]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
bf0f6f24 IM |
2 | /* |
3 | * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) | |
4 | * | |
5 | * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <[email protected]> | |
6 | * | |
7 | * Interactivity improvements by Mike Galbraith | |
8 | * (C) 2007 Mike Galbraith <[email protected]> | |
9 | * | |
10 | * Various enhancements by Dmitry Adamushko. | |
11 | * (C) 2007 Dmitry Adamushko <[email protected]> | |
12 | * | |
13 | * Group scheduling enhancements by Srivatsa Vaddagiri | |
14 | * Copyright IBM Corporation, 2007 | |
15 | * Author: Srivatsa Vaddagiri <[email protected]> | |
16 | * | |
17 | * Scaled math optimizations by Thomas Gleixner | |
18 | * Copyright (C) 2007, Thomas Gleixner <[email protected]> | |
21805085 PZ |
19 | * |
20 | * Adaptive scheduling granularity, math enhancements by Peter Zijlstra | |
90eec103 | 21 | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra |
bf0f6f24 | 22 | */ |
c4ad6fcb IM |
23 | #include <linux/energy_model.h> |
24 | #include <linux/mmap_lock.h> | |
25 | #include <linux/hugetlb_inline.h> | |
26 | #include <linux/jiffies.h> | |
27 | #include <linux/mm_api.h> | |
28 | #include <linux/highmem.h> | |
29 | #include <linux/spinlock_api.h> | |
30 | #include <linux/cpumask_api.h> | |
31 | #include <linux/lockdep_api.h> | |
32 | #include <linux/softirq.h> | |
33 | #include <linux/refcount_api.h> | |
34 | #include <linux/topology.h> | |
35 | #include <linux/sched/clock.h> | |
36 | #include <linux/sched/cond_resched.h> | |
37 | #include <linux/sched/cputime.h> | |
38 | #include <linux/sched/isolation.h> | |
d664e399 | 39 | #include <linux/sched/nohz.h> |
c4ad6fcb IM |
40 | |
41 | #include <linux/cpuidle.h> | |
42 | #include <linux/interrupt.h> | |
467b171a | 43 | #include <linux/memory-tiers.h> |
c4ad6fcb IM |
44 | #include <linux/mempolicy.h> |
45 | #include <linux/mutex_api.h> | |
46 | #include <linux/profile.h> | |
47 | #include <linux/psi.h> | |
48 | #include <linux/ratelimit.h> | |
1930a6e7 | 49 | #include <linux/task_work.h> |
147f3efa | 50 | #include <linux/rbtree_augmented.h> |
c4ad6fcb IM |
51 | |
52 | #include <asm/switch_to.h> | |
53 | ||
325ea10c | 54 | #include "sched.h" |
b9e9c6ca IM |
55 | #include "stats.h" |
56 | #include "autogroup.h" | |
029632fb | 57 | |
1983a922 CE |
58 | /* |
59 | * The initial- and re-scaling of tunables is configurable | |
1983a922 CE |
60 | * |
61 | * Options are: | |
2b4d5b25 IM |
62 | * |
63 | * SCHED_TUNABLESCALING_NONE - unscaled, always *1 | |
64 | * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) | |
65 | * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus | |
66 | * | |
67 | * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) | |
1983a922 | 68 | */ |
8a99b683 | 69 | unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; |
1983a922 | 70 | |
2bd8e6d4 | 71 | /* |
b2be5e96 | 72 | * Minimal preemption granularity for CPU-bound tasks: |
2b4d5b25 | 73 | * |
864616ee | 74 | * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) |
2bd8e6d4 | 75 | */ |
e4ec3318 PZ |
76 | unsigned int sysctl_sched_base_slice = 750000ULL; |
77 | static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; | |
b2be5e96 | 78 | |
2b4d5b25 | 79 | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; |
da84d961 | 80 | |
05289b90 TG |
81 | int sched_thermal_decay_shift; |
82 | static int __init setup_sched_thermal_decay_shift(char *str) | |
83 | { | |
84 | int _shift = 0; | |
85 | ||
86 | if (kstrtoint(str, 0, &_shift)) | |
87 | pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); | |
88 | ||
89 | sched_thermal_decay_shift = clamp(_shift, 0, 10); | |
90 | return 1; | |
91 | } | |
92 | __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); | |
93 | ||
afe06efd TC |
94 | #ifdef CONFIG_SMP |
95 | /* | |
97fb7a0a | 96 | * For asym packing, by default the lower numbered CPU has higher priority. |
afe06efd TC |
97 | */ |
98 | int __weak arch_asym_cpu_priority(int cpu) | |
99 | { | |
100 | return -cpu; | |
101 | } | |
6d101ba6 OJ |
102 | |
103 | /* | |
60e17f5c | 104 | * The margin used when comparing utilization with CPU capacity. |
6d101ba6 OJ |
105 | * |
106 | * (default: ~20%) | |
107 | */ | |
60e17f5c VK |
108 | #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) |
109 | ||
4aed8aa4 VS |
110 | /* |
111 | * The margin used when comparing CPU capacities. | |
112 | * is 'cap1' noticeably greater than 'cap2' | |
113 | * | |
114 | * (default: ~5%) | |
115 | */ | |
116 | #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) | |
afe06efd TC |
117 | #endif |
118 | ||
ec12cb7f PT |
119 | #ifdef CONFIG_CFS_BANDWIDTH |
120 | /* | |
121 | * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool | |
122 | * each time a cfs_rq requests quota. | |
123 | * | |
124 | * Note: in the case that the slice exceeds the runtime remaining (either due | |
125 | * to consumption or the quota being specified to be smaller than the slice) | |
126 | * we will always only issue the remaining available time. | |
127 | * | |
2b4d5b25 IM |
128 | * (default: 5 msec, units: microseconds) |
129 | */ | |
d4ae80ff ZN |
130 | static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; |
131 | #endif | |
132 | ||
0dff89c4 KW |
133 | #ifdef CONFIG_NUMA_BALANCING |
134 | /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ | |
135 | static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; | |
136 | #endif | |
137 | ||
d4ae80ff ZN |
138 | #ifdef CONFIG_SYSCTL |
139 | static struct ctl_table sched_fair_sysctls[] = { | |
d4ae80ff ZN |
140 | #ifdef CONFIG_CFS_BANDWIDTH |
141 | { | |
142 | .procname = "sched_cfs_bandwidth_slice_us", | |
143 | .data = &sysctl_sched_cfs_bandwidth_slice, | |
144 | .maxlen = sizeof(unsigned int), | |
145 | .mode = 0644, | |
146 | .proc_handler = proc_dointvec_minmax, | |
147 | .extra1 = SYSCTL_ONE, | |
148 | }, | |
149 | #endif | |
0dff89c4 KW |
150 | #ifdef CONFIG_NUMA_BALANCING |
151 | { | |
152 | .procname = "numa_balancing_promote_rate_limit_MBps", | |
153 | .data = &sysctl_numa_balancing_promote_rate_limit, | |
154 | .maxlen = sizeof(unsigned int), | |
155 | .mode = 0644, | |
156 | .proc_handler = proc_dointvec_minmax, | |
157 | .extra1 = SYSCTL_ZERO, | |
158 | }, | |
159 | #endif /* CONFIG_NUMA_BALANCING */ | |
d4ae80ff ZN |
160 | {} |
161 | }; | |
162 | ||
163 | static int __init sched_fair_sysctl_init(void) | |
164 | { | |
165 | register_sysctl_init("kernel", sched_fair_sysctls); | |
166 | return 0; | |
167 | } | |
168 | late_initcall(sched_fair_sysctl_init); | |
ec12cb7f PT |
169 | #endif |
170 | ||
8527632d PG |
171 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) |
172 | { | |
173 | lw->weight += inc; | |
174 | lw->inv_weight = 0; | |
175 | } | |
176 | ||
177 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) | |
178 | { | |
179 | lw->weight -= dec; | |
180 | lw->inv_weight = 0; | |
181 | } | |
182 | ||
183 | static inline void update_load_set(struct load_weight *lw, unsigned long w) | |
184 | { | |
185 | lw->weight = w; | |
186 | lw->inv_weight = 0; | |
187 | } | |
188 | ||
029632fb PZ |
189 | /* |
190 | * Increase the granularity value when there are more CPUs, | |
191 | * because with more CPUs the 'effective latency' as visible | |
192 | * to users decreases. But the relationship is not linear, | |
193 | * so pick a second-best guess by going with the log2 of the | |
194 | * number of CPUs. | |
195 | * | |
196 | * This idea comes from the SD scheduler of Con Kolivas: | |
197 | */ | |
58ac93e4 | 198 | static unsigned int get_update_sysctl_factor(void) |
029632fb | 199 | { |
58ac93e4 | 200 | unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); |
029632fb PZ |
201 | unsigned int factor; |
202 | ||
203 | switch (sysctl_sched_tunable_scaling) { | |
204 | case SCHED_TUNABLESCALING_NONE: | |
205 | factor = 1; | |
206 | break; | |
207 | case SCHED_TUNABLESCALING_LINEAR: | |
208 | factor = cpus; | |
209 | break; | |
210 | case SCHED_TUNABLESCALING_LOG: | |
211 | default: | |
212 | factor = 1 + ilog2(cpus); | |
213 | break; | |
214 | } | |
215 | ||
216 | return factor; | |
217 | } | |
218 | ||
219 | static void update_sysctl(void) | |
220 | { | |
221 | unsigned int factor = get_update_sysctl_factor(); | |
222 | ||
223 | #define SET_SYSCTL(name) \ | |
224 | (sysctl_##name = (factor) * normalized_sysctl_##name) | |
e4ec3318 | 225 | SET_SYSCTL(sched_base_slice); |
029632fb PZ |
226 | #undef SET_SYSCTL |
227 | } | |
228 | ||
f38f12d1 | 229 | void __init sched_init_granularity(void) |
029632fb PZ |
230 | { |
231 | update_sysctl(); | |
232 | } | |
233 | ||
9dbdb155 | 234 | #define WMULT_CONST (~0U) |
029632fb PZ |
235 | #define WMULT_SHIFT 32 |
236 | ||
9dbdb155 PZ |
237 | static void __update_inv_weight(struct load_weight *lw) |
238 | { | |
239 | unsigned long w; | |
240 | ||
241 | if (likely(lw->inv_weight)) | |
242 | return; | |
243 | ||
244 | w = scale_load_down(lw->weight); | |
245 | ||
246 | if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) | |
247 | lw->inv_weight = 1; | |
248 | else if (unlikely(!w)) | |
249 | lw->inv_weight = WMULT_CONST; | |
250 | else | |
251 | lw->inv_weight = WMULT_CONST / w; | |
252 | } | |
029632fb PZ |
253 | |
254 | /* | |
9dbdb155 PZ |
255 | * delta_exec * weight / lw.weight |
256 | * OR | |
257 | * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT | |
258 | * | |
1c3de5e1 | 259 | * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case |
9dbdb155 PZ |
260 | * we're guaranteed shift stays positive because inv_weight is guaranteed to |
261 | * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. | |
262 | * | |
263 | * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus | |
264 | * weight/lw.weight <= 1, and therefore our shift will also be positive. | |
029632fb | 265 | */ |
9dbdb155 | 266 | static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) |
029632fb | 267 | { |
9dbdb155 | 268 | u64 fact = scale_load_down(weight); |
1e17fb8e | 269 | u32 fact_hi = (u32)(fact >> 32); |
9dbdb155 | 270 | int shift = WMULT_SHIFT; |
1e17fb8e | 271 | int fs; |
029632fb | 272 | |
9dbdb155 | 273 | __update_inv_weight(lw); |
029632fb | 274 | |
1e17fb8e CC |
275 | if (unlikely(fact_hi)) { |
276 | fs = fls(fact_hi); | |
277 | shift -= fs; | |
278 | fact >>= fs; | |
029632fb PZ |
279 | } |
280 | ||
2eeb01a2 | 281 | fact = mul_u32_u32(fact, lw->inv_weight); |
029632fb | 282 | |
1e17fb8e CC |
283 | fact_hi = (u32)(fact >> 32); |
284 | if (fact_hi) { | |
285 | fs = fls(fact_hi); | |
286 | shift -= fs; | |
287 | fact >>= fs; | |
9dbdb155 | 288 | } |
029632fb | 289 | |
9dbdb155 | 290 | return mul_u64_u32_shr(delta_exec, fact, shift); |
029632fb PZ |
291 | } |
292 | ||
147f3efa PZ |
293 | /* |
294 | * delta /= w | |
295 | */ | |
296 | static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) | |
297 | { | |
298 | if (unlikely(se->load.weight != NICE_0_LOAD)) | |
299 | delta = __calc_delta(delta, NICE_0_LOAD, &se->load); | |
300 | ||
301 | return delta; | |
302 | } | |
029632fb PZ |
303 | |
304 | const struct sched_class fair_sched_class; | |
a4c2f00f | 305 | |
bf0f6f24 IM |
306 | /************************************************************** |
307 | * CFS operations on generic schedulable entities: | |
308 | */ | |
309 | ||
62160e3f | 310 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8f48894f | 311 | |
b758149c PZ |
312 | /* Walk up scheduling entities hierarchy */ |
313 | #define for_each_sched_entity(se) \ | |
314 | for (; se; se = se->parent) | |
315 | ||
f6783319 | 316 | static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
3d4b47b4 | 317 | { |
5d299eab PZ |
318 | struct rq *rq = rq_of(cfs_rq); |
319 | int cpu = cpu_of(rq); | |
320 | ||
321 | if (cfs_rq->on_list) | |
f6783319 | 322 | return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; |
5d299eab PZ |
323 | |
324 | cfs_rq->on_list = 1; | |
325 | ||
326 | /* | |
327 | * Ensure we either appear before our parent (if already | |
328 | * enqueued) or force our parent to appear after us when it is | |
329 | * enqueued. The fact that we always enqueue bottom-up | |
330 | * reduces this to two cases and a special case for the root | |
331 | * cfs_rq. Furthermore, it also means that we will always reset | |
332 | * tmp_alone_branch either when the branch is connected | |
333 | * to a tree or when we reach the top of the tree | |
334 | */ | |
335 | if (cfs_rq->tg->parent && | |
336 | cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { | |
67e86250 | 337 | /* |
5d299eab PZ |
338 | * If parent is already on the list, we add the child |
339 | * just before. Thanks to circular linked property of | |
340 | * the list, this means to put the child at the tail | |
341 | * of the list that starts by parent. | |
67e86250 | 342 | */ |
5d299eab PZ |
343 | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, |
344 | &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); | |
345 | /* | |
346 | * The branch is now connected to its tree so we can | |
347 | * reset tmp_alone_branch to the beginning of the | |
348 | * list. | |
349 | */ | |
350 | rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; | |
f6783319 | 351 | return true; |
5d299eab | 352 | } |
3d4b47b4 | 353 | |
5d299eab PZ |
354 | if (!cfs_rq->tg->parent) { |
355 | /* | |
356 | * cfs rq without parent should be put | |
357 | * at the tail of the list. | |
358 | */ | |
359 | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, | |
360 | &rq->leaf_cfs_rq_list); | |
361 | /* | |
362 | * We have reach the top of a tree so we can reset | |
363 | * tmp_alone_branch to the beginning of the list. | |
364 | */ | |
365 | rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; | |
f6783319 | 366 | return true; |
3d4b47b4 | 367 | } |
5d299eab PZ |
368 | |
369 | /* | |
370 | * The parent has not already been added so we want to | |
371 | * make sure that it will be put after us. | |
372 | * tmp_alone_branch points to the begin of the branch | |
373 | * where we will add parent. | |
374 | */ | |
375 | list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); | |
376 | /* | |
377 | * update tmp_alone_branch to points to the new begin | |
378 | * of the branch | |
379 | */ | |
380 | rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; | |
f6783319 | 381 | return false; |
3d4b47b4 PZ |
382 | } |
383 | ||
384 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | |
385 | { | |
386 | if (cfs_rq->on_list) { | |
31bc6aea VG |
387 | struct rq *rq = rq_of(cfs_rq); |
388 | ||
389 | /* | |
390 | * With cfs_rq being unthrottled/throttled during an enqueue, | |
391 | * it can happen the tmp_alone_branch points the a leaf that | |
392 | * we finally want to del. In this case, tmp_alone_branch moves | |
393 | * to the prev element but it will point to rq->leaf_cfs_rq_list | |
394 | * at the end of the enqueue. | |
395 | */ | |
396 | if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) | |
397 | rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; | |
398 | ||
3d4b47b4 PZ |
399 | list_del_rcu(&cfs_rq->leaf_cfs_rq_list); |
400 | cfs_rq->on_list = 0; | |
401 | } | |
402 | } | |
403 | ||
5d299eab PZ |
404 | static inline void assert_list_leaf_cfs_rq(struct rq *rq) |
405 | { | |
406 | SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); | |
407 | } | |
408 | ||
039ae8bc VG |
409 | /* Iterate thr' all leaf cfs_rq's on a runqueue */ |
410 | #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ | |
411 | list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ | |
412 | leaf_cfs_rq_list) | |
b758149c PZ |
413 | |
414 | /* Do the two (enqueued) entities belong to the same group ? */ | |
fed14d45 | 415 | static inline struct cfs_rq * |
b758149c PZ |
416 | is_same_group(struct sched_entity *se, struct sched_entity *pse) |
417 | { | |
418 | if (se->cfs_rq == pse->cfs_rq) | |
fed14d45 | 419 | return se->cfs_rq; |
b758149c | 420 | |
fed14d45 | 421 | return NULL; |
b758149c PZ |
422 | } |
423 | ||
904cbab7 | 424 | static inline struct sched_entity *parent_entity(const struct sched_entity *se) |
b758149c PZ |
425 | { |
426 | return se->parent; | |
427 | } | |
428 | ||
464b7527 PZ |
429 | static void |
430 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | |
431 | { | |
432 | int se_depth, pse_depth; | |
433 | ||
434 | /* | |
435 | * preemption test can be made between sibling entities who are in the | |
436 | * same cfs_rq i.e who have a common parent. Walk up the hierarchy of | |
437 | * both tasks until we find their ancestors who are siblings of common | |
438 | * parent. | |
439 | */ | |
440 | ||
441 | /* First walk up until both entities are at same depth */ | |
fed14d45 PZ |
442 | se_depth = (*se)->depth; |
443 | pse_depth = (*pse)->depth; | |
464b7527 PZ |
444 | |
445 | while (se_depth > pse_depth) { | |
446 | se_depth--; | |
447 | *se = parent_entity(*se); | |
448 | } | |
449 | ||
450 | while (pse_depth > se_depth) { | |
451 | pse_depth--; | |
452 | *pse = parent_entity(*pse); | |
453 | } | |
454 | ||
455 | while (!is_same_group(*se, *pse)) { | |
456 | *se = parent_entity(*se); | |
457 | *pse = parent_entity(*pse); | |
458 | } | |
459 | } | |
460 | ||
30400039 JD |
461 | static int tg_is_idle(struct task_group *tg) |
462 | { | |
463 | return tg->idle > 0; | |
464 | } | |
465 | ||
466 | static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) | |
467 | { | |
468 | return cfs_rq->idle > 0; | |
469 | } | |
470 | ||
471 | static int se_is_idle(struct sched_entity *se) | |
472 | { | |
473 | if (entity_is_task(se)) | |
474 | return task_has_idle_policy(task_of(se)); | |
475 | return cfs_rq_is_idle(group_cfs_rq(se)); | |
476 | } | |
477 | ||
8f48894f PZ |
478 | #else /* !CONFIG_FAIR_GROUP_SCHED */ |
479 | ||
b758149c PZ |
480 | #define for_each_sched_entity(se) \ |
481 | for (; se; se = NULL) | |
bf0f6f24 | 482 | |
f6783319 | 483 | static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
3d4b47b4 | 484 | { |
f6783319 | 485 | return true; |
3d4b47b4 PZ |
486 | } |
487 | ||
488 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | |
489 | { | |
490 | } | |
491 | ||
5d299eab PZ |
492 | static inline void assert_list_leaf_cfs_rq(struct rq *rq) |
493 | { | |
494 | } | |
495 | ||
039ae8bc VG |
496 | #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ |
497 | for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) | |
b758149c | 498 | |
b758149c PZ |
499 | static inline struct sched_entity *parent_entity(struct sched_entity *se) |
500 | { | |
501 | return NULL; | |
502 | } | |
503 | ||
464b7527 PZ |
504 | static inline void |
505 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | |
506 | { | |
507 | } | |
508 | ||
366e7ad6 | 509 | static inline int tg_is_idle(struct task_group *tg) |
30400039 JD |
510 | { |
511 | return 0; | |
512 | } | |
513 | ||
514 | static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) | |
515 | { | |
516 | return 0; | |
517 | } | |
518 | ||
519 | static int se_is_idle(struct sched_entity *se) | |
520 | { | |
521 | return 0; | |
522 | } | |
523 | ||
b758149c PZ |
524 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
525 | ||
6c16a6dc | 526 | static __always_inline |
9dbdb155 | 527 | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); |
bf0f6f24 IM |
528 | |
529 | /************************************************************** | |
530 | * Scheduling class tree data structure manipulation methods: | |
531 | */ | |
532 | ||
1bf08230 | 533 | static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) |
02e0431a | 534 | { |
1bf08230 | 535 | s64 delta = (s64)(vruntime - max_vruntime); |
368059a9 | 536 | if (delta > 0) |
1bf08230 | 537 | max_vruntime = vruntime; |
02e0431a | 538 | |
1bf08230 | 539 | return max_vruntime; |
02e0431a PZ |
540 | } |
541 | ||
0702e3eb | 542 | static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) |
b0ffd246 PZ |
543 | { |
544 | s64 delta = (s64)(vruntime - min_vruntime); | |
545 | if (delta < 0) | |
546 | min_vruntime = vruntime; | |
547 | ||
548 | return min_vruntime; | |
549 | } | |
550 | ||
904cbab7 MWO |
551 | static inline bool entity_before(const struct sched_entity *a, |
552 | const struct sched_entity *b) | |
54fdc581 | 553 | { |
2227a957 AW |
554 | /* |
555 | * Tiebreak on vruntime seems unnecessary since it can | |
556 | * hardly happen. | |
557 | */ | |
558 | return (s64)(a->deadline - b->deadline) < 0; | |
54fdc581 FC |
559 | } |
560 | ||
af4cf404 PZ |
561 | static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) |
562 | { | |
563 | return (s64)(se->vruntime - cfs_rq->min_vruntime); | |
564 | } | |
565 | ||
bf9be9a1 PZ |
566 | #define __node_2_se(node) \ |
567 | rb_entry((node), struct sched_entity, run_node) | |
568 | ||
af4cf404 PZ |
569 | /* |
570 | * Compute virtual time from the per-task service numbers: | |
571 | * | |
572 | * Fair schedulers conserve lag: | |
573 | * | |
574 | * \Sum lag_i = 0 | |
575 | * | |
576 | * Where lag_i is given by: | |
577 | * | |
578 | * lag_i = S - s_i = w_i * (V - v_i) | |
579 | * | |
580 | * Where S is the ideal service time and V is it's virtual time counterpart. | |
581 | * Therefore: | |
582 | * | |
583 | * \Sum lag_i = 0 | |
584 | * \Sum w_i * (V - v_i) = 0 | |
585 | * \Sum w_i * V - w_i * v_i = 0 | |
586 | * | |
587 | * From which we can solve an expression for V in v_i (which we have in | |
588 | * se->vruntime): | |
589 | * | |
590 | * \Sum v_i * w_i \Sum v_i * w_i | |
591 | * V = -------------- = -------------- | |
592 | * \Sum w_i W | |
593 | * | |
594 | * Specifically, this is the weighted average of all entity virtual runtimes. | |
595 | * | |
596 | * [[ NOTE: this is only equal to the ideal scheduler under the condition | |
597 | * that join/leave operations happen at lag_i = 0, otherwise the | |
598 | * virtual time has non-continguous motion equivalent to: | |
599 | * | |
600 | * V +-= lag_i / W | |
601 | * | |
602 | * Also see the comment in place_entity() that deals with this. ]] | |
603 | * | |
604 | * However, since v_i is u64, and the multiplcation could easily overflow | |
605 | * transform it into a relative form that uses smaller quantities: | |
606 | * | |
607 | * Substitute: v_i == (v_i - v0) + v0 | |
608 | * | |
609 | * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i | |
610 | * V = ---------------------------- = --------------------- + v0 | |
611 | * W W | |
612 | * | |
613 | * Which we track using: | |
614 | * | |
615 | * v0 := cfs_rq->min_vruntime | |
616 | * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime | |
617 | * \Sum w_i := cfs_rq->avg_load | |
618 | * | |
619 | * Since min_vruntime is a monotonic increasing variable that closely tracks | |
620 | * the per-task service, these deltas: (v_i - v), will be in the order of the | |
621 | * maximal (virtual) lag induced in the system due to quantisation. | |
622 | * | |
623 | * Also, we use scale_load_down() to reduce the size. | |
624 | * | |
625 | * As measured, the max (key * weight) value was ~44 bits for a kernel build. | |
626 | */ | |
627 | static void | |
628 | avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
629 | { | |
630 | unsigned long weight = scale_load_down(se->load.weight); | |
631 | s64 key = entity_key(cfs_rq, se); | |
632 | ||
633 | cfs_rq->avg_vruntime += key * weight; | |
634 | cfs_rq->avg_load += weight; | |
635 | } | |
636 | ||
637 | static void | |
638 | avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
639 | { | |
640 | unsigned long weight = scale_load_down(se->load.weight); | |
641 | s64 key = entity_key(cfs_rq, se); | |
642 | ||
643 | cfs_rq->avg_vruntime -= key * weight; | |
644 | cfs_rq->avg_load -= weight; | |
645 | } | |
646 | ||
647 | static inline | |
648 | void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) | |
649 | { | |
650 | /* | |
651 | * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load | |
652 | */ | |
653 | cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; | |
654 | } | |
655 | ||
650cad56 PZ |
656 | /* |
657 | * Specifically: avg_runtime() + 0 must result in entity_eligible() := true | |
658 | * For this to be so, the result of this function must have a left bias. | |
659 | */ | |
af4cf404 PZ |
660 | u64 avg_vruntime(struct cfs_rq *cfs_rq) |
661 | { | |
662 | struct sched_entity *curr = cfs_rq->curr; | |
663 | s64 avg = cfs_rq->avg_vruntime; | |
664 | long load = cfs_rq->avg_load; | |
665 | ||
666 | if (curr && curr->on_rq) { | |
667 | unsigned long weight = scale_load_down(curr->load.weight); | |
668 | ||
669 | avg += entity_key(cfs_rq, curr) * weight; | |
670 | load += weight; | |
671 | } | |
672 | ||
650cad56 PZ |
673 | if (load) { |
674 | /* sign flips effective floor / ceil */ | |
675 | if (avg < 0) | |
676 | avg -= (load - 1); | |
af4cf404 | 677 | avg = div_s64(avg, load); |
650cad56 | 678 | } |
af4cf404 PZ |
679 | |
680 | return cfs_rq->min_vruntime + avg; | |
681 | } | |
682 | ||
86bfbb7c PZ |
683 | /* |
684 | * lag_i = S - s_i = w_i * (V - v_i) | |
147f3efa PZ |
685 | * |
686 | * However, since V is approximated by the weighted average of all entities it | |
687 | * is possible -- by addition/removal/reweight to the tree -- to move V around | |
688 | * and end up with a larger lag than we started with. | |
689 | * | |
690 | * Limit this to either double the slice length with a minimum of TICK_NSEC | |
691 | * since that is the timing granularity. | |
692 | * | |
693 | * EEVDF gives the following limit for a steady state system: | |
694 | * | |
695 | * -r_max < lag < max(r_max, q) | |
696 | * | |
697 | * XXX could add max_slice to the augmented data to track this. | |
86bfbb7c | 698 | */ |
c958ca20 | 699 | static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) |
86bfbb7c | 700 | { |
147f3efa PZ |
701 | s64 lag, limit; |
702 | ||
86bfbb7c | 703 | SCHED_WARN_ON(!se->on_rq); |
147f3efa PZ |
704 | lag = avg_vruntime(cfs_rq) - se->vruntime; |
705 | ||
706 | limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); | |
707 | se->vlag = clamp(lag, -limit, limit); | |
708 | } | |
709 | ||
710 | /* | |
711 | * Entity is eligible once it received less service than it ought to have, | |
712 | * eg. lag >= 0. | |
713 | * | |
714 | * lag_i = S - s_i = w_i*(V - v_i) | |
715 | * | |
716 | * lag_i >= 0 -> V >= v_i | |
717 | * | |
718 | * \Sum (v_i - v)*w_i | |
719 | * V = ------------------ + v | |
720 | * \Sum w_i | |
721 | * | |
722 | * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) | |
723 | * | |
724 | * Note: using 'avg_vruntime() > se->vruntime' is inacurate due | |
725 | * to the loss in precision caused by the division. | |
726 | */ | |
2227a957 | 727 | static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) |
147f3efa PZ |
728 | { |
729 | struct sched_entity *curr = cfs_rq->curr; | |
730 | s64 avg = cfs_rq->avg_vruntime; | |
731 | long load = cfs_rq->avg_load; | |
732 | ||
733 | if (curr && curr->on_rq) { | |
734 | unsigned long weight = scale_load_down(curr->load.weight); | |
735 | ||
736 | avg += entity_key(cfs_rq, curr) * weight; | |
737 | load += weight; | |
738 | } | |
739 | ||
2227a957 AW |
740 | return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; |
741 | } | |
742 | ||
743 | int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
744 | { | |
745 | return vruntime_eligible(cfs_rq, se->vruntime); | |
86bfbb7c PZ |
746 | } |
747 | ||
af4cf404 PZ |
748 | static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) |
749 | { | |
750 | u64 min_vruntime = cfs_rq->min_vruntime; | |
751 | /* | |
752 | * open coded max_vruntime() to allow updating avg_vruntime | |
753 | */ | |
754 | s64 delta = (s64)(vruntime - min_vruntime); | |
755 | if (delta > 0) { | |
756 | avg_vruntime_update(cfs_rq, delta); | |
757 | min_vruntime = vruntime; | |
758 | } | |
759 | return min_vruntime; | |
760 | } | |
761 | ||
1af5f730 PZ |
762 | static void update_min_vruntime(struct cfs_rq *cfs_rq) |
763 | { | |
2227a957 | 764 | struct sched_entity *se = __pick_root_entity(cfs_rq); |
b60205c7 | 765 | struct sched_entity *curr = cfs_rq->curr; |
1af5f730 PZ |
766 | u64 vruntime = cfs_rq->min_vruntime; |
767 | ||
b60205c7 PZ |
768 | if (curr) { |
769 | if (curr->on_rq) | |
770 | vruntime = curr->vruntime; | |
771 | else | |
772 | curr = NULL; | |
773 | } | |
1af5f730 | 774 | |
147f3efa | 775 | if (se) { |
b60205c7 | 776 | if (!curr) |
2227a957 | 777 | vruntime = se->min_vruntime; |
1af5f730 | 778 | else |
2227a957 | 779 | vruntime = min_vruntime(vruntime, se->min_vruntime); |
1af5f730 PZ |
780 | } |
781 | ||
1bf08230 | 782 | /* ensure we never gain time by being placed backwards. */ |
d05b4305 | 783 | u64_u32_store(cfs_rq->min_vruntime, |
af4cf404 | 784 | __update_min_vruntime(cfs_rq, vruntime)); |
1af5f730 PZ |
785 | } |
786 | ||
bf9be9a1 PZ |
787 | static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) |
788 | { | |
789 | return entity_before(__node_2_se(a), __node_2_se(b)); | |
790 | } | |
791 | ||
2227a957 | 792 | #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) |
147f3efa | 793 | |
2227a957 | 794 | static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) |
147f3efa PZ |
795 | { |
796 | if (node) { | |
797 | struct sched_entity *rse = __node_2_se(node); | |
2227a957 AW |
798 | if (vruntime_gt(min_vruntime, se, rse)) |
799 | se->min_vruntime = rse->min_vruntime; | |
147f3efa PZ |
800 | } |
801 | } | |
802 | ||
803 | /* | |
2227a957 | 804 | * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) |
147f3efa | 805 | */ |
2227a957 | 806 | static inline bool min_vruntime_update(struct sched_entity *se, bool exit) |
147f3efa | 807 | { |
2227a957 | 808 | u64 old_min_vruntime = se->min_vruntime; |
147f3efa PZ |
809 | struct rb_node *node = &se->run_node; |
810 | ||
2227a957 AW |
811 | se->min_vruntime = se->vruntime; |
812 | __min_vruntime_update(se, node->rb_right); | |
813 | __min_vruntime_update(se, node->rb_left); | |
147f3efa | 814 | |
2227a957 | 815 | return se->min_vruntime == old_min_vruntime; |
147f3efa PZ |
816 | } |
817 | ||
2227a957 AW |
818 | RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, |
819 | run_node, min_vruntime, min_vruntime_update); | |
147f3efa | 820 | |
bf0f6f24 IM |
821 | /* |
822 | * Enqueue an entity into the rb-tree: | |
823 | */ | |
0702e3eb | 824 | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 825 | { |
af4cf404 | 826 | avg_vruntime_add(cfs_rq, se); |
2227a957 | 827 | se->min_vruntime = se->vruntime; |
147f3efa | 828 | rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, |
2227a957 | 829 | __entity_less, &min_vruntime_cb); |
bf0f6f24 IM |
830 | } |
831 | ||
0702e3eb | 832 | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 833 | { |
147f3efa | 834 | rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, |
2227a957 | 835 | &min_vruntime_cb); |
af4cf404 | 836 | avg_vruntime_sub(cfs_rq, se); |
bf0f6f24 IM |
837 | } |
838 | ||
2227a957 AW |
839 | struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) |
840 | { | |
841 | struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; | |
842 | ||
843 | if (!root) | |
844 | return NULL; | |
845 | ||
846 | return __node_2_se(root); | |
847 | } | |
848 | ||
029632fb | 849 | struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) |
bf0f6f24 | 850 | { |
bfb06889 | 851 | struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); |
f4b6755f PZ |
852 | |
853 | if (!left) | |
854 | return NULL; | |
855 | ||
bf9be9a1 | 856 | return __node_2_se(left); |
bf0f6f24 IM |
857 | } |
858 | ||
147f3efa PZ |
859 | /* |
860 | * Earliest Eligible Virtual Deadline First | |
861 | * | |
862 | * In order to provide latency guarantees for different request sizes | |
863 | * EEVDF selects the best runnable task from two criteria: | |
864 | * | |
865 | * 1) the task must be eligible (must be owed service) | |
866 | * | |
867 | * 2) from those tasks that meet 1), we select the one | |
868 | * with the earliest virtual deadline. | |
869 | * | |
870 | * We can do this in O(log n) time due to an augmented RB-tree. The | |
2227a957 AW |
871 | * tree keeps the entries sorted on deadline, but also functions as a |
872 | * heap based on the vruntime by keeping: | |
147f3efa | 873 | * |
2227a957 | 874 | * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) |
147f3efa | 875 | * |
2227a957 | 876 | * Which allows tree pruning through eligibility. |
147f3efa | 877 | */ |
2227a957 | 878 | static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) |
ac53db59 | 879 | { |
147f3efa | 880 | struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; |
ee4373dc | 881 | struct sched_entity *se = __pick_first_entity(cfs_rq); |
147f3efa PZ |
882 | struct sched_entity *curr = cfs_rq->curr; |
883 | struct sched_entity *best = NULL; | |
2227a957 AW |
884 | |
885 | /* | |
886 | * We can safely skip eligibility check if there is only one entity | |
887 | * in this cfs_rq, saving some cycles. | |
888 | */ | |
889 | if (cfs_rq->nr_running == 1) | |
ee4373dc | 890 | return curr && curr->on_rq ? curr : se; |
ac53db59 | 891 | |
147f3efa PZ |
892 | if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) |
893 | curr = NULL; | |
894 | ||
63304558 PZ |
895 | /* |
896 | * Once selected, run a task until it either becomes non-eligible or | |
897 | * until it gets a new slice. See the HACK in set_next_entity(). | |
898 | */ | |
899 | if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) | |
900 | return curr; | |
901 | ||
ee4373dc AW |
902 | /* Pick the leftmost entity if it's eligible */ |
903 | if (se && entity_eligible(cfs_rq, se)) { | |
904 | best = se; | |
905 | goto found; | |
906 | } | |
907 | ||
2227a957 | 908 | /* Heap search for the EEVD entity */ |
147f3efa | 909 | while (node) { |
2227a957 | 910 | struct rb_node *left = node->rb_left; |
ac53db59 | 911 | |
147f3efa | 912 | /* |
2227a957 AW |
913 | * Eligible entities in left subtree are always better |
914 | * choices, since they have earlier deadlines. | |
147f3efa | 915 | */ |
2227a957 AW |
916 | if (left && vruntime_eligible(cfs_rq, |
917 | __node_2_se(left)->min_vruntime)) { | |
918 | node = left; | |
147f3efa PZ |
919 | continue; |
920 | } | |
921 | ||
ee4373dc AW |
922 | se = __node_2_se(node); |
923 | ||
147f3efa | 924 | /* |
2227a957 AW |
925 | * The left subtree either is empty or has no eligible |
926 | * entity, so check the current node since it is the one | |
927 | * with earliest deadline that might be eligible. | |
147f3efa | 928 | */ |
2227a957 | 929 | if (entity_eligible(cfs_rq, se)) { |
147f3efa | 930 | best = se; |
b01db23d | 931 | break; |
147f3efa PZ |
932 | } |
933 | ||
934 | node = node->rb_right; | |
935 | } | |
ee4373dc | 936 | found: |
2227a957 AW |
937 | if (!best || (curr && entity_before(curr, best))) |
938 | best = curr; | |
147f3efa | 939 | |
2227a957 | 940 | return best; |
ac53db59 RR |
941 | } |
942 | ||
943 | #ifdef CONFIG_SCHED_DEBUG | |
029632fb | 944 | struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) |
aeb73b04 | 945 | { |
bfb06889 | 946 | struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); |
aeb73b04 | 947 | |
70eee74b BS |
948 | if (!last) |
949 | return NULL; | |
7eee3e67 | 950 | |
bf9be9a1 | 951 | return __node_2_se(last); |
aeb73b04 PZ |
952 | } |
953 | ||
bf0f6f24 IM |
954 | /************************************************************** |
955 | * Scheduling class statistics methods: | |
956 | */ | |
22dc02f8 | 957 | #ifdef CONFIG_SMP |
8a99b683 | 958 | int sched_update_scaling(void) |
b2be5e96 | 959 | { |
58ac93e4 | 960 | unsigned int factor = get_update_sysctl_factor(); |
b2be5e96 | 961 | |
acb4a848 CE |
962 | #define WRT_SYSCTL(name) \ |
963 | (normalized_sysctl_##name = sysctl_##name / (factor)) | |
e4ec3318 | 964 | WRT_SYSCTL(sched_base_slice); |
acb4a848 CE |
965 | #undef WRT_SYSCTL |
966 | ||
b2be5e96 PZ |
967 | return 0; |
968 | } | |
969 | #endif | |
22dc02f8 | 970 | #endif |
647e7cac | 971 | |
147f3efa | 972 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); |
51ce83ed | 973 | |
647e7cac | 974 | /* |
147f3efa PZ |
975 | * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i |
976 | * this is probably good enough. | |
647e7cac | 977 | */ |
147f3efa | 978 | static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) |
21805085 | 979 | { |
147f3efa PZ |
980 | if ((s64)(se->vruntime - se->deadline) < 0) |
981 | return; | |
0a582440 | 982 | |
5e963f2b PZ |
983 | /* |
984 | * For EEVDF the virtual time slope is determined by w_i (iow. | |
985 | * nice) while the request time r_i is determined by | |
e4ec3318 | 986 | * sysctl_sched_base_slice. |
5e963f2b | 987 | */ |
e4ec3318 | 988 | se->slice = sysctl_sched_base_slice; |
0c2de3f0 | 989 | |
147f3efa PZ |
990 | /* |
991 | * EEVDF: vd_i = ve_i + r_i / w_i | |
992 | */ | |
993 | se->deadline = se->vruntime + calc_delta_fair(se->slice, se); | |
51ce83ed | 994 | |
5e963f2b PZ |
995 | /* |
996 | * The task has consumed its request, reschedule. | |
997 | */ | |
998 | if (cfs_rq->nr_running > 1) { | |
999 | resched_curr(rq_of(cfs_rq)); | |
1000 | clear_buddies(cfs_rq, se); | |
51ce83ed | 1001 | } |
a7be37ac PZ |
1002 | } |
1003 | ||
c0796298 | 1004 | #include "pelt.h" |
23127296 | 1005 | #ifdef CONFIG_SMP |
283e2ed3 | 1006 | |
772bd008 | 1007 | static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); |
fb13c7ee | 1008 | static unsigned long task_h_load(struct task_struct *p); |
3b1baa64 | 1009 | static unsigned long capacity_of(int cpu); |
fb13c7ee | 1010 | |
540247fb YD |
1011 | /* Give new sched_entity start runnable values to heavy its load in infant time */ |
1012 | void init_entity_runnable_average(struct sched_entity *se) | |
a75cdaa9 | 1013 | { |
540247fb | 1014 | struct sched_avg *sa = &se->avg; |
a75cdaa9 | 1015 | |
f207934f PZ |
1016 | memset(sa, 0, sizeof(*sa)); |
1017 | ||
b5a9b340 | 1018 | /* |
dfcb245e | 1019 | * Tasks are initialized with full load to be seen as heavy tasks until |
b5a9b340 | 1020 | * they get a chance to stabilize to their real load level. |
dfcb245e | 1021 | * Group entities are initialized with zero load to reflect the fact that |
b5a9b340 VG |
1022 | * nothing has been attached to the task group yet. |
1023 | */ | |
1024 | if (entity_is_task(se)) | |
0dacee1b | 1025 | sa->load_avg = scale_load_down(se->load.weight); |
f207934f | 1026 | |
9d89c257 | 1027 | /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ |
a75cdaa9 | 1028 | } |
7ea241af | 1029 | |
2b8c41da YD |
1030 | /* |
1031 | * With new tasks being created, their initial util_avgs are extrapolated | |
1032 | * based on the cfs_rq's current util_avg: | |
1033 | * | |
1034 | * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight | |
1035 | * | |
1036 | * However, in many cases, the above util_avg does not give a desired | |
1037 | * value. Moreover, the sum of the util_avgs may be divergent, such | |
1038 | * as when the series is a harmonic series. | |
1039 | * | |
1040 | * To solve this problem, we also cap the util_avg of successive tasks to | |
1041 | * only 1/2 of the left utilization budget: | |
1042 | * | |
8fe5c5a9 | 1043 | * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n |
2b8c41da | 1044 | * |
8fe5c5a9 | 1045 | * where n denotes the nth task and cpu_scale the CPU capacity. |
2b8c41da | 1046 | * |
8fe5c5a9 QP |
1047 | * For example, for a CPU with 1024 of capacity, a simplest series from |
1048 | * the beginning would be like: | |
2b8c41da YD |
1049 | * |
1050 | * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... | |
1051 | * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... | |
1052 | * | |
1053 | * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) | |
1054 | * if util_avg > util_avg_cap. | |
1055 | */ | |
d0fe0b9c | 1056 | void post_init_entity_util_avg(struct task_struct *p) |
2b8c41da | 1057 | { |
d0fe0b9c | 1058 | struct sched_entity *se = &p->se; |
2b8c41da YD |
1059 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
1060 | struct sched_avg *sa = &se->avg; | |
8ec59c0f | 1061 | long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); |
8fe5c5a9 | 1062 | long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; |
2b8c41da | 1063 | |
d0fe0b9c DE |
1064 | if (p->sched_class != &fair_sched_class) { |
1065 | /* | |
1066 | * For !fair tasks do: | |
1067 | * | |
1068 | update_cfs_rq_load_avg(now, cfs_rq); | |
a4f9a0e5 | 1069 | attach_entity_load_avg(cfs_rq, se); |
d0fe0b9c DE |
1070 | switched_from_fair(rq, p); |
1071 | * | |
1072 | * such that the next switched_to_fair() has the | |
1073 | * expected state. | |
1074 | */ | |
1075 | se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); | |
1076 | return; | |
7dc603c9 | 1077 | } |
e4fe074d CZ |
1078 | |
1079 | if (cap > 0) { | |
1080 | if (cfs_rq->avg.util_avg != 0) { | |
1081 | sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; | |
1082 | sa->util_avg /= (cfs_rq->avg.load_avg + 1); | |
1083 | ||
1084 | if (sa->util_avg > cap) | |
1085 | sa->util_avg = cap; | |
1086 | } else { | |
1087 | sa->util_avg = cap; | |
1088 | } | |
1089 | } | |
1090 | ||
1091 | sa->runnable_avg = sa->util_avg; | |
2b8c41da YD |
1092 | } |
1093 | ||
7dc603c9 | 1094 | #else /* !CONFIG_SMP */ |
540247fb | 1095 | void init_entity_runnable_average(struct sched_entity *se) |
a75cdaa9 AS |
1096 | { |
1097 | } | |
d0fe0b9c | 1098 | void post_init_entity_util_avg(struct task_struct *p) |
2b8c41da YD |
1099 | { |
1100 | } | |
fe749158 | 1101 | static void update_tg_load_avg(struct cfs_rq *cfs_rq) |
3d30544f PZ |
1102 | { |
1103 | } | |
7dc603c9 | 1104 | #endif /* CONFIG_SMP */ |
a75cdaa9 | 1105 | |
5d69eca5 | 1106 | static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) |
bf0f6f24 | 1107 | { |
5d69eca5 PZ |
1108 | u64 now = rq_clock_task(rq); |
1109 | s64 delta_exec; | |
bf0f6f24 | 1110 | |
9dbdb155 | 1111 | delta_exec = now - curr->exec_start; |
5d69eca5 PZ |
1112 | if (unlikely(delta_exec <= 0)) |
1113 | return delta_exec; | |
bf0f6f24 | 1114 | |
8ebc91d9 | 1115 | curr->exec_start = now; |
5d69eca5 | 1116 | curr->sum_exec_runtime += delta_exec; |
d842de87 | 1117 | |
ceeadb83 YS |
1118 | if (schedstat_enabled()) { |
1119 | struct sched_statistics *stats; | |
1120 | ||
1121 | stats = __schedstats_from_se(curr); | |
1122 | __schedstat_set(stats->exec_max, | |
1123 | max(delta_exec, stats->exec_max)); | |
1124 | } | |
9dbdb155 | 1125 | |
5d69eca5 PZ |
1126 | return delta_exec; |
1127 | } | |
1128 | ||
c708a4dc PZ |
1129 | static inline void update_curr_task(struct task_struct *p, s64 delta_exec) |
1130 | { | |
1131 | trace_sched_stat_runtime(p, delta_exec); | |
1132 | account_group_exec_runtime(p, delta_exec); | |
1133 | cgroup_account_cputime(p, delta_exec); | |
63ba8422 PZ |
1134 | if (p->dl_server) |
1135 | dl_server_update(p->dl_server, delta_exec); | |
c708a4dc PZ |
1136 | } |
1137 | ||
5d69eca5 PZ |
1138 | /* |
1139 | * Used by other classes to account runtime. | |
1140 | */ | |
1141 | s64 update_curr_common(struct rq *rq) | |
1142 | { | |
1143 | struct task_struct *curr = rq->curr; | |
1144 | s64 delta_exec; | |
1145 | ||
1146 | delta_exec = update_curr_se(rq, &curr->se); | |
c708a4dc PZ |
1147 | if (likely(delta_exec > 0)) |
1148 | update_curr_task(curr, delta_exec); | |
5d69eca5 PZ |
1149 | |
1150 | return delta_exec; | |
1151 | } | |
1152 | ||
1153 | /* | |
1154 | * Update the current task's runtime statistics. | |
1155 | */ | |
1156 | static void update_curr(struct cfs_rq *cfs_rq) | |
1157 | { | |
1158 | struct sched_entity *curr = cfs_rq->curr; | |
1159 | s64 delta_exec; | |
1160 | ||
1161 | if (unlikely(!curr)) | |
1162 | return; | |
1163 | ||
1164 | delta_exec = update_curr_se(rq_of(cfs_rq), curr); | |
1165 | if (unlikely(delta_exec <= 0)) | |
1166 | return; | |
9dbdb155 PZ |
1167 | |
1168 | curr->vruntime += calc_delta_fair(delta_exec, curr); | |
147f3efa | 1169 | update_deadline(cfs_rq, curr); |
9dbdb155 PZ |
1170 | update_min_vruntime(cfs_rq); |
1171 | ||
c708a4dc PZ |
1172 | if (entity_is_task(curr)) |
1173 | update_curr_task(task_of(curr), delta_exec); | |
ec12cb7f PT |
1174 | |
1175 | account_cfs_rq_runtime(cfs_rq, delta_exec); | |
bf0f6f24 IM |
1176 | } |
1177 | ||
6e998916 SG |
1178 | static void update_curr_fair(struct rq *rq) |
1179 | { | |
1180 | update_curr(cfs_rq_of(&rq->curr->se)); | |
1181 | } | |
1182 | ||
bf0f6f24 | 1183 | static inline void |
60f2415e | 1184 | update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 1185 | { |
ceeadb83 | 1186 | struct sched_statistics *stats; |
60f2415e | 1187 | struct task_struct *p = NULL; |
4fa8d299 JP |
1188 | |
1189 | if (!schedstat_enabled()) | |
1190 | return; | |
1191 | ||
ceeadb83 YS |
1192 | stats = __schedstats_from_se(se); |
1193 | ||
60f2415e YS |
1194 | if (entity_is_task(se)) |
1195 | p = task_of(se); | |
3ea94de1 | 1196 | |
60f2415e | 1197 | __update_stats_wait_start(rq_of(cfs_rq), p, stats); |
bf0f6f24 IM |
1198 | } |
1199 | ||
4fa8d299 | 1200 | static inline void |
60f2415e | 1201 | update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) |
3ea94de1 | 1202 | { |
ceeadb83 YS |
1203 | struct sched_statistics *stats; |
1204 | struct task_struct *p = NULL; | |
cb251765 | 1205 | |
4fa8d299 JP |
1206 | if (!schedstat_enabled()) |
1207 | return; | |
1208 | ||
ceeadb83 YS |
1209 | stats = __schedstats_from_se(se); |
1210 | ||
b9c88f75 | 1211 | /* |
1212 | * When the sched_schedstat changes from 0 to 1, some sched se | |
1213 | * maybe already in the runqueue, the se->statistics.wait_start | |
1214 | * will be 0.So it will let the delta wrong. We need to avoid this | |
1215 | * scenario. | |
1216 | */ | |
ceeadb83 | 1217 | if (unlikely(!schedstat_val(stats->wait_start))) |
b9c88f75 | 1218 | return; |
1219 | ||
60f2415e | 1220 | if (entity_is_task(se)) |
3ea94de1 | 1221 | p = task_of(se); |
3ea94de1 | 1222 | |
60f2415e | 1223 | __update_stats_wait_end(rq_of(cfs_rq), p, stats); |
3ea94de1 | 1224 | } |
3ea94de1 | 1225 | |
4fa8d299 | 1226 | static inline void |
60f2415e | 1227 | update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) |
1a3d027c | 1228 | { |
ceeadb83 | 1229 | struct sched_statistics *stats; |
1a3d027c | 1230 | struct task_struct *tsk = NULL; |
4fa8d299 JP |
1231 | |
1232 | if (!schedstat_enabled()) | |
1233 | return; | |
1234 | ||
ceeadb83 YS |
1235 | stats = __schedstats_from_se(se); |
1236 | ||
1a3d027c JP |
1237 | if (entity_is_task(se)) |
1238 | tsk = task_of(se); | |
1239 | ||
60f2415e | 1240 | __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); |
3ea94de1 | 1241 | } |
3ea94de1 | 1242 | |
bf0f6f24 IM |
1243 | /* |
1244 | * Task is being enqueued - update stats: | |
1245 | */ | |
cb251765 | 1246 | static inline void |
60f2415e | 1247 | update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 1248 | { |
4fa8d299 JP |
1249 | if (!schedstat_enabled()) |
1250 | return; | |
1251 | ||
bf0f6f24 IM |
1252 | /* |
1253 | * Are we enqueueing a waiting task? (for current tasks | |
1254 | * a dequeue/enqueue event is a NOP) | |
1255 | */ | |
429d43bc | 1256 | if (se != cfs_rq->curr) |
60f2415e | 1257 | update_stats_wait_start_fair(cfs_rq, se); |
1a3d027c JP |
1258 | |
1259 | if (flags & ENQUEUE_WAKEUP) | |
60f2415e | 1260 | update_stats_enqueue_sleeper_fair(cfs_rq, se); |
bf0f6f24 IM |
1261 | } |
1262 | ||
bf0f6f24 | 1263 | static inline void |
60f2415e | 1264 | update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 1265 | { |
4fa8d299 JP |
1266 | |
1267 | if (!schedstat_enabled()) | |
1268 | return; | |
1269 | ||
bf0f6f24 IM |
1270 | /* |
1271 | * Mark the end of the wait period if dequeueing a | |
1272 | * waiting task: | |
1273 | */ | |
429d43bc | 1274 | if (se != cfs_rq->curr) |
60f2415e | 1275 | update_stats_wait_end_fair(cfs_rq, se); |
cb251765 | 1276 | |
4fa8d299 JP |
1277 | if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { |
1278 | struct task_struct *tsk = task_of(se); | |
2f064a59 | 1279 | unsigned int state; |
cb251765 | 1280 | |
2f064a59 PZ |
1281 | /* XXX racy against TTWU */ |
1282 | state = READ_ONCE(tsk->__state); | |
1283 | if (state & TASK_INTERRUPTIBLE) | |
ceeadb83 | 1284 | __schedstat_set(tsk->stats.sleep_start, |
4fa8d299 | 1285 | rq_clock(rq_of(cfs_rq))); |
2f064a59 | 1286 | if (state & TASK_UNINTERRUPTIBLE) |
ceeadb83 | 1287 | __schedstat_set(tsk->stats.block_start, |
4fa8d299 | 1288 | rq_clock(rq_of(cfs_rq))); |
cb251765 | 1289 | } |
cb251765 MG |
1290 | } |
1291 | ||
bf0f6f24 IM |
1292 | /* |
1293 | * We are picking a new current task - update its stats: | |
1294 | */ | |
1295 | static inline void | |
79303e9e | 1296 | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 IM |
1297 | { |
1298 | /* | |
1299 | * We are starting a new run period: | |
1300 | */ | |
78becc27 | 1301 | se->exec_start = rq_clock_task(rq_of(cfs_rq)); |
bf0f6f24 IM |
1302 | } |
1303 | ||
bf0f6f24 IM |
1304 | /************************************************** |
1305 | * Scheduling class queueing methods: | |
1306 | */ | |
1307 | ||
8b36d07f RN |
1308 | static inline bool is_core_idle(int cpu) |
1309 | { | |
1310 | #ifdef CONFIG_SCHED_SMT | |
1311 | int sibling; | |
1312 | ||
1313 | for_each_cpu(sibling, cpu_smt_mask(cpu)) { | |
1314 | if (cpu == sibling) | |
1315 | continue; | |
1316 | ||
1317 | if (!idle_cpu(sibling)) | |
1318 | return false; | |
1319 | } | |
1320 | #endif | |
1321 | ||
1322 | return true; | |
1323 | } | |
1324 | ||
cb29a5c1 MG |
1325 | #ifdef CONFIG_NUMA |
1326 | #define NUMA_IMBALANCE_MIN 2 | |
1327 | ||
1328 | static inline long | |
1329 | adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) | |
1330 | { | |
1331 | /* | |
1332 | * Allow a NUMA imbalance if busy CPUs is less than the maximum | |
1333 | * threshold. Above this threshold, individual tasks may be contending | |
1334 | * for both memory bandwidth and any shared HT resources. This is an | |
1335 | * approximation as the number of running tasks may not be related to | |
1336 | * the number of busy CPUs due to sched_setaffinity. | |
1337 | */ | |
1338 | if (dst_running > imb_numa_nr) | |
1339 | return imbalance; | |
1340 | ||
1341 | /* | |
1342 | * Allow a small imbalance based on a simple pair of communicating | |
1343 | * tasks that remain local when the destination is lightly loaded. | |
1344 | */ | |
1345 | if (imbalance <= NUMA_IMBALANCE_MIN) | |
1346 | return 0; | |
1347 | ||
1348 | return imbalance; | |
1349 | } | |
1350 | #endif /* CONFIG_NUMA */ | |
1351 | ||
cbee9f88 PZ |
1352 | #ifdef CONFIG_NUMA_BALANCING |
1353 | /* | |
598f0ec0 MG |
1354 | * Approximate time to scan a full NUMA task in ms. The task scan period is |
1355 | * calculated based on the tasks virtual memory size and | |
1356 | * numa_balancing_scan_size. | |
cbee9f88 | 1357 | */ |
598f0ec0 MG |
1358 | unsigned int sysctl_numa_balancing_scan_period_min = 1000; |
1359 | unsigned int sysctl_numa_balancing_scan_period_max = 60000; | |
6e5fb223 PZ |
1360 | |
1361 | /* Portion of address space to scan in MB */ | |
1362 | unsigned int sysctl_numa_balancing_scan_size = 256; | |
cbee9f88 | 1363 | |
4b96a29b PZ |
1364 | /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ |
1365 | unsigned int sysctl_numa_balancing_scan_delay = 1000; | |
1366 | ||
33024536 YH |
1367 | /* The page with hint page fault latency < threshold in ms is considered hot */ |
1368 | unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; | |
1369 | ||
b5dd77c8 | 1370 | struct numa_group { |
c45a7795 | 1371 | refcount_t refcount; |
b5dd77c8 RR |
1372 | |
1373 | spinlock_t lock; /* nr_tasks, tasks */ | |
1374 | int nr_tasks; | |
1375 | pid_t gid; | |
1376 | int active_nodes; | |
1377 | ||
1378 | struct rcu_head rcu; | |
1379 | unsigned long total_faults; | |
1380 | unsigned long max_faults_cpu; | |
1381 | /* | |
5b763a14 BR |
1382 | * faults[] array is split into two regions: faults_mem and faults_cpu. |
1383 | * | |
b5dd77c8 RR |
1384 | * Faults_cpu is used to decide whether memory should move |
1385 | * towards the CPU. As a consequence, these stats are weighted | |
1386 | * more by CPU use than by memory faults. | |
1387 | */ | |
04f5c362 | 1388 | unsigned long faults[]; |
b5dd77c8 RR |
1389 | }; |
1390 | ||
cb361d8c JH |
1391 | /* |
1392 | * For functions that can be called in multiple contexts that permit reading | |
1393 | * ->numa_group (see struct task_struct for locking rules). | |
1394 | */ | |
1395 | static struct numa_group *deref_task_numa_group(struct task_struct *p) | |
1396 | { | |
1397 | return rcu_dereference_check(p->numa_group, p == current || | |
9ef7e7e3 | 1398 | (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); |
cb361d8c JH |
1399 | } |
1400 | ||
1401 | static struct numa_group *deref_curr_numa_group(struct task_struct *p) | |
1402 | { | |
1403 | return rcu_dereference_protected(p->numa_group, p == current); | |
1404 | } | |
1405 | ||
b5dd77c8 RR |
1406 | static inline unsigned long group_faults_priv(struct numa_group *ng); |
1407 | static inline unsigned long group_faults_shared(struct numa_group *ng); | |
1408 | ||
598f0ec0 MG |
1409 | static unsigned int task_nr_scan_windows(struct task_struct *p) |
1410 | { | |
1411 | unsigned long rss = 0; | |
1412 | unsigned long nr_scan_pages; | |
1413 | ||
1414 | /* | |
1415 | * Calculations based on RSS as non-present and empty pages are skipped | |
1416 | * by the PTE scanner and NUMA hinting faults should be trapped based | |
1417 | * on resident pages | |
1418 | */ | |
1419 | nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); | |
1420 | rss = get_mm_rss(p->mm); | |
1421 | if (!rss) | |
1422 | rss = nr_scan_pages; | |
1423 | ||
1424 | rss = round_up(rss, nr_scan_pages); | |
1425 | return rss / nr_scan_pages; | |
1426 | } | |
1427 | ||
3b03706f | 1428 | /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ |
598f0ec0 MG |
1429 | #define MAX_SCAN_WINDOW 2560 |
1430 | ||
1431 | static unsigned int task_scan_min(struct task_struct *p) | |
1432 | { | |
316c1608 | 1433 | unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); |
598f0ec0 MG |
1434 | unsigned int scan, floor; |
1435 | unsigned int windows = 1; | |
1436 | ||
64192658 KT |
1437 | if (scan_size < MAX_SCAN_WINDOW) |
1438 | windows = MAX_SCAN_WINDOW / scan_size; | |
598f0ec0 MG |
1439 | floor = 1000 / windows; |
1440 | ||
1441 | scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); | |
1442 | return max_t(unsigned int, floor, scan); | |
1443 | } | |
1444 | ||
b5dd77c8 RR |
1445 | static unsigned int task_scan_start(struct task_struct *p) |
1446 | { | |
1447 | unsigned long smin = task_scan_min(p); | |
1448 | unsigned long period = smin; | |
cb361d8c | 1449 | struct numa_group *ng; |
b5dd77c8 RR |
1450 | |
1451 | /* Scale the maximum scan period with the amount of shared memory. */ | |
cb361d8c JH |
1452 | rcu_read_lock(); |
1453 | ng = rcu_dereference(p->numa_group); | |
1454 | if (ng) { | |
b5dd77c8 RR |
1455 | unsigned long shared = group_faults_shared(ng); |
1456 | unsigned long private = group_faults_priv(ng); | |
1457 | ||
c45a7795 | 1458 | period *= refcount_read(&ng->refcount); |
b5dd77c8 RR |
1459 | period *= shared + 1; |
1460 | period /= private + shared + 1; | |
1461 | } | |
cb361d8c | 1462 | rcu_read_unlock(); |
b5dd77c8 RR |
1463 | |
1464 | return max(smin, period); | |
1465 | } | |
1466 | ||
598f0ec0 MG |
1467 | static unsigned int task_scan_max(struct task_struct *p) |
1468 | { | |
b5dd77c8 RR |
1469 | unsigned long smin = task_scan_min(p); |
1470 | unsigned long smax; | |
cb361d8c | 1471 | struct numa_group *ng; |
598f0ec0 MG |
1472 | |
1473 | /* Watch for min being lower than max due to floor calculations */ | |
1474 | smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); | |
b5dd77c8 RR |
1475 | |
1476 | /* Scale the maximum scan period with the amount of shared memory. */ | |
cb361d8c JH |
1477 | ng = deref_curr_numa_group(p); |
1478 | if (ng) { | |
b5dd77c8 RR |
1479 | unsigned long shared = group_faults_shared(ng); |
1480 | unsigned long private = group_faults_priv(ng); | |
1481 | unsigned long period = smax; | |
1482 | ||
c45a7795 | 1483 | period *= refcount_read(&ng->refcount); |
b5dd77c8 RR |
1484 | period *= shared + 1; |
1485 | period /= private + shared + 1; | |
1486 | ||
1487 | smax = max(smax, period); | |
1488 | } | |
1489 | ||
598f0ec0 MG |
1490 | return max(smin, smax); |
1491 | } | |
1492 | ||
0ec8aa00 PZ |
1493 | static void account_numa_enqueue(struct rq *rq, struct task_struct *p) |
1494 | { | |
98fa15f3 | 1495 | rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); |
0ec8aa00 PZ |
1496 | rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); |
1497 | } | |
1498 | ||
1499 | static void account_numa_dequeue(struct rq *rq, struct task_struct *p) | |
1500 | { | |
98fa15f3 | 1501 | rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); |
0ec8aa00 PZ |
1502 | rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); |
1503 | } | |
1504 | ||
be1e4e76 RR |
1505 | /* Shared or private faults. */ |
1506 | #define NR_NUMA_HINT_FAULT_TYPES 2 | |
1507 | ||
1508 | /* Memory and CPU locality */ | |
1509 | #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) | |
1510 | ||
1511 | /* Averaged statistics, and temporary buffers. */ | |
1512 | #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) | |
1513 | ||
e29cf08b MG |
1514 | pid_t task_numa_group_id(struct task_struct *p) |
1515 | { | |
cb361d8c JH |
1516 | struct numa_group *ng; |
1517 | pid_t gid = 0; | |
1518 | ||
1519 | rcu_read_lock(); | |
1520 | ng = rcu_dereference(p->numa_group); | |
1521 | if (ng) | |
1522 | gid = ng->gid; | |
1523 | rcu_read_unlock(); | |
1524 | ||
1525 | return gid; | |
e29cf08b MG |
1526 | } |
1527 | ||
44dba3d5 | 1528 | /* |
97fb7a0a | 1529 | * The averaged statistics, shared & private, memory & CPU, |
44dba3d5 IM |
1530 | * occupy the first half of the array. The second half of the |
1531 | * array is for current counters, which are averaged into the | |
1532 | * first set by task_numa_placement. | |
1533 | */ | |
1534 | static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) | |
ac8e895b | 1535 | { |
44dba3d5 | 1536 | return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; |
ac8e895b MG |
1537 | } |
1538 | ||
1539 | static inline unsigned long task_faults(struct task_struct *p, int nid) | |
1540 | { | |
44dba3d5 | 1541 | if (!p->numa_faults) |
ac8e895b MG |
