 5382 se->on_rq = 0;
30cfdcfc 5383 account_entity_dequeue(cfs_rq, se);
88ec22d3 5384
d8b4986d
PT
5385 /* return excess runtime on last dequeue */
5386 return_cfs_rq_runtime(cfs_rq);
5387
1ea6c46a 5388 update_cfs_group(se);
b60205c7
PZ
5389
5390 /*
5391 * Now advance min_vruntime if @se was the entity holding it back,
5392 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5393 * put back on, and if we advance min_vruntime, we'll be placed back
5394 * further than we started -- ie. we'll be penalized.
5395 */
9845c49c 5396 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 5397 update_min_vruntime(cfs_rq);
e2f3e35f
VD
5398
5399 if (cfs_rq->nr_running == 0)
5400 update_idle_cfs_rq_clock_pelt(cfs_rq);
bf0f6f24
IM
5401}
5402
83b699ed 5403static void
8494f412 5404set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 5405{
21f56ffe
PZ
5406 clear_buddies(cfs_rq, se);
5407
83b699ed
SV
5408 /* 'current' is not kept within the tree. */
5409 if (se->on_rq) {
5410 /*
5411 * Any task has to be enqueued before it get to execute on
5412 * a CPU. So account for the time it spent waiting on the
5413 * runqueue.
5414 */
60f2415e 5415 update_stats_wait_end_fair(cfs_rq, se);
83b699ed 5416 __dequeue_entity(cfs_rq, se);
88c0616e 5417 update_load_avg(cfs_rq, se, UPDATE_TG);
63304558
PZ
5418 /*
5419 * HACK, stash a copy of deadline at the point of pick in vlag,
5420 * which isn't used until dequeue.
5421 */
5422 se->vlag = se->deadline;
83b699ed
SV
5423 }
5424
79303e9e 5425 update_stats_curr_start(cfs_rq, se);
429d43bc 5426 cfs_rq->curr = se;
4fa8d299 5427
eba1ed4b
IM
5428 /*
5429 * Track our maximum slice length, if the CPU's load is at
5430 * least twice that of our own weight (i.e. dont track it
5431 * when there are only lesser-weight tasks around):
5432 */
f2bedc47
DE
5433 if (schedstat_enabled() &&
5434 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
ceeadb83
YS
5435 struct sched_statistics *stats;
5436
5437 stats = __schedstats_from_se(se);
5438 __schedstat_set(stats->slice_max,
5439 max((u64)stats->slice_max,
a2dcb276 5440 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 5441 }
4fa8d299 5442
4a55b450 5443 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
5444}
5445
ac53db59
RR
5446/*
5447 * Pick the next process, keeping these things in mind, in this order:
5448 * 1) keep things fair between processes/task groups
5449 * 2) pick the "next" process, since someone really wants that to run
5450 * 3) pick the "last" process, for cache locality
5451 * 4) do not run the "skip" process, if something else is available
5452 */
678d5718 5453static struct sched_entity *
4c456c9a 5454pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 5455{
ac53db59 5456 /*
5e963f2b 5457 * Enabling NEXT_BUDDY will affect latency but not fairness.
ac53db59 5458 */
5e963f2b
PZ
5459 if (sched_feat(NEXT_BUDDY) &&
5460 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5461 return cfs_rq->next;
ac53db59 5462
5e963f2b 5463 return pick_eevdf(cfs_rq);
aa2ac252
PZ
5464}
5465
678d5718 5466static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 5467
ab6cde26 5468static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
5469{
5470 /*
5471 * If still on the runqueue then deactivate_task()
5472 * was not called and update_curr() has to be done:
5473 */
5474 if (prev->on_rq)
b7cc0896 5475 update_curr(cfs_rq);
bf0f6f24 5476
d3d9dc33
PT
5477 /* throttle cfs_rqs exceeding runtime */
5478 check_cfs_rq_runtime(cfs_rq);
5479
30cfdcfc 5480 if (prev->on_rq) {
60f2415e 5481 update_stats_wait_start_fair(cfs_rq, prev);
30cfdcfc
DA
5482 /* Put 'current' back into the tree. */
5483 __enqueue_entity(cfs_rq, prev);
9d85f21c 5484 /* in !on_rq case, update occurred at dequeue */
88c0616e 5485 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 5486 }
429d43bc 5487 cfs_rq->curr = NULL;
bf0f6f24
IM
5488}
5489
8f4d37ec
PZ
5490static void
5491entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 5492{
bf0f6f24 5493 /*
30cfdcfc 5494 * Update run-time statistics of the 'current'.
bf0f6f24 5495 */
30cfdcfc 5496 update_curr(cfs_rq);
bf0f6f24 5497
9d85f21c
PT
5498 /*
5499 * Ensure that runnable average is periodically updated.
5500 */
88c0616e 5501 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 5502 update_cfs_group(curr);
9d85f21c 5503
8f4d37ec
PZ
5504#ifdef CONFIG_SCHED_HRTICK
5505 /*
5506 * queued ticks are scheduled to match the slice, so don't bother
5507 * validating it and just reschedule.
5508 */
983ed7a6 5509 if (queued) {
8875125e 5510 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
5511 return;
5512 }
8f4d37ec
PZ
5513 /*
5514 * don't let the period tick interfere with the hrtick preemption
5515 */
5516 if (!sched_feat(DOUBLE_TICK) &&
5517 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5518 return;
5519#endif
bf0f6f24
IM
5520}
5521
ab84d31e
PT
5522
5523/**************************************************
5524 * CFS bandwidth control machinery
5525 */
5526
5527#ifdef CONFIG_CFS_BANDWIDTH
029632fb 5528
e9666d10 5529#ifdef CONFIG_JUMP_LABEL
c5905afb 5530static struct static_key __cfs_bandwidth_used;
029632fb
PZ
5531
5532static inline bool cfs_bandwidth_used(void)
5533{
c5905afb 5534 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
5535}
5536
1ee14e6c 5537void cfs_bandwidth_usage_inc(void)
029632fb 5538{
ce48c146 5539 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
5540}
5541
5542void cfs_bandwidth_usage_dec(void)
5543{
ce48c146 5544 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 5545}
e9666d10 5546#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
5547static bool cfs_bandwidth_used(void)
5548{
5549 return true;
5550}
5551
1ee14e6c
BS
5552void cfs_bandwidth_usage_inc(void) {}
5553void cfs_bandwidth_usage_dec(void) {}
e9666d10 5554#endif /* CONFIG_JUMP_LABEL */
029632fb 5555
ab84d31e
PT
5556/*
5557 * default period for cfs group bandwidth.
5558 * default: 0.1s, units: nanoseconds
5559 */
5560static inline u64 default_cfs_period(void)
5561{
5562 return 100000000ULL;
5563}
ec12cb7f
PT
5564
5565static inline u64 sched_cfs_bandwidth_slice(void)
5566{
5567 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5568}
5569
a9cf55b2 5570/*
763a9ec0
QC
5571 * Replenish runtime according to assigned quota. We use sched_clock_cpu
5572 * directly instead of rq->clock to avoid adding additional synchronization
5573 * around rq->lock.
a9cf55b2
PT
5574 *
5575 * requires cfs_b->lock
5576 */
029632fb 5577void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2 5578{
bcb1704a
HC
5579 s64 runtime;
5580
f4183717
HC
5581 if (unlikely(cfs_b->quota == RUNTIME_INF))
5582 return;
5583
5584 cfs_b->runtime += cfs_b->quota;
bcb1704a
HC
5585 runtime = cfs_b->runtime_snap - cfs_b->runtime;
5586 if (runtime > 0) {
5587 cfs_b->burst_time += runtime;
5588 cfs_b->nr_burst++;
5589 }
5590
f4183717 5591 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
bcb1704a 5592 cfs_b->runtime_snap = cfs_b->runtime;
a9cf55b2
PT
5593}
5594
029632fb
PZ
5595static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5596{
5597 return &tg->cfs_bandwidth;
5598}
5599
85dac906 5600/* returns 0 on failure to allocate runtime */
e98fa02c
PT
5601static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5602 struct cfs_rq *cfs_rq, u64 target_runtime)
ec12cb7f 5603{
e98fa02c
PT
5604 u64 min_amount, amount = 0;
5605
5606 lockdep_assert_held(&cfs_b->lock);
ec12cb7f
PT
5607
5608 /* note: this is a positive sum as runtime_remaining <= 0 */
e98fa02c 5609 min_amount = target_runtime - cfs_rq->runtime_remaining;
ec12cb7f 5610
ec12cb7f
PT
5611 if (cfs_b->quota == RUNTIME_INF)
5612 amount = min_amount;
58088ad0 5613 else {
77a4d1a1 5614 start_cfs_bandwidth(cfs_b);
58088ad0
PT
5615
5616 if (cfs_b->runtime > 0) {
5617 amount = min(cfs_b->runtime, min_amount);
5618 cfs_b->runtime -= amount;
5619 cfs_b->idle = 0;
5620 }
ec12cb7f 5621 }
ec12cb7f
PT
5622
5623 cfs_rq->runtime_remaining += amount;
85dac906
PT
5624
5625 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
5626}
5627
e98fa02c
PT
5628/* returns 0 on failure to allocate runtime */
5629static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5630{
5631 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5632 int ret;
5633
5634 raw_spin_lock(&cfs_b->lock);
5635 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5636 raw_spin_unlock(&cfs_b->lock);
5637
5638 return ret;
5639}
5640
9dbdb155 5641static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
5642{
5643 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 5644 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
5645
5646 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
5647 return;
5648
5e2d2cc2
L
5649 if (cfs_rq->throttled)
5650 return;
85dac906
PT
5651 /*
5652 * if we're unable to extend our runtime we resched so that the active
5653 * hierarchy can be throttled
5654 */
5655 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 5656 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
5657}
5658
6c16a6dc 5659static __always_inline
9dbdb155 5660void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 5661{
56f570e5 5662 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
5663 return;
5664
5665 __account_cfs_rq_runtime(cfs_rq, delta_exec);
5666}
5667
85dac906
PT
5668static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5669{
56f570e5 5670 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
5671}
5672
64660c86
PT
5673/* check whether cfs_rq, or any parent, is throttled */
5674static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5675{
56f570e5 5676 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
5677}
5678
5679/*
5680 * Ensure that neither of the group entities corresponding to src_cpu or
5681 * dest_cpu are members of a throttled hierarchy when performing group
5682 * load-balance operations.
5683 */
5684static inline int throttled_lb_pair(struct task_group *tg,
5685 int src_cpu, int dest_cpu)
5686{
5687 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5688
5689 src_cfs_rq = tg->cfs_rq[src_cpu];
5690 dest_cfs_rq = tg->cfs_rq[dest_cpu];
5691
5692 return throttled_hierarchy(src_cfs_rq) ||
5693 throttled_hierarchy(dest_cfs_rq);
5694}
5695
64660c86
PT
5696static int tg_unthrottle_up(struct task_group *tg, void *data)
5697{
5698 struct rq *rq = data;
5699 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5700
5701 cfs_rq->throttle_count--;
64660c86 5702 if (!cfs_rq->throttle_count) {
64eaf507
CZ
5703 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5704 cfs_rq->throttled_clock_pelt;
31bc6aea 5705
a7b359fc 5706 /* Add cfs_rq with load or one or more already running entities to the list */
0a00a354 5707 if (!cfs_rq_is_decayed(cfs_rq))
31bc6aea 5708 list_add_leaf_cfs_rq(cfs_rq);
677ea015
JD
5709
5710 if (cfs_rq->throttled_clock_self) {
5711 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5712
5713 cfs_rq->throttled_clock_self = 0;
5714
5715 if (SCHED_WARN_ON((s64)delta < 0))
5716 delta = 0;
5717
5718 cfs_rq->throttled_clock_self_time += delta;
5719 }
64660c86 5720 }
64660c86
PT
5721
5722 return 0;
5723}
5724
5725static int tg_throttle_down(struct task_group *tg, void *data)
5726{
5727 struct rq *rq = data;
5728 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5729
82958366 5730 /* group is entering throttled state, stop time */
31bc6aea 5731 if (!cfs_rq->throttle_count) {
64eaf507 5732 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
31bc6aea 5733 list_del_leaf_cfs_rq(cfs_rq);
677ea015
JD
5734
5735 SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5736 if (cfs_rq->nr_running)
5737 cfs_rq->throttled_clock_self = rq_clock(rq);
31bc6aea 5738 }
64660c86
PT
5739 cfs_rq->throttle_count++;
5740
5741 return 0;
5742}
5743
e98fa02c 5744static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
5745{
5746 struct rq *rq = rq_of(cfs_rq);
5747 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5748 struct sched_entity *se;
43e9f7f2 5749 long task_delta, idle_task_delta, dequeue = 1;
e98fa02c
PT
5750
5751 raw_spin_lock(&cfs_b->lock);
5752 /* This will start the period timer if necessary */
5753 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5754 /*
5755 * We have raced with bandwidth becoming available, and if we
5756 * actually throttled the timer might not unthrottle us for an
5757 * entire period. We additionally needed to make sure that any
5758 * subsequent check_cfs_rq_runtime calls agree not to throttle
5759 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5760 * for 1ns of runtime rather than just check cfs_b.
5761 */
5762 dequeue = 0;
5763 } else {
5764 list_add_tail_rcu(&cfs_rq->throttled_list,
5765 &cfs_b->throttled_cfs_rq);
5766 }
5767 raw_spin_unlock(&cfs_b->lock);
5768
5769 if (!dequeue)
5770 return false; /* Throttle no longer required. */
85dac906
PT
5771
5772 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5773
f1b17280 5774 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
5775 rcu_read_lock();
5776 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5777 rcu_read_unlock();
85dac906
PT
5778
5779 task_delta = cfs_rq->h_nr_running;
43e9f7f2 5780 idle_task_delta = cfs_rq->idle_h_nr_running;
85dac906
PT
5781 for_each_sched_entity(se) {
5782 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5783 /* throttled entity or throttle-on-deactivate */
5784 if (!se->on_rq)
b6d37a76 5785 goto done;
85dac906 5786
b6d37a76 5787 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
6212437f 5788
30400039
JD
5789 if (cfs_rq_is_idle(group_cfs_rq(se)))
5790 idle_task_delta = cfs_rq->h_nr_running;
5791
85dac906 5792 qcfs_rq->h_nr_running -= task_delta;
43e9f7f2 5793 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906 5794
b6d37a76
PW
5795 if (qcfs_rq->load.weight) {
5796 /* Avoid re-evaluating load for this entity: */
5797 se = parent_entity(se);
5798 break;
5799 }
5800 }
5801
5802 for_each_sched_entity(se) {
5803 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5804 /* throttled entity or throttle-on-deactivate */
5805 if (!se->on_rq)
5806 goto done;
5807
5808 update_load_avg(qcfs_rq, se, 0);
5809 se_update_runnable(se);
5810
30400039
JD
5811 if (cfs_rq_is_idle(group_cfs_rq(se)))
5812 idle_task_delta = cfs_rq->h_nr_running;
5813
b6d37a76
PW
5814 qcfs_rq->h_nr_running -= task_delta;
5815 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906
PT
5816 }
5817
b6d37a76
PW
5818 /* At this point se is NULL and we are at root level*/
5819 sub_nr_running(rq, task_delta);
85dac906 5820
b6d37a76 5821done:
c06f04c7 5822 /*
e98fa02c
PT
5823 * Note: distribution will already see us throttled via the
5824 * throttled-list. rq->lock protects completion.
c06f04c7 5825 */
e98fa02c 5826 cfs_rq->throttled = 1;
79462e8c
JD
5827 SCHED_WARN_ON(cfs_rq->throttled_clock);
5828 if (cfs_rq->nr_running)
5829 cfs_rq->throttled_clock = rq_clock(rq);
e98fa02c 5830 return true;
85dac906
PT
5831}
5832
029632fb 5833void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
5834{
5835 struct rq *rq = rq_of(cfs_rq);
5836 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5837 struct sched_entity *se;
43e9f7f2 5838 long task_delta, idle_task_delta;
671fd9da 5839
22b958d8 5840 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
5841
5842 cfs_rq->throttled = 0;
1a55af2e
FW
5843
5844 update_rq_clock(rq);
5845
671fd9da 5846 raw_spin_lock(&cfs_b->lock);
79462e8c
JD
5847 if (cfs_rq->throttled_clock) {
5848 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5849 cfs_rq->throttled_clock = 0;
5850 }
671fd9da
PT
5851 list_del_rcu(&cfs_rq->throttled_list);
5852 raw_spin_unlock(&cfs_b->lock);
5853
64660c86
PT
5854 /* update hierarchical throttle state */
5855 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5856
2630cde2 5857 if (!cfs_rq->load.weight) {
51bf903b
CZ
5858 if (!cfs_rq->on_list)
5859 return;
5860 /*
5861 * Nothing to run but something to decay (on_list)?
5862 * Complete the branch.
5863 */
5864 for_each_sched_entity(se) {
5865 if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5866 break;
5867 }
5868 goto unthrottle_throttle;
2630cde2 5869 }
671fd9da
PT
5870
5871 task_delta = cfs_rq->h_nr_running;
43e9f7f2 5872 idle_task_delta = cfs_rq->idle_h_nr_running;
671fd9da 5873 for_each_sched_entity(se) {
30400039
JD
5874 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5875
671fd9da 5876 if (se->on_rq)
39f23ce0 5877 break;
30400039
JD
5878 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5879
5880 if (cfs_rq_is_idle(group_cfs_rq(se)))
5881 idle_task_delta = cfs_rq->h_nr_running;
39f23ce0 5882
30400039
JD
5883 qcfs_rq->h_nr_running += task_delta;
5884 qcfs_rq->idle_h_nr_running += idle_task_delta;
39f23ce0
VG
5885
5886 /* end evaluation on encountering a throttled cfs_rq */
30400039 5887 if (cfs_rq_throttled(qcfs_rq))
39f23ce0
VG
5888 goto unthrottle_throttle;
5889 }
671fd9da 5890
39f23ce0 5891 for_each_sched_entity(se) {
30400039 5892 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
39f23ce0 5893
30400039 5894 update_load_avg(qcfs_rq, se, UPDATE_TG);
39f23ce0 5895 se_update_runnable(se);
6212437f 5896
30400039
JD
5897 if (cfs_rq_is_idle(group_cfs_rq(se)))
5898 idle_task_delta = cfs_rq->h_nr_running;
671fd9da 5899
30400039
JD
5900 qcfs_rq->h_nr_running += task_delta;
5901 qcfs_rq->idle_h_nr_running += idle_task_delta;
39f23ce0
VG
5902
5903 /* end evaluation on encountering a throttled cfs_rq */
30400039 5904 if (cfs_rq_throttled(qcfs_rq))
39f23ce0 5905 goto unthrottle_throttle;
671fd9da
PT
5906 }
5907
39f23ce0
VG
5908 /* At this point se is NULL and we are at root level*/
5909 add_nr_running(rq, task_delta);
671fd9da 5910
39f23ce0 5911unthrottle_throttle:
fe61468b
VG
5912 assert_list_leaf_cfs_rq(rq);
5913
97fb7a0a 5914 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 5915 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 5916 resched_curr(rq);
671fd9da
PT
5917}
5918
8ad075c2
JD
5919#ifdef CONFIG_SMP
5920static void __cfsb_csd_unthrottle(void *arg)
671fd9da 5921{
8ad075c2
JD
5922 struct cfs_rq *cursor, *tmp;
5923 struct rq *rq = arg;
5924 struct rq_flags rf;
5925
5926 rq_lock(rq, &rf);
5927
ebb83d84
HJ
5928 /*
5929 * Iterating over the list can trigger several call to
5930 * update_rq_clock() in unthrottle_cfs_rq().
5931 * Do it once and skip the potential next ones.
5932 */
5933 update_rq_clock(rq);
5934 rq_clock_start_loop_update(rq);
5935
8ad075c2
JD
5936 /*
5937 * Since we hold rq lock we're safe from concurrent manipulation of
5938 * the CSD list. However, this RCU critical section annotates the
5939 * fact that we pair with sched_free_group_rcu(), so that we cannot
5940 * race with group being freed in the window between removing it
5941 * from the list and advancing to the next entry in the list.
5942 */
5943 rcu_read_lock();
5944
5945 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5946 throttled_csd_list) {
5947 list_del_init(&cursor->throttled_csd_list);
5948
5949 if (cfs_rq_throttled(cursor))
5950 unthrottle_cfs_rq(cursor);
5951 }
5952
5953 rcu_read_unlock();
5954
ebb83d84 5955 rq_clock_stop_loop_update(rq);
8ad075c2
JD
5956 rq_unlock(rq, &rf);
5957}
5958
5959static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5960{
5961 struct rq *rq = rq_of(cfs_rq);
5962 bool first;
5963
5964 if (rq == this_rq()) {
5965 unthrottle_cfs_rq(cfs_rq);
5966 return;
5967 }
5968
5969 /* Already enqueued */
5970 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5971 return;
5972
5973 first = list_empty(&rq->cfsb_csd_list);
5974 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5975 if (first)
5976 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5977}
5978#else
5979static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5980{
5981 unthrottle_cfs_rq(cfs_rq);
5982}
5983#endif
5984
5985static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5986{
5987 lockdep_assert_rq_held(rq_of(cfs_rq));
5988
5989 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
5990 cfs_rq->runtime_remaining <= 0))
5991 return;
5992
5993 __unthrottle_cfs_rq_async(cfs_rq);
5994}
5995
5996static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5997{
8ad075c2 5998 int this_cpu = smp_processor_id();
26a8b127 5999 u64 runtime, remaining = 1;
8ad075c2 6000 bool throttled = false;
2f8c6229 6001 struct cfs_rq *cfs_rq, *tmp;
8ad075c2
JD
6002 struct rq_flags rf;
6003 struct rq *rq;
2f8c6229 6004 LIST_HEAD(local_unthrottle);
671fd9da
PT
6005
6006 rcu_read_lock();
6007 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6008 throttled_list) {
8ad075c2
JD
6009 rq = rq_of(cfs_rq);
6010
6011 if (!remaining) {
6012 throttled = true;
6013 break;
6014 }
671fd9da 6015
c0ad4aa4 6016 rq_lock_irqsave(rq, &rf);
671fd9da
PT
6017 if (!cfs_rq_throttled(cfs_rq))
6018 goto next;
6019
8ad075c2
JD
6020 /* Already queued for async unthrottle */
6021 if (!list_empty(&cfs_rq->throttled_csd_list))
6022 goto next;
8ad075c2
JD
6023
6024 /* By the above checks, this should never be true */
5e2d2cc2
L
6025 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6026
26a8b127 6027 raw_spin_lock(&cfs_b->lock);
671fd9da 6028 runtime = -cfs_rq->runtime_remaining + 1;
26a8b127
HC
6029 if (runtime > cfs_b->runtime)
6030 runtime = cfs_b->runtime;
6031 cfs_b->runtime -= runtime;
6032 remaining = cfs_b->runtime;
6033 raw_spin_unlock(&cfs_b->lock);
671fd9da
PT
6034
6035 cfs_rq->runtime_remaining += runtime;
671fd9da
PT
6036
6037 /* we check whether we're throttled above */
8ad075c2 6038 if (cfs_rq->runtime_remaining > 0) {
2f8c6229 6039 if (cpu_of(rq) != this_cpu) {
8ad075c2 6040 unthrottle_cfs_rq_async(cfs_rq);
2f8c6229
JD
6041 } else {
6042 /*
6043 * We currently only expect to be unthrottling
6044 * a single cfs_rq locally.
6045 */
6046 SCHED_WARN_ON(!list_empty(&local_unthrottle));
6047 list_add_tail(&cfs_rq->throttled_csd_list,
6048 &local_unthrottle);
6049 }
8ad075c2
JD
6050 } else {
6051 throttled = true;
6052 }
671fd9da
PT
6053
6054next:
c0ad4aa4 6055 rq_unlock_irqrestore(rq, &rf);
671fd9da 6056 }
8ad075c2 6057
2f8c6229
JD
6058 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6059 throttled_csd_list) {
6060 struct rq *rq = rq_of(cfs_rq);
6061
8ad075c2 6062 rq_lock_irqsave(rq, &rf);
2f8c6229
JD
6063
6064 list_del_init(&cfs_rq->throttled_csd_list);
6065
6066 if (cfs_rq_throttled(cfs_rq))
6067 unthrottle_cfs_rq(cfs_rq);
6068
8ad075c2
JD
6069 rq_unlock_irqrestore(rq, &rf);
6070 }
2f8c6229
JD
6071 SCHED_WARN_ON(!list_empty(&local_unthrottle));
6072
6073 rcu_read_unlock();
8ad075c2
JD
6074
6075 return throttled;
671fd9da
PT
6076}
6077
58088ad0
PT
6078/*
6079 * Responsible for refilling a task_group's bandwidth and unthrottling its
6080 * cfs_rqs as appropriate. If there has been no activity within the last
6081 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6082 * used to track this state.
6083 */
c0ad4aa4 6084static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 6085{
51f2176d 6086 int throttled;
58088ad0 6087
58088ad0
PT
6088 /* no need to continue the timer with no bandwidth constraint */
6089 if (cfs_b->quota == RUNTIME_INF)
51f2176d 6090 goto out_deactivate;
58088ad0 6091
671fd9da 6092 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 6093 cfs_b->nr_periods += overrun;
671fd9da 6094
f4183717
HC
6095 /* Refill extra burst quota even if cfs_b->idle */
6096 __refill_cfs_bandwidth_runtime(cfs_b);
6097
51f2176d
BS
6098 /*
6099 * idle depends on !throttled (for the case of a large deficit), and if
6100 * we're going inactive then everything else can be deferred
6101 */
6102 if (cfs_b->idle && !throttled)
6103 goto out_deactivate;
a9cf55b2 6104
671fd9da
PT
6105 if (!throttled) {
6106 /* mark as potentially idle for the upcoming period */
6107 cfs_b->idle = 1;
51f2176d 6108 return 0;
671fd9da
PT
6109 }
6110
e8da1b18
NR
6111 /* account preceding periods in which throttling occurred */
6112 cfs_b->nr_throttled += overrun;
6113
671fd9da 6114 /*
26a8b127 6115 * This check is repeated as we release cfs_b->lock while we unthrottle.
671fd9da 6116 */
ab93a4bc 6117 while (throttled && cfs_b->runtime > 0) {
c0ad4aa4 6118 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da 6119 /* we can't nest cfs_b->lock while distributing bandwidth */
8ad075c2 6120 throttled = distribute_cfs_runtime(cfs_b);
c0ad4aa4 6121 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da 6122 }
58088ad0 6123
671fd9da
PT
6124 /*
6125 * While we are ensured activity in the period following an
6126 * unthrottle, this also covers the case in which the new bandwidth is
6127 * insufficient to cover the existing bandwidth deficit. (Forcing the
6128 * timer to remain active while there are any throttled entities.)
6129 */
6130 cfs_b->idle = 0;
58088ad0 6131
51f2176d
BS
6132 return 0;
6133
6134out_deactivate:
51f2176d 6135 return 1;
58088ad0 6136}
d3d9dc33 6137
d8b4986d
PT
6138/* a cfs_rq won't donate quota below this amount */
6139static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6140/* minimum remaining period time to redistribute slack quota */
6141static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6142/* how long we wait to gather additional slack before distributing */
6143static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6144
db06e78c
BS
6145/*
6146 * Are we near the end of the current quota period?
6147 *
6148 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 6149 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
6150 * migrate_hrtimers, base is never cleared, so we are fine.
6151 */
d8b4986d
PT
6152static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6153{
6154 struct hrtimer *refresh_timer = &cfs_b->period_timer;
72d0ad7c 6155 s64 remaining;
d8b4986d
PT
6156
6157 /* if the call-back is running a quota refresh is already occurring */
6158 if (hrtimer_callback_running(refresh_timer))
6159 return 1;
6160
6161 /* is a quota refresh about to occur? */
6162 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
72d0ad7c 6163 if (remaining < (s64)min_expire)
d8b4986d
PT
6164 return 1;
6165
6166 return 0;
6167}
6168
6169static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6170{
6171 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6172
6173 /* if there's a quota refresh soon don't bother with slack */
6174 if (runtime_refresh_within(cfs_b, min_left))
6175 return;
6176
66567fcb 6177 /* don't push forwards an existing deferred unthrottle */
6178 if (cfs_b->slack_started)
6179 return;
6180 cfs_b->slack_started = true;
6181
4cfafd30
PZ
6182 hrtimer_start(&cfs_b->slack_timer,
6183 ns_to_ktime(cfs_bandwidth_slack_period),
6184 HRTIMER_MODE_REL);
d8b4986d
PT
6185}
6186
6187/* we know any runtime found here is valid as update_curr() precedes return */
6188static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6189{
6190 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6191 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6192
6193 if (slack_runtime <= 0)
6194 return;
6195
6196 raw_spin_lock(&cfs_b->lock);
de53fd7a 6197 if (cfs_b->quota != RUNTIME_INF) {
d8b4986d
PT
6198 cfs_b->runtime += slack_runtime;
6199
6200 /* we are under rq->lock, defer unthrottling using a timer */
6201 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6202 !list_empty(&cfs_b->throttled_cfs_rq))
6203 start_cfs_slack_bandwidth(cfs_b);
6204 }
6205 raw_spin_unlock(&cfs_b->lock);
6206
6207 /* even if it's not valid for return we don't want to try again */
6208 cfs_rq->runtime_remaining -= slack_runtime;
6209}
6210
6211static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6212{
56f570e5
PT
6213 if (!cfs_bandwidth_used())
6214 return;
6215
fccfdc6f 6216 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
6217 return;
6218
6219 __return_cfs_rq_runtime(cfs_rq);
6220}
6221
6222/*
6223 * This is done with a timer (instead of inline with bandwidth return) since
6224 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6225 */
6226static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6227{
6228 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 6229 unsigned long flags;
d8b4986d
PT
6230
6231 /* confirm we're still not at a refresh boundary */
c0ad4aa4 6232 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 6233 cfs_b->slack_started = false;
baa9be4f 6234
db06e78c 6235 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 6236 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 6237 return;
db06e78c 6238 }
d8b4986d 6239
c06f04c7 6240 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 6241 runtime = cfs_b->runtime;
c06f04c7 6242
c0ad4aa4 6243 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
6244
6245 if (!runtime)
6246 return;
6247
26a8b127 6248 distribute_cfs_runtime(cfs_b);
d8b4986d
PT
6249}
6250
d3d9dc33
PT
6251/*
6252 * When a group wakes up we want to make sure that its quota is not already
6253 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
c034f48e 6254 * runtime as update_curr() throttling can not trigger until it's on-rq.
d3d9dc33
PT
6255 */
6256static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6257{
56f570e5
PT
6258 if (!cfs_bandwidth_used())
6259 return;
6260
d3d9dc33
PT
6261 /* an active group must be handled by the update_curr()->put() path */
6262 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6263 return;
6264
6265 /* ensure the group is not already throttled */
6266 if (cfs_rq_throttled(cfs_rq))
6267 return;
6268
6269 /* update runtime allocation */
6270 account_cfs_rq_runtime(cfs_rq, 0);
6271 if (cfs_rq->runtime_remaining <= 0)
6272 throttle_cfs_rq(cfs_rq);
6273}
6274
55e16d30
PZ
6275static void sync_throttle(struct task_group *tg, int cpu)
6276{
6277 struct cfs_rq *pcfs_rq, *cfs_rq;
6278
6279 if (!cfs_bandwidth_used())
6280 return;
6281
6282 if (!tg->parent)
6283 return;
6284
6285 cfs_rq = tg->cfs_rq[cpu];
6286 pcfs_rq = tg->parent->cfs_rq[cpu];
6287
6288 cfs_rq->throttle_count = pcfs_rq->throttle_count;
64eaf507 6289 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
55e16d30
PZ
6290}
6291
d3d9dc33 6292/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 6293static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 6294{
56f570e5 6295 if (!cfs_bandwidth_used())
678d5718 6296 return false;
56f570e5 6297
d3d9dc33 6298 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 6299 return false;
d3d9dc33
PT
6300
6301 /*
6302 * it's possible for a throttled entity to be forced into a running
6303 * state (e.g. set_curr_task), in this case we're finished.
6304 */
6305 if (cfs_rq_throttled(cfs_rq))
678d5718 6306 return true;
d3d9dc33 6307
e98fa02c 6308 return throttle_cfs_rq(cfs_rq);
d3d9dc33 6309}
029632fb 6310
029632fb
PZ
6311static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6312{
6313 struct cfs_bandwidth *cfs_b =
6314 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 6315
029632fb
PZ
6316 do_sched_cfs_slack_timer(cfs_b);
6317
6318 return HRTIMER_NORESTART;
6319}
6320
2e8e1922
PA
6321extern const u64 max_cfs_quota_period;
6322
029632fb
PZ
6323static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6324{
6325 struct cfs_bandwidth *cfs_b =
6326 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 6327 unsigned long flags;
029632fb
PZ
6328 int overrun;
6329 int idle = 0;
2e8e1922 6330 int count = 0;
029632fb 6331
c0ad4aa4 6332 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 6333 for (;;) {
77a4d1a1 6334 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
6335 if (!overrun)
6336 break;
6337
5a6d6a6c
HC
6338 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6339
2e8e1922
PA
6340 if (++count > 3) {
6341 u64 new, old = ktime_to_ns(cfs_b->period);
6342
4929a4e6
XZ
6343 /*
6344 * Grow period by a factor of 2 to avoid losing precision.
6345 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6346 * to fail.
6347 */
6348 new = old * 2;
6349 if (new < max_cfs_quota_period) {
6350 cfs_b->period = ns_to_ktime(new);
6351 cfs_b->quota *= 2;
f4183717 6352 cfs_b->burst *= 2;
4929a4e6
XZ
6353
6354 pr_warn_ratelimited(
6355 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6356 smp_processor_id(),
6357 div_u64(new, NSEC_PER_USEC),
6358 div_u64(cfs_b->quota, NSEC_PER_USEC));
6359 } else {
6360 pr_warn_ratelimited(
6361 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6362 smp_processor_id(),
6363 div_u64(old, NSEC_PER_USEC),
6364 div_u64(cfs_b->quota, NSEC_PER_USEC));
6365 }
2e8e1922
PA
6366
6367 /* reset count so we don't come right back in here */
6368 count = 0;
6369 }
029632fb 6370 }
4cfafd30
PZ
6371 if (idle)
6372 cfs_b->period_active = 0;
c0ad4aa4 6373 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
6374
6375 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6376}
6377
c98c1827 6378void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
029632fb
PZ
6379{
6380 raw_spin_lock_init(&cfs_b->lock);
6381 cfs_b->runtime = 0;
6382 cfs_b->quota = RUNTIME_INF;
6383 cfs_b->period = ns_to_ktime(default_cfs_period());
f4183717 6384 cfs_b->burst = 0;
c98c1827 6385 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
029632fb
PZ
6386
6387 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 6388 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb 6389 cfs_b->period_timer.function = sched_cfs_period_timer;
41abdba9
SH
6390
6391 /* Add a random offset so that timers interleave */
6392 hrtimer_set_expires(&cfs_b->period_timer,
6393 get_random_u32_below(cfs_b->period));
029632fb
PZ
6394 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6395 cfs_b->slack_timer.function = sched_cfs_slack_timer;
66567fcb 6396 cfs_b->slack_started = false;
029632fb
PZ
6397}
6398
6399static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6400{
6401 cfs_rq->runtime_enabled = 0;
6402 INIT_LIST_HEAD(&cfs_rq->throttled_list);
8ad075c2 6403 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
029632fb
PZ
6404}
6405
77a4d1a1 6406void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 6407{
4cfafd30 6408 lockdep_assert_held(&cfs_b->lock);
029632fb 6409
f1d1be8a
XP
6410 if (cfs_b->period_active)
6411 return;
6412
6413 cfs_b->period_active = 1;
763a9ec0 6414 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
f1d1be8a 6415 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
6416}
6417
6418static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6419{
8ad075c2
JD
6420 int __maybe_unused i;
6421
7f1a169b
TH
6422 /* init_cfs_bandwidth() was not called */
6423 if (!cfs_b->throttled_cfs_rq.next)
6424 return;
6425
029632fb
PZ
6426 hrtimer_cancel(&cfs_b->period_timer);
6427 hrtimer_cancel(&cfs_b->slack_timer);
8ad075c2
JD
6428
6429 /*
6430 * It is possible that we still have some cfs_rq's pending on a CSD
6431 * list, though this race is very rare. In order for this to occur, we
6432 * must have raced with the last task leaving the group while there
6433 * exist throttled cfs_rq(s), and the period_timer must have queued the
6434 * CSD item but the remote cpu has not yet processed it. To handle this,
6435 * we can simply flush all pending CSD work inline here. We're
6436 * guaranteed at this point that no additional cfs_rq of this group can
6437 * join a CSD list.
6438 */
6439#ifdef CONFIG_SMP
6440 for_each_possible_cpu(i) {
6441 struct rq *rq = cpu_rq(i);
6442 unsigned long flags;
6443
6444 if (list_empty(&rq->cfsb_csd_list))
6445 continue;
6446
6447 local_irq_save(flags);
6448 __cfsb_csd_unthrottle(rq);
6449 local_irq_restore(flags);
6450 }
6451#endif
029632fb
PZ
6452}
6453
502ce005 6454/*
97fb7a0a 6455 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
6456 *
6457 * The race is harmless, since modifying bandwidth settings of unhooked group
6458 * bits doesn't do much.
6459 */
6460
3b03706f 6461/* cpu online callback */
0e59bdae
KT
6462static void __maybe_unused update_runtime_enabled(struct rq *rq)
6463{
502ce005 6464 struct task_group *tg;
0e59bdae 6465
5cb9eaa3 6466 lockdep_assert_rq_held(rq);
502ce005
PZ
6467
6468 rcu_read_lock();
6469 list_for_each_entry_rcu(tg, &task_groups, list) {
6470 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6471 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
6472
6473 raw_spin_lock(&cfs_b->lock);
6474 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6475 raw_spin_unlock(&cfs_b->lock);
6476 }
502ce005 6477 rcu_read_unlock();
0e59bdae
KT
6478}
6479
502ce005 6480/* cpu offline callback */
38dc3348 6481static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 6482{
502ce005
PZ
6483 struct task_group *tg;
6484
5cb9eaa3 6485 lockdep_assert_rq_held(rq);
502ce005 6486
ebb83d84
HJ
6487 /*
6488 * The rq clock has already been updated in the
6489 * set_rq_offline(), so we should skip updating
6490 * the rq clock again in unthrottle_cfs_rq().
6491 */
6492 rq_clock_start_loop_update(rq);
6493
502ce005
PZ
6494 rcu_read_lock();
6495 list_for_each_entry_rcu(tg, &task_groups, list) {
6496 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 6497
029632fb
PZ
6498 if (!cfs_rq->runtime_enabled)
6499 continue;
6500
6501 /*
6502 * clock_task is not advancing so we just need to make sure
6503 * there's some valid quota amount
6504 */
51f2176d 6505 cfs_rq->runtime_remaining = 1;
0e59bdae 6506 /*
97fb7a0a 6507 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
6508 * in take_cpu_down(), so we prevent new cfs throttling here.
6509 */
6510 cfs_rq->runtime_enabled = 0;
6511
029632fb
PZ
6512 if (cfs_rq_throttled(cfs_rq))
6513 unthrottle_cfs_rq(cfs_rq);
6514 }
502ce005 6515 rcu_read_unlock();
ebb83d84
HJ
6516
6517 rq_clock_stop_loop_update(rq);
029632fb
PZ
6518}
6519
88c56cfe
PA
6520bool cfs_task_bw_constrained(struct task_struct *p)
6521{
6522 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6523
6524 if (!cfs_bandwidth_used())
6525 return false;
6526
6527 if (cfs_rq->runtime_enabled ||
6528 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6529 return true;
6530
6531 return false;
6532}
6533
6534#ifdef CONFIG_NO_HZ_FULL
6535/* called from pick_next_task_fair() */
6536static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6537{
6538 int cpu = cpu_of(rq);
6539
6540 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6541 return;
6542
6543 if (!tick_nohz_full_cpu(cpu))
6544 return;
6545
6546 if (rq->nr_running != 1)
6547 return;
6548
6549 /*
6550 * We know there is only one task runnable and we've just picked it. The
6551 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6552 * be otherwise able to stop the tick. Just need to check if we are using
6553 * bandwidth control.
6554 */
6555 if (cfs_task_bw_constrained(p))
6556 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6557}
6558#endif
6559
029632fb 6560#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
6561
6562static inline bool cfs_bandwidth_used(void)
6563{
6564 return false;
6565}
6566
9dbdb155 6567static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 6568static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 6569static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 6570static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 6571static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
6572
6573static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6574{
6575 return 0;
6576}
64660c86
PT
6577
6578static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6579{
6580 return 0;
6581}
6582
6583static inline int throttled_lb_pair(struct task_group *tg,
6584 int src_cpu, int dest_cpu)
6585{
6586 return 0;
6587}
029632fb 6588
7aa55f2a 6589#ifdef CONFIG_FAIR_GROUP_SCHED
97efd283 6590void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
029632fb 6591static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
6592#endif
6593
029632fb
PZ
6594static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6595{
6596 return NULL;
6597}
6598static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 6599static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 6600static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
88c56cfe
PA
6601#ifdef CONFIG_CGROUP_SCHED
6602bool cfs_task_bw_constrained(struct task_struct *p)
6603{
6604 return false;
6605}
6606#endif
029632fb
PZ
6607#endif /* CONFIG_CFS_BANDWIDTH */
6608
88c56cfe
PA
6609#if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6610static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6611#endif
6612
bf0f6f24
IM
6613/**************************************************
6614 * CFS operations on tasks:
6615 */
6616
8f4d37ec
PZ
6617#ifdef CONFIG_SCHED_HRTICK
6618static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6619{
8f4d37ec 6620 struct sched_entity *se = &p->se;
8f4d37ec 6621
9148a3a1 6622 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 6623
8bf46a39 6624 if (rq->cfs.h_nr_running > 1) {
8f4d37ec 6625 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
147f3efa 6626 u64 slice = se->slice;
8f4d37ec
PZ
6627 s64 delta = slice - ran;
6628
6629 if (delta < 0) {
65bcf072 6630 if (task_current(rq, p))
8875125e 6631 resched_curr(rq);
8f4d37ec
PZ
6632 return;
6633 }
31656519 6634 hrtick_start(rq, delta);
8f4d37ec
PZ
6635 }
6636}
a4c2f00f
PZ
6637
6638/*
6639 * called from enqueue/dequeue and updates the hrtick when the
6640 * current task is from our class and nr_running is low enough
6641 * to matter.
6642 */
6643static void hrtick_update(struct rq *rq)
6644{
6645 struct task_struct *curr = rq->curr;
6646
e0ee463c 6647 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
6648 return;
6649
5e963f2b 6650 hrtick_start_fair(rq, curr);
a4c2f00f 6651}
55e12e5e 6652#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
6653static inline void
6654hrtick_start_fair(struct rq *rq, struct task_struct *p)
6655{
6656}
a4c2f00f
PZ
6657
6658static inline void hrtick_update(struct rq *rq)
6659{
6660}
8f4d37ec
PZ
6661#endif
6662
2802bf3c 6663#ifdef CONFIG_SMP
2802bf3c
MR
6664static inline bool cpu_overutilized(int cpu)
6665{
c56ab1b3
QY
6666 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6667 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6668
e5ed0550 6669 /* Return true only if the utilization doesn't fit CPU's capacity */
c56ab1b3 6670 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
2802bf3c
MR
6671}
6672
6673static inline void update_overutilized_status(struct rq *rq)
6674{
f9f240f9 6675 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 6676 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
6677 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
6678 }
2802bf3c
MR
6679}
6680#else
6681static inline void update_overutilized_status(struct rq *rq) { }
6682#endif
6683
323af6de
VK
6684/* Runqueue only has SCHED_IDLE tasks enqueued */
6685static int sched_idle_rq(struct rq *rq)
6686{
6687 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6688 rq->nr_running);
6689}
6690
afa70d94 6691#ifdef CONFIG_SMP
323af6de
VK
6692static int sched_idle_cpu(int cpu)
6693{
6694 return sched_idle_rq(cpu_rq(cpu));
6695}
afa70d94 6696#endif
323af6de 6697
bf0f6f24
IM
6698/*
6699 * The enqueue_task method is called before nr_running is
6700 * increased. Here we update the fair scheduling stats and
6701 * then put the task into the rbtree:
6702 */
ea87bb78 6703static void
371fd7e7 6704enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
6705{
6706 struct cfs_rq *cfs_rq;
62fb1851 6707 struct sched_entity *se = &p->se;
43e9f7f2 6708 int idle_h_nr_running = task_has_idle_policy(p);
8e1ac429 6709 int task_new = !(flags & ENQUEUE_WAKEUP);
bf0f6f24 6710
2539fc82
PB
6711 /*
6712 * The code below (indirectly) updates schedutil which looks at
6713 * the cfs_rq utilization to select a frequency.
6714 * Let's add the task's estimated utilization to the cfs_rq's
6715 * estimated utilization, before we update schedutil.
6716 */
6717 util_est_enqueue(&rq->cfs, p);
6718
8c34ab19
RW
6719 /*
6720 * If in_iowait is set, the code below may not trigger any cpufreq
6721 * utilization updates, so do it here explicitly with the IOWAIT flag
6722 * passed.
6723 */
6724 if (p->in_iowait)
674e7541 6725 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 6726
bf0f6f24 6727 for_each_sched_entity(se) {
62fb1851 6728 if (se->on_rq)
bf0f6f24
IM
6729 break;
6730 cfs_rq = cfs_rq_of(se);
88ec22d3 6731 enqueue_entity(cfs_rq, se, flags);
85dac906 6732
953bfcd1 6733 cfs_rq->h_nr_running++;
43e9f7f2 6734 cfs_rq->idle_h_nr_running += idle_h_nr_running;
85dac906 6735
30400039
JD
6736 if (cfs_rq_is_idle(cfs_rq))
6737 idle_h_nr_running = 1;
6738
6d4d2246
VG
6739 /* end evaluation on encountering a throttled cfs_rq */
6740 if (cfs_rq_throttled(cfs_rq))
6741 goto enqueue_throttle;
6742
88ec22d3 6743 flags = ENQUEUE_WAKEUP;
bf0f6f24 6744 }
8f4d37ec 6745
2069dd75 6746 for_each_sched_entity(se) {
0f317143 6747 cfs_rq = cfs_rq_of(se);
2069dd75 6748
88c0616e 6749 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 6750 se_update_runnable(se);
1ea6c46a 6751 update_cfs_group(se);
6d4d2246
VG
6752
6753 cfs_rq->h_nr_running++;
6754 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5ab297ba 6755
30400039
JD
6756 if (cfs_rq_is_idle(cfs_rq))
6757 idle_h_nr_running = 1;
6758
5ab297ba
VG
6759 /* end evaluation on encountering a throttled cfs_rq */
6760 if (cfs_rq_throttled(cfs_rq))
6761 goto enqueue_throttle;
2069dd75
PZ
6762 }
6763
7d148be6
VG
6764 /* At this point se is NULL and we are at root level*/
6765 add_nr_running(rq, 1);
2802bf3c 6766
7d148be6
VG
6767 /*
6768 * Since new tasks are assigned an initial util_avg equal to
6769 * half of the spare capacity of their CPU, tiny tasks have the
6770 * ability to cross the overutilized threshold, which will
6771 * result in the load balancer ruining all the task placement
6772 * done by EAS. As a way to mitigate that effect, do not account
6773 * for the first enqueue operation of new tasks during the
6774 * overutilized flag detection.
6775 *
6776 * A better way of solving this problem would be to wait for
6777 * the PELT signals of tasks to converge before taking them
6778 * into account, but that is not straightforward to implement,
6779 * and the following generally works well enough in practice.
6780 */
8e1ac429 6781 if (!task_new)
7d148be6 6782 update_overutilized_status(rq);
cd126afe 6783
7d148be6 6784enqueue_throttle:
5d299eab
PZ
6785 assert_list_leaf_cfs_rq(rq);
6786
a4c2f00f 6787 hrtick_update(rq);
bf0f6f24
IM
6788}
6789
2f36825b
VP
6790static void set_next_buddy(struct sched_entity *se);
6791
bf0f6f24
IM
6792/*
6793 * The dequeue_task method is called before nr_running is
6794 * decreased. We remove the task from the rbtree and
6795 * update the fair scheduling stats:
6796 */
371fd7e7 6797static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
6798{
6799 struct cfs_rq *cfs_rq;
62fb1851 6800 struct sched_entity *se = &p->se;
2f36825b 6801 int task_sleep = flags & DEQUEUE_SLEEP;
43e9f7f2 6802 int idle_h_nr_running = task_has_idle_policy(p);
323af6de 6803 bool was_sched_idle = sched_idle_rq(rq);
bf0f6f24 6804
8c1f560c
XY
6805 util_est_dequeue(&rq->cfs, p);
6806
bf0f6f24
IM
6807 for_each_sched_entity(se) {
6808 cfs_rq = cfs_rq_of(se);
371fd7e7 6809 dequeue_entity(cfs_rq, se, flags);
85dac906 6810
953bfcd1 6811 cfs_rq->h_nr_running--;
43e9f7f2 6812 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 6813
30400039
JD
6814 if (cfs_rq_is_idle(cfs_rq))
6815 idle_h_nr_running = 1;
6816
6d4d2246
VG
6817 /* end evaluation on encountering a throttled cfs_rq */
6818 if (cfs_rq_throttled(cfs_rq))
6819 goto dequeue_throttle;
6820
bf0f6f24 6821 /* Don't dequeue parent if it has other entities besides us */
2f36825b 6822 if (cfs_rq->load.weight) {
754bd598
KK
6823 /* Avoid re-evaluating load for this entity: */
6824 se = parent_entity(se);
2f36825b
VP
6825 /*
6826 * Bias pick_next to pick a task from this cfs_rq, as
6827 * p is sleeping when it is within its sched_slice.
6828 */
754bd598
KK
6829 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6830 set_next_buddy(se);
bf0f6f24 6831 break;
2f36825b 6832 }
371fd7e7 6833 flags |= DEQUEUE_SLEEP;
bf0f6f24 6834 }
8f4d37ec 6835
2069dd75 6836 for_each_sched_entity(se) {
0f317143 6837 cfs_rq = cfs_rq_of(se);
2069dd75 6838
88c0616e 6839 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 6840 se_update_runnable(se);
1ea6c46a 6841 update_cfs_group(se);
6d4d2246
VG
6842
6843 cfs_rq->h_nr_running--;
6844 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5ab297ba 6845
30400039
JD
6846 if (cfs_rq_is_idle(cfs_rq))
6847 idle_h_nr_running = 1;
6848
5ab297ba
VG
6849 /* end evaluation on encountering a throttled cfs_rq */
6850 if (cfs_rq_throttled(cfs_rq))
6851 goto dequeue_throttle;
6852
2069dd75
PZ
6853 }
6854
423d02e1
PW
6855 /* At this point se is NULL and we are at root level*/
6856 sub_nr_running(rq, 1);
cd126afe 6857
323af6de
VK
6858 /* balance early to pull high priority tasks */
6859 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6860 rq->next_balance = jiffies;
6861
423d02e1 6862dequeue_throttle:
8c1f560c 6863 util_est_update(&rq->cfs, p, task_sleep);
a4c2f00f 6864 hrtick_update(rq);
bf0f6f24
IM
6865}
6866
e7693a36 6867#ifdef CONFIG_SMP
10e2f1ac 6868
4c3e509e 6869/* Working cpumask for: sched_balance_rq, load_balance_newidle. */
18c31c97
BH
6870static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6871static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
f8858d96 6872static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
10e2f1ac 6873
9fd81dd5 6874#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
6875
6876static struct {
6877 cpumask_var_t idle_cpus_mask;
6878 atomic_t nr_cpus;
f643ea22 6879 int has_blocked; /* Idle CPUS has blocked load */
7fd7a9e0 6880 int needs_update; /* Newly idle CPUs need their next_balance collated */
e022e0d3 6881 unsigned long next_balance; /* in jiffy units */
f643ea22 6882 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
6883} nohz ____cacheline_aligned;
6884
9fd81dd5 6885#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 6886
b0fb1eb4
VG
6887static unsigned long cpu_load(struct rq *rq)
6888{
6889 return cfs_rq_load_avg(&rq->cfs);
6890}
6891
3318544b
VG
6892/*
6893 * cpu_load_without - compute CPU load without any contributions from *p
6894 * @cpu: the CPU which load is requested
6895 * @p: the task which load should be discounted
6896 *
6897 * The load of a CPU is defined by the load of tasks currently enqueued on that
6898 * CPU as well as tasks which are currently sleeping after an execution on that
6899 * CPU.
6900 *
6901 * This method returns the load of the specified CPU by discounting the load of
6902 * the specified task, whenever the task is currently contributing to the CPU
6903 * load.
6904 */
6905static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6906{
6907 struct cfs_rq *cfs_rq;
6908 unsigned int load;
6909
6910 /* Task has no contribution or is new */
6911 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6912 return cpu_load(rq);
6913
6914 cfs_rq = &rq->cfs;
6915 load = READ_ONCE(cfs_rq->avg.load_avg);
6916
6917 /* Discount task's util from CPU's util */
6918 lsub_positive(&load, task_h_load(p));
6919
6920 return load;
6921}
6922
9f683953
VG
6923static unsigned long cpu_runnable(struct rq *rq)
6924{
6925 return cfs_rq_runnable_avg(&rq->cfs);
6926}
6927
070f5e86
VG
6928static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6929{
6930 struct cfs_rq *cfs_rq;
6931 unsigned int runnable;
6932
6933 /* Task has no contribution or is new */
6934 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6935 return cpu_runnable(rq);
6936
6937 cfs_rq = &rq->cfs;
6938 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6939
6940 /* Discount task's runnable from CPU's runnable */
6941 lsub_positive(&runnable, p->se.avg.runnable_avg);
6942
6943 return runnable;
6944}
6945
ced549fa 6946static unsigned long capacity_of(int cpu)
029632fb 6947{
ced549fa 6948 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
6949}
6950
c58d25f3
PZ
6951static void record_wakee(struct task_struct *p)
6952{
6953 /*
6954 * Only decay a single time; tasks that have less then 1 wakeup per
6955 * jiffy will not have built up many flips.
6956 */
6957 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6958 current->wakee_flips >>= 1;
6959 current->wakee_flip_decay_ts = jiffies;
6960 }
6961
6962 if (current->last_wakee != p) {
6963 current->last_wakee = p;
6964 current->wakee_flips++;
6965 }
6966}
6967
63b0e9ed
MG
6968/*
6969 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 6970 *
63b0e9ed 6971 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
6972 * at a frequency roughly N times higher than one of its wakees.
6973 *
6974 * In order to determine whether we should let the load spread vs consolidating
6975 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6976 * partner, and a factor of lls_size higher frequency in the other.
6977 *
6978 * With both conditions met, we can be relatively sure that the relationship is
6979 * non-monogamous, with partner count exceeding socket size.
6980 *
6981 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6982 * whatever is irrelevant, spread criteria is apparent partner count exceeds
6983 * socket size.
63b0e9ed 6984 */
62470419
MW
6985static int wake_wide(struct task_struct *p)
6986{
63b0e9ed
MG
6987 unsigned int master = current->wakee_flips;
6988 unsigned int slave = p->wakee_flips;
17c891ab 6989 int factor = __this_cpu_read(sd_llc_size);
62470419 6990
63b0e9ed
MG
6991 if (master < slave)
6992 swap(master, slave);
6993 if (slave < factor || master < slave * factor)
6994 return 0;
6995 return 1;
62470419
MW
6996}
6997
90001d67 6998/*
d153b153
PZ
6999 * The purpose of wake_affine() is to quickly determine on which CPU we can run
7000 * soonest. For the purpose of speed we only consider the waking and previous
7001 * CPU.
90001d67 7002 *
7332dec0
MG
7003 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7004 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
7005 *
7006 * wake_affine_weight() - considers the weight to reflect the average
7007 * scheduling latency of the CPUs. This seems to work
7008 * for the overloaded case.
90001d67 7009 */
3b76c4a3 7010static int
89a55f56 7011wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 7012{
7332dec0
MG
7013 /*
7014 * If this_cpu is idle, it implies the wakeup is from interrupt
7015 * context. Only allow the move if cache is shared. Otherwise an
7016 * interrupt intensive workload could force all tasks onto one
7017 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
7018 *
7019 * If the prev_cpu is idle and cache affine then avoid a migration.
7020 * There is no guarantee that the cache hot data from an interrupt
7021 * is more important than cache hot data on the prev_cpu and from
7022 * a cpufreq perspective, it's better to have higher utilisation
7023 * on one CPU.
7332dec0 7024 */
943d355d
RJ
7025 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7026 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 7027
d153b153 7028 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 7029 return this_cpu;
90001d67 7030
d8fcb81f
JL
7031 if (available_idle_cpu(prev_cpu))
7032 return prev_cpu;
7033
3b76c4a3 7034 return nr_cpumask_bits;
90001d67
PZ
7035}
7036
3b76c4a3 7037static int
f2cdd9cc
PZ
7038wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7039 int this_cpu, int prev_cpu, int sync)
90001d67 7040{
90001d67
PZ
7041 s64 this_eff_load, prev_eff_load;
7042 unsigned long task_load;
7043
11f10e54 7044 this_eff_load = cpu_load(cpu_rq(this_cpu));
90001d67 7045
90001d67
PZ
7046 if (sync) {
7047 unsigned long current_load = task_h_load(current);
7048
f2cdd9cc 7049 if (current_load > this_eff_load)
3b76c4a3 7050 return this_cpu;
90001d67 7051
f2cdd9cc 7052 this_eff_load -= current_load;
90001d67
PZ
7053 }
7054
90001d67
PZ
7055 task_load = task_h_load(p);
7056
f2cdd9cc
PZ
7057 this_eff_load += task_load;
7058 if (sched_feat(WA_BIAS))
7059 this_eff_load *= 100;
7060 this_eff_load *= capacity_of(prev_cpu);
90001d67 7061
11f10e54 7062 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
7063 prev_eff_load -= task_load;
7064 if (sched_feat(WA_BIAS))
7065 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7066 prev_eff_load *= capacity_of(this_cpu);
90001d67 7067
082f764a
MG
7068 /*
7069 * If sync, adjust the weight of prev_eff_load such that if
7070 * prev_eff == this_eff that select_idle_sibling() will consider
7071 * stacking the wakee on top of the waker if no other CPU is
7072 * idle.
7073 */
7074 if (sync)
7075 prev_eff_load += 1;
7076
7077 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
7078}
7079
772bd008 7080static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 7081 int this_cpu, int prev_cpu, int sync)
098fb9db 7082{
3b76c4a3 7083 int target = nr_cpumask_bits;
098fb9db 7084
89a55f56 7085 if (sched_feat(WA_IDLE))
3b76c4a3 7086 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 7087
3b76c4a3
MG
7088 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7089 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 7090
ceeadb83 7091 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
39afe5d6 7092 if (target != this_cpu)
3b76c4a3 7093 return prev_cpu;
098fb9db 7094
3b76c4a3 7095 schedstat_inc(sd->ttwu_move_affine);
ceeadb83 7096 schedstat_inc(p->stats.nr_wakeups_affine);
3b76c4a3 7097 return target;
098fb9db
IM
7098}
7099
aaee1203 7100static struct sched_group *
45da2773 7101find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
aaee1203
PZ
7102
7103/*
97fb7a0a 7104 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
7105 */
7106static int
18bd1b4b 7107find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
7108{
7109 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
7110 unsigned int min_exit_latency = UINT_MAX;
7111 u64 latest_idle_timestamp = 0;
7112 int least_loaded_cpu = this_cpu;
17346452 7113 int shallowest_idle_cpu = -1;
aaee1203
PZ
7114 int i;
7115
eaecf41f
MR
7116 /* Check if we have any choice: */
7117 if (group->group_weight == 1)
ae4df9d6 7118 return cpumask_first(sched_group_span(group));
eaecf41f 7119
aaee1203 7120 /* Traverse only the allowed CPUs */
3bd37062 7121 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
97886d9d
AL
7122 struct rq *rq = cpu_rq(i);
7123
7124 if (!sched_core_cookie_match(rq, p))
7125 continue;
7126
17346452
VK
7127 if (sched_idle_cpu(i))
7128 return i;
7129
943d355d 7130 if (available_idle_cpu(i)) {
83a0a96a
NP
7131 struct cpuidle_state *idle = idle_get_state(rq);
7132 if (idle && idle->exit_latency < min_exit_latency) {
7133 /*
7134 * We give priority to a CPU whose idle state
7135 * has the smallest exit latency irrespective
7136 * of any idle timestamp.
7137 */
7138 min_exit_latency = idle->exit_latency;
7139 latest_idle_timestamp = rq->idle_stamp;
7140 shallowest_idle_cpu = i;
7141 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
7142 rq->idle_stamp > latest_idle_timestamp) {
7143 /*
7144 * If equal or no active idle state, then
7145 * the most recently idled CPU might have
7146 * a warmer cache.
7147 */
7148 latest_idle_timestamp = rq->idle_stamp;
7149 shallowest_idle_cpu = i;
7150 }
17346452 7151 } else if (shallowest_idle_cpu == -1) {
11f10e54 7152 load = cpu_load(cpu_rq(i));
18cec7e0 7153 if (load < min_load) {
83a0a96a
NP
7154 min_load = load;
7155 least_loaded_cpu = i;
7156 }
e7693a36
GH
7157 }
7158 }
7159
17346452 7160 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 7161}
e7693a36 7162
18bd1b4b
BJ
7163static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
7164 int cpu, int prev_cpu, int sd_flag)
7165{
93f50f90 7166 int new_cpu = cpu;
18bd1b4b 7167
3bd37062 7168 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
7169 return prev_cpu;
7170
c976a862 7171 /*
57abff06 7172 * We need task's util for cpu_util_without, sync it up to
c469933e 7173 * prev_cpu's last_update_time.
c976a862
VK
7174 */
7175 if (!(sd_flag & SD_BALANCE_FORK))
7176 sync_entity_load_avg(&p->se);
7177
18bd1b4b
BJ
7178 while (sd) {
7179 struct sched_group *group;
7180 struct sched_domain *tmp;
7181 int weight;
7182
7183 if (!(sd->flags & sd_flag)) {
7184 sd = sd->child;
7185 continue;
7186 }
7187
45da2773 7188 group = find_idlest_group(sd, p, cpu);
18bd1b4b
BJ
7189 if (!group) {
7190 sd = sd->child;
7191 continue;
7192 }
7193
7194 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 7195 if (new_cpu == cpu) {
97fb7a0a 7196 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
7197 sd = sd->child;
7198 continue;
7199 }
7200
97fb7a0a 7201 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
7202 cpu = new_cpu;
7203 weight = sd->span_weight;
7204 sd = NULL;
7205 for_each_domain(cpu, tmp) {
7206 if (weight <= tmp->span_weight)
7207 break;
7208 if (tmp->flags & sd_flag)
7209 sd = tmp;
7210 }
18bd1b4b
BJ
7211 }
7212
7213 return new_cpu;
7214}
7215
97886d9d 7216static inline int __select_idle_cpu(int cpu, struct task_struct *p)
9fe1f127 7217{
97886d9d
AL
7218 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7219 sched_cpu_cookie_match(cpu_rq(cpu), p))
9fe1f127
MG
7220 return cpu;
7221
7222 return -1;
7223}
7224
10e2f1ac 7225#ifdef CONFIG_SCHED_SMT
ba2591a5 7226DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 7227EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
7228
7229static inline void set_idle_cores(int cpu, int val)
7230{
7231 struct sched_domain_shared *sds;
7232
7233 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7234 if (sds)
7235 WRITE_ONCE(sds->has_idle_cores, val);
7236}
7237
398ba2b0 7238static inline bool test_idle_cores(int cpu)
10e2f1ac
PZ
7239{
7240 struct sched_domain_shared *sds;
7241
c722f35b
RR
7242 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7243 if (sds)
7244 return READ_ONCE(sds->has_idle_cores);
10e2f1ac 7245
398ba2b0 7246 return false;
10e2f1ac
PZ
7247}
7248
7249/*
7250 * Scans the local SMT mask to see if the entire core is idle, and records this
7251 * information in sd_llc_shared->has_idle_cores.
7252 *
7253 * Since SMT siblings share all cache levels, inspecting this limited remote
7254 * state should be fairly cheap.
7255 */
1b568f0a 7256void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
7257{
7258 int core = cpu_of(rq);
7259 int cpu;
7260
7261 rcu_read_lock();
398ba2b0 7262 if (test_idle_cores(core))
10e2f1ac
PZ
7263 goto unlock;
7264
7265 for_each_cpu(cpu, cpu_smt_mask(core)) {
7266 if (cpu == core)
7267 continue;
7268
943d355d 7269 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
7270 goto unlock;
7271 }
7272
7273 set_idle_cores(core, 1);
7274unlock:
7275 rcu_read_unlock();
7276}
7277
7278/*
7279 * Scan the entire LLC domain for idle cores; this dynamically switches off if
7280 * there are no idle cores left in the system; tracked through
7281 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7282 */
9fe1f127 7283static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
10e2f1ac 7284{
9fe1f127
MG
7285 bool idle = true;
7286 int cpu;
10e2f1ac 7287
9fe1f127
MG
7288 for_each_cpu(cpu, cpu_smt_mask(core)) {
7289 if (!available_idle_cpu(cpu)) {
7290 idle = false;
7291 if (*idle_cpu == -1) {
23d04d8c 7292 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
9fe1f127
MG
7293 *idle_cpu = cpu;
7294 break;
7295 }
7296 continue;
bec2860a 7297 }
9fe1f127 7298 break;
10e2f1ac 7299 }
23d04d8c 7300 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
9fe1f127 7301 *idle_cpu = cpu;
10e2f1ac
PZ
7302 }
7303
9fe1f127
MG
7304 if (idle)
7305 return core;
10e2f1ac 7306
9fe1f127 7307 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
10e2f1ac
PZ
7308 return -1;
7309}
7310
c722f35b
RR
7311/*
7312 * Scan the local SMT mask for idle CPUs.
7313 */
8aeaffef 7314static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
c722f35b
RR
7315{
7316 int cpu;
7317
3e6efe87 7318 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
b9bae704
AW
7319 if (cpu == target)
7320 continue;
8aeaffef
KN
7321 /*
7322 * Check if the CPU is in the LLC scheduling domain of @target.
7323 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7324 */
7325 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7326 continue;
c722f35b
RR
7327 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7328 return cpu;
7329 }
7330
7331 return -1;
7332}
7333
10e2f1ac
PZ
7334#else /* CONFIG_SCHED_SMT */
7335
9fe1f127 7336static inline void set_idle_cores(int cpu, int val)
10e2f1ac 7337{
9fe1f127
MG
7338}
7339
398ba2b0 7340static inline bool test_idle_cores(int cpu)
9fe1f127 7341{
398ba2b0 7342 return false;
9fe1f127
MG
7343}
7344
7345static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7346{
97886d9d 7347 return __select_idle_cpu(core, p);
10e2f1ac
PZ
7348}
7349
8aeaffef 7350static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
c722f35b
RR
7351{
7352 return -1;
7353}
7354
10e2f1ac
PZ
7355#endif /* CONFIG_SCHED_SMT */
7356
7357/*
7358 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7359 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7360 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 7361 */
c722f35b 7362static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
10e2f1ac 7363{
ec4fc801 7364 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
9fe1f127 7365 int i, cpu, idle_cpu = -1, nr = INT_MAX;
70fb5ccf 7366 struct sched_domain_shared *sd_share;
10e2f1ac 7367
bae4ec13
MG
7368 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7369
70fb5ccf
CY
7370 if (sched_feat(SIS_UTIL)) {
7371 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7372 if (sd_share) {
7373 /* because !--nr is the condition to stop scan */
7374 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7375 /* overloaded LLC is unlikely to have idle cpu/core */
7376 if (nr == 1)
7377 return -1;
7378 }
7379 }
7380
8881e163
BS
7381 if (static_branch_unlikely(&sched_cluster_active)) {
7382 struct sched_group *sg = sd->groups;
7383
7384 if (sg->flags & SD_CLUSTER) {
7385 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7386 if (!cpumask_test_cpu(cpu, cpus))
7387 continue;
7388
7389 if (has_idle_core) {
7390 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7391 if ((unsigned int)i < nr_cpumask_bits)
7392 return i;
7393 } else {
7394 if (--nr <= 0)
7395 return -1;
7396 idle_cpu = __select_idle_cpu(cpu, p);
7397 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7398 return idle_cpu;
7399 }
7400 }
7401 cpumask_andnot(cpus, cpus, sched_group_span(sg));
7402 }
7403 }
7404
56498cfb 7405 for_each_cpu_wrap(cpu, cpus, target + 1) {
c722f35b 7406 if (has_idle_core) {
9fe1f127
MG
7407 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7408 if ((unsigned int)i < nr_cpumask_bits)
7409 return i;
7410
7411 } else {
8881e163 7412 if (--nr <= 0)
9fe1f127 7413 return -1;
97886d9d 7414 idle_cpu = __select_idle_cpu(cpu, p);
9fe1f127
MG
7415 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7416 break;
7417 }
10e2f1ac
PZ
7418 }
7419
c722f35b 7420 if (has_idle_core)
02dbb724 7421 set_idle_cores(target, false);
9fe1f127 7422
9fe1f127 7423 return idle_cpu;
10e2f1ac
PZ
7424}
7425
b7a33161
MR
7426/*
7427 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7428 * the task fits. If no CPU is big enough, but there are idle ones, try to
7429 * maximize capacity.