1542 | return 0; |
1543 | ||
44dba3d5 IM |
1544 | return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + |
1545 | p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; | |
ac8e895b MG |
1546 | } |
1547 | ||
83e1d2cd MG |
1548 | static inline unsigned long group_faults(struct task_struct *p, int nid) |
1549 | { | |
cb361d8c JH |
1550 | struct numa_group *ng = deref_task_numa_group(p); |
1551 | ||
1552 | if (!ng) | |
83e1d2cd MG |
1553 | return 0; |
1554 | ||
cb361d8c JH |
1555 | return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + |
1556 | ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; | |
83e1d2cd MG |
1557 | } |
1558 | ||
20e07dea RR |
1559 | static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) |
1560 | { | |
5b763a14 BR |
1561 | return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + |
1562 | group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; | |
20e07dea RR |
1563 | } |
1564 | ||
b5dd77c8 RR |
1565 | static inline unsigned long group_faults_priv(struct numa_group *ng) |
1566 | { | |
1567 | unsigned long faults = 0; | |
1568 | int node; | |
1569 | ||
1570 | for_each_online_node(node) { | |
1571 | faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; | |
1572 | } | |
1573 | ||
1574 | return faults; | |
1575 | } | |
1576 | ||
1577 | static inline unsigned long group_faults_shared(struct numa_group *ng) | |
1578 | { | |
1579 | unsigned long faults = 0; | |
1580 | int node; | |
1581 | ||
1582 | for_each_online_node(node) { | |
1583 | faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; | |
1584 | } | |
1585 | ||
1586 | return faults; | |
1587 | } | |
1588 | ||
4142c3eb RR |
1589 | /* |
1590 | * A node triggering more than 1/3 as many NUMA faults as the maximum is | |
1591 | * considered part of a numa group's pseudo-interleaving set. Migrations | |
1592 | * between these nodes are slowed down, to allow things to settle down. | |
1593 | */ | |
1594 | #define ACTIVE_NODE_FRACTION 3 | |
1595 | ||
1596 | static bool numa_is_active_node(int nid, struct numa_group *ng) | |
1597 | { | |
1598 | return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; | |
1599 | } | |
1600 | ||
6c6b1193 RR |
1601 | /* Handle placement on systems where not all nodes are directly connected. */ |
1602 | static unsigned long score_nearby_nodes(struct task_struct *p, int nid, | |
0fb3978b | 1603 | int lim_dist, bool task) |
6c6b1193 RR |
1604 | { |
1605 | unsigned long score = 0; | |
0fb3978b | 1606 | int node, max_dist; |
6c6b1193 RR |
1607 | |
1608 | /* | |
1609 | * All nodes are directly connected, and the same distance | |
1610 | * from each other. No need for fancy placement algorithms. | |
1611 | */ | |
1612 | if (sched_numa_topology_type == NUMA_DIRECT) | |
1613 | return 0; | |
1614 | ||
0fb3978b YH |
1615 | /* sched_max_numa_distance may be changed in parallel. */ |
1616 | max_dist = READ_ONCE(sched_max_numa_distance); | |
6c6b1193 RR |
1617 | /* |
1618 | * This code is called for each node, introducing N^2 complexity, | |
1619 | * which should be ok given the number of nodes rarely exceeds 8. | |
1620 | */ | |
1621 | for_each_online_node(node) { | |
1622 | unsigned long faults; | |
1623 | int dist = node_distance(nid, node); | |
1624 | ||
1625 | /* | |
1626 | * The furthest away nodes in the system are not interesting | |
1627 | * for placement; nid was already counted. | |
1628 | */ | |
0fb3978b | 1629 | if (dist >= max_dist || node == nid) |
6c6b1193 RR |
1630 | continue; |
1631 | ||
1632 | /* | |
1633 | * On systems with a backplane NUMA topology, compare groups | |
1634 | * of nodes, and move tasks towards the group with the most | |
1635 | * memory accesses. When comparing two nodes at distance | |
1636 | * "hoplimit", only nodes closer by than "hoplimit" are part | |
1637 | * of each group. Skip other nodes. | |
1638 | */ | |
0fb3978b | 1639 | if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) |
6c6b1193 RR |
1640 | continue; |
1641 | ||
1642 | /* Add up the faults from nearby nodes. */ | |
1643 | if (task) | |
1644 | faults = task_faults(p, node); | |
1645 | else | |
1646 | faults = group_faults(p, node); | |
1647 | ||
1648 | /* | |
1649 | * On systems with a glueless mesh NUMA topology, there are | |
1650 | * no fixed "groups of nodes". Instead, nodes that are not | |
1651 | * directly connected bounce traffic through intermediate | |
1652 | * nodes; a numa_group can occupy any set of nodes. | |
1653 | * The further away a node is, the less the faults count. | |
1654 | * This seems to result in good task placement. | |
1655 | */ | |
1656 | if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { | |
0fb3978b YH |
1657 | faults *= (max_dist - dist); |
1658 | faults /= (max_dist - LOCAL_DISTANCE); | |
6c6b1193 RR |
1659 | } |
1660 | ||
1661 | score += faults; | |
1662 | } | |
1663 | ||
1664 | return score; | |
1665 | } | |
1666 | ||
83e1d2cd MG |
1667 | /* |
1668 | * These return the fraction of accesses done by a particular task, or | |
1669 | * task group, on a particular numa node. The group weight is given a | |
1670 | * larger multiplier, in order to group tasks together that are almost | |
1671 | * evenly spread out between numa nodes. | |
1672 | */ | |
7bd95320 RR |
1673 | static inline unsigned long task_weight(struct task_struct *p, int nid, |
1674 | int dist) | |
83e1d2cd | 1675 | { |
7bd95320 | 1676 | unsigned long faults, total_faults; |
83e1d2cd | 1677 | |
44dba3d5 | 1678 | if (!p->numa_faults) |
83e1d2cd MG |
1679 | return 0; |
1680 | ||
1681 | total_faults = p->total_numa_faults; | |
1682 | ||
1683 | if (!total_faults) | |
1684 | return 0; | |
1685 | ||
7bd95320 | 1686 | faults = task_faults(p, nid); |
6c6b1193 RR |
1687 | faults += score_nearby_nodes(p, nid, dist, true); |
1688 | ||
7bd95320 | 1689 | return 1000 * faults / total_faults; |
83e1d2cd MG |
1690 | } |
1691 | ||
7bd95320 RR |
1692 | static inline unsigned long group_weight(struct task_struct *p, int nid, |
1693 | int dist) | |
83e1d2cd | 1694 | { |
cb361d8c | 1695 | struct numa_group *ng = deref_task_numa_group(p); |
7bd95320 RR |
1696 | unsigned long faults, total_faults; |
1697 | ||
cb361d8c | 1698 | if (!ng) |
7bd95320 RR |
1699 | return 0; |
1700 | ||
cb361d8c | 1701 | total_faults = ng->total_faults; |
7bd95320 RR |
1702 | |
1703 | if (!total_faults) | |
83e1d2cd MG |
1704 | return 0; |
1705 | ||
7bd95320 | 1706 | faults = group_faults(p, nid); |
6c6b1193 RR |
1707 | faults += score_nearby_nodes(p, nid, dist, false); |
1708 | ||
7bd95320 | 1709 | return 1000 * faults / total_faults; |
83e1d2cd MG |
1710 | } |
1711 | ||
33024536 YH |
1712 | /* |
1713 | * If memory tiering mode is enabled, cpupid of slow memory page is | |
1714 | * used to record scan time instead of CPU and PID. When tiering mode | |
1715 | * is disabled at run time, the scan time (in cpupid) will be | |
1716 | * interpreted as CPU and PID. So CPU needs to be checked to avoid to | |
1717 | * access out of array bound. | |
1718 | */ | |
1719 | static inline bool cpupid_valid(int cpupid) | |
1720 | { | |
1721 | return cpupid_to_cpu(cpupid) < nr_cpu_ids; | |
1722 | } | |
1723 | ||
1724 | /* | |
1725 | * For memory tiering mode, if there are enough free pages (more than | |
1726 | * enough watermark defined here) in fast memory node, to take full | |
1727 | * advantage of fast memory capacity, all recently accessed slow | |
1728 | * memory pages will be migrated to fast memory node without | |
1729 | * considering hot threshold. | |
1730 | */ | |
1731 | static bool pgdat_free_space_enough(struct pglist_data *pgdat) | |
1732 | { | |
1733 | int z; | |
1734 | unsigned long enough_wmark; | |
1735 | ||
1736 | enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, | |
1737 | pgdat->node_present_pages >> 4); | |
1738 | for (z = pgdat->nr_zones - 1; z >= 0; z--) { | |
1739 | struct zone *zone = pgdat->node_zones + z; | |
1740 | ||
1741 | if (!populated_zone(zone)) | |
1742 | continue; | |
1743 | ||
1744 | if (zone_watermark_ok(zone, 0, | |
1745 | wmark_pages(zone, WMARK_PROMO) + enough_wmark, | |
1746 | ZONE_MOVABLE, 0)) | |
1747 | return true; | |
1748 | } | |
1749 | return false; | |
1750 | } | |
1751 | ||
1752 | /* | |
1753 | * For memory tiering mode, when page tables are scanned, the scan | |
1754 | * time will be recorded in struct page in addition to make page | |
1755 | * PROT_NONE for slow memory page. So when the page is accessed, in | |
1756 | * hint page fault handler, the hint page fault latency is calculated | |
1757 | * via, | |
1758 | * | |
1759 | * hint page fault latency = hint page fault time - scan time | |
1760 | * | |
1761 | * The smaller the hint page fault latency, the higher the possibility | |
1762 | * for the page to be hot. | |
1763 | */ | |
8c9ae56d | 1764 | static int numa_hint_fault_latency(struct folio *folio) |
33024536 YH |
1765 | { |
1766 | int last_time, time; | |
1767 | ||
1768 | time = jiffies_to_msecs(jiffies); | |
0b201c36 | 1769 | last_time = folio_xchg_access_time(folio, time); |
33024536 YH |
1770 | |
1771 | return (time - last_time) & PAGE_ACCESS_TIME_MASK; | |
1772 | } | |
1773 | ||
c6833e10 YH |
1774 | /* |
1775 | * For memory tiering mode, too high promotion/demotion throughput may | |
1776 | * hurt application latency. So we provide a mechanism to rate limit | |
1777 | * the number of pages that are tried to be promoted. | |
1778 | */ | |
1779 | static bool numa_promotion_rate_limit(struct pglist_data *pgdat, | |
1780 | unsigned long rate_limit, int nr) | |
1781 | { | |
1782 | unsigned long nr_cand; | |
1783 | unsigned int now, start; | |
1784 | ||
1785 | now = jiffies_to_msecs(jiffies); | |
1786 | mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); | |
1787 | nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); | |
1788 | start = pgdat->nbp_rl_start; | |
1789 | if (now - start > MSEC_PER_SEC && | |
1790 | cmpxchg(&pgdat->nbp_rl_start, start, now) == start) | |
1791 | pgdat->nbp_rl_nr_cand = nr_cand; | |
1792 | if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) | |
1793 | return true; | |
1794 | return false; | |
1795 | } | |
1796 | ||
c959924b YH |
1797 | #define NUMA_MIGRATION_ADJUST_STEPS 16 |
1798 | ||
1799 | static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, | |
1800 | unsigned long rate_limit, | |
1801 | unsigned int ref_th) | |
1802 | { | |
1803 | unsigned int now, start, th_period, unit_th, th; | |
1804 | unsigned long nr_cand, ref_cand, diff_cand; | |
1805 | ||
1806 | now = jiffies_to_msecs(jiffies); | |
1807 | th_period = sysctl_numa_balancing_scan_period_max; | |
1808 | start = pgdat->nbp_th_start; | |
1809 | if (now - start > th_period && | |
1810 | cmpxchg(&pgdat->nbp_th_start, start, now) == start) { | |
1811 | ref_cand = rate_limit * | |
1812 | sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; | |
1813 | nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); | |
1814 | diff_cand = nr_cand - pgdat->nbp_th_nr_cand; | |
1815 | unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; | |
1816 | th = pgdat->nbp_threshold ? : ref_th; | |
1817 | if (diff_cand > ref_cand * 11 / 10) | |
1818 | th = max(th - unit_th, unit_th); | |
1819 | else if (diff_cand < ref_cand * 9 / 10) | |
1820 | th = min(th + unit_th, ref_th * 2); | |
1821 | pgdat->nbp_th_nr_cand = nr_cand; | |
1822 | pgdat->nbp_threshold = th; | |
1823 | } | |
1824 | } | |
1825 | ||
8c9ae56d | 1826 | bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, |
10f39042 RR |
1827 | int src_nid, int dst_cpu) |
1828 | { | |
cb361d8c | 1829 | struct numa_group *ng = deref_curr_numa_group(p); |
10f39042 RR |
1830 | int dst_nid = cpu_to_node(dst_cpu); |
1831 | int last_cpupid, this_cpupid; | |
1832 | ||
33024536 YH |
1833 | /* |
1834 | * The pages in slow memory node should be migrated according | |
1835 | * to hot/cold instead of private/shared. | |
1836 | */ | |
1837 | if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && | |
1838 | !node_is_toptier(src_nid)) { | |
1839 | struct pglist_data *pgdat; | |
c959924b YH |
1840 | unsigned long rate_limit; |
1841 | unsigned int latency, th, def_th; | |
33024536 YH |
1842 | |
1843 | pgdat = NODE_DATA(dst_nid); | |
c959924b YH |
1844 | if (pgdat_free_space_enough(pgdat)) { |
1845 | /* workload changed, reset hot threshold */ | |
1846 | pgdat->nbp_threshold = 0; | |
33024536 | 1847 | return true; |
c959924b YH |
1848 | } |
1849 | ||
1850 | def_th = sysctl_numa_balancing_hot_threshold; | |
1851 | rate_limit = sysctl_numa_balancing_promote_rate_limit << \ | |
1852 | (20 - PAGE_SHIFT); | |
1853 | numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); | |
33024536 | 1854 | |
c959924b | 1855 | th = pgdat->nbp_threshold ? : def_th; |
8c9ae56d | 1856 | latency = numa_hint_fault_latency(folio); |
33024536 YH |
1857 | if (latency >= th) |
1858 | return false; | |
1859 | ||
c6833e10 | 1860 | return !numa_promotion_rate_limit(pgdat, rate_limit, |
8c9ae56d | 1861 | folio_nr_pages(folio)); |
33024536 YH |
1862 | } |
1863 | ||
10f39042 | 1864 | this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); |
1b143cc7 | 1865 | last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); |
37355bdc | 1866 | |
33024536 YH |
1867 | if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && |
1868 | !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) | |
1869 | return false; | |
1870 | ||
37355bdc MG |
1871 | /* |
1872 | * Allow first faults or private faults to migrate immediately early in | |
1873 | * the lifetime of a task. The magic number 4 is based on waiting for | |
1874 | * two full passes of the "multi-stage node selection" test that is | |
1875 | * executed below. | |
1876 | */ | |
98fa15f3 | 1877 | if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && |
37355bdc MG |
1878 | (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) |
1879 | return true; | |
10f39042 RR |
1880 | |
1881 | /* | |
1882 | * Multi-stage node selection is used in conjunction with a periodic | |
1883 | * migration fault to build a temporal task<->page relation. By using | |
1884 | * a two-stage filter we remove short/unlikely relations. | |
1885 | * | |
1886 | * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate | |
1887 | * a task's usage of a particular page (n_p) per total usage of this | |
1888 | * page (n_t) (in a given time-span) to a probability. | |
1889 | * | |
1890 | * Our periodic faults will sample this probability and getting the | |
1891 | * same result twice in a row, given these samples are fully | |
1892 | * independent, is then given by P(n)^2, provided our sample period | |
1893 | * is sufficiently short compared to the usage pattern. | |
1894 | * | |
1895 | * This quadric squishes small probabilities, making it less likely we | |
1896 | * act on an unlikely task<->page relation. | |
1897 | */ | |
10f39042 RR |
1898 | if (!cpupid_pid_unset(last_cpupid) && |
1899 | cpupid_to_nid(last_cpupid) != dst_nid) | |
1900 | return false; | |
1901 | ||
1902 | /* Always allow migrate on private faults */ | |
1903 | if (cpupid_match_pid(p, last_cpupid)) | |
1904 | return true; | |
1905 | ||
1906 | /* A shared fault, but p->numa_group has not been set up yet. */ | |
1907 | if (!ng) | |
1908 | return true; | |
1909 | ||
1910 | /* | |
4142c3eb RR |
1911 | * Destination node is much more heavily used than the source |
1912 | * node? Allow migration. | |
10f39042 | 1913 | */ |
4142c3eb RR |
1914 | if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * |
1915 | ACTIVE_NODE_FRACTION) | |
10f39042 RR |
1916 | return true; |
1917 | ||
1918 | /* | |
4142c3eb RR |
1919 | * Distribute memory according to CPU & memory use on each node, |
1920 | * with 3/4 hysteresis to avoid unnecessary memory migrations: | |
1921 | * | |
1922 | * faults_cpu(dst) 3 faults_cpu(src) | |
1923 | * --------------- * - > --------------- | |
1924 | * faults_mem(dst) 4 faults_mem(src) | |
10f39042 | 1925 | */ |
4142c3eb RR |
1926 | return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > |
1927 | group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; | |
10f39042 RR |
1928 | } |
1929 | ||
6499b1b2 VG |
1930 | /* |
1931 | * 'numa_type' describes the node at the moment of load balancing. | |
1932 | */ | |
1933 | enum numa_type { | |
1934 | /* The node has spare capacity that can be used to run more tasks. */ | |
1935 | node_has_spare = 0, | |
1936 | /* | |
1937 | * The node is fully used and the tasks don't compete for more CPU | |
1938 | * cycles. Nevertheless, some tasks might wait before running. | |
1939 | */ | |
1940 | node_fully_busy, | |
1941 | /* | |
1942 | * The node is overloaded and can't provide expected CPU cycles to all | |
1943 | * tasks. | |
1944 | */ | |
1945 | node_overloaded | |
1946 | }; | |
58d081b5 | 1947 | |
fb13c7ee | 1948 | /* Cached statistics for all CPUs within a node */ |
58d081b5 MG |
1949 | struct numa_stats { |
1950 | unsigned long load; | |
8e0e0eda | 1951 | unsigned long runnable; |
6499b1b2 | 1952 | unsigned long util; |
fb13c7ee | 1953 | /* Total compute capacity of CPUs on a node */ |
5ef20ca1 | 1954 | unsigned long compute_capacity; |
6499b1b2 VG |
1955 | unsigned int nr_running; |
1956 | unsigned int weight; | |
1957 | enum numa_type node_type; | |
ff7db0bf | 1958 | int idle_cpu; |
58d081b5 | 1959 | }; |
e6628d5b | 1960 | |
58d081b5 MG |
1961 | struct task_numa_env { |
1962 | struct task_struct *p; | |
e6628d5b | 1963 | |
58d081b5 MG |
1964 | int src_cpu, src_nid; |
1965 | int dst_cpu, dst_nid; | |
e496132e | 1966 | int imb_numa_nr; |
e6628d5b | 1967 | |
58d081b5 | 1968 | struct numa_stats src_stats, dst_stats; |
e6628d5b | 1969 | |
40ea2b42 | 1970 | int imbalance_pct; |
7bd95320 | 1971 | int dist; |
fb13c7ee MG |
1972 | |
1973 | struct task_struct *best_task; | |
1974 | long best_imp; | |
58d081b5 MG |
1975 | int best_cpu; |
1976 | }; | |
1977 | ||
6499b1b2 | 1978 | static unsigned long cpu_load(struct rq *rq); |
8e0e0eda | 1979 | static unsigned long cpu_runnable(struct rq *rq); |
6499b1b2 VG |
1980 | |
1981 | static inline enum | |
1982 | numa_type numa_classify(unsigned int imbalance_pct, | |
1983 | struct numa_stats *ns) | |
1984 | { | |
1985 | if ((ns->nr_running > ns->weight) && | |
8e0e0eda VG |
1986 | (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || |
1987 | ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) | |
6499b1b2 VG |
1988 | return node_overloaded; |
1989 | ||
1990 | if ((ns->nr_running < ns->weight) || | |
8e0e0eda VG |
1991 | (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && |
1992 | ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) | |
6499b1b2 VG |
1993 | return node_has_spare; |
1994 | ||
1995 | return node_fully_busy; | |
1996 | } | |
1997 | ||
76c389ab VS |
1998 | #ifdef CONFIG_SCHED_SMT |
1999 | /* Forward declarations of select_idle_sibling helpers */ | |
398ba2b0 | 2000 | static inline bool test_idle_cores(int cpu); |
ff7db0bf MG |
2001 | static inline int numa_idle_core(int idle_core, int cpu) |
2002 | { | |
ff7db0bf | 2003 | if (!static_branch_likely(&sched_smt_present) || |
398ba2b0 | 2004 | idle_core >= 0 || !test_idle_cores(cpu)) |
ff7db0bf MG |
2005 | return idle_core; |
2006 | ||
2007 | /* | |
2008 | * Prefer cores instead of packing HT siblings | |
2009 | * and triggering future load balancing. | |
2010 | */ | |
2011 | if (is_core_idle(cpu)) | |
2012 | idle_core = cpu; | |
ff7db0bf MG |
2013 | |
2014 | return idle_core; | |
2015 | } | |
76c389ab VS |
2016 | #else |
2017 | static inline int numa_idle_core(int idle_core, int cpu) | |
2018 | { | |
2019 | return idle_core; | |
2020 | } | |
2021 | #endif | |
ff7db0bf | 2022 | |
6499b1b2 | 2023 | /* |
ff7db0bf MG |
2024 | * Gather all necessary information to make NUMA balancing placement |
2025 | * decisions that are compatible with standard load balancer. This | |
2026 | * borrows code and logic from update_sg_lb_stats but sharing a | |
2027 | * common implementation is impractical. | |
6499b1b2 VG |
2028 | */ |
2029 | static void update_numa_stats(struct task_numa_env *env, | |
ff7db0bf MG |
2030 | struct numa_stats *ns, int nid, |
2031 | bool find_idle) | |
6499b1b2 | 2032 | { |
ff7db0bf | 2033 | int cpu, idle_core = -1; |
6499b1b2 VG |
2034 | |
2035 | memset(ns, 0, sizeof(*ns)); | |
ff7db0bf MG |
2036 | ns->idle_cpu = -1; |
2037 | ||
0621df31 | 2038 | rcu_read_lock(); |
6499b1b2 VG |
2039 | for_each_cpu(cpu, cpumask_of_node(nid)) { |
2040 | struct rq *rq = cpu_rq(cpu); | |
2041 | ||
2042 | ns->load += cpu_load(rq); | |
8e0e0eda | 2043 | ns->runnable += cpu_runnable(rq); |
82762d2a | 2044 | ns->util += cpu_util_cfs(cpu); |
6499b1b2 VG |
2045 | ns->nr_running += rq->cfs.h_nr_running; |
2046 | ns->compute_capacity += capacity_of(cpu); | |
ff7db0bf | 2047 | |
feaed763 | 2048 | if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { |
ff7db0bf MG |
2049 | if (READ_ONCE(rq->numa_migrate_on) || |
2050 | !cpumask_test_cpu(cpu, env->p->cpus_ptr)) | |
2051 | continue; | |
2052 | ||
2053 | if (ns->idle_cpu == -1) | |
2054 | ns->idle_cpu = cpu; | |
2055 | ||
2056 | idle_core = numa_idle_core(idle_core, cpu); | |
2057 | } | |
6499b1b2 | 2058 | } |
0621df31 | 2059 | rcu_read_unlock(); |
6499b1b2 VG |
2060 | |
2061 | ns->weight = cpumask_weight(cpumask_of_node(nid)); | |
2062 | ||
2063 | ns->node_type = numa_classify(env->imbalance_pct, ns); | |
ff7db0bf MG |
2064 | |
2065 | if (idle_core >= 0) | |
2066 | ns->idle_cpu = idle_core; | |
6499b1b2 VG |
2067 | } |
2068 | ||
fb13c7ee MG |
2069 | static void task_numa_assign(struct task_numa_env *env, |
2070 | struct task_struct *p, long imp) | |
2071 | { | |
a4739eca SD |
2072 | struct rq *rq = cpu_rq(env->dst_cpu); |
2073 | ||
5fb52dd9 MG |
2074 | /* Check if run-queue part of active NUMA balance. */ |
2075 | if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { | |
2076 | int cpu; | |
2077 | int start = env->dst_cpu; | |
2078 | ||
2079 | /* Find alternative idle CPU. */ | |
8589018a | 2080 | for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { |
5fb52dd9 MG |
2081 | if (cpu == env->best_cpu || !idle_cpu(cpu) || |
2082 | !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { | |
2083 | continue; | |
2084 | } | |
2085 | ||
2086 | env->dst_cpu = cpu; | |
2087 | rq = cpu_rq(env->dst_cpu); | |
2088 | if (!xchg(&rq->numa_migrate_on, 1)) | |
2089 | goto assign; | |
2090 | } | |
2091 | ||
2092 | /* Failed to find an alternative idle CPU */ | |
a4739eca | 2093 | return; |
5fb52dd9 | 2094 | } |
a4739eca | 2095 | |
5fb52dd9 | 2096 | assign: |
a4739eca SD |
2097 | /* |
2098 | * Clear previous best_cpu/rq numa-migrate flag, since task now | |
2099 | * found a better CPU to move/swap. | |
2100 | */ | |
5fb52dd9 | 2101 | if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { |
a4739eca SD |
2102 | rq = cpu_rq(env->best_cpu); |
2103 | WRITE_ONCE(rq->numa_migrate_on, 0); | |
2104 | } | |
2105 | ||
fb13c7ee MG |
2106 | if (env->best_task) |
2107 | put_task_struct(env->best_task); | |
bac78573 ON |
2108 | if (p) |
2109 | get_task_struct(p); | |
fb13c7ee MG |
2110 | |
2111 | env->best_task = p; | |
2112 | env->best_imp = imp; | |
2113 | env->best_cpu = env->dst_cpu; | |
2114 | } | |
2115 | ||
28a21745 | 2116 | static bool load_too_imbalanced(long src_load, long dst_load, |
e63da036 RR |
2117 | struct task_numa_env *env) |
2118 | { | |
e4991b24 RR |
2119 | long imb, old_imb; |
2120 | long orig_src_load, orig_dst_load; | |
28a21745 RR |
2121 | long src_capacity, dst_capacity; |
2122 | ||
2123 | /* | |
2124 | * The load is corrected for the CPU capacity available on each node. | |
2125 | * | |
2126 | * src_load dst_load | |
2127 | * ------------ vs --------- | |
2128 | * src_capacity dst_capacity | |
2129 | */ | |
2130 | src_capacity = env->src_stats.compute_capacity; | |
2131 | dst_capacity = env->dst_stats.compute_capacity; | |
e63da036 | 2132 | |
5f95ba7a | 2133 | imb = abs(dst_load * src_capacity - src_load * dst_capacity); |
e63da036 | 2134 | |
28a21745 | 2135 | orig_src_load = env->src_stats.load; |
e4991b24 | 2136 | orig_dst_load = env->dst_stats.load; |
28a21745 | 2137 | |
5f95ba7a | 2138 | old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); |
e4991b24 RR |
2139 | |
2140 | /* Would this change make things worse? */ | |
2141 | return (imb > old_imb); | |
e63da036 RR |
2142 | } |
2143 | ||
6fd98e77 SD |
2144 | /* |
2145 | * Maximum NUMA importance can be 1998 (2*999); | |
2146 | * SMALLIMP @ 30 would be close to 1998/64. | |
2147 | * Used to deter task migration. | |
2148 | */ | |
2149 | #define SMALLIMP 30 | |
2150 | ||
fb13c7ee MG |
2151 | /* |
2152 | * This checks if the overall compute and NUMA accesses of the system would | |
2153 | * be improved if the source tasks was migrated to the target dst_cpu taking | |
2154 | * into account that it might be best if task running on the dst_cpu should | |
2155 | * be exchanged with the source task | |
2156 | */ | |
a0f03b61 | 2157 | static bool task_numa_compare(struct task_numa_env *env, |
305c1fac | 2158 | long taskimp, long groupimp, bool maymove) |
fb13c7ee | 2159 | { |
cb361d8c | 2160 | struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); |
fb13c7ee | 2161 | struct rq *dst_rq = cpu_rq(env->dst_cpu); |
cb361d8c | 2162 | long imp = p_ng ? groupimp : taskimp; |
fb13c7ee | 2163 | struct task_struct *cur; |
28a21745 | 2164 | long src_load, dst_load; |
7bd95320 | 2165 | int dist = env->dist; |
cb361d8c JH |
2166 | long moveimp = imp; |
2167 | long load; | |
a0f03b61 | 2168 | bool stopsearch = false; |
fb13c7ee | 2169 | |
a4739eca | 2170 | if (READ_ONCE(dst_rq->numa_migrate_on)) |
a0f03b61 | 2171 | return false; |
a4739eca | 2172 | |
fb13c7ee | 2173 | rcu_read_lock(); |
154abafc | 2174 | cur = rcu_dereference(dst_rq->curr); |
bac78573 | 2175 | if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) |
fb13c7ee MG |
2176 | cur = NULL; |
2177 | ||
7af68335 PZ |
2178 | /* |
2179 | * Because we have preemption enabled we can get migrated around and | |
2180 | * end try selecting ourselves (current == env->p) as a swap candidate. | |
2181 | */ | |
a0f03b61 MG |
2182 | if (cur == env->p) { |
2183 | stopsearch = true; | |
7af68335 | 2184 | goto unlock; |
a0f03b61 | 2185 | } |
7af68335 | 2186 | |
305c1fac | 2187 | if (!cur) { |
6fd98e77 | 2188 | if (maymove && moveimp >= env->best_imp) |
305c1fac SD |
2189 | goto assign; |
2190 | else | |
2191 | goto unlock; | |
2192 | } | |
2193 | ||
88cca72c MG |
2194 | /* Skip this swap candidate if cannot move to the source cpu. */ |
2195 | if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) | |
2196 | goto unlock; | |
2197 | ||
2198 | /* | |
2199 | * Skip this swap candidate if it is not moving to its preferred | |
2200 | * node and the best task is. | |
2201 | */ | |
2202 | if (env->best_task && | |
2203 | env->best_task->numa_preferred_nid == env->src_nid && | |
2204 | cur->numa_preferred_nid != env->src_nid) { | |
2205 | goto unlock; | |
2206 | } | |
2207 | ||
fb13c7ee MG |
2208 | /* |
2209 | * "imp" is the fault differential for the source task between the | |
2210 | * source and destination node. Calculate the total differential for | |
2211 | * the source task and potential destination task. The more negative | |
305c1fac | 2212 | * the value is, the more remote accesses that would be expected to |
fb13c7ee | 2213 | * be incurred if the tasks were swapped. |
88cca72c | 2214 | * |
305c1fac SD |
2215 | * If dst and source tasks are in the same NUMA group, or not |
2216 | * in any group then look only at task weights. | |
2217 | */ | |
cb361d8c JH |
2218 | cur_ng = rcu_dereference(cur->numa_group); |
2219 | if (cur_ng == p_ng) { | |
13ede331 MG |
2220 | /* |
2221 | * Do not swap within a group or between tasks that have | |
2222 | * no group if there is spare capacity. Swapping does | |
2223 | * not address the load imbalance and helps one task at | |
2224 | * the cost of punishing another. | |
2225 | */ | |
2226 | if (env->dst_stats.node_type == node_has_spare) | |
2227 | goto unlock; | |
2228 | ||
305c1fac SD |
2229 | imp = taskimp + task_weight(cur, env->src_nid, dist) - |
2230 | task_weight(cur, env->dst_nid, dist); | |
887c290e | 2231 | /* |
305c1fac SD |
2232 | * Add some hysteresis to prevent swapping the |
2233 | * tasks within a group over tiny differences. | |
887c290e | 2234 | */ |
cb361d8c | 2235 | if (cur_ng) |
305c1fac SD |
2236 | imp -= imp / 16; |
2237 | } else { | |
2238 | /* | |
2239 | * Compare the group weights. If a task is all by itself | |
2240 | * (not part of a group), use the task weight instead. | |
2241 | */ | |
cb361d8c | 2242 | if (cur_ng && p_ng) |
305c1fac SD |
2243 | imp += group_weight(cur, env->src_nid, dist) - |
2244 | group_weight(cur, env->dst_nid, dist); | |
2245 | else | |
2246 | imp += task_weight(cur, env->src_nid, dist) - | |
2247 | task_weight(cur, env->dst_nid, dist); | |
fb13c7ee MG |
2248 | } |
2249 | ||
88cca72c MG |
2250 | /* Discourage picking a task already on its preferred node */ |
2251 | if (cur->numa_preferred_nid == env->dst_nid) | |
2252 | imp -= imp / 16; | |
2253 | ||
2254 | /* | |
2255 | * Encourage picking a task that moves to its preferred node. | |
2256 | * This potentially makes imp larger than it's maximum of | |
2257 | * 1998 (see SMALLIMP and task_weight for why) but in this | |
2258 | * case, it does not matter. | |
2259 | */ | |
2260 | if (cur->numa_preferred_nid == env->src_nid) | |
2261 | imp += imp / 8; | |
2262 | ||
305c1fac | 2263 | if (maymove && moveimp > imp && moveimp > env->best_imp) { |
6fd98e77 | 2264 | imp = moveimp; |
305c1fac | 2265 | cur = NULL; |
fb13c7ee | 2266 | goto assign; |
305c1fac | 2267 | } |
fb13c7ee | 2268 | |
88cca72c MG |
2269 | /* |
2270 | * Prefer swapping with a task moving to its preferred node over a | |
2271 | * task that is not. | |
2272 | */ | |
2273 | if (env->best_task && cur->numa_preferred_nid == env->src_nid && | |
2274 | env->best_task->numa_preferred_nid != env->src_nid) { | |
2275 | goto assign; | |
2276 | } | |
2277 | ||
6fd98e77 SD |
2278 | /* |
2279 | * If the NUMA importance is less than SMALLIMP, | |
2280 | * task migration might only result in ping pong | |
2281 | * of tasks and also hurt performance due to cache | |
2282 | * misses. | |
2283 | */ | |
2284 | if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) | |
2285 | goto unlock; | |
2286 | ||
fb13c7ee MG |
2287 | /* |
2288 | * In the overloaded case, try and keep the load balanced. | |
2289 | */ | |
305c1fac SD |
2290 | load = task_h_load(env->p) - task_h_load(cur); |
2291 | if (!load) | |
2292 | goto assign; | |
2293 | ||
e720fff6 PZ |
2294 | dst_load = env->dst_stats.load + load; |
2295 | src_load = env->src_stats.load - load; | |
fb13c7ee | 2296 | |
28a21745 | 2297 | if (load_too_imbalanced(src_load, dst_load, env)) |
fb13c7ee MG |
2298 | goto unlock; |
2299 | ||
305c1fac | 2300 | assign: |
ff7db0bf | 2301 | /* Evaluate an idle CPU for a task numa move. */ |
10e2f1ac | 2302 | if (!cur) { |
ff7db0bf MG |
2303 | int cpu = env->dst_stats.idle_cpu; |
2304 | ||
2305 | /* Nothing cached so current CPU went idle since the search. */ | |
2306 | if (cpu < 0) | |
2307 | cpu = env->dst_cpu; | |
2308 | ||
10e2f1ac | 2309 | /* |
ff7db0bf MG |
2310 | * If the CPU is no longer truly idle and the previous best CPU |
2311 | * is, keep using it. | |
10e2f1ac | 2312 | */ |
ff7db0bf MG |
2313 | if (!idle_cpu(cpu) && env->best_cpu >= 0 && |
2314 | idle_cpu(env->best_cpu)) { | |
2315 | cpu = env->best_cpu; | |
2316 | } | |
2317 | ||
ff7db0bf | 2318 | env->dst_cpu = cpu; |
10e2f1ac | 2319 | } |
ba7e5a27 | 2320 | |
fb13c7ee | 2321 | task_numa_assign(env, cur, imp); |
a0f03b61 MG |
2322 | |
2323 | /* | |
2324 | * If a move to idle is allowed because there is capacity or load | |
2325 | * balance improves then stop the search. While a better swap | |
2326 | * candidate may exist, a search is not free. | |
2327 | */ | |
2328 | if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) | |
2329 | stopsearch = true; | |
2330 | ||
2331 | /* | |
2332 | * If a swap candidate must be identified and the current best task | |
2333 | * moves its preferred node then stop the search. | |
2334 | */ | |
2335 | if (!maymove && env->best_task && | |
2336 | env->best_task->numa_preferred_nid == env->src_nid) { | |
2337 | stopsearch = true; | |
2338 | } | |
fb13c7ee MG |
2339 | unlock: |
2340 | rcu_read_unlock(); | |
a0f03b61 MG |
2341 | |
2342 | return stopsearch; | |
fb13c7ee MG |
2343 | } |
2344 | ||
887c290e RR |
2345 | static void task_numa_find_cpu(struct task_numa_env *env, |
2346 | long taskimp, long groupimp) | |
2c8a50aa | 2347 | { |
305c1fac | 2348 | bool maymove = false; |
2c8a50aa MG |
2349 | int cpu; |
2350 | ||
305c1fac | 2351 | /* |
fb86f5b2 MG |
2352 | * If dst node has spare capacity, then check if there is an |
2353 | * imbalance that would be overruled by the load balancer. | |
305c1fac | 2354 | */ |
fb86f5b2 MG |
2355 | if (env->dst_stats.node_type == node_has_spare) { |
2356 | unsigned int imbalance; | |
2357 | int src_running, dst_running; | |
2358 | ||
2359 | /* | |
2360 | * Would movement cause an imbalance? Note that if src has | |
2361 | * more running tasks that the imbalance is ignored as the | |
2362 | * move improves the imbalance from the perspective of the | |
2363 | * CPU load balancer. | |
2364 | * */ | |
2365 | src_running = env->src_stats.nr_running - 1; | |
2366 | dst_running = env->dst_stats.nr_running + 1; | |
2367 | imbalance = max(0, dst_running - src_running); | |
7d2b5dd0 | 2368 | imbalance = adjust_numa_imbalance(imbalance, dst_running, |
e496132e | 2369 | env->imb_numa_nr); |
fb86f5b2 MG |
2370 | |
2371 | /* Use idle CPU if there is no imbalance */ | |
ff7db0bf | 2372 | if (!imbalance) { |
fb86f5b2 | 2373 | maymove = true; |
ff7db0bf MG |
2374 | if (env->dst_stats.idle_cpu >= 0) { |
2375 | env->dst_cpu = env->dst_stats.idle_cpu; | |
2376 | task_numa_assign(env, NULL, 0); | |
2377 | return; | |
2378 | } | |
2379 | } | |
fb86f5b2 MG |
2380 | } else { |
2381 | long src_load, dst_load, load; | |
2382 | /* | |
2383 | * If the improvement from just moving env->p direction is better | |
2384 | * than swapping tasks around, check if a move is possible. | |
2385 | */ | |
2386 | load = task_h_load(env->p); | |
2387 | dst_load = env->dst_stats.load + load; | |
2388 | src_load = env->src_stats.load - load; | |
2389 | maymove = !load_too_imbalanced(src_load, dst_load, env); | |
2390 | } | |
305c1fac | 2391 | |
2c8a50aa MG |
2392 | for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { |
2393 | /* Skip this CPU if the source task cannot migrate */ | |
3bd37062 | 2394 | if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) |
2c8a50aa MG |
2395 | continue; |
2396 | ||
2397 | env->dst_cpu = cpu; | |
a0f03b61 MG |
2398 | if (task_numa_compare(env, taskimp, groupimp, maymove)) |
2399 | break; | |
2c8a50aa MG |
2400 | } |
2401 | } | |
2402 | ||
58d081b5 MG |
2403 | static int task_numa_migrate(struct task_struct *p) |
2404 | { | |
58d081b5 MG |
2405 | struct task_numa_env env = { |
2406 | .p = p, | |
fb13c7ee | 2407 | |
58d081b5 | 2408 | .src_cpu = task_cpu(p), |
b32e86b4 | 2409 | .src_nid = task_node(p), |
fb13c7ee MG |
2410 | |
2411 | .imbalance_pct = 112, | |
2412 | ||
2413 | .best_task = NULL, | |
2414 | .best_imp = 0, | |
4142c3eb | 2415 | .best_cpu = -1, |
58d081b5 | 2416 | }; |
cb361d8c | 2417 | unsigned long taskweight, groupweight; |
58d081b5 | 2418 | struct sched_domain *sd; |
cb361d8c JH |
2419 | long taskimp, groupimp; |
2420 | struct numa_group *ng; | |
a4739eca | 2421 | struct rq *best_rq; |
7bd95320 | 2422 | int nid, ret, dist; |
e6628d5b | 2423 | |
58d081b5 | 2424 | /* |
fb13c7ee MG |
2425 | * Pick the lowest SD_NUMA domain, as that would have the smallest |
2426 | * imbalance and would be the first to start moving tasks about. | |
2427 | * | |
2428 | * And we want to avoid any moving of tasks about, as that would create | |
2429 | * random movement of tasks -- counter the numa conditions we're trying | |
2430 | * to satisfy here. | |
58d081b5 MG |
2431 | */ |
2432 | rcu_read_lock(); | |
fb13c7ee | 2433 | sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); |
e496132e | 2434 | if (sd) { |
46a73e8a | 2435 | env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; |
e496132e MG |
2436 | env.imb_numa_nr = sd->imb_numa_nr; |
2437 | } | |
e6628d5b MG |
2438 | rcu_read_unlock(); |
2439 | ||
46a73e8a RR |
2440 | /* |
2441 | * Cpusets can break the scheduler domain tree into smaller | |
2442 | * balance domains, some of which do not cross NUMA boundaries. | |
2443 | * Tasks that are "trapped" in such domains cannot be migrated | |
2444 | * elsewhere, so there is no point in (re)trying. | |
2445 | */ | |
2446 | if (unlikely(!sd)) { | |
8cd45eee | 2447 | sched_setnuma(p, task_node(p)); |
46a73e8a RR |
2448 | return -EINVAL; |
2449 | } | |
2450 | ||
2c8a50aa | 2451 | env.dst_nid = p->numa_preferred_nid; |
7bd95320 RR |
2452 | dist = env.dist = node_distance(env.src_nid, env.dst_nid); |
2453 | taskweight = task_weight(p, env.src_nid, dist); | |
2454 | groupweight = group_weight(p, env.src_nid, dist); | |
ff7db0bf | 2455 | update_numa_stats(&env, &env.src_stats, env.src_nid, false); |
7bd95320 RR |
2456 | taskimp = task_weight(p, env.dst_nid, dist) - taskweight; |
2457 | groupimp = group_weight(p, env.dst_nid, dist) - groupweight; | |
ff7db0bf | 2458 | update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); |
58d081b5 | 2459 | |
a43455a1 | 2460 | /* Try to find a spot on the preferred nid. */ |
2d4056fa | 2461 | task_numa_find_cpu(&env, taskimp, groupimp); |
e1dda8a7 | 2462 | |
9de05d48 RR |
2463 | /* |
2464 | * Look at other nodes in these cases: | |
2465 | * - there is no space available on the preferred_nid | |
2466 | * - the task is part of a numa_group that is interleaved across | |
2467 | * multiple NUMA nodes; in order to better consolidate the group, | |
2468 | * we need to check other locations. | |
2469 | */ | |
cb361d8c JH |
2470 | ng = deref_curr_numa_group(p); |
2471 | if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { | |
5c7b1aaf | 2472 | for_each_node_state(nid, N_CPU) { |
2c8a50aa MG |
2473 | if (nid == env.src_nid || nid == p->numa_preferred_nid) |
2474 | continue; | |
58d081b5 | 2475 | |
7bd95320 | 2476 | dist = node_distance(env.src_nid, env.dst_nid); |
6c6b1193 RR |
2477 | if (sched_numa_topology_type == NUMA_BACKPLANE && |
2478 | dist != env.dist) { | |
2479 | taskweight = task_weight(p, env.src_nid, dist); | |
2480 | groupweight = group_weight(p, env.src_nid, dist); | |
2481 | } | |
7bd95320 | 2482 | |
83e1d2cd | 2483 | /* Only consider nodes where both task and groups benefit */ |
7bd95320 RR |
2484 | taskimp = task_weight(p, nid, dist) - taskweight; |
2485 | groupimp = group_weight(p, nid, dist) - groupweight; | |
887c290e | 2486 | if (taskimp < 0 && groupimp < 0) |
fb13c7ee MG |
2487 | continue; |
2488 | ||
7bd95320 | 2489 | env.dist = dist; |
2c8a50aa | 2490 | env.dst_nid = nid; |
ff7db0bf | 2491 | update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); |
2d4056fa | 2492 | task_numa_find_cpu(&env, taskimp, groupimp); |
58d081b5 MG |
2493 | } |
2494 | } | |
2495 | ||
68d1b02a RR |
2496 | /* |
2497 | * If the task is part of a workload that spans multiple NUMA nodes, | |
2498 | * and is migrating into one of the workload's active nodes, remember | |
2499 | * this node as the task's preferred numa node, so the workload can | |
2500 | * settle down. | |
2501 | * A task that migrated to a second choice node will be better off | |
2502 | * trying for a better one later. Do not set the preferred node here. | |
2503 | */ | |
cb361d8c | 2504 | if (ng) { |
db015dae RR |
2505 | if (env.best_cpu == -1) |
2506 | nid = env.src_nid; | |
2507 | else | |
8cd45eee | 2508 | nid = cpu_to_node(env.best_cpu); |
db015dae | 2509 | |
8cd45eee SD |
2510 | if (nid != p->numa_preferred_nid) |
2511 | sched_setnuma(p, nid); | |
db015dae RR |
2512 | } |
2513 | ||
2514 | /* No better CPU than the current one was found. */ | |
f22aef4a | 2515 | if (env.best_cpu == -1) { |
b2b2042b | 2516 | trace_sched_stick_numa(p, env.src_cpu, NULL, -1); |
db015dae | 2517 | return -EAGAIN; |
f22aef4a | 2518 | } |
0ec8aa00 | 2519 | |
a4739eca | 2520 | best_rq = cpu_rq(env.best_cpu); |
fb13c7ee | 2521 | if (env.best_task == NULL) { |
286549dc | 2522 | ret = migrate_task_to(p, env.best_cpu); |
a4739eca | 2523 | WRITE_ONCE(best_rq->numa_migrate_on, 0); |
286549dc | 2524 | if (ret != 0) |
b2b2042b | 2525 | trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); |
fb13c7ee MG |
2526 | return ret; |
2527 | } | |
2528 | ||
0ad4e3df | 2529 | ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); |
a4739eca | 2530 | WRITE_ONCE(best_rq->numa_migrate_on, 0); |
0ad4e3df | 2531 | |
286549dc | 2532 | if (ret != 0) |
b2b2042b | 2533 | trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); |
fb13c7ee MG |
2534 | put_task_struct(env.best_task); |
2535 | return ret; | |
e6628d5b MG |
2536 | } |
2537 | ||
6b9a7460 MG |
2538 | /* Attempt to migrate a task to a CPU on the preferred node. */ |
2539 | static void numa_migrate_preferred(struct task_struct *p) | |
2540 | { | |
5085e2a3 RR |
2541 | unsigned long interval = HZ; |
2542 | ||
2739d3ee | 2543 | /* This task has no NUMA fault statistics yet */ |
98fa15f3 | 2544 | if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) |
6b9a7460 MG |
2545 | return; |
2546 | ||
2739d3ee | 2547 | /* Periodically retry migrating the task to the preferred node */ |
5085e2a3 | 2548 | interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); |
789ba280 | 2549 | p->numa_migrate_retry = jiffies + interval; |
2739d3ee RR |
2550 | |
2551 | /* Success if task is already running on preferred CPU */ | |
de1b301a | 2552 | if (task_node(p) == p->numa_preferred_nid) |
6b9a7460 MG |
2553 | return; |
2554 | ||
2555 | /* Otherwise, try migrate to a CPU on the preferred node */ | |
2739d3ee | 2556 | task_numa_migrate(p); |
6b9a7460 MG |
2557 | } |
2558 | ||
20e07dea | 2559 | /* |
7d380f24 | 2560 | * Find out how many nodes the workload is actively running on. Do this by |
20e07dea RR |
2561 | * tracking the nodes from which NUMA hinting faults are triggered. This can |
2562 | * be different from the set of nodes where the workload's memory is currently | |
2563 | * located. | |
20e07dea | 2564 | */ |
4142c3eb | 2565 | static void numa_group_count_active_nodes(struct numa_group *numa_group) |
20e07dea RR |
2566 | { |
2567 | unsigned long faults, max_faults = 0; | |
4142c3eb | 2568 | int nid, active_nodes = 0; |
20e07dea | 2569 | |
5c7b1aaf | 2570 | for_each_node_state(nid, N_CPU) { |
20e07dea RR |
2571 | faults = group_faults_cpu(numa_group, nid); |
2572 | if (faults > max_faults) | |
2573 | max_faults = faults; | |
2574 | } | |
2575 | ||
5c7b1aaf | 2576 | for_each_node_state(nid, N_CPU) { |
20e07dea | 2577 | faults = group_faults_cpu(numa_group, nid); |
4142c3eb RR |
2578 | if (faults * ACTIVE_NODE_FRACTION > max_faults) |
2579 | active_nodes++; | |
20e07dea | 2580 | } |
4142c3eb RR |
2581 | |
2582 | numa_group->max_faults_cpu = max_faults; | |
2583 | numa_group->active_nodes = active_nodes; | |
20e07dea RR |
2584 | } |
2585 | ||
04bb2f94 RR |
2586 | /* |
2587 | * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS | |
2588 | * increments. The more local the fault statistics are, the higher the scan | |
a22b4b01 RR |
2589 | * period will be for the next scan window. If local/(local+remote) ratio is |
2590 | * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) | |
2591 | * the scan period will decrease. Aim for 70% local accesses. | |
04bb2f94 RR |
2592 | */ |
2593 | #define NUMA_PERIOD_SLOTS 10 | |
a22b4b01 | 2594 | #define NUMA_PERIOD_THRESHOLD 7 |
04bb2f94 RR |
2595 | |
2596 | /* | |
2597 | * Increase the scan period (slow down scanning) if the majority of | |
2598 | * our memory is already on our local node, or if the majority of | |
2599 | * the page accesses are shared with other processes. | |
2600 | * Otherwise, decrease the scan period. | |
2601 | */ | |
2602 | static void update_task_scan_period(struct task_struct *p, | |
2603 | unsigned long shared, unsigned long private) | |
2604 | { | |
2605 | unsigned int period_slot; | |
37ec97de | 2606 | int lr_ratio, ps_ratio; |
04bb2f94 RR |
2607 | int diff; |
2608 | ||
2609 | unsigned long remote = p->numa_faults_locality[0]; | |
2610 | unsigned long local = p->numa_faults_locality[1]; | |
2611 | ||
2612 | /* | |
2613 | * If there were no record hinting faults then either the task is | |
7d380f24 | 2614 | * completely idle or all activity is in areas that are not of interest |
074c2381 MG |
2615 | * to automatic numa balancing. Related to that, if there were failed |
2616 | * migration then it implies we are migrating too quickly or the local | |
2617 | * node is overloaded. In either case, scan slower | |
04bb2f94 | 2618 | */ |
074c2381 | 2619 | if (local + shared == 0 || p->numa_faults_locality[2]) { |
04bb2f94 RR |
2620 | p->numa_scan_period = min(p->numa_scan_period_max, |
2621 | p->numa_scan_period << 1); | |
2622 | ||
2623 | p->mm->numa_next_scan = jiffies + | |
2624 | msecs_to_jiffies(p->numa_scan_period); | |
2625 | ||
2626 | return; | |
2627 | } | |
2628 | ||
2629 | /* | |
2630 | * Prepare to scale scan period relative to the current period. | |
2631 | * == NUMA_PERIOD_THRESHOLD scan period stays the same | |
2632 | * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) | |
2633 | * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) | |
2634 | */ | |
2635 | period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); | |
37ec97de RR |
2636 | lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); |
2637 | ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); | |
2638 | ||
2639 | if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { | |
2640 | /* | |
2641 | * Most memory accesses are local. There is no need to | |
2642 | * do fast NUMA scanning, since memory is already local. | |
2643 | */ | |
2644 | int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; | |
2645 | if (!slot) | |
2646 | slot = 1; | |
2647 | diff = slot * period_slot; | |
2648 | } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { | |
2649 | /* | |
2650 | * Most memory accesses are shared with other tasks. | |
2651 | * There is no point in continuing fast NUMA scanning, | |
2652 | * since other tasks may just move the memory elsewhere. | |
2653 | */ | |
2654 | int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; | |
04bb2f94 RR |
2655 | if (!slot) |
2656 | slot = 1; | |
2657 | diff = slot * period_slot; | |
2658 | } else { | |
04bb2f94 | 2659 | /* |
37ec97de RR |
2660 | * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, |
2661 | * yet they are not on the local NUMA node. Speed up | |
2662 | * NUMA scanning to get the memory moved over. | |
04bb2f94 | 2663 | */ |
37ec97de RR |
2664 | int ratio = max(lr_ratio, ps_ratio); |
2665 | diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; | |
04bb2f94 RR |
2666 | } |
2667 | ||
2668 | p->numa_scan_period = clamp(p->numa_scan_period + diff, | |
2669 | task_scan_min(p), task_scan_max(p)); | |
2670 | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); | |
2671 | } | |
2672 | ||
7e2703e6 RR |
2673 | /* |
2674 | * Get the fraction of time the task has been running since the last | |
2675 | * NUMA placement cycle. The scheduler keeps similar statistics, but | |
2676 | * decays those on a 32ms period, which is orders of magnitude off | |
2677 | * from the dozens-of-seconds NUMA balancing period. Use the scheduler | |
2678 | * stats only if the task is so new there are no NUMA statistics yet. | |
2679 | */ | |
2680 | static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) | |
2681 | { | |
2682 | u64 runtime, delta, now; | |
2683 | /* Use the start of this time slice to avoid calculations. */ | |
2684 | now = p->se.exec_start; | |
2685 | runtime = p->se.sum_exec_runtime; | |
2686 | ||
2687 | if (p->last_task_numa_placement) { | |
2688 | delta = runtime - p->last_sum_exec_runtime; | |
2689 | *period = now - p->last_task_numa_placement; | |
a860fa7b XX |
2690 | |
2691 | /* Avoid time going backwards, prevent potential divide error: */ | |
2692 | if (unlikely((s64)*period < 0)) | |
2693 | *period = 0; | |
7e2703e6 | 2694 | } else { |
c7b50216 | 2695 | delta = p->se.avg.load_sum; |
9d89c257 | 2696 | *period = LOAD_AVG_MAX; |
7e2703e6 RR |
2697 | } |
2698 | ||
2699 | p->last_sum_exec_runtime = runtime; | |
2700 | p->last_task_numa_placement = now; | |
2701 | ||
2702 | return delta; | |
2703 | } | |
2704 | ||
54009416 RR |
2705 | /* |
2706 | * Determine the preferred nid for a task in a numa_group. This needs to | |
2707 | * be done in a way that produces consistent results with group_weight, | |
2708 | * otherwise workloads might not converge. | |
2709 | */ | |
2710 | static int preferred_group_nid(struct task_struct *p, int nid) | |
2711 | { | |
2712 | nodemask_t nodes; | |
2713 | int dist; | |
2714 | ||
2715 | /* Direct connections between all NUMA nodes. */ | |
2716 | if (sched_numa_topology_type == NUMA_DIRECT) | |
2717 | return nid; | |
2718 | ||
2719 | /* | |
2720 | * On a system with glueless mesh NUMA topology, group_weight | |
2721 | * scores nodes according to the number of NUMA hinting faults on | |
2722 | * both the node itself, and on nearby nodes. | |
2723 | */ | |
2724 | if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { | |
2725 | unsigned long score, max_score = 0; | |
2726 | int node, max_node = nid; | |
2727 | ||
2728 | dist = sched_max_numa_distance; | |
2729 | ||
5c7b1aaf | 2730 | for_each_node_state(node, N_CPU) { |
54009416 RR |
2731 | score = group_weight(p, node, dist); |
2732 | if (score > max_score) { | |
2733 | max_score = score; | |
2734 | max_node = node; | |
2735 | } | |
2736 | } | |
2737 | return max_node; | |
2738 | } | |
2739 | ||
2740 | /* | |
2741 | * Finding the preferred nid in a system with NUMA backplane | |
2742 | * interconnect topology is more involved. The goal is to locate | |
2743 | * tasks from numa_groups near each other in the system, and | |
2744 | * untangle workloads from different sides of the system. This requires | |
2745 | * searching down the hierarchy of node groups, recursively searching | |
2746 | * inside the highest scoring group of nodes. The nodemask tricks | |
2747 | * keep the complexity of the search down. | |
2748 | */ | |
5c7b1aaf | 2749 | nodes = node_states[N_CPU]; |
54009416 RR |
2750 | for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { |
2751 | unsigned long max_faults = 0; | |
81907478 | 2752 | nodemask_t max_group = NODE_MASK_NONE; |
54009416 RR |
2753 | int a, b; |
2754 | ||
2755 | /* Are there nodes at this distance from each other? */ | |
2756 | if (!find_numa_distance(dist)) | |
2757 | continue; | |
2758 | ||
2759 | for_each_node_mask(a, nodes) { | |
2760 | unsigned long faults = 0; | |
2761 | nodemask_t this_group; | |
2762 | nodes_clear(this_group); | |
2763 | ||
2764 | /* Sum group's NUMA faults; includes a==b case. */ | |
2765 | for_each_node_mask(b, nodes) { | |
2766 | if (node_distance(a, b) < dist) { | |
2767 | faults += group_faults(p, b); | |
2768 | node_set(b, this_group); | |
2769 | node_clear(b, nodes); | |
2770 | } | |
2771 | } | |
2772 | ||
2773 | /* Remember the top group. */ | |
2774 | if (faults > max_faults) { | |
2775 | max_faults = faults; | |
2776 | max_group = this_group; | |
2777 | /* | |
2778 | * subtle: at the smallest distance there is | |
2779 | * just one node left in each "group", the | |
2780 | * winner is the preferred nid. | |
2781 | */ | |
2782 | nid = a; | |
2783 | } | |
2784 | } | |
2785 | /* Next round, evaluate the nodes within max_group. */ | |
890a5409 JB |
2786 | if (!max_faults) |
2787 | break; | |
54009416 RR |
2788 | nodes = max_group; |
2789 | } | |
2790 | return nid; | |
2791 | } | |
2792 | ||
cbee9f88 PZ |
2793 | static void task_numa_placement(struct task_struct *p) |
2794 | { | |
98fa15f3 | 2795 | int seq, nid, max_nid = NUMA_NO_NODE; |
f03bb676 | 2796 | unsigned long max_faults = 0; |
04bb2f94 | 2797 | unsigned long fault_types[2] = { 0, 0 }; |
7e2703e6 RR |
2798 | unsigned long total_faults; |
2799 | u64 runtime, period; | |
7dbd13ed | 2800 | spinlock_t *group_lock = NULL; |
cb361d8c | 2801 | struct numa_group *ng; |
cbee9f88 | 2802 | |
7e5a2c17 JL |
2803 | /* |
2804 | * The p->mm->numa_scan_seq field gets updated without | |
2805 | * exclusive access. Use READ_ONCE() here to ensure | |
2806 | * that the field is read in a single access: | |
2807 | */ | |
316c1608 | 2808 | seq = READ_ONCE(p->mm->numa_scan_seq); |
cbee9f88 PZ |
2809 | if (p->numa_scan_seq == seq) |
2810 | return; | |
2811 | p->numa_scan_seq = seq; | |
598f0ec0 | 2812 | p->numa_scan_period_max = task_scan_max(p); |
cbee9f88 | 2813 | |
7e2703e6 RR |
2814 | total_faults = p->numa_faults_locality[0] + |
2815 | p->numa_faults_locality[1]; | |
2816 | runtime = numa_get_avg_runtime(p, &period); | |
2817 | ||
7dbd13ed | 2818 | /* If the task is part of a group prevent parallel updates to group stats */ |
cb361d8c JH |
2819 | ng = deref_curr_numa_group(p); |
2820 | if (ng) { | |
2821 | group_lock = &ng->lock; | |
60e69eed | 2822 | spin_lock_irq(group_lock); |
7dbd13ed MG |
2823 | } |
2824 | ||
688b7585 MG |
2825 | /* Find the node with the highest number of faults */ |
2826 | for_each_online_node(nid) { | |
44dba3d5 IM |
2827 | /* Keep track of the offsets in numa_faults array */ |
2828 | int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; | |
83e1d2cd | 2829 | unsigned long faults = 0, group_faults = 0; |
44dba3d5 | 2830 | int priv; |
745d6147 | 2831 | |
be1e4e76 | 2832 | for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { |
7e2703e6 | 2833 | long diff, f_diff, f_weight; |
8c8a743c | 2834 | |
44dba3d5 IM |
2835 | mem_idx = task_faults_idx(NUMA_MEM, nid, priv); |
2836 | membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); | |
2837 | cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); | |
2838 | cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); | |
745d6147 | 2839 | |
ac8e895b | 2840 | /* Decay existing window, copy faults since last scan */ |
44dba3d5 IM |
2841 | diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; |
2842 | fault_types[priv] += p->numa_faults[membuf_idx]; | |
2843 | p->numa_faults[membuf_idx] = 0; | |
fb13c7ee | 2844 | |
7e2703e6 RR |
2845 | /* |
2846 | * Normalize the faults_from, so all tasks in a group | |
2847 | * count according to CPU use, instead of by the raw | |
2848 | * number of faults. Tasks with little runtime have | |
2849 | * little over-all impact on throughput, and thus their | |
2850 | * faults are less important. | |
2851 | */ | |
2852 | f_weight = div64_u64(runtime << 16, period + 1); | |
44dba3d5 | 2853 | f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / |
7e2703e6 | 2854 | (total_faults + 1); |
44dba3d5 IM |
2855 | f_diff = f_weight - p->numa_faults[cpu_idx] / 2; |
2856 | p->numa_faults[cpubuf_idx] = 0; | |
50ec8a40 | 2857 | |
44dba3d5 IM |
2858 | p->numa_faults[mem_idx] += diff; |
2859 | p->numa_faults[cpu_idx] += f_diff; | |
2860 | faults += p->numa_faults[mem_idx]; | |
83e1d2cd | 2861 | p->total_numa_faults += diff; |
cb361d8c | 2862 | if (ng) { |
44dba3d5 IM |
2863 | /* |
2864 | * safe because we can only change our own group | |
2865 | * | |
2866 | * mem_idx represents the offset for a given | |
2867 | * nid and priv in a specific region because it | |
2868 | * is at the beginning of the numa_faults array. | |
2869 | */ | |
cb361d8c | 2870 | ng->faults[mem_idx] += diff; |
5b763a14 | 2871 | ng->faults[cpu_idx] += f_diff; |
cb361d8c JH |
2872 | ng->total_faults += diff; |
2873 | group_faults += ng->faults[mem_idx]; | |
8c8a743c | 2874 | } |
ac8e895b MG |
2875 | } |
2876 | ||
cb361d8c | 2877 | if (!ng) { |
f03bb676 SD |
2878 | if (faults > max_faults) { |
2879 | max_faults = faults; | |
2880 | max_nid = nid; | |
2881 | } | |
2882 | } else if (group_faults > max_faults) { | |
2883 | max_faults = group_faults; | |
688b7585 MG |
2884 | max_nid = nid; |
2885 | } | |
83e1d2cd MG |
2886 | } |
2887 | ||
5c7b1aaf | 2888 | /* Cannot migrate task to CPU-less node */ |
d1db9fb4 | 2889 | max_nid = numa_nearest_node(max_nid, N_CPU); |
5c7b1aaf | 2890 | |
cb361d8c JH |
2891 | if (ng) { |
2892 | numa_group_count_active_nodes(ng); | |
60e69eed | 2893 | spin_unlock_irq(group_lock); |
f03bb676 | 2894 | max_nid = preferred_group_nid(p, max_nid); |
688b7585 MG |
2895 | } |
2896 | ||
bb97fc31 RR |
2897 | if (max_faults) { |
2898 | /* Set the new preferred node */ | |
2899 | if (max_nid != p->numa_preferred_nid) | |
2900 | sched_setnuma(p, max_nid); | |
3a7053b3 | 2901 | } |
30619c89 SD |
2902 | |
2903 | update_task_scan_period(p, fault_types[0], fault_types[1]); | |
cbee9f88 PZ |
2904 | } |
2905 | ||
8c8a743c PZ |
2906 | static inline int get_numa_group(struct numa_group *grp) |
2907 | { | |
c45a7795 | 2908 | return refcount_inc_not_zero(&grp->refcount); |
8c8a743c PZ |
2909 | } |
2910 | ||
2911 | static inline void put_numa_group(struct numa_group *grp) | |
2912 | { | |
c45a7795 | 2913 | if (refcount_dec_and_test(&grp->refcount)) |
8c8a743c PZ |
2914 | kfree_rcu(grp, rcu); |
2915 | } | |
2916 | ||
3e6a9418 MG |
2917 | static void task_numa_group(struct task_struct *p, int cpupid, int flags, |
2918 | int *priv) | |
8c8a743c PZ |
2919 | { |
2920 | struct numa_group *grp, *my_grp; | |
2921 | struct task_struct *tsk; | |
2922 | bool join = false; | |
2923 | int cpu = cpupid_to_cpu(cpupid); | |
2924 | int i; | |
2925 | ||
cb361d8c | 2926 | if (unlikely(!deref_curr_numa_group(p))) { |
8c8a743c | 2927 | unsigned int size = sizeof(struct numa_group) + |
7a2341fc BR |
2928 | NR_NUMA_HINT_FAULT_STATS * |
2929 | nr_node_ids * sizeof(unsigned long); | |
8c8a743c PZ |
2930 | |
2931 | grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); | |
2932 | if (!grp) | |
2933 | return; | |
2934 | ||
c45a7795 | 2935 | refcount_set(&grp->refcount, 1); |
4142c3eb RR |
2936 | grp->active_nodes = 1; |
2937 | grp->max_faults_cpu = 0; | |
8c8a743c | 2938 | spin_lock_init(&grp->lock); |
e29cf08b | 2939 | grp->gid = p->pid; |