7430 */
7431static int
7432select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7433{
b759caa1 7434 unsigned long task_util, util_min, util_max, best_cap = 0;
e5ed0550 7435 int fits, best_fits = 0;
b7a33161
MR
7436 int cpu, best_cpu = -1;
7437 struct cpumask *cpus;
7438
ec4fc801 7439 cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
b7a33161
MR
7440 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7441
b759caa1
QY
7442 task_util = task_util_est(p);
7443 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7444 util_max = uclamp_eff_value(p, UCLAMP_MAX);
b4c9c9f1 7445
7ee7642c 7446 for_each_cpu_wrap(cpu, cpus, target) {
b7a33161
MR
7447 unsigned long cpu_cap = capacity_of(cpu);
7448
7449 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7450 continue;
e5ed0550
VG
7451
7452 fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7453
7454 /* This CPU fits with all requirements */
7455 if (fits > 0)
b7a33161 7456 return cpu;
e5ed0550
VG
7457 /*
7458 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7459 * Look for the CPU with best capacity.
7460 */
7461 else if (fits < 0)
7bc26384 7462 cpu_cap = arch_scale_cpu_capacity(cpu) - thermal_load_avg(cpu_rq(cpu));
b7a33161 7463
e5ed0550
VG
7464 /*
7465 * First, select CPU which fits better (-1 being better than 0).
7466 * Then, select the one with best capacity at same level.
7467 */
7468 if ((fits < best_fits) ||
7469 ((fits == best_fits) && (cpu_cap > best_cap))) {
b7a33161
MR
7470 best_cap = cpu_cap;
7471 best_cpu = cpu;
e5ed0550 7472 best_fits = fits;
b7a33161
MR
7473 }
7474 }
7475
7476 return best_cpu;
7477}
7478
a2e7f03e
QY
7479static inline bool asym_fits_cpu(unsigned long util,
7480 unsigned long util_min,
7481 unsigned long util_max,
7482 int cpu)
b4c9c9f1 7483{
740cf8a7 7484 if (sched_asym_cpucap_active())
e5ed0550
VG
7485 /*
7486 * Return true only if the cpu fully fits the task requirements
7487 * which include the utilization and the performance hints.
7488 */
7489 return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
b4c9c9f1
VG
7490
7491 return true;
7492}
7493
10e2f1ac
PZ
7494/*
7495 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 7496 */
772bd008 7497static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 7498{
c722f35b 7499 bool has_idle_core = false;
99bd5e2f 7500 struct sched_domain *sd;
a2e7f03e 7501 unsigned long task_util, util_min, util_max;
22165f61 7502 int i, recent_used_cpu, prev_aff = -1;
a50bde51 7503
b7a33161 7504 /*
b4c9c9f1
VG
7505 * On asymmetric system, update task utilization because we will check
7506 * that the task fits with cpu's capacity.
b7a33161 7507 */
740cf8a7 7508 if (sched_asym_cpucap_active()) {
b4c9c9f1 7509 sync_entity_load_avg(&p->se);
a2e7f03e
QY
7510 task_util = task_util_est(p);
7511 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7512 util_max = uclamp_eff_value(p, UCLAMP_MAX);
b7a33161
MR
7513 }
7514
9099a147 7515 /*
ec4fc801 7516 * per-cpu select_rq_mask usage
9099a147
PZ
7517 */
7518 lockdep_assert_irqs_disabled();
7519
b4c9c9f1 7520 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
a2e7f03e 7521 asym_fits_cpu(task_util, util_min, util_max, target))
e0a79f52 7522 return target;
99bd5e2f
SS
7523
7524 /*
97fb7a0a 7525 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 7526 */
3c29e651 7527 if (prev != target && cpus_share_cache(prev, target) &&
b4c9c9f1 7528 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
8881e163
BS
7529 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7530
7531 if (!static_branch_unlikely(&sched_cluster_active) ||
7532 cpus_share_resources(prev, target))
7533 return prev;
22165f61
YY
7534
7535 prev_aff = prev;
8881e163 7536 }
a50bde51 7537
52262ee5
MG
7538 /*
7539 * Allow a per-cpu kthread to stack with the wakee if the
7540 * kworker thread and the tasks previous CPUs are the same.
7541 * The assumption is that the wakee queued work for the
7542 * per-cpu kthread that is now complete and the wakeup is
7543 * essentially a sync wakeup. An obvious example of this
7544 * pattern is IO completions.
7545 */
7546 if (is_per_cpu_kthread(current) &&
8b4e74cc 7547 in_task() &&
52262ee5 7548 prev == smp_processor_id() &&
014ba44e 7549 this_rq()->nr_running <= 1 &&
a2e7f03e 7550 asym_fits_cpu(task_util, util_min, util_max, prev)) {
52262ee5
MG
7551 return prev;
7552 }
7553
97fb7a0a 7554 /* Check a recently used CPU as a potential idle candidate: */
32e839dd 7555 recent_used_cpu = p->recent_used_cpu;
89aafd67 7556 p->recent_used_cpu = prev;
32e839dd
MG
7557 if (recent_used_cpu != prev &&
7558 recent_used_cpu != target &&
7559 cpus_share_cache(recent_used_cpu, target) &&
3c29e651 7560 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
ae2ad293 7561 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
a2e7f03e 7562 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
8881e163
BS
7563
7564 if (!static_branch_unlikely(&sched_cluster_active) ||
7565 cpus_share_resources(recent_used_cpu, target))
7566 return recent_used_cpu;
7567
22165f61
YY
7568 } else {
7569 recent_used_cpu = -1;
32e839dd
MG
7570 }
7571
b4c9c9f1
VG
7572 /*
7573 * For asymmetric CPU capacity systems, our domain of interest is
7574 * sd_asym_cpucapacity rather than sd_llc.
7575 */
740cf8a7 7576 if (sched_asym_cpucap_active()) {
b4c9c9f1
VG
7577 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7578 /*
7579 * On an asymmetric CPU capacity system where an exclusive
7580 * cpuset defines a symmetric island (i.e. one unique
7581 * capacity_orig value through the cpuset), the key will be set
7582 * but the CPUs within that cpuset will not have a domain with
7583 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7584 * capacity path.
7585 */
7586 if (sd) {
7587 i = select_idle_capacity(p, sd, target);
7588 return ((unsigned)i < nr_cpumask_bits) ? i : target;
7589 }
7590 }
7591
518cd623 7592 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
7593 if (!sd)
7594 return target;
772bd008 7595
c722f35b 7596 if (sched_smt_active()) {
398ba2b0 7597 has_idle_core = test_idle_cores(target);
c722f35b
RR
7598
7599 if (!has_idle_core && cpus_share_cache(prev, target)) {
8aeaffef 7600 i = select_idle_smt(p, sd, prev);
c722f35b
RR
7601 if ((unsigned int)i < nr_cpumask_bits)
7602 return i;
7603 }
7604 }
7605
7606 i = select_idle_cpu(p, sd, has_idle_core, target);
10e2f1ac
PZ
7607 if ((unsigned)i < nr_cpumask_bits)
7608 return i;
7609
22165f61
YY
7610 /*
7611 * For cluster machines which have lower sharing cache like L2 or
7612 * LLC Tag, we tend to find an idle CPU in the target's cluster
7613 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7614 * use them if possible when no idle CPU found in select_idle_cpu().
7615 */
7616 if ((unsigned int)prev_aff < nr_cpumask_bits)
7617 return prev_aff;
7618 if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7619 return recent_used_cpu;
7620
a50bde51
PZ
7621 return target;
7622}
231678b7 7623
3eb6d6ec
DE
7624/**
7625 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7626 * @cpu: the CPU to get the utilization for
7627 * @p: task for which the CPU utilization should be predicted or NULL
7628 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7d0583cf 7629 * @boost: 1 to enable boosting, otherwise 0
3eb6d6ec
DE
7630 *
7631 * The unit of the return value must be the same as the one of CPU capacity
7632 * so that CPU utilization can be compared with CPU capacity.
7633 *
7634 * CPU utilization is the sum of running time of runnable tasks plus the
7635 * recent utilization of currently non-runnable tasks on that CPU.
7636 * It represents the amount of CPU capacity currently used by CFS tasks in
7637 * the range [0..max CPU capacity] with max CPU capacity being the CPU
7638 * capacity at f_max.
7639 *
7640 * The estimated CPU utilization is defined as the maximum between CPU
7641 * utilization and sum of the estimated utilization of the currently
7642 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7643 * previously-executed tasks, which helps better deduce how busy a CPU will
7644 * be when a long-sleeping task wakes up. The contribution to CPU utilization
7645 * of such a task would be significantly decayed at this point of time.
7646 *
7d0583cf
DE
7647 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7648 * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7649 * utilization. Boosting is implemented in cpu_util() so that internal
7650 * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7651 * latter via cpu_util_cfs_boost().
7652 *
3eb6d6ec
DE
7653 * CPU utilization can be higher than the current CPU capacity
7654 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7655 * of rounding errors as well as task migrations or wakeups of new tasks.
7656 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7657 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7658 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7659 * capacity. CPU utilization is allowed to overshoot current CPU capacity
7660 * though since this is useful for predicting the CPU capacity required
7661 * after task migrations (scheduler-driven DVFS).
7662 *
7d0583cf 7663 * Return: (Boosted) (estimated) utilization for the specified CPU.
390031e4 7664 */
7d0583cf
DE
7665static unsigned long
7666cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
390031e4
QP
7667{
7668 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
4e3c7d33 7669 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7d0583cf
DE
7670 unsigned long runnable;
7671
7672 if (boost) {
7673 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7674 util = max(util, runnable);
7675 }
390031e4
QP
7676
7677 /*
4e3c7d33
DE
7678 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7679 * contribution. If @p migrates from another CPU to @cpu add its
7680 * contribution. In all the other cases @cpu is not impacted by the
7681 * migration so its util_avg is already correct.
390031e4 7682 */
3eb6d6ec 7683 if (p && task_cpu(p) == cpu && dst_cpu != cpu)
736cc6b3 7684 lsub_positive(&util, task_util(p));
3eb6d6ec 7685 else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
390031e4
QP
7686 util += task_util(p);
7687
7688 if (sched_feat(UTIL_EST)) {
4e3c7d33
DE
7689 unsigned long util_est;
7690
11137d38 7691 util_est = READ_ONCE(cfs_rq->avg.util_est);
390031e4
QP
7692
7693 /*
4e3c7d33 7694 * During wake-up @p isn't enqueued yet and doesn't contribute
11137d38 7695 * to any cpu_rq(cpu)->cfs.avg.util_est.
4e3c7d33
DE
7696 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7697 * has been enqueued.
7698 *
7699 * During exec (@dst_cpu = -1) @p is enqueued and does
11137d38 7700 * contribute to cpu_rq(cpu)->cfs.util_est.
4e3c7d33
DE
7701 * Remove it to "simulate" cpu_util without @p's contribution.
7702 *
7703 * Despite the task_on_rq_queued(@p) check there is still a
7704 * small window for a possible race when an exec
7705 * select_task_rq_fair() races with LB's detach_task().
7706 *
7707 * detach_task()
7708 * deactivate_task()
7709 * p->on_rq = TASK_ON_RQ_MIGRATING;
7710 * -------------------------------- A
7711 * dequeue_task() \
7712 * dequeue_task_fair() + Race Time
7713 * util_est_dequeue() /
7714 * -------------------------------- B
7715 *
7716 * The additional check "current == p" is required to further
7717 * reduce the race window.
390031e4
QP
7718 */
7719 if (dst_cpu == cpu)
7720 util_est += _task_util_est(p);
3eb6d6ec 7721 else if (p && unlikely(task_on_rq_queued(p) || current == p))
4e3c7d33 7722 lsub_positive(&util_est, _task_util_est(p));
390031e4
QP
7723
7724 util = max(util, util_est);
7725 }
7726
7bc26384 7727 return min(util, arch_scale_cpu_capacity(cpu));
390031e4
QP
7728}
7729
3eb6d6ec
DE
7730unsigned long cpu_util_cfs(int cpu)
7731{
7d0583cf
DE
7732 return cpu_util(cpu, NULL, -1, 0);
7733}
7734
7735unsigned long cpu_util_cfs_boost(int cpu)
7736{
7737 return cpu_util(cpu, NULL, -1, 1);
3eb6d6ec
DE
7738}
7739
4e3c7d33
DE
7740/*
7741 * cpu_util_without: compute cpu utilization without any contributions from *p
7742 * @cpu: the CPU which utilization is requested
7743 * @p: the task which utilization should be discounted
7744 *
7745 * The utilization of a CPU is defined by the utilization of tasks currently
7746 * enqueued on that CPU as well as tasks which are currently sleeping after an
7747 * execution on that CPU.
7748 *
7749 * This method returns the utilization of the specified CPU by discounting the
7750 * utilization of the specified task, whenever the task is currently
7751 * contributing to the CPU utilization.
7752 */
7753static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7754{
7755 /* Task has no contribution or is new */
7756 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
3eb6d6ec 7757 p = NULL;
4e3c7d33 7758
7d0583cf 7759 return cpu_util(cpu, p, -1, 0);
4e3c7d33
DE
7760}
7761
390031e4 7762/*
3e8c6c9a
VD
7763 * energy_env - Utilization landscape for energy estimation.
7764 * @task_busy_time: Utilization contribution by the task for which we test the
7765 * placement. Given by eenv_task_busy_time().
7766 * @pd_busy_time: Utilization of the whole perf domain without the task
7767 * contribution. Given by eenv_pd_busy_time().
7768 * @cpu_cap: Maximum CPU capacity for the perf domain.
7769 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
390031e4 7770 */
3e8c6c9a
VD
7771struct energy_env {
7772 unsigned long task_busy_time;
7773 unsigned long pd_busy_time;
7774 unsigned long cpu_cap;
7775 unsigned long pd_cap;
7776};
7777
7778/*
7779 * Compute the task busy time for compute_energy(). This time cannot be
7780 * injected directly into effective_cpu_util() because of the IRQ scaling.
7781 * The latter only makes sense with the most recent CPUs where the task has
7782 * run.
7783 */
7784static inline void eenv_task_busy_time(struct energy_env *eenv,
7785 struct task_struct *p, int prev_cpu)
390031e4 7786{
3e8c6c9a
VD
7787 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7788 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7789
7790 if (unlikely(irq >= max_cap))
7791 busy_time = max_cap;
7792 else
7793 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7794
7795 eenv->task_busy_time = busy_time;
7796}
7797
7798/*
7799 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7800 * utilization for each @pd_cpus, it however doesn't take into account
7801 * clamping since the ratio (utilization / cpu_capacity) is already enough to
7802 * scale the EM reported power consumption at the (eventually clamped)
7803 * cpu_capacity.
7804 *
7805 * The contribution of the task @p for which we want to estimate the
3eb6d6ec 7806 * energy cost is removed (by cpu_util()) and must be calculated
3e8c6c9a
VD
7807 * separately (see eenv_task_busy_time). This ensures:
7808 *
7809 * - A stable PD utilization, no matter which CPU of that PD we want to place
7810 * the task on.
7811 *
7812 * - A fair comparison between CPUs as the task contribution (task_util())
7813 * will always be the same no matter which CPU utilization we rely on
7814 * (util_avg or util_est).
7815 *
7816 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7817 * exceed @eenv->pd_cap.
7818 */
7819static inline void eenv_pd_busy_time(struct energy_env *eenv,
7820 struct cpumask *pd_cpus,
7821 struct task_struct *p)
7822{
7823 unsigned long busy_time = 0;
390031e4
QP
7824 int cpu;
7825
3e8c6c9a 7826 for_each_cpu(cpu, pd_cpus) {
7d0583cf 7827 unsigned long util = cpu_util(cpu, p, -1, 0);
489f1645 7828
9c0b4bb7 7829 busy_time += effective_cpu_util(cpu, util, NULL, NULL);
3e8c6c9a 7830 }
0372e1cf 7831
3e8c6c9a
VD
7832 eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7833}
af24bde8 7834
3e8c6c9a
VD
7835/*
7836 * Compute the maximum utilization for compute_energy() when the task @p
7837 * is placed on the cpu @dst_cpu.
7838 *
7839 * Returns the maximum utilization among @eenv->cpus. This utilization can't
7840 * exceed @eenv->cpu_cap.
7841 */
7842static inline unsigned long
7843eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7844 struct task_struct *p, int dst_cpu)
7845{
7846 unsigned long max_util = 0;
7847 int cpu;
489f1645 7848
3e8c6c9a
VD
7849 for_each_cpu(cpu, pd_cpus) {
7850 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7d0583cf 7851 unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
9c0b4bb7 7852 unsigned long eff_util, min, max;
af24bde8 7853
390031e4 7854 /*
eb92692b
QP
7855 * Performance domain frequency: utilization clamping
7856 * must be considered since it affects the selection
7857 * of the performance domain frequency.
7858 * NOTE: in case RT tasks are running, by default the
7859 * FREQUENCY_UTIL's utilization can be max OPP.
390031e4 7860 */
9c0b4bb7
VG
7861 eff_util = effective_cpu_util(cpu, util, &min, &max);
7862
7863 /* Task's uclamp can modify min and max value */
7864 if (tsk && uclamp_is_used()) {
7865 min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
7866
7867 /*
7868 * If there is no active max uclamp constraint,
7869 * directly use task's one, otherwise keep max.
7870 */
7871 if (uclamp_rq_is_idle(cpu_rq(cpu)))
7872 max = uclamp_eff_value(p, UCLAMP_MAX);
7873 else
7874 max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
7875 }
7876
7877 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
a707df30 7878 max_util = max(max_util, eff_util);
390031e4
QP
7879 }
7880
3e8c6c9a
VD
7881 return min(max_util, eenv->cpu_cap);
7882}
7883
7884/*
7885 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7886 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7887 * contribution is ignored.
7888 */
7889static inline unsigned long
7890compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7891 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7892{
7893 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7894 unsigned long busy_time = eenv->pd_busy_time;
15874a3d 7895 unsigned long energy;
3e8c6c9a
VD
7896
7897 if (dst_cpu >= 0)
7898 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7899
15874a3d
QY
7900 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7901
7902 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
7903
7904 return energy;
390031e4
QP
7905}
7906
732cd75b
QP
7907/*
7908 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7909 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7910 * spare capacity in each performance domain and uses it as a potential
7911 * candidate to execute the task. Then, it uses the Energy Model to figure
7912 * out which of the CPU candidates is the most energy-efficient.
7913 *
7914 * The rationale for this heuristic is as follows. In a performance domain,
7915 * all the most energy efficient CPU candidates (according to the Energy
7916 * Model) are those for which we'll request a low frequency. When there are
7917 * several CPUs for which the frequency request will be the same, we don't
7918 * have enough data to break the tie between them, because the Energy Model
7919 * only includes active power costs. With this model, if we assume that
7920 * frequency requests follow utilization (e.g. using schedutil), the CPU with
7921 * the maximum spare capacity in a performance domain is guaranteed to be among
7922 * the best candidates of the performance domain.
7923 *
7924 * In practice, it could be preferable from an energy standpoint to pack
7925 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7926 * but that could also hurt our chances to go cluster idle, and we have no
7927 * ways to tell with the current Energy Model if this is actually a good
7928 * idea or not. So, find_energy_efficient_cpu() basically favors
7929 * cluster-packing, and spreading inside a cluster. That should at least be
7930 * a good thing for latency, and this is consistent with the idea that most
7931 * of the energy savings of EAS come from the asymmetry of the system, and
7932 * not so much from breaking the tie between identical CPUs. That's also the
7933 * reason why EAS is enabled in the topology code only for systems where
7934 * SD_ASYM_CPUCAPACITY is set.
7935 *
7936 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7937 * they don't have any useful utilization data yet and it's not possible to
7938 * forecast their impact on energy consumption. Consequently, they will be
7939 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7940 * to be energy-inefficient in some use-cases. The alternative would be to
7941 * bias new tasks towards specific types of CPUs first, or to try to infer
7942 * their util_avg from the parent task, but those heuristics could hurt
7943 * other use-cases too. So, until someone finds a better way to solve this,
7944 * let's keep things simple by re-using the existing slow path.
7945 */
732cd75b
QP
7946static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7947{
9b340131 7948 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
eb92692b 7949 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
24422603
QY
7950 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7951 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
3e8c6c9a 7952 struct root_domain *rd = this_rq()->rd;
b812fc97 7953 int cpu, best_energy_cpu, target = -1;
e5ed0550
VG
7954 int prev_fits = -1, best_fits = -1;
7955 unsigned long best_thermal_cap = 0;
7956 unsigned long prev_thermal_cap = 0;
732cd75b 7957 struct sched_domain *sd;
eb92692b 7958 struct perf_domain *pd;
3e8c6c9a 7959 struct energy_env eenv;
732cd75b
QP
7960
7961 rcu_read_lock();
7962 pd = rcu_dereference(rd->pd);
7963 if (!pd || READ_ONCE(rd->overutilized))
619e090c 7964 goto unlock;
732cd75b
QP
7965
7966 /*
7967 * Energy-aware wake-up happens on the lowest sched_domain starting
7968 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7969 */
7970 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7971 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7972 sd = sd->parent;
7973 if (!sd)
619e090c
PG
7974 goto unlock;
7975
7976 target = prev_cpu;
732cd75b
QP
7977
7978 sync_entity_load_avg(&p->se);
23c9519d 7979 if (!task_util_est(p) && p_util_min == 0)
732cd75b
QP
7980 goto unlock;
7981
3e8c6c9a
VD
7982 eenv_task_busy_time(&eenv, p, prev_cpu);
7983
732cd75b 7984 for (; pd; pd = pd->next) {
e26fd28d 7985 unsigned long util_min = p_util_min, util_max = p_util_max;
3e8c6c9a 7986 unsigned long cpu_cap, cpu_thermal_cap, util;
6b00a401 7987 long prev_spare_cap = -1, max_spare_cap = -1;
24422603 7988 unsigned long rq_util_min, rq_util_max;
6b00a401 7989 unsigned long cur_delta, base_energy;
732cd75b 7990 int max_spare_cap_cpu = -1;
e5ed0550 7991 int fits, max_fits = -1;
732cd75b 7992
9b340131
DE
7993 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7994
3e8c6c9a
VD
7995 if (cpumask_empty(cpus))
7996 continue;
7997
7998 /* Account thermal pressure for the energy estimation */
7999 cpu = cpumask_first(cpus);
8000 cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
8001 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
8002
8003 eenv.cpu_cap = cpu_thermal_cap;
8004 eenv.pd_cap = 0;
8005
8006 for_each_cpu(cpu, cpus) {
e26fd28d
QY
8007 struct rq *rq = cpu_rq(cpu);
8008
3e8c6c9a
VD
8009 eenv.pd_cap += cpu_thermal_cap;
8010
8011 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8012 continue;
8013
3bd37062 8014 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
8015 continue;
8016
7d0583cf 8017 util = cpu_util(cpu, p, cpu, 0);
732cd75b 8018 cpu_cap = capacity_of(cpu);
1d42509e
VS
8019
8020 /*
8021 * Skip CPUs that cannot satisfy the capacity request.
8022 * IOW, placing the task there would make the CPU
8023 * overutilized. Take uclamp into account to see how
8024 * much capacity we can get out of the CPU; this is
a5418be9 8025 * aligned with sched_cpu_util().
1d42509e 8026 */
e26fd28d
QY
8027 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8028 /*
8029 * Open code uclamp_rq_util_with() except for
8030 * the clamp() part. Ie: apply max aggregation
8031 * only. util_fits_cpu() logic requires to
8032 * operate on non clamped util but must use the
8033 * max-aggregated uclamp_{min, max}.
8034 */
8035 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8036 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8037
8038 util_min = max(rq_util_min, p_util_min);
8039 util_max = max(rq_util_max, p_util_max);
24422603 8040 }
e5ed0550
VG
8041
8042 fits = util_fits_cpu(util, util_min, util_max, cpu);
8043 if (!fits)
732cd75b
QP
8044 continue;
8045
3e8c6c9a
VD
8046 lsub_positive(&cpu_cap, util);
8047
732cd75b 8048 if (cpu == prev_cpu) {
8d4c97c1 8049 /* Always use prev_cpu as a candidate. */
ad841e56 8050 prev_spare_cap = cpu_cap;
e5ed0550
VG
8051 prev_fits = fits;
8052 } else if ((fits > max_fits) ||
6b00a401 8053 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8d4c97c1
PG
8054 /*
8055 * Find the CPU with the maximum spare capacity
ad841e56
PG
8056 * among the remaining CPUs in the performance
8057 * domain.
8d4c97c1 8058 */
3e8c6c9a 8059 max_spare_cap = cpu_cap;
732cd75b 8060 max_spare_cap_cpu = cpu;
e5ed0550 8061 max_fits = fits;
732cd75b
QP
8062 }
8063 }
8064
6b00a401 8065 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8d4c97c1
PG
8066 continue;
8067
3e8c6c9a 8068 eenv_pd_busy_time(&eenv, cpus, p);
8d4c97c1 8069 /* Compute the 'base' energy of the pd, without @p */
b812fc97 8070 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8d4c97c1
PG
8071
8072 /* Evaluate the energy impact of using prev_cpu. */
6b00a401 8073 if (prev_spare_cap > -1) {
3e8c6c9a
VD
8074 prev_delta = compute_energy(&eenv, pd, cpus, p,
8075 prev_cpu);
8076 /* CPU utilization has changed */
b812fc97 8077 if (prev_delta < base_energy)
619e090c 8078 goto unlock;
b812fc97 8079 prev_delta -= base_energy;
e5ed0550 8080 prev_thermal_cap = cpu_thermal_cap;
8d4c97c1
PG
8081 best_delta = min(best_delta, prev_delta);
8082 }
8083
8084 /* Evaluate the energy impact of using max_spare_cap_cpu. */
ad841e56 8085 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
e5ed0550
VG
8086 /* Current best energy cpu fits better */
8087 if (max_fits < best_fits)
8088 continue;
8089
8090 /*
8091 * Both don't fit performance hint (i.e. uclamp_min)
8092 * but best energy cpu has better capacity.
8093 */
8094 if ((max_fits < 0) &&
8095 (cpu_thermal_cap <= best_thermal_cap))
8096 continue;
8097
3e8c6c9a
VD
8098 cur_delta = compute_energy(&eenv, pd, cpus, p,
8099 max_spare_cap_cpu);
8100 /* CPU utilization has changed */
b812fc97 8101 if (cur_delta < base_energy)
619e090c 8102 goto unlock;
b812fc97 8103 cur_delta -= base_energy;
e5ed0550
VG
8104
8105 /*
8106 * Both fit for the task but best energy cpu has lower
8107 * energy impact.
8108 */
8109 if ((max_fits > 0) && (best_fits > 0) &&
8110 (cur_delta >= best_delta))
8111 continue;
8112
8113 best_delta = cur_delta;
8114 best_energy_cpu = max_spare_cap_cpu;
8115 best_fits = max_fits;
8116 best_thermal_cap = cpu_thermal_cap;
732cd75b
QP
8117 }
8118 }
732cd75b
QP
8119 rcu_read_unlock();
8120
e5ed0550
VG
8121 if ((best_fits > prev_fits) ||
8122 ((best_fits > 0) && (best_delta < prev_delta)) ||
8123 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
619e090c 8124 target = best_energy_cpu;
732cd75b 8125
619e090c 8126 return target;
732cd75b 8127
619e090c 8128unlock:
732cd75b
QP
8129 rcu_read_unlock();
8130
619e090c 8131 return target;
732cd75b
QP
8132}
8133
aaee1203 8134/*
de91b9cb 8135 * select_task_rq_fair: Select target runqueue for the waking task in domains
3aef1551 8136 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
de91b9cb 8137 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 8138 *
97fb7a0a
IM
8139 * Balances load by selecting the idlest CPU in the idlest group, or under
8140 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 8141 *
97fb7a0a 8142 * Returns the target CPU number.
aaee1203 8143 */
0017d735 8144static int
3aef1551 8145select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
aaee1203 8146{
3aef1551 8147 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
f1d88b44 8148 struct sched_domain *tmp, *sd = NULL;
c88d5910 8149 int cpu = smp_processor_id();
63b0e9ed 8150 int new_cpu = prev_cpu;
99bd5e2f 8151 int want_affine = 0;
3aef1551
VS
8152 /* SD_flags and WF_flags share the first nibble */
8153 int sd_flag = wake_flags & 0xF;
c88d5910 8154
9099a147
PZ
8155 /*
8156 * required for stable ->cpus_allowed
8157 */
8158 lockdep_assert_held(&p->pi_lock);
dc824eb8 8159 if (wake_flags & WF_TTWU) {
c58d25f3 8160 record_wakee(p);
732cd75b 8161
ab83f455
PO
8162 if ((wake_flags & WF_CURRENT_CPU) &&
8163 cpumask_test_cpu(cpu, p->cpus_ptr))
8164 return cpu;
8165
f8a696f2 8166 if (sched_energy_enabled()) {
732cd75b
QP
8167 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8168 if (new_cpu >= 0)
8169 return new_cpu;
8170 new_cpu = prev_cpu;
8171 }
8172
00061968 8173 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 8174 }
aaee1203 8175
dce840a0 8176 rcu_read_lock();
aaee1203 8177 for_each_domain(cpu, tmp) {
fe3bcfe1 8178 /*
97fb7a0a 8179 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 8180 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 8181 */
99bd5e2f
SS
8182 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8183 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
8184 if (cpu != prev_cpu)
8185 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8186
8187 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 8188 break;
f03542a7 8189 }
29cd8bae 8190
2917406c
BS
8191 /*
8192 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8193 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8194 * will usually go to the fast path.
8195 */
f03542a7 8196 if (tmp->flags & sd_flag)
29cd8bae 8197 sd = tmp;
63b0e9ed
MG
8198 else if (!want_affine)
8199 break;
29cd8bae
PZ
8200 }
8201
f1d88b44
VK
8202 if (unlikely(sd)) {
8203 /* Slow path */
18bd1b4b 8204 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
dc824eb8 8205 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
f1d88b44 8206 /* Fast path */
f1d88b44 8207 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
e7693a36 8208 }
dce840a0 8209 rcu_read_unlock();
e7693a36 8210
c88d5910 8211 return new_cpu;
e7693a36 8212}
0a74bef8
PT
8213
8214/*
97fb7a0a 8215 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 8216 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 8217 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 8218 */
3f9672ba 8219static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 8220{
e2f3e35f
VD
8221 struct sched_entity *se = &p->se;
8222
e1f078f5 8223 if (!task_on_rq_migrating(p)) {
e2f3e35f
VD
8224 remove_entity_load_avg(se);
8225
144d8487 8226 /*
e2f3e35f
VD
8227 * Here, the task's PELT values have been updated according to
8228 * the current rq's clock. But if that clock hasn't been
8229 * updated in a while, a substantial idle time will be missed,
8230 * leading to an inflation after wake-up on the new rq.
8231 *
8232 * Estimate the missing time from the cfs_rq last_update_time
8233 * and update sched_avg to improve the PELT continuity after
8234 * migration.
144d8487 8235 */
e2f3e35f 8236 migrate_se_pelt_lag(se);
144d8487 8237 }
9d89c257
YD
8238
8239 /* Tell new CPU we are migrated */
e2f3e35f 8240 se->avg.last_update_time = 0;
3944a927 8241
3f9672ba 8242 update_scan_period(p, new_cpu);
0a74bef8 8243}
12695578
YD
8244
8245static void task_dead_fair(struct task_struct *p)
8246{
8247 remove_entity_load_avg(&p->se);
8248}
6e2df058
PZ
8249
8250static int
8251balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8252{
8253 if (rq->nr_running)
8254 return 1;
8255
8256 return newidle_balance(rq, rf) != 0;
8257}
e7693a36
GH
8258#endif /* CONFIG_SMP */
8259
02479099
PZ
8260static void set_next_buddy(struct sched_entity *se)
8261{
c5ae366e
DA
8262 for_each_sched_entity(se) {
8263 if (SCHED_WARN_ON(!se->on_rq))
8264 return;
30400039
JD
8265 if (se_is_idle(se))
8266 return;
69c80f3e 8267 cfs_rq_of(se)->next = se;
c5ae366e 8268 }
02479099
PZ
8269}
8270
bf0f6f24
IM
8271/*
8272 * Preempt the current task with a newly woken task if needed:
8273 */
82845683 8274static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
8275{
8276 struct task_struct *curr = rq->curr;
8651a86c 8277 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 8278 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
30400039 8279 int cse_is_idle, pse_is_idle;
bf0f6f24 8280
4ae7d5ce
IM
8281 if (unlikely(se == pse))
8282 return;
8283
5238cdd3 8284 /*
163122b7 8285 * This is possible from callers such as attach_tasks(), in which we
e23edc86 8286 * unconditionally wakeup_preempt() after an enqueue (which may have
5238cdd3
PT
8287 * lead to a throttle). This both saves work and prevents false
8288 * next-buddy nomination below.
8289 */
8290 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8291 return;
8292
5e963f2b 8293 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
3cb63d52 8294 set_next_buddy(pse);
2f36825b 8295 }
57fdc26d 8296
aec0a514
BR
8297 /*
8298 * We can come here with TIF_NEED_RESCHED already set from new task
8299 * wake up path.