8c8a743c | 2940 | |
be1e4e76 | 2941 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) |
44dba3d5 | 2942 | grp->faults[i] = p->numa_faults[i]; |
8c8a743c | 2943 | |
989348b5 | 2944 | grp->total_faults = p->total_numa_faults; |
83e1d2cd | 2945 | |
8c8a743c PZ |
2946 | grp->nr_tasks++; |
2947 | rcu_assign_pointer(p->numa_group, grp); | |
2948 | } | |
2949 | ||
2950 | rcu_read_lock(); | |
316c1608 | 2951 | tsk = READ_ONCE(cpu_rq(cpu)->curr); |
8c8a743c PZ |
2952 | |
2953 | if (!cpupid_match_pid(tsk, cpupid)) | |
3354781a | 2954 | goto no_join; |
8c8a743c PZ |
2955 | |
2956 | grp = rcu_dereference(tsk->numa_group); | |
2957 | if (!grp) | |
3354781a | 2958 | goto no_join; |
8c8a743c | 2959 | |
cb361d8c | 2960 | my_grp = deref_curr_numa_group(p); |
8c8a743c | 2961 | if (grp == my_grp) |
3354781a | 2962 | goto no_join; |
8c8a743c PZ |
2963 | |
2964 | /* | |
2965 | * Only join the other group if its bigger; if we're the bigger group, | |
2966 | * the other task will join us. | |
2967 | */ | |
2968 | if (my_grp->nr_tasks > grp->nr_tasks) | |
3354781a | 2969 | goto no_join; |
8c8a743c PZ |
2970 | |
2971 | /* | |
2972 | * Tie-break on the grp address. | |
2973 | */ | |
2974 | if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) | |
3354781a | 2975 | goto no_join; |
8c8a743c | 2976 | |
dabe1d99 RR |
2977 | /* Always join threads in the same process. */ |
2978 | if (tsk->mm == current->mm) | |
2979 | join = true; | |
2980 | ||
2981 | /* Simple filter to avoid false positives due to PID collisions */ | |
2982 | if (flags & TNF_SHARED) | |
2983 | join = true; | |
8c8a743c | 2984 | |
3e6a9418 MG |
2985 | /* Update priv based on whether false sharing was detected */ |
2986 | *priv = !join; | |
2987 | ||
dabe1d99 | 2988 | if (join && !get_numa_group(grp)) |
3354781a | 2989 | goto no_join; |
8c8a743c | 2990 | |
8c8a743c PZ |
2991 | rcu_read_unlock(); |
2992 | ||
2993 | if (!join) | |
2994 | return; | |
2995 | ||
09348d75 | 2996 | WARN_ON_ONCE(irqs_disabled()); |
60e69eed | 2997 | double_lock_irq(&my_grp->lock, &grp->lock); |
989348b5 | 2998 | |
be1e4e76 | 2999 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { |
44dba3d5 IM |
3000 | my_grp->faults[i] -= p->numa_faults[i]; |
3001 | grp->faults[i] += p->numa_faults[i]; | |
8c8a743c | 3002 | } |
989348b5 MG |
3003 | my_grp->total_faults -= p->total_numa_faults; |
3004 | grp->total_faults += p->total_numa_faults; | |
8c8a743c | 3005 | |
8c8a743c PZ |
3006 | my_grp->nr_tasks--; |
3007 | grp->nr_tasks++; | |
3008 | ||
3009 | spin_unlock(&my_grp->lock); | |
60e69eed | 3010 | spin_unlock_irq(&grp->lock); |
8c8a743c PZ |
3011 | |
3012 | rcu_assign_pointer(p->numa_group, grp); | |
3013 | ||
3014 | put_numa_group(my_grp); | |
3354781a PZ |
3015 | return; |
3016 | ||
3017 | no_join: | |
3018 | rcu_read_unlock(); | |
3019 | return; | |
8c8a743c PZ |
3020 | } |
3021 | ||
16d51a59 | 3022 | /* |
3b03706f | 3023 | * Get rid of NUMA statistics associated with a task (either current or dead). |
16d51a59 JH |
3024 | * If @final is set, the task is dead and has reached refcount zero, so we can |
3025 | * safely free all relevant data structures. Otherwise, there might be | |
3026 | * concurrent reads from places like load balancing and procfs, and we should | |
3027 | * reset the data back to default state without freeing ->numa_faults. | |
3028 | */ | |
3029 | void task_numa_free(struct task_struct *p, bool final) | |
8c8a743c | 3030 | { |
cb361d8c JH |
3031 | /* safe: p either is current or is being freed by current */ |
3032 | struct numa_group *grp = rcu_dereference_raw(p->numa_group); | |
16d51a59 | 3033 | unsigned long *numa_faults = p->numa_faults; |
e9dd685c SR |
3034 | unsigned long flags; |
3035 | int i; | |
8c8a743c | 3036 | |
16d51a59 JH |
3037 | if (!numa_faults) |
3038 | return; | |
3039 | ||
8c8a743c | 3040 | if (grp) { |
e9dd685c | 3041 | spin_lock_irqsave(&grp->lock, flags); |
be1e4e76 | 3042 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) |
44dba3d5 | 3043 | grp->faults[i] -= p->numa_faults[i]; |
989348b5 | 3044 | grp->total_faults -= p->total_numa_faults; |
83e1d2cd | 3045 | |
8c8a743c | 3046 | grp->nr_tasks--; |
e9dd685c | 3047 | spin_unlock_irqrestore(&grp->lock, flags); |
35b123e2 | 3048 | RCU_INIT_POINTER(p->numa_group, NULL); |
8c8a743c PZ |
3049 | put_numa_group(grp); |
3050 | } | |
3051 | ||
16d51a59 JH |
3052 | if (final) { |
3053 | p->numa_faults = NULL; | |
3054 | kfree(numa_faults); | |
3055 | } else { | |
3056 | p->total_numa_faults = 0; | |
3057 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) | |
3058 | numa_faults[i] = 0; | |
3059 | } | |
8c8a743c PZ |
3060 | } |
3061 | ||
cbee9f88 PZ |
3062 | /* |
3063 | * Got a PROT_NONE fault for a page on @node. | |
3064 | */ | |
58b46da3 | 3065 | void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) |
cbee9f88 PZ |
3066 | { |
3067 | struct task_struct *p = current; | |
6688cc05 | 3068 | bool migrated = flags & TNF_MIGRATED; |
58b46da3 | 3069 | int cpu_node = task_node(current); |
792568ec | 3070 | int local = !!(flags & TNF_FAULT_LOCAL); |
4142c3eb | 3071 | struct numa_group *ng; |
ac8e895b | 3072 | int priv; |
cbee9f88 | 3073 | |
2a595721 | 3074 | if (!static_branch_likely(&sched_numa_balancing)) |
1a687c2e MG |
3075 | return; |
3076 | ||
9ff1d9ff MG |
3077 | /* for example, ksmd faulting in a user's mm */ |
3078 | if (!p->mm) | |
3079 | return; | |
3080 | ||
33024536 YH |
3081 | /* |
3082 | * NUMA faults statistics are unnecessary for the slow memory | |
3083 | * node for memory tiering mode. | |
3084 | */ | |
3085 | if (!node_is_toptier(mem_node) && | |
3086 | (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || | |
3087 | !cpupid_valid(last_cpupid))) | |
3088 | return; | |
3089 | ||
f809ca9a | 3090 | /* Allocate buffer to track faults on a per-node basis */ |
44dba3d5 IM |
3091 | if (unlikely(!p->numa_faults)) { |
3092 | int size = sizeof(*p->numa_faults) * | |
be1e4e76 | 3093 | NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; |
f809ca9a | 3094 | |
44dba3d5 IM |
3095 | p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); |
3096 | if (!p->numa_faults) | |
f809ca9a | 3097 | return; |
745d6147 | 3098 | |
83e1d2cd | 3099 | p->total_numa_faults = 0; |
04bb2f94 | 3100 | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); |
f809ca9a | 3101 | } |
cbee9f88 | 3102 | |
8c8a743c PZ |
3103 | /* |
3104 | * First accesses are treated as private, otherwise consider accesses | |
3105 | * to be private if the accessing pid has not changed | |
3106 | */ | |
3107 | if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { | |
3108 | priv = 1; | |
3109 | } else { | |
3110 | priv = cpupid_match_pid(p, last_cpupid); | |
6688cc05 | 3111 | if (!priv && !(flags & TNF_NO_GROUP)) |
3e6a9418 | 3112 | task_numa_group(p, last_cpupid, flags, &priv); |
8c8a743c PZ |
3113 | } |
3114 | ||
792568ec RR |
3115 | /* |
3116 | * If a workload spans multiple NUMA nodes, a shared fault that | |
3117 | * occurs wholly within the set of nodes that the workload is | |
3118 | * actively using should be counted as local. This allows the | |
3119 | * scan rate to slow down when a workload has settled down. | |
3120 | */ | |
cb361d8c | 3121 | ng = deref_curr_numa_group(p); |
4142c3eb RR |
3122 | if (!priv && !local && ng && ng->active_nodes > 1 && |
3123 | numa_is_active_node(cpu_node, ng) && | |
3124 | numa_is_active_node(mem_node, ng)) | |
792568ec RR |
3125 | local = 1; |
3126 | ||
2739d3ee | 3127 | /* |
e1ff516a YW |
3128 | * Retry to migrate task to preferred node periodically, in case it |
3129 | * previously failed, or the scheduler moved us. | |
2739d3ee | 3130 | */ |
b6a60cf3 SD |
3131 | if (time_after(jiffies, p->numa_migrate_retry)) { |
3132 | task_numa_placement(p); | |
6b9a7460 | 3133 | numa_migrate_preferred(p); |
b6a60cf3 | 3134 | } |
6b9a7460 | 3135 | |
b32e86b4 IM |
3136 | if (migrated) |
3137 | p->numa_pages_migrated += pages; | |
074c2381 MG |
3138 | if (flags & TNF_MIGRATE_FAIL) |
3139 | p->numa_faults_locality[2] += pages; | |
b32e86b4 | 3140 | |
44dba3d5 IM |
3141 | p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; |
3142 | p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; | |
792568ec | 3143 | p->numa_faults_locality[local] += pages; |
cbee9f88 PZ |
3144 | } |
3145 | ||
6e5fb223 PZ |
3146 | static void reset_ptenuma_scan(struct task_struct *p) |
3147 | { | |
7e5a2c17 JL |
3148 | /* |
3149 | * We only did a read acquisition of the mmap sem, so | |
3150 | * p->mm->numa_scan_seq is written to without exclusive access | |
3151 | * and the update is not guaranteed to be atomic. That's not | |
3152 | * much of an issue though, since this is just used for | |
3153 | * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not | |
3154 | * expensive, to avoid any form of compiler optimizations: | |
3155 | */ | |
316c1608 | 3156 | WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); |
6e5fb223 PZ |
3157 | p->mm->numa_scan_offset = 0; |
3158 | } | |
3159 | ||
b7a5b537 | 3160 | static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) |
fc137c0d | 3161 | { |
20f58648 | 3162 | unsigned long pids; |
fc137c0d R |
3163 | /* |
3164 | * Allow unconditional access first two times, so that all the (pages) | |
3165 | * of VMAs get prot_none fault introduced irrespective of accesses. | |
3166 | * This is also done to avoid any side effect of task scanning | |
3167 | * amplifying the unfairness of disjoint set of VMAs' access. | |
3168 | */ | |
84db47ca | 3169 | if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) |
fc137c0d R |
3170 | return true; |
3171 | ||
f3a6c979 | 3172 | pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; |
b7a5b537 MG |
3173 | if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) |
3174 | return true; | |
3175 | ||
3176 | /* | |
3177 | * Complete a scan that has already started regardless of PID access, or | |
3178 | * some VMAs may never be scanned in multi-threaded applications: | |
3179 | */ | |
3180 | if (mm->numa_scan_offset > vma->vm_start) { | |
3181 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); | |
3182 | return true; | |
3183 | } | |
3184 | ||
3185 | return false; | |
fc137c0d R |
3186 | } |
3187 | ||
20f58648 R |
3188 | #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) |
3189 | ||
cbee9f88 PZ |
3190 | /* |
3191 | * The expensive part of numa migration is done from task_work context. | |
3192 | * Triggered from task_tick_numa(). | |
3193 | */ | |
9434f9f5 | 3194 | static void task_numa_work(struct callback_head *work) |
cbee9f88 PZ |
3195 | { |
3196 | unsigned long migrate, next_scan, now = jiffies; | |
3197 | struct task_struct *p = current; | |
3198 | struct mm_struct *mm = p->mm; | |
51170840 | 3199 | u64 runtime = p->se.sum_exec_runtime; |
6e5fb223 | 3200 | struct vm_area_struct *vma; |
9f40604c | 3201 | unsigned long start, end; |
598f0ec0 | 3202 | unsigned long nr_pte_updates = 0; |
4620f8c1 | 3203 | long pages, virtpages; |
214dbc42 | 3204 | struct vma_iterator vmi; |
f169c62f MG |
3205 | bool vma_pids_skipped; |
3206 | bool vma_pids_forced = false; | |
cbee9f88 | 3207 | |
9148a3a1 | 3208 | SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); |
cbee9f88 | 3209 | |
b34920d4 | 3210 | work->next = work; |
cbee9f88 PZ |
3211 | /* |
3212 | * Who cares about NUMA placement when they're dying. | |
3213 | * | |
3214 | * NOTE: make sure not to dereference p->mm before this check, | |
3215 | * exit_task_work() happens _after_ exit_mm() so we could be called | |
3216 | * without p->mm even though we still had it when we enqueued this | |
3217 | * work. | |
3218 | */ | |
3219 | if (p->flags & PF_EXITING) | |
3220 | return; | |
3221 | ||
930aa174 | 3222 | if (!mm->numa_next_scan) { |
7e8d16b6 MG |
3223 | mm->numa_next_scan = now + |
3224 | msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | |
b8593bfd MG |
3225 | } |
3226 | ||
cbee9f88 PZ |
3227 | /* |
3228 | * Enforce maximal scan/migration frequency.. | |
3229 | */ | |
3230 | migrate = mm->numa_next_scan; | |
3231 | if (time_before(now, migrate)) | |
3232 | return; | |
3233 | ||
598f0ec0 MG |
3234 | if (p->numa_scan_period == 0) { |
3235 | p->numa_scan_period_max = task_scan_max(p); | |
b5dd77c8 | 3236 | p->numa_scan_period = task_scan_start(p); |
598f0ec0 | 3237 | } |
cbee9f88 | 3238 | |
fb003b80 | 3239 | next_scan = now + msecs_to_jiffies(p->numa_scan_period); |
8baceabc | 3240 | if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) |
cbee9f88 PZ |
3241 | return; |
3242 | ||
19a78d11 PZ |
3243 | /* |
3244 | * Delay this task enough that another task of this mm will likely win | |
3245 | * the next time around. | |
3246 | */ | |
3247 | p->node_stamp += 2 * TICK_NSEC; | |
3248 | ||
9f40604c MG |
3249 | pages = sysctl_numa_balancing_scan_size; |
3250 | pages <<= 20 - PAGE_SHIFT; /* MB in pages */ | |
4620f8c1 | 3251 | virtpages = pages * 8; /* Scan up to this much virtual space */ |
9f40604c MG |
3252 | if (!pages) |
3253 | return; | |
cbee9f88 | 3254 | |
4620f8c1 | 3255 | |
d8ed45c5 | 3256 | if (!mmap_read_trylock(mm)) |
8655d549 | 3257 | return; |
f169c62f MG |
3258 | |
3259 | /* | |
3260 | * VMAs are skipped if the current PID has not trapped a fault within | |
3261 | * the VMA recently. Allow scanning to be forced if there is no | |
3262 | * suitable VMA remaining. | |
3263 | */ | |
3264 | vma_pids_skipped = false; | |
3265 | ||
3266 | retry_pids: | |
3267 | start = mm->numa_scan_offset; | |
214dbc42 LH |
3268 | vma_iter_init(&vmi, mm, start); |
3269 | vma = vma_next(&vmi); | |
6e5fb223 PZ |
3270 | if (!vma) { |
3271 | reset_ptenuma_scan(p); | |
9f40604c | 3272 | start = 0; |
214dbc42 LH |
3273 | vma_iter_set(&vmi, start); |
3274 | vma = vma_next(&vmi); | |
6e5fb223 | 3275 | } |
0cd4d02c | 3276 | |
214dbc42 | 3277 | do { |
6b79c57b | 3278 | if (!vma_migratable(vma) || !vma_policy_mof(vma) || |
8e76d4ee | 3279 | is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { |
ed2da8b7 | 3280 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); |
6e5fb223 | 3281 | continue; |
6b79c57b | 3282 | } |
6e5fb223 | 3283 | |
4591ce4f MG |
3284 | /* |
3285 | * Shared library pages mapped by multiple processes are not | |
3286 | * migrated as it is expected they are cache replicated. Avoid | |
3287 | * hinting faults in read-only file-backed mappings or the vdso | |
3288 | * as migrating the pages will be of marginal benefit. | |
3289 | */ | |
3290 | if (!vma->vm_mm || | |
ed2da8b7 MG |
3291 | (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { |
3292 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); | |
4591ce4f | 3293 | continue; |
ed2da8b7 | 3294 | } |
4591ce4f | 3295 | |
3c67f474 MG |
3296 | /* |
3297 | * Skip inaccessible VMAs to avoid any confusion between | |
3298 | * PROT_NONE and NUMA hinting ptes | |
3299 | */ | |
ed2da8b7 MG |
3300 | if (!vma_is_accessible(vma)) { |
3301 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); | |
3c67f474 | 3302 | continue; |
ed2da8b7 | 3303 | } |
4591ce4f | 3304 | |
ef6a22b7 MG |
3305 | /* Initialise new per-VMA NUMAB state. */ |
3306 | if (!vma->numab_state) { | |
3307 | vma->numab_state = kzalloc(sizeof(struct vma_numab_state), | |
3308 | GFP_KERNEL); | |
3309 | if (!vma->numab_state) | |
3310 | continue; | |
3311 | ||
84db47ca R |
3312 | vma->numab_state->start_scan_seq = mm->numa_scan_seq; |
3313 | ||
ef6a22b7 MG |
3314 | vma->numab_state->next_scan = now + |
3315 | msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | |
20f58648 R |
3316 | |
3317 | /* Reset happens after 4 times scan delay of scan start */ | |
f3a6c979 | 3318 | vma->numab_state->pids_active_reset = vma->numab_state->next_scan + |
20f58648 | 3319 | msecs_to_jiffies(VMA_PID_RESET_PERIOD); |
f169c62f MG |
3320 | |
3321 | /* | |
3322 | * Ensure prev_scan_seq does not match numa_scan_seq, | |
3323 | * to prevent VMAs being skipped prematurely on the | |
3324 | * first scan: | |
3325 | */ | |
3326 | vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; | |
ef6a22b7 MG |
3327 | } |
3328 | ||
3329 | /* | |
3330 | * Scanning the VMA's of short lived tasks add more overhead. So | |
3331 | * delay the scan for new VMAs. | |
3332 | */ | |
3333 | if (mm->numa_scan_seq && time_before(jiffies, | |
ed2da8b7 MG |
3334 | vma->numab_state->next_scan)) { |
3335 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); | |
ef6a22b7 | 3336 | continue; |
ed2da8b7 | 3337 | } |
ef6a22b7 | 3338 | |
2e2675db | 3339 | /* RESET access PIDs regularly for old VMAs. */ |
20f58648 | 3340 | if (mm->numa_scan_seq && |
f3a6c979 MG |
3341 | time_after(jiffies, vma->numab_state->pids_active_reset)) { |
3342 | vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + | |
20f58648 | 3343 | msecs_to_jiffies(VMA_PID_RESET_PERIOD); |
f3a6c979 MG |
3344 | vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); |
3345 | vma->numab_state->pids_active[1] = 0; | |
20f58648 R |
3346 | } |
3347 | ||
f169c62f MG |
3348 | /* Do not rescan VMAs twice within the same sequence. */ |
3349 | if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { | |
3350 | mm->numa_scan_offset = vma->vm_end; | |
3351 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); | |
3352 | continue; | |
3353 | } | |
3354 | ||
3355 | /* | |
3356 | * Do not scan the VMA if task has not accessed it, unless no other | |
3357 | * VMA candidate exists. | |
3358 | */ | |
3359 | if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { | |
3360 | vma_pids_skipped = true; | |
2e2675db R |
3361 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); |
3362 | continue; | |
3363 | } | |
3364 | ||
9f40604c MG |
3365 | do { |
3366 | start = max(start, vma->vm_start); | |
3367 | end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); | |
3368 | end = min(end, vma->vm_end); | |
4620f8c1 | 3369 | nr_pte_updates = change_prot_numa(vma, start, end); |
598f0ec0 MG |
3370 | |
3371 | /* | |
4620f8c1 RR |
3372 | * Try to scan sysctl_numa_balancing_size worth of |
3373 | * hpages that have at least one present PTE that | |
3374 | * is not already pte-numa. If the VMA contains | |
3375 | * areas that are unused or already full of prot_numa | |
3376 | * PTEs, scan up to virtpages, to skip through those | |
3377 | * areas faster. | |
598f0ec0 MG |
3378 | */ |
3379 | if (nr_pte_updates) | |
3380 | pages -= (end - start) >> PAGE_SHIFT; | |
4620f8c1 | 3381 | virtpages -= (end - start) >> PAGE_SHIFT; |
6e5fb223 | 3382 | |
9f40604c | 3383 | start = end; |
4620f8c1 | 3384 | if (pages <= 0 || virtpages <= 0) |
9f40604c | 3385 | goto out; |
3cf1962c RR |
3386 | |
3387 | cond_resched(); | |
9f40604c | 3388 | } while (end != vma->vm_end); |
f169c62f MG |
3389 | |
3390 | /* VMA scan is complete, do not scan until next sequence. */ | |
3391 | vma->numab_state->prev_scan_seq = mm->numa_scan_seq; | |
3392 | ||
3393 | /* | |
3394 | * Only force scan within one VMA at a time, to limit the | |
3395 | * cost of scanning a potentially uninteresting VMA. | |
3396 | */ | |
3397 | if (vma_pids_forced) | |
3398 | break; | |
214dbc42 | 3399 | } for_each_vma(vmi, vma); |
6e5fb223 | 3400 | |
f169c62f MG |
3401 | /* |
3402 | * If no VMAs are remaining and VMAs were skipped due to the PID | |
3403 | * not accessing the VMA previously, then force a scan to ensure | |
3404 | * forward progress: | |
3405 | */ | |
3406 | if (!vma && !vma_pids_forced && vma_pids_skipped) { | |
3407 | vma_pids_forced = true; | |
3408 | goto retry_pids; | |
3409 | } | |
3410 | ||
9f40604c | 3411 | out: |
6e5fb223 | 3412 | /* |
c69307d5 PZ |
3413 | * It is possible to reach the end of the VMA list but the last few |
3414 | * VMAs are not guaranteed to the vma_migratable. If they are not, we | |
3415 | * would find the !migratable VMA on the next scan but not reset the | |
3416 | * scanner to the start so check it now. | |
6e5fb223 PZ |
3417 | */ |
3418 | if (vma) | |
9f40604c | 3419 | mm->numa_scan_offset = start; |
6e5fb223 PZ |
3420 | else |
3421 | reset_ptenuma_scan(p); | |
d8ed45c5 | 3422 | mmap_read_unlock(mm); |
51170840 RR |
3423 | |
3424 | /* | |
3425 | * Make sure tasks use at least 32x as much time to run other code | |
3426 | * than they used here, to limit NUMA PTE scanning overhead to 3% max. | |
3427 | * Usually update_task_scan_period slows down scanning enough; on an | |
3428 | * overloaded system we need to limit overhead on a per task basis. | |
3429 | */ | |
3430 | if (unlikely(p->se.sum_exec_runtime != runtime)) { | |
3431 | u64 diff = p->se.sum_exec_runtime - runtime; | |
3432 | p->node_stamp += 32 * diff; | |
3433 | } | |
cbee9f88 PZ |
3434 | } |
3435 | ||
d35927a1 VS |
3436 | void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) |
3437 | { | |
3438 | int mm_users = 0; | |
3439 | struct mm_struct *mm = p->mm; | |
3440 | ||
3441 | if (mm) { | |
3442 | mm_users = atomic_read(&mm->mm_users); | |
3443 | if (mm_users == 1) { | |
3444 | mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | |
3445 | mm->numa_scan_seq = 0; | |
3446 | } | |
3447 | } | |
3448 | p->node_stamp = 0; | |
3449 | p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; | |
3450 | p->numa_scan_period = sysctl_numa_balancing_scan_delay; | |
70ce3ea9 | 3451 | p->numa_migrate_retry = 0; |
b34920d4 | 3452 | /* Protect against double add, see task_tick_numa and task_numa_work */ |
d35927a1 VS |
3453 | p->numa_work.next = &p->numa_work; |
3454 | p->numa_faults = NULL; | |
12bf8a7e HW |
3455 | p->numa_pages_migrated = 0; |
3456 | p->total_numa_faults = 0; | |
d35927a1 VS |
3457 | RCU_INIT_POINTER(p->numa_group, NULL); |
3458 | p->last_task_numa_placement = 0; | |
3459 | p->last_sum_exec_runtime = 0; | |
3460 | ||
b34920d4 VS |
3461 | init_task_work(&p->numa_work, task_numa_work); |
3462 | ||
d35927a1 VS |
3463 | /* New address space, reset the preferred nid */ |
3464 | if (!(clone_flags & CLONE_VM)) { | |
3465 | p->numa_preferred_nid = NUMA_NO_NODE; | |
3466 | return; | |
3467 | } | |
3468 | ||
3469 | /* | |
3470 | * New thread, keep existing numa_preferred_nid which should be copied | |
3471 | * already by arch_dup_task_struct but stagger when scans start. | |
3472 | */ | |
3473 | if (mm) { | |
3474 | unsigned int delay; | |
3475 | ||
3476 | delay = min_t(unsigned int, task_scan_max(current), | |
3477 | current->numa_scan_period * mm_users * NSEC_PER_MSEC); | |
3478 | delay += 2 * TICK_NSEC; | |
3479 | p->node_stamp = delay; | |
3480 | } | |
3481 | } | |
3482 | ||
cbee9f88 PZ |
3483 | /* |
3484 | * Drive the periodic memory faults.. | |
3485 | */ | |
b1546edc | 3486 | static void task_tick_numa(struct rq *rq, struct task_struct *curr) |
cbee9f88 PZ |
3487 | { |
3488 | struct callback_head *work = &curr->numa_work; | |
3489 | u64 period, now; | |
3490 | ||
3491 | /* | |
3492 | * We don't care about NUMA placement if we don't have memory. | |
3493 | */ | |
b3f9916d | 3494 | if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) |
cbee9f88 PZ |
3495 | return; |
3496 | ||
3497 | /* | |
3498 | * Using runtime rather than walltime has the dual advantage that | |
3499 | * we (mostly) drive the selection from busy threads and that the | |
3500 | * task needs to have done some actual work before we bother with | |
3501 | * NUMA placement. | |
3502 | */ | |
3503 | now = curr->se.sum_exec_runtime; | |
3504 | period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; | |
3505 | ||
25b3e5a3 | 3506 | if (now > curr->node_stamp + period) { |
4b96a29b | 3507 | if (!curr->node_stamp) |
b5dd77c8 | 3508 | curr->numa_scan_period = task_scan_start(curr); |
19a78d11 | 3509 | curr->node_stamp += period; |
cbee9f88 | 3510 | |
b34920d4 | 3511 | if (!time_before(jiffies, curr->mm->numa_next_scan)) |
91989c70 | 3512 | task_work_add(curr, work, TWA_RESUME); |
cbee9f88 PZ |
3513 | } |
3514 | } | |
3fed382b | 3515 | |
3f9672ba SD |
3516 | static void update_scan_period(struct task_struct *p, int new_cpu) |
3517 | { | |
3518 | int src_nid = cpu_to_node(task_cpu(p)); | |
3519 | int dst_nid = cpu_to_node(new_cpu); | |
3520 | ||
05cbdf4f MG |
3521 | if (!static_branch_likely(&sched_numa_balancing)) |
3522 | return; | |
3523 | ||
3f9672ba SD |
3524 | if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) |
3525 | return; | |
3526 | ||
05cbdf4f MG |
3527 | if (src_nid == dst_nid) |
3528 | return; | |
3529 | ||
3530 | /* | |
3531 | * Allow resets if faults have been trapped before one scan | |
3532 | * has completed. This is most likely due to a new task that | |
3533 | * is pulled cross-node due to wakeups or load balancing. | |
3534 | */ | |
3535 | if (p->numa_scan_seq) { | |
3536 | /* | |
3537 | * Avoid scan adjustments if moving to the preferred | |
3538 | * node or if the task was not previously running on | |
3539 | * the preferred node. | |
3540 | */ | |
3541 | if (dst_nid == p->numa_preferred_nid || | |
98fa15f3 AK |
3542 | (p->numa_preferred_nid != NUMA_NO_NODE && |
3543 | src_nid != p->numa_preferred_nid)) | |
05cbdf4f MG |
3544 | return; |
3545 | } | |
3546 | ||
3547 | p->numa_scan_period = task_scan_start(p); | |
3f9672ba SD |
3548 | } |
3549 | ||
cbee9f88 PZ |
3550 | #else |
3551 | static void task_tick_numa(struct rq *rq, struct task_struct *curr) | |
3552 | { | |
3553 | } | |
0ec8aa00 PZ |
3554 | |
3555 | static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) | |
3556 | { | |
3557 | } | |
3558 | ||
3559 | static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) | |
3560 | { | |
3561 | } | |
3fed382b | 3562 | |
3f9672ba SD |
3563 | static inline void update_scan_period(struct task_struct *p, int new_cpu) |
3564 | { | |
3565 | } | |
3566 | ||
cbee9f88 PZ |
3567 | #endif /* CONFIG_NUMA_BALANCING */ |
3568 | ||
30cfdcfc DA |
3569 | static void |
3570 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
3571 | { | |
3572 | update_load_add(&cfs_rq->load, se->load.weight); | |
367456c7 | 3573 | #ifdef CONFIG_SMP |
0ec8aa00 PZ |
3574 | if (entity_is_task(se)) { |
3575 | struct rq *rq = rq_of(cfs_rq); | |
3576 | ||
3577 | account_numa_enqueue(rq, task_of(se)); | |
3578 | list_add(&se->group_node, &rq->cfs_tasks); | |
3579 | } | |
367456c7 | 3580 | #endif |
30cfdcfc | 3581 | cfs_rq->nr_running++; |
a480adde JD |
3582 | if (se_is_idle(se)) |
3583 | cfs_rq->idle_nr_running++; | |
30cfdcfc DA |
3584 | } |
3585 | ||
3586 | static void | |
3587 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
3588 | { | |
3589 | update_load_sub(&cfs_rq->load, se->load.weight); | |
bfdb198c | 3590 | #ifdef CONFIG_SMP |
0ec8aa00 PZ |
3591 | if (entity_is_task(se)) { |
3592 | account_numa_dequeue(rq_of(cfs_rq), task_of(se)); | |
b87f1724 | 3593 | list_del_init(&se->group_node); |
0ec8aa00 | 3594 | } |
bfdb198c | 3595 | #endif |
30cfdcfc | 3596 | cfs_rq->nr_running--; |
a480adde JD |
3597 | if (se_is_idle(se)) |
3598 | cfs_rq->idle_nr_running--; | |
30cfdcfc DA |
3599 | } |
3600 | ||
8d5b9025 PZ |
3601 | /* |
3602 | * Signed add and clamp on underflow. | |
3603 | * | |
3604 | * Explicitly do a load-store to ensure the intermediate value never hits | |
3605 | * memory. This allows lockless observations without ever seeing the negative | |
3606 | * values. | |
3607 | */ | |
3608 | #define add_positive(_ptr, _val) do { \ | |
3609 | typeof(_ptr) ptr = (_ptr); \ | |
3610 | typeof(_val) val = (_val); \ | |
3611 | typeof(*ptr) res, var = READ_ONCE(*ptr); \ | |
3612 | \ | |
3613 | res = var + val; \ | |
3614 | \ | |
3615 | if (val < 0 && res > var) \ | |
3616 | res = 0; \ | |
3617 | \ | |
3618 | WRITE_ONCE(*ptr, res); \ | |
3619 | } while (0) | |
3620 | ||
3621 | /* | |
3622 | * Unsigned subtract and clamp on underflow. | |
3623 | * | |
3624 | * Explicitly do a load-store to ensure the intermediate value never hits | |
3625 | * memory. This allows lockless observations without ever seeing the negative | |
3626 | * values. | |
3627 | */ | |
3628 | #define sub_positive(_ptr, _val) do { \ | |
3629 | typeof(_ptr) ptr = (_ptr); \ | |
3630 | typeof(*ptr) val = (_val); \ | |
3631 | typeof(*ptr) res, var = READ_ONCE(*ptr); \ | |
3632 | res = var - val; \ | |
3633 | if (res > var) \ | |
3634 | res = 0; \ | |
3635 | WRITE_ONCE(*ptr, res); \ | |
3636 | } while (0) | |
3637 | ||
b5c0ce7b PB |
3638 | /* |
3639 | * Remove and clamp on negative, from a local variable. | |
3640 | * | |
3641 | * A variant of sub_positive(), which does not use explicit load-store | |
3642 | * and is thus optimized for local variable updates. | |
3643 | */ | |
3644 | #define lsub_positive(_ptr, _val) do { \ | |
3645 | typeof(_ptr) ptr = (_ptr); \ | |
3646 | *ptr -= min_t(typeof(*ptr), *ptr, _val); \ | |
3647 | } while (0) | |
3648 | ||
8d5b9025 | 3649 | #ifdef CONFIG_SMP |
8d5b9025 PZ |
3650 | static inline void |
3651 | enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
3652 | { | |
3653 | cfs_rq->avg.load_avg += se->avg.load_avg; | |
3654 | cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; | |
3655 | } | |
3656 | ||
3657 | static inline void | |
3658 | dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
3659 | { | |
3660 | sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); | |
2d02fa8c VG |
3661 | sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); |
3662 | /* See update_cfs_rq_load_avg() */ | |
3663 | cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, | |
3664 | cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); | |
8d5b9025 PZ |
3665 | } |
3666 | #else | |
3667 | static inline void | |
8d5b9025 PZ |
3668 | enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } |
3669 | static inline void | |
3670 | dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } | |
3671 | #endif | |
3672 | ||
eab03c23 AW |
3673 | static void reweight_eevdf(struct cfs_rq *cfs_rq, struct sched_entity *se, |
3674 | unsigned long weight) | |
3675 | { | |
3676 | unsigned long old_weight = se->load.weight; | |
3677 | u64 avruntime = avg_vruntime(cfs_rq); | |
3678 | s64 vlag, vslice; | |
3679 | ||
3680 | /* | |
3681 | * VRUNTIME | |
be8858db | 3682 | * -------- |
eab03c23 AW |
3683 | * |
3684 | * COROLLARY #1: The virtual runtime of the entity needs to be | |
3685 | * adjusted if re-weight at !0-lag point. | |
3686 | * | |
3687 | * Proof: For contradiction assume this is not true, so we can | |
3688 | * re-weight without changing vruntime at !0-lag point. | |
3689 | * | |
3690 | * Weight VRuntime Avg-VRuntime | |
3691 | * before w v V | |
3692 | * after w' v' V' | |
3693 | * | |
3694 | * Since lag needs to be preserved through re-weight: | |
3695 | * | |
3696 | * lag = (V - v)*w = (V'- v')*w', where v = v' | |
3697 | * ==> V' = (V - v)*w/w' + v (1) | |
3698 | * | |
3699 | * Let W be the total weight of the entities before reweight, | |
3700 | * since V' is the new weighted average of entities: | |
3701 | * | |
3702 | * V' = (WV + w'v - wv) / (W + w' - w) (2) | |
3703 | * | |
3704 | * by using (1) & (2) we obtain: | |
3705 | * | |
3706 | * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v | |
3707 | * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v | |
3708 | * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v | |
3709 | * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3) | |
3710 | * | |
3711 | * Since we are doing at !0-lag point which means V != v, we | |
3712 | * can simplify (3): | |
3713 | * | |
3714 | * ==> W / (W + w' - w) = w / w' | |
3715 | * ==> Ww' = Ww + ww' - ww | |
3716 | * ==> W * (w' - w) = w * (w' - w) | |
3717 | * ==> W = w (re-weight indicates w' != w) | |
3718 | * | |
3719 | * So the cfs_rq contains only one entity, hence vruntime of | |
3720 | * the entity @v should always equal to the cfs_rq's weighted | |
3721 | * average vruntime @V, which means we will always re-weight | |
3722 | * at 0-lag point, thus breach assumption. Proof completed. | |
3723 | * | |
3724 | * | |
3725 | * COROLLARY #2: Re-weight does NOT affect weighted average | |
3726 | * vruntime of all the entities. | |
3727 | * | |
3728 | * Proof: According to corollary #1, Eq. (1) should be: | |
3729 | * | |
3730 | * (V - v)*w = (V' - v')*w' | |
3731 | * ==> v' = V' - (V - v)*w/w' (4) | |
3732 | * | |
3733 | * According to the weighted average formula, we have: | |
3734 | * | |
3735 | * V' = (WV - wv + w'v') / (W - w + w') | |
3736 | * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w') | |
3737 | * = (WV - wv + w'V' - Vw + wv) / (W - w + w') | |
3738 | * = (WV + w'V' - Vw) / (W - w + w') | |
3739 | * | |
3740 | * ==> V'*(W - w + w') = WV + w'V' - Vw | |
3741 | * ==> V' * (W - w) = (W - w) * V (5) | |
3742 | * | |
3743 | * If the entity is the only one in the cfs_rq, then reweight | |
3744 | * always occurs at 0-lag point, so V won't change. Or else | |
3745 | * there are other entities, hence W != w, then Eq. (5) turns | |
3746 | * into V' = V. So V won't change in either case, proof done. | |
3747 | * | |
3748 | * | |
3749 | * So according to corollary #1 & #2, the effect of re-weight | |
3750 | * on vruntime should be: | |
3751 | * | |
3752 | * v' = V' - (V - v) * w / w' (4) | |
3753 | * = V - (V - v) * w / w' | |
3754 | * = V - vl * w / w' | |
3755 | * = V - vl' | |
3756 | */ | |
3757 | if (avruntime != se->vruntime) { | |
3758 | vlag = (s64)(avruntime - se->vruntime); | |
3759 | vlag = div_s64(vlag * old_weight, weight); | |
3760 | se->vruntime = avruntime - vlag; | |
3761 | } | |
3762 | ||
3763 | /* | |
3764 | * DEADLINE | |
be8858db | 3765 | * -------- |
eab03c23 AW |
3766 | * |
3767 | * When the weight changes, the virtual time slope changes and | |
3768 | * we should adjust the relative virtual deadline accordingly. | |
3769 | * | |
3770 | * d' = v' + (d - v)*w/w' | |
3771 | * = V' - (V - v)*w/w' + (d - v)*w/w' | |
3772 | * = V - (V - v)*w/w' + (d - v)*w/w' | |
3773 | * = V + (d - V)*w/w' | |
3774 | */ | |
3775 | vslice = (s64)(se->deadline - avruntime); | |
3776 | vslice = div_s64(vslice * old_weight, weight); | |
3777 | se->deadline = avruntime + vslice; | |
3778 | } | |
3779 | ||
9059393e | 3780 | static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, |
0dacee1b | 3781 | unsigned long weight) |
9059393e | 3782 | { |
eab03c23 | 3783 | bool curr = cfs_rq->curr == se; |
86bfbb7c | 3784 | |
9059393e VG |
3785 | if (se->on_rq) { |
3786 | /* commit outstanding execution time */ | |
eab03c23 | 3787 | if (curr) |
9059393e | 3788 | update_curr(cfs_rq); |
af4cf404 | 3789 | else |
eab03c23 | 3790 | __dequeue_entity(cfs_rq, se); |
1724b95b | 3791 | update_load_sub(&cfs_rq->load, se->load.weight); |
9059393e VG |
3792 | } |
3793 | dequeue_load_avg(cfs_rq, se); | |
3794 | ||
86bfbb7c PZ |
3795 | if (!se->on_rq) { |
3796 | /* | |
3797 | * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), | |
3798 | * we need to scale se->vlag when w_i changes. | |
3799 | */ | |
eab03c23 | 3800 | se->vlag = div_s64(se->vlag * se->load.weight, weight); |
147f3efa | 3801 | } else { |
eab03c23 | 3802 | reweight_eevdf(cfs_rq, se, weight); |
86bfbb7c PZ |
3803 | } |
3804 | ||
eab03c23 AW |
3805 | update_load_set(&se->load, weight); |
3806 | ||
9059393e | 3807 | #ifdef CONFIG_SMP |
1ea6c46a | 3808 | do { |
87e867b4 | 3809 | u32 divider = get_pelt_divider(&se->avg); |
1ea6c46a PZ |
3810 | |
3811 | se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); | |
1ea6c46a | 3812 | } while (0); |
9059393e VG |
3813 | #endif |
3814 | ||
3815 | enqueue_load_avg(cfs_rq, se); | |
af4cf404 | 3816 | if (se->on_rq) { |
1724b95b | 3817 | update_load_add(&cfs_rq->load, se->load.weight); |
5068d840 | 3818 | if (!curr) |
eab03c23 | 3819 | __enqueue_entity(cfs_rq, se); |
5068d840 YL |
3820 | |
3821 | /* | |
3822 | * The entity's vruntime has been adjusted, so let's check | |
3823 | * whether the rq-wide min_vruntime needs updated too. Since | |
3824 | * the calculations above require stable min_vruntime rather | |
3825 | * than up-to-date one, we do the update at the end of the | |
3826 | * reweight process. | |
3827 | */ | |
3828 | update_min_vruntime(cfs_rq); | |
af4cf404 | 3829 | } |
9059393e VG |
3830 | } |
3831 | ||
3832 | void reweight_task(struct task_struct *p, int prio) | |
3833 | { | |
3834 | struct sched_entity *se = &p->se; | |
3835 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
3836 | struct load_weight *load = &se->load; | |
3837 | unsigned long weight = scale_load(sched_prio_to_weight[prio]); | |
3838 | ||
0dacee1b | 3839 | reweight_entity(cfs_rq, se, weight); |
9059393e VG |
3840 | load->inv_weight = sched_prio_to_wmult[prio]; |
3841 | } | |
3842 | ||
51bf903b CZ |
3843 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); |
3844 | ||
3ff6dcac | 3845 | #ifdef CONFIG_FAIR_GROUP_SCHED |
387f77cc | 3846 | #ifdef CONFIG_SMP |
cef27403 PZ |
3847 | /* |
3848 | * All this does is approximate the hierarchical proportion which includes that | |
3849 | * global sum we all love to hate. | |
3850 | * | |
3851 | * That is, the weight of a group entity, is the proportional share of the | |
3852 | * group weight based on the group runqueue weights. That is: | |
3853 | * | |
3854 | * tg->weight * grq->load.weight | |
3855 | * ge->load.weight = ----------------------------- (1) | |
08f7c2f4 | 3856 | * \Sum grq->load.weight |
cef27403 PZ |
3857 | * |
3858 | * Now, because computing that sum is prohibitively expensive to compute (been | |
3859 | * there, done that) we approximate it with this average stuff. The average | |
3860 | * moves slower and therefore the approximation is cheaper and more stable. | |
3861 | * | |
3862 | * So instead of the above, we substitute: | |
3863 | * | |
3864 | * grq->load.weight -> grq->avg.load_avg (2) | |
3865 | * | |
3866 | * which yields the following: | |
3867 | * | |
3868 | * tg->weight * grq->avg.load_avg | |
3869 | * ge->load.weight = ------------------------------ (3) | |
08f7c2f4 | 3870 | * tg->load_avg |
cef27403 PZ |
3871 | * |
3872 | * Where: tg->load_avg ~= \Sum grq->avg.load_avg | |
3873 | * | |
3874 | * That is shares_avg, and it is right (given the approximation (2)). | |
3875 | * | |
3876 | * The problem with it is that because the average is slow -- it was designed | |
3877 | * to be exactly that of course -- this leads to transients in boundary | |
3878 | * conditions. In specific, the case where the group was idle and we start the | |
3879 | * one task. It takes time for our CPU's grq->avg.load_avg to build up, | |
3880 | * yielding bad latency etc.. | |
3881 | * | |
3882 | * Now, in that special case (1) reduces to: | |
3883 | * | |
3884 | * tg->weight * grq->load.weight | |
17de4ee0 | 3885 | * ge->load.weight = ----------------------------- = tg->weight (4) |
08f7c2f4 | 3886 | * grp->load.weight |
cef27403 PZ |
3887 | * |
3888 | * That is, the sum collapses because all other CPUs are idle; the UP scenario. | |
3889 | * | |
3890 | * So what we do is modify our approximation (3) to approach (4) in the (near) | |
3891 | * UP case, like: | |
3892 | * | |
3893 | * ge->load.weight = | |
3894 | * | |
3895 | * tg->weight * grq->load.weight | |
3896 | * --------------------------------------------------- (5) | |
3897 | * tg->load_avg - grq->avg.load_avg + grq->load.weight | |
3898 | * | |
17de4ee0 PZ |
3899 | * But because grq->load.weight can drop to 0, resulting in a divide by zero, |
3900 | * we need to use grq->avg.load_avg as its lower bound, which then gives: | |
3901 | * | |
3902 | * | |
3903 | * tg->weight * grq->load.weight | |
3904 | * ge->load.weight = ----------------------------- (6) | |
08f7c2f4 | 3905 | * tg_load_avg' |
17de4ee0 PZ |
3906 | * |
3907 | * Where: | |
3908 | * | |
3909 | * tg_load_avg' = tg->load_avg - grq->avg.load_avg + | |
3910 | * max(grq->load.weight, grq->avg.load_avg) | |
cef27403 PZ |
3911 | * |
3912 | * And that is shares_weight and is icky. In the (near) UP case it approaches | |
3913 | * (4) while in the normal case it approaches (3). It consistently | |
3914 | * overestimates the ge->load.weight and therefore: | |
3915 | * | |
3916 | * \Sum ge->load.weight >= tg->weight | |
3917 | * | |
3918 | * hence icky! | |
3919 | */ | |
2c8e4dce | 3920 | static long calc_group_shares(struct cfs_rq *cfs_rq) |
cf5f0acf | 3921 | { |
7c80cfc9 PZ |
3922 | long tg_weight, tg_shares, load, shares; |
3923 | struct task_group *tg = cfs_rq->tg; | |
3924 | ||
3925 | tg_shares = READ_ONCE(tg->shares); | |
cf5f0acf | 3926 | |
3d4b60d3 | 3927 | load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); |
cf5f0acf | 3928 | |
ea1dc6fc | 3929 | tg_weight = atomic_long_read(&tg->load_avg); |
3ff6dcac | 3930 | |
ea1dc6fc PZ |
3931 | /* Ensure tg_weight >= load */ |
3932 | tg_weight -= cfs_rq->tg_load_avg_contrib; | |
3933 | tg_weight += load; | |
3ff6dcac | 3934 | |
7c80cfc9 | 3935 | shares = (tg_shares * load); |
cf5f0acf PZ |
3936 | if (tg_weight) |
3937 | shares /= tg_weight; | |
3ff6dcac | 3938 | |
b8fd8423 DE |
3939 | /* |
3940 | * MIN_SHARES has to be unscaled here to support per-CPU partitioning | |
3941 | * of a group with small tg->shares value. It is a floor value which is | |
3942 | * assigned as a minimum load.weight to the sched_entity representing | |
3943 | * the group on a CPU. | |
3944 | * | |
3945 | * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 | |
3946 | * on an 8-core system with 8 tasks each runnable on one CPU shares has | |
3947 | * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In | |
3948 | * case no task is runnable on a CPU MIN_SHARES=2 should be returned | |
3949 | * instead of 0. | |
3950 | */ | |
7c80cfc9 | 3951 | return clamp_t(long, shares, MIN_SHARES, tg_shares); |
3ff6dcac | 3952 | } |
387f77cc | 3953 | #endif /* CONFIG_SMP */ |
ea1dc6fc | 3954 | |
1ea6c46a PZ |
3955 | /* |
3956 | * Recomputes the group entity based on the current state of its group | |
3957 | * runqueue. | |
3958 | */ | |
3959 | static void update_cfs_group(struct sched_entity *se) | |
2069dd75 | 3960 | { |
1ea6c46a | 3961 | struct cfs_rq *gcfs_rq = group_cfs_rq(se); |
0dacee1b | 3962 | long shares; |
2069dd75 | 3963 | |
1ea6c46a | 3964 | if (!gcfs_rq) |
89ee048f VG |
3965 | return; |
3966 | ||
1ea6c46a | 3967 | if (throttled_hierarchy(gcfs_rq)) |
2069dd75 | 3968 | return; |
89ee048f | 3969 | |
3ff6dcac | 3970 | #ifndef CONFIG_SMP |
0dacee1b | 3971 | shares = READ_ONCE(gcfs_rq->tg->shares); |
7c80cfc9 | 3972 | #else |
eab03c23 | 3973 | shares = calc_group_shares(gcfs_rq); |
3ff6dcac | 3974 | #endif |
eab03c23 AW |
3975 | if (unlikely(se->load.weight != shares)) |
3976 | reweight_entity(cfs_rq_of(se), se, shares); | |
2069dd75 | 3977 | } |
89ee048f | 3978 | |
2069dd75 | 3979 | #else /* CONFIG_FAIR_GROUP_SCHED */ |
1ea6c46a | 3980 | static inline void update_cfs_group(struct sched_entity *se) |
2069dd75 PZ |
3981 | { |
3982 | } | |
3983 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
3984 | ||
ea14b57e | 3985 | static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) |
a030d738 | 3986 | { |
43964409 LT |
3987 | struct rq *rq = rq_of(cfs_rq); |
3988 | ||
a4f9a0e5 | 3989 | if (&rq->cfs == cfs_rq) { |
a030d738 VK |
3990 | /* |
3991 | * There are a few boundary cases this might miss but it should | |
3992 | * get called often enough that that should (hopefully) not be | |
9783be2c | 3993 | * a real problem. |
a030d738 VK |
3994 | * |
3995 | * It will not get called when we go idle, because the idle | |
3996 | * thread is a different class (!fair), nor will the utilization | |
3997 | * number include things like RT tasks. | |
3998 | * | |
3999 | * As is, the util number is not freq-invariant (we'd have to | |
4000 | * implement arch_scale_freq_capacity() for that). | |
4001 | * | |
82762d2a | 4002 | * See cpu_util_cfs(). |
a030d738 | 4003 | */ |
ea14b57e | 4004 | cpufreq_update_util(rq, flags); |
a030d738 VK |
4005 | } |
4006 | } | |
4007 | ||
141965c7 | 4008 | #ifdef CONFIG_SMP |
e2f3e35f VD |
4009 | static inline bool load_avg_is_decayed(struct sched_avg *sa) |
4010 | { | |
4011 | if (sa->load_sum) | |
4012 | return false; | |
4013 | ||
4014 | if (sa->util_sum) | |
4015 | return false; | |
4016 | ||
4017 | if (sa->runnable_sum) | |
4018 | return false; | |
4019 | ||
4020 | /* | |
4021 | * _avg must be null when _sum are null because _avg = _sum / divider | |
4022 | * Make sure that rounding and/or propagation of PELT values never | |
4023 | * break this. | |
4024 | */ | |
4025 | SCHED_WARN_ON(sa->load_avg || | |
4026 | sa->util_avg || | |
4027 | sa->runnable_avg); | |
4028 | ||
4029 | return true; | |
4030 | } | |
4031 | ||
d05b4305 VD |
4032 | static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) |
4033 | { | |
4034 | return u64_u32_load_copy(cfs_rq->avg.last_update_time, | |
4035 | cfs_rq->last_update_time_copy); | |
4036 | } | |
c566e8e9 | 4037 | #ifdef CONFIG_FAIR_GROUP_SCHED |
fdaba61e RR |
4038 | /* |
4039 | * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list | |
4040 | * immediately before a parent cfs_rq, and cfs_rqs are removed from the list | |
4041 | * bottom-up, we only have to test whether the cfs_rq before us on the list | |
4042 | * is our child. | |
4043 | * If cfs_rq is not on the list, test whether a child needs its to be added to | |
4044 | * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). | |
4045 | */ | |
4046 | static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) | |
4047 | { | |
4048 | struct cfs_rq *prev_cfs_rq; | |
4049 | struct list_head *prev; | |
4050 | ||
4051 | if (cfs_rq->on_list) { | |
4052 | prev = cfs_rq->leaf_cfs_rq_list.prev; | |
4053 | } else { | |
4054 | struct rq *rq = rq_of(cfs_rq); | |
4055 | ||
4056 | prev = rq->tmp_alone_branch; | |
4057 | } | |
4058 | ||
4059 | prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); | |
4060 | ||
4061 | return (prev_cfs_rq->tg->parent == cfs_rq->tg); | |
4062 | } | |
a7b359fc OU |
4063 | |
4064 | static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) | |
4065 | { | |
4066 | if (cfs_rq->load.weight) | |
4067 | return false; | |
4068 | ||
e2f3e35f | 4069 | if (!load_avg_is_decayed(&cfs_rq->avg)) |
a7b359fc OU |
4070 | return false; |
4071 | ||
fdaba61e RR |
4072 | if (child_cfs_rq_on_list(cfs_rq)) |
4073 | return false; | |
4074 | ||
a7b359fc OU |
4075 | return true; |
4076 | } | |
4077 | ||
7c3edd2c PZ |
4078 | /** |
4079 | * update_tg_load_avg - update the tg's load avg | |
4080 | * @cfs_rq: the cfs_rq whose avg changed | |
7c3edd2c PZ |
4081 | * |
4082 | * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. | |
4083 | * However, because tg->load_avg is a global value there are performance | |
4084 | * considerations. | |
4085 | * | |
4086 | * In order to avoid having to look at the other cfs_rq's, we use a | |
4087 | * differential update where we store the last value we propagated. This in | |
4088 | * turn allows skipping updates if the differential is 'small'. | |
4089 | * | |
815abf5a | 4090 | * Updating tg's load_avg is necessary before update_cfs_share(). |
bb17f655 | 4091 | */ |
fe749158 | 4092 | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) |
bb17f655 | 4093 | { |
1528c661 AL |
4094 | long delta; |
4095 | u64 now; | |
bb17f655 | 4096 | |
aa0b7ae0 WL |
4097 | /* |
4098 | * No need to update load_avg for root_task_group as it is not used. | |
4099 | */ | |
4100 | if (cfs_rq->tg == &root_task_group) | |
4101 | return; | |
4102 | ||
f60a631a VG |
4103 | /* rq has been offline and doesn't contribute to the share anymore: */ |
4104 | if (!cpu_active(cpu_of(rq_of(cfs_rq)))) | |
4105 | return; | |
4106 | ||
1528c661 AL |
4107 | /* |
4108 | * For migration heavy workloads, access to tg->load_avg can be | |
4109 | * unbound. Limit the update rate to at most once per ms. | |
4110 | */ | |
4111 | now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); | |
4112 | if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) | |
4113 | return; | |
4114 | ||
4115 | delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; | |
fe749158 | 4116 | if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { |
9d89c257 YD |
4117 | atomic_long_add(delta, &cfs_rq->tg->load_avg); |
4118 | cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; | |
1528c661 | 4119 | cfs_rq->last_update_tg_load_avg = now; |
bb17f655 | 4120 | } |
8165e145 | 4121 | } |
f5f9739d | 4122 | |
f60a631a VG |
4123 | static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) |
4124 | { | |
4125 | long delta; | |
4126 | u64 now; | |
4127 | ||
4128 | /* | |
4129 | * No need to update load_avg for root_task_group, as it is not used. | |
4130 | */ | |
4131 | if (cfs_rq->tg == &root_task_group) | |
4132 | return; | |
4133 | ||
4134 | now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); | |
4135 | delta = 0 - cfs_rq->tg_load_avg_contrib; | |
4136 | atomic_long_add(delta, &cfs_rq->tg->load_avg); | |
4137 | cfs_rq->tg_load_avg_contrib = 0; | |
4138 | cfs_rq->last_update_tg_load_avg = now; | |
4139 | } | |
4140 | ||
4141 | /* CPU offline callback: */ | |
4142 | static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) | |
4143 | { | |
4144 | struct task_group *tg; | |
4145 | ||
4146 | lockdep_assert_rq_held(rq); | |
4147 | ||
4148 | /* | |
4149 | * The rq clock has already been updated in | |
4150 | * set_rq_offline(), so we should skip updating | |
4151 | * the rq clock again in unthrottle_cfs_rq(). | |
4152 | */ | |
4153 | rq_clock_start_loop_update(rq); | |
4154 | ||
4155 | rcu_read_lock(); | |
4156 | list_for_each_entry_rcu(tg, &task_groups, list) { | |
4157 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
4158 | ||
4159 | clear_tg_load_avg(cfs_rq); | |
4160 | } | |
4161 | rcu_read_unlock(); | |
4162 | ||
4163 | rq_clock_stop_loop_update(rq); | |
4164 | } | |
4165 | ||
ad936d86 | 4166 | /* |
97fb7a0a | 4167 | * Called within set_task_rq() right before setting a task's CPU. The |
ad936d86 BP |
4168 | * caller only guarantees p->pi_lock is held; no other assumptions, |
4169 | * including the state of rq->lock, should be made. | |
4170 | */ | |
4171 | void set_task_rq_fair(struct sched_entity *se, | |
4172 | struct cfs_rq *prev, struct cfs_rq *next) | |
4173 | { | |
0ccb977f PZ |
4174 | u64 p_last_update_time; |
4175 | u64 n_last_update_time; | |
4176 | ||
ad936d86 BP |
4177 | if (!sched_feat(ATTACH_AGE_LOAD)) |
4178 | return; | |
4179 | ||
4180 | /* | |
4181 | * We are supposed to update the task to "current" time, then its up to | |
4182 | * date and ready to go to new CPU/cfs_rq. But we have difficulty in | |
4183 | * getting what current time is, so simply throw away the out-of-date | |
4184 | * time. This will result in the wakee task is less decayed, but giving | |
4185 | * the wakee more load sounds not bad. | |
4186 | */ | |
0ccb977f PZ |
4187 | if (!(se->avg.last_update_time && prev)) |
4188 | return; | |
ad936d86 | 4189 | |
d05b4305 VD |
4190 | p_last_update_time = cfs_rq_last_update_time(prev); |
4191 | n_last_update_time = cfs_rq_last_update_time(next); | |
ad936d86 | 4192 | |
23127296 | 4193 | __update_load_avg_blocked_se(p_last_update_time, se); |
0ccb977f | 4194 | se->avg.last_update_time = n_last_update_time; |
ad936d86 | 4195 | } |
09a43ace | 4196 | |
0e2d2aaa PZ |
4197 | /* |
4198 | * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to | |
4199 | * propagate its contribution. The key to this propagation is the invariant | |
4200 | * that for each group: | |
4201 | * | |
4202 | * ge->avg == grq->avg (1) | |
4203 | * | |
4204 | * _IFF_ we look at the pure running and runnable sums. Because they | |
4205 | * represent the very same entity, just at different points in the hierarchy. | |
4206 | * | |
9f683953 VG |
4207 | * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial |
4208 | * and simply copies the running/runnable sum over (but still wrong, because | |
4209 | * the group entity and group rq do not have their PELT windows aligned). | |
0e2d2aaa | 4210 | * |
0dacee1b | 4211 | * However, update_tg_cfs_load() is more complex. So we have: |
0e2d2aaa PZ |
4212 | * |
4213 | * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) | |
4214 | * | |
4215 | * And since, like util, the runnable part should be directly transferable, | |
4216 | * the following would _appear_ to be the straight forward approach: | |
4217 | * | |
a4c3c049 | 4218 | * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) |
0e2d2aaa PZ |
4219 | * |
4220 | * And per (1) we have: | |
4221 | * | |
a4c3c049 | 4222 | * ge->avg.runnable_avg == grq->avg.runnable_avg |
0e2d2aaa PZ |
4223 | * |
4224 | * Which gives: | |
4225 | * | |
4226 | * ge->load.weight * grq->avg.load_avg | |
4227 | * ge->avg.load_avg = ----------------------------------- (4) | |
4228 | * grq->load.weight | |
4229 | * | |
4230 | * Except that is wrong! | |
4231 | * | |
4232 | * Because while for entities historical weight is not important and we | |
4233 | * really only care about our future and therefore can consider a pure | |
4234 | * runnable sum, runqueues can NOT do this. | |
4235 | * | |
4236 | * We specifically want runqueues to have a load_avg that includes | |
4237 | * historical weights. Those represent the blocked load, the load we expect | |
4238 | * to (shortly) return to us. This only works by keeping the weights as | |
4239 | * integral part of the sum. We therefore cannot decompose as per (3). | |
4240 | * | |
a4c3c049 VG |
4241 | * Another reason this doesn't work is that runnable isn't a 0-sum entity. |
4242 | * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the | |
4243 | * rq itself is runnable anywhere between 2/3 and 1 depending on how the | |
4244 | * runnable section of these tasks overlap (or not). If they were to perfectly | |
4245 | * align the rq as a whole would be runnable 2/3 of the time. If however we | |
4246 | * always have at least 1 runnable task, the rq as a whole is always runnable. | |
0e2d2aaa | 4247 | * |
a4c3c049 | 4248 | * So we'll have to approximate.. :/ |
0e2d2aaa | 4249 | * |
a4c3c049 | 4250 | * Given the constraint: |
0e2d2aaa | 4251 | * |
a4c3c049 | 4252 | * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX |
0e2d2aaa | 4253 | * |
a4c3c049 VG |
4254 | * We can construct a rule that adds runnable to a rq by assuming minimal |
4255 | * overlap. | |
0e2d2aaa | 4256 | * |
a4c3c049 | 4257 | * On removal, we'll assume each task is equally runnable; which yields: |
0e2d2aaa | 4258 | * |
a4c3c049 | 4259 | * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight |
0e2d2aaa | 4260 | * |
a4c3c049 | 4261 | * XXX: only do this for the part of runnable > running ? |
0e2d2aaa | 4262 | * |
0e2d2aaa | 4263 | */ |
09a43ace | 4264 | static inline void |
0e2d2aaa | 4265 | update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) |
09a43ace | 4266 | { |
7ceb7710 VG |
4267 | long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; |
4268 | u32 new_sum, divider; | |
09a43ace VG |
4269 | |
4270 | /* Nothing to update */ | |
7ceb7710 | 4271 | if (!delta_avg) |
09a43ace VG |
4272 | return; |
4273 | ||
87e867b4 VG |
4274 | /* |
4275 | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. | |
4276 | * See ___update_load_avg() for details. | |
4277 | */ | |
4278 | divider = get_pelt_divider(&cfs_rq->avg); | |
4279 | ||
7ceb7710 | 4280 | |
09a43ace VG |
4281 | /* Set new sched_entity's utilization */ |
4282 | se->avg.util_avg = gcfs_rq->avg.util_avg; | |
7ceb7710 VG |
4283 | new_sum = se->avg.util_avg * divider; |
4284 | delta_sum = (long)new_sum - (long)se->avg.util_sum; | |
4285 | se->avg.util_sum = new_sum; | |
09a43ace VG |
4286 | |
4287 | /* Update parent cfs_rq utilization */ | |
7ceb7710 VG |
4288 | add_positive(&cfs_rq->avg.util_avg, delta_avg); |
4289 | add_positive(&cfs_rq->avg.util_sum, delta_sum); | |
4290 | ||
4291 | /* See update_cfs_rq_load_avg() */ | |
4292 | cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, | |
4293 | cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); | |
09a43ace VG |
4294 | } |
4295 | ||
9f683953 VG |
4296 | static inline void |
4297 | update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) | |
4298 | { | |
95246d1e VG |
4299 | long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; |
4300 | u32 new_sum, divider; | |
9f683953 VG |
4301 | |
4302 | /* Nothing to update */ | |
95246d1e | 4303 | if (!delta_avg) |
9f683953 VG |
4304 | return; |
4305 | ||
87e867b4 VG |
4306 | /* |
4307 | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. | |
4308 | * See ___update_load_avg() for details. | |
4309 | */ | |
4310 | divider = get_pelt_divider(&cfs_rq->avg); | |
4311 | ||
9f683953 VG |
4312 | /* Set new sched_entity's runnable */ |
4313 | se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; | |
95246d1e VG |
4314 | new_sum = se->avg.runnable_avg * divider; |
4315 | delta_sum = (long)new_sum - (long)se->avg.runnable_sum; | |
4316 | se->avg.runnable_sum = new_sum; | |
9f683953 VG |
4317 | |
4318 | /* Update parent cfs_rq runnable */ | |
95246d1e VG |
4319 | add_positive(&cfs_rq->avg.runnable_avg, delta_avg); |
4320 | add_positive(&cfs_rq->avg.runnable_sum, delta_sum); | |
4321 | /* See update_cfs_rq_load_avg() */ | |
4322 | cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, | |
4323 | cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); | |
9f683953 VG |
4324 | } |
4325 | ||
09a43ace | 4326 | static inline void |
0dacee1b | 4327 | update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) |
09a43ace | 4328 | { |
2d02fa8c | 4329 | long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; |
0dacee1b VG |
4330 | unsigned long load_avg; |
4331 | u64 load_sum = 0; | |
2d02fa8c | 4332 | s64 delta_sum; |
95d68593 | 4333 | u32 divider; |
09a43ace | 4334 | |
0e2d2aaa PZ |
4335 | if (!runnable_sum) |
4336 | return; | |
09a43ace | 4337 | |
0e2d2aaa | 4338 | gcfs_rq->prop_runnable_sum = 0; |
09a43ace | 4339 | |
95d68593 VG |
4340 | /* |
4341 | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. | |
4342 | * See ___update_load_avg() for details. | |
4343 | */ | |
87e867b4 | 4344 | divider = get_pelt_divider(&cfs_rq->avg); |
95d68593 | 4345 | |
a4c3c049 VG |
4346 | if (runnable_sum >= 0) { |
4347 | /* | |
4348 | * Add runnable; clip at LOAD_AVG_MAX. Reflects that until | |
4349 | * the CPU is saturated running == runnable. | |
4350 | */ | |
4351 | runnable_sum += se->avg.load_sum; | |
95d68593 | 4352 | runnable_sum = min_t(long, runnable_sum, divider); |
a4c3c049 VG |
4353 | } else { |
4354 | /* | |
4355 | * Estimate the new unweighted runnable_sum of the gcfs_rq by | |