5238cdd3
PT
8300 *
8301 * Note: this also catches the edge-case of curr being in a throttled
8302 * group (e.g. via set_curr_task), since update_curr() (in the
8303 * enqueue of curr) will have resulted in resched being set. This
8304 * prevents us from potentially nominating it as a false LAST_BUDDY
8305 * below.
aec0a514
BR
8306 */
8307 if (test_tsk_need_resched(curr))
8308 return;
8309
a2f5c9ab 8310 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
8311 if (unlikely(task_has_idle_policy(curr)) &&
8312 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
8313 goto preempt;
8314
91c234b4 8315 /*
a2f5c9ab
DH
8316 * Batch and idle tasks do not preempt non-idle tasks (their preemption
8317 * is driven by the tick):
91c234b4 8318 */
8ed92e51 8319 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 8320 return;
bf0f6f24 8321
464b7527 8322 find_matching_se(&se, &pse);
09348d75 8323 WARN_ON_ONCE(!pse);
30400039
JD
8324
8325 cse_is_idle = se_is_idle(se);
8326 pse_is_idle = se_is_idle(pse);
8327
8328 /*
8329 * Preempt an idle group in favor of a non-idle group (and don't preempt
8330 * in the inverse case).
8331 */
8332 if (cse_is_idle && !pse_is_idle)
8333 goto preempt;
8334 if (cse_is_idle != pse_is_idle)
8335 return;
8336
147f3efa
PZ
8337 cfs_rq = cfs_rq_of(se);
8338 update_curr(cfs_rq);
8339
5e963f2b
PZ
8340 /*
8341 * XXX pick_eevdf(cfs_rq) != se ?
8342 */
8343 if (pick_eevdf(cfs_rq) == pse)
3a7e73a2 8344 goto preempt;
464b7527 8345
3a7e73a2 8346 return;
a65ac745 8347
3a7e73a2 8348preempt:
8875125e 8349 resched_curr(rq);
bf0f6f24
IM
8350}
8351
21f56ffe
PZ
8352#ifdef CONFIG_SMP
8353static struct task_struct *pick_task_fair(struct rq *rq)
8354{
8355 struct sched_entity *se;
8356 struct cfs_rq *cfs_rq;
8357
8358again:
8359 cfs_rq = &rq->cfs;
8360 if (!cfs_rq->nr_running)
8361 return NULL;
8362
8363 do {
8364 struct sched_entity *curr = cfs_rq->curr;
8365
8366 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8367 if (curr) {
8368 if (curr->on_rq)
8369 update_curr(cfs_rq);
8370 else
8371 curr = NULL;
8372
8373 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8374 goto again;
8375 }
8376
4c456c9a 8377 se = pick_next_entity(cfs_rq);
21f56ffe
PZ
8378 cfs_rq = group_cfs_rq(se);
8379 } while (cfs_rq);
8380
8381 return task_of(se);
8382}
8383#endif
8384
5d7d6056 8385struct task_struct *
d8ac8971 8386pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
8387{
8388 struct cfs_rq *cfs_rq = &rq->cfs;
8389 struct sched_entity *se;
678d5718 8390 struct task_struct *p;
37e117c0 8391 int new_tasks;
678d5718 8392
6e83125c 8393again:
6e2df058 8394 if (!sched_fair_runnable(rq))
38033c37 8395 goto idle;
678d5718 8396
9674f5ca 8397#ifdef CONFIG_FAIR_GROUP_SCHED
67692435 8398 if (!prev || prev->sched_class != &fair_sched_class)
678d5718
PZ
8399 goto simple;
8400
8401 /*
8402 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8403 * likely that a next task is from the same cgroup as the current.
8404 *
8405 * Therefore attempt to avoid putting and setting the entire cgroup
8406 * hierarchy, only change the part that actually changes.
8407 */
8408
8409 do {
8410 struct sched_entity *curr = cfs_rq->curr;
8411
8412 /*
8413 * Since we got here without doing put_prev_entity() we also
8414 * have to consider cfs_rq->curr. If it is still a runnable
8415 * entity, update_curr() will update its vruntime, otherwise
8416 * forget we've ever seen it.
8417 */
54d27365
BS
8418 if (curr) {
8419 if (curr->on_rq)
8420 update_curr(cfs_rq);
8421 else
8422 curr = NULL;
678d5718 8423
54d27365
BS
8424 /*
8425 * This call to check_cfs_rq_runtime() will do the
8426 * throttle and dequeue its entity in the parent(s).
9674f5ca 8427 * Therefore the nr_running test will indeed
54d27365
BS
8428 * be correct.
8429 */
9674f5ca
VK
8430 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8431 cfs_rq = &rq->cfs;
8432
8433 if (!cfs_rq->nr_running)
8434 goto idle;
8435
54d27365 8436 goto simple;
9674f5ca 8437 }
54d27365 8438 }
678d5718 8439
4c456c9a 8440 se = pick_next_entity(cfs_rq);
678d5718
PZ
8441 cfs_rq = group_cfs_rq(se);
8442 } while (cfs_rq);
8443
8444 p = task_of(se);
8445
8446 /*
8447 * Since we haven't yet done put_prev_entity and if the selected task
8448 * is a different task than we started out with, try and touch the
8449 * least amount of cfs_rqs.
8450 */
8451 if (prev != p) {
8452 struct sched_entity *pse = &prev->se;
8453
8454 while (!(cfs_rq = is_same_group(se, pse))) {
8455 int se_depth = se->depth;
8456 int pse_depth = pse->depth;
8457
8458 if (se_depth <= pse_depth) {
8459 put_prev_entity(cfs_rq_of(pse), pse);
8460 pse = parent_entity(pse);
8461 }
8462 if (se_depth >= pse_depth) {
8463 set_next_entity(cfs_rq_of(se), se);
8464 se = parent_entity(se);
8465 }
8466 }
8467
8468 put_prev_entity(cfs_rq, pse);
8469 set_next_entity(cfs_rq, se);
8470 }
8471
93824900 8472 goto done;
678d5718 8473simple:
678d5718 8474#endif
67692435
PZ
8475 if (prev)
8476 put_prev_task(rq, prev);
606dba2e 8477
bf0f6f24 8478 do {
4c456c9a 8479 se = pick_next_entity(cfs_rq);
f4b6755f 8480 set_next_entity(cfs_rq, se);
bf0f6f24
IM
8481 cfs_rq = group_cfs_rq(se);
8482 } while (cfs_rq);
8483
8f4d37ec 8484 p = task_of(se);
678d5718 8485
13a453c2 8486done: __maybe_unused;
93824900
UR
8487#ifdef CONFIG_SMP
8488 /*
8489 * Move the next running task to the front of
8490 * the list, so our cfs_tasks list becomes MRU
8491 * one.
8492 */
8493 list_move(&p->se.group_node, &rq->cfs_tasks);
8494#endif
8495
e0ee463c 8496 if (hrtick_enabled_fair(rq))
b39e66ea 8497 hrtick_start_fair(rq, p);
8f4d37ec 8498
3b1baa64 8499 update_misfit_status(p, rq);
88c56cfe 8500 sched_fair_update_stop_tick(rq, p);
3b1baa64 8501
8f4d37ec 8502 return p;
38033c37
PZ
8503
8504idle:
67692435
PZ
8505 if (!rf)
8506 return NULL;
8507
5ba553ef 8508 new_tasks = newidle_balance(rq, rf);
46f69fa3 8509
37e117c0 8510 /*
5ba553ef 8511 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
37e117c0
PZ
8512 * possible for any higher priority task to appear. In that case we
8513 * must re-start the pick_next_entity() loop.
8514 */
e4aa358b 8515 if (new_tasks < 0)
37e117c0
PZ
8516 return RETRY_TASK;
8517
e4aa358b 8518 if (new_tasks > 0)
38033c37 8519 goto again;
38033c37 8520
23127296
VG
8521 /*
8522 * rq is about to be idle, check if we need to update the
8523 * lost_idle_time of clock_pelt
8524 */
8525 update_idle_rq_clock_pelt(rq);
8526
38033c37 8527 return NULL;
bf0f6f24
IM
8528}
8529
98c2f700
PZ
8530static struct task_struct *__pick_next_task_fair(struct rq *rq)
8531{
8532 return pick_next_task_fair(rq, NULL, NULL);
8533}
8534
bf0f6f24
IM
8535/*
8536 * Account for a descheduled task:
8537 */
6e2df058 8538static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
8539{
8540 struct sched_entity *se = &prev->se;
8541 struct cfs_rq *cfs_rq;
8542
8543 for_each_sched_entity(se) {
8544 cfs_rq = cfs_rq_of(se);
ab6cde26 8545 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
8546 }
8547}
8548
ac53db59
RR
8549/*
8550 * sched_yield() is very simple
ac53db59
RR
8551 */
8552static void yield_task_fair(struct rq *rq)
8553{
8554 struct task_struct *curr = rq->curr;
8555 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8556 struct sched_entity *se = &curr->se;
8557
8558 /*
8559 * Are we the only task in the tree?
8560 */
8561 if (unlikely(rq->nr_running == 1))
8562 return;
8563
8564 clear_buddies(cfs_rq, se);
8565
5e963f2b
PZ
8566 update_rq_clock(rq);
8567 /*
8568 * Update run-time statistics of the 'current'.
8569 */
8570 update_curr(cfs_rq);
8571 /*
8572 * Tell update_rq_clock() that we've just updated,
8573 * so we don't do microscopic update in schedule()
8574 * and double the fastpath cost.
8575 */
8576 rq_clock_skip_update(rq);
ac53db59 8577
5e963f2b 8578 se->deadline += calc_delta_fair(se->slice, se);
ac53db59
RR
8579}
8580
0900acf2 8581static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
d95f4122
MG
8582{
8583 struct sched_entity *se = &p->se;
8584
5238cdd3
PT
8585 /* throttled hierarchies are not runnable */
8586 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
8587 return false;
8588
8589 /* Tell the scheduler that we'd really like pse to run next. */
8590 set_next_buddy(se);
8591
d95f4122
MG
8592 yield_task_fair(rq);
8593
8594 return true;
8595}
8596
681f3e68 8597#ifdef CONFIG_SMP
bf0f6f24 8598/**************************************************
e9c84cb8
PZ
8599 * Fair scheduling class load-balancing methods.
8600 *
8601 * BASICS
8602 *
8603 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 8604 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
8605 * time to each task. This is expressed in the following equation:
8606 *
8607 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
8608 *
97fb7a0a 8609 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
8610 * W_i,0 is defined as:
8611 *
8612 * W_i,0 = \Sum_j w_i,j (2)
8613 *
97fb7a0a 8614 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 8615 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
8616 *
8617 * The weight average is an exponential decay average of the instantaneous
8618 * weight:
8619 *
8620 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
8621 *
97fb7a0a 8622 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
8623 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8624 * can also include other factors [XXX].
8625 *
8626 * To achieve this balance we define a measure of imbalance which follows
8627 * directly from (1):
8628 *
ced549fa 8629 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
8630 *
8631 * We them move tasks around to minimize the imbalance. In the continuous
8632 * function space it is obvious this converges, in the discrete case we get
8633 * a few fun cases generally called infeasible weight scenarios.
8634 *
8635 * [XXX expand on:
8636 * - infeasible weights;
8637 * - local vs global optima in the discrete case. ]
8638 *
8639 *
8640 * SCHED DOMAINS
8641 *
8642 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 8643 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 8644 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 8645 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 8646 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 8647 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
8648 * the groups.
8649 *
8650 * This yields:
8651 *
8652 * log_2 n 1 n
8653 * \Sum { --- * --- * 2^i } = O(n) (5)
8654 * i = 0 2^i 2^i
8655 * `- size of each group
97fb7a0a 8656 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
8657 * | `- freq
8658 * `- sum over all levels
8659 *
8660 * Coupled with a limit on how many tasks we can migrate every balance pass,
8661 * this makes (5) the runtime complexity of the balancer.
8662 *
8663 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 8664 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
8665 *
8666 * The adjacency matrix of the resulting graph is given by:
8667 *
97a7142f 8668 * log_2 n
e9c84cb8
PZ
8669 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
8670 * k = 0
8671 *
8672 * And you'll find that:
8673 *
8674 * A^(log_2 n)_i,j != 0 for all i,j (7)
8675 *
97fb7a0a 8676 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
8677 * The task movement gives a factor of O(m), giving a convergence complexity
8678 * of:
8679 *
8680 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
8681 *
8682 *
8683 * WORK CONSERVING
8684 *
8685 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 8686 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
8687 * tree itself instead of relying on other CPUs to bring it work.
8688 *
8689 * This adds some complexity to both (5) and (8) but it reduces the total idle
8690 * time.
8691 *
8692 * [XXX more?]
8693 *
8694 *
8695 * CGROUPS
8696 *
8697 * Cgroups make a horror show out of (2), instead of a simple sum we get:
8698 *
8699 * s_k,i
8700 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
8701 * S_k
8702 *
8703 * Where
8704 *
8705 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
8706 *
97fb7a0a 8707 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
8708 *
8709 * The big problem is S_k, its a global sum needed to compute a local (W_i)
8710 * property.
8711 *
8712 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8713 * rewrite all of this once again.]
97a7142f 8714 */
bf0f6f24 8715
ed387b78
HS
8716static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8717
0ec8aa00
PZ
8718enum fbq_type { regular, remote, all };
8719
0b0695f2 8720/*
a9723389
VG
8721 * 'group_type' describes the group of CPUs at the moment of load balancing.
8722 *
0b0695f2 8723 * The enum is ordered by pulling priority, with the group with lowest priority
a9723389
VG
8724 * first so the group_type can simply be compared when selecting the busiest
8725 * group. See update_sd_pick_busiest().
0b0695f2 8726 */
3b1baa64 8727enum group_type {
a9723389 8728 /* The group has spare capacity that can be used to run more tasks. */
0b0695f2 8729 group_has_spare = 0,
a9723389
VG
8730 /*
8731 * The group is fully used and the tasks don't compete for more CPU
8732 * cycles. Nevertheless, some tasks might wait before running.
8733 */
0b0695f2 8734 group_fully_busy,
a9723389 8735 /*
c82a6962
VG
8736 * One task doesn't fit with CPU's capacity and must be migrated to a
8737 * more powerful CPU.
a9723389 8738 */
3b1baa64 8739 group_misfit_task,
fee1759e
TC
8740 /*
8741 * Balance SMT group that's fully busy. Can benefit from migration
8742 * a task on SMT with busy sibling to another CPU on idle core.
8743 */
8744 group_smt_balance,
a9723389
VG
8745 /*
8746 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8747 * and the task should be migrated to it instead of running on the
8748 * current CPU.
8749 */
0b0695f2 8750 group_asym_packing,
a9723389
VG
8751 /*
8752 * The tasks' affinity constraints previously prevented the scheduler
8753 * from balancing the load across the system.
8754 */
3b1baa64 8755 group_imbalanced,
a9723389
VG
8756 /*
8757 * The CPU is overloaded and can't provide expected CPU cycles to all
8758 * tasks.
8759 */
0b0695f2
VG
8760 group_overloaded
8761};
8762
8763enum migration_type {
8764 migrate_load = 0,
8765 migrate_util,
8766 migrate_task,
8767 migrate_misfit
3b1baa64
MR
8768};
8769
ddcdf6e7 8770#define LBF_ALL_PINNED 0x01
367456c7 8771#define LBF_NEED_BREAK 0x02
6263322c
PZ
8772#define LBF_DST_PINNED 0x04
8773#define LBF_SOME_PINNED 0x08
23fb06d9 8774#define LBF_ACTIVE_LB 0x10
ddcdf6e7
PZ
8775
8776struct lb_env {
8777 struct sched_domain *sd;
8778
ddcdf6e7 8779 struct rq *src_rq;
85c1e7da 8780 int src_cpu;
ddcdf6e7
PZ
8781
8782 int dst_cpu;
8783 struct rq *dst_rq;
8784
88b8dac0
SV
8785 struct cpumask *dst_grpmask;
8786 int new_dst_cpu;
ddcdf6e7 8787 enum cpu_idle_type idle;
bd939f45 8788 long imbalance;
b9403130
MW
8789 /* The set of CPUs under consideration for load-balancing */
8790 struct cpumask *cpus;
8791
ddcdf6e7 8792 unsigned int flags;
367456c7
PZ
8793
8794 unsigned int loop;
8795 unsigned int loop_break;
8796 unsigned int loop_max;
0ec8aa00
PZ
8797
8798 enum fbq_type fbq_type;
0b0695f2 8799 enum migration_type migration_type;
163122b7 8800 struct list_head tasks;
ddcdf6e7
PZ
8801};
8802
029632fb
PZ
8803/*
8804 * Is this task likely cache-hot:
8805 */
5d5e2b1b 8806static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
8807{
8808 s64 delta;
8809
5cb9eaa3 8810 lockdep_assert_rq_held(env->src_rq);
e5673f28 8811
029632fb
PZ
8812 if (p->sched_class != &fair_sched_class)
8813 return 0;
8814
1da1843f 8815 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
8816 return 0;
8817
ec73240b
JD
8818 /* SMT siblings share cache */
8819 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8820 return 0;
8821
029632fb
PZ
8822 /*
8823 * Buddy candidates are cache hot:
8824 */
5d5e2b1b 8825 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5e963f2b 8826 (&p->se == cfs_rq_of(&p->se)->next))
029632fb
PZ
8827 return 1;
8828
8829 if (sysctl_sched_migration_cost == -1)
8830 return 1;
97886d9d
AL
8831
8832 /*
8833 * Don't migrate task if the task's cookie does not match
8834 * with the destination CPU's core cookie.
8835 */
8836 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8837 return 1;
8838
029632fb
PZ
8839 if (sysctl_sched_migration_cost == 0)
8840 return 0;
8841
5d5e2b1b 8842 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
8843
8844 return delta < (s64)sysctl_sched_migration_cost;
8845}
8846
3a7053b3 8847#ifdef CONFIG_NUMA_BALANCING
c1ceac62 8848/*
2a1ed24c
SD
8849 * Returns 1, if task migration degrades locality
8850 * Returns 0, if task migration improves locality i.e migration preferred.
8851 * Returns -1, if task migration is not affected by locality.
c1ceac62 8852 */
2a1ed24c 8853static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 8854{
b1ad065e 8855 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
8856 unsigned long src_weight, dst_weight;
8857 int src_nid, dst_nid, dist;
3a7053b3 8858
2a595721 8859 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
8860 return -1;
8861
c3b9bc5b 8862 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 8863 return -1;
7a0f3083
MG
8864
8865 src_nid = cpu_to_node(env->src_cpu);
8866 dst_nid = cpu_to_node(env->dst_cpu);
8867
83e1d2cd 8868 if (src_nid == dst_nid)
2a1ed24c 8869 return -1;
7a0f3083 8870
2a1ed24c
SD
8871 /* Migrating away from the preferred node is always bad. */
8872 if (src_nid == p->numa_preferred_nid) {
8873 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8874 return 1;
8875 else
8876 return -1;
8877 }
b1ad065e 8878
c1ceac62
RR
8879 /* Encourage migration to the preferred node. */
8880 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 8881 return 0;
b1ad065e 8882
739294fb 8883 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 8884 if (env->idle == CPU_IDLE)
739294fb
RR
8885 return -1;
8886
f35678b6 8887 dist = node_distance(src_nid, dst_nid);
c1ceac62 8888 if (numa_group) {
f35678b6
SD
8889 src_weight = group_weight(p, src_nid, dist);
8890 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 8891 } else {
f35678b6
SD
8892 src_weight = task_weight(p, src_nid, dist);
8893 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
8894 }
8895
f35678b6 8896 return dst_weight < src_weight;
7a0f3083
MG
8897}
8898
3a7053b3 8899#else
2a1ed24c 8900static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
8901 struct lb_env *env)
8902{
2a1ed24c 8903 return -1;
7a0f3083 8904}
3a7053b3
MG
8905#endif
8906
1e3c88bd
PZ
8907/*
8908 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8909 */
8910static
8e45cb54 8911int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 8912{
2a1ed24c 8913 int tsk_cache_hot;
e5673f28 8914
5cb9eaa3 8915 lockdep_assert_rq_held(env->src_rq);
e5673f28 8916
1e3c88bd
PZ
8917 /*
8918 * We do not migrate tasks that are:
d3198084 8919 * 1) throttled_lb_pair, or
3bd37062 8920 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
8921 * 3) running (obviously), or
8922 * 4) are cache-hot on their current CPU.
1e3c88bd 8923 */
d3198084
JK
8924 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8925 return 0;
8926
9bcb959d 8927 /* Disregard pcpu kthreads; they are where they need to be. */
3a7956e2 8928 if (kthread_is_per_cpu(p))
9bcb959d
LC
8929 return 0;
8930
3bd37062 8931 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 8932 int cpu;
88b8dac0 8933
ceeadb83 8934 schedstat_inc(p->stats.nr_failed_migrations_affine);
88b8dac0 8935
6263322c
PZ
8936 env->flags |= LBF_SOME_PINNED;
8937
88b8dac0 8938 /*
97fb7a0a 8939 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
8940 * our sched_group. We may want to revisit it if we couldn't
8941 * meet load balance goals by pulling other tasks on src_cpu.
8942 *
23fb06d9
VS
8943 * Avoid computing new_dst_cpu
8944 * - for NEWLY_IDLE
8945 * - if we have already computed one in current iteration
8946 * - if it's an active balance
88b8dac0 8947 */
23fb06d9
VS
8948 if (env->idle == CPU_NEWLY_IDLE ||
8949 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
88b8dac0
SV
8950 return 0;
8951
97fb7a0a 8952 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 8953 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 8954 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 8955 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
8956 env->new_dst_cpu = cpu;
8957 break;
8958 }
88b8dac0 8959 }
e02e60c1 8960
1e3c88bd
PZ
8961 return 0;
8962 }
88b8dac0 8963
3b03706f 8964 /* Record that we found at least one task that could run on dst_cpu */
8e45cb54 8965 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 8966
0b9d46fc 8967 if (task_on_cpu(env->src_rq, p)) {
ceeadb83 8968 schedstat_inc(p->stats.nr_failed_migrations_running);
1e3c88bd
PZ
8969 return 0;
8970 }
8971
8972 /*
8973 * Aggressive migration if:
23fb06d9
VS
8974 * 1) active balance
8975 * 2) destination numa is preferred
8976 * 3) task is cache cold, or
8977 * 4) too many balance attempts have failed.
1e3c88bd 8978 */
23fb06d9
VS
8979 if (env->flags & LBF_ACTIVE_LB)
8980 return 1;
8981
2a1ed24c
SD
8982 tsk_cache_hot = migrate_degrades_locality(p, env);
8983 if (tsk_cache_hot == -1)
8984 tsk_cache_hot = task_hot(p, env);
3a7053b3 8985
2a1ed24c 8986 if (tsk_cache_hot <= 0 ||
7a96c231 8987 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 8988 if (tsk_cache_hot == 1) {
ae92882e 8989 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
ceeadb83 8990 schedstat_inc(p->stats.nr_forced_migrations);
3a7053b3 8991 }
1e3c88bd
PZ
8992 return 1;
8993 }
8994
ceeadb83 8995 schedstat_inc(p->stats.nr_failed_migrations_hot);
4e2dcb73 8996 return 0;
1e3c88bd
PZ
8997}
8998
897c395f 8999/*
163122b7
KT
9000 * detach_task() -- detach the task for the migration specified in env
9001 */
9002static void detach_task(struct task_struct *p, struct lb_env *env)
9003{
5cb9eaa3 9004 lockdep_assert_rq_held(env->src_rq);
163122b7 9005
5704ac0a 9006 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
9007 set_task_cpu(p, env->dst_cpu);
9008}
9009
897c395f 9010/*
e5673f28 9011 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 9012 * part of active balancing operations within "domain".
897c395f 9013 *
e5673f28 9014 * Returns a task if successful and NULL otherwise.
897c395f 9015 */
e5673f28 9016static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 9017{
93824900 9018 struct task_struct *p;
897c395f 9019
5cb9eaa3 9020 lockdep_assert_rq_held(env->src_rq);
e5673f28 9021
93824900
UR
9022 list_for_each_entry_reverse(p,
9023 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
9024 if (!can_migrate_task(p, env))
9025 continue;
897c395f 9026
163122b7 9027 detach_task(p, env);
e5673f28 9028
367456c7 9029 /*
e5673f28 9030 * Right now, this is only the second place where
163122b7 9031 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 9032 * so we can safely collect stats here rather than
163122b7 9033 * inside detach_tasks().
367456c7 9034 */
ae92882e 9035 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 9036 return p;
897c395f 9037 }
e5673f28 9038 return NULL;
897c395f
PZ
9039}
9040
5d6523eb 9041/*
0b0695f2 9042 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
163122b7 9043 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 9044 *
163122b7 9045 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 9046 */
163122b7 9047static int detach_tasks(struct lb_env *env)
1e3c88bd 9048{
5d6523eb 9049 struct list_head *tasks = &env->src_rq->cfs_tasks;
0b0695f2 9050 unsigned long util, load;
5d6523eb 9051 struct task_struct *p;
163122b7
KT
9052 int detached = 0;
9053
5cb9eaa3 9054 lockdep_assert_rq_held(env->src_rq);
1e3c88bd 9055
acb4decc
AL
9056 /*
9057 * Source run queue has been emptied by another CPU, clear
9058 * LBF_ALL_PINNED flag as we will not test any task.
9059 */
9060 if (env->src_rq->nr_running <= 1) {
9061 env->flags &= ~LBF_ALL_PINNED;
9062 return 0;
9063 }
9064
bd939f45 9065 if (env->imbalance <= 0)
5d6523eb 9066 return 0;
1e3c88bd 9067
5d6523eb 9068 while (!list_empty(tasks)) {
985d3a4c
YD
9069 /*
9070 * We don't want to steal all, otherwise we may be treated likewise,
9071 * which could at worst lead to a livelock crash.
9072 */
38d707c5 9073 if (env->idle && env->src_rq->nr_running <= 1)
985d3a4c
YD
9074 break;
9075
367456c7 9076 env->loop++;
b0defa7a
VG
9077 /*
9078 * We've more or less seen every task there is, call it quits
9079 * unless we haven't found any movable task yet.
9080 */
9081 if (env->loop > env->loop_max &&
9082 !(env->flags & LBF_ALL_PINNED))
367456c7 9083 break;
5d6523eb
PZ
9084
9085 /* take a breather every nr_migrate tasks */
367456c7 9086 if (env->loop > env->loop_break) {
c59862f8 9087 env->loop_break += SCHED_NR_MIGRATE_BREAK;
8e45cb54 9088 env->flags |= LBF_NEED_BREAK;
ee00e66f 9089 break;
a195f004 9090 }
1e3c88bd 9091
7e9518ba
VG
9092 p = list_last_entry(tasks, struct task_struct, se.group_node);
9093
d3198084 9094 if (!can_migrate_task(p, env))
367456c7
PZ
9095 goto next;
9096
0b0695f2
VG
9097 switch (env->migration_type) {
9098 case migrate_load:
01cfcde9
VG
9099 /*
9100 * Depending of the number of CPUs and tasks and the
9101 * cgroup hierarchy, task_h_load() can return a null
9102 * value. Make sure that env->imbalance decreases
9103 * otherwise detach_tasks() will stop only after
9104 * detaching up to loop_max tasks.
9105 */
9106 load = max_t(unsigned long, task_h_load(p), 1);
5d6523eb 9107
0b0695f2
VG
9108 if (sched_feat(LB_MIN) &&
9109 load < 16 && !env->sd->nr_balance_failed)
9110 goto next;
367456c7 9111
6cf82d55
VG
9112 /*
9113 * Make sure that we don't migrate too much load.
9114 * Nevertheless, let relax the constraint if
9115 * scheduler fails to find a good waiting task to
9116 * migrate.
9117 */
39a2a6eb 9118 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
0b0695f2
VG
9119 goto next;
9120
9121 env->imbalance -= load;
9122 break;
9123
9124 case migrate_util:
9125 util = task_util_est(p);
9126
3af7524b 9127 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
0b0695f2
VG
9128 goto next;
9129
9130 env->imbalance -= util;
9131 break;
9132
9133 case migrate_task:
9134 env->imbalance--;
9135 break;
9136
9137 case migrate_misfit:
c63be7be 9138 /* This is not a misfit task */
b48e16a6 9139 if (task_fits_cpu(p, env->src_cpu))
0b0695f2
VG
9140 goto next;
9141
9142 env->imbalance = 0;
9143 break;
9144 }
1e3c88bd 9145
163122b7
KT
9146 detach_task(p, env);
9147 list_add(&p->se.group_node, &env->tasks);
9148
9149 detached++;
1e3c88bd 9150
c1a280b6 9151#ifdef CONFIG_PREEMPTION
ee00e66f
PZ
9152 /*
9153 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 9154 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
9155 * the critical section.
9156 */
5d6523eb 9157 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 9158 break;
1e3c88bd
PZ
9159#endif
9160
ee00e66f
PZ
9161 /*
9162 * We only want to steal up to the prescribed amount of
0b0695f2 9163 * load/util/tasks.
ee00e66f 9164 */
bd939f45 9165 if (env->imbalance <= 0)
ee00e66f 9166 break;
367456c7
PZ
9167
9168 continue;
9169next:
93824900 9170 list_move(&p->se.group_node, tasks);
1e3c88bd 9171 }
5d6523eb 9172
1e3c88bd 9173 /*
163122b7
KT
9174 * Right now, this is one of only two places we collect this stat
9175 * so we can safely collect detach_one_task() stats here rather
9176 * than inside detach_one_task().
1e3c88bd 9177 */
ae92882e 9178 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 9179
163122b7
KT
9180 return detached;
9181}
9182
9183/*
9184 * attach_task() -- attach the task detached by detach_task() to its new rq.
9185 */
9186static void attach_task(struct rq *rq, struct task_struct *p)
9187{
5cb9eaa3 9188 lockdep_assert_rq_held(rq);
163122b7 9189
09348d75 9190 WARN_ON_ONCE(task_rq(p) != rq);
5704ac0a 9191 activate_task(rq, p, ENQUEUE_NOCLOCK);
e23edc86 9192 wakeup_preempt(rq, p, 0);
163122b7
KT
9193}
9194
9195/*
9196 * attach_one_task() -- attaches the task returned from detach_one_task() to
9197 * its new rq.
9198 */
9199static void attach_one_task(struct rq *rq, struct task_struct *p)
9200{
8a8c69c3
PZ
9201 struct rq_flags rf;
9202
9203 rq_lock(rq, &rf);
5704ac0a 9204 update_rq_clock(rq);
163122b7 9205 attach_task(rq, p);
8a8c69c3 9206 rq_unlock(rq, &rf);
163122b7
KT
9207}
9208
9209/*
9210 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9211 * new rq.
9212 */
9213static void attach_tasks(struct lb_env *env)
9214{
9215 struct list_head *tasks = &env->tasks;
9216 struct task_struct *p;
8a8c69c3 9217 struct rq_flags rf;
163122b7 9218
8a8c69c3 9219 rq_lock(env->dst_rq, &rf);
5704ac0a 9220 update_rq_clock(env->dst_rq);
163122b7
KT
9221
9222 while (!list_empty(tasks)) {
9223 p = list_first_entry(tasks, struct task_struct, se.group_node);
9224 list_del_init(&p->se.group_node);
1e3c88bd 9225
163122b7
KT
9226 attach_task(env->dst_rq, p);
9227 }
9228
8a8c69c3 9229 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
9230}
9231
b0c79224 9232#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
9233static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9234{
9235 if (cfs_rq->avg.load_avg)
9236 return true;
9237
9238 if (cfs_rq->avg.util_avg)
9239 return true;
9240
9241 return false;
9242}
9243
91c27493 9244static inline bool others_have_blocked(struct rq *rq)
371bf427 9245{
8b936fc1 9246 if (cpu_util_rt(rq))
371bf427
VG
9247 return true;
9248
8b936fc1 9249 if (cpu_util_dl(rq))
3727e0e1
VG
9250 return true;
9251
b4eccf5f
TG
9252 if (thermal_load_avg(rq))
9253 return true;
9254
a6965b31 9255 if (cpu_util_irq(rq))
91c27493 9256 return true;
91c27493 9257
371bf427
VG
9258 return false;
9259}
9260
39b6a429 9261static inline void update_blocked_load_tick(struct rq *rq)
b0c79224 9262{
39b6a429
VG
9263 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9264}
b0c79224 9265
39b6a429
VG
9266static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9267{
b0c79224
VS
9268 if (!has_blocked)
9269 rq->has_blocked_load = 0;
9270}
9271#else
9272static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9273static inline bool others_have_blocked(struct rq *rq) { return false; }
39b6a429 9274static inline void update_blocked_load_tick(struct rq *rq) {}
b0c79224
VS
9275static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9276#endif
9277
bef69dd8
VG
9278static bool __update_blocked_others(struct rq *rq, bool *done)
9279{
9280 const struct sched_class *curr_class;
9281 u64 now = rq_clock_pelt(rq);
b4eccf5f 9282 unsigned long thermal_pressure;
bef69dd8
VG
9283 bool decayed;
9284
9285 /*
9286 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9287 * DL and IRQ signals have been updated before updating CFS.
9288 */
9289 curr_class = rq->curr->sched_class;
9290
b4eccf5f
TG
9291 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
9292
bef69dd8
VG
9293 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9294 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
05289b90 9295 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
bef69dd8
VG
9296 update_irq_load_avg(rq, 0);
9297
9298 if (others_have_blocked(rq))
9299 *done = false;
9300
9301 return decayed;
9302}
9303
1936c53c
VG
9304#ifdef CONFIG_FAIR_GROUP_SCHED
9305
bef69dd8 9306static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 9307{
039ae8bc 9308 struct cfs_rq *cfs_rq, *pos;
bef69dd8
VG
9309 bool decayed = false;
9310 int cpu = cpu_of(rq);
b90f7c9d 9311
9763b67f
PZ
9312 /*
9313 * Iterates the task_group tree in a bottom up fashion, see
9314 * list_add_leaf_cfs_rq() for details.
9315 */
039ae8bc 9316 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
9317 struct sched_entity *se;
9318
bef69dd8 9319 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
fe749158 9320 update_tg_load_avg(cfs_rq);
4e516076 9321
e2f3e35f
VD
9322 if (cfs_rq->nr_running == 0)
9323 update_idle_cfs_rq_clock_pelt(cfs_rq);
9324
bef69dd8
VG
9325 if (cfs_rq == &rq->cfs)
9326 decayed = true;
9327 }
9328
bc427898
VG
9329 /* Propagate pending load changes to the parent, if any: */
9330 se = cfs_rq->tg->se[cpu];
9331 if (se && !skip_blocked_update(se))
02da26ad 9332 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
a9e7f654 9333
039ae8bc
VG
9334 /*
9335 * There can be a lot of idle CPU cgroups. Don't let fully
9336 * decayed cfs_rqs linger on the list.