4356 | * assuming all tasks are equally runnable. | |
4357 | */ | |
4358 | if (scale_load_down(gcfs_rq->load.weight)) { | |
2d02fa8c | 4359 | load_sum = div_u64(gcfs_rq->avg.load_sum, |
a4c3c049 VG |
4360 | scale_load_down(gcfs_rq->load.weight)); |
4361 | } | |
4362 | ||
4363 | /* But make sure to not inflate se's runnable */ | |
4364 | runnable_sum = min(se->avg.load_sum, load_sum); | |
4365 | } | |
4366 | ||
4367 | /* | |
4368 | * runnable_sum can't be lower than running_sum | |
23127296 VG |
4369 | * Rescale running sum to be in the same range as runnable sum |
4370 | * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] | |
4371 | * runnable_sum is in [0 : LOAD_AVG_MAX] | |
a4c3c049 | 4372 | */ |
23127296 | 4373 | running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; |
a4c3c049 VG |
4374 | runnable_sum = max(runnable_sum, running_sum); |
4375 | ||
2d02fa8c VG |
4376 | load_sum = se_weight(se) * runnable_sum; |
4377 | load_avg = div_u64(load_sum, divider); | |
83c5e9d5 | 4378 | |
2d02fa8c VG |
4379 | delta_avg = load_avg - se->avg.load_avg; |
4380 | if (!delta_avg) | |
83c5e9d5 | 4381 | return; |
09a43ace | 4382 | |
2d02fa8c | 4383 | delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; |
7c7ad626 | 4384 | |
2d02fa8c VG |
4385 | se->avg.load_sum = runnable_sum; |
4386 | se->avg.load_avg = load_avg; | |
4387 | add_positive(&cfs_rq->avg.load_avg, delta_avg); | |
4388 | add_positive(&cfs_rq->avg.load_sum, delta_sum); | |
4389 | /* See update_cfs_rq_load_avg() */ | |
4390 | cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, | |
4391 | cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); | |
09a43ace VG |
4392 | } |
4393 | ||
0e2d2aaa | 4394 | static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) |
09a43ace | 4395 | { |
0e2d2aaa PZ |
4396 | cfs_rq->propagate = 1; |
4397 | cfs_rq->prop_runnable_sum += runnable_sum; | |
09a43ace VG |
4398 | } |
4399 | ||
4400 | /* Update task and its cfs_rq load average */ | |
4401 | static inline int propagate_entity_load_avg(struct sched_entity *se) | |
4402 | { | |
0e2d2aaa | 4403 | struct cfs_rq *cfs_rq, *gcfs_rq; |
09a43ace VG |
4404 | |
4405 | if (entity_is_task(se)) | |
4406 | return 0; | |
4407 | ||
0e2d2aaa PZ |
4408 | gcfs_rq = group_cfs_rq(se); |
4409 | if (!gcfs_rq->propagate) | |
09a43ace VG |
4410 | return 0; |
4411 | ||
0e2d2aaa PZ |
4412 | gcfs_rq->propagate = 0; |
4413 | ||
09a43ace VG |
4414 | cfs_rq = cfs_rq_of(se); |
4415 | ||
0e2d2aaa | 4416 | add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); |
09a43ace | 4417 | |
0e2d2aaa | 4418 | update_tg_cfs_util(cfs_rq, se, gcfs_rq); |
9f683953 | 4419 | update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); |
0dacee1b | 4420 | update_tg_cfs_load(cfs_rq, se, gcfs_rq); |
09a43ace | 4421 | |
ba19f51f | 4422 | trace_pelt_cfs_tp(cfs_rq); |
8de6242c | 4423 | trace_pelt_se_tp(se); |
ba19f51f | 4424 | |
09a43ace VG |
4425 | return 1; |
4426 | } | |
4427 | ||
bc427898 VG |
4428 | /* |
4429 | * Check if we need to update the load and the utilization of a blocked | |
4430 | * group_entity: | |
4431 | */ | |
4432 | static inline bool skip_blocked_update(struct sched_entity *se) | |
4433 | { | |
4434 | struct cfs_rq *gcfs_rq = group_cfs_rq(se); | |
4435 | ||
4436 | /* | |
4437 | * If sched_entity still have not zero load or utilization, we have to | |
4438 | * decay it: | |
4439 | */ | |
4440 | if (se->avg.load_avg || se->avg.util_avg) | |
4441 | return false; | |
4442 | ||
4443 | /* | |
4444 | * If there is a pending propagation, we have to update the load and | |
4445 | * the utilization of the sched_entity: | |
4446 | */ | |
0e2d2aaa | 4447 | if (gcfs_rq->propagate) |
bc427898 VG |
4448 | return false; |
4449 | ||
4450 | /* | |
4451 | * Otherwise, the load and the utilization of the sched_entity is | |
4452 | * already zero and there is no pending propagation, so it will be a | |
4453 | * waste of time to try to decay it: | |
4454 | */ | |
4455 | return true; | |
4456 | } | |
4457 | ||
6e83125c | 4458 | #else /* CONFIG_FAIR_GROUP_SCHED */ |
09a43ace | 4459 | |
fe749158 | 4460 | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} |
09a43ace | 4461 | |
f60a631a VG |
4462 | static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} |
4463 | ||
09a43ace VG |
4464 | static inline int propagate_entity_load_avg(struct sched_entity *se) |
4465 | { | |
4466 | return 0; | |
4467 | } | |
4468 | ||
0e2d2aaa | 4469 | static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} |
09a43ace | 4470 | |
6e83125c | 4471 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
c566e8e9 | 4472 | |
e2f3e35f VD |
4473 | #ifdef CONFIG_NO_HZ_COMMON |
4474 | static inline void migrate_se_pelt_lag(struct sched_entity *se) | |
4475 | { | |
4476 | u64 throttled = 0, now, lut; | |
4477 | struct cfs_rq *cfs_rq; | |
4478 | struct rq *rq; | |
4479 | bool is_idle; | |
4480 | ||
4481 | if (load_avg_is_decayed(&se->avg)) | |
4482 | return; | |
4483 | ||
4484 | cfs_rq = cfs_rq_of(se); | |
4485 | rq = rq_of(cfs_rq); | |
4486 | ||
4487 | rcu_read_lock(); | |
4488 | is_idle = is_idle_task(rcu_dereference(rq->curr)); | |
4489 | rcu_read_unlock(); | |
4490 | ||
4491 | /* | |
4492 | * The lag estimation comes with a cost we don't want to pay all the | |
4493 | * time. Hence, limiting to the case where the source CPU is idle and | |
4494 | * we know we are at the greatest risk to have an outdated clock. | |
4495 | */ | |
4496 | if (!is_idle) | |
4497 | return; | |
4498 | ||
4499 | /* | |
4500 | * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: | |
4501 | * | |
4502 | * last_update_time (the cfs_rq's last_update_time) | |
4503 | * = cfs_rq_clock_pelt()@cfs_rq_idle | |
4504 | * = rq_clock_pelt()@cfs_rq_idle | |
4505 | * - cfs->throttled_clock_pelt_time@cfs_rq_idle | |
4506 | * | |
4507 | * cfs_idle_lag (delta between rq's update and cfs_rq's update) | |
4508 | * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle | |
4509 | * | |
4510 | * rq_idle_lag (delta between now and rq's update) | |
4511 | * = sched_clock_cpu() - rq_clock()@rq_idle | |
4512 | * | |
4513 | * We can then write: | |
4514 | * | |
4515 | * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + | |
4516 | * sched_clock_cpu() - rq_clock()@rq_idle | |
4517 | * Where: | |
4518 | * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle | |
4519 | * rq_clock()@rq_idle is rq->clock_idle | |
4520 | * cfs->throttled_clock_pelt_time@cfs_rq_idle | |
4521 | * is cfs_rq->throttled_pelt_idle | |
4522 | */ | |
4523 | ||
4524 | #ifdef CONFIG_CFS_BANDWIDTH | |
4525 | throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); | |
4526 | /* The clock has been stopped for throttling */ | |
4527 | if (throttled == U64_MAX) | |
4528 | return; | |
4529 | #endif | |
4530 | now = u64_u32_load(rq->clock_pelt_idle); | |
4531 | /* | |
4532 | * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case | |
4533 | * is observed the old clock_pelt_idle value and the new clock_idle, | |
4534 | * which lead to an underestimation. The opposite would lead to an | |
4535 | * overestimation. | |
4536 | */ | |
4537 | smp_rmb(); | |
4538 | lut = cfs_rq_last_update_time(cfs_rq); | |
4539 | ||
4540 | now -= throttled; | |
4541 | if (now < lut) | |
4542 | /* | |
4543 | * cfs_rq->avg.last_update_time is more recent than our | |
4544 | * estimation, let's use it. | |
4545 | */ | |
4546 | now = lut; | |
4547 | else | |
4548 | now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); | |
4549 | ||
4550 | __update_load_avg_blocked_se(now, se); | |
4551 | } | |
4552 | #else | |
4553 | static void migrate_se_pelt_lag(struct sched_entity *se) {} | |
4554 | #endif | |
4555 | ||
3d30544f PZ |
4556 | /** |
4557 | * update_cfs_rq_load_avg - update the cfs_rq's load/util averages | |
23127296 | 4558 | * @now: current time, as per cfs_rq_clock_pelt() |
3d30544f | 4559 | * @cfs_rq: cfs_rq to update |
3d30544f PZ |
4560 | * |
4561 | * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) | |
d6531ab6 | 4562 | * avg. The immediate corollary is that all (fair) tasks must be attached. |
3d30544f PZ |
4563 | * |
4564 | * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. | |
4565 | * | |
a315da5e | 4566 | * Return: true if the load decayed or we removed load. |
7c3edd2c PZ |
4567 | * |
4568 | * Since both these conditions indicate a changed cfs_rq->avg.load we should | |
4569 | * call update_tg_load_avg() when this function returns true. | |
3d30544f | 4570 | */ |
a2c6c91f | 4571 | static inline int |
3a123bbb | 4572 | update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) |
2dac754e | 4573 | { |
9f683953 | 4574 | unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; |
9d89c257 | 4575 | struct sched_avg *sa = &cfs_rq->avg; |
2a2f5d4e | 4576 | int decayed = 0; |
2dac754e | 4577 | |
2a2f5d4e PZ |
4578 | if (cfs_rq->removed.nr) { |
4579 | unsigned long r; | |
87e867b4 | 4580 | u32 divider = get_pelt_divider(&cfs_rq->avg); |
2a2f5d4e PZ |
4581 | |
4582 | raw_spin_lock(&cfs_rq->removed.lock); | |
4583 | swap(cfs_rq->removed.util_avg, removed_util); | |
4584 | swap(cfs_rq->removed.load_avg, removed_load); | |
9f683953 | 4585 | swap(cfs_rq->removed.runnable_avg, removed_runnable); |
2a2f5d4e PZ |
4586 | cfs_rq->removed.nr = 0; |
4587 | raw_spin_unlock(&cfs_rq->removed.lock); | |
4588 | ||
2a2f5d4e | 4589 | r = removed_load; |
89741892 | 4590 | sub_positive(&sa->load_avg, r); |
2d02fa8c VG |
4591 | sub_positive(&sa->load_sum, r * divider); |
4592 | /* See sa->util_sum below */ | |
4593 | sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); | |
2dac754e | 4594 | |
2a2f5d4e | 4595 | r = removed_util; |
89741892 | 4596 | sub_positive(&sa->util_avg, r); |
98b0d890 VG |
4597 | sub_positive(&sa->util_sum, r * divider); |
4598 | /* | |
4599 | * Because of rounding, se->util_sum might ends up being +1 more than | |
4600 | * cfs->util_sum. Although this is not a problem by itself, detaching | |
4601 | * a lot of tasks with the rounding problem between 2 updates of | |
4602 | * util_avg (~1ms) can make cfs->util_sum becoming null whereas | |
4603 | * cfs_util_avg is not. | |
4604 | * Check that util_sum is still above its lower bound for the new | |
4605 | * util_avg. Given that period_contrib might have moved since the last | |
4606 | * sync, we are only sure that util_sum must be above or equal to | |
4607 | * util_avg * minimum possible divider | |
4608 | */ | |
4609 | sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); | |
2a2f5d4e | 4610 | |
9f683953 VG |
4611 | r = removed_runnable; |
4612 | sub_positive(&sa->runnable_avg, r); | |
95246d1e VG |
4613 | sub_positive(&sa->runnable_sum, r * divider); |
4614 | /* See sa->util_sum above */ | |
4615 | sa->runnable_sum = max_t(u32, sa->runnable_sum, | |
4616 | sa->runnable_avg * PELT_MIN_DIVIDER); | |
9f683953 VG |
4617 | |
4618 | /* | |
4619 | * removed_runnable is the unweighted version of removed_load so we | |
4620 | * can use it to estimate removed_load_sum. | |
4621 | */ | |
4622 | add_tg_cfs_propagate(cfs_rq, | |
4623 | -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); | |
2a2f5d4e PZ |
4624 | |
4625 | decayed = 1; | |
9d89c257 | 4626 | } |
36ee28e4 | 4627 | |
23127296 | 4628 | decayed |= __update_load_avg_cfs_rq(now, cfs_rq); |
d05b4305 VD |
4629 | u64_u32_store_copy(sa->last_update_time, |
4630 | cfs_rq->last_update_time_copy, | |
4631 | sa->last_update_time); | |
2a2f5d4e | 4632 | return decayed; |
21e96f88 SM |
4633 | } |
4634 | ||
3d30544f PZ |
4635 | /** |
4636 | * attach_entity_load_avg - attach this entity to its cfs_rq load avg | |
4637 | * @cfs_rq: cfs_rq to attach to | |
4638 | * @se: sched_entity to attach | |
4639 | * | |
4640 | * Must call update_cfs_rq_load_avg() before this, since we rely on | |
4641 | * cfs_rq->avg.last_update_time being current. | |
4642 | */ | |
a4f9a0e5 | 4643 | static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) |
a05e8c51 | 4644 | { |
95d68593 VG |
4645 | /* |
4646 | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. | |
4647 | * See ___update_load_avg() for details. | |
4648 | */ | |
87e867b4 | 4649 | u32 divider = get_pelt_divider(&cfs_rq->avg); |
f207934f PZ |
4650 | |
4651 | /* | |
4652 | * When we attach the @se to the @cfs_rq, we must align the decay | |
4653 | * window because without that, really weird and wonderful things can | |
4654 | * happen. | |
4655 | * | |
4656 | * XXX illustrate | |
4657 | */ | |
a05e8c51 | 4658 | se->avg.last_update_time = cfs_rq->avg.last_update_time; |
f207934f PZ |
4659 | se->avg.period_contrib = cfs_rq->avg.period_contrib; |
4660 | ||
4661 | /* | |
4662 | * Hell(o) Nasty stuff.. we need to recompute _sum based on the new | |
4663 | * period_contrib. This isn't strictly correct, but since we're | |
4664 | * entirely outside of the PELT hierarchy, nobody cares if we truncate | |
4665 | * _sum a little. | |
4666 | */ | |
4667 | se->avg.util_sum = se->avg.util_avg * divider; | |
4668 | ||
9f683953 VG |
4669 | se->avg.runnable_sum = se->avg.runnable_avg * divider; |
4670 | ||
40f5aa4c | 4671 | se->avg.load_sum = se->avg.load_avg * divider; |
4672 | if (se_weight(se) < se->avg.load_sum) | |
4673 | se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); | |
4674 | else | |
4675 | se->avg.load_sum = 1; | |
f207934f | 4676 | |
8d5b9025 | 4677 | enqueue_load_avg(cfs_rq, se); |
a05e8c51 BP |
4678 | cfs_rq->avg.util_avg += se->avg.util_avg; |
4679 | cfs_rq->avg.util_sum += se->avg.util_sum; | |
9f683953 VG |
4680 | cfs_rq->avg.runnable_avg += se->avg.runnable_avg; |
4681 | cfs_rq->avg.runnable_sum += se->avg.runnable_sum; | |
0e2d2aaa PZ |
4682 | |
4683 | add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); | |
a2c6c91f | 4684 | |
a4f9a0e5 | 4685 | cfs_rq_util_change(cfs_rq, 0); |
ba19f51f QY |
4686 | |
4687 | trace_pelt_cfs_tp(cfs_rq); | |
a05e8c51 BP |
4688 | } |
4689 | ||
3d30544f PZ |
4690 | /** |
4691 | * detach_entity_load_avg - detach this entity from its cfs_rq load avg | |
4692 | * @cfs_rq: cfs_rq to detach from | |
4693 | * @se: sched_entity to detach | |
4694 | * | |
4695 | * Must call update_cfs_rq_load_avg() before this, since we rely on | |
4696 | * cfs_rq->avg.last_update_time being current. | |
4697 | */ | |
a05e8c51 BP |
4698 | static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) |
4699 | { | |
8d5b9025 | 4700 | dequeue_load_avg(cfs_rq, se); |
89741892 | 4701 | sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); |
7ceb7710 VG |
4702 | sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); |
4703 | /* See update_cfs_rq_load_avg() */ | |
4704 | cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, | |
4705 | cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); | |
4706 | ||
9f683953 | 4707 | sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); |
95246d1e VG |
4708 | sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); |
4709 | /* See update_cfs_rq_load_avg() */ | |
4710 | cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, | |
4711 | cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); | |
0e2d2aaa PZ |
4712 | |
4713 | add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); | |
a2c6c91f | 4714 | |
ea14b57e | 4715 | cfs_rq_util_change(cfs_rq, 0); |
ba19f51f QY |
4716 | |
4717 | trace_pelt_cfs_tp(cfs_rq); | |
a05e8c51 BP |
4718 | } |
4719 | ||
b382a531 PZ |
4720 | /* |
4721 | * Optional action to be done while updating the load average | |
4722 | */ | |
4723 | #define UPDATE_TG 0x1 | |
4724 | #define SKIP_AGE_LOAD 0x2 | |
4725 | #define DO_ATTACH 0x4 | |
e1f078f5 | 4726 | #define DO_DETACH 0x8 |
b382a531 PZ |
4727 | |
4728 | /* Update task and its cfs_rq load average */ | |
4729 | static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | |
4730 | { | |
23127296 | 4731 | u64 now = cfs_rq_clock_pelt(cfs_rq); |
b382a531 PZ |
4732 | int decayed; |
4733 | ||
4734 | /* | |
4735 | * Track task load average for carrying it to new CPU after migrated, and | |
4736 | * track group sched_entity load average for task_h_load calc in migration | |
4737 | */ | |
4738 | if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) | |
23127296 | 4739 | __update_load_avg_se(now, cfs_rq, se); |
b382a531 PZ |
4740 | |
4741 | decayed = update_cfs_rq_load_avg(now, cfs_rq); | |
4742 | decayed |= propagate_entity_load_avg(se); | |
4743 | ||
4744 | if (!se->avg.last_update_time && (flags & DO_ATTACH)) { | |
4745 | ||
ea14b57e PZ |
4746 | /* |
4747 | * DO_ATTACH means we're here from enqueue_entity(). | |
4748 | * !last_update_time means we've passed through | |
4749 | * migrate_task_rq_fair() indicating we migrated. | |
4750 | * | |
4751 | * IOW we're enqueueing a task on a new CPU. | |
4752 | */ | |
a4f9a0e5 | 4753 | attach_entity_load_avg(cfs_rq, se); |
fe749158 | 4754 | update_tg_load_avg(cfs_rq); |
b382a531 | 4755 | |
e1f078f5 CZ |
4756 | } else if (flags & DO_DETACH) { |
4757 | /* | |
4758 | * DO_DETACH means we're here from dequeue_entity() | |
4759 | * and we are migrating task out of the CPU. | |
4760 | */ | |
4761 | detach_entity_load_avg(cfs_rq, se); | |
4762 | update_tg_load_avg(cfs_rq); | |
bef69dd8 VG |
4763 | } else if (decayed) { |
4764 | cfs_rq_util_change(cfs_rq, 0); | |
4765 | ||
4766 | if (flags & UPDATE_TG) | |
fe749158 | 4767 | update_tg_load_avg(cfs_rq); |
bef69dd8 | 4768 | } |
b382a531 PZ |
4769 | } |
4770 | ||
104cb16d MR |
4771 | /* |
4772 | * Synchronize entity load avg of dequeued entity without locking | |
4773 | * the previous rq. | |
4774 | */ | |
71b47eaf | 4775 | static void sync_entity_load_avg(struct sched_entity *se) |
104cb16d MR |
4776 | { |
4777 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
4778 | u64 last_update_time; | |
4779 | ||
4780 | last_update_time = cfs_rq_last_update_time(cfs_rq); | |
23127296 | 4781 | __update_load_avg_blocked_se(last_update_time, se); |
104cb16d MR |
4782 | } |
4783 | ||
0905f04e YD |
4784 | /* |
4785 | * Task first catches up with cfs_rq, and then subtract | |
4786 | * itself from the cfs_rq (task must be off the queue now). | |
4787 | */ | |
71b47eaf | 4788 | static void remove_entity_load_avg(struct sched_entity *se) |
0905f04e YD |
4789 | { |
4790 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
2a2f5d4e | 4791 | unsigned long flags; |
0905f04e YD |
4792 | |
4793 | /* | |
7dc603c9 | 4794 | * tasks cannot exit without having gone through wake_up_new_task() -> |
d6531ab6 CZ |
4795 | * enqueue_task_fair() which will have added things to the cfs_rq, |
4796 | * so we can remove unconditionally. | |
0905f04e | 4797 | */ |
0905f04e | 4798 | |
104cb16d | 4799 | sync_entity_load_avg(se); |
2a2f5d4e PZ |
4800 | |
4801 | raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); | |
4802 | ++cfs_rq->removed.nr; | |
4803 | cfs_rq->removed.util_avg += se->avg.util_avg; | |
4804 | cfs_rq->removed.load_avg += se->avg.load_avg; | |
9f683953 | 4805 | cfs_rq->removed.runnable_avg += se->avg.runnable_avg; |
2a2f5d4e | 4806 | raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); |
2dac754e | 4807 | } |
642dbc39 | 4808 | |
9f683953 VG |
4809 | static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) |
4810 | { | |
4811 | return cfs_rq->avg.runnable_avg; | |
4812 | } | |
4813 | ||
7ea241af YD |
4814 | static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) |
4815 | { | |
4816 | return cfs_rq->avg.load_avg; | |
4817 | } | |
4818 | ||
d91cecc1 CY |
4819 | static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); |
4820 | ||
7f65ea42 PB |
4821 | static inline unsigned long task_util(struct task_struct *p) |
4822 | { | |
4823 | return READ_ONCE(p->se.avg.util_avg); | |
4824 | } | |
4825 | ||
50181c0c VG |
4826 | static inline unsigned long task_runnable(struct task_struct *p) |
4827 | { | |
4828 | return READ_ONCE(p->se.avg.runnable_avg); | |
4829 | } | |
4830 | ||
7f65ea42 PB |
4831 | static inline unsigned long _task_util_est(struct task_struct *p) |
4832 | { | |
11137d38 | 4833 | return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; |
7f65ea42 PB |
4834 | } |
4835 | ||
4836 | static inline unsigned long task_util_est(struct task_struct *p) | |
4837 | { | |
4838 | return max(task_util(p), _task_util_est(p)); | |
4839 | } | |
4840 | ||
4841 | static inline void util_est_enqueue(struct cfs_rq *cfs_rq, | |
4842 | struct task_struct *p) | |
4843 | { | |
4844 | unsigned int enqueued; | |
4845 | ||
4846 | if (!sched_feat(UTIL_EST)) | |
4847 | return; | |
4848 | ||
4849 | /* Update root cfs_rq's estimated utilization */ | |
11137d38 | 4850 | enqueued = cfs_rq->avg.util_est; |
92a801e5 | 4851 | enqueued += _task_util_est(p); |
11137d38 | 4852 | WRITE_ONCE(cfs_rq->avg.util_est, enqueued); |
4581bea8 VD |
4853 | |
4854 | trace_sched_util_est_cfs_tp(cfs_rq); | |
7f65ea42 PB |
4855 | } |
4856 | ||
8c1f560c XY |
4857 | static inline void util_est_dequeue(struct cfs_rq *cfs_rq, |
4858 | struct task_struct *p) | |
4859 | { | |
4860 | unsigned int enqueued; | |
4861 | ||
4862 | if (!sched_feat(UTIL_EST)) | |
4863 | return; | |
4864 | ||
4865 | /* Update root cfs_rq's estimated utilization */ | |
11137d38 | 4866 | enqueued = cfs_rq->avg.util_est; |
8c1f560c | 4867 | enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); |
11137d38 | 4868 | WRITE_ONCE(cfs_rq->avg.util_est, enqueued); |
8c1f560c XY |
4869 | |
4870 | trace_sched_util_est_cfs_tp(cfs_rq); | |
4871 | } | |
4872 | ||
b89997aa VD |
4873 | #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) |
4874 | ||
8c1f560c XY |
4875 | static inline void util_est_update(struct cfs_rq *cfs_rq, |
4876 | struct task_struct *p, | |
4877 | bool task_sleep) | |
7f65ea42 | 4878 | { |
11137d38 | 4879 | unsigned int ewma, dequeued, last_ewma_diff; |
7f65ea42 PB |
4880 | |
4881 | if (!sched_feat(UTIL_EST)) | |
4882 | return; | |
4883 | ||
7f65ea42 PB |
4884 | /* |
4885 | * Skip update of task's estimated utilization when the task has not | |
4886 | * yet completed an activation, e.g. being migrated. | |
4887 | */ | |
4888 | if (!task_sleep) | |
4889 | return; | |
4890 | ||
11137d38 VG |
4891 | /* Get current estimate of utilization */ |
4892 | ewma = READ_ONCE(p->se.avg.util_est); | |
4893 | ||
d519329f PB |
4894 | /* |
4895 | * If the PELT values haven't changed since enqueue time, | |
4896 | * skip the util_est update. | |
4897 | */ | |
11137d38 | 4898 | if (ewma & UTIL_AVG_UNCHANGED) |
d519329f PB |
4899 | return; |
4900 | ||
11137d38 VG |
4901 | /* Get utilization at dequeue */ |
4902 | dequeued = task_util(p); | |
b89997aa | 4903 | |
b8c96361 PB |
4904 | /* |
4905 | * Reset EWMA on utilization increases, the moving average is used only | |
4906 | * to smooth utilization decreases. | |
4907 | */ | |
11137d38 VG |
4908 | if (ewma <= dequeued) { |
4909 | ewma = dequeued; | |
7736ae55 | 4910 | goto done; |
b8c96361 PB |
4911 | } |
4912 | ||
7f65ea42 | 4913 | /* |
b89997aa | 4914 | * Skip update of task's estimated utilization when its members are |
7f65ea42 PB |
4915 | * already ~1% close to its last activation value. |
4916 | */ | |
11137d38 VG |
4917 | last_ewma_diff = ewma - dequeued; |
4918 | if (last_ewma_diff < UTIL_EST_MARGIN) | |
4919 | goto done; | |
7f65ea42 | 4920 | |
10a35e68 VG |
4921 | /* |
4922 | * To avoid overestimation of actual task utilization, skip updates if | |
4923 | * we cannot grant there is idle time in this CPU. | |
4924 | */ | |
11137d38 | 4925 | if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) |
10a35e68 VG |
4926 | return; |
4927 | ||
50181c0c VG |
4928 | /* |
4929 | * To avoid underestimate of task utilization, skip updates of EWMA if | |
4930 | * we cannot grant that thread got all CPU time it wanted. | |
4931 | */ | |
11137d38 | 4932 | if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) |
50181c0c VG |
4933 | goto done; |
4934 | ||
4935 | ||
7f65ea42 PB |
4936 | /* |
4937 | * Update Task's estimated utilization | |
4938 | * | |
4939 | * When *p completes an activation we can consolidate another sample | |
11137d38 VG |
4940 | * of the task size. This is done by using this value to update the |
4941 | * Exponential Weighted Moving Average (EWMA): | |
7f65ea42 PB |
4942 | * |
4943 | * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) | |
4944 | * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) | |
4945 | * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) | |
11137d38 VG |
4946 | * = w * ( -last_ewma_diff ) + ewma(t-1) |
4947 | * = w * (-last_ewma_diff + ewma(t-1) / w) | |
7f65ea42 PB |
4948 | * |
4949 | * Where 'w' is the weight of new samples, which is configured to be | |
4950 | * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) | |
4951 | */ | |
11137d38 VG |
4952 | ewma <<= UTIL_EST_WEIGHT_SHIFT; |
4953 | ewma -= last_ewma_diff; | |
4954 | ewma >>= UTIL_EST_WEIGHT_SHIFT; | |
b8c96361 | 4955 | done: |
11137d38 VG |
4956 | ewma |= UTIL_AVG_UNCHANGED; |
4957 | WRITE_ONCE(p->se.avg.util_est, ewma); | |
4581bea8 VD |
4958 | |
4959 | trace_sched_util_est_se_tp(&p->se); | |
7f65ea42 PB |
4960 | } |
4961 | ||
48d5e9da QY |
4962 | static inline int util_fits_cpu(unsigned long util, |
4963 | unsigned long uclamp_min, | |
4964 | unsigned long uclamp_max, | |
4965 | int cpu) | |
4966 | { | |
4967 | unsigned long capacity_orig, capacity_orig_thermal; | |
4968 | unsigned long capacity = capacity_of(cpu); | |
4969 | bool fits, uclamp_max_fits; | |
4970 | ||
4971 | /* | |
4972 | * Check if the real util fits without any uclamp boost/cap applied. | |
4973 | */ | |
4974 | fits = fits_capacity(util, capacity); | |
4975 | ||
4976 | if (!uclamp_is_used()) | |
4977 | return fits; | |
4978 | ||
4979 | /* | |
7bc26384 | 4980 | * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and |
48d5e9da QY |
4981 | * uclamp_max. We only care about capacity pressure (by using |
4982 | * capacity_of()) for comparing against the real util. | |
4983 | * | |
4984 | * If a task is boosted to 1024 for example, we don't want a tiny | |
4985 | * pressure to skew the check whether it fits a CPU or not. | |
4986 | * | |
7bc26384 | 4987 | * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it |
48d5e9da QY |
4988 | * should fit a little cpu even if there's some pressure. |
4989 | * | |
4990 | * Only exception is for thermal pressure since it has a direct impact | |
4991 | * on available OPP of the system. | |
4992 | * | |
4993 | * We honour it for uclamp_min only as a drop in performance level | |
4994 | * could result in not getting the requested minimum performance level. | |
4995 | * | |
4996 | * For uclamp_max, we can tolerate a drop in performance level as the | |
4997 | * goal is to cap the task. So it's okay if it's getting less. | |
48d5e9da | 4998 | */ |
7bc26384 | 4999 | capacity_orig = arch_scale_cpu_capacity(cpu); |
a2e90611 | 5000 | capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu); |
48d5e9da QY |
5001 | |
5002 | /* | |
5003 | * We want to force a task to fit a cpu as implied by uclamp_max. | |
5004 | * But we do have some corner cases to cater for.. | |
5005 | * | |
5006 | * | |
5007 | * C=z | |
5008 | * | ___ | |
5009 | * | C=y | | | |
5010 | * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max | |
5011 | * | C=x | | | | | |
5012 | * | ___ | | | | | |
5013 | * | | | | | | | (util somewhere in this region) | |
5014 | * | | | | | | | | |
5015 | * | | | | | | | | |
5016 | * +---------------------------------------- | |
5017 | * cpu0 cpu1 cpu2 | |
5018 | * | |
5019 | * In the above example if a task is capped to a specific performance | |
5020 | * point, y, then when: | |
5021 | * | |
5022 | * * util = 80% of x then it does not fit on cpu0 and should migrate | |
5023 | * to cpu1 | |
5024 | * * util = 80% of y then it is forced to fit on cpu1 to honour | |
5025 | * uclamp_max request. | |
5026 | * | |
5027 | * which is what we're enforcing here. A task always fits if | |
5028 | * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, | |
5029 | * the normal upmigration rules should withhold still. | |
5030 | * | |
5031 | * Only exception is when we are on max capacity, then we need to be | |
5032 | * careful not to block overutilized state. This is so because: | |
5033 | * | |
5034 | * 1. There's no concept of capping at max_capacity! We can't go | |
5035 | * beyond this performance level anyway. | |
5036 | * 2. The system is being saturated when we're operating near | |
5037 | * max capacity, it doesn't make sense to block overutilized. | |
5038 | */ | |
5039 | uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); | |
5040 | uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); | |
5041 | fits = fits || uclamp_max_fits; | |
5042 | ||
5043 | /* | |
5044 | * | |
5045 | * C=z | |
5046 | * | ___ (region a, capped, util >= uclamp_max) | |
5047 | * | C=y | | | |
5048 | * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max | |
5049 | * | C=x | | | | | |
5050 | * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) | |
5051 | * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min | |
5052 | * | | | | | | | | |
5053 | * | | | | | | | (region c, boosted, util < uclamp_min) | |
5054 | * +---------------------------------------- | |
5055 | * cpu0 cpu1 cpu2 | |
5056 | * | |
5057 | * a) If util > uclamp_max, then we're capped, we don't care about | |
5058 | * actual fitness value here. We only care if uclamp_max fits | |
5059 | * capacity without taking margin/pressure into account. | |
5060 | * See comment above. | |
5061 | * | |
5062 | * b) If uclamp_min <= util <= uclamp_max, then the normal | |
5063 | * fits_capacity() rules apply. Except we need to ensure that we | |
5064 | * enforce we remain within uclamp_max, see comment above. | |
5065 | * | |
5066 | * c) If util < uclamp_min, then we are boosted. Same as (b) but we | |
5067 | * need to take into account the boosted value fits the CPU without | |
5068 | * taking margin/pressure into account. | |
5069 | * | |
5070 | * Cases (a) and (b) are handled in the 'fits' variable already. We | |
5071 | * just need to consider an extra check for case (c) after ensuring we | |
5072 | * handle the case uclamp_min > uclamp_max. | |
5073 | */ | |
5074 | uclamp_min = min(uclamp_min, uclamp_max); | |
e5ed0550 VG |
5075 | if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal)) |
5076 | return -1; | |
48d5e9da QY |
5077 | |
5078 | return fits; | |
5079 | } | |
5080 | ||
b48e16a6 | 5081 | static inline int task_fits_cpu(struct task_struct *p, int cpu) |
3b1baa64 | 5082 | { |
b48e16a6 QY |
5083 | unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); |
5084 | unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); | |
5085 | unsigned long util = task_util_est(p); | |
e5ed0550 VG |
5086 | /* |
5087 | * Return true only if the cpu fully fits the task requirements, which | |
5088 | * include the utilization but also the performance hints. | |
5089 | */ | |
5090 | return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); | |
3b1baa64 MR |
5091 | } |
5092 | ||
5093 | static inline void update_misfit_status(struct task_struct *p, struct rq *rq) | |
5094 | { | |
740cf8a7 | 5095 | if (!sched_asym_cpucap_active()) |
3b1baa64 MR |
5096 | return; |
5097 | ||
0ae78eec | 5098 | if (!p || p->nr_cpus_allowed == 1) { |
3b1baa64 MR |
5099 | rq->misfit_task_load = 0; |
5100 | return; | |
5101 | } | |
5102 | ||
b48e16a6 | 5103 | if (task_fits_cpu(p, cpu_of(rq))) { |
3b1baa64 MR |
5104 | rq->misfit_task_load = 0; |
5105 | return; | |
5106 | } | |
5107 | ||
01cfcde9 VG |
5108 | /* |
5109 | * Make sure that misfit_task_load will not be null even if | |
5110 | * task_h_load() returns 0. | |
5111 | */ | |
5112 | rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); | |
3b1baa64 MR |
5113 | } |
5114 | ||
38033c37 PZ |
5115 | #else /* CONFIG_SMP */ |
5116 | ||
a7b359fc OU |
5117 | static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) |
5118 | { | |
c0490bc9 | 5119 | return !cfs_rq->nr_running; |
a7b359fc OU |
5120 | } |
5121 | ||
d31b1a66 VG |
5122 | #define UPDATE_TG 0x0 |
5123 | #define SKIP_AGE_LOAD 0x0 | |
b382a531 | 5124 | #define DO_ATTACH 0x0 |
e1f078f5 | 5125 | #define DO_DETACH 0x0 |
d31b1a66 | 5126 | |
88c0616e | 5127 | static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) |
536bd00c | 5128 | { |
ea14b57e | 5129 | cfs_rq_util_change(cfs_rq, 0); |
536bd00c RW |
5130 | } |
5131 | ||
9d89c257 | 5132 | static inline void remove_entity_load_avg(struct sched_entity *se) {} |
6e83125c | 5133 | |
a05e8c51 | 5134 | static inline void |
a4f9a0e5 | 5135 | attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} |
a05e8c51 BP |
5136 | static inline void |
5137 | detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} | |
5138 | ||
d91cecc1 | 5139 | static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) |
6e83125c PZ |
5140 | { |
5141 | return 0; | |
5142 | } | |
5143 | ||
7f65ea42 PB |
5144 | static inline void |
5145 | util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} | |
5146 | ||
5147 | static inline void | |
8c1f560c XY |
5148 | util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} |
5149 | ||
5150 | static inline void | |
5151 | util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, | |
5152 | bool task_sleep) {} | |
3b1baa64 | 5153 | static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} |
7f65ea42 | 5154 | |
38033c37 | 5155 | #endif /* CONFIG_SMP */ |
9d85f21c | 5156 | |
aeb73b04 | 5157 | static void |
d07f09a1 | 5158 | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
a53ce18c | 5159 | { |
2f2fc17b | 5160 | u64 vslice, vruntime = avg_vruntime(cfs_rq); |
86bfbb7c | 5161 | s64 lag = 0; |
a53ce18c | 5162 | |
2f2fc17b PZ |
5163 | se->slice = sysctl_sched_base_slice; |
5164 | vslice = calc_delta_fair(se->slice, se); | |
5165 | ||
86bfbb7c PZ |
5166 | /* |
5167 | * Due to how V is constructed as the weighted average of entities, | |
5168 | * adding tasks with positive lag, or removing tasks with negative lag | |
5169 | * will move 'time' backwards, this can screw around with the lag of | |
5170 | * other tasks. | |
5171 | * | |
5172 | * EEVDF: placement strategy #1 / #2 | |
5173 | */ | |
e8f331bc | 5174 | if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { |
86bfbb7c PZ |
5175 | struct sched_entity *curr = cfs_rq->curr; |
5176 | unsigned long load; | |
a53ce18c | 5177 | |
86bfbb7c | 5178 | lag = se->vlag; |
a53ce18c | 5179 | |
a2e7a7eb | 5180 | /* |
86bfbb7c PZ |
5181 | * If we want to place a task and preserve lag, we have to |
5182 | * consider the effect of the new entity on the weighted | |
5183 | * average and compensate for this, otherwise lag can quickly | |
5184 | * evaporate. | |
5185 | * | |
5186 | * Lag is defined as: | |
5187 | * | |
5188 | * lag_i = S - s_i = w_i * (V - v_i) | |
5189 | * | |
5190 | * To avoid the 'w_i' term all over the place, we only track | |
5191 | * the virtual lag: | |
5192 | * | |
5193 | * vl_i = V - v_i <=> v_i = V - vl_i | |
5194 | * | |
5195 | * And we take V to be the weighted average of all v: | |
5196 | * | |
5197 | * V = (\Sum w_j*v_j) / W | |
5198 | * | |
5199 | * Where W is: \Sum w_j | |
5200 | * | |
5201 | * Then, the weighted average after adding an entity with lag | |
5202 | * vl_i is given by: | |
5203 | * | |
5204 | * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) | |
5205 | * = (W*V + w_i*(V - vl_i)) / (W + w_i) | |
5206 | * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) | |
5207 | * = (V*(W + w_i) - w_i*l) / (W + w_i) | |
5208 | * = V - w_i*vl_i / (W + w_i) | |
5209 | * | |
5210 | * And the actual lag after adding an entity with vl_i is: | |
5211 | * | |
5212 | * vl'_i = V' - v_i | |
5213 | * = V - w_i*vl_i / (W + w_i) - (V - vl_i) | |
5214 | * = vl_i - w_i*vl_i / (W + w_i) | |
5215 | * | |
5216 | * Which is strictly less than vl_i. So in order to preserve lag | |
5217 | * we should inflate the lag before placement such that the | |
5218 | * effective lag after placement comes out right. | |
5219 | * | |
5220 | * As such, invert the above relation for vl'_i to get the vl_i | |
5221 | * we need to use such that the lag after placement is the lag | |
5222 | * we computed before dequeue. | |
5223 | * | |
5224 | * vl'_i = vl_i - w_i*vl_i / (W + w_i) | |
5225 | * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) | |
5226 | * | |
5227 | * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i | |
5228 | * = W*vl_i | |
5229 | * | |
5230 | * vl_i = (W + w_i)*vl'_i / W | |
a2e7a7eb | 5231 | */ |
86bfbb7c PZ |
5232 | load = cfs_rq->avg_load; |
5233 | if (curr && curr->on_rq) | |
147f3efa | 5234 | load += scale_load_down(curr->load.weight); |
a53ce18c | 5235 | |
147f3efa | 5236 | lag *= load + scale_load_down(se->load.weight); |
86bfbb7c PZ |
5237 | if (WARN_ON_ONCE(!load)) |
5238 | load = 1; | |
5239 | lag = div_s64(lag, load); | |
86bfbb7c | 5240 | } |
a53ce18c | 5241 | |
76cae9db | 5242 | se->vruntime = vruntime - lag; |
94dfb5e7 | 5243 | |
2cb8600e | 5244 | /* |
147f3efa PZ |
5245 | * When joining the competition; the exisiting tasks will be, |
5246 | * on average, halfway through their slice, as such start tasks | |
5247 | * off with half a slice to ease into the competition. | |
2cb8600e | 5248 | */ |
d07f09a1 | 5249 | if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) |
147f3efa | 5250 | vslice /= 2; |
2cae3948 | 5251 | |
147f3efa PZ |
5252 | /* |
5253 | * EEVDF: vd_i = ve_i + r_i/w_i | |
5254 | */ | |
5255 | se->deadline = se->vruntime + vslice; | |
aeb73b04 PZ |
5256 | } |
5257 | ||
d3d9dc33 | 5258 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq); |
79462e8c | 5259 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); |
d3d9dc33 | 5260 | |
fe61468b | 5261 | static inline bool cfs_bandwidth_used(void); |
b5179ac7 | 5262 | |
bf0f6f24 | 5263 | static void |
88ec22d3 | 5264 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 5265 | { |
2f950354 PZ |
5266 | bool curr = cfs_rq->curr == se; |
5267 | ||
88ec22d3 | 5268 | /* |
2f950354 PZ |
5269 | * If we're the current task, we must renormalise before calling |
5270 | * update_curr(). | |
88ec22d3 | 5271 | */ |
e8f331bc | 5272 | if (curr) |
d07f09a1 | 5273 | place_entity(cfs_rq, se, flags); |
88ec22d3 | 5274 | |
2f950354 PZ |
5275 | update_curr(cfs_rq); |
5276 | ||
89ee048f VG |
5277 | /* |
5278 | * When enqueuing a sched_entity, we must: | |
5279 | * - Update loads to have both entity and cfs_rq synced with now. | |
859f2062 CZ |
5280 | * - For group_entity, update its runnable_weight to reflect the new |
5281 | * h_nr_running of its group cfs_rq. | |
89ee048f VG |
5282 | * - For group_entity, update its weight to reflect the new share of |
5283 | * its group cfs_rq | |
5284 | * - Add its new weight to cfs_rq->load.weight | |
5285 | */ | |
b382a531 | 5286 | update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); |
9f683953 | 5287 | se_update_runnable(se); |
e8f331bc PZ |
5288 | /* |
5289 | * XXX update_load_avg() above will have attached us to the pelt sum; | |
5290 | * but update_cfs_group() here will re-adjust the weight and have to | |
5291 | * undo/redo all that. Seems wasteful. | |
5292 | */ | |
1ea6c46a | 5293 | update_cfs_group(se); |
bf0f6f24 | 5294 | |
e8f331bc PZ |
5295 | /* |
5296 | * XXX now that the entity has been re-weighted, and it's lag adjusted, | |
5297 | * we can place the entity. | |
5298 | */ | |
5299 | if (!curr) | |
d07f09a1 | 5300 | place_entity(cfs_rq, se, flags); |
e8f331bc | 5301 | |
17bc14b7 | 5302 | account_entity_enqueue(cfs_rq, se); |
bf0f6f24 | 5303 | |
a53ce18c VG |
5304 | /* Entity has migrated, no longer consider this task hot */ |
5305 | if (flags & ENQUEUE_MIGRATED) | |
5306 | se->exec_start = 0; | |
bf0f6f24 | 5307 | |
cb251765 | 5308 | check_schedstat_required(); |
60f2415e | 5309 | update_stats_enqueue_fair(cfs_rq, se, flags); |
2f950354 | 5310 | if (!curr) |
83b699ed | 5311 | __enqueue_entity(cfs_rq, se); |
2069dd75 | 5312 | se->on_rq = 1; |
3d4b47b4 | 5313 | |
51bf903b | 5314 | if (cfs_rq->nr_running == 1) { |
d3d9dc33 | 5315 | check_enqueue_throttle(cfs_rq); |
79462e8c | 5316 | if (!throttled_hierarchy(cfs_rq)) { |
51bf903b | 5317 | list_add_leaf_cfs_rq(cfs_rq); |
79462e8c JD |
5318 | } else { |
5319 | #ifdef CONFIG_CFS_BANDWIDTH | |
677ea015 | 5320 | struct rq *rq = rq_of(cfs_rq); |
f1044799 | 5321 | |
79462e8c | 5322 | if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) |
677ea015 JD |
5323 | cfs_rq->throttled_clock = rq_clock(rq); |
5324 | if (!cfs_rq->throttled_clock_self) | |
5325 | cfs_rq->throttled_clock_self = rq_clock(rq); | |
79462e8c JD |
5326 | #endif |
5327 | } | |
2c13c919 RR |
5328 | } |
5329 | } | |
2002c695 | 5330 | |
2c13c919 RR |
5331 | static void __clear_buddies_next(struct sched_entity *se) |
5332 | { | |
5333 | for_each_sched_entity(se) { | |
5334 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
f1044799 | 5335 | if (cfs_rq->next != se) |
2c13c919 | 5336 | break; |
f1044799 PZ |
5337 | |
5338 | cfs_rq->next = NULL; | |
2c13c919 | 5339 | } |
2002c695 PZ |
5340 | } |
5341 | ||
a571bbea PZ |
5342 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) |
5343 | { | |
2c13c919 RR |
5344 | if (cfs_rq->next == se) |
5345 | __clear_buddies_next(se); | |
a571bbea PZ |
5346 | } |
5347 | ||
6c16a6dc | 5348 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); |
d8b4986d | 5349 | |
bf0f6f24 | 5350 | static void |
371fd7e7 | 5351 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 5352 | { |
e1f078f5 CZ |
5353 | int action = UPDATE_TG; |
5354 | ||
5355 | if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) | |
5356 | action |= DO_DETACH; | |
5357 | ||
a2a2d680 DA |
5358 | /* |
5359 | * Update run-time statistics of the 'current'. | |
5360 | */ | |
5361 | update_curr(cfs_rq); | |
89ee048f VG |
5362 | |
5363 | /* | |
5364 | * When dequeuing a sched_entity, we must: | |
5365 | * - Update loads to have both entity and cfs_rq synced with now. | |
859f2062 CZ |
5366 | * - For group_entity, update its runnable_weight to reflect the new |
5367 | * h_nr_running of its group cfs_rq. | |
dfcb245e | 5368 | * - Subtract its previous weight from cfs_rq->load.weight. |
89ee048f VG |
5369 | * - For group entity, update its weight to reflect the new share |
5370 | * of its group cfs_rq. | |
5371 | */ | |
e1f078f5 | 5372 | update_load_avg(cfs_rq, se, action); |
9f683953 | 5373 | se_update_runnable(se); |
a2a2d680 | 5374 | |
60f2415e | 5375 | update_stats_dequeue_fair(cfs_rq, se, flags); |
67e9fb2a | 5376 | |
2002c695 | 5377 | clear_buddies(cfs_rq, se); |
4793241b | 5378 | |
e8f331bc | 5379 | update_entity_lag(cfs_rq, se); |
83b699ed | 5380 | if (se != cfs_rq->curr) |
30cfdcfc | 5381 | __dequeue_entity(cfs_rq, se); |
17bc14b7 | 5382 | se->on_rq = 0; |
30cfdcfc | 5383 | account_entity_dequeue(cfs_rq, se); |
88ec22d3 | 5384 | |
d8b4986d PT |
5385 | /* return excess runtime on last dequeue */ |
5386 | return_cfs_rq_runtime(cfs_rq); | |
5387 | ||
1ea6c46a | 5388 | update_cfs_group(se); |
b60205c7 PZ |
5389 | |
5390 | /* | |
5391 | * Now advance min_vruntime if @se was the entity holding it back, | |
5392 | * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be | |
5393 | * put back on, and if we advance min_vruntime, we'll be placed back | |
5394 | * further than we started -- ie. we'll be penalized. | |
5395 | */ | |
9845c49c | 5396 | if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) |
b60205c7 | 5397 | update_min_vruntime(cfs_rq); |
e2f3e35f VD |
5398 | |
5399 | if (cfs_rq->nr_running == 0) | |
5400 | update_idle_cfs_rq_clock_pelt(cfs_rq); | |
bf0f6f24 IM |
5401 | } |
5402 | ||
83b699ed | 5403 | static void |
8494f412 | 5404 | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 5405 | { |
21f56ffe PZ |
5406 | clear_buddies(cfs_rq, se); |
5407 | ||
83b699ed SV |
5408 | /* 'current' is not kept within the tree. */ |
5409 | if (se->on_rq) { | |
5410 | /* | |
5411 | * Any task has to be enqueued before it get to execute on | |
5412 | * a CPU. So account for the time it spent waiting on the | |
5413 | * runqueue. | |
5414 | */ | |
60f2415e | 5415 | update_stats_wait_end_fair(cfs_rq, se); |
83b699ed | 5416 | __dequeue_entity(cfs_rq, se); |
88c0616e | 5417 | update_load_avg(cfs_rq, se, UPDATE_TG); |
63304558 PZ |
5418 | /* |
5419 | * HACK, stash a copy of deadline at the point of pick in vlag, | |
5420 | * which isn't used until dequeue. | |
5421 | */ | |
5422 | se->vlag = se->deadline; | |
83b699ed SV |
5423 | } |
5424 | ||
79303e9e | 5425 | update_stats_curr_start(cfs_rq, se); |
429d43bc | 5426 | cfs_rq->curr = se; |
4fa8d299 | 5427 | |
eba1ed4b IM |
5428 | /* |
5429 | * Track our maximum slice length, if the CPU's load is at | |
5430 | * least twice that of our own weight (i.e. dont track it | |
5431 | * when there are only lesser-weight tasks around): | |
5432 | */ | |
f2bedc47 DE |
5433 | if (schedstat_enabled() && |
5434 | rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { | |
ceeadb83 YS |
5435 | struct sched_statistics *stats; |
5436 | ||
5437 | stats = __schedstats_from_se(se); | |
5438 | __schedstat_set(stats->slice_max, | |
5439 | max((u64)stats->slice_max, | |
a2dcb276 | 5440 | se->sum_exec_runtime - se->prev_sum_exec_runtime)); |
eba1ed4b | 5441 | } |
4fa8d299 | 5442 | |
4a55b450 | 5443 | se->prev_sum_exec_runtime = se->sum_exec_runtime; |
bf0f6f24 IM |
5444 | } |
5445 | ||
ac53db59 RR |
5446 | /* |
5447 | * Pick the next process, keeping these things in mind, in this order: | |
5448 | * 1) keep things fair between processes/task groups | |
5449 | * 2) pick the "next" process, since someone really wants that to run | |
5450 | * 3) pick the "last" process, for cache locality | |
5451 | * 4) do not run the "skip" process, if something else is available | |
5452 | */ | |
678d5718 | 5453 | static struct sched_entity * |
4c456c9a | 5454 | pick_next_entity(struct cfs_rq *cfs_rq) |
aa2ac252 | 5455 | { |
ac53db59 | 5456 | /* |
5e963f2b | 5457 | * Enabling NEXT_BUDDY will affect latency but not fairness. |
ac53db59 | 5458 | */ |
5e963f2b PZ |
5459 | if (sched_feat(NEXT_BUDDY) && |
5460 | cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) | |
5461 | return cfs_rq->next; | |
ac53db59 | 5462 | |
5e963f2b | 5463 | return pick_eevdf(cfs_rq); |
aa2ac252 PZ |
5464 | } |
5465 | ||
678d5718 | 5466 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); |
d3d9dc33 | 5467 | |
ab6cde26 | 5468 | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) |
bf0f6f24 IM |
5469 | { |
5470 | /* | |
5471 | * If still on the runqueue then deactivate_task() | |
5472 | * was not called and update_curr() has to be done: | |
5473 | */ | |
5474 | if (prev->on_rq) | |
b7cc0896 | 5475 | update_curr(cfs_rq); |
bf0f6f24 | 5476 | |
d3d9dc33 PT |
5477 | /* throttle cfs_rqs exceeding runtime */ |
5478 | check_cfs_rq_runtime(cfs_rq); | |
5479 | ||
30cfdcfc | 5480 | if (prev->on_rq) { |
60f2415e | 5481 | update_stats_wait_start_fair(cfs_rq, prev); |
30cfdcfc DA |
5482 | /* Put 'current' back into the tree. */ |
5483 | __enqueue_entity(cfs_rq, prev); | |
9d85f21c | 5484 | /* in !on_rq case, update occurred at dequeue */ |
88c0616e | 5485 | update_load_avg(cfs_rq, prev, 0); |
30cfdcfc | 5486 | } |
429d43bc | 5487 | cfs_rq->curr = NULL; |
bf0f6f24 IM |
5488 | } |
5489 | ||
8f4d37ec PZ |
5490 | static void |
5491 | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) | |
bf0f6f24 | 5492 | { |
bf0f6f24 | 5493 | /* |
30cfdcfc | 5494 | * Update run-time statistics of the 'current'. |
bf0f6f24 | 5495 | */ |
30cfdcfc | 5496 | update_curr(cfs_rq); |
bf0f6f24 | 5497 | |
9d85f21c PT |
5498 | /* |
5499 | * Ensure that runnable average is periodically updated. | |
5500 | */ | |
88c0616e | 5501 | update_load_avg(cfs_rq, curr, UPDATE_TG); |
1ea6c46a | 5502 | update_cfs_group(curr); |
9d85f21c | 5503 | |
8f4d37ec PZ |
5504 | #ifdef CONFIG_SCHED_HRTICK |
5505 | /* | |
5506 | * queued ticks are scheduled to match the slice, so don't bother | |
5507 | * validating it and just reschedule. | |
5508 | */ | |
983ed7a6 | 5509 | if (queued) { |
8875125e | 5510 | resched_curr(rq_of(cfs_rq)); |
983ed7a6 HH |
5511 | return; |
5512 | } | |
8f4d37ec PZ |
5513 | /* |
5514 | * don't let the period tick interfere with the hrtick preemption | |
5515 | */ | |
5516 | if (!sched_feat(DOUBLE_TICK) && | |
5517 | hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) | |
5518 | return; | |
5519 | #endif | |
bf0f6f24 IM |
5520 | } |
5521 | ||
ab84d31e PT |
5522 | |
5523 | /************************************************** | |
5524 | * CFS bandwidth control machinery | |
5525 | */ | |
5526 | ||
5527 | #ifdef CONFIG_CFS_BANDWIDTH | |
029632fb | 5528 | |
e9666d10 | 5529 | #ifdef CONFIG_JUMP_LABEL |
c5905afb | 5530 | static struct static_key __cfs_bandwidth_used; |
029632fb PZ |
5531 | |
5532 | static inline bool cfs_bandwidth_used(void) | |
5533 | { | |
c5905afb | 5534 | return static_key_false(&__cfs_bandwidth_used); |
029632fb PZ |
5535 | } |
5536 | ||
1ee14e6c | 5537 | void cfs_bandwidth_usage_inc(void) |
029632fb | 5538 | { |
ce48c146 | 5539 | static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); |
1ee14e6c BS |
5540 | } |
5541 | ||
5542 | void cfs_bandwidth_usage_dec(void) | |
5543 | { | |
ce48c146 | 5544 | static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); |
029632fb | 5545 | } |
e9666d10 | 5546 | #else /* CONFIG_JUMP_LABEL */ |
029632fb PZ |
5547 | static bool cfs_bandwidth_used(void) |
5548 | { | |
5549 | return true; | |
5550 | } | |
5551 | ||
1ee14e6c BS |
5552 | void cfs_bandwidth_usage_inc(void) {} |
5553 | void cfs_bandwidth_usage_dec(void) {} | |
e9666d10 | 5554 | #endif /* CONFIG_JUMP_LABEL */ |
029632fb | 5555 | |
ab84d31e PT |
5556 | /* |
5557 | * default period for cfs group bandwidth. | |
5558 | * default: 0.1s, units: nanoseconds | |
5559 | */ | |
5560 | static inline u64 default_cfs_period(void) | |
5561 | { | |
5562 | return 100000000ULL; | |
5563 | } | |
ec12cb7f PT |
5564 | |
5565 | static inline u64 sched_cfs_bandwidth_slice(void) | |
5566 | { | |
5567 | return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; | |
5568 | } | |
5569 | ||
a9cf55b2 | 5570 | /* |
763a9ec0 QC |
5571 | * Replenish runtime according to assigned quota. We use sched_clock_cpu |
5572 | * directly instead of rq->clock to avoid adding additional synchronization | |
5573 | * around rq->lock. | |
a9cf55b2 PT |
5574 | * |
5575 | * requires cfs_b->lock | |
5576 | */ | |
029632fb | 5577 | void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) |
a9cf55b2 | 5578 | { |
bcb1704a HC |
5579 | s64 runtime; |
5580 | ||
f4183717 HC |
5581 | if (unlikely(cfs_b->quota == RUNTIME_INF)) |
5582 | return; | |
5583 | ||
5584 | cfs_b->runtime += cfs_b->quota; | |
bcb1704a HC |
5585 | runtime = cfs_b->runtime_snap - cfs_b->runtime; |
5586 | if (runtime > 0) { | |
5587 | cfs_b->burst_time += runtime; | |
5588 | cfs_b->nr_burst++; | |
5589 | } | |
5590 | ||
f4183717 | 5591 | cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); |
bcb1704a | 5592 | cfs_b->runtime_snap = cfs_b->runtime; |
a9cf55b2 PT |
5593 | } |
5594 | ||
029632fb PZ |
5595 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) |
5596 | { | |
5597 | return &tg->cfs_bandwidth; | |
5598 | } | |
5599 | ||
85dac906 | 5600 | /* returns 0 on failure to allocate runtime */ |
e98fa02c PT |
5601 | static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, |
5602 | struct cfs_rq *cfs_rq, u64 target_runtime) | |
ec12cb7f | 5603 | { |
e98fa02c PT |
5604 | u64 min_amount, amount = 0; |
5605 | ||
5606 | lockdep_assert_held(&cfs_b->lock); | |
ec12cb7f PT |
5607 | |
5608 | /* note: this is a positive sum as runtime_remaining <= 0 */ | |
e98fa02c | 5609 | min_amount = target_runtime - cfs_rq->runtime_remaining; |
ec12cb7f | 5610 | |
ec12cb7f PT |
5611 | if (cfs_b->quota == RUNTIME_INF) |
5612 | amount = min_amount; | |
58088ad0 | 5613 | else { |
77a4d1a1 | 5614 | start_cfs_bandwidth(cfs_b); |
58088ad0 PT |
5615 | |
5616 | if (cfs_b->runtime > 0) { | |
5617 | amount = min(cfs_b->runtime, min_amount); | |
5618 | cfs_b->runtime -= amount; | |
5619 | cfs_b->idle = 0; | |
5620 | } | |
ec12cb7f | 5621 | } |
ec12cb7f PT |
5622 | |
5623 | cfs_rq->runtime_remaining += amount; | |
85dac906 PT |
5624 | |
5625 | return cfs_rq->runtime_remaining > 0; | |
ec12cb7f PT |
5626 | } |
5627 | ||
e98fa02c PT |
5628 | /* returns 0 on failure to allocate runtime */ |
5629 | static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
5630 | { | |
5631 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | |
5632 | int ret; | |
5633 | ||
5634 | raw_spin_lock(&cfs_b->lock); | |
5635 | ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); | |
5636 | raw_spin_unlock(&cfs_b->lock); | |
5637 | ||
5638 | return ret; | |
5639 | } | |
5640 | ||
9dbdb155 | 5641 | static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) |
a9cf55b2 PT |
5642 | { |
5643 | /* dock delta_exec before expiring quota (as it could span periods) */ | |
ec12cb7f | 5644 | cfs_rq->runtime_remaining -= delta_exec; |
a9cf55b2 PT |
5645 | |
5646 | if (likely(cfs_rq->runtime_remaining > 0)) | |
ec12cb7f PT |
5647 | return; |
5648 | ||
5e2d2cc2 L |
5649 | if (cfs_rq->throttled) |
5650 | return; | |
85dac906 PT |
5651 | /* |
5652 | * if we're unable to extend our runtime we resched so that the active | |
5653 | * hierarchy can be throttled | |
5654 | */ | |
5655 | if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) | |
8875125e | 5656 | resched_curr(rq_of(cfs_rq)); |
ec12cb7f PT |
5657 | } |
5658 | ||
6c16a6dc | 5659 | static __always_inline |
9dbdb155 | 5660 | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) |
ec12cb7f | 5661 | { |
56f570e5 | 5662 | if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) |
ec12cb7f PT |
5663 | return; |
5664 | ||
5665 | __account_cfs_rq_runtime(cfs_rq, delta_exec); | |
5666 | } | |
5667 | ||
85dac906 PT |
5668 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) |
5669 | { | |
56f570e5 | 5670 | return cfs_bandwidth_used() && cfs_rq->throttled; |
85dac906 PT |
5671 | } |
5672 | ||
64660c86 PT |
5673 | /* check whether cfs_rq, or any parent, is throttled */ |
5674 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | |
5675 | { | |
56f570e5 | 5676 | return cfs_bandwidth_used() && cfs_rq->throttle_count; |
64660c86 PT |
5677 | } |
5678 | ||
5679 | /* | |
5680 | * Ensure that neither of the group entities corresponding to src_cpu or | |
5681 | * dest_cpu are members of a throttled hierarchy when performing group | |
5682 | * load-balance operations. | |
5683 | */ | |
5684 | static inline int throttled_lb_pair(struct task_group *tg, | |
5685 | int src_cpu, int dest_cpu) | |
5686 | { | |
5687 | struct cfs_rq *src_cfs_rq, *dest_cfs_rq; | |
5688 | ||
5689 | src_cfs_rq = tg->cfs_rq[src_cpu]; | |
5690 | dest_cfs_rq = tg->cfs_rq[dest_cpu]; | |
5691 | ||
5692 | return throttled_hierarchy(src_cfs_rq) || | |
5693 | throttled_hierarchy(dest_cfs_rq); | |
5694 | } | |
5695 | ||
64660c86 PT |
5696 | static int tg_unthrottle_up(struct task_group *tg, void *data) |
5697 | { | |
5698 | struct rq *rq = data; | |
5699 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
5700 | ||
5701 | cfs_rq->throttle_count--; | |
64660c86 | 5702 | if (!cfs_rq->throttle_count) { |
64eaf507 CZ |
5703 | cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - |
5704 | cfs_rq->throttled_clock_pelt; | |
31bc6aea | 5705 | |
a7b359fc | 5706 | /* Add cfs_rq with load or one or more already running entities to the list */ |
0a00a354 | 5707 | if (!cfs_rq_is_decayed(cfs_rq)) |
31bc6aea | 5708 | list_add_leaf_cfs_rq(cfs_rq); |
677ea015 JD |
5709 | |
5710 | if (cfs_rq->throttled_clock_self) { | |
5711 | u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; | |
5712 | ||
5713 | cfs_rq->throttled_clock_self = 0; | |
5714 | ||
5715 | if (SCHED_WARN_ON((s64)delta < 0)) | |
5716 | delta = 0; | |
5717 | ||
5718 | cfs_rq->throttled_clock_self_time += delta; | |
5719 | } | |
64660c86 | 5720 | } |
64660c86 PT |
5721 | |
5722 | return 0; | |
5723 | } | |
5724 | ||
5725 | static int tg_throttle_down(struct task_group *tg, void *data) | |
5726 | { | |
5727 | struct rq *rq = data; | |
5728 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
5729 | ||
82958366 | 5730 | /* group is entering throttled state, stop time */ |
31bc6aea | 5731 | if (!cfs_rq->throttle_count) { |
64eaf507 | 5732 | cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); |
31bc6aea | 5733 | list_del_leaf_cfs_rq(cfs_rq); |
677ea015 JD |
5734 | |
5735 | SCHED_WARN_ON(cfs_rq->throttled_clock_self); | |
5736 | if (cfs_rq->nr_running) | |
5737 | cfs_rq->throttled_clock_self = rq_clock(rq); | |
31bc6aea | 5738 | } |
64660c86 PT |
5739 | cfs_rq->throttle_count++; |
5740 | ||
5741 | return 0; | |
5742 | } | |
5743 | ||
e98fa02c | 5744 | static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) |
85dac906 PT |
5745 | { |
5746 | struct rq *rq = rq_of(cfs_rq); | |
5747 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | |
5748 | struct sched_entity *se; | |
43e9f7f2 | 5749 | long task_delta, idle_task_delta, dequeue = 1; |
e98fa02c PT |
5750 | |
5751 | raw_spin_lock(&cfs_b->lock); | |
5752 | /* This will start the period timer if necessary */ | |
5753 | if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { | |
5754 | /* | |
5755 | * We have raced with bandwidth becoming available, and if we | |
5756 | * actually throttled the timer might not unthrottle us for an | |
5757 | * entire period. We additionally needed to make sure that any | |
5758 | * subsequent check_cfs_rq_runtime calls agree not to throttle | |
5759 | * us, as we may commit to do cfs put_prev+pick_next, so we ask | |
5760 | * for 1ns of runtime rather than just check cfs_b. | |
5761 | */ | |
5762 | dequeue = 0; | |
5763 | } else { | |
5764 | list_add_tail_rcu(&cfs_rq->throttled_list, | |
5765 | &cfs_b->throttled_cfs_rq); | |
5766 | } | |
5767 | raw_spin_unlock(&cfs_b->lock); | |
5768 | ||
5769 | if (!dequeue) | |
5770 | return false; /* Throttle no longer required. */ | |
85dac906 PT |
5771 | |
5772 | se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; | |
5773 | ||
f1b17280 | 5774 | /* freeze hierarchy runnable averages while throttled */ |
64660c86 PT |
5775 | rcu_read_lock(); |
5776 | walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); | |