9337 */
9338 if (cfs_rq_is_decayed(cfs_rq))
9339 list_del_leaf_cfs_rq(cfs_rq);
9340
1936c53c
VG
9341 /* Don't need periodic decay once load/util_avg are null */
9342 if (cfs_rq_has_blocked(cfs_rq))
bef69dd8 9343 *done = false;
9d89c257 9344 }
12b04875 9345
bef69dd8 9346 return decayed;
9e3081ca
PZ
9347}
9348
9763b67f 9349/*
68520796 9350 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
9351 * This needs to be done in a top-down fashion because the load of a child
9352 * group is a fraction of its parents load.
9353 */
68520796 9354static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 9355{
68520796
VD
9356 struct rq *rq = rq_of(cfs_rq);
9357 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 9358 unsigned long now = jiffies;
68520796 9359 unsigned long load;
a35b6466 9360
68520796 9361 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
9362 return;
9363
0e9f0245 9364 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
9365 for_each_sched_entity(se) {
9366 cfs_rq = cfs_rq_of(se);
0e9f0245 9367 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
9368 if (cfs_rq->last_h_load_update == now)
9369 break;
9370 }
a35b6466 9371
68520796 9372 if (!se) {
7ea241af 9373 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
9374 cfs_rq->last_h_load_update = now;
9375 }
9376
0e9f0245 9377 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 9378 load = cfs_rq->h_load;
7ea241af
YD
9379 load = div64_ul(load * se->avg.load_avg,
9380 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
9381 cfs_rq = group_cfs_rq(se);
9382 cfs_rq->h_load = load;
9383 cfs_rq->last_h_load_update = now;
9384 }
9763b67f
PZ
9385}
9386
367456c7 9387static unsigned long task_h_load(struct task_struct *p)
230059de 9388{
367456c7 9389 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 9390
68520796 9391 update_cfs_rq_h_load(cfs_rq);
9d89c257 9392 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 9393 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
9394}
9395#else
bef69dd8 9396static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 9397{
6c1d47c0 9398 struct cfs_rq *cfs_rq = &rq->cfs;
bef69dd8 9399 bool decayed;
b90f7c9d 9400
bef69dd8
VG
9401 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9402 if (cfs_rq_has_blocked(cfs_rq))
9403 *done = false;
b90f7c9d 9404
bef69dd8 9405 return decayed;
9e3081ca
PZ
9406}
9407
367456c7 9408static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 9409{
9d89c257 9410 return p->se.avg.load_avg;
1e3c88bd 9411}
230059de 9412#endif
1e3c88bd 9413
bef69dd8
VG
9414static void update_blocked_averages(int cpu)
9415{
9416 bool decayed = false, done = true;
9417 struct rq *rq = cpu_rq(cpu);
9418 struct rq_flags rf;
9419
9420 rq_lock_irqsave(rq, &rf);
39b6a429 9421 update_blocked_load_tick(rq);
bef69dd8
VG
9422 update_rq_clock(rq);
9423
9424 decayed |= __update_blocked_others(rq, &done);
9425 decayed |= __update_blocked_fair(rq, &done);
9426
9427 update_blocked_load_status(rq, !done);
9428 if (decayed)
9429 cpufreq_update_util(rq, 0);
9430 rq_unlock_irqrestore(rq, &rf);
9431}
9432
1e3c88bd 9433/********** Helpers for find_busiest_group ************************/
caeb178c 9434
1e3c88bd 9435/*
33928ed8 9436 * sg_lb_stats - stats of a sched_group required for load-balancing:
1e3c88bd
PZ
9437 */
9438struct sg_lb_stats {
33928ed8
IM
9439 unsigned long avg_load; /* Avg load over the CPUs of the group */
9440 unsigned long group_load; /* Total load over the CPUs of the group */
9441 unsigned long group_capacity; /* Capacity over the CPUs of the group */
9442 unsigned long group_util; /* Total utilization over the CPUs of the group */
e492e1b0 9443 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
33928ed8 9444 unsigned int sum_nr_running; /* Nr of all tasks running in the group */
e492e1b0 9445 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
33928ed8 9446 unsigned int idle_cpus; /* Nr of idle CPUs in the group */
147c5fc2 9447 unsigned int group_weight;
caeb178c 9448 enum group_type group_type;
e492e1b0
IM
9449 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9450 unsigned int group_smt_balance; /* Task on busy SMT be moved */
9451 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
9452#ifdef CONFIG_NUMA_BALANCING
9453 unsigned int nr_numa_running;
9454 unsigned int nr_preferred_running;
9455#endif
1e3c88bd
PZ
9456};
9457
56cf515b 9458/*
33928ed8 9459 * sd_lb_stats - stats of a sched_domain required for load-balancing:
56cf515b
JK
9460 */
9461struct sd_lb_stats {
e492e1b0
IM
9462 struct sched_group *busiest; /* Busiest group in this sd */
9463 struct sched_group *local; /* Local group in this sd */
9464 unsigned long total_load; /* Total load of all groups in sd */
9465 unsigned long total_capacity; /* Total capacity of all groups in sd */
9466 unsigned long avg_load; /* Average load across all groups in sd */
33928ed8 9467 unsigned int prefer_sibling; /* Tasks should go to sibling first */
e492e1b0
IM
9468
9469 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */
9470 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
9471};
9472
147c5fc2
PZ
9473static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9474{
9475 /*
9476 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9477 * local_stat because update_sg_lb_stats() does a full clear/assignment.
0b0695f2
VG
9478 * We must however set busiest_stat::group_type and
9479 * busiest_stat::idle_cpus to the worst busiest group because
9480 * update_sd_pick_busiest() reads these before assignment.
147c5fc2
PZ
9481 */
9482 *sds = (struct sd_lb_stats){
9483 .busiest = NULL,
9484 .local = NULL,
9485 .total_load = 0UL,
63b2ca30 9486 .total_capacity = 0UL,
147c5fc2 9487 .busiest_stat = {
0b0695f2
VG
9488 .idle_cpus = UINT_MAX,
9489 .group_type = group_has_spare,
147c5fc2
PZ
9490 },
9491 };
9492}
9493
1ca2034e 9494static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
9495{
9496 struct rq *rq = cpu_rq(cpu);
8ec59c0f 9497 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 9498 unsigned long used, free;
523e979d 9499 unsigned long irq;
b654f7de 9500
2e62c474 9501 irq = cpu_util_irq(rq);
cadefd3d 9502
523e979d
VG
9503 if (unlikely(irq >= max))
9504 return 1;
aa483808 9505
467b7d01
TG
9506 /*
9507 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9508 * (running and not running) with weights 0 and 1024 respectively.
9509 * avg_thermal.load_avg tracks thermal pressure and the weighted
9510 * average uses the actual delta max capacity(load).
9511 */
8b936fc1
SH
9512 used = cpu_util_rt(rq);
9513 used += cpu_util_dl(rq);
467b7d01 9514 used += thermal_load_avg(rq);
1e3c88bd 9515
523e979d
VG
9516 if (unlikely(used >= max))
9517 return 1;
1e3c88bd 9518
523e979d 9519 free = max - used;
2e62c474
VG
9520
9521 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
9522}
9523
ced549fa 9524static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 9525{
1ca2034e 9526 unsigned long capacity = scale_rt_capacity(cpu);
1e3c88bd
PZ
9527 struct sched_group *sdg = sd->groups;
9528
ced549fa
NP
9529 if (!capacity)
9530 capacity = 1;
1e3c88bd 9531
a2e90611
VG
9532 cpu_rq(cpu)->cpu_capacity = capacity;
9533 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
51cf18c9 9534
ced549fa 9535 sdg->sgc->capacity = capacity;
bf475ce0 9536 sdg->sgc->min_capacity = capacity;
e3d6d0cb 9537 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
9538}
9539
63b2ca30 9540void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
9541{
9542 struct sched_domain *child = sd->child;
9543 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 9544 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
9545 unsigned long interval;
9546
9547 interval = msecs_to_jiffies(sd->balance_interval);
9548 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 9549 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
9550
9551 if (!child) {
ced549fa 9552 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
9553 return;
9554 }
9555
dc7ff76e 9556 capacity = 0;
bf475ce0 9557 min_capacity = ULONG_MAX;
e3d6d0cb 9558 max_capacity = 0;
1e3c88bd 9559
74a5ce20
PZ
9560 if (child->flags & SD_OVERLAP) {
9561 /*
9562 * SD_OVERLAP domains cannot assume that child groups
9563 * span the current group.
9564 */
9565
ae4df9d6 9566 for_each_cpu(cpu, sched_group_span(sdg)) {
4c58f57f 9567 unsigned long cpu_cap = capacity_of(cpu);
863bffc8 9568
4c58f57f
PL
9569 capacity += cpu_cap;
9570 min_capacity = min(cpu_cap, min_capacity);
9571 max_capacity = max(cpu_cap, max_capacity);
863bffc8 9572 }
74a5ce20
PZ
9573 } else {
9574 /*
9575 * !SD_OVERLAP domains can assume that child groups
9576 * span the current group.
97a7142f 9577 */
74a5ce20
PZ
9578
9579 group = child->groups;
9580 do {
bf475ce0
MR
9581 struct sched_group_capacity *sgc = group->sgc;
9582
9583 capacity += sgc->capacity;
9584 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 9585 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
9586 group = group->next;
9587 } while (group != child->groups);
9588 }
1e3c88bd 9589
63b2ca30 9590 sdg->sgc->capacity = capacity;
bf475ce0 9591 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 9592 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
9593}
9594
9d5efe05 9595/*
ea67821b
VG
9596 * Check whether the capacity of the rq has been noticeably reduced by side
9597 * activity. The imbalance_pct is used for the threshold.
9598 * Return true is the capacity is reduced
9d5efe05
SV
9599 */
9600static inline int
ea67821b 9601check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 9602{
ea67821b 9603 return ((rq->cpu_capacity * sd->imbalance_pct) <
7bc26384 9604 (arch_scale_cpu_capacity(cpu_of(rq)) * 100));
9d5efe05
SV
9605}
9606
a0fe2cf0
VS
9607/*
9608 * Check whether a rq has a misfit task and if it looks like we can actually
9609 * help that task: we can migrate the task to a CPU of higher capacity, or
9610 * the task's current CPU is heavily pressured.
9611 */
9612static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9613{
9614 return rq->misfit_task_load &&
7bc26384 9615 (arch_scale_cpu_capacity(rq->cpu) < rq->rd->max_cpu_capacity ||
a0fe2cf0
VS
9616 check_cpu_capacity(rq, sd));
9617}
9618
30ce5dab
PZ
9619/*
9620 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 9621 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 9622 *
97fb7a0a
IM
9623 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9624 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
9625 * Something like:
9626 *
2b4d5b25
IM
9627 * { 0 1 2 3 } { 4 5 6 7 }
9628 * * * * *
30ce5dab
PZ
9629 *
9630 * If we were to balance group-wise we'd place two tasks in the first group and
9631 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 9632 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
9633 *
9634 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
9635 * by noticing the lower domain failed to reach balance and had difficulty
9636 * moving tasks due to affinity constraints.
30ce5dab
PZ
9637 *
9638 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 9639 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 9640 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
9641 * to create an effective group imbalance.
9642 *
9643 * This is a somewhat tricky proposition since the next run might not find the
9644 * group imbalance and decide the groups need to be balanced again. A most
9645 * subtle and fragile situation.
9646 */
9647
6263322c 9648static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 9649{
63b2ca30 9650 return group->sgc->imbalance;
30ce5dab
PZ
9651}
9652
b37d9316 9653/*
ea67821b
VG
9654 * group_has_capacity returns true if the group has spare capacity that could
9655 * be used by some tasks.
fb95a5a0 9656 * We consider that a group has spare capacity if the number of task is
9e91d61d
DE
9657 * smaller than the number of CPUs or if the utilization is lower than the
9658 * available capacity for CFS tasks.
ea67821b
VG
9659 * For the latter, we use a threshold to stabilize the state, to take into
9660 * account the variance of the tasks' load and to return true if the available
9661 * capacity in meaningful for the load balancer.
9662 * As an example, an available capacity of 1% can appear but it doesn't make
9663 * any benefit for the load balance.
b37d9316 9664 */
ea67821b 9665static inline bool
57abff06 9666group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
b37d9316 9667{
5e23e474 9668 if (sgs->sum_nr_running < sgs->group_weight)
ea67821b 9669 return true;
c61037e9 9670
070f5e86
VG
9671 if ((sgs->group_capacity * imbalance_pct) <
9672 (sgs->group_runnable * 100))
9673 return false;
9674
ea67821b 9675 if ((sgs->group_capacity * 100) >
57abff06 9676 (sgs->group_util * imbalance_pct))
ea67821b 9677 return true;
b37d9316 9678
ea67821b
VG
9679 return false;
9680}
9681
9682/*
9683 * group_is_overloaded returns true if the group has more tasks than it can
9684 * handle.
9685 * group_is_overloaded is not equals to !group_has_capacity because a group
9686 * with the exact right number of tasks, has no more spare capacity but is not
9687 * overloaded so both group_has_capacity and group_is_overloaded return
9688 * false.
9689 */
9690static inline bool
57abff06 9691group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
ea67821b 9692{
5e23e474 9693 if (sgs->sum_nr_running <= sgs->group_weight)
ea67821b 9694 return false;
b37d9316 9695
ea67821b 9696 if ((sgs->group_capacity * 100) <
57abff06 9697 (sgs->group_util * imbalance_pct))
ea67821b 9698 return true;
b37d9316 9699
070f5e86
VG
9700 if ((sgs->group_capacity * imbalance_pct) <
9701 (sgs->group_runnable * 100))
9702 return true;
9703
ea67821b 9704 return false;
b37d9316
PZ
9705}
9706
79a89f92 9707static inline enum
57abff06 9708group_type group_classify(unsigned int imbalance_pct,
0b0695f2 9709 struct sched_group *group,
79a89f92 9710 struct sg_lb_stats *sgs)
caeb178c 9711{
57abff06 9712 if (group_is_overloaded(imbalance_pct, sgs))
caeb178c
RR
9713 return group_overloaded;
9714
9715 if (sg_imbalanced(group))
9716 return group_imbalanced;
9717
0b0695f2
VG
9718 if (sgs->group_asym_packing)
9719 return group_asym_packing;
9720
fee1759e
TC
9721 if (sgs->group_smt_balance)
9722 return group_smt_balance;
9723
3b1baa64
MR
9724 if (sgs->group_misfit_task_load)
9725 return group_misfit_task;
9726
57abff06 9727 if (!group_has_capacity(imbalance_pct, sgs))
0b0695f2
VG
9728 return group_fully_busy;
9729
9730 return group_has_spare;
caeb178c
RR
9731}
9732
eefefa71
RN
9733/**
9734 * sched_use_asym_prio - Check whether asym_packing priority must be used
9735 * @sd: The scheduling domain of the load balancing
9736 * @cpu: A CPU
9737 *
9738 * Always use CPU priority when balancing load between SMT siblings. When
9739 * balancing load between cores, it is not sufficient that @cpu is idle. Only
9740 * use CPU priority if the whole core is idle.
9741 *
9742 * Returns: True if the priority of @cpu must be followed. False otherwise.
9743 */
9744static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9745{
fbc44986
AS
9746 if (!(sd->flags & SD_ASYM_PACKING))
9747 return false;
9748
eefefa71
RN
9749 if (!sched_smt_active())
9750 return true;
9751
9752 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9753}
9754
45de2062
AS
9755static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
9756{
9757 /*
9758 * First check if @dst_cpu can do asym_packing load balance. Only do it
9759 * if it has higher priority than @src_cpu.
9760 */
9761 return sched_use_asym_prio(sd, dst_cpu) &&
9762 sched_asym_prefer(dst_cpu, src_cpu);
9763}
9764
4006a72b 9765/**
45de2062 9766 * sched_group_asym - Check if the destination CPU can do asym_packing balance
c9ca0788 9767 * @env: The load balancing environment
4006a72b 9768 * @sgs: Load-balancing statistics of the candidate busiest group
c9ca0788 9769 * @group: The candidate busiest group
4006a72b 9770 *
c9ca0788
RN
9771 * @env::dst_cpu can do asym_packing if it has higher priority than the
9772 * preferred CPU of @group.
4006a72b 9773 *
c9ca0788
RN
9774 * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9775 * otherwise.
4006a72b 9776 */
aafc917a 9777static inline bool
45de2062 9778sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
aafc917a 9779{
c9ca0788 9780 /*
45de2062 9781 * CPU priorities do not make sense for SMT cores with more than one
c9ca0788
RN
9782 * busy sibling.
9783 */
45de2062
AS
9784 if ((group->flags & SD_SHARE_CPUCAPACITY) &&
9785 (sgs->group_weight - sgs->idle_cpus != 1))
9786 return false;
4006a72b 9787
45de2062 9788 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
aafc917a
RN
9789}
9790
fee1759e
TC
9791/* One group has more than one SMT CPU while the other group does not */
9792static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9793 struct sched_group *sg2)
9794{
9795 if (!sg1 || !sg2)
9796 return false;
9797
9798 return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9799 (sg2->flags & SD_SHARE_CPUCAPACITY);
9800}
9801
9802static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9803 struct sched_group *group)
9804{
38d707c5 9805 if (!env->idle)
fee1759e
TC
9806 return false;
9807
9808 /*
9809 * For SMT source group, it is better to move a task
9810 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9811 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9812 * will not be on.
9813 */
9814 if (group->flags & SD_SHARE_CPUCAPACITY &&
9815 sgs->sum_h_nr_running > 1)
9816 return true;
9817
9818 return false;
9819}
9820
7ff16932
TC
9821static inline long sibling_imbalance(struct lb_env *env,
9822 struct sd_lb_stats *sds,
9823 struct sg_lb_stats *busiest,
9824 struct sg_lb_stats *local)
9825{
9826 int ncores_busiest, ncores_local;
9827 long imbalance;
9828
38d707c5 9829 if (!env->idle || !busiest->sum_nr_running)
7ff16932
TC
9830 return 0;
9831
9832 ncores_busiest = sds->busiest->cores;
9833 ncores_local = sds->local->cores;
9834
9835 if (ncores_busiest == ncores_local) {
9836 imbalance = busiest->sum_nr_running;
9837 lsub_positive(&imbalance, local->sum_nr_running);
9838 return imbalance;
9839 }
9840
9841 /* Balance such that nr_running/ncores ratio are same on both groups */
9842 imbalance = ncores_local * busiest->sum_nr_running;
9843 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9844 /* Normalize imbalance and do rounding on normalization */
9845 imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9846 imbalance /= ncores_local + ncores_busiest;
9847
9848 /* Take advantage of resource in an empty sched group */
450e7497 9849 if (imbalance <= 1 && local->sum_nr_running == 0 &&
7ff16932
TC
9850 busiest->sum_nr_running > 1)
9851 imbalance = 2;
9852
9853 return imbalance;
9854}
9855
c82a6962
VG
9856static inline bool
9857sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9858{
9859 /*
9860 * When there is more than 1 task, the group_overloaded case already
9861 * takes care of cpu with reduced capacity
9862 */
9863 if (rq->cfs.h_nr_running != 1)
9864 return false;
9865
9866 return check_cpu_capacity(rq, sd);
9867}
9868
1e3c88bd
PZ
9869/**
9870 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 9871 * @env: The load balancing environment.
a315da5e 9872 * @sds: Load-balancing data with statistics of the local group.
1e3c88bd 9873 * @group: sched_group whose statistics are to be updated.
1e3c88bd 9874 * @sgs: variable to hold the statistics for this group.
630246a0 9875 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 9876 */
bd939f45 9877static inline void update_sg_lb_stats(struct lb_env *env,
c0d14b57 9878 struct sd_lb_stats *sds,
630246a0
QP
9879 struct sched_group *group,
9880 struct sg_lb_stats *sgs,
9881 int *sg_status)
1e3c88bd 9882{
0b0695f2 9883 int i, nr_running, local_group;
1e3c88bd 9884
b72ff13c
PZ
9885 memset(sgs, 0, sizeof(*sgs));
9886
c0d14b57 9887 local_group = group == sds->local;
0b0695f2 9888
ae4df9d6 9889 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd 9890 struct rq *rq = cpu_rq(i);
c82a6962 9891 unsigned long load = cpu_load(rq);
1e3c88bd 9892
c82a6962 9893 sgs->group_load += load;
82762d2a 9894 sgs->group_util += cpu_util_cfs(i);
070f5e86 9895 sgs->group_runnable += cpu_runnable(rq);
a3498347 9896 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
4486edd1 9897
a426f99c 9898 nr_running = rq->nr_running;
5e23e474
VG
9899 sgs->sum_nr_running += nr_running;
9900
a426f99c 9901 if (nr_running > 1)
630246a0 9902 *sg_status |= SG_OVERLOAD;
4486edd1 9903
2802bf3c
MR
9904 if (cpu_overutilized(i))
9905 *sg_status |= SG_OVERUTILIZED;
4486edd1 9906
0ec8aa00
PZ
9907#ifdef CONFIG_NUMA_BALANCING
9908 sgs->nr_numa_running += rq->nr_numa_running;
9909 sgs->nr_preferred_running += rq->nr_preferred_running;
9910#endif
a426f99c
WL
9911 /*
9912 * No need to call idle_cpu() if nr_running is not 0
9913 */
0b0695f2 9914 if (!nr_running && idle_cpu(i)) {
aae6d3dd 9915 sgs->idle_cpus++;
0b0695f2
VG
9916 /* Idle cpu can't have misfit task */
9917 continue;
9918 }
9919
9920 if (local_group)
9921 continue;
3b1baa64 9922
c82a6962
VG
9923 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9924 /* Check for a misfit task on the cpu */
9925 if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9926 sgs->group_misfit_task_load = rq->misfit_task_load;
9927 *sg_status |= SG_OVERLOAD;
9928 }
38d707c5 9929 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
c82a6962
VG
9930 /* Check for a task running on a CPU with reduced capacity */
9931 if (sgs->group_misfit_task_load < load)
9932 sgs->group_misfit_task_load = load;
757ffdd7 9933 }
1e3c88bd
PZ
9934 }
9935
aafc917a
RN
9936 sgs->group_capacity = group->sgc->capacity;
9937
9938 sgs->group_weight = group->group_weight;
9939
0b0695f2 9940 /* Check if dst CPU is idle and preferred to this group */
38d707c5 9941 if (!local_group && env->idle && sgs->sum_h_nr_running &&
fbc44986 9942 sched_group_asym(env, sgs, group))
0b0695f2 9943 sgs->group_asym_packing = 1;
0b0695f2 9944
fee1759e
TC
9945 /* Check for loaded SMT group to be balanced to dst CPU */
9946 if (!local_group && smt_balance(env, sgs, group))
9947 sgs->group_smt_balance = 1;
9948
57abff06 9949 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
0b0695f2
VG
9950
9951 /* Computing avg_load makes sense only when group is overloaded */
9952 if (sgs->group_type == group_overloaded)
9953 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9954 sgs->group_capacity;
1e3c88bd
PZ
9955}
9956
532cb4c4
MN
9957/**
9958 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 9959 * @env: The load balancing environment.
532cb4c4
MN
9960 * @sds: sched_domain statistics
9961 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 9962 * @sgs: sched_group statistics
532cb4c4
MN
9963 *
9964 * Determine if @sg is a busier group than the previously selected
9965 * busiest group.
e69f6186
YB
9966 *
9967 * Return: %true if @sg is a busier group than the previously selected
9968 * busiest group. %false otherwise.
532cb4c4 9969 */
bd939f45 9970static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
9971 struct sd_lb_stats *sds,
9972 struct sched_group *sg,
bd939f45 9973 struct sg_lb_stats *sgs)
532cb4c4 9974{
caeb178c 9975 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 9976
0b0695f2
VG
9977 /* Make sure that there is at least one task to pull */
9978 if (!sgs->sum_h_nr_running)
9979 return false;
9980
cad68e55
MR
9981 /*
9982 * Don't try to pull misfit tasks we can't help.
9983 * We can use max_capacity here as reduction in capacity on some
9984 * CPUs in the group should either be possible to resolve
9985 * internally or be covered by avg_load imbalance (eventually).
9986 */
c82a6962
VG
9987 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9988 (sgs->group_type == group_misfit_task) &&
4aed8aa4 9989 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
0b0695f2 9990 sds->local_stat.group_type != group_has_spare))
cad68e55
MR
9991 return false;
9992
caeb178c 9993 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
9994 return true;
9995
caeb178c
RR
9996 if (sgs->group_type < busiest->group_type)
9997 return false;
9998
9e0994c0 9999 /*
0b0695f2
VG
10000 * The candidate and the current busiest group are the same type of
10001 * group. Let check which one is the busiest according to the type.
9e0994c0 10002 */
9e0994c0 10003
0b0695f2
VG
10004 switch (sgs->group_type) {
10005 case group_overloaded:
10006 /* Select the overloaded group with highest avg_load. */
7e9f7d17 10007 return sgs->avg_load > busiest->avg_load;
0b0695f2
VG
10008
10009 case group_imbalanced:
10010 /*
10011 * Select the 1st imbalanced group as we don't have any way to
10012 * choose one more than another.
10013 */
9e0994c0
MR
10014 return false;
10015
0b0695f2
VG
10016 case group_asym_packing:
10017 /* Prefer to move from lowest priority CPU's work */
7e9f7d17 10018 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
532cb4c4 10019
0b0695f2
VG
10020 case group_misfit_task:
10021 /*
10022 * If we have more than one misfit sg go with the biggest
10023 * misfit.
10024 */
7e9f7d17 10025 return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
532cb4c4 10026
fee1759e 10027 case group_smt_balance:
450e7497
TC
10028 /*
10029 * Check if we have spare CPUs on either SMT group to
10030 * choose has spare or fully busy handling.
10031 */
10032 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10033 goto has_spare;
10034
10035 fallthrough;
10036
0b0695f2
VG
10037 case group_fully_busy:
10038 /*
10039 * Select the fully busy group with highest avg_load. In
10040 * theory, there is no need to pull task from such kind of
10041 * group because tasks have all compute capacity that they need
10042 * but we can still improve the overall throughput by reducing
10043 * contention when accessing shared HW resources.
10044 *
10045 * XXX for now avg_load is not computed and always 0 so we
5fd6d7f4
RN
10046 * select the 1st one, except if @sg is composed of SMT
10047 * siblings.
0b0695f2 10048 */
5fd6d7f4
RN
10049
10050 if (sgs->avg_load < busiest->avg_load)
0b0695f2 10051 return false;
5fd6d7f4
RN
10052
10053 if (sgs->avg_load == busiest->avg_load) {
10054 /*
10055 * SMT sched groups need more help than non-SMT groups.
10056 * If @sg happens to also be SMT, either choice is good.
10057 */
10058 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10059 return false;
10060 }
10061
0b0695f2
VG
10062 break;
10063
10064 case group_has_spare:
fee1759e
TC
10065 /*
10066 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10067 * as we do not want to pull task off SMT core with one task
10068 * and make the core idle.
10069 */
10070 if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10071 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10072 return false;
10073 else
10074 return true;
10075 }
450e7497 10076has_spare:
fee1759e 10077
0b0695f2 10078 /*
5f68eb19
VG
10079 * Select not overloaded group with lowest number of idle cpus
10080 * and highest number of running tasks. We could also compare
10081 * the spare capacity which is more stable but it can end up
10082 * that the group has less spare capacity but finally more idle
0b0695f2
VG
10083 * CPUs which means less opportunity to pull tasks.
10084 */
5f68eb19 10085 if (sgs->idle_cpus > busiest->idle_cpus)
0b0695f2 10086 return false;
5f68eb19
VG
10087 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10088 (sgs->sum_nr_running <= busiest->sum_nr_running))
10089 return false;
10090
0b0695f2 10091 break;
532cb4c4
MN
10092 }
10093
0b0695f2
VG
10094 /*
10095 * Candidate sg has no more than one task per CPU and has higher
10096 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10097 * throughput. Maximize throughput, power/energy consequences are not
10098 * considered.
10099 */
10100 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10101 (sgs->group_type <= group_fully_busy) &&
4aed8aa4 10102 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
0b0695f2
VG
10103 return false;
10104
10105 return true;
532cb4c4
MN
10106}
10107
0ec8aa00
PZ
10108#ifdef CONFIG_NUMA_BALANCING
10109static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10110{
a3498347 10111 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
0ec8aa00 10112 return regular;
a3498347 10113 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
0ec8aa00
PZ
10114 return remote;
10115 return all;
10116}
10117
10118static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10119{
10120 if (rq->nr_running > rq->nr_numa_running)
10121 return regular;
10122 if (rq->nr_running > rq->nr_preferred_running)
10123 return remote;
10124 return all;
10125}
10126#else
10127static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10128{
10129 return all;
10130}
10131
10132static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10133{
10134 return regular;
10135}
10136#endif /* CONFIG_NUMA_BALANCING */
10137
57abff06
VG
10138
10139struct sg_lb_stats;
10140
3318544b
VG
10141/*
10142 * task_running_on_cpu - return 1 if @p is running on @cpu.
10143 */
10144
10145static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10146{
10147 /* Task has no contribution or is new */
10148 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10149 return 0;
10150
10151 if (task_on_rq_queued(p))
10152 return 1;
10153
10154 return 0;
10155}
10156
10157/**
10158 * idle_cpu_without - would a given CPU be idle without p ?
10159 * @cpu: the processor on which idleness is tested.
10160 * @p: task which should be ignored.
10161 *
10162 * Return: 1 if the CPU would be idle. 0 otherwise.
10163 */
10164static int idle_cpu_without(int cpu, struct task_struct *p)
10165{
10166 struct rq *rq = cpu_rq(cpu);
10167
10168 if (rq->curr != rq->idle && rq->curr != p)
10169 return 0;
10170
10171 /*
10172 * rq->nr_running can't be used but an updated version without the
10173 * impact of p on cpu must be used instead. The updated nr_running
10174 * be computed and tested before calling idle_cpu_without().
10175 */
10176
126c2092 10177 if (rq->ttwu_pending)
3318544b 10178 return 0;
3318544b
VG
10179
10180 return 1;
10181}
10182
57abff06
VG
10183/*
10184 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
3318544b 10185 * @sd: The sched_domain level to look for idlest group.
57abff06
VG
10186 * @group: sched_group whose statistics are to be updated.
10187 * @sgs: variable to hold the statistics for this group.
3318544b 10188 * @p: The task for which we look for the idlest group/CPU.
57abff06
VG
10189 */
10190static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10191 struct sched_group *group,
10192 struct sg_lb_stats *sgs,
10193 struct task_struct *p)
10194{
10195 int i, nr_running;
10196
10197 memset(sgs, 0, sizeof(*sgs));
10198
b48e16a6
QY
10199 /* Assume that task can't fit any CPU of the group */
10200 if (sd->flags & SD_ASYM_CPUCAPACITY)
10201 sgs->group_misfit_task_load = 1;
10202
57abff06
VG
10203 for_each_cpu(i, sched_group_span(group)) {
10204 struct rq *rq = cpu_rq(i);
3318544b 10205 unsigned int local;
57abff06 10206
3318544b 10207 sgs->group_load += cpu_load_without(rq, p);
57abff06 10208 sgs->group_util += cpu_util_without(i, p);
070f5e86 10209 sgs->group_runnable += cpu_runnable_without(rq, p);
3318544b
VG
10210 local = task_running_on_cpu(i, p);
10211 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
57abff06 10212
3318544b 10213 nr_running = rq->nr_running - local;
57abff06
VG
10214 sgs->sum_nr_running += nr_running;
10215
10216 /*
3318544b 10217 * No need to call idle_cpu_without() if nr_running is not 0
57abff06 10218 */
3318544b 10219 if (!nr_running && idle_cpu_without(i, p))
57abff06
VG
10220 sgs->idle_cpus++;
10221
b48e16a6
QY
10222 /* Check if task fits in the CPU */
10223 if (sd->flags & SD_ASYM_CPUCAPACITY &&
10224 sgs->group_misfit_task_load &&
10225 task_fits_cpu(p, i))
10226 sgs->group_misfit_task_load = 0;
57abff06 10227
57abff06
VG
10228 }
10229
10230 sgs->group_capacity = group->sgc->capacity;
10231
289de359
VG
10232 sgs->group_weight = group->group_weight;
10233
57abff06
VG
10234 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10235
10236 /*
10237 * Computing avg_load makes sense only when group is fully busy or
10238 * overloaded
10239 */
6c8116c9
TZ
10240 if (sgs->group_type == group_fully_busy ||
10241 sgs->group_type == group_overloaded)
57abff06
VG
10242 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10243 sgs->group_capacity;
10244}
10245
10246static bool update_pick_idlest(struct sched_group *idlest,
10247 struct sg_lb_stats *idlest_sgs,
10248 struct sched_group *group,
10249 struct sg_lb_stats *sgs)
10250{
10251 if (sgs->group_type < idlest_sgs->group_type)
10252 return true;
10253
10254 if (sgs->group_type > idlest_sgs->group_type)
10255 return false;
10256
10257 /*
10258 * The candidate and the current idlest group are the same type of
10259 * group. Let check which one is the idlest according to the type.
10260 */
10261
10262 switch (sgs->group_type) {
10263 case group_overloaded:
10264 case group_fully_busy:
10265 /* Select the group with lowest avg_load. */
10266 if (idlest_sgs->avg_load <= sgs->avg_load)
10267 return false;
10268 break;
10269
10270 case group_imbalanced:
10271 case group_asym_packing:
fee1759e 10272 case group_smt_balance:
57abff06
VG
10273 /* Those types are not used in the slow wakeup path */
10274 return false;
10275
10276 case group_misfit_task:
10277 /* Select group with the highest max capacity */
10278 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10279 return false;
10280 break;
10281
10282 case group_has_spare:
10283 /* Select group with most idle CPUs */
3edecfef 10284 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
57abff06 10285 return false;
3edecfef
PP
10286
10287 /* Select group with lowest group_util */
10288 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10289 idlest_sgs->group_util <= sgs->group_util)
10290 return false;
10291
57abff06
VG
10292 break;
10293 }
10294
10295 return true;
10296}
10297
10298/*
10299 * find_idlest_group() finds and returns the least busy CPU group within the
10300 * domain.
10301 *
10302 * Assumes p is allowed on at least one CPU in sd.