5777 | rcu_read_unlock(); | |
85dac906 PT |
5778 | |
5779 | task_delta = cfs_rq->h_nr_running; | |
43e9f7f2 | 5780 | idle_task_delta = cfs_rq->idle_h_nr_running; |
85dac906 PT |
5781 | for_each_sched_entity(se) { |
5782 | struct cfs_rq *qcfs_rq = cfs_rq_of(se); | |
5783 | /* throttled entity or throttle-on-deactivate */ | |
5784 | if (!se->on_rq) | |
b6d37a76 | 5785 | goto done; |
85dac906 | 5786 | |
b6d37a76 | 5787 | dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); |
6212437f | 5788 | |
30400039 JD |
5789 | if (cfs_rq_is_idle(group_cfs_rq(se))) |
5790 | idle_task_delta = cfs_rq->h_nr_running; | |
5791 | ||
85dac906 | 5792 | qcfs_rq->h_nr_running -= task_delta; |
43e9f7f2 | 5793 | qcfs_rq->idle_h_nr_running -= idle_task_delta; |
85dac906 | 5794 | |
b6d37a76 PW |
5795 | if (qcfs_rq->load.weight) { |
5796 | /* Avoid re-evaluating load for this entity: */ | |
5797 | se = parent_entity(se); | |
5798 | break; | |
5799 | } | |
5800 | } | |
5801 | ||
5802 | for_each_sched_entity(se) { | |
5803 | struct cfs_rq *qcfs_rq = cfs_rq_of(se); | |
5804 | /* throttled entity or throttle-on-deactivate */ | |
5805 | if (!se->on_rq) | |
5806 | goto done; | |
5807 | ||
5808 | update_load_avg(qcfs_rq, se, 0); | |
5809 | se_update_runnable(se); | |
5810 | ||
30400039 JD |
5811 | if (cfs_rq_is_idle(group_cfs_rq(se))) |
5812 | idle_task_delta = cfs_rq->h_nr_running; | |
5813 | ||
b6d37a76 PW |
5814 | qcfs_rq->h_nr_running -= task_delta; |
5815 | qcfs_rq->idle_h_nr_running -= idle_task_delta; | |
85dac906 PT |
5816 | } |
5817 | ||
b6d37a76 PW |
5818 | /* At this point se is NULL and we are at root level*/ |
5819 | sub_nr_running(rq, task_delta); | |
85dac906 | 5820 | |
b6d37a76 | 5821 | done: |
c06f04c7 | 5822 | /* |
e98fa02c PT |
5823 | * Note: distribution will already see us throttled via the |
5824 | * throttled-list. rq->lock protects completion. | |
c06f04c7 | 5825 | */ |
e98fa02c | 5826 | cfs_rq->throttled = 1; |
79462e8c JD |
5827 | SCHED_WARN_ON(cfs_rq->throttled_clock); |
5828 | if (cfs_rq->nr_running) | |
5829 | cfs_rq->throttled_clock = rq_clock(rq); | |
e98fa02c | 5830 | return true; |
85dac906 PT |
5831 | } |
5832 | ||
029632fb | 5833 | void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) |
671fd9da PT |
5834 | { |
5835 | struct rq *rq = rq_of(cfs_rq); | |
5836 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | |
5837 | struct sched_entity *se; | |
43e9f7f2 | 5838 | long task_delta, idle_task_delta; |
671fd9da | 5839 | |
22b958d8 | 5840 | se = cfs_rq->tg->se[cpu_of(rq)]; |
671fd9da PT |
5841 | |
5842 | cfs_rq->throttled = 0; | |
1a55af2e FW |
5843 | |
5844 | update_rq_clock(rq); | |
5845 | ||
671fd9da | 5846 | raw_spin_lock(&cfs_b->lock); |
79462e8c JD |
5847 | if (cfs_rq->throttled_clock) { |
5848 | cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; | |
5849 | cfs_rq->throttled_clock = 0; | |
5850 | } | |
671fd9da PT |
5851 | list_del_rcu(&cfs_rq->throttled_list); |
5852 | raw_spin_unlock(&cfs_b->lock); | |
5853 | ||
64660c86 PT |
5854 | /* update hierarchical throttle state */ |
5855 | walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); | |
5856 | ||
2630cde2 | 5857 | if (!cfs_rq->load.weight) { |
51bf903b CZ |
5858 | if (!cfs_rq->on_list) |
5859 | return; | |
5860 | /* | |
5861 | * Nothing to run but something to decay (on_list)? | |
5862 | * Complete the branch. | |
5863 | */ | |
5864 | for_each_sched_entity(se) { | |
5865 | if (list_add_leaf_cfs_rq(cfs_rq_of(se))) | |
5866 | break; | |
5867 | } | |
5868 | goto unthrottle_throttle; | |
2630cde2 | 5869 | } |
671fd9da PT |
5870 | |
5871 | task_delta = cfs_rq->h_nr_running; | |
43e9f7f2 | 5872 | idle_task_delta = cfs_rq->idle_h_nr_running; |
671fd9da | 5873 | for_each_sched_entity(se) { |
30400039 JD |
5874 | struct cfs_rq *qcfs_rq = cfs_rq_of(se); |
5875 | ||
671fd9da | 5876 | if (se->on_rq) |
39f23ce0 | 5877 | break; |
30400039 JD |
5878 | enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); |
5879 | ||
5880 | if (cfs_rq_is_idle(group_cfs_rq(se))) | |
5881 | idle_task_delta = cfs_rq->h_nr_running; | |
39f23ce0 | 5882 | |
30400039 JD |
5883 | qcfs_rq->h_nr_running += task_delta; |
5884 | qcfs_rq->idle_h_nr_running += idle_task_delta; | |
39f23ce0 VG |
5885 | |
5886 | /* end evaluation on encountering a throttled cfs_rq */ | |
30400039 | 5887 | if (cfs_rq_throttled(qcfs_rq)) |
39f23ce0 VG |
5888 | goto unthrottle_throttle; |
5889 | } | |
671fd9da | 5890 | |
39f23ce0 | 5891 | for_each_sched_entity(se) { |
30400039 | 5892 | struct cfs_rq *qcfs_rq = cfs_rq_of(se); |
39f23ce0 | 5893 | |
30400039 | 5894 | update_load_avg(qcfs_rq, se, UPDATE_TG); |
39f23ce0 | 5895 | se_update_runnable(se); |
6212437f | 5896 | |
30400039 JD |
5897 | if (cfs_rq_is_idle(group_cfs_rq(se))) |
5898 | idle_task_delta = cfs_rq->h_nr_running; | |
671fd9da | 5899 | |
30400039 JD |
5900 | qcfs_rq->h_nr_running += task_delta; |
5901 | qcfs_rq->idle_h_nr_running += idle_task_delta; | |
39f23ce0 VG |
5902 | |
5903 | /* end evaluation on encountering a throttled cfs_rq */ | |
30400039 | 5904 | if (cfs_rq_throttled(qcfs_rq)) |
39f23ce0 | 5905 | goto unthrottle_throttle; |
671fd9da PT |
5906 | } |
5907 | ||
39f23ce0 VG |
5908 | /* At this point se is NULL and we are at root level*/ |
5909 | add_nr_running(rq, task_delta); | |
671fd9da | 5910 | |
39f23ce0 | 5911 | unthrottle_throttle: |
fe61468b VG |
5912 | assert_list_leaf_cfs_rq(rq); |
5913 | ||
97fb7a0a | 5914 | /* Determine whether we need to wake up potentially idle CPU: */ |
671fd9da | 5915 | if (rq->curr == rq->idle && rq->cfs.nr_running) |
8875125e | 5916 | resched_curr(rq); |
671fd9da PT |
5917 | } |
5918 | ||
8ad075c2 JD |
5919 | #ifdef CONFIG_SMP |
5920 | static void __cfsb_csd_unthrottle(void *arg) | |
671fd9da | 5921 | { |
8ad075c2 JD |
5922 | struct cfs_rq *cursor, *tmp; |
5923 | struct rq *rq = arg; | |
5924 | struct rq_flags rf; | |
5925 | ||
5926 | rq_lock(rq, &rf); | |
5927 | ||
ebb83d84 HJ |
5928 | /* |
5929 | * Iterating over the list can trigger several call to | |
5930 | * update_rq_clock() in unthrottle_cfs_rq(). | |
5931 | * Do it once and skip the potential next ones. | |
5932 | */ | |
5933 | update_rq_clock(rq); | |
5934 | rq_clock_start_loop_update(rq); | |
5935 | ||
8ad075c2 JD |
5936 | /* |
5937 | * Since we hold rq lock we're safe from concurrent manipulation of | |
5938 | * the CSD list. However, this RCU critical section annotates the | |
5939 | * fact that we pair with sched_free_group_rcu(), so that we cannot | |
5940 | * race with group being freed in the window between removing it | |
5941 | * from the list and advancing to the next entry in the list. | |
5942 | */ | |
5943 | rcu_read_lock(); | |
5944 | ||
5945 | list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, | |
5946 | throttled_csd_list) { | |
5947 | list_del_init(&cursor->throttled_csd_list); | |
5948 | ||
5949 | if (cfs_rq_throttled(cursor)) | |
5950 | unthrottle_cfs_rq(cursor); | |
5951 | } | |
5952 | ||
5953 | rcu_read_unlock(); | |
5954 | ||
ebb83d84 | 5955 | rq_clock_stop_loop_update(rq); |
8ad075c2 JD |
5956 | rq_unlock(rq, &rf); |
5957 | } | |
5958 | ||
5959 | static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) | |
5960 | { | |
5961 | struct rq *rq = rq_of(cfs_rq); | |
5962 | bool first; | |
5963 | ||
5964 | if (rq == this_rq()) { | |
5965 | unthrottle_cfs_rq(cfs_rq); | |
5966 | return; | |
5967 | } | |
5968 | ||
5969 | /* Already enqueued */ | |
5970 | if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) | |
5971 | return; | |
5972 | ||
5973 | first = list_empty(&rq->cfsb_csd_list); | |
5974 | list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); | |
5975 | if (first) | |
5976 | smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); | |
5977 | } | |
5978 | #else | |
5979 | static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) | |
5980 | { | |
5981 | unthrottle_cfs_rq(cfs_rq); | |
5982 | } | |
5983 | #endif | |
5984 | ||
5985 | static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) | |
5986 | { | |
5987 | lockdep_assert_rq_held(rq_of(cfs_rq)); | |
5988 | ||
5989 | if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || | |
5990 | cfs_rq->runtime_remaining <= 0)) | |
5991 | return; | |
5992 | ||
5993 | __unthrottle_cfs_rq_async(cfs_rq); | |
5994 | } | |
5995 | ||
5996 | static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) | |
5997 | { | |
8ad075c2 | 5998 | int this_cpu = smp_processor_id(); |
26a8b127 | 5999 | u64 runtime, remaining = 1; |
8ad075c2 | 6000 | bool throttled = false; |
2f8c6229 | 6001 | struct cfs_rq *cfs_rq, *tmp; |
8ad075c2 JD |
6002 | struct rq_flags rf; |
6003 | struct rq *rq; | |
2f8c6229 | 6004 | LIST_HEAD(local_unthrottle); |
671fd9da PT |
6005 | |
6006 | rcu_read_lock(); | |
6007 | list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, | |
6008 | throttled_list) { | |
8ad075c2 JD |
6009 | rq = rq_of(cfs_rq); |
6010 | ||
6011 | if (!remaining) { | |
6012 | throttled = true; | |
6013 | break; | |
6014 | } | |
671fd9da | 6015 | |
c0ad4aa4 | 6016 | rq_lock_irqsave(rq, &rf); |
671fd9da PT |
6017 | if (!cfs_rq_throttled(cfs_rq)) |
6018 | goto next; | |
6019 | ||
8ad075c2 JD |
6020 | /* Already queued for async unthrottle */ |
6021 | if (!list_empty(&cfs_rq->throttled_csd_list)) | |
6022 | goto next; | |
8ad075c2 JD |
6023 | |
6024 | /* By the above checks, this should never be true */ | |
5e2d2cc2 L |
6025 | SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); |
6026 | ||
26a8b127 | 6027 | raw_spin_lock(&cfs_b->lock); |
671fd9da | 6028 | runtime = -cfs_rq->runtime_remaining + 1; |
26a8b127 HC |
6029 | if (runtime > cfs_b->runtime) |
6030 | runtime = cfs_b->runtime; | |
6031 | cfs_b->runtime -= runtime; | |
6032 | remaining = cfs_b->runtime; | |
6033 | raw_spin_unlock(&cfs_b->lock); | |
671fd9da PT |
6034 | |
6035 | cfs_rq->runtime_remaining += runtime; | |
671fd9da PT |
6036 | |
6037 | /* we check whether we're throttled above */ | |
8ad075c2 | 6038 | if (cfs_rq->runtime_remaining > 0) { |
2f8c6229 | 6039 | if (cpu_of(rq) != this_cpu) { |
8ad075c2 | 6040 | unthrottle_cfs_rq_async(cfs_rq); |
2f8c6229 JD |
6041 | } else { |
6042 | /* | |
6043 | * We currently only expect to be unthrottling | |
6044 | * a single cfs_rq locally. | |
6045 | */ | |
6046 | SCHED_WARN_ON(!list_empty(&local_unthrottle)); | |
6047 | list_add_tail(&cfs_rq->throttled_csd_list, | |
6048 | &local_unthrottle); | |
6049 | } | |
8ad075c2 JD |
6050 | } else { |
6051 | throttled = true; | |
6052 | } | |
671fd9da PT |
6053 | |
6054 | next: | |
c0ad4aa4 | 6055 | rq_unlock_irqrestore(rq, &rf); |
671fd9da | 6056 | } |
8ad075c2 | 6057 | |
2f8c6229 JD |
6058 | list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, |
6059 | throttled_csd_list) { | |
6060 | struct rq *rq = rq_of(cfs_rq); | |
6061 | ||
8ad075c2 | 6062 | rq_lock_irqsave(rq, &rf); |
2f8c6229 JD |
6063 | |
6064 | list_del_init(&cfs_rq->throttled_csd_list); | |
6065 | ||
6066 | if (cfs_rq_throttled(cfs_rq)) | |
6067 | unthrottle_cfs_rq(cfs_rq); | |
6068 | ||
8ad075c2 JD |
6069 | rq_unlock_irqrestore(rq, &rf); |
6070 | } | |
2f8c6229 JD |
6071 | SCHED_WARN_ON(!list_empty(&local_unthrottle)); |
6072 | ||
6073 | rcu_read_unlock(); | |
8ad075c2 JD |
6074 | |
6075 | return throttled; | |
671fd9da PT |
6076 | } |
6077 | ||
58088ad0 PT |
6078 | /* |
6079 | * Responsible for refilling a task_group's bandwidth and unthrottling its | |
6080 | * cfs_rqs as appropriate. If there has been no activity within the last | |
6081 | * period the timer is deactivated until scheduling resumes; cfs_b->idle is | |
6082 | * used to track this state. | |
6083 | */ | |
c0ad4aa4 | 6084 | static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) |
58088ad0 | 6085 | { |
51f2176d | 6086 | int throttled; |
58088ad0 | 6087 | |
58088ad0 PT |
6088 | /* no need to continue the timer with no bandwidth constraint */ |
6089 | if (cfs_b->quota == RUNTIME_INF) | |
51f2176d | 6090 | goto out_deactivate; |
58088ad0 | 6091 | |
671fd9da | 6092 | throttled = !list_empty(&cfs_b->throttled_cfs_rq); |
e8da1b18 | 6093 | cfs_b->nr_periods += overrun; |
671fd9da | 6094 | |
f4183717 HC |
6095 | /* Refill extra burst quota even if cfs_b->idle */ |
6096 | __refill_cfs_bandwidth_runtime(cfs_b); | |
6097 | ||
51f2176d BS |
6098 | /* |
6099 | * idle depends on !throttled (for the case of a large deficit), and if | |
6100 | * we're going inactive then everything else can be deferred | |
6101 | */ | |
6102 | if (cfs_b->idle && !throttled) | |
6103 | goto out_deactivate; | |
a9cf55b2 | 6104 | |
671fd9da PT |
6105 | if (!throttled) { |
6106 | /* mark as potentially idle for the upcoming period */ | |
6107 | cfs_b->idle = 1; | |
51f2176d | 6108 | return 0; |
671fd9da PT |
6109 | } |
6110 | ||
e8da1b18 NR |
6111 | /* account preceding periods in which throttling occurred */ |
6112 | cfs_b->nr_throttled += overrun; | |
6113 | ||
671fd9da | 6114 | /* |
26a8b127 | 6115 | * This check is repeated as we release cfs_b->lock while we unthrottle. |
671fd9da | 6116 | */ |
ab93a4bc | 6117 | while (throttled && cfs_b->runtime > 0) { |
c0ad4aa4 | 6118 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
671fd9da | 6119 | /* we can't nest cfs_b->lock while distributing bandwidth */ |
8ad075c2 | 6120 | throttled = distribute_cfs_runtime(cfs_b); |
c0ad4aa4 | 6121 | raw_spin_lock_irqsave(&cfs_b->lock, flags); |
671fd9da | 6122 | } |
58088ad0 | 6123 | |
671fd9da PT |
6124 | /* |
6125 | * While we are ensured activity in the period following an | |
6126 | * unthrottle, this also covers the case in which the new bandwidth is | |
6127 | * insufficient to cover the existing bandwidth deficit. (Forcing the | |
6128 | * timer to remain active while there are any throttled entities.) | |
6129 | */ | |
6130 | cfs_b->idle = 0; | |
58088ad0 | 6131 | |
51f2176d BS |
6132 | return 0; |
6133 | ||
6134 | out_deactivate: | |
51f2176d | 6135 | return 1; |
58088ad0 | 6136 | } |
d3d9dc33 | 6137 | |
d8b4986d PT |
6138 | /* a cfs_rq won't donate quota below this amount */ |
6139 | static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; | |
6140 | /* minimum remaining period time to redistribute slack quota */ | |
6141 | static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; | |
6142 | /* how long we wait to gather additional slack before distributing */ | |
6143 | static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; | |
6144 | ||
db06e78c BS |
6145 | /* |
6146 | * Are we near the end of the current quota period? | |
6147 | * | |
6148 | * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the | |
4961b6e1 | 6149 | * hrtimer base being cleared by hrtimer_start. In the case of |
db06e78c BS |
6150 | * migrate_hrtimers, base is never cleared, so we are fine. |
6151 | */ | |
d8b4986d PT |
6152 | static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) |
6153 | { | |
6154 | struct hrtimer *refresh_timer = &cfs_b->period_timer; | |
72d0ad7c | 6155 | s64 remaining; |
d8b4986d PT |
6156 | |
6157 | /* if the call-back is running a quota refresh is already occurring */ | |
6158 | if (hrtimer_callback_running(refresh_timer)) | |
6159 | return 1; | |
6160 | ||
6161 | /* is a quota refresh about to occur? */ | |
6162 | remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); | |
72d0ad7c | 6163 | if (remaining < (s64)min_expire) |
d8b4986d PT |
6164 | return 1; |
6165 | ||
6166 | return 0; | |
6167 | } | |
6168 | ||
6169 | static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) | |
6170 | { | |
6171 | u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; | |
6172 | ||
6173 | /* if there's a quota refresh soon don't bother with slack */ | |
6174 | if (runtime_refresh_within(cfs_b, min_left)) | |
6175 | return; | |
6176 | ||
66567fcb | 6177 | /* don't push forwards an existing deferred unthrottle */ |
6178 | if (cfs_b->slack_started) | |
6179 | return; | |
6180 | cfs_b->slack_started = true; | |
6181 | ||
4cfafd30 PZ |
6182 | hrtimer_start(&cfs_b->slack_timer, |
6183 | ns_to_ktime(cfs_bandwidth_slack_period), | |
6184 | HRTIMER_MODE_REL); | |
d8b4986d PT |
6185 | } |
6186 | ||
6187 | /* we know any runtime found here is valid as update_curr() precedes return */ | |
6188 | static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
6189 | { | |
6190 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | |
6191 | s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; | |
6192 | ||
6193 | if (slack_runtime <= 0) | |
6194 | return; | |
6195 | ||
6196 | raw_spin_lock(&cfs_b->lock); | |
de53fd7a | 6197 | if (cfs_b->quota != RUNTIME_INF) { |
d8b4986d PT |
6198 | cfs_b->runtime += slack_runtime; |
6199 | ||
6200 | /* we are under rq->lock, defer unthrottling using a timer */ | |
6201 | if (cfs_b->runtime > sched_cfs_bandwidth_slice() && | |
6202 | !list_empty(&cfs_b->throttled_cfs_rq)) | |
6203 | start_cfs_slack_bandwidth(cfs_b); | |
6204 | } | |
6205 | raw_spin_unlock(&cfs_b->lock); | |
6206 | ||
6207 | /* even if it's not valid for return we don't want to try again */ | |
6208 | cfs_rq->runtime_remaining -= slack_runtime; | |
6209 | } | |
6210 | ||
6211 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
6212 | { | |
56f570e5 PT |
6213 | if (!cfs_bandwidth_used()) |
6214 | return; | |
6215 | ||
fccfdc6f | 6216 | if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) |
d8b4986d PT |
6217 | return; |
6218 | ||
6219 | __return_cfs_rq_runtime(cfs_rq); | |
6220 | } | |
6221 | ||
6222 | /* | |
6223 | * This is done with a timer (instead of inline with bandwidth return) since | |
6224 | * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. | |
6225 | */ | |
6226 | static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) | |
6227 | { | |
6228 | u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); | |
c0ad4aa4 | 6229 | unsigned long flags; |
d8b4986d PT |
6230 | |
6231 | /* confirm we're still not at a refresh boundary */ | |
c0ad4aa4 | 6232 | raw_spin_lock_irqsave(&cfs_b->lock, flags); |
66567fcb | 6233 | cfs_b->slack_started = false; |
baa9be4f | 6234 | |
db06e78c | 6235 | if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { |
c0ad4aa4 | 6236 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
d8b4986d | 6237 | return; |
db06e78c | 6238 | } |
d8b4986d | 6239 | |
c06f04c7 | 6240 | if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) |
d8b4986d | 6241 | runtime = cfs_b->runtime; |
c06f04c7 | 6242 | |
c0ad4aa4 | 6243 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
d8b4986d PT |
6244 | |
6245 | if (!runtime) | |
6246 | return; | |
6247 | ||
26a8b127 | 6248 | distribute_cfs_runtime(cfs_b); |
d8b4986d PT |
6249 | } |
6250 | ||
d3d9dc33 PT |
6251 | /* |
6252 | * When a group wakes up we want to make sure that its quota is not already | |
6253 | * expired/exceeded, otherwise it may be allowed to steal additional ticks of | |
c034f48e | 6254 | * runtime as update_curr() throttling can not trigger until it's on-rq. |
d3d9dc33 PT |
6255 | */ |
6256 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) | |
6257 | { | |
56f570e5 PT |
6258 | if (!cfs_bandwidth_used()) |
6259 | return; | |
6260 | ||
d3d9dc33 PT |
6261 | /* an active group must be handled by the update_curr()->put() path */ |
6262 | if (!cfs_rq->runtime_enabled || cfs_rq->curr) | |
6263 | return; | |
6264 | ||
6265 | /* ensure the group is not already throttled */ | |
6266 | if (cfs_rq_throttled(cfs_rq)) | |
6267 | return; | |
6268 | ||
6269 | /* update runtime allocation */ | |
6270 | account_cfs_rq_runtime(cfs_rq, 0); | |
6271 | if (cfs_rq->runtime_remaining <= 0) | |
6272 | throttle_cfs_rq(cfs_rq); | |
6273 | } | |
6274 | ||
55e16d30 PZ |
6275 | static void sync_throttle(struct task_group *tg, int cpu) |
6276 | { | |
6277 | struct cfs_rq *pcfs_rq, *cfs_rq; | |
6278 | ||
6279 | if (!cfs_bandwidth_used()) | |
6280 | return; | |
6281 | ||
6282 | if (!tg->parent) | |
6283 | return; | |
6284 | ||
6285 | cfs_rq = tg->cfs_rq[cpu]; | |
6286 | pcfs_rq = tg->parent->cfs_rq[cpu]; | |
6287 | ||
6288 | cfs_rq->throttle_count = pcfs_rq->throttle_count; | |
64eaf507 | 6289 | cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); |
55e16d30 PZ |
6290 | } |
6291 | ||
d3d9dc33 | 6292 | /* conditionally throttle active cfs_rq's from put_prev_entity() */ |
678d5718 | 6293 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) |
d3d9dc33 | 6294 | { |
56f570e5 | 6295 | if (!cfs_bandwidth_used()) |
678d5718 | 6296 | return false; |
56f570e5 | 6297 | |
d3d9dc33 | 6298 | if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) |
678d5718 | 6299 | return false; |
d3d9dc33 PT |
6300 | |
6301 | /* | |
6302 | * it's possible for a throttled entity to be forced into a running | |
6303 | * state (e.g. set_curr_task), in this case we're finished. | |
6304 | */ | |
6305 | if (cfs_rq_throttled(cfs_rq)) | |
678d5718 | 6306 | return true; |
d3d9dc33 | 6307 | |
e98fa02c | 6308 | return throttle_cfs_rq(cfs_rq); |
d3d9dc33 | 6309 | } |
029632fb | 6310 | |
029632fb PZ |
6311 | static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) |
6312 | { | |
6313 | struct cfs_bandwidth *cfs_b = | |
6314 | container_of(timer, struct cfs_bandwidth, slack_timer); | |
77a4d1a1 | 6315 | |
029632fb PZ |
6316 | do_sched_cfs_slack_timer(cfs_b); |
6317 | ||
6318 | return HRTIMER_NORESTART; | |
6319 | } | |
6320 | ||
2e8e1922 PA |
6321 | extern const u64 max_cfs_quota_period; |
6322 | ||
029632fb PZ |
6323 | static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) |
6324 | { | |
6325 | struct cfs_bandwidth *cfs_b = | |
6326 | container_of(timer, struct cfs_bandwidth, period_timer); | |
c0ad4aa4 | 6327 | unsigned long flags; |
029632fb PZ |
6328 | int overrun; |
6329 | int idle = 0; | |
2e8e1922 | 6330 | int count = 0; |
029632fb | 6331 | |
c0ad4aa4 | 6332 | raw_spin_lock_irqsave(&cfs_b->lock, flags); |
029632fb | 6333 | for (;;) { |
77a4d1a1 | 6334 | overrun = hrtimer_forward_now(timer, cfs_b->period); |
029632fb PZ |
6335 | if (!overrun) |
6336 | break; | |
6337 | ||
5a6d6a6c HC |
6338 | idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); |
6339 | ||
2e8e1922 PA |
6340 | if (++count > 3) { |
6341 | u64 new, old = ktime_to_ns(cfs_b->period); | |
6342 | ||
4929a4e6 XZ |
6343 | /* |
6344 | * Grow period by a factor of 2 to avoid losing precision. | |
6345 | * Precision loss in the quota/period ratio can cause __cfs_schedulable | |
6346 | * to fail. | |
6347 | */ | |
6348 | new = old * 2; | |
6349 | if (new < max_cfs_quota_period) { | |
6350 | cfs_b->period = ns_to_ktime(new); | |
6351 | cfs_b->quota *= 2; | |
f4183717 | 6352 | cfs_b->burst *= 2; |
4929a4e6 XZ |
6353 | |
6354 | pr_warn_ratelimited( | |
6355 | "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", | |
6356 | smp_processor_id(), | |
6357 | div_u64(new, NSEC_PER_USEC), | |
6358 | div_u64(cfs_b->quota, NSEC_PER_USEC)); | |
6359 | } else { | |
6360 | pr_warn_ratelimited( | |
6361 | "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", | |
6362 | smp_processor_id(), | |
6363 | div_u64(old, NSEC_PER_USEC), | |
6364 | div_u64(cfs_b->quota, NSEC_PER_USEC)); | |
6365 | } | |
2e8e1922 PA |
6366 | |
6367 | /* reset count so we don't come right back in here */ | |
6368 | count = 0; | |
6369 | } | |
029632fb | 6370 | } |
4cfafd30 PZ |
6371 | if (idle) |
6372 | cfs_b->period_active = 0; | |
c0ad4aa4 | 6373 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
029632fb PZ |
6374 | |
6375 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | |
6376 | } | |
6377 | ||
c98c1827 | 6378 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) |
029632fb PZ |
6379 | { |
6380 | raw_spin_lock_init(&cfs_b->lock); | |
6381 | cfs_b->runtime = 0; | |
6382 | cfs_b->quota = RUNTIME_INF; | |
6383 | cfs_b->period = ns_to_ktime(default_cfs_period()); | |
f4183717 | 6384 | cfs_b->burst = 0; |
c98c1827 | 6385 | cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; |
029632fb PZ |
6386 | |
6387 | INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); | |
4cfafd30 | 6388 | hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); |
029632fb | 6389 | cfs_b->period_timer.function = sched_cfs_period_timer; |
41abdba9 SH |
6390 | |
6391 | /* Add a random offset so that timers interleave */ | |
6392 | hrtimer_set_expires(&cfs_b->period_timer, | |
6393 | get_random_u32_below(cfs_b->period)); | |
029632fb PZ |
6394 | hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
6395 | cfs_b->slack_timer.function = sched_cfs_slack_timer; | |
66567fcb | 6396 | cfs_b->slack_started = false; |
029632fb PZ |
6397 | } |
6398 | ||
6399 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
6400 | { | |
6401 | cfs_rq->runtime_enabled = 0; | |
6402 | INIT_LIST_HEAD(&cfs_rq->throttled_list); | |
8ad075c2 | 6403 | INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); |
029632fb PZ |
6404 | } |
6405 | ||
77a4d1a1 | 6406 | void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) |
029632fb | 6407 | { |
4cfafd30 | 6408 | lockdep_assert_held(&cfs_b->lock); |
029632fb | 6409 | |
f1d1be8a XP |
6410 | if (cfs_b->period_active) |
6411 | return; | |
6412 | ||
6413 | cfs_b->period_active = 1; | |
763a9ec0 | 6414 | hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); |
f1d1be8a | 6415 | hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); |
029632fb PZ |
6416 | } |
6417 | ||
6418 | static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | |
6419 | { | |
8ad075c2 JD |
6420 | int __maybe_unused i; |
6421 | ||
7f1a169b TH |
6422 | /* init_cfs_bandwidth() was not called */ |
6423 | if (!cfs_b->throttled_cfs_rq.next) | |
6424 | return; | |
6425 | ||
029632fb PZ |
6426 | hrtimer_cancel(&cfs_b->period_timer); |
6427 | hrtimer_cancel(&cfs_b->slack_timer); | |
8ad075c2 JD |
6428 | |
6429 | /* | |
6430 | * It is possible that we still have some cfs_rq's pending on a CSD | |
6431 | * list, though this race is very rare. In order for this to occur, we | |
6432 | * must have raced with the last task leaving the group while there | |
6433 | * exist throttled cfs_rq(s), and the period_timer must have queued the | |
6434 | * CSD item but the remote cpu has not yet processed it. To handle this, | |
6435 | * we can simply flush all pending CSD work inline here. We're | |
6436 | * guaranteed at this point that no additional cfs_rq of this group can | |
6437 | * join a CSD list. | |
6438 | */ | |
6439 | #ifdef CONFIG_SMP | |
6440 | for_each_possible_cpu(i) { | |
6441 | struct rq *rq = cpu_rq(i); | |
6442 | unsigned long flags; | |
6443 | ||
6444 | if (list_empty(&rq->cfsb_csd_list)) | |
6445 | continue; | |
6446 | ||
6447 | local_irq_save(flags); | |
6448 | __cfsb_csd_unthrottle(rq); | |
6449 | local_irq_restore(flags); | |
6450 | } | |
6451 | #endif | |
029632fb PZ |
6452 | } |
6453 | ||
502ce005 | 6454 | /* |
97fb7a0a | 6455 | * Both these CPU hotplug callbacks race against unregister_fair_sched_group() |
502ce005 PZ |
6456 | * |
6457 | * The race is harmless, since modifying bandwidth settings of unhooked group | |
6458 | * bits doesn't do much. | |
6459 | */ | |
6460 | ||
3b03706f | 6461 | /* cpu online callback */ |
0e59bdae KT |
6462 | static void __maybe_unused update_runtime_enabled(struct rq *rq) |
6463 | { | |
502ce005 | 6464 | struct task_group *tg; |
0e59bdae | 6465 | |
5cb9eaa3 | 6466 | lockdep_assert_rq_held(rq); |
502ce005 PZ |
6467 | |
6468 | rcu_read_lock(); | |
6469 | list_for_each_entry_rcu(tg, &task_groups, list) { | |
6470 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | |
6471 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
0e59bdae KT |
6472 | |
6473 | raw_spin_lock(&cfs_b->lock); | |
6474 | cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; | |
6475 | raw_spin_unlock(&cfs_b->lock); | |
6476 | } | |
502ce005 | 6477 | rcu_read_unlock(); |
0e59bdae KT |
6478 | } |
6479 | ||
502ce005 | 6480 | /* cpu offline callback */ |
38dc3348 | 6481 | static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) |
029632fb | 6482 | { |
502ce005 PZ |
6483 | struct task_group *tg; |
6484 | ||
5cb9eaa3 | 6485 | lockdep_assert_rq_held(rq); |
502ce005 | 6486 | |
ebb83d84 HJ |
6487 | /* |
6488 | * The rq clock has already been updated in the | |
6489 | * set_rq_offline(), so we should skip updating | |
6490 | * the rq clock again in unthrottle_cfs_rq(). | |
6491 | */ | |
6492 | rq_clock_start_loop_update(rq); | |
6493 | ||
502ce005 PZ |
6494 | rcu_read_lock(); |
6495 | list_for_each_entry_rcu(tg, &task_groups, list) { | |
6496 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
029632fb | 6497 | |
029632fb PZ |
6498 | if (!cfs_rq->runtime_enabled) |
6499 | continue; | |
6500 | ||
6501 | /* | |
6502 | * clock_task is not advancing so we just need to make sure | |
6503 | * there's some valid quota amount | |
6504 | */ | |
51f2176d | 6505 | cfs_rq->runtime_remaining = 1; |
0e59bdae | 6506 | /* |
97fb7a0a | 6507 | * Offline rq is schedulable till CPU is completely disabled |
0e59bdae KT |
6508 | * in take_cpu_down(), so we prevent new cfs throttling here. |
6509 | */ | |
6510 | cfs_rq->runtime_enabled = 0; | |
6511 | ||
029632fb PZ |
6512 | if (cfs_rq_throttled(cfs_rq)) |
6513 | unthrottle_cfs_rq(cfs_rq); | |
6514 | } | |
502ce005 | 6515 | rcu_read_unlock(); |
ebb83d84 HJ |
6516 | |
6517 | rq_clock_stop_loop_update(rq); | |
029632fb PZ |
6518 | } |
6519 | ||
88c56cfe PA |
6520 | bool cfs_task_bw_constrained(struct task_struct *p) |
6521 | { | |
6522 | struct cfs_rq *cfs_rq = task_cfs_rq(p); | |
6523 | ||
6524 | if (!cfs_bandwidth_used()) | |
6525 | return false; | |
6526 | ||
6527 | if (cfs_rq->runtime_enabled || | |
6528 | tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) | |
6529 | return true; | |
6530 | ||
6531 | return false; | |
6532 | } | |
6533 | ||
6534 | #ifdef CONFIG_NO_HZ_FULL | |
6535 | /* called from pick_next_task_fair() */ | |
6536 | static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) | |
6537 | { | |
6538 | int cpu = cpu_of(rq); | |
6539 | ||
6540 | if (!sched_feat(HZ_BW) || !cfs_bandwidth_used()) | |
6541 | return; | |
6542 | ||
6543 | if (!tick_nohz_full_cpu(cpu)) | |
6544 | return; | |
6545 | ||
6546 | if (rq->nr_running != 1) | |
6547 | return; | |
6548 | ||
6549 | /* | |
6550 | * We know there is only one task runnable and we've just picked it. The | |
6551 | * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will | |
6552 | * be otherwise able to stop the tick. Just need to check if we are using | |
6553 | * bandwidth control. | |
6554 | */ | |
6555 | if (cfs_task_bw_constrained(p)) | |
6556 | tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); | |
6557 | } | |
6558 | #endif | |
6559 | ||
029632fb | 6560 | #else /* CONFIG_CFS_BANDWIDTH */ |
f6783319 VG |
6561 | |
6562 | static inline bool cfs_bandwidth_used(void) | |
6563 | { | |
6564 | return false; | |
6565 | } | |
6566 | ||
9dbdb155 | 6567 | static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} |
678d5718 | 6568 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } |
d3d9dc33 | 6569 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} |
55e16d30 | 6570 | static inline void sync_throttle(struct task_group *tg, int cpu) {} |
6c16a6dc | 6571 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} |
85dac906 PT |
6572 | |
6573 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) | |
6574 | { | |
6575 | return 0; | |
6576 | } | |
64660c86 PT |
6577 | |
6578 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | |
6579 | { | |
6580 | return 0; | |
6581 | } | |
6582 | ||
6583 | static inline int throttled_lb_pair(struct task_group *tg, | |
6584 | int src_cpu, int dest_cpu) | |
6585 | { | |
6586 | return 0; | |
6587 | } | |
029632fb | 6588 | |
7aa55f2a | 6589 | #ifdef CONFIG_FAIR_GROUP_SCHED |
97efd283 | 6590 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} |
029632fb | 6591 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} |
ab84d31e PT |
6592 | #endif |
6593 | ||
029632fb PZ |
6594 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) |
6595 | { | |
6596 | return NULL; | |
6597 | } | |
6598 | static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | |
0e59bdae | 6599 | static inline void update_runtime_enabled(struct rq *rq) {} |
a4c96ae3 | 6600 | static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} |
88c56cfe PA |
6601 | #ifdef CONFIG_CGROUP_SCHED |
6602 | bool cfs_task_bw_constrained(struct task_struct *p) | |
6603 | { | |
6604 | return false; | |
6605 | } | |
6606 | #endif | |
029632fb PZ |
6607 | #endif /* CONFIG_CFS_BANDWIDTH */ |
6608 | ||
88c56cfe PA |
6609 | #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) |
6610 | static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} | |
6611 | #endif | |
6612 | ||
bf0f6f24 IM |
6613 | /************************************************** |
6614 | * CFS operations on tasks: | |
6615 | */ | |
6616 | ||
8f4d37ec PZ |
6617 | #ifdef CONFIG_SCHED_HRTICK |
6618 | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) | |
6619 | { | |
8f4d37ec | 6620 | struct sched_entity *se = &p->se; |
8f4d37ec | 6621 | |
9148a3a1 | 6622 | SCHED_WARN_ON(task_rq(p) != rq); |
8f4d37ec | 6623 | |
8bf46a39 | 6624 | if (rq->cfs.h_nr_running > 1) { |
8f4d37ec | 6625 | u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; |
147f3efa | 6626 | u64 slice = se->slice; |
8f4d37ec PZ |
6627 | s64 delta = slice - ran; |
6628 | ||
6629 | if (delta < 0) { | |
65bcf072 | 6630 | if (task_current(rq, p)) |
8875125e | 6631 | resched_curr(rq); |
8f4d37ec PZ |
6632 | return; |
6633 | } | |
31656519 | 6634 | hrtick_start(rq, delta); |
8f4d37ec PZ |
6635 | } |
6636 | } | |
a4c2f00f PZ |
6637 | |
6638 | /* | |
6639 | * called from enqueue/dequeue and updates the hrtick when the | |
6640 | * current task is from our class and nr_running is low enough | |
6641 | * to matter. | |
6642 | */ | |
6643 | static void hrtick_update(struct rq *rq) | |
6644 | { | |
6645 | struct task_struct *curr = rq->curr; | |
6646 | ||
e0ee463c | 6647 | if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) |
a4c2f00f PZ |
6648 | return; |
6649 | ||
5e963f2b | 6650 | hrtick_start_fair(rq, curr); |
a4c2f00f | 6651 | } |
55e12e5e | 6652 | #else /* !CONFIG_SCHED_HRTICK */ |
8f4d37ec PZ |
6653 | static inline void |
6654 | hrtick_start_fair(struct rq *rq, struct task_struct *p) | |
6655 | { | |
6656 | } | |
a4c2f00f PZ |
6657 | |
6658 | static inline void hrtick_update(struct rq *rq) | |
6659 | { | |
6660 | } | |
8f4d37ec PZ |
6661 | #endif |
6662 | ||
2802bf3c | 6663 | #ifdef CONFIG_SMP |
2802bf3c MR |
6664 | static inline bool cpu_overutilized(int cpu) |
6665 | { | |
c56ab1b3 QY |
6666 | unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); |
6667 | unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); | |
6668 | ||
e5ed0550 | 6669 | /* Return true only if the utilization doesn't fit CPU's capacity */ |
c56ab1b3 | 6670 | return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); |
2802bf3c MR |
6671 | } |
6672 | ||
6673 | static inline void update_overutilized_status(struct rq *rq) | |
6674 | { | |
f9f240f9 | 6675 | if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { |
2802bf3c | 6676 | WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); |
f9f240f9 QY |
6677 | trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); |
6678 | } | |
2802bf3c MR |
6679 | } |
6680 | #else | |
6681 | static inline void update_overutilized_status(struct rq *rq) { } | |
6682 | #endif | |
6683 | ||
323af6de VK |
6684 | /* Runqueue only has SCHED_IDLE tasks enqueued */ |
6685 | static int sched_idle_rq(struct rq *rq) | |
6686 | { | |
6687 | return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && | |
6688 | rq->nr_running); | |
6689 | } | |
6690 | ||
afa70d94 | 6691 | #ifdef CONFIG_SMP |
323af6de VK |
6692 | static int sched_idle_cpu(int cpu) |
6693 | { | |
6694 | return sched_idle_rq(cpu_rq(cpu)); | |
6695 | } | |
afa70d94 | 6696 | #endif |
323af6de | 6697 | |
bf0f6f24 IM |
6698 | /* |
6699 | * The enqueue_task method is called before nr_running is | |
6700 | * increased. Here we update the fair scheduling stats and | |
6701 | * then put the task into the rbtree: | |
6702 | */ | |
ea87bb78 | 6703 | static void |
371fd7e7 | 6704 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) |
bf0f6f24 IM |
6705 | { |
6706 | struct cfs_rq *cfs_rq; | |
62fb1851 | 6707 | struct sched_entity *se = &p->se; |
43e9f7f2 | 6708 | int idle_h_nr_running = task_has_idle_policy(p); |
8e1ac429 | 6709 | int task_new = !(flags & ENQUEUE_WAKEUP); |
bf0f6f24 | 6710 | |
2539fc82 PB |
6711 | /* |
6712 | * The code below (indirectly) updates schedutil which looks at | |
6713 | * the cfs_rq utilization to select a frequency. | |
6714 | * Let's add the task's estimated utilization to the cfs_rq's | |
6715 | * estimated utilization, before we update schedutil. | |
6716 | */ | |
6717 | util_est_enqueue(&rq->cfs, p); | |
6718 | ||
8c34ab19 RW |
6719 | /* |
6720 | * If in_iowait is set, the code below may not trigger any cpufreq | |
6721 | * utilization updates, so do it here explicitly with the IOWAIT flag | |
6722 | * passed. | |
6723 | */ | |
6724 | if (p->in_iowait) | |
674e7541 | 6725 | cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); |
8c34ab19 | 6726 | |
bf0f6f24 | 6727 | for_each_sched_entity(se) { |
62fb1851 | 6728 | if (se->on_rq) |
bf0f6f24 IM |
6729 | break; |
6730 | cfs_rq = cfs_rq_of(se); | |
88ec22d3 | 6731 | enqueue_entity(cfs_rq, se, flags); |
85dac906 | 6732 | |
953bfcd1 | 6733 | cfs_rq->h_nr_running++; |
43e9f7f2 | 6734 | cfs_rq->idle_h_nr_running += idle_h_nr_running; |
85dac906 | 6735 | |
30400039 JD |
6736 | if (cfs_rq_is_idle(cfs_rq)) |
6737 | idle_h_nr_running = 1; | |
6738 | ||
6d4d2246 VG |
6739 | /* end evaluation on encountering a throttled cfs_rq */ |
6740 | if (cfs_rq_throttled(cfs_rq)) | |
6741 | goto enqueue_throttle; | |
6742 | ||
88ec22d3 | 6743 | flags = ENQUEUE_WAKEUP; |
bf0f6f24 | 6744 | } |
8f4d37ec | 6745 | |
2069dd75 | 6746 | for_each_sched_entity(se) { |
0f317143 | 6747 | cfs_rq = cfs_rq_of(se); |
2069dd75 | 6748 | |
88c0616e | 6749 | update_load_avg(cfs_rq, se, UPDATE_TG); |
9f683953 | 6750 | se_update_runnable(se); |
1ea6c46a | 6751 | update_cfs_group(se); |
6d4d2246 VG |
6752 | |
6753 | cfs_rq->h_nr_running++; | |
6754 | cfs_rq->idle_h_nr_running += idle_h_nr_running; | |
5ab297ba | 6755 | |
30400039 JD |
6756 | if (cfs_rq_is_idle(cfs_rq)) |
6757 | idle_h_nr_running = 1; | |
6758 | ||
5ab297ba VG |
6759 | /* end evaluation on encountering a throttled cfs_rq */ |
6760 | if (cfs_rq_throttled(cfs_rq)) | |
6761 | goto enqueue_throttle; | |
2069dd75 PZ |
6762 | } |
6763 | ||
7d148be6 VG |
6764 | /* At this point se is NULL and we are at root level*/ |
6765 | add_nr_running(rq, 1); | |
2802bf3c | 6766 | |
7d148be6 VG |
6767 | /* |
6768 | * Since new tasks are assigned an initial util_avg equal to | |
6769 | * half of the spare capacity of their CPU, tiny tasks have the | |
6770 | * ability to cross the overutilized threshold, which will | |
6771 | * result in the load balancer ruining all the task placement | |
6772 | * done by EAS. As a way to mitigate that effect, do not account | |
6773 | * for the first enqueue operation of new tasks during the | |
6774 | * overutilized flag detection. | |
6775 | * | |
6776 | * A better way of solving this problem would be to wait for | |
6777 | * the PELT signals of tasks to converge before taking them | |
6778 | * into account, but that is not straightforward to implement, | |
6779 | * and the following generally works well enough in practice. | |
6780 | */ | |
8e1ac429 | 6781 | if (!task_new) |
7d148be6 | 6782 | update_overutilized_status(rq); |
cd126afe | 6783 | |
7d148be6 | 6784 | enqueue_throttle: |
5d299eab PZ |
6785 | assert_list_leaf_cfs_rq(rq); |
6786 | ||
a4c2f00f | 6787 | hrtick_update(rq); |
bf0f6f24 IM |
6788 | } |
6789 | ||
2f36825b VP |
6790 | static void set_next_buddy(struct sched_entity *se); |
6791 | ||
bf0f6f24 IM |
6792 | /* |
6793 | * The dequeue_task method is called before nr_running is | |
6794 | * decreased. We remove the task from the rbtree and | |
6795 | * update the fair scheduling stats: | |
6796 | */ | |
371fd7e7 | 6797 | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) |
bf0f6f24 IM |
6798 | { |
6799 | struct cfs_rq *cfs_rq; | |
62fb1851 | 6800 | struct sched_entity *se = &p->se; |
2f36825b | 6801 | int task_sleep = flags & DEQUEUE_SLEEP; |
43e9f7f2 | 6802 | int idle_h_nr_running = task_has_idle_policy(p); |
323af6de | 6803 | bool was_sched_idle = sched_idle_rq(rq); |
bf0f6f24 | 6804 | |
8c1f560c XY |
6805 | util_est_dequeue(&rq->cfs, p); |
6806 | ||
bf0f6f24 IM |
6807 | for_each_sched_entity(se) { |
6808 | cfs_rq = cfs_rq_of(se); | |
371fd7e7 | 6809 | dequeue_entity(cfs_rq, se, flags); |
85dac906 | 6810 | |
953bfcd1 | 6811 | cfs_rq->h_nr_running--; |
43e9f7f2 | 6812 | cfs_rq->idle_h_nr_running -= idle_h_nr_running; |
2069dd75 | 6813 | |
30400039 JD |
6814 | if (cfs_rq_is_idle(cfs_rq)) |
6815 | idle_h_nr_running = 1; | |
6816 | ||
6d4d2246 VG |
6817 | /* end evaluation on encountering a throttled cfs_rq */ |
6818 | if (cfs_rq_throttled(cfs_rq)) | |
6819 | goto dequeue_throttle; | |
6820 | ||
bf0f6f24 | 6821 | /* Don't dequeue parent if it has other entities besides us */ |
2f36825b | 6822 | if (cfs_rq->load.weight) { |
754bd598 KK |
6823 | /* Avoid re-evaluating load for this entity: */ |
6824 | se = parent_entity(se); | |
2f36825b VP |
6825 | /* |
6826 | * Bias pick_next to pick a task from this cfs_rq, as | |
6827 | * p is sleeping when it is within its sched_slice. | |
6828 | */ | |
754bd598 KK |
6829 | if (task_sleep && se && !throttled_hierarchy(cfs_rq)) |
6830 | set_next_buddy(se); | |
bf0f6f24 | 6831 | break; |
2f36825b | 6832 | } |
371fd7e7 | 6833 | flags |= DEQUEUE_SLEEP; |
bf0f6f24 | 6834 | } |
8f4d37ec | 6835 | |
2069dd75 | 6836 | for_each_sched_entity(se) { |
0f317143 | 6837 | cfs_rq = cfs_rq_of(se); |
2069dd75 | 6838 | |
88c0616e | 6839 | update_load_avg(cfs_rq, se, UPDATE_TG); |
9f683953 | 6840 | se_update_runnable(se); |
1ea6c46a | 6841 | update_cfs_group(se); |
6d4d2246 VG |
6842 | |
6843 | cfs_rq->h_nr_running--; | |
6844 | cfs_rq->idle_h_nr_running -= idle_h_nr_running; | |
5ab297ba | 6845 | |
30400039 JD |
6846 | if (cfs_rq_is_idle(cfs_rq)) |
6847 | idle_h_nr_running = 1; | |
6848 | ||
5ab297ba VG |
6849 | /* end evaluation on encountering a throttled cfs_rq */ |
6850 | if (cfs_rq_throttled(cfs_rq)) | |
6851 | goto dequeue_throttle; | |
6852 | ||
2069dd75 PZ |
6853 | } |
6854 | ||
423d02e1 PW |
6855 | /* At this point se is NULL and we are at root level*/ |
6856 | sub_nr_running(rq, 1); | |
cd126afe | 6857 | |
323af6de VK |
6858 | /* balance early to pull high priority tasks */ |
6859 | if (unlikely(!was_sched_idle && sched_idle_rq(rq))) | |
6860 | rq->next_balance = jiffies; | |
6861 | ||
423d02e1 | 6862 | dequeue_throttle: |
8c1f560c | 6863 | util_est_update(&rq->cfs, p, task_sleep); |
a4c2f00f | 6864 | hrtick_update(rq); |
bf0f6f24 IM |
6865 | } |
6866 | ||
e7693a36 | 6867 | #ifdef CONFIG_SMP |
10e2f1ac | 6868 | |
4c3e509e | 6869 | /* Working cpumask for: sched_balance_rq, load_balance_newidle. */ |
18c31c97 BH |
6870 | static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); |
6871 | static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); | |
f8858d96 | 6872 | static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); |
10e2f1ac | 6873 | |
9fd81dd5 | 6874 | #ifdef CONFIG_NO_HZ_COMMON |
e022e0d3 PZ |
6875 | |
6876 | static struct { | |
6877 | cpumask_var_t idle_cpus_mask; | |
6878 | atomic_t nr_cpus; | |
f643ea22 | 6879 | int has_blocked; /* Idle CPUS has blocked load */ |
7fd7a9e0 | 6880 | int needs_update; /* Newly idle CPUs need their next_balance collated */ |
e022e0d3 | 6881 | unsigned long next_balance; /* in jiffy units */ |
f643ea22 | 6882 | unsigned long next_blocked; /* Next update of blocked load in jiffies */ |
e022e0d3 PZ |
6883 | } nohz ____cacheline_aligned; |
6884 | ||
9fd81dd5 | 6885 | #endif /* CONFIG_NO_HZ_COMMON */ |
3289bdb4 | 6886 | |
b0fb1eb4 VG |
6887 | static unsigned long cpu_load(struct rq *rq) |
6888 | { | |
6889 | return cfs_rq_load_avg(&rq->cfs); | |
6890 | } | |
6891 | ||
3318544b VG |
6892 | /* |
6893 | * cpu_load_without - compute CPU load without any contributions from *p | |
6894 | * @cpu: the CPU which load is requested | |
6895 | * @p: the task which load should be discounted | |
6896 | * | |
6897 | * The load of a CPU is defined by the load of tasks currently enqueued on that | |
6898 | * CPU as well as tasks which are currently sleeping after an execution on that | |
6899 | * CPU. | |
6900 | * | |
6901 | * This method returns the load of the specified CPU by discounting the load of | |
6902 | * the specified task, whenever the task is currently contributing to the CPU | |
6903 | * load. | |
6904 | */ | |
6905 | static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) | |
6906 | { | |
6907 | struct cfs_rq *cfs_rq; | |
6908 | unsigned int load; | |
6909 | ||
6910 | /* Task has no contribution or is new */ | |
6911 | if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) | |
6912 | return cpu_load(rq); | |
6913 | ||
6914 | cfs_rq = &rq->cfs; | |
6915 | load = READ_ONCE(cfs_rq->avg.load_avg); | |
6916 | ||
6917 | /* Discount task's util from CPU's util */ | |
6918 | lsub_positive(&load, task_h_load(p)); | |
6919 | ||
6920 | return load; | |
6921 | } | |
6922 | ||
9f683953 VG |
6923 | static unsigned long cpu_runnable(struct rq *rq) |
6924 | { | |
6925 | return cfs_rq_runnable_avg(&rq->cfs); | |
6926 | } | |
6927 | ||
070f5e86 VG |
6928 | static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) |
6929 | { | |
6930 | struct cfs_rq *cfs_rq; | |
6931 | unsigned int runnable; | |
6932 | ||
6933 | /* Task has no contribution or is new */ | |
6934 | if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) | |
6935 | return cpu_runnable(rq); | |
6936 | ||
6937 | cfs_rq = &rq->cfs; | |
6938 | runnable = READ_ONCE(cfs_rq->avg.runnable_avg); | |
6939 | ||
6940 | /* Discount task's runnable from CPU's runnable */ | |
6941 | lsub_positive(&runnable, p->se.avg.runnable_avg); | |
6942 | ||
6943 | return runnable; | |
6944 | } | |
6945 | ||
ced549fa | 6946 | static unsigned long capacity_of(int cpu) |
029632fb | 6947 | { |
ced549fa | 6948 | return cpu_rq(cpu)->cpu_capacity; |
029632fb PZ |
6949 | } |
6950 | ||
c58d25f3 PZ |
6951 | static void record_wakee(struct task_struct *p) |
6952 | { | |
6953 | /* | |
6954 | * Only decay a single time; tasks that have less then 1 wakeup per | |
6955 | * jiffy will not have built up many flips. | |
6956 | */ | |
6957 | if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { | |
6958 | current->wakee_flips >>= 1; | |
6959 | current->wakee_flip_decay_ts = jiffies; | |
6960 | } | |
6961 | ||
6962 | if (current->last_wakee != p) { | |
6963 | current->last_wakee = p; | |
6964 | current->wakee_flips++; | |
6965 | } | |
6966 | } | |
6967 | ||
63b0e9ed MG |
6968 | /* |
6969 | * Detect M:N waker/wakee relationships via a switching-frequency heuristic. | |
c58d25f3 | 6970 | * |
63b0e9ed | 6971 | * A waker of many should wake a different task than the one last awakened |
c58d25f3 PZ |
6972 | * at a frequency roughly N times higher than one of its wakees. |
6973 | * | |
6974 | * In order to determine whether we should let the load spread vs consolidating | |
6975 | * to shared cache, we look for a minimum 'flip' frequency of llc_size in one | |
6976 | * partner, and a factor of lls_size higher frequency in the other. | |
6977 | * | |
6978 | * With both conditions met, we can be relatively sure that the relationship is | |
6979 | * non-monogamous, with partner count exceeding socket size. | |
6980 | * | |
6981 | * Waker/wakee being client/server, worker/dispatcher, interrupt source or | |
6982 | * whatever is irrelevant, spread criteria is apparent partner count exceeds | |
6983 | * socket size. | |
63b0e9ed | 6984 | */ |
62470419 MW |
6985 | static int wake_wide(struct task_struct *p) |
6986 | { | |
63b0e9ed MG |
6987 | unsigned int master = current->wakee_flips; |
6988 | unsigned int slave = p->wakee_flips; | |
17c891ab | 6989 | int factor = __this_cpu_read(sd_llc_size); |
62470419 | 6990 | |
63b0e9ed MG |
6991 | if (master < slave) |
6992 | swap(master, slave); | |
6993 | if (slave < factor || master < slave * factor) | |
6994 | return 0; | |
6995 | return 1; | |
62470419 MW |
6996 | } |
6997 | ||
90001d67 | 6998 | /* |
d153b153 PZ |
6999 | * The purpose of wake_affine() is to quickly determine on which CPU we can run |
7000 | * soonest. For the purpose of speed we only consider the waking and previous | |
7001 | * CPU. | |
90001d67 | 7002 | * |
7332dec0 MG |
7003 | * wake_affine_idle() - only considers 'now', it check if the waking CPU is |
7004 | * cache-affine and is (or will be) idle. | |
f2cdd9cc PZ |
7005 | * |
7006 | * wake_affine_weight() - considers the weight to reflect the average | |
7007 | * scheduling latency of the CPUs. This seems to work | |
7008 | * for the overloaded case. | |
90001d67 | 7009 | */ |
3b76c4a3 | 7010 | static int |
89a55f56 | 7011 | wake_affine_idle(int this_cpu, int prev_cpu, int sync) |
90001d67 | 7012 | { |
7332dec0 MG |
7013 | /* |
7014 | * If this_cpu is idle, it implies the wakeup is from interrupt | |
7015 | * context. Only allow the move if cache is shared. Otherwise an | |
7016 | * interrupt intensive workload could force all tasks onto one | |
7017 | * node depending on the IO topology or IRQ affinity settings. | |
806486c3 MG |
7018 | * |
7019 | * If the prev_cpu is idle and cache affine then avoid a migration. | |
7020 | * There is no guarantee that the cache hot data from an interrupt | |
7021 | * is more important than cache hot data on the prev_cpu and from | |
7022 | * a cpufreq perspective, it's better to have higher utilisation | |
7023 | * on one CPU. | |
7332dec0 | 7024 | */ |
943d355d RJ |
7025 | if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) |
7026 | return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; | |
90001d67 | 7027 | |
d153b153 | 7028 | if (sync && cpu_rq(this_cpu)->nr_running == 1) |
3b76c4a3 | 7029 | return this_cpu; |
90001d67 | 7030 | |
d8fcb81f JL |
7031 | if (available_idle_cpu(prev_cpu)) |
7032 | return prev_cpu; | |
7033 | ||
3b76c4a3 | 7034 | return nr_cpumask_bits; |
90001d67 PZ |
7035 | } |
7036 | ||
3b76c4a3 | 7037 | static int |
f2cdd9cc PZ |
7038 | wake_affine_weight(struct sched_domain *sd, struct task_struct *p, |
7039 | int this_cpu, int prev_cpu, int sync) | |
90001d67 | 7040 | { |
90001d67 PZ |
7041 | s64 this_eff_load, prev_eff_load; |
7042 | unsigned long task_load; | |
7043 | ||
11f10e54 | 7044 | this_eff_load = cpu_load(cpu_rq(this_cpu)); |
90001d67 | 7045 | |
90001d67 PZ |
7046 | if (sync) { |
7047 | unsigned long current_load = task_h_load(current); | |
7048 | ||
f2cdd9cc | 7049 | if (current_load > this_eff_load) |
3b76c4a3 | 7050 | return this_cpu; |
90001d67 | 7051 | |
f2cdd9cc | 7052 | this_eff_load -= current_load; |
90001d67 PZ |
7053 | } |
7054 | ||
90001d67 PZ |
7055 | task_load = task_h_load(p); |
7056 | ||
f2cdd9cc PZ |
7057 | this_eff_load += task_load; |
7058 | if (sched_feat(WA_BIAS)) | |
7059 | this_eff_load *= 100; | |
7060 | this_eff_load *= capacity_of(prev_cpu); | |
90001d67 | 7061 | |
11f10e54 | 7062 | prev_eff_load = cpu_load(cpu_rq(prev_cpu)); |
f2cdd9cc PZ |
7063 | prev_eff_load -= task_load; |
7064 | if (sched_feat(WA_BIAS)) | |
7065 | prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; | |
7066 | prev_eff_load *= capacity_of(this_cpu); | |
90001d67 | 7067 | |
082f764a MG |
7068 | /* |
7069 | * If sync, adjust the weight of prev_eff_load such that if | |
7070 | * prev_eff == this_eff that select_idle_sibling() will consider | |
7071 | * stacking the wakee on top of the waker if no other CPU is | |
7072 | * idle. | |
7073 | */ | |
7074 | if (sync) | |
7075 | prev_eff_load += 1; | |
7076 | ||
7077 | return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; | |
90001d67 PZ |
7078 | } |
7079 | ||
772bd008 | 7080 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, |
7ebb66a1 | 7081 | int this_cpu, int prev_cpu, int sync) |
098fb9db | 7082 | { |
3b76c4a3 | 7083 | int target = nr_cpumask_bits; |
098fb9db | 7084 | |
89a55f56 | 7085 | if (sched_feat(WA_IDLE)) |
3b76c4a3 | 7086 | target = wake_affine_idle(this_cpu, prev_cpu, sync); |
90001d67 | 7087 | |
3b76c4a3 MG |
7088 | if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) |
7089 | target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); | |
098fb9db | 7090 | |
ceeadb83 | 7091 | schedstat_inc(p->stats.nr_wakeups_affine_attempts); |
39afe5d6 | 7092 | if (target != this_cpu) |
3b76c4a3 | 7093 | return prev_cpu; |
098fb9db | 7094 | |
3b76c4a3 | 7095 | schedstat_inc(sd->ttwu_move_affine); |
ceeadb83 | 7096 | schedstat_inc(p->stats.nr_wakeups_affine); |
3b76c4a3 | 7097 | return target; |
098fb9db IM |
7098 | } |
7099 | ||
aaee1203 | 7100 | static struct sched_group * |
45da2773 | 7101 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); |
aaee1203 PZ |
7102 | |
7103 | /* | |
97fb7a0a | 7104 | * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. |
aaee1203 PZ |
7105 | */ |
7106 | static int | |
18bd1b4b | 7107 | find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) |
aaee1203 PZ |
7108 | { |
7109 | unsigned long load, min_load = ULONG_MAX; | |
83a0a96a NP |
7110 | unsigned int min_exit_latency = UINT_MAX; |
7111 | u64 latest_idle_timestamp = 0; | |
7112 | int least_loaded_cpu = this_cpu; | |
17346452 | 7113 | int shallowest_idle_cpu = -1; |
aaee1203 PZ |
7114 | int i; |
7115 | ||
eaecf41f MR |
7116 | /* Check if we have any choice: */ |
7117 | if (group->group_weight == 1) | |
ae4df9d6 | 7118 | return cpumask_first(sched_group_span(group)); |
eaecf41f | 7119 | |
aaee1203 | 7120 | /* Traverse only the allowed CPUs */ |
3bd37062 | 7121 | for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { |
97886d9d AL |
7122 | struct rq *rq = cpu_rq(i); |
7123 | ||
7124 | if (!sched_core_cookie_match(rq, p)) | |
7125 | continue; | |
7126 | ||
17346452 VK |
7127 | if (sched_idle_cpu(i)) |
7128 | return i; | |
7129 | ||
943d355d | 7130 | if (available_idle_cpu(i)) { |
83a0a96a NP |
7131 | struct cpuidle_state *idle = idle_get_state(rq); |
7132 | if (idle && idle->exit_latency < min_exit_latency) { | |
7133 | /* | |
7134 | * We give priority to a CPU whose idle state | |
7135 | * has the smallest exit latency irrespective | |
7136 | * of any idle timestamp. | |
7137 | */ | |
7138 | min_exit_latency = idle->exit_latency; | |
7139 | latest_idle_timestamp = rq->idle_stamp; | |
7140 | shallowest_idle_cpu = i; | |
7141 | } else if ((!idle || idle->exit_latency == min_exit_latency) && | |
7142 | rq->idle_stamp > latest_idle_timestamp) { | |
7143 | /* | |
7144 | * If equal or no active idle state, then | |
7145 | * the most recently idled CPU might have | |
7146 | * a warmer cache. | |
7147 | */ | |
7148 | latest_idle_timestamp = rq->idle_stamp; | |
7149 | shallowest_idle_cpu = i; | |
7150 | } | |
17346452 | 7151 | } else if (shallowest_idle_cpu == -1) { |
11f10e54 | 7152 | load = cpu_load(cpu_rq(i)); |
18cec7e0 | 7153 | if (load < min_load) { |
83a0a96a NP |
7154 | min_load = load; |
7155 | least_loaded_cpu = i; | |
7156 | } | |
e7693a36 GH |
7157 | } |
7158 | } | |
7159 | ||
17346452 | 7160 | return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; |
aaee1203 | 7161 | } |
e7693a36 | 7162 | |
18bd1b4b BJ |
7163 | static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, |
7164 | int cpu, int prev_cpu, int sd_flag) | |
7165 | { | |
93f50f90 | 7166 | int new_cpu = cpu; |
18bd1b4b | 7167 | |
3bd37062 | 7168 | if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) |
6fee85cc BJ |
7169 | return prev_cpu; |
7170 | ||
c976a862 | 7171 | /* |
57abff06 | 7172 | * We need task's util for cpu_util_without, sync it up to |
c469933e | 7173 | * prev_cpu's last_update_time. |
c976a862 VK |
7174 | */ |
7175 | if (!(sd_flag & SD_BALANCE_FORK)) | |
7176 | sync_entity_load_avg(&p->se); | |
7177 | ||
18bd1b4b BJ |
7178 | while (sd) { |
7179 | struct sched_group *group; | |
7180 | struct sched_domain *tmp; | |
7181 | int weight; | |
7182 | ||
7183 | if (!(sd->flags & sd_flag)) { | |
7184 | sd = sd->child; | |
7185 | continue; | |
7186 | } | |
7187 | ||
45da2773 | 7188 | group = find_idlest_group(sd, p, cpu); |
18bd1b4b BJ |
7189 | if (!group) { |
7190 | sd = sd->child; | |
7191 | continue; | |
7192 | } | |
7193 | ||
7194 | new_cpu = find_idlest_group_cpu(group, p, cpu); | |
e90381ea | 7195 | if (new_cpu == cpu) { |
97fb7a0a | 7196 | /* Now try balancing at a lower domain level of 'cpu': */ |
18bd1b4b BJ |
7197 | sd = sd->child; |
7198 | continue; | |
7199 | } | |
7200 | ||
97fb7a0a | 7201 | /* Now try balancing at a lower domain level of 'new_cpu': */ |
18bd1b4b BJ |
7202 | cpu = new_cpu; |
7203 | weight = sd->span_weight; | |
7204 | sd = NULL; | |
7205 | for_each_domain(cpu, tmp) { | |
7206 | if (weight <= tmp->span_weight) | |
7207 | break; | |
7208 | if (tmp->flags & sd_flag) | |
7209 | sd = tmp; | |
7210 | } | |
18bd1b4b BJ |
7211 | } |
7212 | ||
7213 | return new_cpu; | |
7214 | } | |
7215 | ||
97886d9d | 7216 | static inline int __select_idle_cpu(int cpu, struct task_struct *p) |
9fe1f127 | 7217 | { |
97886d9d AL |
7218 | if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && |
7219 | sched_cpu_cookie_match(cpu_rq(cpu), p)) | |
9fe1f127 MG |
7220 | return cpu; |
7221 | ||
7222 | return -1; | |
7223 | } | |
7224 | ||
10e2f1ac | 7225 | #ifdef CONFIG_SCHED_SMT |
ba2591a5 | 7226 | DEFINE_STATIC_KEY_FALSE(sched_smt_present); |
b284909a | 7227 | EXPORT_SYMBOL_GPL(sched_smt_present); |
10e2f1ac PZ |
7228 | |
7229 | static inline void set_idle_cores(int cpu, int val) | |
7230 | { | |
7231 | struct sched_domain_shared *sds; | |
7232 | ||
7233 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); | |
7234 | if (sds) | |
7235 | WRITE_ONCE(sds->has_idle_cores, val); | |
7236 | } | |
7237 | ||
398ba2b0 | 7238 | static inline bool test_idle_cores(int cpu) |
10e2f1ac PZ |
7239 | { |
7240 | struct sched_domain_shared *sds; | |
7241 | ||
c722f35b RR |
7242 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); |