10303 */
10304static struct sched_group *
45da2773 10305find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
57abff06
VG
10306{
10307 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10308 struct sg_lb_stats local_sgs, tmp_sgs;
10309 struct sg_lb_stats *sgs;
10310 unsigned long imbalance;
10311 struct sg_lb_stats idlest_sgs = {
10312 .avg_load = UINT_MAX,
10313 .group_type = group_overloaded,
10314 };
10315
57abff06
VG
10316 do {
10317 int local_group;
10318
10319 /* Skip over this group if it has no CPUs allowed */
10320 if (!cpumask_intersects(sched_group_span(group),
10321 p->cpus_ptr))
10322 continue;
10323
97886d9d
AL
10324 /* Skip over this group if no cookie matched */
10325 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10326 continue;
10327
57abff06
VG
10328 local_group = cpumask_test_cpu(this_cpu,
10329 sched_group_span(group));
10330
10331 if (local_group) {
10332 sgs = &local_sgs;
10333 local = group;
10334 } else {
10335 sgs = &tmp_sgs;
10336 }
10337
10338 update_sg_wakeup_stats(sd, group, sgs, p);
10339
10340 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10341 idlest = group;
10342 idlest_sgs = *sgs;
10343 }
10344
10345 } while (group = group->next, group != sd->groups);
10346
10347
10348 /* There is no idlest group to push tasks to */
10349 if (!idlest)
10350 return NULL;
10351
7ed735c3
VG
10352 /* The local group has been skipped because of CPU affinity */
10353 if (!local)
10354 return idlest;
10355
57abff06
VG
10356 /*
10357 * If the local group is idler than the selected idlest group
10358 * don't try and push the task.
10359 */
10360 if (local_sgs.group_type < idlest_sgs.group_type)
10361 return NULL;
10362
10363 /*
10364 * If the local group is busier than the selected idlest group
10365 * try and push the task.
10366 */
10367 if (local_sgs.group_type > idlest_sgs.group_type)
10368 return idlest;
10369
10370 switch (local_sgs.group_type) {
10371 case group_overloaded:
10372 case group_fully_busy:
5c339005
MG
10373
10374 /* Calculate allowed imbalance based on load */
10375 imbalance = scale_load_down(NICE_0_LOAD) *
10376 (sd->imbalance_pct-100) / 100;
10377
57abff06
VG
10378 /*
10379 * When comparing groups across NUMA domains, it's possible for
10380 * the local domain to be very lightly loaded relative to the
10381 * remote domains but "imbalance" skews the comparison making
10382 * remote CPUs look much more favourable. When considering
10383 * cross-domain, add imbalance to the load on the remote node
10384 * and consider staying local.
10385 */
10386
10387 if ((sd->flags & SD_NUMA) &&
10388 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10389 return NULL;
10390
10391 /*
10392 * If the local group is less loaded than the selected
10393 * idlest group don't try and push any tasks.
10394 */
10395 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10396 return NULL;
10397
10398 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10399 return NULL;
10400 break;
10401
10402 case group_imbalanced:
10403 case group_asym_packing:
fee1759e 10404 case group_smt_balance:
57abff06
VG
10405 /* Those type are not used in the slow wakeup path */
10406 return NULL;
10407
10408 case group_misfit_task:
10409 /* Select group with the highest max capacity */
10410 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10411 return NULL;
10412 break;
10413
10414 case group_has_spare:
cb29a5c1 10415#ifdef CONFIG_NUMA
57abff06 10416 if (sd->flags & SD_NUMA) {
f5b2eeb4 10417 int imb_numa_nr = sd->imb_numa_nr;
57abff06
VG
10418#ifdef CONFIG_NUMA_BALANCING
10419 int idlest_cpu;
10420 /*
10421 * If there is spare capacity at NUMA, try to select
10422 * the preferred node
10423 */
10424 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10425 return NULL;
10426
10427 idlest_cpu = cpumask_first(sched_group_span(idlest));
10428 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10429 return idlest;
cb29a5c1 10430#endif /* CONFIG_NUMA_BALANCING */
57abff06 10431 /*
2cfb7a1b
MG
10432 * Otherwise, keep the task close to the wakeup source
10433 * and improve locality if the number of running tasks
10434 * would remain below threshold where an imbalance is
f5b2eeb4
PN
10435 * allowed while accounting for the possibility the
10436 * task is pinned to a subset of CPUs. If there is a
10437 * real need of migration, periodic load balance will
10438 * take care of it.
57abff06 10439 */
f5b2eeb4 10440 if (p->nr_cpus_allowed != NR_CPUS) {
ec4fc801 10441 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
f5b2eeb4
PN
10442
10443 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10444 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10445 }
10446
cb29a5c1
MG
10447 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10448 if (!adjust_numa_imbalance(imbalance,
10449 local_sgs.sum_nr_running + 1,
f5b2eeb4 10450 imb_numa_nr)) {
57abff06 10451 return NULL;
cb29a5c1 10452 }
57abff06 10453 }
cb29a5c1 10454#endif /* CONFIG_NUMA */
57abff06
VG
10455
10456 /*
10457 * Select group with highest number of idle CPUs. We could also
10458 * compare the utilization which is more stable but it can end
10459 * up that the group has less spare capacity but finally more
10460 * idle CPUs which means more opportunity to run task.
10461 */
10462 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10463 return NULL;
10464 break;
10465 }
10466
10467 return idlest;
10468}
10469
70fb5ccf
CY
10470static void update_idle_cpu_scan(struct lb_env *env,
10471 unsigned long sum_util)
10472{
10473 struct sched_domain_shared *sd_share;
10474 int llc_weight, pct;
10475 u64 x, y, tmp;
10476 /*
10477 * Update the number of CPUs to scan in LLC domain, which could
10478 * be used as a hint in select_idle_cpu(). The update of sd_share
10479 * could be expensive because it is within a shared cache line.
10480 * So the write of this hint only occurs during periodic load
10481 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10482 * can fire way more frequently than the former.
10483 */
10484 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10485 return;
10486
10487 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10488 if (env->sd->span_weight != llc_weight)
10489 return;
10490
10491 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10492 if (!sd_share)
10493 return;
10494
10495 /*
10496 * The number of CPUs to search drops as sum_util increases, when
10497 * sum_util hits 85% or above, the scan stops.
10498 * The reason to choose 85% as the threshold is because this is the
10499 * imbalance_pct(117) when a LLC sched group is overloaded.
10500 *
10501 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
10502 * and y'= y / SCHED_CAPACITY_SCALE
10503 *
10504 * x is the ratio of sum_util compared to the CPU capacity:
10505 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10506 * y' is the ratio of CPUs to be scanned in the LLC domain,
10507 * and the number of CPUs to scan is calculated by:
10508 *
10509 * nr_scan = llc_weight * y' [2]
10510 *
10511 * When x hits the threshold of overloaded, AKA, when
10512 * x = 100 / pct, y drops to 0. According to [1],
10513 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10514 *
10515 * Scale x by SCHED_CAPACITY_SCALE:
10516 * x' = sum_util / llc_weight; [3]
10517 *
10518 * and finally [1] becomes:
10519 * y = SCHED_CAPACITY_SCALE -
10520 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
10521 *
10522 */
10523 /* equation [3] */
10524 x = sum_util;
10525 do_div(x, llc_weight);
10526
10527 /* equation [4] */
10528 pct = env->sd->imbalance_pct;
10529 tmp = x * x * pct * pct;
10530 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10531 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10532 y = SCHED_CAPACITY_SCALE - tmp;
10533
10534 /* equation [2] */
10535 y *= llc_weight;
10536 do_div(y, SCHED_CAPACITY_SCALE);
10537 if ((int)y != sd_share->nr_idle_scan)
10538 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10539}
10540
1e3c88bd 10541/**
461819ac 10542 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 10543 * @env: The load balancing environment.
1e3c88bd
PZ
10544 * @sds: variable to hold the statistics for this sched_domain.
10545 */
0b0695f2 10546
0ec8aa00 10547static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 10548{
bd939f45 10549 struct sched_group *sg = env->sd->groups;
05b40e05 10550 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 10551 struct sg_lb_stats tmp_sgs;
70fb5ccf 10552 unsigned long sum_util = 0;
630246a0 10553 int sg_status = 0;
1e3c88bd 10554
1e3c88bd 10555 do {
56cf515b 10556 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
10557 int local_group;
10558
ae4df9d6 10559 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
10560 if (local_group) {
10561 sds->local = sg;
05b40e05 10562 sgs = local;
b72ff13c
PZ
10563
10564 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
10565 time_after_eq(jiffies, sg->sgc->next_update))
10566 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 10567 }
1e3c88bd 10568
c0d14b57 10569 update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
1e3c88bd 10570
9dfbc26d 10571 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 10572 sds->busiest = sg;
56cf515b 10573 sds->busiest_stat = *sgs;
1e3c88bd
PZ
10574 }
10575
b72ff13c
PZ
10576 /* Now, start updating sd_lb_stats */
10577 sds->total_load += sgs->group_load;
63b2ca30 10578 sds->total_capacity += sgs->group_capacity;
b72ff13c 10579
70fb5ccf 10580 sum_util += sgs->group_util;
532cb4c4 10581 sg = sg->next;
bd939f45 10582 } while (sg != env->sd->groups);
0ec8aa00 10583
43726bde
RN
10584 /*
10585 * Indicate that the child domain of the busiest group prefers tasks
10586 * go to a child's sibling domains first. NB the flags of a sched group
10587 * are those of the child domain.
10588 */
10589 if (sds->busiest)
10590 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
0b0695f2 10591
f643ea22 10592
0ec8aa00
PZ
10593 if (env->sd->flags & SD_NUMA)
10594 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
10595
10596 if (!env->sd->parent) {
2802bf3c
MR
10597 struct root_domain *rd = env->dst_rq->rd;
10598
4486edd1 10599 /* update overload indicator if we are at root domain */
2802bf3c
MR
10600 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
10601
10602 /* Update over-utilization (tipping point, U >= 0) indicator */
10603 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 10604 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 10605 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
10606 struct root_domain *rd = env->dst_rq->rd;
10607
10608 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
10609 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 10610 }
70fb5ccf
CY
10611
10612 update_idle_cpu_scan(env, sum_util);
532cb4c4
MN
10613}
10614
1e3c88bd
PZ
10615/**
10616 * calculate_imbalance - Calculate the amount of imbalance present within the
10617 * groups of a given sched_domain during load balance.
bd939f45 10618 * @env: load balance environment
1e3c88bd 10619 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 10620 */
bd939f45 10621static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 10622{
56cf515b
JK
10623 struct sg_lb_stats *local, *busiest;
10624
10625 local = &sds->local_stat;
56cf515b 10626 busiest = &sds->busiest_stat;
dd5feea1 10627
0b0695f2 10628 if (busiest->group_type == group_misfit_task) {
c82a6962
VG
10629 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10630 /* Set imbalance to allow misfit tasks to be balanced. */
10631 env->migration_type = migrate_misfit;
10632 env->imbalance = 1;
10633 } else {
10634 /*
10635 * Set load imbalance to allow moving task from cpu
10636 * with reduced capacity.
10637 */
10638 env->migration_type = migrate_load;
10639 env->imbalance = busiest->group_misfit_task_load;
10640 }
0b0695f2
VG
10641 return;
10642 }
10643
10644 if (busiest->group_type == group_asym_packing) {
10645 /*
10646 * In case of asym capacity, we will try to migrate all load to
10647 * the preferred CPU.
10648 */
10649 env->migration_type = migrate_task;
10650 env->imbalance = busiest->sum_h_nr_running;
10651 return;
10652 }
10653
fee1759e
TC
10654 if (busiest->group_type == group_smt_balance) {
10655 /* Reduce number of tasks sharing CPU capacity */
10656 env->migration_type = migrate_task;
10657 env->imbalance = 1;
10658 return;
10659 }
10660
0b0695f2
VG
10661 if (busiest->group_type == group_imbalanced) {
10662 /*
10663 * In the group_imb case we cannot rely on group-wide averages
10664 * to ensure CPU-load equilibrium, try to move any task to fix
10665 * the imbalance. The next load balance will take care of
10666 * balancing back the system.
10667 */
10668 env->migration_type = migrate_task;
10669 env->imbalance = 1;
490ba971
VG
10670 return;
10671 }
10672
1e3c88bd 10673 /*
0b0695f2 10674 * Try to use spare capacity of local group without overloading it or
a9723389 10675 * emptying busiest.
1e3c88bd 10676 */
0b0695f2 10677 if (local->group_type == group_has_spare) {
16b0a7a1 10678 if ((busiest->group_type > group_fully_busy) &&
54de4427 10679 !(env->sd->flags & SD_SHARE_LLC)) {
0b0695f2
VG
10680 /*
10681 * If busiest is overloaded, try to fill spare
10682 * capacity. This might end up creating spare capacity
10683 * in busiest or busiest still being overloaded but
10684 * there is no simple way to directly compute the
10685 * amount of load to migrate in order to balance the
10686 * system.
10687 */
10688 env->migration_type = migrate_util;
10689 env->imbalance = max(local->group_capacity, local->group_util) -
10690 local->group_util;
10691
10692 /*
10693 * In some cases, the group's utilization is max or even
10694 * higher than capacity because of migrations but the
10695 * local CPU is (newly) idle. There is at least one
10696 * waiting task in this overloaded busiest group. Let's
10697 * try to pull it.
10698 */
38d707c5 10699 if (env->idle && env->imbalance == 0) {
0b0695f2
VG
10700 env->migration_type = migrate_task;
10701 env->imbalance = 1;
10702 }
10703
10704 return;
10705 }
10706
10707 if (busiest->group_weight == 1 || sds->prefer_sibling) {
0b0695f2
VG
10708 /*
10709 * When prefer sibling, evenly spread running tasks on
10710 * groups.
10711 */
10712 env->migration_type = migrate_task;
7ff16932 10713 env->imbalance = sibling_imbalance(env, sds, busiest, local);
b396f523 10714 } else {
0b0695f2 10715
b396f523
MG
10716 /*
10717 * If there is no overload, we just want to even the number of
10718 * idle cpus.
10719 */
10720 env->migration_type = migrate_task;
cb29a5c1
MG
10721 env->imbalance = max_t(long, 0,
10722 (local->idle_cpus - busiest->idle_cpus));
b396f523
MG
10723 }
10724
cb29a5c1 10725#ifdef CONFIG_NUMA
b396f523 10726 /* Consider allowing a small imbalance between NUMA groups */
7d2b5dd0 10727 if (env->sd->flags & SD_NUMA) {
fb86f5b2 10728 env->imbalance = adjust_numa_imbalance(env->imbalance,
cb29a5c1
MG
10729 local->sum_nr_running + 1,
10730 env->sd->imb_numa_nr);
7d2b5dd0 10731 }
cb29a5c1
MG
10732#endif
10733
10734 /* Number of tasks to move to restore balance */
10735 env->imbalance >>= 1;
b396f523 10736
fcf0553d 10737 return;
1e3c88bd
PZ
10738 }
10739
9a5d9ba6 10740 /*
0b0695f2
VG
10741 * Local is fully busy but has to take more load to relieve the
10742 * busiest group
9a5d9ba6 10743 */
0b0695f2
VG
10744 if (local->group_type < group_overloaded) {
10745 /*
10746 * Local will become overloaded so the avg_load metrics are
10747 * finally needed.
10748 */
10749
10750 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10751 local->group_capacity;
10752
111688ca
AL
10753 /*
10754 * If the local group is more loaded than the selected
10755 * busiest group don't try to pull any tasks.
10756 */
10757 if (local->avg_load >= busiest->avg_load) {
10758 env->imbalance = 0;
10759 return;
10760 }
06354900 10761
10762 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10763 sds->total_capacity;
91dcf1e8
VG
10764
10765 /*
10766 * If the local group is more loaded than the average system
10767 * load, don't try to pull any tasks.
10768 */
10769 if (local->avg_load >= sds->avg_load) {
10770 env->imbalance = 0;
10771 return;
10772 }
10773
dd5feea1
SS
10774 }
10775
10776 /*
0b0695f2
VG
10777 * Both group are or will become overloaded and we're trying to get all
10778 * the CPUs to the average_load, so we don't want to push ourselves
10779 * above the average load, nor do we wish to reduce the max loaded CPU
10780 * below the average load. At the same time, we also don't want to
10781 * reduce the group load below the group capacity. Thus we look for
10782 * the minimum possible imbalance.
dd5feea1 10783 */
0b0695f2 10784 env->migration_type = migrate_load;
56cf515b 10785 env->imbalance = min(
0b0695f2 10786 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
63b2ca30 10787 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 10788 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 10789}
fab47622 10790
1e3c88bd
PZ
10791/******* find_busiest_group() helpers end here *********************/
10792
0b0695f2
VG
10793/*
10794 * Decision matrix according to the local and busiest group type:
10795 *
10796 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10797 * has_spare nr_idle balanced N/A N/A balanced balanced
10798 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
a6583531 10799 * misfit_task force N/A N/A N/A N/A N/A
0b0695f2
VG
10800 * asym_packing force force N/A N/A force force
10801 * imbalanced force force N/A N/A force force
10802 * overloaded force force N/A N/A force avg_load
10803 *
10804 * N/A : Not Applicable because already filtered while updating
10805 * statistics.
10806 * balanced : The system is balanced for these 2 groups.
10807 * force : Calculate the imbalance as load migration is probably needed.
10808 * avg_load : Only if imbalance is significant enough.
10809 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
10810 * different in groups.
10811 */
10812
1e3c88bd
PZ
10813/**
10814 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 10815 * if there is an imbalance.
a315da5e 10816 * @env: The load balancing environment.
1e3c88bd 10817 *
a3df0679 10818 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
10819 * to restore balance.
10820 *
e69f6186 10821 * Return: - The busiest group if imbalance exists.
1e3c88bd 10822 */
56cf515b 10823static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 10824{
56cf515b 10825 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
10826 struct sd_lb_stats sds;
10827
147c5fc2 10828 init_sd_lb_stats(&sds);
1e3c88bd
PZ
10829
10830 /*
b0fb1eb4 10831 * Compute the various statistics relevant for load balancing at
1e3c88bd
PZ
10832 * this level.
10833 */
23f0d209 10834 update_sd_lb_stats(env, &sds);
2802bf3c 10835
cc57aa8f 10836 /* There is no busy sibling group to pull tasks from */
0b0695f2 10837 if (!sds.busiest)
1e3c88bd
PZ
10838 goto out_balanced;
10839
e5ed0550
VG
10840 busiest = &sds.busiest_stat;
10841
0b0695f2
VG
10842 /* Misfit tasks should be dealt with regardless of the avg load */
10843 if (busiest->group_type == group_misfit_task)
10844 goto force_balance;
10845
e5ed0550
VG
10846 if (sched_energy_enabled()) {
10847 struct root_domain *rd = env->dst_rq->rd;
10848
10849 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10850 goto out_balanced;
10851 }
10852
0b0695f2
VG
10853 /* ASYM feature bypasses nice load balance check */
10854 if (busiest->group_type == group_asym_packing)
10855 goto force_balance;
b0432d8f 10856
866ab43e
PZ
10857 /*
10858 * If the busiest group is imbalanced the below checks don't
30ce5dab 10859 * work because they assume all things are equal, which typically
3bd37062 10860 * isn't true due to cpus_ptr constraints and the like.
866ab43e 10861 */
caeb178c 10862 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
10863 goto force_balance;
10864
e5ed0550 10865 local = &sds.local_stat;
cc57aa8f 10866 /*
9c58c79a 10867 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
10868 * don't try and pull any tasks.
10869 */
0b0695f2 10870 if (local->group_type > busiest->group_type)
1e3c88bd
PZ
10871 goto out_balanced;
10872
cc57aa8f 10873 /*
0b0695f2
VG
10874 * When groups are overloaded, use the avg_load to ensure fairness
10875 * between tasks.
cc57aa8f 10876 */
0b0695f2
VG
10877 if (local->group_type == group_overloaded) {
10878 /*
10879 * If the local group is more loaded than the selected
10880 * busiest group don't try to pull any tasks.
10881 */
10882 if (local->avg_load >= busiest->avg_load)
10883 goto out_balanced;
10884
10885 /* XXX broken for overlapping NUMA groups */
10886 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10887 sds.total_capacity;
1e3c88bd 10888
aae6d3dd 10889 /*
0b0695f2
VG
10890 * Don't pull any tasks if this group is already above the
10891 * domain average load.
aae6d3dd 10892 */
0b0695f2 10893 if (local->avg_load >= sds.avg_load)
aae6d3dd 10894 goto out_balanced;
0b0695f2 10895
c186fafe 10896 /*
0b0695f2
VG
10897 * If the busiest group is more loaded, use imbalance_pct to be
10898 * conservative.
c186fafe 10899 */
56cf515b
JK
10900 if (100 * busiest->avg_load <=
10901 env->sd->imbalance_pct * local->avg_load)
c186fafe 10902 goto out_balanced;
aae6d3dd 10903 }
1e3c88bd 10904
43726bde
RN
10905 /*
10906 * Try to move all excess tasks to a sibling domain of the busiest
10907 * group's child domain.
10908 */
0b0695f2 10909 if (sds.prefer_sibling && local->group_type == group_has_spare &&
7ff16932 10910 sibling_imbalance(env, &sds, busiest, local) > 1)
0b0695f2
VG
10911 goto force_balance;
10912
2ab4092f 10913 if (busiest->group_type != group_overloaded) {
38d707c5 10914 if (!env->idle) {
2ab4092f
VG
10915 /*
10916 * If the busiest group is not overloaded (and as a
10917 * result the local one too) but this CPU is already
10918 * busy, let another idle CPU try to pull task.
10919 */
10920 goto out_balanced;
fee1759e
TC
10921 }
10922
10923 if (busiest->group_type == group_smt_balance &&
10924 smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10925 /* Let non SMT CPU pull from SMT CPU sharing with sibling */
10926 goto force_balance;
10927 }
2ab4092f
VG
10928
10929 if (busiest->group_weight > 1 &&
fee1759e 10930 local->idle_cpus <= (busiest->idle_cpus + 1)) {
2ab4092f
VG
10931 /*
10932 * If the busiest group is not overloaded
10933 * and there is no imbalance between this and busiest
10934 * group wrt idle CPUs, it is balanced. The imbalance
10935 * becomes significant if the diff is greater than 1
10936 * otherwise we might end up to just move the imbalance
10937 * on another group. Of course this applies only if
10938 * there is more than 1 CPU per group.
10939 */
10940 goto out_balanced;
fee1759e 10941 }
2ab4092f 10942
fee1759e 10943 if (busiest->sum_h_nr_running == 1) {
2ab4092f
VG
10944 /*
10945 * busiest doesn't have any tasks waiting to run
10946 */
10947 goto out_balanced;
fee1759e 10948 }
2ab4092f 10949 }
0b0695f2 10950
fab47622 10951force_balance:
1e3c88bd 10952 /* Looks like there is an imbalance. Compute it */
bd939f45 10953 calculate_imbalance(env, &sds);
bb3485c8 10954 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
10955
10956out_balanced:
bd939f45 10957 env->imbalance = 0;
1e3c88bd
PZ
10958 return NULL;
10959}
10960
10961/*
97fb7a0a 10962 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 10963 */
bd939f45 10964static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 10965 struct sched_group *group)
1e3c88bd
PZ
10966{
10967 struct rq *busiest = NULL, *rq;
0b0695f2
VG
10968 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10969 unsigned int busiest_nr = 0;
1e3c88bd
PZ
10970 int i;
10971
ae4df9d6 10972 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
0b0695f2
VG
10973 unsigned long capacity, load, util;
10974 unsigned int nr_running;
0ec8aa00
PZ
10975 enum fbq_type rt;
10976
10977 rq = cpu_rq(i);
10978 rt = fbq_classify_rq(rq);
1e3c88bd 10979
0ec8aa00
PZ
10980 /*
10981 * We classify groups/runqueues into three groups:
10982 * - regular: there are !numa tasks
10983 * - remote: there are numa tasks that run on the 'wrong' node
10984 * - all: there is no distinction
10985 *
10986 * In order to avoid migrating ideally placed numa tasks,
10987 * ignore those when there's better options.
10988 *
10989 * If we ignore the actual busiest queue to migrate another
10990 * task, the next balance pass can still reduce the busiest
10991 * queue by moving tasks around inside the node.
10992 *
10993 * If we cannot move enough load due to this classification
10994 * the next pass will adjust the group classification and
10995 * allow migration of more tasks.
10996 *
10997 * Both cases only affect the total convergence complexity.
10998 */
10999 if (rt > env->fbq_type)
11000 continue;
11001
0b0695f2 11002 nr_running = rq->cfs.h_nr_running;
fc488ffd
VG
11003 if (!nr_running)
11004 continue;
11005
11006 capacity = capacity_of(i);
9d5efe05 11007
4ad3831a
CR
11008 /*
11009 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11010 * eventually lead to active_balancing high->low capacity.
11011 * Higher per-CPU capacity is considered better than balancing
11012 * average load.
11013 */
11014 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
4aed8aa4 11015 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
0b0695f2 11016 nr_running == 1)
4ad3831a
CR
11017 continue;
11018
18ad3453
RN
11019 /*
11020 * Make sure we only pull tasks from a CPU of lower priority
11021 * when balancing between SMT siblings.
11022 *
11023 * If balancing between cores, let lower priority CPUs help
11024 * SMT cores with more than one busy sibling.
11025 */
fbc44986 11026 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
4006a72b
RN
11027 continue;
11028
0b0695f2
VG
11029 switch (env->migration_type) {
11030 case migrate_load:
11031 /*
b0fb1eb4
VG
11032 * When comparing with load imbalance, use cpu_load()
11033 * which is not scaled with the CPU capacity.
0b0695f2 11034 */
b0fb1eb4 11035 load = cpu_load(rq);
1e3c88bd 11036
0b0695f2
VG
11037 if (nr_running == 1 && load > env->imbalance &&
11038 !check_cpu_capacity(rq, env->sd))
11039 break;
ea67821b 11040
0b0695f2
VG
11041 /*
11042 * For the load comparisons with the other CPUs,
b0fb1eb4
VG
11043 * consider the cpu_load() scaled with the CPU
11044 * capacity, so that the load can be moved away
11045 * from the CPU that is potentially running at a
11046 * lower capacity.
0b0695f2
VG
11047 *
11048 * Thus we're looking for max(load_i / capacity_i),
11049 * crosswise multiplication to rid ourselves of the
11050 * division works out to:
11051 * load_i * capacity_j > load_j * capacity_i;
11052 * where j is our previous maximum.
11053 */
11054 if (load * busiest_capacity > busiest_load * capacity) {
11055 busiest_load = load;
11056 busiest_capacity = capacity;
11057 busiest = rq;
11058 }
11059 break;
11060
11061 case migrate_util:
7d0583cf 11062 util = cpu_util_cfs_boost(i);
0b0695f2 11063
c32b4308
VG
11064 /*
11065 * Don't try to pull utilization from a CPU with one
11066 * running task. Whatever its utilization, we will fail
11067 * detach the task.
11068 */
11069 if (nr_running <= 1)
11070 continue;
11071
0b0695f2
VG
11072 if (busiest_util < util) {
11073 busiest_util = util;
11074 busiest = rq;
11075 }
11076 break;
11077
11078 case migrate_task:
11079 if (busiest_nr < nr_running) {
11080 busiest_nr = nr_running;
11081 busiest = rq;
11082 }
11083 break;
11084
11085 case migrate_misfit:
11086 /*
11087 * For ASYM_CPUCAPACITY domains with misfit tasks we
11088 * simply seek the "biggest" misfit task.
11089 */
11090 if (rq->misfit_task_load > busiest_load) {
11091 busiest_load = rq->misfit_task_load;
11092 busiest = rq;
11093 }
11094
11095 break;
1e3c88bd 11096
1e3c88bd
PZ
11097 }
11098 }
11099
11100 return busiest;
11101}
11102
11103/*
11104 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11105 * so long as it is large enough.
11106 */
11107#define MAX_PINNED_INTERVAL 512
11108
46a745d9
VG
11109static inline bool
11110asym_active_balance(struct lb_env *env)
1af3ed3d 11111{
46a745d9 11112 /*
eefefa71
RN
11113 * ASYM_PACKING needs to force migrate tasks from busy but lower
11114 * priority CPUs in order to pack all tasks in the highest priority
11115 * CPUs. When done between cores, do it only if the whole core if the
11116 * whole core is idle.
18ad3453
RN
11117 *
11118 * If @env::src_cpu is an SMT core with busy siblings, let
11119 * the lower priority @env::dst_cpu help it. Do not follow
11120 * CPU priority.
46a745d9 11121 */
38d707c5 11122 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
18ad3453
RN
11123 (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11124 !sched_use_asym_prio(env->sd, env->src_cpu));
46a745d9 11125}
bd939f45 11126
46a745d9 11127static inline bool
e9b9734b
VG
11128imbalanced_active_balance(struct lb_env *env)
11129{
11130 struct sched_domain *sd = env->sd;
11131
11132 /*
11133 * The imbalanced case includes the case of pinned tasks preventing a fair
11134 * distribution of the load on the system but also the even distribution of the
11135 * threads on a system with spare capacity
11136 */
11137 if ((env->migration_type == migrate_task) &&
11138 (sd->nr_balance_failed > sd->cache_nice_tries+2))
11139 return 1;
11140
11141 return 0;
11142}
11143
11144static int need_active_balance(struct lb_env *env)
46a745d9
VG
11145{
11146 struct sched_domain *sd = env->sd;
532cb4c4 11147
46a745d9
VG
11148 if (asym_active_balance(env))
11149 return 1;
1af3ed3d 11150
e9b9734b
VG
11151 if (imbalanced_active_balance(env))
11152 return 1;
11153
1aaf90a4
VG
11154 /*
11155 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11156 * It's worth migrating the task if the src_cpu's capacity is reduced
11157 * because of other sched_class or IRQs if more capacity stays
11158 * available on dst_cpu.
11159 */
38d707c5 11160 if (env->idle &&
1aaf90a4
VG
11161 (env->src_rq->cfs.h_nr_running == 1)) {
11162 if ((check_cpu_capacity(env->src_rq, sd)) &&
11163 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11164 return 1;
11165 }
11166
0b0695f2 11167 if (env->migration_type == migrate_misfit)
cad68e55
MR
11168 return 1;
11169
46a745d9
VG
11170 return 0;
11171}
11172
969c7921
TH
11173static int active_load_balance_cpu_stop(void *data);
11174
23f0d209
JK
11175static int should_we_balance(struct lb_env *env)
11176{
f8858d96 11177 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
23f0d209 11178 struct sched_group *sg = env->sd->groups;
b1bfeab9 11179 int cpu, idle_smt = -1;
23f0d209 11180
024c9d2f
PZ
11181 /*
11182 * Ensure the balancing environment is consistent; can happen
11183 * when the softirq triggers 'during' hotplug.
11184 */
11185 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11186 return 0;
11187
23f0d209 11188 /*
97fb7a0a 11189 * In the newly idle case, we will allow all the CPUs
23f0d209 11190 * to do the newly idle load balance.
792b9f65
JD
11191 *
11192 * However, we bail out if we already have tasks or a wakeup pending,
11193 * to optimize wakeup latency.
23f0d209 11194 */
792b9f65
JD
11195 if (env->idle == CPU_NEWLY_IDLE) {
11196 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11197 return 0;
23f0d209 11198 return 1;
792b9f65 11199 }
23f0d209 11200
f8858d96 11201 cpumask_copy(swb_cpus, group_balance_mask(sg));
97fb7a0a 11202 /* Try to find first idle CPU */
f8858d96 11203 for_each_cpu_and(cpu, swb_cpus, env->cpus) {
af218122 11204 if (!idle_cpu(cpu))
23f0d209
JK
11205 continue;
11206
b1bfeab9
RN
11207 /*
11208 * Don't balance to idle SMT in busy core right away when
11209 * balancing cores, but remember the first idle SMT CPU for
11210 * later consideration. Find CPU on an idle core first.
11211 */
11212 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11213 if (idle_smt == -1)
11214 idle_smt = cpu;
f8858d96
SH
11215 /*
11216 * If the core is not idle, and first SMT sibling which is
11217 * idle has been found, then its not needed to check other
11218 * SMT siblings for idleness:
11219 */
11220#ifdef CONFIG_SCHED_SMT
11221 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11222#endif
b1bfeab9
RN
11223 continue;
11224 }
11225
6d7e4782
KN
11226 /*
11227 * Are we the first idle core in a non-SMT domain or higher,
11228 * or the first idle CPU in a SMT domain?
11229 */
64297f2b 11230 return cpu == env->dst_cpu;
23f0d209
JK
11231 }
11232
6d7e4782
KN
11233 /* Are we the first idle CPU with busy siblings? */
11234 if (idle_smt != -1)
11235 return idle_smt == env->dst_cpu;
b1bfeab9 11236
64297f2b
PW
11237 /* Are we the first CPU of this group ? */
11238 return group_balance_cpu(sg) == env->dst_cpu;
23f0d209
JK
11239}
11240
1e3c88bd
PZ
11241/*
11242 * Check this_cpu to ensure it is balanced within domain. Attempt to move
11243 * tasks if there is an imbalance.
11244 */
4c3e509e 11245static int sched_balance_rq(int this_cpu, struct rq *this_rq,
1e3c88bd 11246 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 11247 int *continue_balancing)
1e3c88bd 11248{
88b8dac0 11249 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 11250 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 11251 struct sched_group *group;
1e3c88bd 11252 struct rq *busiest;
8a8c69c3 11253 struct rq_flags rf;
4ba29684 11254 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8e45cb54
PZ
11255 struct lb_env env = {
11256 .sd = sd,
ddcdf6e7
PZ
11257 .dst_cpu = this_cpu,
11258 .dst_rq = this_rq,
0dd37d6d 11259 .dst_grpmask = group_balance_mask(sd->groups),
8e45cb54 11260 .idle = idle,
c59862f8 11261 .loop_break = SCHED_NR_MIGRATE_BREAK,
b9403130 11262 .cpus = cpus,
0ec8aa00 11263 .fbq_type = all,
163122b7 11264 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
11265 };
11266
65a4433a 11267 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 11268
ae92882e 11269 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
11270
11271redo:
23f0d209
JK
11272 if (!should_we_balance(&env)) {
11273 *continue_balancing = 0;
1e3c88bd 11274 goto out_balanced;
23f0d209 11275 }
1e3c88bd 11276
23f0d209 11277 group = find_busiest_group(&env);
1e3c88bd 11278 if (!group) {
ae92882e 11279 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
11280 goto out_balanced;
11281 }
11282
b9403130 11283 busiest = find_busiest_queue(&env, group);
1e3c88bd 11284 if (!busiest) {
ae92882e 11285 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
11286 goto out_balanced;
11287 }
11288
09348d75 11289 WARN_ON_ONCE(busiest == env.dst_rq);
1e3c88bd 11290
ae92882e 11291 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 11292
1aaf90a4
VG
11293 env.src_cpu = busiest->cpu;
11294 env.src_rq = busiest;
11295
1e3c88bd 11296 ld_moved = 0;
8a41dfcd
VG
11297 /* Clear this flag as soon as we find a pullable task */
11298 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
11299 if (busiest->nr_running > 1) {
11300 /*
11301 * Attempt to move tasks. If find_busiest_group has found
11302 * an imbalance but busiest->nr_running <= 1, the group is
11303 * still unbalanced. ld_moved simply stays zero, so it is
11304 * correctly treated as an imbalance.
11305 */
c82513e5 11306 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 11307
5d6523eb 11308more_balance:
8a8c69c3 11309 rq_lock_irqsave(busiest, &rf);
3bed5e21 11310 update_rq_clock(busiest);
88b8dac0
SV
11311
11312 /*
11313 * cur_ld_moved - load moved in current iteration
11314 * ld_moved - cumulative load moved across iterations
11315 */
163122b7 11316 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
11317
11318 /*
163122b7
KT
11319 * We've detached some tasks from busiest_rq. Every
11320 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11321 * unlock busiest->lock, and we are able to be sure
11322 * that nobody can manipulate the tasks in parallel.
11323 * See task_rq_lock() family for the details.
1e3c88bd 11324 */
163122b7 11325
8a8c69c3 11326 rq_unlock(busiest, &rf);
163122b7
KT
11327
11328 if (cur_ld_moved) {
11329 attach_tasks(&env);
11330 ld_moved += cur_ld_moved;
11331 }
11332
8a8c69c3 11333 local_irq_restore(rf.flags);
88b8dac0 11334
f1cd0858
JK
11335 if (env.flags & LBF_NEED_BREAK) {
11336 env.flags &= ~LBF_NEED_BREAK;
b0defa7a
VG
11337 /* Stop if we tried all running tasks */
11338 if (env.loop < busiest->nr_running)
11339 goto more_balance;
f1cd0858
JK
11340 }
11341
88b8dac0
SV
11342 /*
11343 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11344 * us and move them to an alternate dst_cpu in our sched_group
11345 * where they can run. The upper limit on how many times we
97fb7a0a 11346 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
11347 * sched_group.
11348 *
11349 * This changes load balance semantics a bit on who can move
11350 * load to a given_cpu. In addition to the given_cpu itself
11351 * (or a ilb_cpu acting on its behalf where given_cpu is
11352 * nohz-idle), we now have balance_cpu in a position to move
11353 * load to given_cpu. In rare situations, this may cause
11354 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11355 * _independently_ and at _same_ time to move some load to
3b03706f 11356 * given_cpu) causing excess load to be moved to given_cpu.
88b8dac0
SV
11357 * This however should not happen so much in practice and
11358 * moreover subsequent load balance cycles should correct the
11359 * excess load moved.
11360 */
6263322c 11361 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 11362
97fb7a0a 11363 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 11364 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 11365
78feefc5 11366 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 11367 env.dst_cpu = env.new_dst_cpu;
6263322c 11368 env.flags &= ~LBF_DST_PINNED;
88b8dac0 11369 env.loop = 0;
c59862f8 11370 env.loop_break = SCHED_NR_MIGRATE_BREAK;
e02e60c1 11371
88b8dac0
SV
11372 /*
11373 * Go back to "more_balance" rather than "redo" since we
11374 * need to continue with same src_cpu.
11375 */
11376 goto more_balance;
11377 }
1e3c88bd 11378
6263322c
PZ
11379 /*
11380 * We failed to reach balance because of affinity.
11381 */
11382 if (sd_parent) {
63b2ca30 11383 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 11384
afdeee05 11385 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 11386 *group_imbalance = 1;
6263322c
PZ
11387 }
11388
1e3c88bd 11389 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 11390 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 11391 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
11392 /*
11393 * Attempting to continue load balancing at the current
11394 * sched_domain level only makes sense if there are
11395 * active CPUs remaining as possible busiest CPUs to
11396 * pull load from which are not contained within the
11397 * destination group that is receiving any migrated
11398 * load.
11399 */
11400 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19 11401 env.loop = 0;
c59862f8 11402 env.loop_break = SCHED_NR_MIGRATE_BREAK;
1e3c88bd 11403 goto redo;
bbf18b19 11404 }
afdeee05 11405 goto out_all_pinned;
1e3c88bd
PZ
11406 }
11407 }
11408
11409 if (!ld_moved) {
ae92882e 11410 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
11411 /*
11412 * Increment the failure counter only on periodic balance.
11413 * We do not want newidle balance, which can be very
11414 * frequent, pollute the failure counter causing
11415 * excessive cache_hot migrations and active balances.
11416 */
11417 if (idle != CPU_NEWLY_IDLE)
11418 sd->nr_balance_failed++;
1e3c88bd 11419
bd939f45 11420 if (need_active_balance(&env)) {
8a8c69c3
PZ
11421 unsigned long flags;
11422
5cb9eaa3 11423 raw_spin_rq_lock_irqsave(busiest, flags);
1e3c88bd 11424
97fb7a0a
IM
11425 /*
11426 * Don't kick the active_load_balance_cpu_stop,
11427 * if the curr task on busiest CPU can't be
11428 * moved to this_cpu:
1e3c88bd 11429 */
3bd37062 11430 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
5cb9eaa3 11431 raw_spin_rq_unlock_irqrestore(busiest, flags);
1e3c88bd
PZ
11432 goto out_one_pinned;
11433 }
11434
8a41dfcd
VG
11435 /* Record that we found at least one task that could run on this_cpu */
11436 env.flags &= ~LBF_ALL_PINNED;
11437
969c7921
TH
11438 /*
11439 * ->active_balance synchronizes accesses to
11440 * ->active_balance_work. Once set, it's cleared
11441 * only after active load balance is finished.
11442 */
1e3c88bd
PZ
11443 if (!busiest->active_balance) {
11444 busiest->active_balance = 1;
11445 busiest->push_cpu = this_cpu;
11446 active_balance = 1;
11447 }
969c7921 11448
f0498d2a
PZ
11449 preempt_disable();
11450 raw_spin_rq_unlock_irqrestore(busiest, flags);
bd939f45 11451 if (active_balance) {
969c7921
TH
11452 stop_one_cpu_nowait(cpu_of(busiest),
11453 active_load_balance_cpu_stop, busiest,
11454 &busiest->active_balance_work);
bd939f45 11455 }
f0498d2a 11456 preempt_enable();
1e3c88bd 11457 }
e9b9734b 11458 } else {
1e3c88bd 11459 sd->nr_balance_failed = 0;
e9b9734b 11460 }
1e3c88bd 11461
e9b9734b 11462 if (likely(!active_balance) || need_active_balance(&env)) {
1e3c88bd
PZ
11463 /* We were unbalanced, so reset the balancing interval */
11464 sd->balance_interval = sd->min_interval;
1e3c88bd
PZ
11465 }
11466
1e3c88bd
PZ
11467 goto out;
11468
11469out_balanced:
afdeee05
VG
11470 /*
11471 * We reach balance although we may have faced some affinity
f6cad8df
VG
11472 * constraints. Clear the imbalance flag only if other tasks got
11473 * a chance to move and fix the imbalance.
afdeee05 11474 */
f6cad8df 11475 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
afdeee05
VG
11476 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11477
11478 if (*group_imbalance)
11479 *group_imbalance = 0;
11480 }
11481
11482out_all_pinned:
11483 /*
11484 * We reach balance because all tasks are pinned at this level so
11485 * we can't migrate them. Let the imbalance flag set so parent level
11486 * can try to migrate them.
11487 */
ae92882e 11488 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
11489
11490 sd->nr_balance_failed = 0;
11491
11492out_one_pinned:
3f130a37
VS
11493 ld_moved = 0;
11494
11495 /*
5ba553ef
PZ
11496 * newidle_balance() disregards balance intervals, so we could
11497 * repeatedly reach this code, which would lead to balance_interval
3b03706f 11498 * skyrocketing in a short amount of time. Skip the balance_interval
5ba553ef 11499 * increase logic to avoid that.
3f130a37
VS
11500 */
11501 if (env.idle == CPU_NEWLY_IDLE)
11502 goto out;
11503
1e3c88bd 11504 /* tune up the balancing interval */
47b7aee1
VS
11505 if ((env.flags & LBF_ALL_PINNED &&
11506 sd->balance_interval < MAX_PINNED_INTERVAL) ||
11507 sd->balance_interval < sd->max_interval)
1e3c88bd 11508 sd->balance_interval *= 2;
1e3c88bd 11509out:
1e3c88bd
PZ
11510 return ld_moved;
11511}
11512
52a08ef1
JL
11513static inline unsigned long
11514get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11515{
11516 unsigned long interval = sd->balance_interval;
11517
11518 if (cpu_busy)
11519 interval *= sd->busy_factor;
11520
11521 /* scale ms to jiffies */
11522 interval = msecs_to_jiffies(interval);
e4d32e4d
VG
11523
11524 /*
11525 * Reduce likelihood of busy balancing at higher domains racing with
11526 * balancing at lower domains by preventing their balancing periods
11527 * from being multiples of each other.
11528 */
11529 if (cpu_busy)
11530 interval -= 1;
11531
52a08ef1
JL
11532 interval = clamp(interval, 1UL, max_load_balance_interval);
11533
11534 return interval;
11535}
11536
11537static inline void
31851a98 11538update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
11539{
11540 unsigned long interval, next;
11541
31851a98
LY
11542 /* used by idle balance, so cpu_busy = 0 */
11543 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
11544 next = sd->last_balance + interval;
11545
11546 if (time_after(*next_balance, next))
11547 *next_balance = next;
11548}
11549
1e3c88bd 11550/*
97fb7a0a 11551 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
11552 * running tasks off the busiest CPU onto idle CPUs. It requires at
11553 * least 1 task to be running on each physical CPU where possible, and
11554 * avoids physical / logical imbalances.
1e3c88bd 11555 */
969c7921 11556static int active_load_balance_cpu_stop(void *data)
1e3c88bd 11557{
969c7921
TH
11558 struct rq *busiest_rq = data;
11559 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 11560 int target_cpu = busiest_rq->push_cpu;
969c7921 11561 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 11562 struct sched_domain *sd;
e5673f28 11563 struct task_struct *p = NULL;
8a8c69c3 11564 struct rq_flags rf;
969c7921 11565
8a8c69c3 11566 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
11567 /*
11568 * Between queueing the stop-work and running it is a hole in which
11569 * CPUs can become inactive. We should not move tasks from or to
11570 * inactive CPUs.
11571 */
11572 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11573 goto out_unlock;
969c7921 11574
97fb7a0a 11575 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
11576 if (unlikely(busiest_cpu != smp_processor_id() ||
11577 !busiest_rq->active_balance))
11578 goto out_unlock;
1e3c88bd
PZ
11579
11580 /* Is there any task to move? */
11581 if (busiest_rq->nr_running <= 1)
969c7921 11582 goto out_unlock;
1e3c88bd
PZ
11583
11584 /*
11585 * This condition is "impossible", if it occurs
11586 * we need to fix it. Originally reported by
97fb7a0a 11587 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd 11588 */
09348d75 11589 WARN_ON_ONCE(busiest_rq == target_rq);
1e3c88bd 11590
1e3c88bd 11591 /* Search for an sd spanning us and the target CPU. */
dce840a0 11592 rcu_read_lock();
1e3c88bd 11593 for_each_domain(target_cpu, sd) {
e669ac8a
VS
11594 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11595 break;
1e3c88bd
PZ
11596 }
11597
11598 if (likely(sd)) {
8e45cb54
PZ
11599 struct lb_env env = {
11600 .sd = sd,
ddcdf6e7
PZ
11601 .dst_cpu = target_cpu,
11602 .dst_rq = target_rq,
11603 .src_cpu = busiest_rq->cpu,
11604 .src_rq = busiest_rq,
8e45cb54 11605 .idle = CPU_IDLE,
23fb06d9 11606 .flags = LBF_ACTIVE_LB,
8e45cb54
PZ
11607 };
11608
ae92882e 11609 schedstat_inc(sd->alb_count);
3bed5e21 11610 update_rq_clock(busiest_rq);
1e3c88bd 11611
e5673f28 11612 p = detach_one_task(&env);
d02c0711 11613 if (p) {
ae92882e 11614 schedstat_inc(sd->alb_pushed);
d02c0711
SD
11615 /* Active balancing done, reset the failure counter. */
11616 sd->nr_balance_failed = 0;
11617 } else {
ae92882e 11618 schedstat_inc(sd->alb_failed);
d02c0711 11619 }
1e3c88bd 11620 }
dce840a0 11621 rcu_read_unlock();
969c7921
TH
11622out_unlock:
11623 busiest_rq->active_balance = 0;
8a8c69c3 11624 rq_unlock(busiest_rq, &rf);
e5673f28
KT
11625
11626 if (p)
11627 attach_one_task(target_rq, p);
11628
11629 local_irq_enable();
11630
969c7921 11631 return 0;
1e3c88bd
PZ
11632}
11633
214c1b7f
IM
11634/*
11635 * This flag serializes load-balancing passes over large domains
11636 * (above the NODE topology level) - only one load-balancing instance
11637 * may run at a time, to reduce overhead on very large systems with
11638 * lots of CPUs and large NUMA distances.
11639 *
11640 * - Note that load-balancing passes triggered while another one
11641 * is executing are skipped and not re-tried.
11642 *
11643 * - Also note that this does not serialize rebalance_domains()
11644 * execution, as non-SD_SERIALIZE domains will still be
11645 * load-balanced in parallel.
11646 */
11647static atomic_t sched_balance_running = ATOMIC_INIT(0);
af3fe03c
PZ
11648
11649/*
4c3e509e 11650 * Scale the max sched_balance_rq interval with the number of CPUs in the system.
af3fe03c
PZ
11651 * This trades load-balance latency on larger machines for less cross talk.
11652 */
11653void update_max_interval(void)
11654{
11655 max_load_balance_interval = HZ*num_online_cpus()/10;
11656}
11657
e60b56e4
VG
11658static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11659{
11660 if (cost > sd->max_newidle_lb_cost) {
11661 /*
11662 * Track max cost of a domain to make sure to not delay the
11663 * next wakeup on the CPU.
11664 */
11665 sd->max_newidle_lb_cost = cost;
11666 sd->last_decay_max_lb_cost = jiffies;
11667 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11668 /*
11669 * Decay the newidle max times by ~1% per second to ensure that
11670 * it is not outdated and the current max cost is actually
11671 * shorter.
11672 */
11673 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11674 sd->last_decay_max_lb_cost = jiffies;
11675
11676 return true;
11677 }
11678
11679 return false;
11680}
11681
af3fe03c
PZ
11682/*
11683 * It checks each scheduling domain to see if it is due to be balanced,
11684 * and initiates a balancing operation if so.
11685 *
11686 * Balancing parameters are set up in init_sched_domains.
11687 */
14ff4dbd 11688static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
af3fe03c
PZ
11689{
11690 int continue_balancing = 1;
11691 int cpu = rq->cpu;
323af6de 11692 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
11693 unsigned long interval;
11694 struct sched_domain *sd;
11695 /* Earliest time when we have to do rebalance again */
11696 unsigned long next_balance = jiffies + 60*HZ;
11697 int update_next_balance = 0;
11698 int need_serialize, need_decay = 0;
11699 u64 max_cost = 0;
11700
11701 rcu_read_lock();
11702 for_each_domain(cpu, sd) {
11703 /*
11704 * Decay the newidle max times here because this is a regular
e60b56e4 11705 * visit to all the domains.
af3fe03c 11706 */
e60b56e4 11707 need_decay = update_newidle_cost(sd, 0);
af3fe03c
PZ
11708 max_cost += sd->max_newidle_lb_cost;
11709
af3fe03c
PZ
11710 /*
11711 * Stop the load balance at this level. There is another
11712 * CPU in our sched group which is doing load balancing more
11713 * actively.
11714 */
11715 if (!continue_balancing) {
11716 if (need_decay)
11717 continue;
11718 break;
11719 }
11720
323af6de 11721 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
11722
11723 need_serialize = sd->flags & SD_SERIALIZE;
11724 if (need_serialize) {
214c1b7f 11725 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
af3fe03c
PZ
11726 goto out;
11727 }
11728
11729 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4c3e509e 11730 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
af3fe03c
PZ
11731 /*
11732 * The LBF_DST_PINNED logic could have changed
11733 * env->dst_cpu, so we can't know our idle
11734 * state even if we migrated tasks. Update it.
11735 */
38d707c5
IM
11736 idle = idle_cpu(cpu);
11737 busy = !idle && !sched_idle_cpu(cpu);
af3fe03c
PZ
11738 }
11739 sd->last_balance = jiffies;
323af6de 11740 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
11741 }
11742 if (need_serialize)
214c1b7f 11743 atomic_set_release(&sched_balance_running, 0);
af3fe03c
PZ
11744out:
11745 if (time_after(next_balance, sd->last_balance + interval)) {
11746 next_balance = sd->last_balance + interval;
11747 update_next_balance = 1;
11748 }
11749 }
11750 if (need_decay) {
11751 /*
11752 * Ensure the rq-wide value also decays but keep it at a
11753 * reasonable floor to avoid funnies with rq->avg_idle.
11754 */
11755 rq->max_idle_balance_cost =
11756 max((u64)sysctl_sched_migration_cost, max_cost);
11757 }
11758 rcu_read_unlock();
11759
11760 /*
11761 * next_balance will be updated only when there is a need.
11762 * When the cpu is attached to null domain for ex, it will not be
11763 * updated.
11764 */
7a82e5f5 11765 if (likely(update_next_balance))
af3fe03c
PZ
11766 rq->next_balance = next_balance;
11767
af3fe03c
PZ
11768}
11769
d987fc7f
MG
11770static inline int on_null_domain(struct rq *rq)
11771{
11772 return unlikely(!rcu_dereference_sched(rq->sd));
11773}
11774
3451d024 11775#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 11776/*
7ef7145a
IM
11777 * NOHZ idle load balancing (ILB) details:
11778 *
11779 * - When one of the busy CPUs notices that there may be an idle rebalancing
83cd4fe2
VP
11780 * needed, they will kick the idle load balancer, which then does idle
11781 * load balancing for all the idle CPUs.
7ef7145a
IM
11782 *
11783 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
9b019acb 11784 * anywhere yet.
83cd4fe2 11785 */
3dd0337d 11786static inline int find_new_ilb(void)
1e3c88bd 11787{
031e3bd8 11788 const struct cpumask *hk_mask;
b6dd6984 11789 int ilb_cpu;
1e3c88bd 11790
04d4e665 11791 hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
1e3c88bd 11792
b6dd6984 11793 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
45da7a2b 11794
b6dd6984 11795 if (ilb_cpu == smp_processor_id())
45da7a2b
PZ
11796 continue;
11797
b6dd6984
IM
11798 if (idle_cpu(ilb_cpu))
11799 return ilb_cpu;
9b019acb 11800 }
786d6dc7 11801
f4bb5705 11802 return -1;
1e3c88bd 11803}
1e3c88bd 11804
83cd4fe2 11805/*
7ef7145a
IM
11806 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
11807 * SMP function call (IPI).
11808 *
11809 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
83cd4fe2 11810 */
a4064fb6 11811static void kick_ilb(unsigned int flags)
83cd4fe2
VP
11812{
11813 int ilb_cpu;
11814
3ea2f097
VG
11815 /*
11816 * Increase nohz.next_balance only when if full ilb is triggered but
11817 * not if we only update stats.
11818 */
11819 if (flags & NOHZ_BALANCE_KICK)
11820 nohz.next_balance = jiffies+1;
83cd4fe2 11821
3dd0337d 11822 ilb_cpu = find_new_ilb();
f4bb5705 11823 if (ilb_cpu < 0)
0b005cf5 11824 return;
83cd4fe2 11825
19a1f5ec
PZ
11826 /*
11827 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11828 * the first flag owns it; cleared by nohz_csd_func().
11829 */
a4064fb6 11830 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 11831 if (flags & NOHZ_KICK_MASK)
1c792db7 11832 return;
4550487a 11833
1c792db7 11834 /*
90b5363a 11835 * This way we generate an IPI on the target CPU which
7ef7145a 11836 * is idle, and the softirq performing NOHZ idle load balancing
1c792db7
SS
11837 * will be run before returning from the IPI.
11838 */
90b5363a 11839 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
4550487a
PZ
11840}
11841
11842/*
9f132742
VS
11843 * Current decision point for kicking the idle load balancer in the presence
11844 * of idle CPUs in the system.
4550487a
PZ
11845 */
11846static void nohz_balancer_kick(struct rq *rq)
11847{
11848 unsigned long now = jiffies;
11849 struct sched_domain_shared *sds;
11850 struct sched_domain *sd;
11851 int nr_busy, i, cpu = rq->cpu;
a4064fb6 11852 unsigned int flags = 0;
4550487a
PZ
11853
11854 if (unlikely(rq->idle_balance))
11855 return;
11856
11857 /*
11858 * We may be recently in ticked or tickless idle mode. At the first
11859 * busy tick after returning from idle, we will update the busy stats.
11860 */
00357f5e 11861 nohz_balance_exit_idle(rq);
4550487a
PZ
11862
11863 /*
11864 * None are in tickless mode and hence no need for NOHZ idle load
7ef7145a 11865 * balancing:
4550487a
PZ
11866 */
11867 if (likely(!atomic_read(&nohz.nr_cpus)))
11868 return;
11869
f643ea22
VG
11870 if (READ_ONCE(nohz.has_blocked) &&
11871 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
11872 flags = NOHZ_STATS_KICK;
11873
4550487a 11874 if (time_before(now, nohz.next_balance))
a4064fb6 11875 goto out;
4550487a 11876
a0fe2cf0 11877 if (rq->nr_running >= 2) {
efd984c4 11878 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
4550487a
PZ
11879 goto out;
11880 }
11881
11882 rcu_read_lock();
4550487a
PZ
11883
11884 sd = rcu_dereference(rq->sd);
11885 if (sd) {
e25a7a94 11886 /*
7ef7145a
IM
11887 * If there's a runnable CFS task and the current CPU has reduced
11888 * capacity, kick the ILB to see if there's a better CPU to run on:
e25a7a94
VS
11889 */
11890 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
efd984c4 11891 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
4550487a
PZ
11892 goto unlock;
11893 }
11894 }
11895
011b27bb 11896 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 11897 if (sd) {
b9a7b883
VS
11898 /*
11899 * When ASYM_PACKING; see if there's a more preferred CPU
11900 * currently idle; in which case, kick the ILB to move tasks
11901 * around.
eefefa71
RN
11902 *
11903 * When balancing betwen cores, all the SMT siblings of the
11904 * preferred CPU must be idle.
b9a7b883 11905 */
7edab78d 11906 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
45de2062 11907 if (sched_asym(sd, i, cpu)) {
efd984c4 11908 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
4550487a
PZ
11909 goto unlock;
11910 }
11911 }
11912 }
b9a7b883 11913
a0fe2cf0
VS
11914 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11915 if (sd) {
11916 /*
11917 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11918 * to run the misfit task on.
11919 */
11920 if (check_misfit_status(rq, sd)) {
efd984c4 11921 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
a0fe2cf0
VS
11922 goto unlock;
11923 }
b9a7b883
VS
11924
11925 /*
11926 * For asymmetric systems, we do not want to nicely balance
11927 * cache use, instead we want to embrace asymmetry and only
11928 * ensure tasks have enough CPU capacity.
11929 *
11930 * Skip the LLC logic because it's not relevant in that case.
11931 */
11932 goto unlock;
a0fe2cf0
VS
11933 }
11934
b9a7b883
VS
11935 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11936 if (sds) {
e25a7a94 11937 /*
b9a7b883 11938 * If there is an imbalance between LLC domains (IOW we could
7ef7145a
IM
11939 * increase the overall cache utilization), we need a less-loaded LLC
11940 * domain to pull some load from. Likewise, we may need to spread
b9a7b883
VS
11941 * load within the current LLC domain (e.g. packed SMT cores but
11942 * other CPUs are idle). We can't really know from here how busy
7ef7145a 11943 * the others are - so just get a NOHZ balance going if it looks
b9a7b883 11944 * like this LLC domain has tasks we could move.
e25a7a94 11945 */
b9a7b883
VS
11946 nr_busy = atomic_read(&sds->nr_busy_cpus);
11947 if (nr_busy > 1) {
efd984c4 11948 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
b9a7b883 11949 goto unlock;
4550487a
PZ
11950 }
11951 }
11952unlock:
11953 rcu_read_unlock();
11954out:
7fd7a9e0
VS
11955 if (READ_ONCE(nohz.needs_update))
11956 flags |= NOHZ_NEXT_KICK;
11957
a4064fb6
PZ
11958 if (flags)
11959 kick_ilb(flags);
83cd4fe2
VP
11960}
11961
00357f5e 11962static void set_cpu_sd_state_busy(int cpu)
71325960 11963{
00357f5e 11964 struct sched_domain *sd;
a22e47a4 11965
00357f5e
PZ
11966 rcu_read_lock();
11967 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 11968
00357f5e
PZ
11969 if (!sd || !sd->nohz_idle)
11970 goto unlock;
11971 sd->nohz_idle = 0;
11972
11973 atomic_inc(&sd->shared->nr_busy_cpus);
11974unlock:
11975 rcu_read_unlock();
71325960
SS
11976}
11977
00357f5e
PZ
11978void nohz_balance_exit_idle(struct rq *rq)
11979{
11980 SCHED_WARN_ON(rq != this_rq());
11981
11982 if (likely(!rq->nohz_tick_stopped))
11983 return;
11984
11985 rq->nohz_tick_stopped = 0;
11986 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11987 atomic_dec(&nohz.nr_cpus);
11988
11989 set_cpu_sd_state_busy(rq->cpu);
11990}
11991
11992static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
11993{
11994 struct sched_domain *sd;
69e1e811 11995
69e1e811 11996 rcu_read_lock();
0e369d75 11997 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
11998
11999 if (!sd || sd->nohz_idle)
12000 goto unlock;
12001 sd->nohz_idle = 1;
12002
0e369d75 12003 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 12004unlock:
69e1e811
SS
12005 rcu_read_unlock();
12006}
12007
1e3c88bd 12008/*
97fb7a0a 12009 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 12010 * This info will be used in performing idle load balancing in the future.
1e3c88bd 12011 */
c1cc017c 12012void nohz_balance_enter_idle(int cpu)
1e3c88bd 12013{
00357f5e
PZ
12014 struct rq *rq = cpu_rq(cpu);
12015
12016 SCHED_WARN_ON(cpu != smp_processor_id());
12017
97fb7a0a 12018 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
12019 if (!cpu_active(cpu))
12020 return;
12021
387bc8b5 12022 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
04d4e665 12023 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
387bc8b5
FW
12024 return;
12025
f643ea22
VG
12026 /*
12027 * Can be set safely without rq->lock held
12028 * If a clear happens, it will have evaluated last additions because
12029 * rq->lock is held during the check and the clear
12030 */
12031 rq->has_blocked_load = 1;
12032
12033 /*
12034 * The tick is still stopped but load could have been added in the
12035 * meantime. We set the nohz.has_blocked flag to trig a check of the
12036 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12037 * of nohz.has_blocked can only happen after checking the new load
12038 */
00357f5e 12039 if (rq->nohz_tick_stopped)
f643ea22 12040 goto out;
1e3c88bd 12041
97fb7a0a 12042 /* If we're a completely isolated CPU, we don't play: */
00357f5e 12043 if (on_null_domain(rq))
d987fc7f
MG
12044 return;
12045
00357f5e
PZ
12046 rq->nohz_tick_stopped = 1;
12047
c1cc017c
AS
12048 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12049 atomic_inc(&nohz.nr_cpus);
00357f5e 12050
f643ea22
VG
12051 /*
12052 * Ensures that if nohz_idle_balance() fails to observe our
12053 * @idle_cpus_mask store, it must observe the @has_blocked
7fd7a9e0 12054 * and @needs_update stores.
f643ea22
VG
12055 */
12056 smp_mb__after_atomic();
12057
00357f5e 12058 set_cpu_sd_state_idle(cpu);
f643ea22 12059
7fd7a9e0 12060 WRITE_ONCE(nohz.needs_update, 1);
f643ea22
VG
12061out:
12062 /*
12063 * Each time a cpu enter idle, we assume that it has blocked load and
12064 * enable the periodic update of the load of idle cpus
12065 */
12066 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 12067}
1e3c88bd 12068
3f5ad914
Y
12069static bool update_nohz_stats(struct rq *rq)
12070{
12071 unsigned int cpu = rq->cpu;
12072
12073 if (!rq->has_blocked_load)
12074 return false;
12075
12076 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12077 return false;
12078
12079 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12080 return true;
12081
12082 update_blocked_averages(cpu);
12083
12084 return rq->has_blocked_load;
12085}
12086
1e3c88bd 12087/*
31e77c93
VG
12088 * Internal function that runs load balance for all idle cpus. The load balance
12089 * can be a simple update of blocked load or a complete load balance with
12090 * tasks movement depending of flags.
1e3c88bd 12091 */
d985ee9f 12092static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
83cd4fe2 12093{
c5afb6a8 12094 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
12095 unsigned long now = jiffies;
12096 unsigned long next_balance = now + 60*HZ;
f643ea22 12097 bool has_blocked_load = false;
c5afb6a8 12098 int update_next_balance = 0;
b7031a02 12099 int this_cpu = this_rq->cpu;
b7031a02
PZ
12100 int balance_cpu;
12101 struct rq *rq;
83cd4fe2 12102
b7031a02 12103 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 12104
f643ea22
VG
12105 /*
12106 * We assume there will be no idle load after this update and clear
12107 * the has_blocked flag. If a cpu enters idle in the mean time, it will
7fd7a9e0 12108 * set the has_blocked flag and trigger another update of idle load.
f643ea22
VG
12109 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12110 * setting the flag, we are sure to not clear the state and not
12111 * check the load of an idle cpu.
7fd7a9e0
VS
12112 *
12113 * Same applies to idle_cpus_mask vs needs_update.
f643ea22 12114 */
efd984c4
VS
12115 if (flags & NOHZ_STATS_KICK)
12116 WRITE_ONCE(nohz.has_blocked, 0);
7fd7a9e0
VS
12117 if (flags & NOHZ_NEXT_KICK)
12118 WRITE_ONCE(nohz.needs_update, 0);
f643ea22
VG
12119
12120 /*
12121 * Ensures that if we miss the CPU, we must see the has_blocked
12122 * store from nohz_balance_enter_idle().
12123 */
12124 smp_mb();
12125
7a82e5f5
VG
12126 /*
12127 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12128 * chance for other idle cpu to pull load.
12129 */
12130 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
12131 if (!idle_cpu(balance_cpu))
83cd4fe2
VP
12132 continue;
12133
12134 /*
97fb7a0a
IM
12135 * If this CPU gets work to do, stop the load balancing
12136 * work being done for other CPUs. Next load
83cd4fe2
VP
12137 * balancing owner will pick it up.
12138 */
f643ea22 12139 if (need_resched()) {
efd984c4
VS
12140 if (flags & NOHZ_STATS_KICK)
12141 has_blocked_load = true;
7fd7a9e0
VS
12142 if (flags & NOHZ_NEXT_KICK)
12143 WRITE_ONCE(nohz.needs_update, 1);
f643ea22
VG
12144 goto abort;
12145 }
83cd4fe2 12146
5ed4f1d9
VG
12147 rq = cpu_rq(balance_cpu);
12148
efd984c4
VS
12149 if (flags & NOHZ_STATS_KICK)
12150 has_blocked_load |= update_nohz_stats(rq);
f643ea22 12151
ed61bbc6
TC
12152 /*
12153 * If time for next balance is due,
12154 * do the balance.
12155 */
12156 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
12157 struct rq_flags rf;
12158
31e77c93 12159 rq_lock_irqsave(rq, &rf);
ed61bbc6 12160 update_rq_clock(rq);
31e77c93 12161 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 12162
b7031a02 12163 if (flags & NOHZ_BALANCE_KICK)
14ff4dbd 12164 sched_balance_domains(rq, CPU_IDLE);
ed61bbc6 12165 }
83cd4fe2 12166
c5afb6a8
VG
12167 if (time_after(next_balance, rq->next_balance)) {
12168 next_balance = rq->next_balance;
12169 update_next_balance = 1;
12170 }
83cd4fe2 12171 }
c5afb6a8 12172
3ea2f097
VG
12173 /*
12174 * next_balance will be updated only when there is a need.
12175 * When the CPU is attached to null domain for ex, it will not be
12176 * updated.
12177 */
12178 if (likely(update_next_balance))
12179 nohz.next_balance = next_balance;
12180
efd984c4
VS
12181 if (flags & NOHZ_STATS_KICK)
12182 WRITE_ONCE(nohz.next_blocked,
12183 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
f643ea22
VG
12184
12185abort:
12186 /* There is still blocked load, enable periodic update */
12187 if (has_blocked_load)
12188 WRITE_ONCE(nohz.has_blocked, 1);
31e77c93
VG
12189}
12190
12191/*
12192 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12193 * rebalancing for all the cpus for whom scheduler ticks are stopped.
12194 */
12195static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12196{
19a1f5ec 12197 unsigned int flags = this_rq->nohz_idle_balance;
31e77c93 12198
19a1f5ec 12199 if (!flags)
31e77c93
VG
12200 return false;
12201
19a1f5ec 12202 this_rq->nohz_idle_balance = 0;
31e77c93 12203
19a1f5ec 12204 if (idle != CPU_IDLE)
31e77c93
VG
12205 return false;
12206
d985ee9f 12207 _nohz_idle_balance(this_rq, flags);
31e77c93 12208
b7031a02 12209 return true;
83cd4fe2 12210}
31e77c93 12211
c6f88654 12212/*
fb064e5a
JFG
12213 * Check if we need to directly run the ILB for updating blocked load before
12214 * entering idle state. Here we run ILB directly without issuing IPIs.
12215 *
12216 * Note that when this function is called, the tick may not yet be stopped on
12217 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12218 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12219 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12220 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12221 * called from this function on (this) CPU that's not yet in the mask. That's
12222 * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12223 * updating the blocked load of already idle CPUs without waking up one of
12224 * those idle CPUs and outside the preempt disable / irq off phase of the local
12225 * cpu about to enter idle, because it can take a long time.
c6f88654
VG
12226 */
12227void nohz_run_idle_balance(int cpu)
12228{
12229 unsigned int flags;
12230
12231 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12232
12233 /*
12234 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12235 * (ie NOHZ_STATS_KICK set) and will do the same.