7243 | if (sds) | |
7244 | return READ_ONCE(sds->has_idle_cores); | |
10e2f1ac | 7245 | |
398ba2b0 | 7246 | return false; |
10e2f1ac PZ |
7247 | } |
7248 | ||
7249 | /* | |
7250 | * Scans the local SMT mask to see if the entire core is idle, and records this | |
7251 | * information in sd_llc_shared->has_idle_cores. | |
7252 | * | |
7253 | * Since SMT siblings share all cache levels, inspecting this limited remote | |
7254 | * state should be fairly cheap. | |
7255 | */ | |
1b568f0a | 7256 | void __update_idle_core(struct rq *rq) |
10e2f1ac PZ |
7257 | { |
7258 | int core = cpu_of(rq); | |
7259 | int cpu; | |
7260 | ||
7261 | rcu_read_lock(); | |
398ba2b0 | 7262 | if (test_idle_cores(core)) |
10e2f1ac PZ |
7263 | goto unlock; |
7264 | ||
7265 | for_each_cpu(cpu, cpu_smt_mask(core)) { | |
7266 | if (cpu == core) | |
7267 | continue; | |
7268 | ||
943d355d | 7269 | if (!available_idle_cpu(cpu)) |
10e2f1ac PZ |
7270 | goto unlock; |
7271 | } | |
7272 | ||
7273 | set_idle_cores(core, 1); | |
7274 | unlock: | |
7275 | rcu_read_unlock(); | |
7276 | } | |
7277 | ||
7278 | /* | |
7279 | * Scan the entire LLC domain for idle cores; this dynamically switches off if | |
7280 | * there are no idle cores left in the system; tracked through | |
7281 | * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. | |
7282 | */ | |
9fe1f127 | 7283 | static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) |
10e2f1ac | 7284 | { |
9fe1f127 MG |
7285 | bool idle = true; |
7286 | int cpu; | |
10e2f1ac | 7287 | |
9fe1f127 MG |
7288 | for_each_cpu(cpu, cpu_smt_mask(core)) { |
7289 | if (!available_idle_cpu(cpu)) { | |
7290 | idle = false; | |
7291 | if (*idle_cpu == -1) { | |
23d04d8c | 7292 | if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { |
9fe1f127 MG |
7293 | *idle_cpu = cpu; |
7294 | break; | |
7295 | } | |
7296 | continue; | |
bec2860a | 7297 | } |
9fe1f127 | 7298 | break; |
10e2f1ac | 7299 | } |
23d04d8c | 7300 | if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) |
9fe1f127 | 7301 | *idle_cpu = cpu; |
10e2f1ac PZ |
7302 | } |
7303 | ||
9fe1f127 MG |
7304 | if (idle) |
7305 | return core; | |
10e2f1ac | 7306 | |
9fe1f127 | 7307 | cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); |
10e2f1ac PZ |
7308 | return -1; |
7309 | } | |
7310 | ||
c722f35b RR |
7311 | /* |
7312 | * Scan the local SMT mask for idle CPUs. | |
7313 | */ | |
8aeaffef | 7314 | static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) |
c722f35b RR |
7315 | { |
7316 | int cpu; | |
7317 | ||
3e6efe87 | 7318 | for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { |
b9bae704 AW |
7319 | if (cpu == target) |
7320 | continue; | |
8aeaffef KN |
7321 | /* |
7322 | * Check if the CPU is in the LLC scheduling domain of @target. | |
7323 | * Due to isolcpus, there is no guarantee that all the siblings are in the domain. | |
7324 | */ | |
7325 | if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) | |
7326 | continue; | |
c722f35b RR |
7327 | if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) |
7328 | return cpu; | |
7329 | } | |
7330 | ||
7331 | return -1; | |
7332 | } | |
7333 | ||
10e2f1ac PZ |
7334 | #else /* CONFIG_SCHED_SMT */ |
7335 | ||
9fe1f127 | 7336 | static inline void set_idle_cores(int cpu, int val) |
10e2f1ac | 7337 | { |
9fe1f127 MG |
7338 | } |
7339 | ||
398ba2b0 | 7340 | static inline bool test_idle_cores(int cpu) |
9fe1f127 | 7341 | { |
398ba2b0 | 7342 | return false; |
9fe1f127 MG |
7343 | } |
7344 | ||
7345 | static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) | |
7346 | { | |
97886d9d | 7347 | return __select_idle_cpu(core, p); |
10e2f1ac PZ |
7348 | } |
7349 | ||
8aeaffef | 7350 | static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) |
c722f35b RR |
7351 | { |
7352 | return -1; | |
7353 | } | |
7354 | ||
10e2f1ac PZ |
7355 | #endif /* CONFIG_SCHED_SMT */ |
7356 | ||
7357 | /* | |
7358 | * Scan the LLC domain for idle CPUs; this is dynamically regulated by | |
7359 | * comparing the average scan cost (tracked in sd->avg_scan_cost) against the | |
7360 | * average idle time for this rq (as found in rq->avg_idle). | |
a50bde51 | 7361 | */ |
c722f35b | 7362 | static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) |
10e2f1ac | 7363 | { |
ec4fc801 | 7364 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); |
9fe1f127 | 7365 | int i, cpu, idle_cpu = -1, nr = INT_MAX; |
70fb5ccf | 7366 | struct sched_domain_shared *sd_share; |
10e2f1ac | 7367 | |
bae4ec13 MG |
7368 | cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); |
7369 | ||
70fb5ccf CY |
7370 | if (sched_feat(SIS_UTIL)) { |
7371 | sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); | |
7372 | if (sd_share) { | |
7373 | /* because !--nr is the condition to stop scan */ | |
7374 | nr = READ_ONCE(sd_share->nr_idle_scan) + 1; | |
7375 | /* overloaded LLC is unlikely to have idle cpu/core */ | |
7376 | if (nr == 1) | |
7377 | return -1; | |
7378 | } | |
7379 | } | |
7380 | ||
8881e163 BS |
7381 | if (static_branch_unlikely(&sched_cluster_active)) { |
7382 | struct sched_group *sg = sd->groups; | |
7383 | ||
7384 | if (sg->flags & SD_CLUSTER) { | |
7385 | for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { | |
7386 | if (!cpumask_test_cpu(cpu, cpus)) | |
7387 | continue; | |
7388 | ||
7389 | if (has_idle_core) { | |
7390 | i = select_idle_core(p, cpu, cpus, &idle_cpu); | |
7391 | if ((unsigned int)i < nr_cpumask_bits) | |
7392 | return i; | |
7393 | } else { | |
7394 | if (--nr <= 0) | |
7395 | return -1; | |
7396 | idle_cpu = __select_idle_cpu(cpu, p); | |
7397 | if ((unsigned int)idle_cpu < nr_cpumask_bits) | |
7398 | return idle_cpu; | |
7399 | } | |
7400 | } | |
7401 | cpumask_andnot(cpus, cpus, sched_group_span(sg)); | |
7402 | } | |
7403 | } | |
7404 | ||
56498cfb | 7405 | for_each_cpu_wrap(cpu, cpus, target + 1) { |
c722f35b | 7406 | if (has_idle_core) { |
9fe1f127 MG |
7407 | i = select_idle_core(p, cpu, cpus, &idle_cpu); |
7408 | if ((unsigned int)i < nr_cpumask_bits) | |
7409 | return i; | |
7410 | ||
7411 | } else { | |
8881e163 | 7412 | if (--nr <= 0) |
9fe1f127 | 7413 | return -1; |
97886d9d | 7414 | idle_cpu = __select_idle_cpu(cpu, p); |
9fe1f127 MG |
7415 | if ((unsigned int)idle_cpu < nr_cpumask_bits) |
7416 | break; | |
7417 | } | |
10e2f1ac PZ |
7418 | } |
7419 | ||
c722f35b | 7420 | if (has_idle_core) |
02dbb724 | 7421 | set_idle_cores(target, false); |
9fe1f127 | 7422 | |
9fe1f127 | 7423 | return idle_cpu; |
10e2f1ac PZ |
7424 | } |
7425 | ||
b7a33161 MR |
7426 | /* |
7427 | * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which | |
7428 | * the task fits. If no CPU is big enough, but there are idle ones, try to | |
7429 | * maximize capacity. | |
7430 | */ | |
7431 | static int | |
7432 | select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) | |
7433 | { | |
b759caa1 | 7434 | unsigned long task_util, util_min, util_max, best_cap = 0; |
e5ed0550 | 7435 | int fits, best_fits = 0; |
b7a33161 MR |
7436 | int cpu, best_cpu = -1; |
7437 | struct cpumask *cpus; | |
7438 | ||
ec4fc801 | 7439 | cpus = this_cpu_cpumask_var_ptr(select_rq_mask); |
b7a33161 MR |
7440 | cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); |
7441 | ||
b759caa1 QY |
7442 | task_util = task_util_est(p); |
7443 | util_min = uclamp_eff_value(p, UCLAMP_MIN); | |
7444 | util_max = uclamp_eff_value(p, UCLAMP_MAX); | |
b4c9c9f1 | 7445 | |
7ee7642c | 7446 | for_each_cpu_wrap(cpu, cpus, target) { |
b7a33161 MR |
7447 | unsigned long cpu_cap = capacity_of(cpu); |
7448 | ||
7449 | if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) | |
7450 | continue; | |
e5ed0550 VG |
7451 | |
7452 | fits = util_fits_cpu(task_util, util_min, util_max, cpu); | |
7453 | ||
7454 | /* This CPU fits with all requirements */ | |
7455 | if (fits > 0) | |
b7a33161 | 7456 | return cpu; |
e5ed0550 VG |
7457 | /* |
7458 | * Only the min performance hint (i.e. uclamp_min) doesn't fit. | |
7459 | * Look for the CPU with best capacity. | |
7460 | */ | |
7461 | else if (fits < 0) | |
7bc26384 | 7462 | cpu_cap = arch_scale_cpu_capacity(cpu) - thermal_load_avg(cpu_rq(cpu)); |
b7a33161 | 7463 | |
e5ed0550 VG |
7464 | /* |
7465 | * First, select CPU which fits better (-1 being better than 0). | |
7466 | * Then, select the one with best capacity at same level. | |
7467 | */ | |
7468 | if ((fits < best_fits) || | |
7469 | ((fits == best_fits) && (cpu_cap > best_cap))) { | |
b7a33161 MR |
7470 | best_cap = cpu_cap; |
7471 | best_cpu = cpu; | |
e5ed0550 | 7472 | best_fits = fits; |
b7a33161 MR |
7473 | } |
7474 | } | |
7475 | ||
7476 | return best_cpu; | |
7477 | } | |
7478 | ||
a2e7f03e QY |
7479 | static inline bool asym_fits_cpu(unsigned long util, |
7480 | unsigned long util_min, | |
7481 | unsigned long util_max, | |
7482 | int cpu) | |
b4c9c9f1 | 7483 | { |
740cf8a7 | 7484 | if (sched_asym_cpucap_active()) |
e5ed0550 VG |
7485 | /* |
7486 | * Return true only if the cpu fully fits the task requirements | |
7487 | * which include the utilization and the performance hints. | |
7488 | */ | |
7489 | return (util_fits_cpu(util, util_min, util_max, cpu) > 0); | |
b4c9c9f1 VG |
7490 | |
7491 | return true; | |
7492 | } | |
7493 | ||
10e2f1ac PZ |
7494 | /* |
7495 | * Try and locate an idle core/thread in the LLC cache domain. | |
a50bde51 | 7496 | */ |
772bd008 | 7497 | static int select_idle_sibling(struct task_struct *p, int prev, int target) |
a50bde51 | 7498 | { |
c722f35b | 7499 | bool has_idle_core = false; |
99bd5e2f | 7500 | struct sched_domain *sd; |
a2e7f03e | 7501 | unsigned long task_util, util_min, util_max; |
22165f61 | 7502 | int i, recent_used_cpu, prev_aff = -1; |
a50bde51 | 7503 | |
b7a33161 | 7504 | /* |
b4c9c9f1 VG |
7505 | * On asymmetric system, update task utilization because we will check |
7506 | * that the task fits with cpu's capacity. | |
b7a33161 | 7507 | */ |
740cf8a7 | 7508 | if (sched_asym_cpucap_active()) { |
b4c9c9f1 | 7509 | sync_entity_load_avg(&p->se); |
a2e7f03e QY |
7510 | task_util = task_util_est(p); |
7511 | util_min = uclamp_eff_value(p, UCLAMP_MIN); | |
7512 | util_max = uclamp_eff_value(p, UCLAMP_MAX); | |
b7a33161 MR |
7513 | } |
7514 | ||
9099a147 | 7515 | /* |
ec4fc801 | 7516 | * per-cpu select_rq_mask usage |
9099a147 PZ |
7517 | */ |
7518 | lockdep_assert_irqs_disabled(); | |
7519 | ||
b4c9c9f1 | 7520 | if ((available_idle_cpu(target) || sched_idle_cpu(target)) && |
a2e7f03e | 7521 | asym_fits_cpu(task_util, util_min, util_max, target)) |
e0a79f52 | 7522 | return target; |
99bd5e2f SS |
7523 | |
7524 | /* | |
97fb7a0a | 7525 | * If the previous CPU is cache affine and idle, don't be stupid: |
99bd5e2f | 7526 | */ |
3c29e651 | 7527 | if (prev != target && cpus_share_cache(prev, target) && |
b4c9c9f1 | 7528 | (available_idle_cpu(prev) || sched_idle_cpu(prev)) && |
8881e163 BS |
7529 | asym_fits_cpu(task_util, util_min, util_max, prev)) { |
7530 | ||
7531 | if (!static_branch_unlikely(&sched_cluster_active) || | |
7532 | cpus_share_resources(prev, target)) | |
7533 | return prev; | |
22165f61 YY |
7534 | |
7535 | prev_aff = prev; | |
8881e163 | 7536 | } |
a50bde51 | 7537 | |
52262ee5 MG |
7538 | /* |
7539 | * Allow a per-cpu kthread to stack with the wakee if the | |
7540 | * kworker thread and the tasks previous CPUs are the same. | |
7541 | * The assumption is that the wakee queued work for the | |
7542 | * per-cpu kthread that is now complete and the wakeup is | |
7543 | * essentially a sync wakeup. An obvious example of this | |
7544 | * pattern is IO completions. | |
7545 | */ | |
7546 | if (is_per_cpu_kthread(current) && | |
8b4e74cc | 7547 | in_task() && |
52262ee5 | 7548 | prev == smp_processor_id() && |
014ba44e | 7549 | this_rq()->nr_running <= 1 && |
a2e7f03e | 7550 | asym_fits_cpu(task_util, util_min, util_max, prev)) { |
52262ee5 MG |
7551 | return prev; |
7552 | } | |
7553 | ||
97fb7a0a | 7554 | /* Check a recently used CPU as a potential idle candidate: */ |
32e839dd | 7555 | recent_used_cpu = p->recent_used_cpu; |
89aafd67 | 7556 | p->recent_used_cpu = prev; |
32e839dd MG |
7557 | if (recent_used_cpu != prev && |
7558 | recent_used_cpu != target && | |
7559 | cpus_share_cache(recent_used_cpu, target) && | |
3c29e651 | 7560 | (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && |
ae2ad293 | 7561 | cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && |
a2e7f03e | 7562 | asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { |
8881e163 BS |
7563 | |
7564 | if (!static_branch_unlikely(&sched_cluster_active) || | |
7565 | cpus_share_resources(recent_used_cpu, target)) | |
7566 | return recent_used_cpu; | |
7567 | ||
22165f61 YY |
7568 | } else { |
7569 | recent_used_cpu = -1; | |
32e839dd MG |
7570 | } |
7571 | ||
b4c9c9f1 VG |
7572 | /* |
7573 | * For asymmetric CPU capacity systems, our domain of interest is | |
7574 | * sd_asym_cpucapacity rather than sd_llc. | |
7575 | */ | |
740cf8a7 | 7576 | if (sched_asym_cpucap_active()) { |
b4c9c9f1 VG |
7577 | sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); |
7578 | /* | |
7579 | * On an asymmetric CPU capacity system where an exclusive | |
7580 | * cpuset defines a symmetric island (i.e. one unique | |
7581 | * capacity_orig value through the cpuset), the key will be set | |
7582 | * but the CPUs within that cpuset will not have a domain with | |
7583 | * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric | |
7584 | * capacity path. | |
7585 | */ | |
7586 | if (sd) { | |
7587 | i = select_idle_capacity(p, sd, target); | |
7588 | return ((unsigned)i < nr_cpumask_bits) ? i : target; | |
7589 | } | |
7590 | } | |
7591 | ||
518cd623 | 7592 | sd = rcu_dereference(per_cpu(sd_llc, target)); |
10e2f1ac PZ |
7593 | if (!sd) |
7594 | return target; | |
772bd008 | 7595 | |
c722f35b | 7596 | if (sched_smt_active()) { |
398ba2b0 | 7597 | has_idle_core = test_idle_cores(target); |
c722f35b RR |
7598 | |
7599 | if (!has_idle_core && cpus_share_cache(prev, target)) { | |
8aeaffef | 7600 | i = select_idle_smt(p, sd, prev); |
c722f35b RR |
7601 | if ((unsigned int)i < nr_cpumask_bits) |
7602 | return i; | |
7603 | } | |
7604 | } | |
7605 | ||
7606 | i = select_idle_cpu(p, sd, has_idle_core, target); | |
10e2f1ac PZ |
7607 | if ((unsigned)i < nr_cpumask_bits) |
7608 | return i; | |
7609 | ||
22165f61 YY |
7610 | /* |
7611 | * For cluster machines which have lower sharing cache like L2 or | |
7612 | * LLC Tag, we tend to find an idle CPU in the target's cluster | |
7613 | * first. But prev_cpu or recent_used_cpu may also be a good candidate, | |
7614 | * use them if possible when no idle CPU found in select_idle_cpu(). | |
7615 | */ | |
7616 | if ((unsigned int)prev_aff < nr_cpumask_bits) | |
7617 | return prev_aff; | |
7618 | if ((unsigned int)recent_used_cpu < nr_cpumask_bits) | |
7619 | return recent_used_cpu; | |
7620 | ||
a50bde51 PZ |
7621 | return target; |
7622 | } | |
231678b7 | 7623 | |
3eb6d6ec DE |
7624 | /** |
7625 | * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. | |
7626 | * @cpu: the CPU to get the utilization for | |
7627 | * @p: task for which the CPU utilization should be predicted or NULL | |
7628 | * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL | |
7d0583cf | 7629 | * @boost: 1 to enable boosting, otherwise 0 |
3eb6d6ec DE |
7630 | * |
7631 | * The unit of the return value must be the same as the one of CPU capacity | |
7632 | * so that CPU utilization can be compared with CPU capacity. | |
7633 | * | |
7634 | * CPU utilization is the sum of running time of runnable tasks plus the | |
7635 | * recent utilization of currently non-runnable tasks on that CPU. | |
7636 | * It represents the amount of CPU capacity currently used by CFS tasks in | |
7637 | * the range [0..max CPU capacity] with max CPU capacity being the CPU | |
7638 | * capacity at f_max. | |
7639 | * | |
7640 | * The estimated CPU utilization is defined as the maximum between CPU | |
7641 | * utilization and sum of the estimated utilization of the currently | |
7642 | * runnable tasks on that CPU. It preserves a utilization "snapshot" of | |
7643 | * previously-executed tasks, which helps better deduce how busy a CPU will | |
7644 | * be when a long-sleeping task wakes up. The contribution to CPU utilization | |
7645 | * of such a task would be significantly decayed at this point of time. | |
7646 | * | |
7d0583cf DE |
7647 | * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). |
7648 | * CPU contention for CFS tasks can be detected by CPU runnable > CPU | |
7649 | * utilization. Boosting is implemented in cpu_util() so that internal | |
7650 | * users (e.g. EAS) can use it next to external users (e.g. schedutil), | |
7651 | * latter via cpu_util_cfs_boost(). | |
7652 | * | |
3eb6d6ec DE |
7653 | * CPU utilization can be higher than the current CPU capacity |
7654 | * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because | |
7655 | * of rounding errors as well as task migrations or wakeups of new tasks. | |
7656 | * CPU utilization has to be capped to fit into the [0..max CPU capacity] | |
7657 | * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) | |
7658 | * could be seen as over-utilized even though CPU1 has 20% of spare CPU | |
7659 | * capacity. CPU utilization is allowed to overshoot current CPU capacity | |
7660 | * though since this is useful for predicting the CPU capacity required | |
7661 | * after task migrations (scheduler-driven DVFS). | |
7662 | * | |
7d0583cf | 7663 | * Return: (Boosted) (estimated) utilization for the specified CPU. |
390031e4 | 7664 | */ |
7d0583cf DE |
7665 | static unsigned long |
7666 | cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) | |
390031e4 QP |
7667 | { |
7668 | struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; | |
4e3c7d33 | 7669 | unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); |
7d0583cf DE |
7670 | unsigned long runnable; |
7671 | ||
7672 | if (boost) { | |
7673 | runnable = READ_ONCE(cfs_rq->avg.runnable_avg); | |
7674 | util = max(util, runnable); | |
7675 | } | |
390031e4 QP |
7676 | |
7677 | /* | |
4e3c7d33 DE |
7678 | * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its |
7679 | * contribution. If @p migrates from another CPU to @cpu add its | |
7680 | * contribution. In all the other cases @cpu is not impacted by the | |
7681 | * migration so its util_avg is already correct. | |
390031e4 | 7682 | */ |
3eb6d6ec | 7683 | if (p && task_cpu(p) == cpu && dst_cpu != cpu) |
736cc6b3 | 7684 | lsub_positive(&util, task_util(p)); |
3eb6d6ec | 7685 | else if (p && task_cpu(p) != cpu && dst_cpu == cpu) |
390031e4 QP |
7686 | util += task_util(p); |
7687 | ||
7688 | if (sched_feat(UTIL_EST)) { | |
4e3c7d33 DE |
7689 | unsigned long util_est; |
7690 | ||
11137d38 | 7691 | util_est = READ_ONCE(cfs_rq->avg.util_est); |
390031e4 QP |
7692 | |
7693 | /* | |
4e3c7d33 | 7694 | * During wake-up @p isn't enqueued yet and doesn't contribute |
11137d38 | 7695 | * to any cpu_rq(cpu)->cfs.avg.util_est. |
4e3c7d33 DE |
7696 | * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p |
7697 | * has been enqueued. | |
7698 | * | |
7699 | * During exec (@dst_cpu = -1) @p is enqueued and does | |
11137d38 | 7700 | * contribute to cpu_rq(cpu)->cfs.util_est. |
4e3c7d33 DE |
7701 | * Remove it to "simulate" cpu_util without @p's contribution. |
7702 | * | |
7703 | * Despite the task_on_rq_queued(@p) check there is still a | |
7704 | * small window for a possible race when an exec | |
7705 | * select_task_rq_fair() races with LB's detach_task(). | |
7706 | * | |
7707 | * detach_task() | |
7708 | * deactivate_task() | |
7709 | * p->on_rq = TASK_ON_RQ_MIGRATING; | |
7710 | * -------------------------------- A | |
7711 | * dequeue_task() \ | |
7712 | * dequeue_task_fair() + Race Time | |
7713 | * util_est_dequeue() / | |
7714 | * -------------------------------- B | |
7715 | * | |
7716 | * The additional check "current == p" is required to further | |
7717 | * reduce the race window. | |
390031e4 QP |
7718 | */ |
7719 | if (dst_cpu == cpu) | |
7720 | util_est += _task_util_est(p); | |
3eb6d6ec | 7721 | else if (p && unlikely(task_on_rq_queued(p) || current == p)) |
4e3c7d33 | 7722 | lsub_positive(&util_est, _task_util_est(p)); |
390031e4 QP |
7723 | |
7724 | util = max(util, util_est); | |
7725 | } | |
7726 | ||
7bc26384 | 7727 | return min(util, arch_scale_cpu_capacity(cpu)); |
390031e4 QP |
7728 | } |
7729 | ||
3eb6d6ec DE |
7730 | unsigned long cpu_util_cfs(int cpu) |
7731 | { | |
7d0583cf DE |
7732 | return cpu_util(cpu, NULL, -1, 0); |
7733 | } | |
7734 | ||
7735 | unsigned long cpu_util_cfs_boost(int cpu) | |
7736 | { | |
7737 | return cpu_util(cpu, NULL, -1, 1); | |
3eb6d6ec DE |
7738 | } |
7739 | ||
4e3c7d33 DE |
7740 | /* |
7741 | * cpu_util_without: compute cpu utilization without any contributions from *p | |
7742 | * @cpu: the CPU which utilization is requested | |
7743 | * @p: the task which utilization should be discounted | |
7744 | * | |
7745 | * The utilization of a CPU is defined by the utilization of tasks currently | |
7746 | * enqueued on that CPU as well as tasks which are currently sleeping after an | |
7747 | * execution on that CPU. | |
7748 | * | |
7749 | * This method returns the utilization of the specified CPU by discounting the | |
7750 | * utilization of the specified task, whenever the task is currently | |
7751 | * contributing to the CPU utilization. | |
7752 | */ | |
7753 | static unsigned long cpu_util_without(int cpu, struct task_struct *p) | |
7754 | { | |
7755 | /* Task has no contribution or is new */ | |
7756 | if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) | |
3eb6d6ec | 7757 | p = NULL; |
4e3c7d33 | 7758 | |
7d0583cf | 7759 | return cpu_util(cpu, p, -1, 0); |
4e3c7d33 DE |
7760 | } |
7761 | ||
390031e4 | 7762 | /* |
3e8c6c9a VD |
7763 | * energy_env - Utilization landscape for energy estimation. |
7764 | * @task_busy_time: Utilization contribution by the task for which we test the | |
7765 | * placement. Given by eenv_task_busy_time(). | |
7766 | * @pd_busy_time: Utilization of the whole perf domain without the task | |
7767 | * contribution. Given by eenv_pd_busy_time(). | |
7768 | * @cpu_cap: Maximum CPU capacity for the perf domain. | |
7769 | * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). | |
390031e4 | 7770 | */ |
3e8c6c9a VD |
7771 | struct energy_env { |
7772 | unsigned long task_busy_time; | |
7773 | unsigned long pd_busy_time; | |
7774 | unsigned long cpu_cap; | |
7775 | unsigned long pd_cap; | |
7776 | }; | |
7777 | ||
7778 | /* | |
7779 | * Compute the task busy time for compute_energy(). This time cannot be | |
7780 | * injected directly into effective_cpu_util() because of the IRQ scaling. | |
7781 | * The latter only makes sense with the most recent CPUs where the task has | |
7782 | * run. | |
7783 | */ | |
7784 | static inline void eenv_task_busy_time(struct energy_env *eenv, | |
7785 | struct task_struct *p, int prev_cpu) | |
390031e4 | 7786 | { |
3e8c6c9a VD |
7787 | unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); |
7788 | unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); | |
7789 | ||
7790 | if (unlikely(irq >= max_cap)) | |
7791 | busy_time = max_cap; | |
7792 | else | |
7793 | busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); | |
7794 | ||
7795 | eenv->task_busy_time = busy_time; | |
7796 | } | |
7797 | ||
7798 | /* | |
7799 | * Compute the perf_domain (PD) busy time for compute_energy(). Based on the | |
7800 | * utilization for each @pd_cpus, it however doesn't take into account | |
7801 | * clamping since the ratio (utilization / cpu_capacity) is already enough to | |
7802 | * scale the EM reported power consumption at the (eventually clamped) | |
7803 | * cpu_capacity. | |
7804 | * | |
7805 | * The contribution of the task @p for which we want to estimate the | |
3eb6d6ec | 7806 | * energy cost is removed (by cpu_util()) and must be calculated |
3e8c6c9a VD |
7807 | * separately (see eenv_task_busy_time). This ensures: |
7808 | * | |
7809 | * - A stable PD utilization, no matter which CPU of that PD we want to place | |
7810 | * the task on. | |
7811 | * | |
7812 | * - A fair comparison between CPUs as the task contribution (task_util()) | |
7813 | * will always be the same no matter which CPU utilization we rely on | |
7814 | * (util_avg or util_est). | |
7815 | * | |
7816 | * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't | |
7817 | * exceed @eenv->pd_cap. | |
7818 | */ | |
7819 | static inline void eenv_pd_busy_time(struct energy_env *eenv, | |
7820 | struct cpumask *pd_cpus, | |
7821 | struct task_struct *p) | |
7822 | { | |
7823 | unsigned long busy_time = 0; | |
390031e4 QP |
7824 | int cpu; |
7825 | ||
3e8c6c9a | 7826 | for_each_cpu(cpu, pd_cpus) { |
7d0583cf | 7827 | unsigned long util = cpu_util(cpu, p, -1, 0); |
489f1645 | 7828 | |
9c0b4bb7 | 7829 | busy_time += effective_cpu_util(cpu, util, NULL, NULL); |
3e8c6c9a | 7830 | } |
0372e1cf | 7831 | |
3e8c6c9a VD |
7832 | eenv->pd_busy_time = min(eenv->pd_cap, busy_time); |
7833 | } | |
af24bde8 | 7834 | |
3e8c6c9a VD |
7835 | /* |
7836 | * Compute the maximum utilization for compute_energy() when the task @p | |
7837 | * is placed on the cpu @dst_cpu. | |
7838 | * | |
7839 | * Returns the maximum utilization among @eenv->cpus. This utilization can't | |
7840 | * exceed @eenv->cpu_cap. | |
7841 | */ | |
7842 | static inline unsigned long | |
7843 | eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, | |
7844 | struct task_struct *p, int dst_cpu) | |
7845 | { | |
7846 | unsigned long max_util = 0; | |
7847 | int cpu; | |
489f1645 | 7848 | |
3e8c6c9a VD |
7849 | for_each_cpu(cpu, pd_cpus) { |
7850 | struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; | |
7d0583cf | 7851 | unsigned long util = cpu_util(cpu, p, dst_cpu, 1); |
9c0b4bb7 | 7852 | unsigned long eff_util, min, max; |
af24bde8 | 7853 | |
390031e4 | 7854 | /* |
eb92692b QP |
7855 | * Performance domain frequency: utilization clamping |
7856 | * must be considered since it affects the selection | |
7857 | * of the performance domain frequency. | |
7858 | * NOTE: in case RT tasks are running, by default the | |
7859 | * FREQUENCY_UTIL's utilization can be max OPP. | |
390031e4 | 7860 | */ |
9c0b4bb7 VG |
7861 | eff_util = effective_cpu_util(cpu, util, &min, &max); |
7862 | ||
7863 | /* Task's uclamp can modify min and max value */ | |
7864 | if (tsk && uclamp_is_used()) { | |
7865 | min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); | |
7866 | ||
7867 | /* | |
7868 | * If there is no active max uclamp constraint, | |
7869 | * directly use task's one, otherwise keep max. | |
7870 | */ | |
7871 | if (uclamp_rq_is_idle(cpu_rq(cpu))) | |
7872 | max = uclamp_eff_value(p, UCLAMP_MAX); | |
7873 | else | |
7874 | max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); | |
7875 | } | |
7876 | ||
7877 | eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); | |
a707df30 | 7878 | max_util = max(max_util, eff_util); |
390031e4 QP |
7879 | } |
7880 | ||
3e8c6c9a VD |
7881 | return min(max_util, eenv->cpu_cap); |
7882 | } | |
7883 | ||
7884 | /* | |
7885 | * compute_energy(): Use the Energy Model to estimate the energy that @pd would | |
7886 | * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task | |
7887 | * contribution is ignored. | |
7888 | */ | |
7889 | static inline unsigned long | |
7890 | compute_energy(struct energy_env *eenv, struct perf_domain *pd, | |
7891 | struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) | |
7892 | { | |
7893 | unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); | |
7894 | unsigned long busy_time = eenv->pd_busy_time; | |
15874a3d | 7895 | unsigned long energy; |
3e8c6c9a VD |
7896 | |
7897 | if (dst_cpu >= 0) | |
7898 | busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); | |
7899 | ||
15874a3d QY |
7900 | energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); |
7901 | ||
7902 | trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); | |
7903 | ||
7904 | return energy; | |
390031e4 QP |
7905 | } |
7906 | ||
732cd75b QP |
7907 | /* |
7908 | * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the | |
7909 | * waking task. find_energy_efficient_cpu() looks for the CPU with maximum | |
7910 | * spare capacity in each performance domain and uses it as a potential | |
7911 | * candidate to execute the task. Then, it uses the Energy Model to figure | |
7912 | * out which of the CPU candidates is the most energy-efficient. | |
7913 | * | |
7914 | * The rationale for this heuristic is as follows. In a performance domain, | |
7915 | * all the most energy efficient CPU candidates (according to the Energy | |
7916 | * Model) are those for which we'll request a low frequency. When there are | |
7917 | * several CPUs for which the frequency request will be the same, we don't | |
7918 | * have enough data to break the tie between them, because the Energy Model | |
7919 | * only includes active power costs. With this model, if we assume that | |
7920 | * frequency requests follow utilization (e.g. using schedutil), the CPU with | |
7921 | * the maximum spare capacity in a performance domain is guaranteed to be among | |
7922 | * the best candidates of the performance domain. | |
7923 | * | |
7924 | * In practice, it could be preferable from an energy standpoint to pack | |
7925 | * small tasks on a CPU in order to let other CPUs go in deeper idle states, | |
7926 | * but that could also hurt our chances to go cluster idle, and we have no | |
7927 | * ways to tell with the current Energy Model if this is actually a good | |
7928 | * idea or not. So, find_energy_efficient_cpu() basically favors | |
7929 | * cluster-packing, and spreading inside a cluster. That should at least be | |
7930 | * a good thing for latency, and this is consistent with the idea that most | |
7931 | * of the energy savings of EAS come from the asymmetry of the system, and | |
7932 | * not so much from breaking the tie between identical CPUs. That's also the | |
7933 | * reason why EAS is enabled in the topology code only for systems where | |
7934 | * SD_ASYM_CPUCAPACITY is set. | |
7935 | * | |
7936 | * NOTE: Forkees are not accepted in the energy-aware wake-up path because | |
7937 | * they don't have any useful utilization data yet and it's not possible to | |
7938 | * forecast their impact on energy consumption. Consequently, they will be | |
7939 | * placed by find_idlest_cpu() on the least loaded CPU, which might turn out | |
7940 | * to be energy-inefficient in some use-cases. The alternative would be to | |
7941 | * bias new tasks towards specific types of CPUs first, or to try to infer | |
7942 | * their util_avg from the parent task, but those heuristics could hurt | |
7943 | * other use-cases too. So, until someone finds a better way to solve this, | |
7944 | * let's keep things simple by re-using the existing slow path. | |
7945 | */ | |
732cd75b QP |
7946 | static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) |
7947 | { | |
9b340131 | 7948 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); |
eb92692b | 7949 | unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; |
24422603 QY |
7950 | unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; |
7951 | unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; | |
3e8c6c9a | 7952 | struct root_domain *rd = this_rq()->rd; |
b812fc97 | 7953 | int cpu, best_energy_cpu, target = -1; |
e5ed0550 VG |
7954 | int prev_fits = -1, best_fits = -1; |
7955 | unsigned long best_thermal_cap = 0; | |
7956 | unsigned long prev_thermal_cap = 0; | |
732cd75b | 7957 | struct sched_domain *sd; |
eb92692b | 7958 | struct perf_domain *pd; |
3e8c6c9a | 7959 | struct energy_env eenv; |
732cd75b QP |
7960 | |
7961 | rcu_read_lock(); | |
7962 | pd = rcu_dereference(rd->pd); | |
7963 | if (!pd || READ_ONCE(rd->overutilized)) | |
619e090c | 7964 | goto unlock; |
732cd75b QP |
7965 | |
7966 | /* | |
7967 | * Energy-aware wake-up happens on the lowest sched_domain starting | |
7968 | * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. | |
7969 | */ | |
7970 | sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); | |
7971 | while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) | |
7972 | sd = sd->parent; | |
7973 | if (!sd) | |
619e090c PG |
7974 | goto unlock; |
7975 | ||
7976 | target = prev_cpu; | |
732cd75b QP |
7977 | |
7978 | sync_entity_load_avg(&p->se); | |
23c9519d | 7979 | if (!task_util_est(p) && p_util_min == 0) |
732cd75b QP |
7980 | goto unlock; |
7981 | ||
3e8c6c9a VD |
7982 | eenv_task_busy_time(&eenv, p, prev_cpu); |
7983 | ||
732cd75b | 7984 | for (; pd; pd = pd->next) { |
e26fd28d | 7985 | unsigned long util_min = p_util_min, util_max = p_util_max; |
3e8c6c9a | 7986 | unsigned long cpu_cap, cpu_thermal_cap, util; |
6b00a401 | 7987 | long prev_spare_cap = -1, max_spare_cap = -1; |
24422603 | 7988 | unsigned long rq_util_min, rq_util_max; |
6b00a401 | 7989 | unsigned long cur_delta, base_energy; |
732cd75b | 7990 | int max_spare_cap_cpu = -1; |
e5ed0550 | 7991 | int fits, max_fits = -1; |
732cd75b | 7992 | |
9b340131 DE |
7993 | cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); |
7994 | ||
3e8c6c9a VD |
7995 | if (cpumask_empty(cpus)) |
7996 | continue; | |
7997 | ||
7998 | /* Account thermal pressure for the energy estimation */ | |
7999 | cpu = cpumask_first(cpus); | |
8000 | cpu_thermal_cap = arch_scale_cpu_capacity(cpu); | |
8001 | cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); | |
8002 | ||
8003 | eenv.cpu_cap = cpu_thermal_cap; | |
8004 | eenv.pd_cap = 0; | |
8005 | ||
8006 | for_each_cpu(cpu, cpus) { | |
e26fd28d QY |
8007 | struct rq *rq = cpu_rq(cpu); |
8008 | ||
3e8c6c9a VD |
8009 | eenv.pd_cap += cpu_thermal_cap; |
8010 | ||
8011 | if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) | |
8012 | continue; | |
8013 | ||
3bd37062 | 8014 | if (!cpumask_test_cpu(cpu, p->cpus_ptr)) |
732cd75b QP |
8015 | continue; |
8016 | ||
7d0583cf | 8017 | util = cpu_util(cpu, p, cpu, 0); |
732cd75b | 8018 | cpu_cap = capacity_of(cpu); |
1d42509e VS |
8019 | |
8020 | /* | |
8021 | * Skip CPUs that cannot satisfy the capacity request. | |
8022 | * IOW, placing the task there would make the CPU | |
8023 | * overutilized. Take uclamp into account to see how | |
8024 | * much capacity we can get out of the CPU; this is | |
a5418be9 | 8025 | * aligned with sched_cpu_util(). |
1d42509e | 8026 | */ |
e26fd28d QY |
8027 | if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { |
8028 | /* | |
8029 | * Open code uclamp_rq_util_with() except for | |
8030 | * the clamp() part. Ie: apply max aggregation | |
8031 | * only. util_fits_cpu() logic requires to | |
8032 | * operate on non clamped util but must use the | |
8033 | * max-aggregated uclamp_{min, max}. | |
8034 | */ | |
8035 | rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); | |
8036 | rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); | |
8037 | ||
8038 | util_min = max(rq_util_min, p_util_min); | |
8039 | util_max = max(rq_util_max, p_util_max); | |
24422603 | 8040 | } |
e5ed0550 VG |
8041 | |
8042 | fits = util_fits_cpu(util, util_min, util_max, cpu); | |
8043 | if (!fits) | |
732cd75b QP |
8044 | continue; |
8045 | ||
3e8c6c9a VD |
8046 | lsub_positive(&cpu_cap, util); |
8047 | ||
732cd75b | 8048 | if (cpu == prev_cpu) { |
8d4c97c1 | 8049 | /* Always use prev_cpu as a candidate. */ |
ad841e56 | 8050 | prev_spare_cap = cpu_cap; |
e5ed0550 VG |
8051 | prev_fits = fits; |
8052 | } else if ((fits > max_fits) || | |
6b00a401 | 8053 | ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { |
8d4c97c1 PG |
8054 | /* |
8055 | * Find the CPU with the maximum spare capacity | |
ad841e56 PG |
8056 | * among the remaining CPUs in the performance |
8057 | * domain. | |
8d4c97c1 | 8058 | */ |
3e8c6c9a | 8059 | max_spare_cap = cpu_cap; |
732cd75b | 8060 | max_spare_cap_cpu = cpu; |
e5ed0550 | 8061 | max_fits = fits; |
732cd75b QP |
8062 | } |
8063 | } | |
8064 | ||
6b00a401 | 8065 | if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) |
8d4c97c1 PG |
8066 | continue; |
8067 | ||
3e8c6c9a | 8068 | eenv_pd_busy_time(&eenv, cpus, p); |
8d4c97c1 | 8069 | /* Compute the 'base' energy of the pd, without @p */ |
b812fc97 | 8070 | base_energy = compute_energy(&eenv, pd, cpus, p, -1); |
8d4c97c1 PG |
8071 | |
8072 | /* Evaluate the energy impact of using prev_cpu. */ | |
6b00a401 | 8073 | if (prev_spare_cap > -1) { |
3e8c6c9a VD |
8074 | prev_delta = compute_energy(&eenv, pd, cpus, p, |
8075 | prev_cpu); | |
8076 | /* CPU utilization has changed */ | |
b812fc97 | 8077 | if (prev_delta < base_energy) |
619e090c | 8078 | goto unlock; |
b812fc97 | 8079 | prev_delta -= base_energy; |
e5ed0550 | 8080 | prev_thermal_cap = cpu_thermal_cap; |
8d4c97c1 PG |
8081 | best_delta = min(best_delta, prev_delta); |
8082 | } | |
8083 | ||
8084 | /* Evaluate the energy impact of using max_spare_cap_cpu. */ | |
ad841e56 | 8085 | if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { |
e5ed0550 VG |
8086 | /* Current best energy cpu fits better */ |
8087 | if (max_fits < best_fits) | |
8088 | continue; | |
8089 | ||
8090 | /* | |
8091 | * Both don't fit performance hint (i.e. uclamp_min) | |
8092 | * but best energy cpu has better capacity. | |
8093 | */ | |
8094 | if ((max_fits < 0) && | |
8095 | (cpu_thermal_cap <= best_thermal_cap)) | |
8096 | continue; | |
8097 | ||
3e8c6c9a VD |
8098 | cur_delta = compute_energy(&eenv, pd, cpus, p, |
8099 | max_spare_cap_cpu); | |
8100 | /* CPU utilization has changed */ | |
b812fc97 | 8101 | if (cur_delta < base_energy) |
619e090c | 8102 | goto unlock; |
b812fc97 | 8103 | cur_delta -= base_energy; |
e5ed0550 VG |
8104 | |
8105 | /* | |
8106 | * Both fit for the task but best energy cpu has lower | |
8107 | * energy impact. | |
8108 | */ | |
8109 | if ((max_fits > 0) && (best_fits > 0) && | |
8110 | (cur_delta >= best_delta)) | |
8111 | continue; | |
8112 | ||
8113 | best_delta = cur_delta; | |
8114 | best_energy_cpu = max_spare_cap_cpu; | |
8115 | best_fits = max_fits; | |
8116 | best_thermal_cap = cpu_thermal_cap; | |
732cd75b QP |
8117 | } |
8118 | } | |
732cd75b QP |
8119 | rcu_read_unlock(); |
8120 | ||
e5ed0550 VG |
8121 | if ((best_fits > prev_fits) || |
8122 | ((best_fits > 0) && (best_delta < prev_delta)) || | |
8123 | ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap))) | |
619e090c | 8124 | target = best_energy_cpu; |
732cd75b | 8125 | |
619e090c | 8126 | return target; |
732cd75b | 8127 | |
619e090c | 8128 | unlock: |
732cd75b QP |
8129 | rcu_read_unlock(); |
8130 | ||
619e090c | 8131 | return target; |
732cd75b QP |
8132 | } |
8133 | ||
aaee1203 | 8134 | /* |
de91b9cb | 8135 | * select_task_rq_fair: Select target runqueue for the waking task in domains |
3aef1551 | 8136 | * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, |
de91b9cb | 8137 | * SD_BALANCE_FORK, or SD_BALANCE_EXEC. |
aaee1203 | 8138 | * |
97fb7a0a IM |
8139 | * Balances load by selecting the idlest CPU in the idlest group, or under |
8140 | * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. | |
aaee1203 | 8141 | * |
97fb7a0a | 8142 | * Returns the target CPU number. |
aaee1203 | 8143 | */ |
0017d735 | 8144 | static int |
3aef1551 | 8145 | select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) |
aaee1203 | 8146 | { |
3aef1551 | 8147 | int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); |
f1d88b44 | 8148 | struct sched_domain *tmp, *sd = NULL; |
c88d5910 | 8149 | int cpu = smp_processor_id(); |
63b0e9ed | 8150 | int new_cpu = prev_cpu; |
99bd5e2f | 8151 | int want_affine = 0; |
3aef1551 VS |
8152 | /* SD_flags and WF_flags share the first nibble */ |
8153 | int sd_flag = wake_flags & 0xF; | |
c88d5910 | 8154 | |
9099a147 PZ |
8155 | /* |
8156 | * required for stable ->cpus_allowed | |
8157 | */ | |
8158 | lockdep_assert_held(&p->pi_lock); | |
dc824eb8 | 8159 | if (wake_flags & WF_TTWU) { |
c58d25f3 | 8160 | record_wakee(p); |
732cd75b | 8161 | |
ab83f455 PO |
8162 | if ((wake_flags & WF_CURRENT_CPU) && |
8163 | cpumask_test_cpu(cpu, p->cpus_ptr)) | |
8164 | return cpu; | |
8165 | ||
f8a696f2 | 8166 | if (sched_energy_enabled()) { |
732cd75b QP |
8167 | new_cpu = find_energy_efficient_cpu(p, prev_cpu); |
8168 | if (new_cpu >= 0) | |
8169 | return new_cpu; | |
8170 | new_cpu = prev_cpu; | |
8171 | } | |
8172 | ||
00061968 | 8173 | want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); |
c58d25f3 | 8174 | } |
aaee1203 | 8175 | |
dce840a0 | 8176 | rcu_read_lock(); |
aaee1203 | 8177 | for_each_domain(cpu, tmp) { |
fe3bcfe1 | 8178 | /* |
97fb7a0a | 8179 | * If both 'cpu' and 'prev_cpu' are part of this domain, |
99bd5e2f | 8180 | * cpu is a valid SD_WAKE_AFFINE target. |
fe3bcfe1 | 8181 | */ |
99bd5e2f SS |
8182 | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && |
8183 | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { | |
f1d88b44 VK |
8184 | if (cpu != prev_cpu) |
8185 | new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); | |
8186 | ||
8187 | sd = NULL; /* Prefer wake_affine over balance flags */ | |
29cd8bae | 8188 | break; |
f03542a7 | 8189 | } |
29cd8bae | 8190 | |
2917406c BS |
8191 | /* |
8192 | * Usually only true for WF_EXEC and WF_FORK, as sched_domains | |
8193 | * usually do not have SD_BALANCE_WAKE set. That means wakeup | |
8194 | * will usually go to the fast path. | |
8195 | */ | |
f03542a7 | 8196 | if (tmp->flags & sd_flag) |
29cd8bae | 8197 | sd = tmp; |
63b0e9ed MG |
8198 | else if (!want_affine) |
8199 | break; | |
29cd8bae PZ |
8200 | } |
8201 | ||
f1d88b44 VK |
8202 | if (unlikely(sd)) { |
8203 | /* Slow path */ | |
18bd1b4b | 8204 | new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); |
dc824eb8 | 8205 | } else if (wake_flags & WF_TTWU) { /* XXX always ? */ |
f1d88b44 | 8206 | /* Fast path */ |
f1d88b44 | 8207 | new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); |
e7693a36 | 8208 | } |
dce840a0 | 8209 | rcu_read_unlock(); |
e7693a36 | 8210 | |
c88d5910 | 8211 | return new_cpu; |
e7693a36 | 8212 | } |
0a74bef8 PT |
8213 | |
8214 | /* | |
97fb7a0a | 8215 | * Called immediately before a task is migrated to a new CPU; task_cpu(p) and |
0a74bef8 | 8216 | * cfs_rq_of(p) references at time of call are still valid and identify the |
97fb7a0a | 8217 | * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. |
0a74bef8 | 8218 | */ |
3f9672ba | 8219 | static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) |
0a74bef8 | 8220 | { |
e2f3e35f VD |
8221 | struct sched_entity *se = &p->se; |
8222 | ||
e1f078f5 | 8223 | if (!task_on_rq_migrating(p)) { |
e2f3e35f VD |
8224 | remove_entity_load_avg(se); |
8225 | ||
144d8487 | 8226 | /* |
e2f3e35f VD |
8227 | * Here, the task's PELT values have been updated according to |
8228 | * the current rq's clock. But if that clock hasn't been | |
8229 | * updated in a while, a substantial idle time will be missed, | |
8230 | * leading to an inflation after wake-up on the new rq. | |
8231 | * | |
8232 | * Estimate the missing time from the cfs_rq last_update_time | |
8233 | * and update sched_avg to improve the PELT continuity after | |
8234 | * migration. | |
144d8487 | 8235 | */ |
e2f3e35f | 8236 | migrate_se_pelt_lag(se); |
144d8487 | 8237 | } |
9d89c257 YD |
8238 | |
8239 | /* Tell new CPU we are migrated */ | |
e2f3e35f | 8240 | se->avg.last_update_time = 0; |
3944a927 | 8241 | |
3f9672ba | 8242 | update_scan_period(p, new_cpu); |
0a74bef8 | 8243 | } |
12695578 YD |
8244 | |
8245 | static void task_dead_fair(struct task_struct *p) | |
8246 | { | |
8247 | remove_entity_load_avg(&p->se); | |
8248 | } | |
6e2df058 PZ |
8249 | |
8250 | static int | |
8251 | balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) | |
8252 | { | |
8253 | if (rq->nr_running) | |
8254 | return 1; | |
8255 | ||
8256 | return newidle_balance(rq, rf) != 0; | |
8257 | } | |
e7693a36 GH |
8258 | #endif /* CONFIG_SMP */ |
8259 | ||
02479099 PZ |
8260 | static void set_next_buddy(struct sched_entity *se) |
8261 | { | |
c5ae366e DA |
8262 | for_each_sched_entity(se) { |
8263 | if (SCHED_WARN_ON(!se->on_rq)) | |
8264 | return; | |
30400039 JD |
8265 | if (se_is_idle(se)) |
8266 | return; | |
69c80f3e | 8267 | cfs_rq_of(se)->next = se; |
c5ae366e | 8268 | } |
02479099 PZ |
8269 | } |
8270 | ||
bf0f6f24 IM |
8271 | /* |
8272 | * Preempt the current task with a newly woken task if needed: | |
8273 | */ | |
82845683 | 8274 | static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) |
bf0f6f24 IM |
8275 | { |
8276 | struct task_struct *curr = rq->curr; | |
8651a86c | 8277 | struct sched_entity *se = &curr->se, *pse = &p->se; |
03e89e45 | 8278 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); |
30400039 | 8279 | int cse_is_idle, pse_is_idle; |
bf0f6f24 | 8280 | |
4ae7d5ce IM |
8281 | if (unlikely(se == pse)) |
8282 | return; | |
8283 | ||
5238cdd3 | 8284 | /* |
163122b7 | 8285 | * This is possible from callers such as attach_tasks(), in which we |
e23edc86 | 8286 | * unconditionally wakeup_preempt() after an enqueue (which may have |
5238cdd3 PT |
8287 | * lead to a throttle). This both saves work and prevents false |
8288 | * next-buddy nomination below. | |
8289 | */ | |
8290 | if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) | |
8291 | return; | |
8292 | ||
5e963f2b | 8293 | if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { |
3cb63d52 | 8294 | set_next_buddy(pse); |
2f36825b | 8295 | } |
57fdc26d | 8296 | |
aec0a514 BR |
8297 | /* |
8298 | * We can come here with TIF_NEED_RESCHED already set from new task | |
8299 | * wake up path. | |
5238cdd3 PT |
8300 | * |
8301 | * Note: this also catches the edge-case of curr being in a throttled | |
8302 | * group (e.g. via set_curr_task), since update_curr() (in the | |
8303 | * enqueue of curr) will have resulted in resched being set. This | |
8304 | * prevents us from potentially nominating it as a false LAST_BUDDY | |
8305 | * below. | |
aec0a514 BR |
8306 | */ |
8307 | if (test_tsk_need_resched(curr)) | |
8308 | return; | |
8309 | ||
a2f5c9ab | 8310 | /* Idle tasks are by definition preempted by non-idle tasks. */ |
1da1843f VK |
8311 | if (unlikely(task_has_idle_policy(curr)) && |
8312 | likely(!task_has_idle_policy(p))) | |
a2f5c9ab DH |
8313 | goto preempt; |
8314 | ||
91c234b4 | 8315 | /* |
a2f5c9ab DH |
8316 | * Batch and idle tasks do not preempt non-idle tasks (their preemption |
8317 | * is driven by the tick): | |
91c234b4 | 8318 | */ |
8ed92e51 | 8319 | if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) |
91c234b4 | 8320 | return; |
bf0f6f24 | 8321 | |
464b7527 | 8322 | find_matching_se(&se, &pse); |
09348d75 | 8323 | WARN_ON_ONCE(!pse); |
30400039 JD |
8324 | |
8325 | cse_is_idle = se_is_idle(se); | |
8326 | pse_is_idle = se_is_idle(pse); | |
8327 | ||
8328 | /* | |
8329 | * Preempt an idle group in favor of a non-idle group (and don't preempt | |
8330 | * in the inverse case). | |
8331 | */ | |
8332 | if (cse_is_idle && !pse_is_idle) | |
8333 | goto preempt; | |
8334 | if (cse_is_idle != pse_is_idle) | |
8335 | return; | |
8336 | ||
147f3efa PZ |
8337 | cfs_rq = cfs_rq_of(se); |
8338 | update_curr(cfs_rq); | |
8339 | ||
5e963f2b PZ |
8340 | /* |
8341 | * XXX pick_eevdf(cfs_rq) != se ? | |
8342 | */ | |
8343 | if (pick_eevdf(cfs_rq) == pse) | |
3a7e73a2 | 8344 | goto preempt; |
464b7527 | 8345 | |
3a7e73a2 | 8346 | return; |
a65ac745 | 8347 | |
3a7e73a2 | 8348 | preempt: |
8875125e | 8349 | resched_curr(rq); |
bf0f6f24 IM |
8350 | } |
8351 | ||
21f56ffe PZ |
8352 | #ifdef CONFIG_SMP |
8353 | static struct task_struct *pick_task_fair(struct rq *rq) | |
8354 | { | |
8355 | struct sched_entity *se; | |
8356 | struct cfs_rq *cfs_rq; | |
8357 | ||
8358 | again: | |
8359 | cfs_rq = &rq->cfs; | |
8360 | if (!cfs_rq->nr_running) | |
8361 | return NULL; | |
8362 | ||
8363 | do { | |
8364 | struct sched_entity *curr = cfs_rq->curr; | |
8365 | ||
8366 | /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ | |
8367 | if (curr) { | |
8368 | if (curr->on_rq) | |
8369 | update_curr(cfs_rq); | |
8370 | else | |
8371 | curr = NULL; | |
8372 | ||
8373 | if (unlikely(check_cfs_rq_runtime(cfs_rq))) | |
8374 | goto again; | |
8375 | } | |
8376 | ||
4c456c9a | 8377 | se = pick_next_entity(cfs_rq); |
21f56ffe PZ |
8378 | cfs_rq = group_cfs_rq(se); |
8379 | } while (cfs_rq); | |
8380 | ||
8381 | return task_of(se); | |
8382 | } | |
8383 | #endif | |
8384 | ||
5d7d6056 | 8385 | struct task_struct * |
d8ac8971 | 8386 | pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) |
bf0f6f24 IM |
8387 | { |
8388 | struct cfs_rq *cfs_rq = &rq->cfs; | |
8389 | struct sched_entity *se; | |
678d5718 | 8390 | struct task_struct *p; |
37e117c0 | 8391 | int new_tasks; |
678d5718 | 8392 | |
6e83125c | 8393 | again: |
6e2df058 | 8394 | if (!sched_fair_runnable(rq)) |
38033c37 | 8395 | goto idle; |
678d5718 | 8396 | |
9674f5ca | 8397 | #ifdef CONFIG_FAIR_GROUP_SCHED |
67692435 | 8398 | if (!prev || prev->sched_class != &fair_sched_class) |
678d5718 PZ |
8399 | goto simple; |
8400 | ||
8401 | /* | |
8402 | * Because of the set_next_buddy() in dequeue_task_fair() it is rather | |
8403 | * likely that a next task is from the same cgroup as the current. | |
8404 | * | |
8405 | * Therefore attempt to avoid putting and setting the entire cgroup | |
8406 | * hierarchy, only change the part that actually changes. | |
8407 | */ | |
8408 | ||
8409 | do { | |
8410 | struct sched_entity *curr = cfs_rq->curr; | |
8411 | ||
8412 | /* | |
8413 | * Since we got here without doing put_prev_entity() we also | |
8414 | * have to consider cfs_rq->curr. If it is still a runnable | |
8415 | * entity, update_curr() will update its vruntime, otherwise | |
8416 | * forget we've ever seen it. | |
8417 | */ | |
54d27365 BS |
8418 | if (curr) { |
8419 | if (curr->on_rq) | |
8420 | update_curr(cfs_rq); | |
8421 | else | |
8422 | curr = NULL; | |
678d5718 | 8423 | |
54d27365 BS |
8424 | /* |
8425 | * This call to check_cfs_rq_runtime() will do the | |
8426 | * throttle and dequeue its entity in the parent(s). | |
9674f5ca | 8427 | * Therefore the nr_running test will indeed |
54d27365 BS |
8428 | * be correct. |
8429 | */ | |
9674f5ca VK |
8430 | if (unlikely(check_cfs_rq_runtime(cfs_rq))) { |
8431 | cfs_rq = &rq->cfs; | |
8432 | ||
8433 | if (!cfs_rq->nr_running) | |
8434 | goto idle; | |
8435 | ||
54d27365 | 8436 | goto simple; |
9674f5ca | 8437 | } |
54d27365 | 8438 | } |
678d5718 | 8439 | |
4c456c9a | 8440 | se = pick_next_entity(cfs_rq); |
678d5718 PZ |
8441 | cfs_rq = group_cfs_rq(se); |
8442 | } while (cfs_rq); | |
8443 | ||
8444 | p = task_of(se); | |
8445 | ||
8446 | /* | |
8447 | * Since we haven't yet done put_prev_entity and if the selected task | |
8448 | * is a different task than we started out with, try and touch the | |
8449 | * least amount of cfs_rqs. | |
8450 | */ | |
8451 | if (prev != p) { | |
8452 | struct sched_entity *pse = &prev->se; | |
8453 | ||
8454 | while (!(cfs_rq = is_same_group(se, pse))) { | |
8455 | int se_depth = se->depth; | |
8456 | int pse_depth = pse->depth; | |
8457 | ||
8458 | if (se_depth <= pse_depth) { | |
8459 | put_prev_entity(cfs_rq_of(pse), pse); | |
8460 | pse = parent_entity(pse); | |
8461 | } | |
8462 | if (se_depth >= pse_depth) { | |
8463 | set_next_entity(cfs_rq_of(se), se); | |
8464 | se = parent_entity(se); | |
8465 | } | |
8466 | } | |
8467 | ||
8468 | put_prev_entity(cfs_rq, pse); | |
8469 | set_next_entity(cfs_rq, se); | |
8470 | } | |
8471 | ||
93824900 | 8472 | goto done; |
678d5718 | 8473 | simple: |
678d5718 | 8474 | #endif |
67692435 PZ |
8475 | if (prev) |
8476 | put_prev_task(rq, prev); | |
606dba2e | 8477 | |
bf0f6f24 | 8478 | do { |
4c456c9a | 8479 | se = pick_next_entity(cfs_rq); |
f4b6755f | 8480 | set_next_entity(cfs_rq, se); |
bf0f6f24 IM |
8481 | cfs_rq = group_cfs_rq(se); |
8482 | } while (cfs_rq); | |
8483 | ||
8f4d37ec | 8484 | p = task_of(se); |
678d5718 | 8485 | |
13a453c2 | 8486 | done: __maybe_unused; |
93824900 UR |
8487 | #ifdef CONFIG_SMP |
8488 | /* | |
8489 | * Move the next running task to the front of | |
8490 | * the list, so our cfs_tasks list becomes MRU | |
8491 | * one. | |
8492 | */ | |
8493 | list_move(&p->se.group_node, &rq->cfs_tasks); | |
8494 | #endif | |
8495 | ||
e0ee463c | 8496 | if (hrtick_enabled_fair(rq)) |
b39e66ea | 8497 | hrtick_start_fair(rq, p); |
8f4d37ec | 8498 | |
3b1baa64 | 8499 | update_misfit_status(p, rq); |
88c56cfe | 8500 | sched_fair_update_stop_tick(rq, p); |
3b1baa64 | 8501 | |
8f4d37ec | 8502 | return p; |
38033c37 PZ |
8503 | |
8504 | idle: | |
67692435 PZ |
8505 | if (!rf) |
8506 | return NULL; | |
8507 | ||
5ba553ef | 8508 | new_tasks = newidle_balance(rq, rf); |
46f69fa3 | 8509 | |
37e117c0 | 8510 | /* |
5ba553ef | 8511 | * Because newidle_balance() releases (and re-acquires) rq->lock, it is |
37e117c0 PZ |
8512 | * possible for any higher priority task to appear. In that case we |
8513 | * must re-start the pick_next_entity() loop. | |
8514 | */ | |
e4aa358b | 8515 | if (new_tasks < 0) |
37e117c0 PZ |
8516 | return RETRY_TASK; |
8517 | ||
e4aa358b | 8518 | if (new_tasks > 0) |
38033c37 | 8519 | goto again; |
38033c37 | 8520 | |
23127296 VG |
8521 | /* |
8522 | * rq is about to be idle, check if we need to update the | |
8523 | * lost_idle_time of clock_pelt | |
8524 | */ | |
8525 | update_idle_rq_clock_pelt(rq); | |
8526 | ||
38033c37 | 8527 | return NULL; |
bf0f6f24 IM |
8528 | } |
8529 | ||
98c2f700 PZ |
8530 | static struct task_struct *__pick_next_task_fair(struct rq *rq) |
8531 | { | |
8532 | return pick_next_task_fair(rq, NULL, NULL); | |
8533 | } | |
8534 | ||
bf0f6f24 IM |
8535 | /* |
8536 | * Account for a descheduled task: | |
8537 | */ | |
6e2df058 | 8538 | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) |
bf0f6f24 IM |
8539 | { |
8540 | struct sched_entity *se = &prev->se; | |
8541 | struct cfs_rq *cfs_rq; | |
8542 | ||
8543 | for_each_sched_entity(se) { | |
8544 | cfs_rq = cfs_rq_of(se); | |
ab6cde26 | 8545 | put_prev_entity(cfs_rq, se); |
bf0f6f24 IM |
8546 | } |
8547 | } | |
8548 | ||
ac53db59 RR |
8549 | /* |
8550 | * sched_yield() is very simple | |
ac53db59 RR |
8551 | */ |
8552 | static void yield_task_fair(struct rq *rq) | |
8553 | { | |
8554 | struct task_struct *curr = rq->curr; | |
8555 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | |
8556 | struct sched_entity *se = &curr->se; | |
8557 | ||
8558 | /* | |
8559 | * Are we the only task in the tree? | |
8560 | */ | |
8561 | if (unlikely(rq->nr_running == 1)) | |
8562 | return; | |
8563 | ||
8564 | clear_buddies(cfs_rq, se); | |
8565 | ||
5e963f2b PZ |
8566 | update_rq_clock(rq); |
8567 | /* | |
8568 | * Update run-time statistics of the 'current'. | |
8569 | */ | |
8570 | update_curr(cfs_rq); | |
8571 | /* | |
8572 | * Tell update_rq_clock() that we've just updated, | |
8573 | * so we don't do microscopic update in schedule() | |
8574 | * and double the fastpath cost. | |
8575 | */ | |
8576 | rq_clock_skip_update(rq); | |
ac53db59 | 8577 | |
5e963f2b | 8578 | se->deadline += calc_delta_fair(se->slice, se); |
ac53db59 RR |
8579 | } |
8580 | ||
0900acf2 | 8581 | static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) |
d95f4122 MG |
8582 | { |
8583 | struct sched_entity *se = &p->se; | |
8584 | ||
5238cdd3 PT |
8585 | /* throttled hierarchies are not runnable */ |
8586 | if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) | |
d95f4122 MG |
8587 | return false; |
8588 | ||
8589 | /* Tell the scheduler that we'd really like pse to run next. */ | |
8590 | set_next_buddy(se); | |
8591 | ||
d95f4122 MG |
8592 | yield_task_fair(rq); |
8593 | ||
8594 | return true; | |
8595 | } | |
8596 | ||
681f3e68 | 8597 | #ifdef CONFIG_SMP |
bf0f6f24 | 8598 | /************************************************** |
e9c84cb8 PZ |
8599 | * Fair scheduling class load-balancing methods. |
8600 | * | |
8601 | * BASICS | |
8602 | * | |
8603 | * The purpose of load-balancing is to achieve the same basic fairness the | |
97fb7a0a | 8604 | * per-CPU scheduler provides, namely provide a proportional amount of compute |
e9c84cb8 PZ |
8605 | * time to each task. This is expressed in the following equation: |
8606 | * | |
8607 | * W_i,n/P_i == W_j,n/P_j for all i,j (1) | |
8608 | * | |
97fb7a0a | 8609 | * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight |
e9c84cb8 PZ |
8610 | * W_i,0 is defined as: |
8611 | * | |
8612 | * W_i,0 = \Sum_j w_i,j (2) | |
8613 | * | |
97fb7a0a | 8614 | * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight |
1c3de5e1 | 8615 | * is derived from the nice value as per sched_prio_to_weight[]. |
e9c84cb8 PZ |
8616 | * |
8617 | * The weight average is an exponential decay average of the instantaneous | |
8618 | * weight: | |
8619 | * | |
8620 | * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) | |
8621 | * | |
97fb7a0a | 8622 | * C_i is the compute capacity of CPU i, typically it is the |
e9c84cb8 PZ |
8623 | * fraction of 'recent' time available for SCHED_OTHER task execution. But it |
8624 | * can also include other factors [XXX]. | |
8625 | * | |
8626 | * To achieve this balance we define a measure of imbalance which follows | |
8627 | * directly from (1): | |
8628 | * | |
ced549fa | 8629 | * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) |
e9c84cb8 PZ |
8630 | * |
8631 | * We them move tasks around to minimize the imbalance. In the continuous | |
8632 | * function space it is obvious this converges, in the discrete case we get | |
8633 | * a few fun cases generally called infeasible weight scenarios. | |
8634 | * | |
8635 | * [XXX expand on: | |
8636 | * - infeasible weights; | |
8637 | * - local vs global optima in the discrete case. ] | |
8638 | * | |
8639 | * | |
8640 | * SCHED DOMAINS | |
8641 | * | |
8642 | * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) | |
97fb7a0a | 8643 | * for all i,j solution, we create a tree of CPUs that follows the hardware |
e9c84cb8 | 8644 | * topology where each level pairs two lower groups (or better). This results |
97fb7a0a | 8645 | * in O(log n) layers. Furthermore we reduce the number of CPUs going up the |
e9c84cb8 | 8646 | * tree to only the first of the previous level and we decrease the frequency |
97fb7a0a | 8647 | * of load-balance at each level inv. proportional to the number of CPUs in |
e9c84cb8 PZ |
8648 | * the groups. |
8649 | * | |
8650 | * This yields: | |
8651 | * | |
8652 | * log_2 n 1 n | |
8653 | * \Sum { --- * --- * 2^i } = O(n) (5) | |
8654 | * i = 0 2^i 2^i | |
8655 | * `- size of each group | |
97fb7a0a | 8656 | * | | `- number of CPUs doing load-balance |
e9c84cb8 PZ |
8657 | * | `- freq |
8658 | * `- sum over all levels | |
8659 | * | |
8660 | * Coupled with a limit on how many tasks we can migrate every balance pass, | |
8661 | * this makes (5) the runtime complexity of the balancer. | |
8662 | * | |
8663 | * An important property here is that each CPU is still (indirectly) connected | |
97fb7a0a | 8664 | * to every other CPU in at most O(log n) steps: |
e9c84cb8 PZ |
8665 | * |
8666 | * The adjacency matrix of the resulting graph is given by: | |
8667 | * | |
97a7142f | 8668 | * log_2 n |
e9c84cb8 PZ |
8669 | * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) |
8670 | * k = 0 | |
8671 | * | |
8672 | * And you'll find that: | |
8673 | * | |
8674 | * A^(log_2 n)_i,j != 0 for all i,j (7) | |
8675 | * | |
97fb7a0a | 8676 | * Showing there's indeed a path between every CPU in at most O(log n) steps. |
e9c84cb8 PZ |
8677 | * The task movement gives a factor of O(m), giving a convergence complexity |
8678 | * of: | |
8679 | * | |
8680 | * O(nm log n), n := nr_cpus, m := nr_tasks (8) | |
8681 | * | |
8682 | * | |
8683 | * WORK CONSERVING | |
8684 | * | |
8685 | * In order to avoid CPUs going idle while there's still work to do, new idle | |
97fb7a0a | 8686 | * balancing is more aggressive and has the newly idle CPU iterate up the domain |
e9c84cb8 PZ |
8687 | * tree itself instead of relying on other CPUs to bring it work. |
8688 | * | |
8689 | * This adds some complexity to both (5) and (8) but it reduces the total idle | |
8690 | * time. | |
8691 | * | |
8692 | * [XXX more?] | |
8693 | * | |
8694 | * | |
8695 | * CGROUPS | |
8696 | * | |
8697 | * Cgroups make a horror show out of (2), instead of a simple sum we get: | |
8698 | * | |
8699 | * s_k,i | |
8700 | * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) | |
8701 | * S_k | |
8702 | * | |
8703 | * Where | |
8704 | * | |
8705 | * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) | |
8706 | * | |
97fb7a0a | 8707 | * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. |
e9c84cb8 PZ |
8708 | * |
8709 | * The big problem is S_k, its a global sum needed to compute a local (W_i) | |
8710 | * property. | |
8711 | * | |
8712 | * [XXX write more on how we solve this.. _after_ merging pjt's patches that | |
8713 | * rewrite all of this once again.] | |
97a7142f | 8714 | */ |
bf0f6f24 | 8715 | |
ed387b78 HS |
8716 | static unsigned long __read_mostly max_load_balance_interval = HZ/10; |
8717 | ||
0ec8aa00 PZ |
8718 | enum fbq_type { regular, remote, all }; |
8719 | ||
0b0695f2 | 8720 | /* |
a9723389 VG |
8721 | * 'group_type' describes the group of CPUs at the moment of load balancing. |
8722 | * | |
0b0695f2 | 8723 | * The enum is ordered by pulling priority, with the group with lowest priority |
a9723389 VG |
8724 | * first so the group_type can simply be compared when selecting the busiest |
8725 | * group. See update_sd_pick_busiest(). | |
0b0695f2 | 8726 | */ |
3b1baa64 | 8727 | enum group_type { |
a9723389 | 8728 | /* The group has spare capacity that can be used to run more tasks. */ |
0b0695f2 | 8729 | group_has_spare = 0, |
a9723389 VG |
8730 | /* |
8731 | * The group is fully used and the tasks don't compete for more CPU | |
8732 | * cycles. Nevertheless, some tasks might wait before running. | |
8733 | */ | |
0b0695f2 | 8734 | group_fully_busy, |
a9723389 | 8735 | /* |
c82a6962 VG |
8736 | * One task doesn't fit with CPU's capacity and must be migrated to a |
8737 | * more powerful CPU. | |
a9723389 | 8738 | */ |
3b1baa64 | 8739 | group_misfit_task, |
fee1759e TC |
8740 | /* |
8741 | * Balance SMT group that's fully busy. Can benefit from migration | |
8742 | * a task on SMT with busy sibling to another CPU on idle core. | |
8743 | */ | |
8744 | group_smt_balance, | |
a9723389 VG |
8745 | /* |
8746 | * SD_ASYM_PACKING only: One local CPU with higher capacity is available, | |
8747 | * and the task should be migrated to it instead of running on the | |
8748 | * current CPU. | |
8749 | */ | |
0b0695f2 | 8750 | group_asym_packing, |
a9723389 VG |
8751 | /* |
8752 | * The tasks' affinity constraints previously prevented the scheduler | |
8753 | * from balancing the load across the system. | |
8754 | */ | |
3b1baa64 | 8755 | group_imbalanced, |
a9723389 VG |
8756 | /* |
8757 | * The CPU is overloaded and can't provide expected CPU cycles to all | |
8758 | * tasks. | |
8759 | */ | |
0b0695f2 VG |
8760 | group_overloaded |
8761 | }; | |
8762 | ||
8763 | enum migration_type { | |
8764 | migrate_load = 0, | |
8765 | migrate_util, | |
8766 | migrate_task, | |
8767 | migrate_misfit | |
3b1baa64 MR |
8768 | }; |
8769 | ||
ddcdf6e7 | 8770 | #define LBF_ALL_PINNED 0x01 |
367456c7 | 8771 | #define LBF_NEED_BREAK 0x02 |
6263322c PZ |
8772 | #define LBF_DST_PINNED 0x04 |
8773 | #define LBF_SOME_PINNED 0x08 | |
23fb06d9 | 8774 | #define LBF_ACTIVE_LB 0x10 |
ddcdf6e7 PZ |
8775 | |
8776 | struct lb_env { | |
8777 | struct sched_domain *sd; | |
8778 | ||
ddcdf6e7 | 8779 | struct rq *src_rq; |
85c1e7da | 8780 | int src_cpu; |
ddcdf6e7 PZ |
8781 | |
8782 | int dst_cpu; | |
8783 | struct rq *dst_rq; | |
8784 | ||
88b8dac0 SV |
8785 | struct cpumask *dst_grpmask; |
8786 | int new_dst_cpu; | |
ddcdf6e7 | 8787 | enum cpu_idle_type idle; |
bd939f45 | 8788 | long imbalance; |
b9403130 MW |
8789 | /* The set of CPUs under consideration for load-balancing */ |
8790 | struct cpumask *cpus; | |
8791 | ||
ddcdf6e7 | 8792 | unsigned int flags; |
367456c7 PZ |
8793 | |
8794 | unsigned int loop; | |
8795 | unsigned int loop_break; | |
8796 | unsigned int loop_max; | |
0ec8aa00 PZ |
8797 | |
8798 | enum fbq_type fbq_type; | |
0b0695f2 | 8799 | enum migration_type migration_type; |
163122b7 | 8800 | struct list_head tasks; |
ddcdf6e7 PZ |
8801 | }; |
8802 | ||
029632fb PZ |
8803 | /* |
8804 | * Is this task likely cache-hot: | |
8805 | */ | |
5d5e2b1b | 8806 | static int task_hot(struct task_struct *p, struct lb_env *env) |
029632fb PZ |
8807 | { |
8808 | s64 delta; | |
8809 | ||
5cb9eaa3 | 8810 | lockdep_assert_rq_held(env->src_rq); |
e5673f28 | 8811 | |
029632fb PZ |
8812 | if (p->sched_class != &fair_sched_class) |
8813 | return 0; | |
8814 | ||
1da1843f | 8815 | if (unlikely(task_has_idle_policy(p))) |
029632fb PZ |
8816 | return 0; |
8817 | ||
ec73240b JD |
8818 | /* SMT siblings share cache */ |
8819 | if (env->sd->flags & SD_SHARE_CPUCAPACITY) | |
8820 | return 0; | |
8821 | ||
029632fb PZ |
8822 | /* |
8823 | * Buddy candidates are cache hot: | |
8824 | */ | |
5d5e2b1b | 8825 | if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && |
5e963f2b | 8826 | (&p->se == cfs_rq_of(&p->se)->next)) |
029632fb PZ |
8827 | return 1; |
8828 | ||
8829 | if (sysctl_sched_migration_cost == -1) | |
8830 | return 1; | |
97886d9d AL |
8831 | |
8832 | /* | |
8833 | * Don't migrate task if the task's cookie does not match | |
8834 | * with the destination CPU's core cookie. | |
8835 | */ | |
8836 | if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) | |
8837 | return 1; | |
8838 | ||
029632fb PZ |
8839 | if (sysctl_sched_migration_cost == 0) |
8840 | return 0; | |
8841 | ||
5d5e2b1b | 8842 | delta = rq_clock_task(env->src_rq) - p->se.exec_start; |
029632fb PZ |
8843 | |
8844 | return delta < (s64)sysctl_sched_migration_cost; | |
8845 | } | |
8846 | ||
3a7053b3 | 8847 | #ifdef CONFIG_NUMA_BALANCING |
c1ceac62 | 8848 | /* |
2a1ed24c SD |
8849 | * Returns 1, if task migration degrades locality |
8850 | * Returns 0, if task migration improves locality i.e migration preferred. | |
8851 | * Returns -1, if task migration is not affected by locality. | |
c1ceac62 | 8852 | */ |
2a1ed24c | 8853 | static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) |
3a7053b3 | 8854 | { |
b1ad065e | 8855 | struct numa_group *numa_group = rcu_dereference(p->numa_group); |
f35678b6 SD |
8856 | unsigned long src_weight, dst_weight; |
8857 | int src_nid, dst_nid, dist; | |
3a7053b3 | 8858 | |
2a595721 | 8859 | if (!static_branch_likely(&sched_numa_balancing)) |
2a1ed24c SD |
8860 | return -1; |
8861 | ||
c3b9bc5b | 8862 | if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) |
2a1ed24c | 8863 | return -1; |
7a0f3083 MG |
8864 | |
8865 | src_nid = cpu_to_node(env->src_cpu); | |
8866 | dst_nid = cpu_to_node(env->dst_cpu); | |
8867 | ||
83e1d2cd | 8868 | if (src_nid == dst_nid) |
2a1ed24c | 8869 | return -1; |
7a0f3083 | 8870 | |
2a1ed24c SD |
8871 | /* Migrating away from the preferred node is always bad. */ |
8872 | if (src_nid == p->numa_preferred_nid) { | |
8873 | if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) | |
8874 | return 1; | |
8875 | else | |
8876 | return -1; | |
8877 | } | |
b1ad065e | 8878 | |
c1ceac62 RR |
8879 | /* Encourage migration to the preferred node. */ |
8880 | if (dst_nid == p->numa_preferred_nid) | |
2a1ed24c | 8881 | return 0; |
b1ad065e | 8882 | |
739294fb | 8883 | /* Leaving a core idle is often worse than degrading locality. */ |
f35678b6 | 8884 | if (env->idle == CPU_IDLE) |
739294fb RR |
8885 | return -1; |
8886 | ||
f35678b6 | 8887 | dist = node_distance(src_nid, dst_nid); |
c1ceac62 | 8888 | if (numa_group) { |
f35678b6 SD |
8889 | src_weight = group_weight(p, src_nid, dist); |
8890 | dst_weight = group_weight(p, dst_nid, dist); | |
c1ceac62 | 8891 | } else { |
f35678b6 SD |
8892 | src_weight = task_weight(p, src_nid, dist); |
8893 | dst_weight = task_weight(p, dst_nid, dist); | |
b1ad065e RR |
8894 | } |
8895 | ||
f35678b6 | 8896 | return dst_weight < src_weight; |
7a0f3083 MG |
8897 | } |
8898 | ||
3a7053b3 | 8899 | #else |
2a1ed24c | 8900 | static inline int migrate_degrades_locality(struct task_struct *p, |
3a7053b3 MG |
8901 | struct lb_env *env) |
8902 | { | |
2a1ed24c | 8903 | return -1; |
7a0f3083 | 8904 | } |
3a7053b3 MG |
8905 | #endif |
8906 | ||
1e3c88bd PZ |
8907 | /* |
8908 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | |
8909 | */ | |
8910 | static | |
8e45cb54 | 8911 | int can_migrate_task(struct task_struct *p, struct lb_env *env) |
1e3c88bd | 8912 | { |
2a1ed24c | 8913 | int tsk_cache_hot; |
e5673f28 | 8914 | |
5cb9eaa3 | 8915 | lockdep_assert_rq_held(env->src_rq); |
e5673f28 | 8916 | |
1e3c88bd PZ |
8917 | /* |
8918 | * We do not migrate tasks that are: | |
d3198084 | 8919 | * 1) throttled_lb_pair, or |
3bd37062 | 8920 | * 2) cannot be migrated to this CPU due to cpus_ptr, or |
d3198084 JK |
8921 | * 3) running (obviously), or |
8922 | * 4) are cache-hot on their current CPU. | |
1e3c88bd | 8923 | */ |
d3198084 JK |
8924 | if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) |
8925 | return 0; | |
8926 | ||
9bcb959d | 8927 | /* Disregard pcpu kthreads; they are where they need to be. */ |
3a7956e2 | 8928 | if (kthread_is_per_cpu(p)) |
9bcb959d LC |
8929 | return 0; |
8930 | ||
3bd37062 | 8931 | if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { |
e02e60c1 | 8932 | int cpu; |
88b8dac0 | 8933 | |
ceeadb83 | 8934 | schedstat_inc(p->stats.nr_failed_migrations_affine); |
88b8dac0 | 8935 | |
6263322c PZ |
8936 | env->flags |= LBF_SOME_PINNED; |
8937 | ||
88b8dac0 | 8938 | /* |
97fb7a0a | 8939 | * Remember if this task can be migrated to any other CPU in |
88b8dac0 SV |
8940 | * our sched_group. We may want to revisit it if we couldn't |
8941 | * meet load balance goals by pulling other tasks on src_cpu. | |
8942 | * | |
23fb06d9 VS |
8943 | * Avoid computing new_dst_cpu |
8944 | * - for NEWLY_IDLE | |
8945 | * - if we have already computed one in current iteration | |
8946 | * - if it's an active balance | |
88b8dac0 | 8947 | */ |
23fb06d9 VS |
8948 | if (env->idle == CPU_NEWLY_IDLE || |
8949 | env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) | |
88b8dac0 SV |
8950 | return 0; |
8951 | ||
97fb7a0a | 8952 | /* Prevent to re-select dst_cpu via env's CPUs: */ |
e02e60c1 | 8953 | for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { |
3bd37062 | 8954 | if (cpumask_test_cpu(cpu, p->cpus_ptr)) { |
6263322c | 8955 | env->flags |= LBF_DST_PINNED; |
e02e60c1 JK |
8956 | env->new_dst_cpu = cpu; |
8957 | break; | |
8958 | } | |
88b8dac0 | 8959 | } |
e02e60c1 | 8960 | |
1e3c88bd PZ |
8961 | return 0; |
8962 | } | |
88b8dac0 | 8963 | |
3b03706f | 8964 | /* Record that we found at least one task that could run on dst_cpu */ |
8e45cb54 | 8965 | env->flags &= ~LBF_ALL_PINNED; |
1e3c88bd | 8966 | |
0b9d46fc | 8967 | if (task_on_cpu(env->src_rq, p)) { |
ceeadb83 | 8968 | schedstat_inc(p->stats.nr_failed_migrations_running); |
1e3c88bd PZ |
8969 | return 0; |
8970 | } | |
8971 | ||
8972 | /* | |
8973 | * Aggressive migration if: | |
23fb06d9 VS |
8974 | * 1) active balance |
8975 | * 2) destination numa is preferred | |
8976 | * 3) task is cache cold, or | |
8977 | * 4) too many balance attempts have failed. | |
1e3c88bd | 8978 | */ |
23fb06d9 VS |
8979 | if (env->flags & LBF_ACTIVE_LB) |
8980 | return 1; | |
8981 | ||
2a1ed24c SD |
8982 | tsk_cache_hot = migrate_degrades_locality(p, env); |
8983 | if (tsk_cache_hot == -1) | |
8984 | tsk_cache_hot = task_hot(p, env); | |
3a7053b3 | 8985 | |
2a1ed24c | 8986 | if (tsk_cache_hot <= 0 || |
7a96c231 | 8987 | env->sd->nr_balance_failed > env->sd->cache_nice_tries) { |
2a1ed24c | 8988 | if (tsk_cache_hot == 1) { |
ae92882e | 8989 | schedstat_inc(env->sd->lb_hot_gained[env->idle]); |
ceeadb83 | 8990 | schedstat_inc(p->stats.nr_forced_migrations); |
3a7053b3 | 8991 | } |
1e3c88bd PZ |
8992 | return 1; |
8993 | } | |
8994 | ||
ceeadb83 | 8995 | schedstat_inc(p->stats.nr_failed_migrations_hot); |
4e2dcb73 | 8996 | return 0; |
1e3c88bd PZ |
8997 | } |
8998 | ||
897c395f | 8999 | /* |
163122b7 KT |
9000 | * detach_task() -- detach the task for the migration specified in env |
9001 | */ | |
9002 | static void detach_task(struct task_struct *p, struct lb_env *env) | |
9003 | { | |
5cb9eaa3 | 9004 | lockdep_assert_rq_held(env->src_rq); |
163122b7 | 9005 | |
5704ac0a | 9006 | deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); |
163122b7 KT |
9007 | set_task_cpu(p, env->dst_cpu); |
9008 | } | |
9009 | ||
897c395f | 9010 | /* |
e5673f28 | 9011 | * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as |
897c395f | 9012 | * part of active balancing operations within "domain". |
897c395f | 9013 | * |
e5673f28 | 9014 | * Returns a task if successful and NULL otherwise. |
897c395f | 9015 | */ |
e5673f28 | 9016 | static struct task_struct *detach_one_task(struct lb_env *env) |
897c395f | 9017 | { |
93824900 | 9018 | struct task_struct *p; |
897c395f | 9019 | |
5cb9eaa3 | 9020 | lockdep_assert_rq_held(env->src_rq); |
e5673f28 | 9021 | |
93824900 UR |
9022 | list_for_each_entry_reverse(p, |
9023 | &env->src_rq->cfs_tasks, se.group_node) { | |
367456c7 PZ |
9024 | if (!can_migrate_task(p, env)) |
9025 | continue; | |
897c395f | 9026 | |
163122b7 | 9027 | detach_task(p, env); |
e5673f28 | 9028 | |
367456c7 | 9029 | /* |
e5673f28 | 9030 | * Right now, this is only the second place where |
163122b7 | 9031 | * lb_gained[env->idle] is updated (other is detach_tasks) |
e5673f28 | 9032 | * so we can safely collect stats here rather than |
163122b7 | 9033 | * inside detach_tasks(). |
367456c7 | 9034 | */ |
ae92882e | 9035 | schedstat_inc(env->sd->lb_gained[env->idle]); |
e5673f28 | 9036 | return p; |
897c395f | 9037 | } |
e5673f28 | 9038 | return NULL; |
897c395f PZ |
9039 | } |
9040 | ||
5d6523eb | 9041 | /* |
0b0695f2 | 9042 | * detach_tasks() -- tries to detach up to imbalance load/util/tasks from |
163122b7 | 9043 | * busiest_rq, as part of a balancing operation within domain "sd". |
5d6523eb | 9044 | * |
163122b7 | 9045 | * Returns number of detached tasks if successful and 0 otherwise. |
5d6523eb | 9046 | */ |
163122b7 | 9047 | static int detach_tasks(struct lb_env *env) |
1e3c88bd | 9048 | { |
5d6523eb | 9049 | struct list_head *tasks = &env->src_rq->cfs_tasks; |
0b0695f2 | 9050 | unsigned long util, load; |
5d6523eb | 9051 | struct task_struct *p; |
163122b7 KT |
9052 | int detached = 0; |
9053 | ||
5cb9eaa3 | 9054 | lockdep_assert_rq_held(env->src_rq); |
1e3c88bd | 9055 | |
acb4decc AL |
9056 | /* |
9057 | * Source run queue has been emptied by another CPU, clear | |
9058 | * LBF_ALL_PINNED flag as we will not test any task. | |
9059 | */ | |
9060 | if (env->src_rq->nr_running <= 1) { | |
9061 | env->flags &= ~LBF_ALL_PINNED; | |
9062 | return 0; | |
9063 | } | |
9064 | ||
bd939f45 | 9065 | if (env->imbalance <= 0) |
5d6523eb | 9066 | return 0; |
1e3c88bd | 9067 | |
5d6523eb | 9068 | while (!list_empty(tasks)) { |
985d3a4c YD |
9069 | /* |
9070 | * We don't want to steal all, otherwise we may be treated likewise, | |
9071 | * which could at worst lead to a livelock crash. | |
9072 | */ | |
38d707c5 | 9073 | if (env->idle && env->src_rq->nr_running <= 1) |
985d3a4c YD |
9074 | break; |
9075 | ||
367456c7 | 9076 | env->loop++; |
b0defa7a VG |
9077 | /* |
9078 | * We've more or less seen every task there is, call it quits | |
9079 | * unless we haven't found any movable task yet. | |
9080 | */ | |
9081 | if (env->loop > env->loop_max && | |
9082 | !(env->flags & LBF_ALL_PINNED)) | |
367456c7 | 9083 | break; |
5d6523eb PZ |
9084 | |
9085 | /* take a breather every nr_migrate tasks */ | |
367456c7 | 9086 | if (env->loop > env->loop_break) { |
c59862f8 | 9087 | env->loop_break += SCHED_NR_MIGRATE_BREAK; |
8e45cb54 | 9088 | env->flags |= LBF_NEED_BREAK; |
ee00e66f | 9089 | break; |
a195f004 | 9090 | } |
1e3c88bd | 9091 | |
7e9518ba VG |
9092 | p = list_last_entry(tasks, struct task_struct, se.group_node); |
9093 | ||
d3198084 | 9094 | if (!can_migrate_task(p, env)) |
367456c7 PZ |
9095 | goto next; |
9096 | ||
0b0695f2 VG |
9097 | switch (env->migration_type) { |
9098 | case migrate_load: | |
01cfcde9 VG |
9099 | /* |
9100 | * Depending of the number of CPUs and tasks and the | |
9101 | * cgroup hierarchy, task_h_load() can return a null | |
9102 | * value. Make sure that env->imbalance decreases | |
9103 | * otherwise detach_tasks() will stop only after | |
9104 | * detaching up to loop_max tasks. | |
9105 | */ | |
9106 | load = max_t(unsigned long, task_h_load(p), 1); | |
5d6523eb | 9107 | |
0b0695f2 VG |
9108 | if (sched_feat(LB_MIN) && |
9109 | load < 16 && !env->sd->nr_balance_failed) | |
9110 | goto next; | |
367456c7 | 9111 | |
6cf82d55 VG |
9112 | /* |
9113 | * Make sure that we don't migrate too much load. | |
9114 | * Nevertheless, let relax the constraint if | |
9115 | * scheduler fails to find a good waiting task to | |
9116 | * migrate. | |
9117 | */ | |
39a2a6eb | 9118 | if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) |
0b0695f2 VG |
9119 | goto next; |
9120 | ||
9121 | env->imbalance -= load; | |
9122 | break; | |
9123 | ||
9124 | case migrate_util: | |
9125 | util = task_util_est(p); | |
9126 | ||
3af7524b | 9127 | if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) |
0b0695f2 VG |
9128 | goto next; |
9129 | ||
9130 | env->imbalance -= util; | |
9131 | break; | |
9132 | ||
9133 | case migrate_task: | |
9134 | env->imbalance--; | |
9135 | break; | |
9136 | ||
9137 | case migrate_misfit: | |
c63be7be | 9138 | /* This is not a misfit task */ |
b48e16a6 | 9139 | if (task_fits_cpu(p, env->src_cpu)) |
0b0695f2 VG |
9140 | goto next; |
9141 | ||
9142 | env->imbalance = 0; | |
9143 | break; | |
9144 | } | |
1e3c88bd | 9145 | |
163122b7 KT |
9146 | detach_task(p, env); |
9147 | list_add(&p->se.group_node, &env->tasks); | |
9148 | ||
9149 | detached++; | |
1e3c88bd | 9150 | |
c1a280b6 | 9151 | #ifdef CONFIG_PREEMPTION |
ee00e66f PZ |
9152 | /* |
9153 | * NEWIDLE balancing is a source of latency, so preemptible | |
163122b7 | 9154 | * kernels will stop after the first task is detached to minimize |
ee00e66f PZ |
9155 | * the critical section. |
9156 | */ | |
5d6523eb | 9157 | if (env->idle == CPU_NEWLY_IDLE) |
ee00e66f | 9158 | break; |
1e3c88bd PZ |
9159 | #endif |
9160 | ||
ee00e66f PZ |
9161 | /* |
9162 | * We only want to steal up to the prescribed amount of | |
0b0695f2 | 9163 | * load/util/tasks. |
ee00e66f | 9164 | */ |
bd939f45 | 9165 | if (env->imbalance <= 0) |
ee00e66f | 9166 | break; |
367456c7 PZ |
9167 | |
9168 | continue; | |
9169 | next: | |
93824900 | 9170 | list_move(&p->se.group_node, tasks); |
1e3c88bd | 9171 | } |
5d6523eb | 9172 | |
1e3c88bd | 9173 | /* |
163122b7 KT |
9174 | * Right now, this is one of only two places we collect this stat |
9175 | * so we can safely collect detach_one_task() stats here rather | |
9176 | * than inside detach_one_task(). | |
1e3c88bd | 9177 | */ |
ae92882e | 9178 | schedstat_add(env->sd->lb_gained[env->idle], detached); |
1e3c88bd | 9179 | |
163122b7 KT |
9180 | return detached; |
9181 | } | |
9182 | ||
9183 | /* | |
9184 | * attach_task() -- attach the task detached by detach_task() to its new rq. | |
9185 | */ | |
9186 | static void attach_task(struct rq *rq, struct task_struct *p) | |
9187 | { | |
5cb9eaa3 | 9188 | lockdep_assert_rq_held(rq); |
163122b7 | 9189 | |
09348d75 | 9190 | WARN_ON_ONCE(task_rq(p) != rq); |
5704ac0a | 9191 | activate_task(rq, p, ENQUEUE_NOCLOCK); |
e23edc86 | 9192 | wakeup_preempt(rq, p, 0); |
163122b7 KT |
9193 | } |
9194 | ||
9195 | /* | |
9196 | * attach_one_task() -- attaches the task returned from detach_one_task() to | |
9197 | * its new rq. | |
9198 | */ | |
9199 | static void attach_one_task(struct rq *rq, struct task_struct *p) | |
9200 | { | |
8a8c69c3 PZ |
9201 | struct rq_flags rf; |
9202 | ||
9203 | rq_lock(rq, &rf); | |
5704ac0a | 9204 | update_rq_clock(rq); |
163122b7 | 9205 | attach_task(rq, p); |
8a8c69c3 | 9206 | rq_unlock(rq, &rf); |
163122b7 KT |
9207 | } |
9208 | ||
9209 | /* | |
9210 | * attach_tasks() -- attaches all tasks detached by detach_tasks() to their | |
9211 | * new rq. | |
9212 | */ | |
9213 | static void attach_tasks(struct lb_env *env) | |
9214 | { | |
9215 | struct list_head *tasks = &env->tasks; | |
9216 | struct task_struct *p; | |
8a8c69c3 | 9217 | struct rq_flags rf; |
163122b7 | 9218 | |
8a8c69c3 | 9219 | rq_lock(env->dst_rq, &rf); |
5704ac0a | 9220 | update_rq_clock(env->dst_rq); |
163122b7 KT |
9221 | |
9222 | while (!list_empty(tasks)) { | |
9223 | p = list_first_entry(tasks, struct task_struct, se.group_node); | |
9224 | list_del_init(&p->se.group_node); | |
1e3c88bd | 9225 | |
163122b7 KT |
9226 | attach_task(env->dst_rq, p); |
9227 | } | |
9228 | ||
8a8c69c3 | 9229 | rq_unlock(env->dst_rq, &rf); |
1e3c88bd PZ |
9230 | } |
9231 | ||
b0c79224 | 9232 | #ifdef CONFIG_NO_HZ_COMMON |
1936c53c VG |
9233 | static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) |
9234 | { | |
9235 | if (cfs_rq->avg.load_avg) | |
9236 | return true; | |
9237 | ||
9238 | if (cfs_rq->avg.util_avg) | |
9239 | return true; | |
9240 | ||
9241 | return false; | |
9242 | } | |
9243 | ||
91c27493 | 9244 | static inline bool others_have_blocked(struct rq *rq) |
371bf427 | 9245 | { |
8b936fc1 | 9246 | if (cpu_util_rt(rq)) |
371bf427 VG |
9247 | return true; |
9248 | ||
8b936fc1 | 9249 | if (cpu_util_dl(rq)) |
3727e0e1 VG |
9250 | return true; |
9251 | ||
b4eccf5f TG |
9252 | if (thermal_load_avg(rq)) |
9253 | return true; | |
9254 | ||
a6965b31 | 9255 | if (cpu_util_irq(rq)) |
91c27493 | 9256 | return true; |
91c27493 | 9257 | |
371bf427 VG |
9258 | return false; |
9259 | } | |
9260 | ||
39b6a429 | 9261 | static inline void update_blocked_load_tick(struct rq *rq) |
b0c79224 | 9262 | { |
39b6a429 VG |
9263 | WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); |
9264 | } | |
b0c79224 | 9265 | |
39b6a429 VG |
9266 | static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) |
9267 | { | |
b0c79224 VS |
9268 | if (!has_blocked) |
9269 | rq->has_blocked_load = 0; | |
9270 | } | |
9271 | #else | |
9272 | static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } | |
9273 | static inline bool others_have_blocked(struct rq *rq) { return false; } | |
39b6a429 | 9274 | static inline void update_blocked_load_tick(struct rq *rq) {} |
b0c79224 VS |
9275 | static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} |
9276 | #endif | |
9277 | ||
bef69dd8 VG |
9278 | static bool __update_blocked_others(struct rq *rq, bool *done) |
9279 | { | |
9280 | const struct sched_class *curr_class; | |
9281 | u64 now = rq_clock_pelt(rq); | |
b4eccf5f | 9282 | unsigned long thermal_pressure; |
bef69dd8 VG |
9283 | bool decayed; |
9284 | ||
9285 | /* | |
9286 | * update_load_avg() can call cpufreq_update_util(). Make sure that RT, | |
9287 | * DL and IRQ signals have been updated before updating CFS. | |
9288 | */ | |
9289 | curr_class = rq->curr->sched_class; | |
9290 | ||
b4eccf5f TG |
9291 | thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); |
9292 | ||
bef69dd8 VG |
9293 | decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | |
9294 | update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | | |
05289b90 | 9295 | update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | |
bef69dd8 VG |
9296 | update_irq_load_avg(rq, 0); |
9297 | ||
9298 | if (others_have_blocked(rq)) | |
9299 | *done = false; | |
9300 | ||
9301 | return decayed; | |
9302 | } | |
9303 | ||
1936c53c VG |
9304 | #ifdef CONFIG_FAIR_GROUP_SCHED |
9305 | ||
bef69dd8 | 9306 | static bool __update_blocked_fair(struct rq *rq, bool *done) |
9e3081ca | 9307 | { |
039ae8bc | 9308 | struct cfs_rq *cfs_rq, *pos; |
bef69dd8 VG |
9309 | bool decayed = false; |
9310 | int cpu = cpu_of(rq); | |
b90f7c9d | 9311 | |
9763b67f PZ |
9312 | /* |
9313 | * Iterates the task_group tree in a bottom up fashion, see | |
9314 | * list_add_leaf_cfs_rq() for details. | |
9315 | */ | |
039ae8bc | 9316 | for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { |
bc427898 VG |
9317 | struct sched_entity *se; |
9318 | ||
bef69dd8 | 9319 | if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { |
fe749158 | 9320 | update_tg_load_avg(cfs_rq); |
4e516076 | 9321 | |
e2f3e35f VD |
9322 | if (cfs_rq->nr_running == 0) |
9323 | update_idle_cfs_rq_clock_pelt(cfs_rq); | |
9324 | ||
bef69dd8 VG |
9325 | if (cfs_rq == &rq->cfs) |
9326 | decayed = true; | |
9327 | } | |
9328 | ||
bc427898 VG |
9329 | /* Propagate pending load changes to the parent, if any: */ |
9330 | se = cfs_rq->tg->se[cpu]; | |
9331 | if (se && !skip_blocked_update(se)) | |
02da26ad | 9332 | update_load_avg(cfs_rq_of(se), se, UPDATE_TG); |
a9e7f654 | 9333 | |
039ae8bc VG |
9334 | /* |
9335 | * There can be a lot of idle CPU cgroups. Don't let fully | |
9336 | * decayed cfs_rqs linger on the list. | |
9337 | */ | |
9338 | if (cfs_rq_is_decayed(cfs_rq)) | |
9339 | list_del_leaf_cfs_rq(cfs_rq); | |
9340 | ||
1936c53c VG |
9341 | /* Don't need periodic decay once load/util_avg are null */ |
9342 | if (cfs_rq_has_blocked(cfs_rq)) | |
bef69dd8 | 9343 | *done = false; |
9d89c257 | 9344 | } |
12b04875 | 9345 | |
bef69dd8 | 9346 | return decayed; |
9e3081ca PZ |
9347 | } |
9348 | ||
9763b67f | 9349 | /* |
68520796 | 9350 | * Compute the hierarchical load factor for cfs_rq and all its ascendants. |
9763b67f PZ |
9351 | * This needs to be done in a top-down fashion because the load of a child |
9352 | * group is a fraction of its parents load. | |
9353 | */ | |
68520796 | 9354 | static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) |
9763b67f | 9355 | { |
68520796 VD |
9356 | struct rq *rq = rq_of(cfs_rq); |
9357 | struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; | |
a35b6466 | 9358 | unsigned long now = jiffies; |
68520796 | 9359 | unsigned long load; |
a35b6466 | 9360 | |
68520796 | 9361 | if (cfs_rq->last_h_load_update == now) |
a35b6466 PZ |
9362 | return; |
9363 | ||
0e9f0245 | 9364 | WRITE_ONCE(cfs_rq->h_load_next, NULL); |
68520796 VD |
9365 | for_each_sched_entity(se) { |
9366 | cfs_rq = cfs_rq_of(se); | |
0e9f0245 | 9367 | WRITE_ONCE(cfs_rq->h_load_next, se); |
68520796 VD |
9368 | if (cfs_rq->last_h_load_update == now) |
9369 | break; | |
9370 | } | |
a35b6466 | 9371 | |
68520796 | 9372 | if (!se) { |
7ea241af | 9373 | cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); |
68520796 VD |
9374 | cfs_rq->last_h_load_update = now; |
9375 | } | |
9376 | ||
0e9f0245 | 9377 | while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { |
68520796 | 9378 | load = cfs_rq->h_load; |
7ea241af YD |
9379 | load = div64_ul(load * se->avg.load_avg, |
9380 | cfs_rq_load_avg(cfs_rq) + 1); | |
68520796 VD |
9381 | cfs_rq = group_cfs_rq(se); |
9382 | cfs_rq->h_load = load; | |
9383 | cfs_rq->last_h_load_update = now; | |
9384 | } | |
9763b67f PZ |
9385 | } |
9386 | ||
367456c7 | 9387 | static unsigned long task_h_load(struct task_struct *p) |
230059de | 9388 | { |
367456c7 | 9389 | struct cfs_rq *cfs_rq = task_cfs_rq(p); |
230059de | 9390 | |
68520796 | 9391 | update_cfs_rq_h_load(cfs_rq); |
9d89c257 | 9392 | return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, |
7ea241af | 9393 | cfs_rq_load_avg(cfs_rq) + 1); |
230059de PZ |
9394 | } |
9395 | #else | |
bef69dd8 | 9396 | static bool __update_blocked_fair(struct rq *rq, bool *done) |
9e3081ca | 9397 | { |
6c1d47c0 | 9398 | struct cfs_rq *cfs_rq = &rq->cfs; |
bef69dd8 | 9399 | bool decayed; |
b90f7c9d | 9400 | |
bef69dd8 VG |
9401 | decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); |
9402 | if (cfs_rq_has_blocked(cfs_rq)) | |
9403 | *done = false; | |
b90f7c9d | 9404 | |
bef69dd8 | 9405 | return decayed; |
9e3081ca PZ |
9406 | } |
9407 | ||
367456c7 | 9408 | static unsigned long task_h_load(struct task_struct *p) |
1e3c88bd | 9409 | { |
9d89c257 | 9410 | return p->se.avg.load_avg; |
1e3c88bd | 9411 | } |
230059de | 9412 | #endif |
1e3c88bd | 9413 | |
bef69dd8 VG |
9414 | static void update_blocked_averages(int cpu) |
9415 | { | |
9416 | bool decayed = false, done = true; | |
9417 | struct rq *rq = cpu_rq(cpu); | |
9418 | struct rq_flags rf; | |
9419 | ||
9420 | rq_lock_irqsave(rq, &rf); | |
39b6a429 | 9421 | update_blocked_load_tick(rq); |
bef69dd8 VG |
9422 | update_rq_clock(rq); |
9423 | ||
9424 | decayed |= __update_blocked_others(rq, &done); | |
9425 | decayed |= __update_blocked_fair(rq, &done); | |
9426 | ||
9427 | update_blocked_load_status(rq, !done); | |
9428 | if (decayed) | |
9429 | cpufreq_update_util(rq, 0); | |
9430 | rq_unlock_irqrestore(rq, &rf); | |
9431 | } | |
9432 | ||
1e3c88bd | 9433 | /********** Helpers for find_busiest_group ************************/ |
caeb178c | 9434 | |
1e3c88bd | 9435 | /* |
33928ed8 | 9436 | * sg_lb_stats - stats of a sched_group required for load-balancing: |
1e3c88bd PZ |
9437 | */ |
9438 | struct sg_lb_stats { | |
33928ed8 IM |
9439 | unsigned long avg_load; /* Avg load over the CPUs of the group */ |
9440 | unsigned long group_load; /* Total load over the CPUs of the group */ | |
9441 | unsigned long group_capacity; /* Capacity over the CPUs of the group */ | |
9442 | unsigned long group_util; /* Total utilization over the CPUs of the group */ | |
e492e1b0 | 9443 | unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ |
33928ed8 | 9444 | unsigned int sum_nr_running; /* Nr of all tasks running in the group */ |
e492e1b0 | 9445 | unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ |
33928ed8 | 9446 | unsigned int idle_cpus; /* Nr of idle CPUs in the group */ |
147c5fc2 | 9447 | unsigned int group_weight; |
caeb178c | 9448 | enum group_type group_type; |
e492e1b0 IM |
9449 | unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ |
9450 | unsigned int group_smt_balance; /* Task on busy SMT be moved */ | |
9451 | unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ | |
0ec8aa00 PZ |
9452 | #ifdef CONFIG_NUMA_BALANCING |
9453 | unsigned int nr_numa_running; | |
9454 | unsigned int nr_preferred_running; | |
9455 | #endif | |
1e3c88bd PZ |
9456 | }; |
9457 | ||
56cf515b | 9458 | /* |
33928ed8 | 9459 | * sd_lb_stats - stats of a sched_domain required for load-balancing: |
56cf515b JK |
9460 | */ |
9461 | struct sd_lb_stats { | |
e492e1b0 IM |
9462 | struct sched_group *busiest; /* Busiest group in this sd */ |
9463 | struct sched_group *local; /* Local group in this sd */ | |
9464 | unsigned long total_load; /* Total load of all groups in sd */ | |
9465 | unsigned long total_capacity; /* Total capacity of all groups in sd */ | |
9466 | unsigned long avg_load; /* Average load across all groups in sd */ | |
33928ed8 | 9467 | unsigned int prefer_sibling; /* Tasks should go to sibling first */ |
e492e1b0 IM |
9468 | |
9469 | struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ | |
9470 | struct sg_lb_stats local_stat; /* Statistics of the local group */ | |
56cf515b JK |
9471 | }; |
9472 | ||
147c5fc2 PZ |
9473 | static inline void init_sd_lb_stats(struct sd_lb_stats *sds) |
9474 | { | |
9475 | /* | |
9476 | * Skimp on the clearing to avoid duplicate work. We can avoid clearing | |
9477 | * local_stat because update_sg_lb_stats() does a full clear/assignment. | |
0b0695f2 VG |
9478 | * We must however set busiest_stat::group_type and |
9479 | * busiest_stat::idle_cpus to the worst busiest group because | |
9480 | * update_sd_pick_busiest() reads these before assignment. | |
147c5fc2 PZ |
9481 | */ |
9482 | *sds = (struct sd_lb_stats){ | |
9483 | .busiest = NULL, | |
9484 | .local = NULL, | |
9485 | .total_load = 0UL, | |
63b2ca30 | 9486 | .total_capacity = 0UL, |
147c5fc2 | 9487 | .busiest_stat = { |
0b0695f2 VG |
9488 | .idle_cpus = UINT_MAX, |
9489 | .group_type = group_has_spare, | |
147c5fc2 PZ |
9490 | }, |
9491 | }; | |
9492 | } | |
9493 | ||
1ca2034e | 9494 | static unsigned long scale_rt_capacity(int cpu) |
1e3c88bd PZ |
9495 | { |
9496 | struct rq *rq = cpu_rq(cpu); | |
8ec59c0f | 9497 | unsigned long max = arch_scale_cpu_capacity(cpu); |
523e979d | 9498 | unsigned long used, free; |
523e979d | 9499 | unsigned long irq; |
b654f7de | 9500 | |
2e62c474 | 9501 | irq = cpu_util_irq(rq); |
cadefd3d | 9502 | |
523e979d VG |
9503 | if (unlikely(irq >= max)) |
9504 | return 1; | |
aa483808 | 9505 | |
467b7d01 TG |
9506 | /* |
9507 | * avg_rt.util_avg and avg_dl.util_avg track binary signals | |
9508 | * (running and not running) with weights 0 and 1024 respectively. | |
9509 | * avg_thermal.load_avg tracks thermal pressure and the weighted | |
9510 | * average uses the actual delta max capacity(load). | |
9511 | */ | |
8b936fc1 SH |
9512 | used = cpu_util_rt(rq); |
9513 | used += cpu_util_dl(rq); | |
467b7d01 | 9514 | used += thermal_load_avg(rq); |
1e3c88bd | 9515 | |
523e979d VG |
9516 | if (unlikely(used >= max)) |
9517 | return 1; | |
1e3c88bd | 9518 | |
523e979d | 9519 | free = max - used; |
2e62c474 VG |
9520 | |
9521 | return scale_irq_capacity(free, irq, max); | |
1e3c88bd PZ |
9522 | } |
9523 | ||
ced549fa | 9524 | static void update_cpu_capacity(struct sched_domain *sd, int cpu) |
1e3c88bd | 9525 | { |
1ca2034e | 9526 | unsigned long capacity = scale_rt_capacity(cpu); |
1e3c88bd PZ |
9527 | struct sched_group *sdg = sd->groups; |
9528 | ||
ced549fa NP |
9529 | if (!capacity) |
9530 | capacity = 1; | |
1e3c88bd | 9531 | |
a2e90611 VG |
9532 | cpu_rq(cpu)->cpu_capacity = capacity; |
9533 | trace_sched_cpu_capacity_tp(cpu_rq(cpu)); | |
51cf18c9 | 9534 | |
ced549fa | 9535 | sdg->sgc->capacity = capacity; |
bf475ce0 | 9536 | sdg->sgc->min_capacity = capacity; |
e3d6d0cb | 9537 | sdg->sgc->max_capacity = capacity; |
1e3c88bd PZ |
9538 | } |
9539 | ||
63b2ca30 | 9540 | void update_group_capacity(struct sched_domain *sd, int cpu) |
1e3c88bd PZ |
9541 | { |
9542 | struct sched_domain *child = sd->child; | |
9543 | struct sched_group *group, *sdg = sd->groups; | |
e3d6d0cb | 9544 | unsigned long capacity, min_capacity, max_capacity; |
4ec4412e VG |
9545 | unsigned long interval; |
9546 | ||
9547 | interval = msecs_to_jiffies(sd->balance_interval); | |
9548 | interval = clamp(interval, 1UL, max_load_balance_interval); | |
63b2ca30 | 9549 | sdg->sgc->next_update = jiffies + interval; |
1e3c88bd PZ |
9550 | |
9551 | if (!child) { | |
ced549fa | 9552 | update_cpu_capacity(sd, cpu); |
1e3c88bd PZ |
9553 | return; |
9554 | } | |
9555 | ||
dc7ff76e | 9556 | capacity = 0; |
bf475ce0 | 9557 | min_capacity = ULONG_MAX; |
e3d6d0cb | 9558 | max_capacity = 0; |
1e3c88bd | 9559 | |
74a5ce20 PZ |
9560 | if (child->flags & SD_OVERLAP) { |
9561 | /* | |
9562 | * SD_OVERLAP domains cannot assume that child groups | |
9563 | * span the current group. | |
9564 | */ | |
9565 | ||
ae4df9d6 | 9566 | for_each_cpu(cpu, sched_group_span(sdg)) { |
4c58f57f | 9567 | unsigned long cpu_cap = capacity_of(cpu); |
863bffc8 | 9568 | |
4c58f57f PL |
9569 | capacity += cpu_cap; |
9570 | min_capacity = min(cpu_cap, min_capacity); | |
9571 | max_capacity = max(cpu_cap, max_capacity); | |
863bffc8 | 9572 | } |
74a5ce20 PZ |
9573 | } else { |
9574 | /* | |
9575 | * !SD_OVERLAP domains can assume that child groups | |
9576 | * span the current group. | |
97a7142f | 9577 | */ |
74a5ce20 PZ |
9578 | |
9579 | group = child->groups; | |
9580 | do { | |
bf475ce0 MR |
9581 | struct sched_group_capacity *sgc = group->sgc; |
9582 | ||
9583 | capacity += sgc->capacity; | |
9584 | min_capacity = min(sgc->min_capacity, min_capacity); | |
e3d6d0cb | 9585 | max_capacity = max(sgc->max_capacity, max_capacity); |
74a5ce20 PZ |
9586 | group = group->next; |
9587 | } while (group != child->groups); | |
9588 | } | |
1e3c88bd | 9589 | |
63b2ca30 | 9590 | sdg->sgc->capacity = capacity; |
bf475ce0 | 9591 | sdg->sgc->min_capacity = min_capacity; |
e3d6d0cb | 9592 | sdg->sgc->max_capacity = max_capacity; |
1e3c88bd PZ |
9593 | } |
9594 | ||
9d5efe05 | 9595 | /* |
ea67821b VG |
9596 | * Check whether the capacity of the rq has been noticeably reduced by side |
9597 | * activity. The imbalance_pct is used for the threshold. | |
9598 | * Return true is the capacity is reduced | |
9d5efe05 SV |
9599 | */ |
9600 | static inline int | |
ea67821b | 9601 | check_cpu_capacity(struct rq *rq, struct sched_domain *sd) |
9d5efe05 | 9602 | { |
ea67821b | 9603 | return ((rq->cpu_capacity * sd->imbalance_pct) < |
7bc26384 | 9604 | (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); |
9d5efe05 SV |
9605 | } |
9606 | ||
a0fe2cf0 VS |
9607 | /* |
9608 | * Check whether a rq has a misfit task and if it looks like we can actually | |
9609 | * help that task: we can migrate the task to a CPU of higher capacity, or | |
9610 | * the task's current CPU is heavily pressured. | |
9611 | */ | |
9612 | static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) | |
9613 | { | |
9614 | return rq->misfit_task_load && | |
7bc26384 | 9615 | (arch_scale_cpu_capacity(rq->cpu) < rq->rd->max_cpu_capacity || |
a0fe2cf0 VS |
9616 | check_cpu_capacity(rq, sd)); |
9617 | } | |
9618 | ||
30ce5dab PZ |
9619 | /* |
9620 | * Group imbalance indicates (and tries to solve) the problem where balancing | |
3bd37062 | 9621 | * groups is inadequate due to ->cpus_ptr constraints. |
30ce5dab | 9622 | * |
97fb7a0a IM |
9623 | * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a |
9624 | * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. | |
30ce5dab PZ |
9625 | * Something like: |
9626 | * | |
2b4d5b25 IM |
9627 | * { 0 1 2 3 } { 4 5 6 7 } |
9628 | * * * * * | |
30ce5dab PZ |
9629 | * |
9630 | * If we were to balance group-wise we'd place two tasks in the first group and | |
9631 | * two tasks in the second group. Clearly this is undesired as it will overload | |
97fb7a0a | 9632 | * cpu 3 and leave one of the CPUs in the second group unused. |
30ce5dab PZ |
9633 | * |
9634 | * The current solution to this issue is detecting the skew in the first group | |
6263322c PZ |
9635 | * by noticing the lower domain failed to reach balance and had difficulty |
9636 | * moving tasks due to affinity constraints. | |
30ce5dab PZ |
9637 | * |
9638 | * When this is so detected; this group becomes a candidate for busiest; see | |
ed1b7732 | 9639 | * update_sd_pick_busiest(). And calculate_imbalance() and |
6263322c | 9640 | * find_busiest_group() avoid some of the usual balance conditions to allow it |
30ce5dab PZ |
9641 | * to create an effective group imbalance. |
9642 | * | |
9643 | * This is a somewhat tricky proposition since the next run might not find the | |
9644 | * group imbalance and decide the groups need to be balanced again. A most | |
9645 | * subtle and fragile situation. | |
9646 | */ | |
9647 | ||
6263322c | 9648 | static inline int sg_imbalanced(struct sched_group *group) |
30ce5dab | 9649 | { |
63b2ca30 | 9650 | return group->sgc->imbalance; |
30ce5dab PZ |
9651 | } |
9652 | ||
b37d9316 | 9653 | /* |
ea67821b VG |
9654 | * group_has_capacity returns true if the group has spare capacity that could |
9655 | * be used by some tasks. | |
fb95a5a0 | 9656 | * We consider that a group has spare capacity if the number of task is |
9e91d61d DE |
9657 | * smaller than the number of CPUs or if the utilization is lower than the |
9658 | * available capacity for CFS tasks. | |
ea67821b VG |
9659 | * For the latter, we use a threshold to stabilize the state, to take into |
9660 | * account the variance of the tasks' load and to return true if the available | |
9661 | * capacity in meaningful for the load balancer. | |
9662 | * As an example, an available capacity of 1% can appear but it doesn't make | |
9663 | * any benefit for the load balance. | |
b37d9316 | 9664 | */ |
ea67821b | 9665 | static inline bool |
57abff06 | 9666 | group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) |
b37d9316 | 9667 | { |
5e23e474 | 9668 | if (sgs->sum_nr_running < sgs->group_weight) |
ea67821b | 9669 | return true; |
c61037e9 | 9670 | |
070f5e86 VG |
9671 | if ((sgs->group_capacity * imbalance_pct) < |
9672 | (sgs->group_runnable * 100)) | |
9673 | return false; | |
9674 | ||
ea67821b | 9675 | if ((sgs->group_capacity * 100) > |
57abff06 | 9676 | (sgs->group_util * imbalance_pct)) |
ea67821b | 9677 | return true; |
b37d9316 | 9678 | |
ea67821b VG |
9679 | return false; |
9680 | } | |
9681 | ||
9682 | /* | |
9683 | * group_is_overloaded returns true if the group has more tasks than it can | |
9684 | * handle. | |
9685 | * group_is_overloaded is not equals to !group_has_capacity because a group | |
9686 | * with the exact right number of tasks, has no more spare capacity but is not | |
9687 | * overloaded so both group_has_capacity and group_is_overloaded return | |
9688 | * false. | |
9689 | */ | |
9690 | static inline bool | |
57abff06 | 9691 | group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) |
ea67821b | 9692 | { |
5e23e474 | 9693 | if (sgs->sum_nr_running <= sgs->group_weight) |
ea67821b | 9694 | return false; |
b37d9316 | 9695 | |
ea67821b | 9696 | if ((sgs->group_capacity * 100) < |
57abff06 | 9697 | (sgs->group_util * imbalance_pct)) |
ea67821b | 9698 | return true; |
b37d9316 | 9699 | |
070f5e86 VG |
9700 | if ((sgs->group_capacity * imbalance_pct) < |
9701 | (sgs->group_runnable * 100)) | |
9702 | return true; | |
9703 | ||
ea67821b | 9704 | return false; |
b37d9316 PZ |
9705 | } |
9706 | ||
79a89f92 | 9707 | static inline enum |
57abff06 | 9708 | group_type group_classify(unsigned int imbalance_pct, |
0b0695f2 | 9709 | struct sched_group *group, |
79a89f92 | 9710 | struct sg_lb_stats *sgs) |
caeb178c | 9711 | { |
57abff06 | 9712 | if (group_is_overloaded(imbalance_pct, sgs)) |
caeb178c RR |
9713 | return group_overloaded; |
9714 | ||
9715 | if (sg_imbalanced(group)) | |
9716 | return group_imbalanced; | |
9717 | ||
0b0695f2 VG |
9718 | if (sgs->group_asym_packing) |
9719 | return group_asym_packing; | |
9720 | ||
fee1759e TC |
9721 | if (sgs->group_smt_balance) |
9722 | return group_smt_balance; | |
9723 | ||
3b1baa64 MR |
9724 | if (sgs->group_misfit_task_load) |
9725 | return group_misfit_task; | |
9726 | ||
57abff06 | 9727 | if (!group_has_capacity(imbalance_pct, sgs)) |
0b0695f2 VG |
9728 | return group_fully_busy; |
9729 | ||
9730 | return group_has_spare; | |
caeb178c RR |
9731 | } |
9732 | ||
eefefa71 RN |
9733 | /** |
9734 | * sched_use_asym_prio - Check whether asym_packing priority must be used | |
9735 | * @sd: The scheduling domain of the load balancing | |
9736 | * @cpu: A CPU | |
9737 | * | |
9738 | * Always use CPU priority when balancing load between SMT siblings. When | |
9739 | * balancing load between cores, it is not sufficient that @cpu is idle. Only | |
9740 | * use CPU priority if the whole core is idle. | |
9741 | * | |
9742 | * Returns: True if the priority of @cpu must be followed. False otherwise. | |
9743 | */ | |
9744 | static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) | |
9745 | { | |
fbc44986 AS |
9746 | if (!(sd->flags & SD_ASYM_PACKING)) |
9747 | return false; | |
9748 | ||
eefefa71 RN |
9749 | if (!sched_smt_active()) |
9750 | return true; | |
9751 | ||
9752 | return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); | |
9753 | } | |
9754 | ||
45de2062 AS |
9755 | static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) |
9756 | { | |
9757 | /* | |
9758 | * First check if @dst_cpu can do asym_packing load balance. Only do it | |
9759 | * if it has higher priority than @src_cpu. | |
9760 | */ | |
9761 | return sched_use_asym_prio(sd, dst_cpu) && | |
9762 | sched_asym_prefer(dst_cpu, src_cpu); | |
9763 | } | |
9764 | ||
4006a72b | 9765 | /** |
45de2062 | 9766 | * sched_group_asym - Check if the destination CPU can do asym_packing balance |
c9ca0788 | 9767 | * @env: The load balancing environment |
4006a72b | 9768 | * @sgs: Load-balancing statistics of the candidate busiest group |
c9ca0788 | 9769 | * @group: The candidate busiest group |
4006a72b | 9770 | * |
c9ca0788 RN |
9771 | * @env::dst_cpu can do asym_packing if it has higher priority than the |
9772 | * preferred CPU of @group. | |
4006a72b | 9773 | * |
c9ca0788 RN |
9774 | * Return: true if @env::dst_cpu can do with asym_packing load balance. False |
9775 | * otherwise. | |
4006a72b | 9776 | */ |
aafc917a | 9777 | static inline bool |
45de2062 | 9778 | sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) |
aafc917a | 9779 | { |
c9ca0788 | 9780 | /* |
45de2062 | 9781 | * CPU priorities do not make sense for SMT cores with more than one |
c9ca0788 RN |
9782 | * busy sibling. |
9783 | */ | |
45de2062 AS |
9784 | if ((group->flags & SD_SHARE_CPUCAPACITY) && |
9785 | (sgs->group_weight - sgs->idle_cpus != 1)) | |
9786 | return false; | |
4006a72b | 9787 | |
45de2062 | 9788 | return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu); |
aafc917a RN |
9789 | } |
9790 | ||
fee1759e TC |
9791 | /* One group has more than one SMT CPU while the other group does not */ |
9792 | static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, | |
9793 | struct sched_group *sg2) | |
9794 | { | |
9795 | if (!sg1 || !sg2) | |
9796 | return false; | |
9797 | ||
9798 | return (sg1->flags & SD_SHARE_CPUCAPACITY) != | |
9799 | (sg2->flags & SD_SHARE_CPUCAPACITY); | |
9800 | } | |
9801 | ||
9802 | static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, | |
9803 | struct sched_group *group) | |
9804 | { | |
38d707c5 | 9805 | if (!env->idle) |
fee1759e TC |
9806 | return false; |
9807 | ||
9808 | /* | |
9809 | * For SMT source group, it is better to move a task | |
9810 | * to a CPU that doesn't have multiple tasks sharing its CPU capacity. | |
9811 | * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY | |
9812 | * will not be on. | |
9813 | */ | |
9814 | if (group->flags & SD_SHARE_CPUCAPACITY && | |
9815 | sgs->sum_h_nr_running > 1) | |
9816 | return true; | |
9817 | ||
9818 | return false; | |
9819 | } | |
9820 | ||
7ff16932 TC |
9821 | static inline long sibling_imbalance(struct lb_env *env, |
9822 | struct sd_lb_stats *sds, | |
9823 | struct sg_lb_stats *busiest, | |
9824 | struct sg_lb_stats *local) | |
9825 | { | |
9826 | int ncores_busiest, ncores_local; | |
9827 | long imbalance; | |
9828 | ||
38d707c5 | 9829 | if (!env->idle || !busiest->sum_nr_running) |
7ff16932 TC |
9830 | return 0; |
9831 | ||
9832 | ncores_busiest = sds->busiest->cores; | |
9833 | ncores_local = sds->local->cores; | |
9834 | ||
9835 | if (ncores_busiest == ncores_local) { | |
9836 | imbalance = busiest->sum_nr_running; | |
9837 | lsub_positive(&imbalance, local->sum_nr_running); | |
9838 | return imbalance; | |
9839 | } | |
9840 | ||
9841 | /* Balance such that nr_running/ncores ratio are same on both groups */ | |
9842 | imbalance = ncores_local * busiest->sum_nr_running; | |
9843 | lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); | |
9844 | /* Normalize imbalance and do rounding on normalization */ | |
9845 | imbalance = 2 * imbalance + ncores_local + ncores_busiest; | |
9846 | imbalance /= ncores_local + ncores_busiest; | |
9847 | ||
9848 | /* Take advantage of resource in an empty sched group */ | |
450e7497 | 9849 | if (imbalance <= 1 && local->sum_nr_running == 0 && |
7ff16932 TC |
9850 | busiest->sum_nr_running > 1) |
9851 | imbalance = 2; | |
9852 | ||
9853 | return imbalance; | |
9854 | } | |
9855 | ||
c82a6962 VG |
9856 | static inline bool |
9857 | sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) | |
9858 | { | |
9859 | /* | |
9860 | * When there is more than 1 task, the group_overloaded case already | |
9861 | * takes care of cpu with reduced capacity | |
9862 | */ | |
9863 | if (rq->cfs.h_nr_running != 1) | |
9864 | return false; | |
9865 | ||
9866 | return check_cpu_capacity(rq, sd); | |
9867 | } | |
9868 | ||
1e3c88bd PZ |
9869 | /** |
9870 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | |
cd96891d | 9871 | * @env: The load balancing environment. |
a315da5e | 9872 | * @sds: Load-balancing data with statistics of the local group. |
1e3c88bd | 9873 | * @group: sched_group whose statistics are to be updated. |
1e3c88bd | 9874 | * @sgs: variable to hold the statistics for this group. |
630246a0 | 9875 | * @sg_status: Holds flag indicating the status of the sched_group |
1e3c88bd | 9876 | */ |
bd939f45 | 9877 | static inline void update_sg_lb_stats(struct lb_env *env, |
c0d14b57 | 9878 | struct sd_lb_stats *sds, |
630246a0 QP |
9879 | struct sched_group *group, |
9880 | struct sg_lb_stats *sgs, | |
9881 | int *sg_status) | |
1e3c88bd | 9882 | { |
0b0695f2 | 9883 | int i, nr_running, local_group; |
1e3c88bd | 9884 | |
b72ff13c PZ |
9885 | memset(sgs, 0, sizeof(*sgs)); |
9886 | ||
c0d14b57 | 9887 | local_group = group == sds->local; |
0b0695f2 | 9888 | |
ae4df9d6 | 9889 | for_each_cpu_and(i, sched_group_span(group), env->cpus) { |
1e3c88bd | 9890 | struct rq *rq = cpu_rq(i); |
c82a6962 | 9891 | unsigned long load = cpu_load(rq); |
1e3c88bd | 9892 | |
c82a6962 | 9893 | sgs->group_load += load; |
82762d2a | 9894 | sgs->group_util += cpu_util_cfs(i); |
070f5e86 | 9895 | sgs->group_runnable += cpu_runnable(rq); |
a3498347 | 9896 | sgs->sum_h_nr_running += rq->cfs.h_nr_running; |
4486edd1 | 9897 | |
a426f99c | 9898 | nr_running = rq->nr_running; |
5e23e474 VG |
9899 | sgs->sum_nr_running += nr_running; |
9900 | ||
a426f99c | 9901 | if (nr_running > 1) |
630246a0 | 9902 | *sg_status |= SG_OVERLOAD; |
4486edd1 | 9903 | |
2802bf3c MR |
9904 | if (cpu_overutilized(i)) |
9905 | *sg_status |= SG_OVERUTILIZED; | |
4486edd1 | 9906 | |
0ec8aa00 PZ |
9907 | #ifdef CONFIG_NUMA_BALANCING |
9908 | sgs->nr_numa_running += rq->nr_numa_running; | |
9909 | sgs->nr_preferred_running += rq->nr_preferred_running; | |
9910 | #endif | |
a426f99c WL |
9911 | /* |
9912 | * No need to call idle_cpu() if nr_running is not 0 | |
9913 | */ | |
0b0695f2 | 9914 | if (!nr_running && idle_cpu(i)) { |
aae6d3dd | 9915 | sgs->idle_cpus++; |
0b0695f2 VG |
9916 | /* Idle cpu can't have misfit task */ |
9917 | continue; | |
9918 | } | |
9919 | ||
9920 | if (local_group) | |
9921 | continue; | |
3b1baa64 | 9922 | |
c82a6962 VG |
9923 | if (env->sd->flags & SD_ASYM_CPUCAPACITY) { |
9924 | /* Check for a misfit task on the cpu */ | |
9925 | if (sgs->group_misfit_task_load < rq->misfit_task_load) { | |
9926 | sgs->group_misfit_task_load = rq->misfit_task_load; | |
9927 | *sg_status |= SG_OVERLOAD; | |
9928 | } | |
38d707c5 | 9929 | } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { |
c82a6962 VG |
9930 | /* Check for a task running on a CPU with reduced capacity */ |
9931 | if (sgs->group_misfit_task_load < load) | |
9932 | sgs->group_misfit_task_load = load; | |
757ffdd7 | 9933 | } |
1e3c88bd PZ |
9934 | } |
9935 | ||
aafc917a RN |
9936 | sgs->group_capacity = group->sgc->capacity; |
9937 | ||
9938 | sgs->group_weight = group->group_weight; | |
9939 | ||
0b0695f2 | 9940 | /* Check if dst CPU is idle and preferred to this group */ |
38d707c5 | 9941 | if (!local_group && env->idle && sgs->sum_h_nr_running && |
fbc44986 | 9942 | sched_group_asym(env, sgs, group)) |
0b0695f2 | 9943 | sgs->group_asym_packing = 1; |
0b0695f2 | 9944 | |
fee1759e TC |
9945 | /* Check for loaded SMT group to be balanced to dst CPU */ |
9946 | if (!local_group && smt_balance(env, sgs, group)) | |
9947 | sgs->group_smt_balance = 1; | |
9948 | ||
57abff06 | 9949 | sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); |
0b0695f2 VG |
9950 | |
9951 | /* Computing avg_load makes sense only when group is overloaded */ | |
9952 | if (sgs->group_type == group_overloaded) | |
9953 | sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / | |
9954 | sgs->group_capacity; | |
1e3c88bd PZ |
9955 | } |
9956 | ||
532cb4c4 MN |
9957 | /** |
9958 | * update_sd_pick_busiest - return 1 on busiest group | |
cd96891d | 9959 | * @env: The load balancing environment. |
532cb4c4 MN |
9960 | * @sds: sched_domain statistics |
9961 | * @sg: sched_group candidate to be checked for being the busiest | |
b6b12294 | 9962 | * @sgs: sched_group statistics |
532cb4c4 MN |
9963 | * |
9964 | * Determine if @sg is a busier group than the previously selected | |
9965 | * busiest group. | |
e69f6186 YB |
9966 | * |
9967 | * Return: %true if @sg is a busier group than the previously selected | |
9968 | * busiest group. %false otherwise. | |
532cb4c4 | 9969 | */ |
bd939f45 | 9970 | static bool update_sd_pick_busiest(struct lb_env *env, |
532cb4c4 MN |
9971 | struct sd_lb_stats *sds, |
9972 | struct sched_group *sg, | |
bd939f45 | 9973 | struct sg_lb_stats *sgs) |
532cb4c4 | 9974 | { |
caeb178c | 9975 | struct sg_lb_stats *busiest = &sds->busiest_stat; |
532cb4c4 | 9976 | |
0b0695f2 VG |
9977 | /* Make sure that there is at least one task to pull */ |
9978 | if (!sgs->sum_h_nr_running) | |
9979 | return false; | |
9980 | ||
cad68e55 MR |
9981 | /* |
9982 | * Don't try to pull misfit tasks we can't help. | |
9983 | * We can use max_capacity here as reduction in capacity on some | |
9984 | * CPUs in the group should either be possible to resolve | |
9985 | * internally or be covered by avg_load imbalance (eventually). | |
9986 | */ | |
c82a6962 VG |
9987 | if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && |
9988 | (sgs->group_type == group_misfit_task) && | |
4aed8aa4 | 9989 | (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || |
0b0695f2 | 9990 | sds->local_stat.group_type != group_has_spare)) |
cad68e55 MR |
9991 | return false; |
9992 | ||
caeb178c | 9993 | if (sgs->group_type > busiest->group_type) |
532cb4c4 MN |
9994 | return true; |
9995 | ||
caeb178c RR |
9996 | if (sgs->group_type < busiest->group_type) |
9997 | return false; | |
9998 | ||
9e0994c0 | 9999 | /* |
0b0695f2 VG |
10000 | * The candidate and the current busiest group are the same type of |
10001 | * group. Let check which one is the busiest according to the type. | |
9e0994c0 | 10002 | */ |
9e0994c0 | 10003 | |
0b0695f2 VG |
10004 | switch (sgs->group_type) { |
10005 | case group_overloaded: | |
10006 | /* Select the overloaded group with highest avg_load. */ | |
7e9f7d17 | 10007 | return sgs->avg_load > busiest->avg_load; |
0b0695f2 VG |
10008 | |
10009 | case group_imbalanced: | |
10010 | /* | |
10011 | * Select the 1st imbalanced group as we don't have any way to | |
10012 | * choose one more than another. | |
10013 | */ | |
9e0994c0 MR |
10014 | return false; |
10015 | ||
0b0695f2 VG |
10016 | case group_asym_packing: |
10017 | /* Prefer to move from lowest priority CPU's work */ | |
7e9f7d17 | 10018 | return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu); |
532cb4c4 | 10019 | |
0b0695f2 VG |
10020 | case group_misfit_task: |
10021 | /* | |
10022 | * If we have more than one misfit sg go with the biggest | |
10023 | * misfit. | |
10024 | */ | |
7e9f7d17 | 10025 | return sgs->group_misfit_task_load > busiest->group_misfit_task_load; |
532cb4c4 | 10026 | |
fee1759e | 10027 | case group_smt_balance: |
450e7497 TC |
10028 | /* |
10029 | * Check if we have spare CPUs on either SMT group to | |
10030 | * choose has spare or fully busy handling. | |
10031 | */ | |
10032 | if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) | |
10033 | goto has_spare; | |
10034 | ||
10035 | fallthrough; | |
10036 | ||
0b0695f2 VG |
10037 | case group_fully_busy: |
10038 | /* | |
10039 | * Select the fully busy group with highest avg_load. In | |
10040 | * theory, there is no need to pull task from such kind of | |
10041 | * group because tasks have all compute capacity that they need | |
10042 | * but we can still improve the overall throughput by reducing | |
10043 | * contention when accessing shared HW resources. | |
10044 | * | |
10045 | * XXX for now avg_load is not computed and always 0 so we | |
5fd6d7f4 RN |
10046 | * select the 1st one, except if @sg is composed of SMT |
10047 | * siblings. | |
0b0695f2 | 10048 | */ |
5fd6d7f4 RN |
10049 | |
10050 | if (sgs->avg_load < busiest->avg_load) | |
0b0695f2 | 10051 | return false; |
5fd6d7f4 RN |
10052 | |
10053 | if (sgs->avg_load == busiest->avg_load) { | |
10054 | /* | |
10055 | * SMT sched groups need more help than non-SMT groups. | |
10056 | * If @sg happens to also be SMT, either choice is good. | |