12236 */
12237 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
d985ee9f 12238 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
c6f88654
VG
12239}
12240
31e77c93
VG
12241static void nohz_newidle_balance(struct rq *this_rq)
12242{
12243 int this_cpu = this_rq->cpu;
12244
12245 /*
12246 * This CPU doesn't want to be disturbed by scheduler
12247 * housekeeping
12248 */
04d4e665 12249 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
31e77c93
VG
12250 return;
12251
12252 /* Will wake up very soon. No time for doing anything else*/
12253 if (this_rq->avg_idle < sysctl_sched_migration_cost)
12254 return;
12255
12256 /* Don't need to update blocked load of idle CPUs*/
12257 if (!READ_ONCE(nohz.has_blocked) ||
12258 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12259 return;
12260
31e77c93 12261 /*
c6f88654
VG
12262 * Set the need to trigger ILB in order to update blocked load
12263 * before entering idle state.
31e77c93 12264 */
c6f88654 12265 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
31e77c93
VG
12266}
12267
dd707247
PZ
12268#else /* !CONFIG_NO_HZ_COMMON */
12269static inline void nohz_balancer_kick(struct rq *rq) { }
12270
31e77c93 12271static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
12272{
12273 return false;
12274}
31e77c93
VG
12275
12276static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 12277#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 12278
47ea5412 12279/*
5b78f2dc 12280 * newidle_balance is called by schedule() if this_cpu is about to become
47ea5412 12281 * idle. Attempts to pull tasks from other CPUs.
7277a34c
PZ
12282 *
12283 * Returns:
12284 * < 0 - we released the lock and there are !fair tasks present
12285 * 0 - failed, no new tasks
12286 * > 0 - success, new (fair) tasks present
47ea5412 12287 */
d91cecc1 12288static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
47ea5412
PZ
12289{
12290 unsigned long next_balance = jiffies + HZ;
12291 int this_cpu = this_rq->cpu;
9e9af819 12292 u64 t0, t1, curr_cost = 0;
47ea5412
PZ
12293 struct sched_domain *sd;
12294 int pulled_task = 0;
47ea5412 12295
5ba553ef 12296 update_misfit_status(NULL, this_rq);
e5e678e4
RR
12297
12298 /*
12299 * There is a task waiting to run. No need to search for one.
12300 * Return 0; the task will be enqueued when switching to idle.
12301 */
12302 if (this_rq->ttwu_pending)
12303 return 0;
12304
47ea5412
PZ
12305 /*
12306 * We must set idle_stamp _before_ calling idle_balance(), such that we
12307 * measure the duration of idle_balance() as idle time.
12308 */
12309 this_rq->idle_stamp = rq_clock(this_rq);
12310
12311 /*
12312 * Do not pull tasks towards !active CPUs...
12313 */
12314 if (!cpu_active(this_cpu))
12315 return 0;
12316
12317 /*
12318 * This is OK, because current is on_cpu, which avoids it being picked
12319 * for load-balance and preemption/IRQs are still disabled avoiding
12320 * further scheduler activity on it and we're being very careful to
12321 * re-start the picking loop.
12322 */
12323 rq_unpin_lock(this_rq, rf);
12324
9d783c8d
VG
12325 rcu_read_lock();
12326 sd = rcu_dereference_check_sched_domain(this_rq->sd);
12327
c5b0a7ee 12328 if (!READ_ONCE(this_rq->rd->overload) ||
9d783c8d 12329 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
31e77c93 12330
47ea5412
PZ
12331 if (sd)
12332 update_next_balance(sd, &next_balance);
12333 rcu_read_unlock();
12334
12335 goto out;
12336 }
9d783c8d 12337 rcu_read_unlock();
47ea5412 12338
5cb9eaa3 12339 raw_spin_rq_unlock(this_rq);
47ea5412 12340
9e9af819 12341 t0 = sched_clock_cpu(this_cpu);
47ea5412 12342 update_blocked_averages(this_cpu);
9e9af819 12343
47ea5412
PZ
12344 rcu_read_lock();
12345 for_each_domain(this_cpu, sd) {
12346 int continue_balancing = 1;
9e9af819 12347 u64 domain_cost;
47ea5412 12348
8ea9183d
VG
12349 update_next_balance(sd, &next_balance);
12350
12351 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
47ea5412 12352 break;
47ea5412
PZ
12353
12354 if (sd->flags & SD_BALANCE_NEWIDLE) {
47ea5412 12355
4c3e509e 12356 pulled_task = sched_balance_rq(this_cpu, this_rq,
47ea5412
PZ
12357 sd, CPU_NEWLY_IDLE,
12358 &continue_balancing);
12359
9e9af819
VG
12360 t1 = sched_clock_cpu(this_cpu);
12361 domain_cost = t1 - t0;
e60b56e4 12362 update_newidle_cost(sd, domain_cost);
47ea5412
PZ
12363
12364 curr_cost += domain_cost;
9e9af819 12365 t0 = t1;
47ea5412
PZ
12366 }
12367
47ea5412
PZ
12368 /*
12369 * Stop searching for tasks to pull if there are
12370 * now runnable tasks on this rq.
12371 */
e5e678e4
RR
12372 if (pulled_task || this_rq->nr_running > 0 ||
12373 this_rq->ttwu_pending)
47ea5412
PZ
12374 break;
12375 }
12376 rcu_read_unlock();
12377
5cb9eaa3 12378 raw_spin_rq_lock(this_rq);
47ea5412
PZ
12379
12380 if (curr_cost > this_rq->max_idle_balance_cost)
12381 this_rq->max_idle_balance_cost = curr_cost;
12382
12383 /*
12384 * While browsing the domains, we released the rq lock, a task could
12385 * have been enqueued in the meantime. Since we're not going idle,
12386 * pretend we pulled a task.
12387 */
12388 if (this_rq->cfs.h_nr_running && !pulled_task)
12389 pulled_task = 1;
12390
47ea5412
PZ
12391 /* Is there a task of a high priority class? */
12392 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12393 pulled_task = -1;
12394
6553fc18
VG
12395out:
12396 /* Move the next balance forward */
12397 if (time_after(this_rq->next_balance, next_balance))
12398 this_rq->next_balance = next_balance;
12399
47ea5412
PZ
12400 if (pulled_task)
12401 this_rq->idle_stamp = 0;
0826530d
VG
12402 else
12403 nohz_newidle_balance(this_rq);
47ea5412
PZ
12404
12405 rq_repin_lock(this_rq, rf);
12406
12407 return pulled_task;
12408}
12409
83cd4fe2 12410/*
3dc6f6c8
IM
12411 * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12412 *
12413 * - directly from the local scheduler_tick() for periodic load balancing
12414 *
12415 * - indirectly from a remote scheduler_tick() for NOHZ idle balancing
12416 * through the SMP cross-call nohz_csd_func()
83cd4fe2 12417 */
70a27d6d 12418static __latent_entropy void sched_balance_softirq(struct softirq_action *h)
1e3c88bd 12419{
208cb16b 12420 struct rq *this_rq = this_rq();
38d707c5 12421 enum cpu_idle_type idle = this_rq->idle_balance;
1e3c88bd 12422 /*
3a5fe930 12423 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
97fb7a0a 12424 * balancing on behalf of the other idle CPUs whose ticks are
14ff4dbd 12425 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
97fb7a0a 12426 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
12427 * load balance only within the local sched_domain hierarchy
12428 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 12429 */
b7031a02
PZ
12430 if (nohz_idle_balance(this_rq, idle))
12431 return;
12432
12433 /* normal load balance */
12434 update_blocked_averages(this_rq->cpu);
14ff4dbd 12435 sched_balance_domains(this_rq, idle);
1e3c88bd
PZ
12436}
12437
1e3c88bd
PZ
12438/*
12439 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 12440 */
983be062 12441void sched_balance_trigger(struct rq *rq)
1e3c88bd 12442{
e0b257c3
AMB
12443 /*
12444 * Don't need to rebalance while attached to NULL domain or
12445 * runqueue CPU is not active
12446 */
12447 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
c726099e
DL
12448 return;
12449
12450 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 12451 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
12452
12453 nohz_balancer_kick(rq);
1e3c88bd
PZ
12454}
12455
0bcdcf28
CE
12456static void rq_online_fair(struct rq *rq)
12457{
12458 update_sysctl();
0e59bdae
KT
12459
12460 update_runtime_enabled(rq);
0bcdcf28
CE
12461}
12462
12463static void rq_offline_fair(struct rq *rq)
12464{
12465 update_sysctl();
a4c96ae3
PB
12466
12467 /* Ensure any throttled groups are reachable by pick_next_task */
12468 unthrottle_offline_cfs_rqs(rq);
f60a631a
VG
12469
12470 /* Ensure that we remove rq contribution to group share: */
12471 clear_tg_offline_cfs_rqs(rq);
0bcdcf28
CE
12472}
12473
55e12e5e 12474#endif /* CONFIG_SMP */
e1d1484f 12475
8039e96f
VP
12476#ifdef CONFIG_SCHED_CORE
12477static inline bool
12478__entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12479{
8039e96f 12480 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
147f3efa 12481 u64 slice = se->slice;
8039e96f
VP
12482
12483 return (rtime * min_nr_tasks > slice);
12484}
12485
12486#define MIN_NR_TASKS_DURING_FORCEIDLE 2
12487static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12488{
12489 if (!sched_core_enabled(rq))
12490 return;
12491
12492 /*
12493 * If runqueue has only one task which used up its slice and
12494 * if the sibling is forced idle, then trigger schedule to
12495 * give forced idle task a chance.
12496 *
12497 * sched_slice() considers only this active rq and it gets the
12498 * whole slice. But during force idle, we have siblings acting
12499 * like a single runqueue and hence we need to consider runnable
cc00c198 12500 * tasks on this CPU and the forced idle CPU. Ideally, we should
8039e96f 12501 * go through the forced idle rq, but that would be a perf hit.
cc00c198 12502 * We can assume that the forced idle CPU has at least
8039e96f 12503 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
cc00c198 12504 * if we need to give up the CPU.
8039e96f 12505 */
4feee7d1 12506 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
8039e96f
VP
12507 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12508 resched_curr(rq);
12509}
c6047c2e
JFG
12510
12511/*
12512 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12513 */
904cbab7
MWO
12514static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12515 bool forceidle)
c6047c2e
JFG
12516{
12517 for_each_sched_entity(se) {
12518 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12519
12520 if (forceidle) {
12521 if (cfs_rq->forceidle_seq == fi_seq)
12522 break;
12523 cfs_rq->forceidle_seq = fi_seq;
12524 }
12525
12526 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12527 }
12528}
12529
12530void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12531{
12532 struct sched_entity *se = &p->se;
12533
12534 if (p->sched_class != &fair_sched_class)
12535 return;
12536
12537 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12538}
12539
904cbab7
MWO
12540bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12541 bool in_fi)
c6047c2e
JFG
12542{
12543 struct rq *rq = task_rq(a);
904cbab7
MWO
12544 const struct sched_entity *sea = &a->se;
12545 const struct sched_entity *seb = &b->se;
c6047c2e
JFG
12546 struct cfs_rq *cfs_rqa;
12547 struct cfs_rq *cfs_rqb;
12548 s64 delta;
12549
12550 SCHED_WARN_ON(task_rq(b)->core != rq->core);
12551
12552#ifdef CONFIG_FAIR_GROUP_SCHED
12553 /*
12554 * Find an se in the hierarchy for tasks a and b, such that the se's
12555 * are immediate siblings.
12556 */
12557 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12558 int sea_depth = sea->depth;
12559 int seb_depth = seb->depth;
12560
12561 if (sea_depth >= seb_depth)
12562 sea = parent_entity(sea);
12563 if (sea_depth <= seb_depth)
12564 seb = parent_entity(seb);
12565 }
12566
12567 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12568 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12569
12570 cfs_rqa = sea->cfs_rq;
12571 cfs_rqb = seb->cfs_rq;
12572#else
12573 cfs_rqa = &task_rq(a)->cfs;
12574 cfs_rqb = &task_rq(b)->cfs;
12575#endif
12576
12577 /*
12578 * Find delta after normalizing se's vruntime with its cfs_rq's
12579 * min_vruntime_fi, which would have been updated in prior calls
12580 * to se_fi_update().
12581 */
12582 delta = (s64)(sea->vruntime - seb->vruntime) +
12583 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12584
12585 return delta > 0;
12586}
530bfad1
HJ
12587
12588static int task_is_throttled_fair(struct task_struct *p, int cpu)
12589{
12590 struct cfs_rq *cfs_rq;
12591
12592#ifdef CONFIG_FAIR_GROUP_SCHED
12593 cfs_rq = task_group(p)->cfs_rq[cpu];
12594#else
12595 cfs_rq = &cpu_rq(cpu)->cfs;
12596#endif
12597 return throttled_hierarchy(cfs_rq);
12598}
8039e96f
VP
12599#else
12600static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12601#endif
12602
bf0f6f24 12603/*
d84b3131
FW
12604 * scheduler tick hitting a task of our scheduling class.
12605 *
12606 * NOTE: This function can be called remotely by the tick offload that
12607 * goes along full dynticks. Therefore no local assumption can be made
12608 * and everything must be accessed through the @rq and @curr passed in
12609 * parameters.
bf0f6f24 12610 */
8f4d37ec 12611static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
12612{
12613 struct cfs_rq *cfs_rq;
12614 struct sched_entity *se = &curr->se;
12615
12616 for_each_sched_entity(se) {
12617 cfs_rq = cfs_rq_of(se);
8f4d37ec 12618 entity_tick(cfs_rq, se, queued);
bf0f6f24 12619 }
18bf2805 12620
b52da86e 12621 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 12622 task_tick_numa(rq, curr);
3b1baa64
MR
12623
12624 update_misfit_status(curr, rq);
2802bf3c 12625 update_overutilized_status(task_rq(curr));
8039e96f
VP
12626
12627 task_tick_core(rq, curr);
bf0f6f24
IM
12628}
12629
12630/*
cd29fe6f
PZ
12631 * called on fork with the child task as argument from the parent's context
12632 * - child not yet on the tasklist
12633 * - preemption disabled
bf0f6f24 12634 */
cd29fe6f 12635static void task_fork_fair(struct task_struct *p)
bf0f6f24 12636{
4fc420c9 12637 struct sched_entity *se = &p->se, *curr;
e8f331bc 12638 struct cfs_rq *cfs_rq;
cd29fe6f 12639 struct rq *rq = this_rq();
8a8c69c3 12640 struct rq_flags rf;
bf0f6f24 12641
8a8c69c3 12642 rq_lock(rq, &rf);
861d034e
PZ
12643 update_rq_clock(rq);
12644
4fc420c9
DN
12645 cfs_rq = task_cfs_rq(current);
12646 curr = cfs_rq->curr;
e8f331bc 12647 if (curr)
e210bffd 12648 update_curr(cfs_rq);
d07f09a1 12649 place_entity(cfs_rq, se, ENQUEUE_INITIAL);
8a8c69c3 12650 rq_unlock(rq, &rf);
bf0f6f24
IM
12651}
12652
cb469845
SR
12653/*
12654 * Priority of the task has changed. Check to see if we preempt
12655 * the current task.
12656 */
da7a735e
PZ
12657static void
12658prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 12659{
da0c1e65 12660 if (!task_on_rq_queued(p))
da7a735e
PZ
12661 return;
12662
7c2e8bbd
FW
12663 if (rq->cfs.nr_running == 1)
12664 return;
12665
cb469845
SR
12666 /*
12667 * Reschedule if we are currently running on this runqueue and
12668 * our priority decreased, or if we are not currently running on
12669 * this runqueue and our priority is higher than the current's
12670 */
65bcf072 12671 if (task_current(rq, p)) {
cb469845 12672 if (p->prio > oldprio)
8875125e 12673 resched_curr(rq);
cb469845 12674 } else
e23edc86 12675 wakeup_preempt(rq, p, 0);
cb469845
SR
12676}
12677
09a43ace
VG
12678#ifdef CONFIG_FAIR_GROUP_SCHED
12679/*
12680 * Propagate the changes of the sched_entity across the tg tree to make it
12681 * visible to the root
12682 */
12683static void propagate_entity_cfs_rq(struct sched_entity *se)
12684{
51bf903b
CZ
12685 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12686
12687 if (cfs_rq_throttled(cfs_rq))
12688 return;
09a43ace 12689
51bf903b
CZ
12690 if (!throttled_hierarchy(cfs_rq))
12691 list_add_leaf_cfs_rq(cfs_rq);
0258bdfa 12692
09a43ace
VG
12693 /* Start to propagate at parent */
12694 se = se->parent;
12695
12696 for_each_sched_entity(se) {
12697 cfs_rq = cfs_rq_of(se);
12698
51bf903b 12699 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace 12700
51bf903b 12701 if (cfs_rq_throttled(cfs_rq))
0258bdfa 12702 break;
51bf903b
CZ
12703
12704 if (!throttled_hierarchy(cfs_rq))
12705 list_add_leaf_cfs_rq(cfs_rq);
09a43ace
VG
12706 }
12707}
12708#else
12709static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12710#endif
12711
df217913 12712static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 12713{
daa59407
BP
12714 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12715
7e2edaf6
CZ
12716#ifdef CONFIG_SMP
12717 /*
12718 * In case the task sched_avg hasn't been attached:
12719 * - A forked task which hasn't been woken up by wake_up_new_task().
12720 * - A task which has been woken up by try_to_wake_up() but is
12721 * waiting for actually being woken up by sched_ttwu_pending().
12722 */
12723 if (!se->avg.last_update_time)
12724 return;
12725#endif
12726
9d89c257 12727 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 12728 update_load_avg(cfs_rq, se, 0);
a05e8c51 12729 detach_entity_load_avg(cfs_rq, se);
fe749158 12730 update_tg_load_avg(cfs_rq);
09a43ace 12731 propagate_entity_cfs_rq(se);
da7a735e
PZ
12732}
12733
df217913 12734static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 12735{
daa59407 12736 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a 12737
df217913 12738 /* Synchronize entity with its cfs_rq */
88c0616e 12739 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
a4f9a0e5 12740 attach_entity_load_avg(cfs_rq, se);
fe749158 12741 update_tg_load_avg(cfs_rq);
09a43ace 12742 propagate_entity_cfs_rq(se);
df217913
VG
12743}
12744
12745static void detach_task_cfs_rq(struct task_struct *p)
12746{
12747 struct sched_entity *se = &p->se;
df217913
VG
12748
12749 detach_entity_cfs_rq(se);
12750}
12751
12752static void attach_task_cfs_rq(struct task_struct *p)
12753{
12754 struct sched_entity *se = &p->se;
df217913
VG
12755
12756 attach_entity_cfs_rq(se);
daa59407 12757}
6efdb105 12758
daa59407
BP
12759static void switched_from_fair(struct rq *rq, struct task_struct *p)
12760{
12761 detach_task_cfs_rq(p);
12762}
12763
12764static void switched_to_fair(struct rq *rq, struct task_struct *p)
12765{
12766 attach_task_cfs_rq(p);
7855a35a 12767
daa59407 12768 if (task_on_rq_queued(p)) {
7855a35a 12769 /*
daa59407
BP
12770 * We were most likely switched from sched_rt, so
12771 * kick off the schedule if running, otherwise just see
12772 * if we can still preempt the current task.
7855a35a 12773 */
65bcf072 12774 if (task_current(rq, p))
daa59407
BP
12775 resched_curr(rq);
12776 else
e23edc86 12777 wakeup_preempt(rq, p, 0);
7855a35a 12778 }
cb469845
SR
12779}
12780
83b699ed
SV
12781/* Account for a task changing its policy or group.
12782 *
12783 * This routine is mostly called to set cfs_rq->curr field when a task
12784 * migrates between groups/classes.
12785 */
a0e813f2 12786static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
83b699ed 12787{
03b7fad1
PZ
12788 struct sched_entity *se = &p->se;
12789
12790#ifdef CONFIG_SMP
12791 if (task_on_rq_queued(p)) {
12792 /*
12793 * Move the next running task to the front of the list, so our
12794 * cfs_tasks list becomes MRU one.
12795 */
12796 list_move(&se->group_node, &rq->cfs_tasks);
12797 }
12798#endif
83b699ed 12799
ec12cb7f
PT
12800 for_each_sched_entity(se) {
12801 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12802
12803 set_next_entity(cfs_rq, se);
12804 /* ensure bandwidth has been allocated on our new cfs_rq */
12805 account_cfs_rq_runtime(cfs_rq, 0);
12806 }
83b699ed
SV
12807}
12808
029632fb
PZ
12809void init_cfs_rq(struct cfs_rq *cfs_rq)
12810{
bfb06889 12811 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
d05b4305 12812 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
141965c7 12813#ifdef CONFIG_SMP
2a2f5d4e 12814 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 12815#endif
029632fb
PZ
12816}
12817
810b3817 12818#ifdef CONFIG_FAIR_GROUP_SCHED
39c42611 12819static void task_change_group_fair(struct task_struct *p)
810b3817 12820{
df16b71c
CZ
12821 /*
12822 * We couldn't detach or attach a forked task which
12823 * hasn't been woken up by wake_up_new_task().
12824 */
12825 if (READ_ONCE(p->__state) == TASK_NEW)
12826 return;
12827
daa59407 12828 detach_task_cfs_rq(p);
6efdb105
BP
12829
12830#ifdef CONFIG_SMP
12831 /* Tell se's cfs_rq has been changed -- migrated */
12832 p->se.avg.last_update_time = 0;
12833#endif
5d6da83c 12834 set_task_rq(p, task_cpu(p));
daa59407 12835 attach_task_cfs_rq(p);
810b3817 12836}
029632fb
PZ
12837
12838void free_fair_sched_group(struct task_group *tg)
12839{
12840 int i;
12841
029632fb
PZ
12842 for_each_possible_cpu(i) {
12843 if (tg->cfs_rq)
12844 kfree(tg->cfs_rq[i]);
6fe1f348 12845 if (tg->se)
029632fb
PZ
12846 kfree(tg->se[i]);
12847 }
12848
12849 kfree(tg->cfs_rq);
12850 kfree(tg->se);
12851}
12852
12853int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12854{
029632fb 12855 struct sched_entity *se;
b7fa30c9 12856 struct cfs_rq *cfs_rq;
029632fb
PZ
12857 int i;
12858
6396bb22 12859 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
12860 if (!tg->cfs_rq)
12861 goto err;
6396bb22 12862 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
12863 if (!tg->se)
12864 goto err;
12865
12866 tg->shares = NICE_0_LOAD;
12867
c98c1827 12868 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
029632fb
PZ
12869
12870 for_each_possible_cpu(i) {
12871 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12872 GFP_KERNEL, cpu_to_node(i));
12873 if (!cfs_rq)
12874 goto err;
12875
ceeadb83 12876 se = kzalloc_node(sizeof(struct sched_entity_stats),
029632fb
PZ
12877 GFP_KERNEL, cpu_to_node(i));
12878 if (!se)
12879 goto err_free_rq;
12880
12881 init_cfs_rq(cfs_rq);
12882 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 12883 init_entity_runnable_average(se);
029632fb
PZ
12884 }
12885
12886 return 1;
12887
12888err_free_rq:
12889 kfree(cfs_rq);
12890err:
12891 return 0;
12892}
12893
8663e24d
PZ
12894void online_fair_sched_group(struct task_group *tg)
12895{
12896 struct sched_entity *se;
a46d14ec 12897 struct rq_flags rf;
8663e24d
PZ
12898 struct rq *rq;
12899 int i;
12900
12901 for_each_possible_cpu(i) {
12902 rq = cpu_rq(i);
12903 se = tg->se[i];
a46d14ec 12904 rq_lock_irq(rq, &rf);
4126bad6 12905 update_rq_clock(rq);
d0326691 12906 attach_entity_cfs_rq(se);
55e16d30 12907 sync_throttle(tg, i);
a46d14ec 12908 rq_unlock_irq(rq, &rf);
8663e24d
PZ
12909 }
12910}
12911
6fe1f348 12912void unregister_fair_sched_group(struct task_group *tg)
029632fb 12913{
029632fb 12914 unsigned long flags;
6fe1f348
PZ
12915 struct rq *rq;
12916 int cpu;
029632fb 12917
b027789e
MK
12918 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12919
6fe1f348
PZ
12920 for_each_possible_cpu(cpu) {
12921 if (tg->se[cpu])
12922 remove_entity_load_avg(tg->se[cpu]);
029632fb 12923
6fe1f348
PZ
12924 /*
12925 * Only empty task groups can be destroyed; so we can speculatively
12926 * check on_list without danger of it being re-added.
12927 */
12928 if (!tg->cfs_rq[cpu]->on_list)
12929 continue;
12930
12931 rq = cpu_rq(cpu);
12932
5cb9eaa3 12933 raw_spin_rq_lock_irqsave(rq, flags);
6fe1f348 12934 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5cb9eaa3 12935 raw_spin_rq_unlock_irqrestore(rq, flags);
6fe1f348 12936 }
029632fb
PZ
12937}
12938
12939void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12940 struct sched_entity *se, int cpu,
12941 struct sched_entity *parent)
12942{
12943 struct rq *rq = cpu_rq(cpu);
12944
12945 cfs_rq->tg = tg;
12946 cfs_rq->rq = rq;
029632fb
PZ
12947 init_cfs_rq_runtime(cfs_rq);
12948
12949 tg->cfs_rq[cpu] = cfs_rq;
12950 tg->se[cpu] = se;
12951
12952 /* se could be NULL for root_task_group */
12953 if (!se)
12954 return;
12955
fed14d45 12956 if (!parent) {
029632fb 12957 se->cfs_rq = &rq->cfs;
fed14d45
PZ
12958 se->depth = 0;
12959 } else {
029632fb 12960 se->cfs_rq = parent->my_q;
fed14d45
PZ
12961 se->depth = parent->depth + 1;
12962 }
029632fb
PZ
12963
12964 se->my_q = cfs_rq;
0ac9b1c2
PT
12965 /* guarantee group entities always have weight */
12966 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
12967 se->parent = parent;
12968}
12969
12970static DEFINE_MUTEX(shares_mutex);
12971
30400039 12972static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
029632fb
PZ
12973{
12974 int i;
029632fb 12975
30400039
JD
12976 lockdep_assert_held(&shares_mutex);
12977
029632fb
PZ
12978 /*
12979 * We can't change the weight of the root cgroup.
12980 */
12981 if (!tg->se[0])
12982 return -EINVAL;
12983
12984 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12985
029632fb 12986 if (tg->shares == shares)
30400039 12987 return 0;
029632fb
PZ
12988
12989 tg->shares = shares;
12990 for_each_possible_cpu(i) {
12991 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
12992 struct sched_entity *se = tg->se[i];
12993 struct rq_flags rf;
029632fb 12994
029632fb 12995 /* Propagate contribution to hierarchy */
8a8c69c3 12996 rq_lock_irqsave(rq, &rf);
71b1da46 12997 update_rq_clock(rq);
89ee048f 12998 for_each_sched_entity(se) {
88c0616e 12999 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 13000 update_cfs_group(se);
89ee048f 13001 }
8a8c69c3 13002 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
13003 }
13004
30400039
JD
13005 return 0;
13006}
13007
13008int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13009{
13010 int ret;
13011
13012 mutex_lock(&shares_mutex);
13013 if (tg_is_idle(tg))
13014 ret = -EINVAL;
13015 else
13016 ret = __sched_group_set_shares(tg, shares);
13017 mutex_unlock(&shares_mutex);
13018
13019 return ret;
13020}
13021
13022int sched_group_set_idle(struct task_group *tg, long idle)
13023{
13024 int i;
13025
13026 if (tg == &root_task_group)
13027 return -EINVAL;
13028
13029 if (idle < 0 || idle > 1)
13030 return -EINVAL;
13031
13032 mutex_lock(&shares_mutex);
13033
13034 if (tg->idle == idle) {
13035 mutex_unlock(&shares_mutex);
13036 return 0;
13037 }
13038
13039 tg->idle = idle;
13040
13041 for_each_possible_cpu(i) {
13042 struct rq *rq = cpu_rq(i);
13043 struct sched_entity *se = tg->se[i];
a480adde 13044 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
30400039
JD
13045 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13046 long idle_task_delta;
13047 struct rq_flags rf;
13048
13049 rq_lock_irqsave(rq, &rf);
13050
13051 grp_cfs_rq->idle = idle;
13052 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13053 goto next_cpu;
13054
a480adde
JD
13055 if (se->on_rq) {
13056 parent_cfs_rq = cfs_rq_of(se);
13057 if (cfs_rq_is_idle(grp_cfs_rq))
13058 parent_cfs_rq->idle_nr_running++;
13059 else
13060 parent_cfs_rq->idle_nr_running--;
13061 }
13062
30400039
JD
13063 idle_task_delta = grp_cfs_rq->h_nr_running -
13064 grp_cfs_rq->idle_h_nr_running;
13065 if (!cfs_rq_is_idle(grp_cfs_rq))
13066 idle_task_delta *= -1;
13067
13068 for_each_sched_entity(se) {
13069 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13070
13071 if (!se->on_rq)
13072 break;
13073
13074 cfs_rq->idle_h_nr_running += idle_task_delta;
13075
13076 /* Already accounted at parent level and above. */
13077 if (cfs_rq_is_idle(cfs_rq))
13078 break;
13079 }
13080
13081next_cpu:
13082 rq_unlock_irqrestore(rq, &rf);
13083 }
13084
13085 /* Idle groups have minimum weight. */
13086 if (tg_is_idle(tg))
13087 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13088 else
13089 __sched_group_set_shares(tg, NICE_0_LOAD);
13090
029632fb
PZ
13091 mutex_unlock(&shares_mutex);
13092 return 0;
13093}
30400039 13094
029632fb
PZ
13095#endif /* CONFIG_FAIR_GROUP_SCHED */
13096
810b3817 13097
6d686f45 13098static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
13099{
13100 struct sched_entity *se = &task->se;
0d721cea
PW
13101 unsigned int rr_interval = 0;
13102
13103 /*
13104 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13105 * idle runqueue:
13106 */
0d721cea 13107 if (rq->cfs.load.weight)
147f3efa 13108 rr_interval = NS_TO_JIFFIES(se->slice);
0d721cea
PW
13109
13110 return rr_interval;
13111}
13112
bf0f6f24
IM
13113/*
13114 * All the scheduling class methods:
13115 */
43c31ac0
PZ
13116DEFINE_SCHED_CLASS(fair) = {
13117
bf0f6f24
IM
13118 .enqueue_task = enqueue_task_fair,
13119 .dequeue_task = dequeue_task_fair,
13120 .yield_task = yield_task_fair,
d95f4122 13121 .yield_to_task = yield_to_task_fair,
bf0f6f24 13122
e23edc86 13123 .wakeup_preempt = check_preempt_wakeup_fair,
bf0f6f24 13124
98c2f700 13125 .pick_next_task = __pick_next_task_fair,
bf0f6f24 13126 .put_prev_task = put_prev_task_fair,
03b7fad1 13127 .set_next_task = set_next_task_fair,
bf0f6f24 13128
681f3e68 13129#ifdef CONFIG_SMP
6e2df058 13130 .balance = balance_fair,
21f56ffe 13131 .pick_task = pick_task_fair,
4ce72a2c 13132 .select_task_rq = select_task_rq_fair,
0a74bef8 13133 .migrate_task_rq = migrate_task_rq_fair,
141965c7 13134
0bcdcf28
CE
13135 .rq_online = rq_online_fair,
13136 .rq_offline = rq_offline_fair,
88ec22d3 13137
12695578 13138 .task_dead = task_dead_fair,
c5b28038 13139 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 13140#endif
bf0f6f24 13141
bf0f6f24 13142 .task_tick = task_tick_fair,
cd29fe6f 13143 .task_fork = task_fork_fair,
cb469845
SR
13144
13145 .prio_changed = prio_changed_fair,
da7a735e 13146 .switched_from = switched_from_fair,
cb469845 13147 .switched_to = switched_to_fair,
810b3817 13148
0d721cea
PW
13149 .get_rr_interval = get_rr_interval_fair,
13150
6e998916
SG
13151 .update_curr = update_curr_fair,
13152
810b3817 13153#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 13154 .task_change_group = task_change_group_fair,
810b3817 13155#endif
982d9cdc 13156
530bfad1
HJ
13157#ifdef CONFIG_SCHED_CORE
13158 .task_is_throttled = task_is_throttled_fair,
13159#endif
13160
982d9cdc
PB
13161#ifdef CONFIG_UCLAMP_TASK
13162 .uclamp_enabled = 1,
13163#endif
bf0f6f24
IM
13164};
13165
13166#ifdef CONFIG_SCHED_DEBUG
029632fb 13167void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 13168{
039ae8bc 13169 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 13170
5973e5b9 13171 rcu_read_lock();
039ae8bc 13172 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 13173 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 13174 rcu_read_unlock();
bf0f6f24 13175}
397f2378
SD
13176
13177#ifdef CONFIG_NUMA_BALANCING
13178void show_numa_stats(struct task_struct *p, struct seq_file *m)
13179{
13180 int node;
13181 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
cb361d8c 13182 struct numa_group *ng;
397f2378 13183
cb361d8c
JH
13184 rcu_read_lock();
13185 ng = rcu_dereference(p->numa_group);
397f2378
SD
13186 for_each_online_node(node) {
13187 if (p->numa_faults) {
13188 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13189 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13190 }
cb361d8c
JH
13191 if (ng) {
13192 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13193 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
397f2378
SD
13194 }
13195 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13196 }
cb361d8c 13197 rcu_read_unlock();
397f2378
SD
13198}
13199#endif /* CONFIG_NUMA_BALANCING */
13200#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
13201
13202__init void init_sched_fair_class(void)
13203{
13204#ifdef CONFIG_SMP
18c31c97
BH
13205 int i;
13206
13207 for_each_possible_cpu(i) {
13208 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13209 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
f8858d96
SH
13210 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13211 GFP_KERNEL, cpu_to_node(i));
8ad075c2
JD
13212
13213#ifdef CONFIG_CFS_BANDWIDTH
13214 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13215 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13216#endif
18c31c97
BH
13217 }
13218
70a27d6d 13219 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
029632fb 13220
3451d024 13221#ifdef CONFIG_NO_HZ_COMMON
554cecaf 13222 nohz.next_balance = jiffies;
f643ea22 13223 nohz.next_blocked = jiffies;
029632fb 13224 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
13225#endif
13226#endif /* SMP */
13227
13228}
This page took 4.959882 seconds and 4 git commands to generate.