10057 | */ | |
10058 | if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) | |
10059 | return false; | |
10060 | } | |
10061 | ||
0b0695f2 VG |
10062 | break; |
10063 | ||
10064 | case group_has_spare: | |
fee1759e TC |
10065 | /* |
10066 | * Do not pick sg with SMT CPUs over sg with pure CPUs, | |
10067 | * as we do not want to pull task off SMT core with one task | |
10068 | * and make the core idle. | |
10069 | */ | |
10070 | if (smt_vs_nonsmt_groups(sds->busiest, sg)) { | |
10071 | if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) | |
10072 | return false; | |
10073 | else | |
10074 | return true; | |
10075 | } | |
450e7497 | 10076 | has_spare: |
fee1759e | 10077 | |
0b0695f2 | 10078 | /* |
5f68eb19 VG |
10079 | * Select not overloaded group with lowest number of idle cpus |
10080 | * and highest number of running tasks. We could also compare | |
10081 | * the spare capacity which is more stable but it can end up | |
10082 | * that the group has less spare capacity but finally more idle | |
0b0695f2 VG |
10083 | * CPUs which means less opportunity to pull tasks. |
10084 | */ | |
5f68eb19 | 10085 | if (sgs->idle_cpus > busiest->idle_cpus) |
0b0695f2 | 10086 | return false; |
5f68eb19 VG |
10087 | else if ((sgs->idle_cpus == busiest->idle_cpus) && |
10088 | (sgs->sum_nr_running <= busiest->sum_nr_running)) | |
10089 | return false; | |
10090 | ||
0b0695f2 | 10091 | break; |
532cb4c4 MN |
10092 | } |
10093 | ||
0b0695f2 VG |
10094 | /* |
10095 | * Candidate sg has no more than one task per CPU and has higher | |
10096 | * per-CPU capacity. Migrating tasks to less capable CPUs may harm | |
10097 | * throughput. Maximize throughput, power/energy consequences are not | |
10098 | * considered. | |
10099 | */ | |
10100 | if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && | |
10101 | (sgs->group_type <= group_fully_busy) && | |
4aed8aa4 | 10102 | (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) |
0b0695f2 VG |
10103 | return false; |
10104 | ||
10105 | return true; | |
532cb4c4 MN |
10106 | } |
10107 | ||
0ec8aa00 PZ |
10108 | #ifdef CONFIG_NUMA_BALANCING |
10109 | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) | |
10110 | { | |
a3498347 | 10111 | if (sgs->sum_h_nr_running > sgs->nr_numa_running) |
0ec8aa00 | 10112 | return regular; |
a3498347 | 10113 | if (sgs->sum_h_nr_running > sgs->nr_preferred_running) |
0ec8aa00 PZ |
10114 | return remote; |
10115 | return all; | |
10116 | } | |
10117 | ||
10118 | static inline enum fbq_type fbq_classify_rq(struct rq *rq) | |
10119 | { | |
10120 | if (rq->nr_running > rq->nr_numa_running) | |
10121 | return regular; | |
10122 | if (rq->nr_running > rq->nr_preferred_running) | |
10123 | return remote; | |
10124 | return all; | |
10125 | } | |
10126 | #else | |
10127 | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) | |
10128 | { | |
10129 | return all; | |
10130 | } | |
10131 | ||
10132 | static inline enum fbq_type fbq_classify_rq(struct rq *rq) | |
10133 | { | |
10134 | return regular; | |
10135 | } | |
10136 | #endif /* CONFIG_NUMA_BALANCING */ | |
10137 | ||
57abff06 VG |
10138 | |
10139 | struct sg_lb_stats; | |
10140 | ||
3318544b VG |
10141 | /* |
10142 | * task_running_on_cpu - return 1 if @p is running on @cpu. | |
10143 | */ | |
10144 | ||
10145 | static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) | |
10146 | { | |
10147 | /* Task has no contribution or is new */ | |
10148 | if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) | |
10149 | return 0; | |
10150 | ||
10151 | if (task_on_rq_queued(p)) | |
10152 | return 1; | |
10153 | ||
10154 | return 0; | |
10155 | } | |
10156 | ||
10157 | /** | |
10158 | * idle_cpu_without - would a given CPU be idle without p ? | |
10159 | * @cpu: the processor on which idleness is tested. | |
10160 | * @p: task which should be ignored. | |
10161 | * | |
10162 | * Return: 1 if the CPU would be idle. 0 otherwise. | |
10163 | */ | |
10164 | static int idle_cpu_without(int cpu, struct task_struct *p) | |
10165 | { | |
10166 | struct rq *rq = cpu_rq(cpu); | |
10167 | ||
10168 | if (rq->curr != rq->idle && rq->curr != p) | |
10169 | return 0; | |
10170 | ||
10171 | /* | |
10172 | * rq->nr_running can't be used but an updated version without the | |
10173 | * impact of p on cpu must be used instead. The updated nr_running | |
10174 | * be computed and tested before calling idle_cpu_without(). | |
10175 | */ | |
10176 | ||
126c2092 | 10177 | if (rq->ttwu_pending) |
3318544b | 10178 | return 0; |
3318544b VG |
10179 | |
10180 | return 1; | |
10181 | } | |
10182 | ||
57abff06 VG |
10183 | /* |
10184 | * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. | |
3318544b | 10185 | * @sd: The sched_domain level to look for idlest group. |
57abff06 VG |
10186 | * @group: sched_group whose statistics are to be updated. |
10187 | * @sgs: variable to hold the statistics for this group. | |
3318544b | 10188 | * @p: The task for which we look for the idlest group/CPU. |
57abff06 VG |
10189 | */ |
10190 | static inline void update_sg_wakeup_stats(struct sched_domain *sd, | |
10191 | struct sched_group *group, | |
10192 | struct sg_lb_stats *sgs, | |
10193 | struct task_struct *p) | |
10194 | { | |
10195 | int i, nr_running; | |
10196 | ||
10197 | memset(sgs, 0, sizeof(*sgs)); | |
10198 | ||
b48e16a6 QY |
10199 | /* Assume that task can't fit any CPU of the group */ |
10200 | if (sd->flags & SD_ASYM_CPUCAPACITY) | |
10201 | sgs->group_misfit_task_load = 1; | |
10202 | ||
57abff06 VG |
10203 | for_each_cpu(i, sched_group_span(group)) { |
10204 | struct rq *rq = cpu_rq(i); | |
3318544b | 10205 | unsigned int local; |
57abff06 | 10206 | |
3318544b | 10207 | sgs->group_load += cpu_load_without(rq, p); |
57abff06 | 10208 | sgs->group_util += cpu_util_without(i, p); |
070f5e86 | 10209 | sgs->group_runnable += cpu_runnable_without(rq, p); |
3318544b VG |
10210 | local = task_running_on_cpu(i, p); |
10211 | sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; | |
57abff06 | 10212 | |
3318544b | 10213 | nr_running = rq->nr_running - local; |
57abff06 VG |
10214 | sgs->sum_nr_running += nr_running; |
10215 | ||
10216 | /* | |
3318544b | 10217 | * No need to call idle_cpu_without() if nr_running is not 0 |
57abff06 | 10218 | */ |
3318544b | 10219 | if (!nr_running && idle_cpu_without(i, p)) |
57abff06 VG |
10220 | sgs->idle_cpus++; |
10221 | ||
b48e16a6 QY |
10222 | /* Check if task fits in the CPU */ |
10223 | if (sd->flags & SD_ASYM_CPUCAPACITY && | |
10224 | sgs->group_misfit_task_load && | |
10225 | task_fits_cpu(p, i)) | |
10226 | sgs->group_misfit_task_load = 0; | |
57abff06 | 10227 | |
57abff06 VG |
10228 | } |
10229 | ||
10230 | sgs->group_capacity = group->sgc->capacity; | |
10231 | ||
289de359 VG |
10232 | sgs->group_weight = group->group_weight; |
10233 | ||
57abff06 VG |
10234 | sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); |
10235 | ||
10236 | /* | |
10237 | * Computing avg_load makes sense only when group is fully busy or | |
10238 | * overloaded | |
10239 | */ | |
6c8116c9 TZ |
10240 | if (sgs->group_type == group_fully_busy || |
10241 | sgs->group_type == group_overloaded) | |
57abff06 VG |
10242 | sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / |
10243 | sgs->group_capacity; | |
10244 | } | |
10245 | ||
10246 | static bool update_pick_idlest(struct sched_group *idlest, | |
10247 | struct sg_lb_stats *idlest_sgs, | |
10248 | struct sched_group *group, | |
10249 | struct sg_lb_stats *sgs) | |
10250 | { | |
10251 | if (sgs->group_type < idlest_sgs->group_type) | |
10252 | return true; | |
10253 | ||
10254 | if (sgs->group_type > idlest_sgs->group_type) | |
10255 | return false; | |
10256 | ||
10257 | /* | |
10258 | * The candidate and the current idlest group are the same type of | |
10259 | * group. Let check which one is the idlest according to the type. | |
10260 | */ | |
10261 | ||
10262 | switch (sgs->group_type) { | |
10263 | case group_overloaded: | |
10264 | case group_fully_busy: | |
10265 | /* Select the group with lowest avg_load. */ | |
10266 | if (idlest_sgs->avg_load <= sgs->avg_load) | |
10267 | return false; | |
10268 | break; | |
10269 | ||
10270 | case group_imbalanced: | |
10271 | case group_asym_packing: | |
fee1759e | 10272 | case group_smt_balance: |
57abff06 VG |
10273 | /* Those types are not used in the slow wakeup path */ |
10274 | return false; | |
10275 | ||
10276 | case group_misfit_task: | |
10277 | /* Select group with the highest max capacity */ | |
10278 | if (idlest->sgc->max_capacity >= group->sgc->max_capacity) | |
10279 | return false; | |
10280 | break; | |
10281 | ||
10282 | case group_has_spare: | |
10283 | /* Select group with most idle CPUs */ | |
3edecfef | 10284 | if (idlest_sgs->idle_cpus > sgs->idle_cpus) |
57abff06 | 10285 | return false; |
3edecfef PP |
10286 | |
10287 | /* Select group with lowest group_util */ | |
10288 | if (idlest_sgs->idle_cpus == sgs->idle_cpus && | |
10289 | idlest_sgs->group_util <= sgs->group_util) | |
10290 | return false; | |
10291 | ||
57abff06 VG |
10292 | break; |
10293 | } | |
10294 | ||
10295 | return true; | |
10296 | } | |
10297 | ||
10298 | /* | |
10299 | * find_idlest_group() finds and returns the least busy CPU group within the | |
10300 | * domain. | |
10301 | * | |
10302 | * Assumes p is allowed on at least one CPU in sd. | |
10303 | */ | |
10304 | static struct sched_group * | |
45da2773 | 10305 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) |
57abff06 VG |
10306 | { |
10307 | struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; | |
10308 | struct sg_lb_stats local_sgs, tmp_sgs; | |
10309 | struct sg_lb_stats *sgs; | |
10310 | unsigned long imbalance; | |
10311 | struct sg_lb_stats idlest_sgs = { | |
10312 | .avg_load = UINT_MAX, | |
10313 | .group_type = group_overloaded, | |
10314 | }; | |
10315 | ||
57abff06 VG |
10316 | do { |
10317 | int local_group; | |
10318 | ||
10319 | /* Skip over this group if it has no CPUs allowed */ | |
10320 | if (!cpumask_intersects(sched_group_span(group), | |
10321 | p->cpus_ptr)) | |
10322 | continue; | |
10323 | ||
97886d9d AL |
10324 | /* Skip over this group if no cookie matched */ |
10325 | if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) | |
10326 | continue; | |
10327 | ||
57abff06 VG |
10328 | local_group = cpumask_test_cpu(this_cpu, |
10329 | sched_group_span(group)); | |
10330 | ||
10331 | if (local_group) { | |
10332 | sgs = &local_sgs; | |
10333 | local = group; | |
10334 | } else { | |
10335 | sgs = &tmp_sgs; | |
10336 | } | |
10337 | ||
10338 | update_sg_wakeup_stats(sd, group, sgs, p); | |
10339 | ||
10340 | if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { | |
10341 | idlest = group; | |
10342 | idlest_sgs = *sgs; | |
10343 | } | |
10344 | ||
10345 | } while (group = group->next, group != sd->groups); | |
10346 | ||
10347 | ||
10348 | /* There is no idlest group to push tasks to */ | |
10349 | if (!idlest) | |
10350 | return NULL; | |
10351 | ||
7ed735c3 VG |
10352 | /* The local group has been skipped because of CPU affinity */ |
10353 | if (!local) | |
10354 | return idlest; | |
10355 | ||
57abff06 VG |
10356 | /* |
10357 | * If the local group is idler than the selected idlest group | |
10358 | * don't try and push the task. | |
10359 | */ | |
10360 | if (local_sgs.group_type < idlest_sgs.group_type) | |
10361 | return NULL; | |
10362 | ||
10363 | /* | |
10364 | * If the local group is busier than the selected idlest group | |
10365 | * try and push the task. | |
10366 | */ | |
10367 | if (local_sgs.group_type > idlest_sgs.group_type) | |
10368 | return idlest; | |
10369 | ||
10370 | switch (local_sgs.group_type) { | |
10371 | case group_overloaded: | |
10372 | case group_fully_busy: | |
5c339005 MG |
10373 | |
10374 | /* Calculate allowed imbalance based on load */ | |
10375 | imbalance = scale_load_down(NICE_0_LOAD) * | |
10376 | (sd->imbalance_pct-100) / 100; | |
10377 | ||
57abff06 VG |
10378 | /* |
10379 | * When comparing groups across NUMA domains, it's possible for | |
10380 | * the local domain to be very lightly loaded relative to the | |
10381 | * remote domains but "imbalance" skews the comparison making | |
10382 | * remote CPUs look much more favourable. When considering | |
10383 | * cross-domain, add imbalance to the load on the remote node | |
10384 | * and consider staying local. | |
10385 | */ | |
10386 | ||
10387 | if ((sd->flags & SD_NUMA) && | |
10388 | ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) | |
10389 | return NULL; | |
10390 | ||
10391 | /* | |
10392 | * If the local group is less loaded than the selected | |
10393 | * idlest group don't try and push any tasks. | |
10394 | */ | |
10395 | if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) | |
10396 | return NULL; | |
10397 | ||
10398 | if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) | |
10399 | return NULL; | |
10400 | break; | |
10401 | ||
10402 | case group_imbalanced: | |
10403 | case group_asym_packing: | |
fee1759e | 10404 | case group_smt_balance: |
57abff06 VG |
10405 | /* Those type are not used in the slow wakeup path */ |
10406 | return NULL; | |
10407 | ||
10408 | case group_misfit_task: | |
10409 | /* Select group with the highest max capacity */ | |
10410 | if (local->sgc->max_capacity >= idlest->sgc->max_capacity) | |
10411 | return NULL; | |
10412 | break; | |
10413 | ||
10414 | case group_has_spare: | |
cb29a5c1 | 10415 | #ifdef CONFIG_NUMA |
57abff06 | 10416 | if (sd->flags & SD_NUMA) { |
f5b2eeb4 | 10417 | int imb_numa_nr = sd->imb_numa_nr; |
57abff06 VG |
10418 | #ifdef CONFIG_NUMA_BALANCING |
10419 | int idlest_cpu; | |
10420 | /* | |
10421 | * If there is spare capacity at NUMA, try to select | |
10422 | * the preferred node | |
10423 | */ | |
10424 | if (cpu_to_node(this_cpu) == p->numa_preferred_nid) | |
10425 | return NULL; | |
10426 | ||
10427 | idlest_cpu = cpumask_first(sched_group_span(idlest)); | |
10428 | if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) | |
10429 | return idlest; | |
cb29a5c1 | 10430 | #endif /* CONFIG_NUMA_BALANCING */ |
57abff06 | 10431 | /* |
2cfb7a1b MG |
10432 | * Otherwise, keep the task close to the wakeup source |
10433 | * and improve locality if the number of running tasks | |
10434 | * would remain below threshold where an imbalance is | |
f5b2eeb4 PN |
10435 | * allowed while accounting for the possibility the |
10436 | * task is pinned to a subset of CPUs. If there is a | |
10437 | * real need of migration, periodic load balance will | |
10438 | * take care of it. | |
57abff06 | 10439 | */ |
f5b2eeb4 | 10440 | if (p->nr_cpus_allowed != NR_CPUS) { |
ec4fc801 | 10441 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); |
f5b2eeb4 PN |
10442 | |
10443 | cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); | |
10444 | imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); | |
10445 | } | |
10446 | ||
cb29a5c1 MG |
10447 | imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); |
10448 | if (!adjust_numa_imbalance(imbalance, | |
10449 | local_sgs.sum_nr_running + 1, | |
f5b2eeb4 | 10450 | imb_numa_nr)) { |
57abff06 | 10451 | return NULL; |
cb29a5c1 | 10452 | } |
57abff06 | 10453 | } |
cb29a5c1 | 10454 | #endif /* CONFIG_NUMA */ |
57abff06 VG |
10455 | |
10456 | /* | |
10457 | * Select group with highest number of idle CPUs. We could also | |
10458 | * compare the utilization which is more stable but it can end | |
10459 | * up that the group has less spare capacity but finally more | |
10460 | * idle CPUs which means more opportunity to run task. | |
10461 | */ | |
10462 | if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) | |
10463 | return NULL; | |
10464 | break; | |
10465 | } | |
10466 | ||
10467 | return idlest; | |
10468 | } | |
10469 | ||
70fb5ccf CY |
10470 | static void update_idle_cpu_scan(struct lb_env *env, |
10471 | unsigned long sum_util) | |
10472 | { | |
10473 | struct sched_domain_shared *sd_share; | |
10474 | int llc_weight, pct; | |
10475 | u64 x, y, tmp; | |
10476 | /* | |
10477 | * Update the number of CPUs to scan in LLC domain, which could | |
10478 | * be used as a hint in select_idle_cpu(). The update of sd_share | |
10479 | * could be expensive because it is within a shared cache line. | |
10480 | * So the write of this hint only occurs during periodic load | |
10481 | * balancing, rather than CPU_NEWLY_IDLE, because the latter | |
10482 | * can fire way more frequently than the former. | |
10483 | */ | |
10484 | if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) | |
10485 | return; | |
10486 | ||
10487 | llc_weight = per_cpu(sd_llc_size, env->dst_cpu); | |
10488 | if (env->sd->span_weight != llc_weight) | |
10489 | return; | |
10490 | ||
10491 | sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); | |
10492 | if (!sd_share) | |
10493 | return; | |
10494 | ||
10495 | /* | |
10496 | * The number of CPUs to search drops as sum_util increases, when | |
10497 | * sum_util hits 85% or above, the scan stops. | |
10498 | * The reason to choose 85% as the threshold is because this is the | |
10499 | * imbalance_pct(117) when a LLC sched group is overloaded. | |
10500 | * | |
10501 | * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] | |
10502 | * and y'= y / SCHED_CAPACITY_SCALE | |
10503 | * | |
10504 | * x is the ratio of sum_util compared to the CPU capacity: | |
10505 | * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) | |
10506 | * y' is the ratio of CPUs to be scanned in the LLC domain, | |
10507 | * and the number of CPUs to scan is calculated by: | |
10508 | * | |
10509 | * nr_scan = llc_weight * y' [2] | |
10510 | * | |
10511 | * When x hits the threshold of overloaded, AKA, when | |
10512 | * x = 100 / pct, y drops to 0. According to [1], | |
10513 | * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 | |
10514 | * | |
10515 | * Scale x by SCHED_CAPACITY_SCALE: | |
10516 | * x' = sum_util / llc_weight; [3] | |
10517 | * | |
10518 | * and finally [1] becomes: | |
10519 | * y = SCHED_CAPACITY_SCALE - | |
10520 | * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] | |
10521 | * | |
10522 | */ | |
10523 | /* equation [3] */ | |
10524 | x = sum_util; | |
10525 | do_div(x, llc_weight); | |
10526 | ||
10527 | /* equation [4] */ | |
10528 | pct = env->sd->imbalance_pct; | |
10529 | tmp = x * x * pct * pct; | |
10530 | do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); | |
10531 | tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); | |
10532 | y = SCHED_CAPACITY_SCALE - tmp; | |
10533 | ||
10534 | /* equation [2] */ | |
10535 | y *= llc_weight; | |
10536 | do_div(y, SCHED_CAPACITY_SCALE); | |
10537 | if ((int)y != sd_share->nr_idle_scan) | |
10538 | WRITE_ONCE(sd_share->nr_idle_scan, (int)y); | |
10539 | } | |
10540 | ||
1e3c88bd | 10541 | /** |
461819ac | 10542 | * update_sd_lb_stats - Update sched_domain's statistics for load balancing. |
cd96891d | 10543 | * @env: The load balancing environment. |
1e3c88bd PZ |
10544 | * @sds: variable to hold the statistics for this sched_domain. |
10545 | */ | |
0b0695f2 | 10546 | |
0ec8aa00 | 10547 | static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) |
1e3c88bd | 10548 | { |
bd939f45 | 10549 | struct sched_group *sg = env->sd->groups; |
05b40e05 | 10550 | struct sg_lb_stats *local = &sds->local_stat; |
56cf515b | 10551 | struct sg_lb_stats tmp_sgs; |
70fb5ccf | 10552 | unsigned long sum_util = 0; |
630246a0 | 10553 | int sg_status = 0; |
1e3c88bd | 10554 | |
1e3c88bd | 10555 | do { |
56cf515b | 10556 | struct sg_lb_stats *sgs = &tmp_sgs; |
1e3c88bd PZ |
10557 | int local_group; |
10558 | ||
ae4df9d6 | 10559 | local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); |
56cf515b JK |
10560 | if (local_group) { |
10561 | sds->local = sg; | |
05b40e05 | 10562 | sgs = local; |
b72ff13c PZ |
10563 | |
10564 | if (env->idle != CPU_NEWLY_IDLE || | |
63b2ca30 NP |
10565 | time_after_eq(jiffies, sg->sgc->next_update)) |
10566 | update_group_capacity(env->sd, env->dst_cpu); | |
56cf515b | 10567 | } |
1e3c88bd | 10568 | |
c0d14b57 | 10569 | update_sg_lb_stats(env, sds, sg, sgs, &sg_status); |
1e3c88bd | 10570 | |
9dfbc26d | 10571 | if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { |
532cb4c4 | 10572 | sds->busiest = sg; |
56cf515b | 10573 | sds->busiest_stat = *sgs; |
1e3c88bd PZ |
10574 | } |
10575 | ||
b72ff13c PZ |
10576 | /* Now, start updating sd_lb_stats */ |
10577 | sds->total_load += sgs->group_load; | |
63b2ca30 | 10578 | sds->total_capacity += sgs->group_capacity; |
b72ff13c | 10579 | |
70fb5ccf | 10580 | sum_util += sgs->group_util; |
532cb4c4 | 10581 | sg = sg->next; |
bd939f45 | 10582 | } while (sg != env->sd->groups); |
0ec8aa00 | 10583 | |
43726bde RN |
10584 | /* |
10585 | * Indicate that the child domain of the busiest group prefers tasks | |
10586 | * go to a child's sibling domains first. NB the flags of a sched group | |
10587 | * are those of the child domain. | |
10588 | */ | |
10589 | if (sds->busiest) | |
10590 | sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); | |
0b0695f2 | 10591 | |
f643ea22 | 10592 | |
0ec8aa00 PZ |
10593 | if (env->sd->flags & SD_NUMA) |
10594 | env->fbq_type = fbq_classify_group(&sds->busiest_stat); | |
4486edd1 TC |
10595 | |
10596 | if (!env->sd->parent) { | |
2802bf3c MR |
10597 | struct root_domain *rd = env->dst_rq->rd; |
10598 | ||
4486edd1 | 10599 | /* update overload indicator if we are at root domain */ |
2802bf3c MR |
10600 | WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); |
10601 | ||
10602 | /* Update over-utilization (tipping point, U >= 0) indicator */ | |
10603 | WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); | |
f9f240f9 | 10604 | trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); |
2802bf3c | 10605 | } else if (sg_status & SG_OVERUTILIZED) { |
f9f240f9 QY |
10606 | struct root_domain *rd = env->dst_rq->rd; |
10607 | ||
10608 | WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); | |
10609 | trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); | |
4486edd1 | 10610 | } |
70fb5ccf CY |
10611 | |
10612 | update_idle_cpu_scan(env, sum_util); | |
532cb4c4 MN |
10613 | } |
10614 | ||
1e3c88bd PZ |
10615 | /** |
10616 | * calculate_imbalance - Calculate the amount of imbalance present within the | |
10617 | * groups of a given sched_domain during load balance. | |
bd939f45 | 10618 | * @env: load balance environment |
1e3c88bd | 10619 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. |
1e3c88bd | 10620 | */ |
bd939f45 | 10621 | static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) |
1e3c88bd | 10622 | { |
56cf515b JK |
10623 | struct sg_lb_stats *local, *busiest; |
10624 | ||
10625 | local = &sds->local_stat; | |
56cf515b | 10626 | busiest = &sds->busiest_stat; |
dd5feea1 | 10627 | |
0b0695f2 | 10628 | if (busiest->group_type == group_misfit_task) { |
c82a6962 VG |
10629 | if (env->sd->flags & SD_ASYM_CPUCAPACITY) { |
10630 | /* Set imbalance to allow misfit tasks to be balanced. */ | |
10631 | env->migration_type = migrate_misfit; | |
10632 | env->imbalance = 1; | |
10633 | } else { | |
10634 | /* | |
10635 | * Set load imbalance to allow moving task from cpu | |
10636 | * with reduced capacity. | |
10637 | */ | |
10638 | env->migration_type = migrate_load; | |
10639 | env->imbalance = busiest->group_misfit_task_load; | |
10640 | } | |
0b0695f2 VG |
10641 | return; |
10642 | } | |
10643 | ||
10644 | if (busiest->group_type == group_asym_packing) { | |
10645 | /* | |
10646 | * In case of asym capacity, we will try to migrate all load to | |
10647 | * the preferred CPU. | |
10648 | */ | |
10649 | env->migration_type = migrate_task; | |
10650 | env->imbalance = busiest->sum_h_nr_running; | |
10651 | return; | |
10652 | } | |
10653 | ||
fee1759e TC |
10654 | if (busiest->group_type == group_smt_balance) { |
10655 | /* Reduce number of tasks sharing CPU capacity */ | |
10656 | env->migration_type = migrate_task; | |
10657 | env->imbalance = 1; | |
10658 | return; | |
10659 | } | |
10660 | ||
0b0695f2 VG |
10661 | if (busiest->group_type == group_imbalanced) { |
10662 | /* | |
10663 | * In the group_imb case we cannot rely on group-wide averages | |
10664 | * to ensure CPU-load equilibrium, try to move any task to fix | |
10665 | * the imbalance. The next load balance will take care of | |
10666 | * balancing back the system. | |
10667 | */ | |
10668 | env->migration_type = migrate_task; | |
10669 | env->imbalance = 1; | |
490ba971 VG |
10670 | return; |
10671 | } | |
10672 | ||
1e3c88bd | 10673 | /* |
0b0695f2 | 10674 | * Try to use spare capacity of local group without overloading it or |
a9723389 | 10675 | * emptying busiest. |
1e3c88bd | 10676 | */ |
0b0695f2 | 10677 | if (local->group_type == group_has_spare) { |
16b0a7a1 | 10678 | if ((busiest->group_type > group_fully_busy) && |
54de4427 | 10679 | !(env->sd->flags & SD_SHARE_LLC)) { |
0b0695f2 VG |
10680 | /* |
10681 | * If busiest is overloaded, try to fill spare | |
10682 | * capacity. This might end up creating spare capacity | |
10683 | * in busiest or busiest still being overloaded but | |
10684 | * there is no simple way to directly compute the | |
10685 | * amount of load to migrate in order to balance the | |
10686 | * system. | |
10687 | */ | |
10688 | env->migration_type = migrate_util; | |
10689 | env->imbalance = max(local->group_capacity, local->group_util) - | |
10690 | local->group_util; | |
10691 | ||
10692 | /* | |
10693 | * In some cases, the group's utilization is max or even | |
10694 | * higher than capacity because of migrations but the | |
10695 | * local CPU is (newly) idle. There is at least one | |
10696 | * waiting task in this overloaded busiest group. Let's | |
10697 | * try to pull it. | |
10698 | */ | |
38d707c5 | 10699 | if (env->idle && env->imbalance == 0) { |
0b0695f2 VG |
10700 | env->migration_type = migrate_task; |
10701 | env->imbalance = 1; | |
10702 | } | |
10703 | ||
10704 | return; | |
10705 | } | |
10706 | ||
10707 | if (busiest->group_weight == 1 || sds->prefer_sibling) { | |
0b0695f2 VG |
10708 | /* |
10709 | * When prefer sibling, evenly spread running tasks on | |
10710 | * groups. | |
10711 | */ | |
10712 | env->migration_type = migrate_task; | |
7ff16932 | 10713 | env->imbalance = sibling_imbalance(env, sds, busiest, local); |
b396f523 | 10714 | } else { |
0b0695f2 | 10715 | |
b396f523 MG |
10716 | /* |
10717 | * If there is no overload, we just want to even the number of | |
10718 | * idle cpus. | |
10719 | */ | |
10720 | env->migration_type = migrate_task; | |
cb29a5c1 MG |
10721 | env->imbalance = max_t(long, 0, |
10722 | (local->idle_cpus - busiest->idle_cpus)); | |
b396f523 MG |
10723 | } |
10724 | ||
cb29a5c1 | 10725 | #ifdef CONFIG_NUMA |
b396f523 | 10726 | /* Consider allowing a small imbalance between NUMA groups */ |
7d2b5dd0 | 10727 | if (env->sd->flags & SD_NUMA) { |
fb86f5b2 | 10728 | env->imbalance = adjust_numa_imbalance(env->imbalance, |
cb29a5c1 MG |
10729 | local->sum_nr_running + 1, |
10730 | env->sd->imb_numa_nr); | |
7d2b5dd0 | 10731 | } |
cb29a5c1 MG |
10732 | #endif |
10733 | ||
10734 | /* Number of tasks to move to restore balance */ | |
10735 | env->imbalance >>= 1; | |
b396f523 | 10736 | |
fcf0553d | 10737 | return; |
1e3c88bd PZ |
10738 | } |
10739 | ||
9a5d9ba6 | 10740 | /* |
0b0695f2 VG |
10741 | * Local is fully busy but has to take more load to relieve the |
10742 | * busiest group | |
9a5d9ba6 | 10743 | */ |
0b0695f2 VG |
10744 | if (local->group_type < group_overloaded) { |
10745 | /* | |
10746 | * Local will become overloaded so the avg_load metrics are | |
10747 | * finally needed. | |
10748 | */ | |
10749 | ||
10750 | local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / | |
10751 | local->group_capacity; | |
10752 | ||
111688ca AL |
10753 | /* |
10754 | * If the local group is more loaded than the selected | |
10755 | * busiest group don't try to pull any tasks. | |
10756 | */ | |
10757 | if (local->avg_load >= busiest->avg_load) { | |
10758 | env->imbalance = 0; | |
10759 | return; | |
10760 | } | |
06354900 | 10761 | |
10762 | sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / | |
10763 | sds->total_capacity; | |
91dcf1e8 VG |
10764 | |
10765 | /* | |
10766 | * If the local group is more loaded than the average system | |
10767 | * load, don't try to pull any tasks. | |
10768 | */ | |
10769 | if (local->avg_load >= sds->avg_load) { | |
10770 | env->imbalance = 0; | |
10771 | return; | |
10772 | } | |
10773 | ||
dd5feea1 SS |
10774 | } |
10775 | ||
10776 | /* | |
0b0695f2 VG |
10777 | * Both group are or will become overloaded and we're trying to get all |
10778 | * the CPUs to the average_load, so we don't want to push ourselves | |
10779 | * above the average load, nor do we wish to reduce the max loaded CPU | |
10780 | * below the average load. At the same time, we also don't want to | |
10781 | * reduce the group load below the group capacity. Thus we look for | |
10782 | * the minimum possible imbalance. | |
dd5feea1 | 10783 | */ |
0b0695f2 | 10784 | env->migration_type = migrate_load; |
56cf515b | 10785 | env->imbalance = min( |
0b0695f2 | 10786 | (busiest->avg_load - sds->avg_load) * busiest->group_capacity, |
63b2ca30 | 10787 | (sds->avg_load - local->avg_load) * local->group_capacity |
ca8ce3d0 | 10788 | ) / SCHED_CAPACITY_SCALE; |
1e3c88bd | 10789 | } |
fab47622 | 10790 | |
1e3c88bd PZ |
10791 | /******* find_busiest_group() helpers end here *********************/ |
10792 | ||
0b0695f2 VG |
10793 | /* |
10794 | * Decision matrix according to the local and busiest group type: | |
10795 | * | |
10796 | * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded | |
10797 | * has_spare nr_idle balanced N/A N/A balanced balanced | |
10798 | * fully_busy nr_idle nr_idle N/A N/A balanced balanced | |
a6583531 | 10799 | * misfit_task force N/A N/A N/A N/A N/A |
0b0695f2 VG |
10800 | * asym_packing force force N/A N/A force force |
10801 | * imbalanced force force N/A N/A force force | |
10802 | * overloaded force force N/A N/A force avg_load | |
10803 | * | |
10804 | * N/A : Not Applicable because already filtered while updating | |
10805 | * statistics. | |
10806 | * balanced : The system is balanced for these 2 groups. | |
10807 | * force : Calculate the imbalance as load migration is probably needed. | |
10808 | * avg_load : Only if imbalance is significant enough. | |
10809 | * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite | |
10810 | * different in groups. | |
10811 | */ | |
10812 | ||
1e3c88bd PZ |
10813 | /** |
10814 | * find_busiest_group - Returns the busiest group within the sched_domain | |
0a9b23ce | 10815 | * if there is an imbalance. |
a315da5e | 10816 | * @env: The load balancing environment. |
1e3c88bd | 10817 | * |
a3df0679 | 10818 | * Also calculates the amount of runnable load which should be moved |
1e3c88bd PZ |
10819 | * to restore balance. |
10820 | * | |
e69f6186 | 10821 | * Return: - The busiest group if imbalance exists. |
1e3c88bd | 10822 | */ |
56cf515b | 10823 | static struct sched_group *find_busiest_group(struct lb_env *env) |
1e3c88bd | 10824 | { |
56cf515b | 10825 | struct sg_lb_stats *local, *busiest; |
1e3c88bd PZ |
10826 | struct sd_lb_stats sds; |
10827 | ||
147c5fc2 | 10828 | init_sd_lb_stats(&sds); |
1e3c88bd PZ |
10829 | |
10830 | /* | |
b0fb1eb4 | 10831 | * Compute the various statistics relevant for load balancing at |
1e3c88bd PZ |
10832 | * this level. |
10833 | */ | |
23f0d209 | 10834 | update_sd_lb_stats(env, &sds); |
2802bf3c | 10835 | |
cc57aa8f | 10836 | /* There is no busy sibling group to pull tasks from */ |
0b0695f2 | 10837 | if (!sds.busiest) |
1e3c88bd PZ |
10838 | goto out_balanced; |
10839 | ||
e5ed0550 VG |
10840 | busiest = &sds.busiest_stat; |
10841 | ||
0b0695f2 VG |
10842 | /* Misfit tasks should be dealt with regardless of the avg load */ |
10843 | if (busiest->group_type == group_misfit_task) | |
10844 | goto force_balance; | |
10845 | ||
e5ed0550 VG |
10846 | if (sched_energy_enabled()) { |
10847 | struct root_domain *rd = env->dst_rq->rd; | |
10848 | ||
10849 | if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) | |
10850 | goto out_balanced; | |
10851 | } | |
10852 | ||
0b0695f2 VG |
10853 | /* ASYM feature bypasses nice load balance check */ |
10854 | if (busiest->group_type == group_asym_packing) | |
10855 | goto force_balance; | |
b0432d8f | 10856 | |
866ab43e PZ |
10857 | /* |
10858 | * If the busiest group is imbalanced the below checks don't | |
30ce5dab | 10859 | * work because they assume all things are equal, which typically |
3bd37062 | 10860 | * isn't true due to cpus_ptr constraints and the like. |
866ab43e | 10861 | */ |
caeb178c | 10862 | if (busiest->group_type == group_imbalanced) |
866ab43e PZ |
10863 | goto force_balance; |
10864 | ||
e5ed0550 | 10865 | local = &sds.local_stat; |
cc57aa8f | 10866 | /* |
9c58c79a | 10867 | * If the local group is busier than the selected busiest group |
cc57aa8f PZ |
10868 | * don't try and pull any tasks. |
10869 | */ | |
0b0695f2 | 10870 | if (local->group_type > busiest->group_type) |
1e3c88bd PZ |
10871 | goto out_balanced; |
10872 | ||
cc57aa8f | 10873 | /* |
0b0695f2 VG |
10874 | * When groups are overloaded, use the avg_load to ensure fairness |
10875 | * between tasks. | |
cc57aa8f | 10876 | */ |
0b0695f2 VG |
10877 | if (local->group_type == group_overloaded) { |
10878 | /* | |
10879 | * If the local group is more loaded than the selected | |
10880 | * busiest group don't try to pull any tasks. | |
10881 | */ | |
10882 | if (local->avg_load >= busiest->avg_load) | |
10883 | goto out_balanced; | |
10884 | ||
10885 | /* XXX broken for overlapping NUMA groups */ | |
10886 | sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / | |
10887 | sds.total_capacity; | |
1e3c88bd | 10888 | |
aae6d3dd | 10889 | /* |
0b0695f2 VG |
10890 | * Don't pull any tasks if this group is already above the |
10891 | * domain average load. | |
aae6d3dd | 10892 | */ |
0b0695f2 | 10893 | if (local->avg_load >= sds.avg_load) |
aae6d3dd | 10894 | goto out_balanced; |
0b0695f2 | 10895 | |
c186fafe | 10896 | /* |
0b0695f2 VG |
10897 | * If the busiest group is more loaded, use imbalance_pct to be |
10898 | * conservative. | |
c186fafe | 10899 | */ |
56cf515b JK |
10900 | if (100 * busiest->avg_load <= |
10901 | env->sd->imbalance_pct * local->avg_load) | |
c186fafe | 10902 | goto out_balanced; |
aae6d3dd | 10903 | } |
1e3c88bd | 10904 | |
43726bde RN |
10905 | /* |
10906 | * Try to move all excess tasks to a sibling domain of the busiest | |
10907 | * group's child domain. | |
10908 | */ | |
0b0695f2 | 10909 | if (sds.prefer_sibling && local->group_type == group_has_spare && |
7ff16932 | 10910 | sibling_imbalance(env, &sds, busiest, local) > 1) |
0b0695f2 VG |
10911 | goto force_balance; |
10912 | ||
2ab4092f | 10913 | if (busiest->group_type != group_overloaded) { |
38d707c5 | 10914 | if (!env->idle) { |
2ab4092f VG |
10915 | /* |
10916 | * If the busiest group is not overloaded (and as a | |
10917 | * result the local one too) but this CPU is already | |
10918 | * busy, let another idle CPU try to pull task. | |
10919 | */ | |
10920 | goto out_balanced; | |
fee1759e TC |
10921 | } |
10922 | ||
10923 | if (busiest->group_type == group_smt_balance && | |
10924 | smt_vs_nonsmt_groups(sds.local, sds.busiest)) { | |
10925 | /* Let non SMT CPU pull from SMT CPU sharing with sibling */ | |
10926 | goto force_balance; | |
10927 | } | |
2ab4092f VG |
10928 | |
10929 | if (busiest->group_weight > 1 && | |
fee1759e | 10930 | local->idle_cpus <= (busiest->idle_cpus + 1)) { |
2ab4092f VG |
10931 | /* |
10932 | * If the busiest group is not overloaded | |
10933 | * and there is no imbalance between this and busiest | |
10934 | * group wrt idle CPUs, it is balanced. The imbalance | |
10935 | * becomes significant if the diff is greater than 1 | |
10936 | * otherwise we might end up to just move the imbalance | |
10937 | * on another group. Of course this applies only if | |
10938 | * there is more than 1 CPU per group. | |
10939 | */ | |
10940 | goto out_balanced; | |
fee1759e | 10941 | } |
2ab4092f | 10942 | |
fee1759e | 10943 | if (busiest->sum_h_nr_running == 1) { |
2ab4092f VG |
10944 | /* |
10945 | * busiest doesn't have any tasks waiting to run | |
10946 | */ | |
10947 | goto out_balanced; | |
fee1759e | 10948 | } |
2ab4092f | 10949 | } |
0b0695f2 | 10950 | |
fab47622 | 10951 | force_balance: |
1e3c88bd | 10952 | /* Looks like there is an imbalance. Compute it */ |
bd939f45 | 10953 | calculate_imbalance(env, &sds); |
bb3485c8 | 10954 | return env->imbalance ? sds.busiest : NULL; |
1e3c88bd PZ |
10955 | |
10956 | out_balanced: | |
bd939f45 | 10957 | env->imbalance = 0; |
1e3c88bd PZ |
10958 | return NULL; |
10959 | } | |
10960 | ||
10961 | /* | |
97fb7a0a | 10962 | * find_busiest_queue - find the busiest runqueue among the CPUs in the group. |
1e3c88bd | 10963 | */ |
bd939f45 | 10964 | static struct rq *find_busiest_queue(struct lb_env *env, |
b9403130 | 10965 | struct sched_group *group) |
1e3c88bd PZ |
10966 | { |
10967 | struct rq *busiest = NULL, *rq; | |
0b0695f2 VG |
10968 | unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; |
10969 | unsigned int busiest_nr = 0; | |
1e3c88bd PZ |
10970 | int i; |
10971 | ||
ae4df9d6 | 10972 | for_each_cpu_and(i, sched_group_span(group), env->cpus) { |
0b0695f2 VG |
10973 | unsigned long capacity, load, util; |
10974 | unsigned int nr_running; | |
0ec8aa00 PZ |
10975 | enum fbq_type rt; |
10976 | ||
10977 | rq = cpu_rq(i); | |
10978 | rt = fbq_classify_rq(rq); | |
1e3c88bd | 10979 | |
0ec8aa00 PZ |
10980 | /* |
10981 | * We classify groups/runqueues into three groups: | |
10982 | * - regular: there are !numa tasks | |
10983 | * - remote: there are numa tasks that run on the 'wrong' node | |
10984 | * - all: there is no distinction | |
10985 | * | |
10986 | * In order to avoid migrating ideally placed numa tasks, | |
10987 | * ignore those when there's better options. | |
10988 | * | |
10989 | * If we ignore the actual busiest queue to migrate another | |
10990 | * task, the next balance pass can still reduce the busiest | |
10991 | * queue by moving tasks around inside the node. | |
10992 | * | |
10993 | * If we cannot move enough load due to this classification | |
10994 | * the next pass will adjust the group classification and | |
10995 | * allow migration of more tasks. | |
10996 | * | |
10997 | * Both cases only affect the total convergence complexity. | |
10998 | */ | |
10999 | if (rt > env->fbq_type) | |
11000 | continue; | |
11001 | ||
0b0695f2 | 11002 | nr_running = rq->cfs.h_nr_running; |
fc488ffd VG |
11003 | if (!nr_running) |
11004 | continue; | |
11005 | ||
11006 | capacity = capacity_of(i); | |
9d5efe05 | 11007 | |
4ad3831a CR |
11008 | /* |
11009 | * For ASYM_CPUCAPACITY domains, don't pick a CPU that could | |
11010 | * eventually lead to active_balancing high->low capacity. | |
11011 | * Higher per-CPU capacity is considered better than balancing | |
11012 | * average load. | |
11013 | */ | |
11014 | if (env->sd->flags & SD_ASYM_CPUCAPACITY && | |
4aed8aa4 | 11015 | !capacity_greater(capacity_of(env->dst_cpu), capacity) && |
0b0695f2 | 11016 | nr_running == 1) |
4ad3831a CR |
11017 | continue; |
11018 | ||
18ad3453 RN |
11019 | /* |
11020 | * Make sure we only pull tasks from a CPU of lower priority | |
11021 | * when balancing between SMT siblings. | |
11022 | * | |
11023 | * If balancing between cores, let lower priority CPUs help | |
11024 | * SMT cores with more than one busy sibling. | |
11025 | */ | |
fbc44986 | 11026 | if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) |
4006a72b RN |
11027 | continue; |
11028 | ||
0b0695f2 VG |
11029 | switch (env->migration_type) { |
11030 | case migrate_load: | |
11031 | /* | |
b0fb1eb4 VG |
11032 | * When comparing with load imbalance, use cpu_load() |
11033 | * which is not scaled with the CPU capacity. | |
0b0695f2 | 11034 | */ |
b0fb1eb4 | 11035 | load = cpu_load(rq); |
1e3c88bd | 11036 | |
0b0695f2 VG |
11037 | if (nr_running == 1 && load > env->imbalance && |
11038 | !check_cpu_capacity(rq, env->sd)) | |
11039 | break; | |
ea67821b | 11040 | |
0b0695f2 VG |
11041 | /* |
11042 | * For the load comparisons with the other CPUs, | |
b0fb1eb4 VG |
11043 | * consider the cpu_load() scaled with the CPU |
11044 | * capacity, so that the load can be moved away | |
11045 | * from the CPU that is potentially running at a | |
11046 | * lower capacity. | |
0b0695f2 VG |
11047 | * |
11048 | * Thus we're looking for max(load_i / capacity_i), | |
11049 | * crosswise multiplication to rid ourselves of the | |
11050 | * division works out to: | |
11051 | * load_i * capacity_j > load_j * capacity_i; | |
11052 | * where j is our previous maximum. | |
11053 | */ | |
11054 | if (load * busiest_capacity > busiest_load * capacity) { | |
11055 | busiest_load = load; | |
11056 | busiest_capacity = capacity; | |
11057 | busiest = rq; | |
11058 | } | |
11059 | break; | |
11060 | ||
11061 | case migrate_util: | |
7d0583cf | 11062 | util = cpu_util_cfs_boost(i); |
0b0695f2 | 11063 | |
c32b4308 VG |
11064 | /* |
11065 | * Don't try to pull utilization from a CPU with one | |
11066 | * running task. Whatever its utilization, we will fail | |
11067 | * detach the task. | |
11068 | */ | |
11069 | if (nr_running <= 1) | |
11070 | continue; | |
11071 | ||
0b0695f2 VG |
11072 | if (busiest_util < util) { |
11073 | busiest_util = util; | |
11074 | busiest = rq; | |
11075 | } | |
11076 | break; | |
11077 | ||
11078 | case migrate_task: | |
11079 | if (busiest_nr < nr_running) { | |
11080 | busiest_nr = nr_running; | |
11081 | busiest = rq; | |
11082 | } | |
11083 | break; | |
11084 | ||
11085 | case migrate_misfit: | |
11086 | /* | |
11087 | * For ASYM_CPUCAPACITY domains with misfit tasks we | |
11088 | * simply seek the "biggest" misfit task. | |
11089 | */ | |
11090 | if (rq->misfit_task_load > busiest_load) { | |
11091 | busiest_load = rq->misfit_task_load; | |
11092 | busiest = rq; | |
11093 | } | |
11094 | ||
11095 | break; | |
1e3c88bd | 11096 | |
1e3c88bd PZ |
11097 | } |
11098 | } | |
11099 | ||
11100 | return busiest; | |
11101 | } | |
11102 | ||
11103 | /* | |
11104 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | |
11105 | * so long as it is large enough. | |
11106 | */ | |
11107 | #define MAX_PINNED_INTERVAL 512 | |
11108 | ||
46a745d9 VG |
11109 | static inline bool |
11110 | asym_active_balance(struct lb_env *env) | |
1af3ed3d | 11111 | { |
46a745d9 | 11112 | /* |
eefefa71 RN |
11113 | * ASYM_PACKING needs to force migrate tasks from busy but lower |
11114 | * priority CPUs in order to pack all tasks in the highest priority | |
11115 | * CPUs. When done between cores, do it only if the whole core if the | |
11116 | * whole core is idle. | |
18ad3453 RN |
11117 | * |
11118 | * If @env::src_cpu is an SMT core with busy siblings, let | |
11119 | * the lower priority @env::dst_cpu help it. Do not follow | |
11120 | * CPU priority. | |
46a745d9 | 11121 | */ |
38d707c5 | 11122 | return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && |
18ad3453 RN |
11123 | (sched_asym_prefer(env->dst_cpu, env->src_cpu) || |
11124 | !sched_use_asym_prio(env->sd, env->src_cpu)); | |
46a745d9 | 11125 | } |
bd939f45 | 11126 | |
46a745d9 | 11127 | static inline bool |
e9b9734b VG |
11128 | imbalanced_active_balance(struct lb_env *env) |
11129 | { | |
11130 | struct sched_domain *sd = env->sd; | |
11131 | ||
11132 | /* | |
11133 | * The imbalanced case includes the case of pinned tasks preventing a fair | |
11134 | * distribution of the load on the system but also the even distribution of the | |
11135 | * threads on a system with spare capacity | |
11136 | */ | |
11137 | if ((env->migration_type == migrate_task) && | |
11138 | (sd->nr_balance_failed > sd->cache_nice_tries+2)) | |
11139 | return 1; | |
11140 | ||
11141 | return 0; | |
11142 | } | |
11143 | ||
11144 | static int need_active_balance(struct lb_env *env) | |
46a745d9 VG |
11145 | { |
11146 | struct sched_domain *sd = env->sd; | |
532cb4c4 | 11147 | |
46a745d9 VG |
11148 | if (asym_active_balance(env)) |
11149 | return 1; | |
1af3ed3d | 11150 | |
e9b9734b VG |
11151 | if (imbalanced_active_balance(env)) |
11152 | return 1; | |
11153 | ||
1aaf90a4 VG |
11154 | /* |
11155 | * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. | |
11156 | * It's worth migrating the task if the src_cpu's capacity is reduced | |
11157 | * because of other sched_class or IRQs if more capacity stays | |
11158 | * available on dst_cpu. | |
11159 | */ | |
38d707c5 | 11160 | if (env->idle && |
1aaf90a4 VG |
11161 | (env->src_rq->cfs.h_nr_running == 1)) { |
11162 | if ((check_cpu_capacity(env->src_rq, sd)) && | |
11163 | (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) | |
11164 | return 1; | |
11165 | } | |
11166 | ||
0b0695f2 | 11167 | if (env->migration_type == migrate_misfit) |
cad68e55 MR |
11168 | return 1; |
11169 | ||
46a745d9 VG |
11170 | return 0; |
11171 | } | |
11172 | ||
969c7921 TH |
11173 | static int active_load_balance_cpu_stop(void *data); |
11174 | ||
23f0d209 JK |
11175 | static int should_we_balance(struct lb_env *env) |
11176 | { | |
f8858d96 | 11177 | struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); |
23f0d209 | 11178 | struct sched_group *sg = env->sd->groups; |
b1bfeab9 | 11179 | int cpu, idle_smt = -1; |
23f0d209 | 11180 | |
024c9d2f PZ |
11181 | /* |
11182 | * Ensure the balancing environment is consistent; can happen | |
11183 | * when the softirq triggers 'during' hotplug. | |
11184 | */ | |
11185 | if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) | |
11186 | return 0; | |
11187 | ||
23f0d209 | 11188 | /* |
97fb7a0a | 11189 | * In the newly idle case, we will allow all the CPUs |
23f0d209 | 11190 | * to do the newly idle load balance. |
792b9f65 JD |
11191 | * |
11192 | * However, we bail out if we already have tasks or a wakeup pending, | |
11193 | * to optimize wakeup latency. | |
23f0d209 | 11194 | */ |
792b9f65 JD |
11195 | if (env->idle == CPU_NEWLY_IDLE) { |
11196 | if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) | |
11197 | return 0; | |
23f0d209 | 11198 | return 1; |
792b9f65 | 11199 | } |
23f0d209 | 11200 | |
f8858d96 | 11201 | cpumask_copy(swb_cpus, group_balance_mask(sg)); |
97fb7a0a | 11202 | /* Try to find first idle CPU */ |
f8858d96 | 11203 | for_each_cpu_and(cpu, swb_cpus, env->cpus) { |
af218122 | 11204 | if (!idle_cpu(cpu)) |
23f0d209 JK |
11205 | continue; |
11206 | ||
b1bfeab9 RN |
11207 | /* |
11208 | * Don't balance to idle SMT in busy core right away when | |
11209 | * balancing cores, but remember the first idle SMT CPU for | |
11210 | * later consideration. Find CPU on an idle core first. | |
11211 | */ | |
11212 | if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { | |
11213 | if (idle_smt == -1) | |
11214 | idle_smt = cpu; | |
f8858d96 SH |
11215 | /* |
11216 | * If the core is not idle, and first SMT sibling which is | |
11217 | * idle has been found, then its not needed to check other | |
11218 | * SMT siblings for idleness: | |
11219 | */ | |
11220 | #ifdef CONFIG_SCHED_SMT | |
11221 | cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); | |
11222 | #endif | |
b1bfeab9 RN |
11223 | continue; |
11224 | } | |
11225 | ||
6d7e4782 KN |
11226 | /* |
11227 | * Are we the first idle core in a non-SMT domain or higher, | |
11228 | * or the first idle CPU in a SMT domain? | |
11229 | */ | |
64297f2b | 11230 | return cpu == env->dst_cpu; |
23f0d209 JK |
11231 | } |
11232 | ||
6d7e4782 KN |
11233 | /* Are we the first idle CPU with busy siblings? */ |
11234 | if (idle_smt != -1) | |
11235 | return idle_smt == env->dst_cpu; | |
b1bfeab9 | 11236 | |
64297f2b PW |
11237 | /* Are we the first CPU of this group ? */ |
11238 | return group_balance_cpu(sg) == env->dst_cpu; | |
23f0d209 JK |
11239 | } |
11240 | ||
1e3c88bd PZ |
11241 | /* |
11242 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | |
11243 | * tasks if there is an imbalance. | |
11244 | */ | |
4c3e509e | 11245 | static int sched_balance_rq(int this_cpu, struct rq *this_rq, |
1e3c88bd | 11246 | struct sched_domain *sd, enum cpu_idle_type idle, |
23f0d209 | 11247 | int *continue_balancing) |
1e3c88bd | 11248 | { |
88b8dac0 | 11249 | int ld_moved, cur_ld_moved, active_balance = 0; |
6263322c | 11250 | struct sched_domain *sd_parent = sd->parent; |
1e3c88bd | 11251 | struct sched_group *group; |
1e3c88bd | 11252 | struct rq *busiest; |
8a8c69c3 | 11253 | struct rq_flags rf; |
4ba29684 | 11254 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); |
8e45cb54 PZ |
11255 | struct lb_env env = { |
11256 | .sd = sd, | |
ddcdf6e7 PZ |
11257 | .dst_cpu = this_cpu, |
11258 | .dst_rq = this_rq, | |
0dd37d6d | 11259 | .dst_grpmask = group_balance_mask(sd->groups), |
8e45cb54 | 11260 | .idle = idle, |
c59862f8 | 11261 | .loop_break = SCHED_NR_MIGRATE_BREAK, |
b9403130 | 11262 | .cpus = cpus, |
0ec8aa00 | 11263 | .fbq_type = all, |
163122b7 | 11264 | .tasks = LIST_HEAD_INIT(env.tasks), |
8e45cb54 PZ |
11265 | }; |
11266 | ||
65a4433a | 11267 | cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); |
1e3c88bd | 11268 | |
ae92882e | 11269 | schedstat_inc(sd->lb_count[idle]); |
1e3c88bd PZ |
11270 | |
11271 | redo: | |
23f0d209 JK |
11272 | if (!should_we_balance(&env)) { |
11273 | *continue_balancing = 0; | |
1e3c88bd | 11274 | goto out_balanced; |
23f0d209 | 11275 | } |
1e3c88bd | 11276 | |
23f0d209 | 11277 | group = find_busiest_group(&env); |
1e3c88bd | 11278 | if (!group) { |
ae92882e | 11279 | schedstat_inc(sd->lb_nobusyg[idle]); |
1e3c88bd PZ |
11280 | goto out_balanced; |
11281 | } | |
11282 | ||
b9403130 | 11283 | busiest = find_busiest_queue(&env, group); |
1e3c88bd | 11284 | if (!busiest) { |
ae92882e | 11285 | schedstat_inc(sd->lb_nobusyq[idle]); |
1e3c88bd PZ |
11286 | goto out_balanced; |
11287 | } | |
11288 | ||
09348d75 | 11289 | WARN_ON_ONCE(busiest == env.dst_rq); |
1e3c88bd | 11290 | |
ae92882e | 11291 | schedstat_add(sd->lb_imbalance[idle], env.imbalance); |
1e3c88bd | 11292 | |
1aaf90a4 VG |
11293 | env.src_cpu = busiest->cpu; |
11294 | env.src_rq = busiest; | |
11295 | ||
1e3c88bd | 11296 | ld_moved = 0; |
8a41dfcd VG |
11297 | /* Clear this flag as soon as we find a pullable task */ |
11298 | env.flags |= LBF_ALL_PINNED; | |
1e3c88bd PZ |
11299 | if (busiest->nr_running > 1) { |
11300 | /* | |
11301 | * Attempt to move tasks. If find_busiest_group has found | |
11302 | * an imbalance but busiest->nr_running <= 1, the group is | |
11303 | * still unbalanced. ld_moved simply stays zero, so it is | |
11304 | * correctly treated as an imbalance. | |
11305 | */ | |
c82513e5 | 11306 | env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); |
8e45cb54 | 11307 | |
5d6523eb | 11308 | more_balance: |
8a8c69c3 | 11309 | rq_lock_irqsave(busiest, &rf); |
3bed5e21 | 11310 | update_rq_clock(busiest); |
88b8dac0 SV |
11311 | |
11312 | /* | |
11313 | * cur_ld_moved - load moved in current iteration | |
11314 | * ld_moved - cumulative load moved across iterations | |
11315 | */ | |
163122b7 | 11316 | cur_ld_moved = detach_tasks(&env); |
1e3c88bd PZ |
11317 | |
11318 | /* | |
163122b7 KT |
11319 | * We've detached some tasks from busiest_rq. Every |
11320 | * task is masked "TASK_ON_RQ_MIGRATING", so we can safely | |
11321 | * unlock busiest->lock, and we are able to be sure | |
11322 | * that nobody can manipulate the tasks in parallel. | |
11323 | * See task_rq_lock() family for the details. | |
1e3c88bd | 11324 | */ |
163122b7 | 11325 | |
8a8c69c3 | 11326 | rq_unlock(busiest, &rf); |
163122b7 KT |
11327 | |
11328 | if (cur_ld_moved) { | |
11329 | attach_tasks(&env); | |
11330 | ld_moved += cur_ld_moved; | |
11331 | } | |
11332 | ||
8a8c69c3 | 11333 | local_irq_restore(rf.flags); |
88b8dac0 | 11334 | |
f1cd0858 JK |
11335 | if (env.flags & LBF_NEED_BREAK) { |
11336 | env.flags &= ~LBF_NEED_BREAK; | |
b0defa7a VG |
11337 | /* Stop if we tried all running tasks */ |
11338 | if (env.loop < busiest->nr_running) | |
11339 | goto more_balance; | |
f1cd0858 JK |
11340 | } |
11341 | ||
88b8dac0 SV |
11342 | /* |
11343 | * Revisit (affine) tasks on src_cpu that couldn't be moved to | |
11344 | * us and move them to an alternate dst_cpu in our sched_group | |
11345 | * where they can run. The upper limit on how many times we | |
97fb7a0a | 11346 | * iterate on same src_cpu is dependent on number of CPUs in our |
88b8dac0 SV |
11347 | * sched_group. |
11348 | * | |
11349 | * This changes load balance semantics a bit on who can move | |
11350 | * load to a given_cpu. In addition to the given_cpu itself | |
11351 | * (or a ilb_cpu acting on its behalf where given_cpu is | |
11352 | * nohz-idle), we now have balance_cpu in a position to move | |
11353 | * load to given_cpu. In rare situations, this may cause | |
11354 | * conflicts (balance_cpu and given_cpu/ilb_cpu deciding | |
11355 | * _independently_ and at _same_ time to move some load to | |
3b03706f | 11356 | * given_cpu) causing excess load to be moved to given_cpu. |
88b8dac0 SV |
11357 | * This however should not happen so much in practice and |
11358 | * moreover subsequent load balance cycles should correct the | |
11359 | * excess load moved. | |
11360 | */ | |
6263322c | 11361 | if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { |
88b8dac0 | 11362 | |
97fb7a0a | 11363 | /* Prevent to re-select dst_cpu via env's CPUs */ |
c89d92ed | 11364 | __cpumask_clear_cpu(env.dst_cpu, env.cpus); |
7aff2e3a | 11365 | |
78feefc5 | 11366 | env.dst_rq = cpu_rq(env.new_dst_cpu); |
88b8dac0 | 11367 | env.dst_cpu = env.new_dst_cpu; |
6263322c | 11368 | env.flags &= ~LBF_DST_PINNED; |
88b8dac0 | 11369 | env.loop = 0; |
c59862f8 | 11370 | env.loop_break = SCHED_NR_MIGRATE_BREAK; |
e02e60c1 | 11371 | |
88b8dac0 SV |
11372 | /* |
11373 | * Go back to "more_balance" rather than "redo" since we | |
11374 | * need to continue with same src_cpu. | |
11375 | */ | |
11376 | goto more_balance; | |
11377 | } | |
1e3c88bd | 11378 | |
6263322c PZ |
11379 | /* |
11380 | * We failed to reach balance because of affinity. | |
11381 | */ | |
11382 | if (sd_parent) { | |
63b2ca30 | 11383 | int *group_imbalance = &sd_parent->groups->sgc->imbalance; |
6263322c | 11384 | |
afdeee05 | 11385 | if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) |
6263322c | 11386 | *group_imbalance = 1; |
6263322c PZ |
11387 | } |
11388 | ||
1e3c88bd | 11389 | /* All tasks on this runqueue were pinned by CPU affinity */ |
8e45cb54 | 11390 | if (unlikely(env.flags & LBF_ALL_PINNED)) { |
c89d92ed | 11391 | __cpumask_clear_cpu(cpu_of(busiest), cpus); |
65a4433a JH |
11392 | /* |
11393 | * Attempting to continue load balancing at the current | |
11394 | * sched_domain level only makes sense if there are | |
11395 | * active CPUs remaining as possible busiest CPUs to | |
11396 | * pull load from which are not contained within the | |
11397 | * destination group that is receiving any migrated | |
11398 | * load. | |
11399 | */ | |
11400 | if (!cpumask_subset(cpus, env.dst_grpmask)) { | |
bbf18b19 | 11401 | env.loop = 0; |
c59862f8 | 11402 | env.loop_break = SCHED_NR_MIGRATE_BREAK; |
1e3c88bd | 11403 | goto redo; |
bbf18b19 | 11404 | } |
afdeee05 | 11405 | goto out_all_pinned; |
1e3c88bd PZ |
11406 | } |
11407 | } | |
11408 | ||
11409 | if (!ld_moved) { | |
ae92882e | 11410 | schedstat_inc(sd->lb_failed[idle]); |
58b26c4c VP |
11411 | /* |
11412 | * Increment the failure counter only on periodic balance. | |
11413 | * We do not want newidle balance, which can be very | |
11414 | * frequent, pollute the failure counter causing | |
11415 | * excessive cache_hot migrations and active balances. | |
11416 | */ | |
11417 | if (idle != CPU_NEWLY_IDLE) | |
11418 | sd->nr_balance_failed++; | |
1e3c88bd | 11419 | |
bd939f45 | 11420 | if (need_active_balance(&env)) { |
8a8c69c3 PZ |
11421 | unsigned long flags; |
11422 | ||
5cb9eaa3 | 11423 | raw_spin_rq_lock_irqsave(busiest, flags); |
1e3c88bd | 11424 | |
97fb7a0a IM |
11425 | /* |
11426 | * Don't kick the active_load_balance_cpu_stop, | |
11427 | * if the curr task on busiest CPU can't be | |
11428 | * moved to this_cpu: | |
1e3c88bd | 11429 | */ |
3bd37062 | 11430 | if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { |
5cb9eaa3 | 11431 | raw_spin_rq_unlock_irqrestore(busiest, flags); |
1e3c88bd PZ |
11432 | goto out_one_pinned; |
11433 | } | |
11434 | ||
8a41dfcd VG |
11435 | /* Record that we found at least one task that could run on this_cpu */ |
11436 | env.flags &= ~LBF_ALL_PINNED; | |
11437 | ||
969c7921 TH |
11438 | /* |
11439 | * ->active_balance synchronizes accesses to | |
11440 | * ->active_balance_work. Once set, it's cleared | |
11441 | * only after active load balance is finished. | |
11442 | */ | |
1e3c88bd PZ |
11443 | if (!busiest->active_balance) { |
11444 | busiest->active_balance = 1; | |
11445 | busiest->push_cpu = this_cpu; | |
11446 | active_balance = 1; | |
11447 | } | |
969c7921 | 11448 | |
f0498d2a PZ |
11449 | preempt_disable(); |
11450 | raw_spin_rq_unlock_irqrestore(busiest, flags); | |
bd939f45 | 11451 | if (active_balance) { |
969c7921 TH |
11452 | stop_one_cpu_nowait(cpu_of(busiest), |
11453 | active_load_balance_cpu_stop, busiest, | |
11454 | &busiest->active_balance_work); | |
bd939f45 | 11455 | } |
f0498d2a | 11456 | preempt_enable(); |
1e3c88bd | 11457 | } |
e9b9734b | 11458 | } else { |
1e3c88bd | 11459 | sd->nr_balance_failed = 0; |
e9b9734b | 11460 | } |
1e3c88bd | 11461 | |
e9b9734b | 11462 | if (likely(!active_balance) || need_active_balance(&env)) { |
1e3c88bd PZ |
11463 | /* We were unbalanced, so reset the balancing interval */ |
11464 | sd->balance_interval = sd->min_interval; | |
1e3c88bd PZ |
11465 | } |
11466 | ||
1e3c88bd PZ |
11467 | goto out; |
11468 | ||
11469 | out_balanced: | |
afdeee05 VG |
11470 | /* |
11471 | * We reach balance although we may have faced some affinity | |
f6cad8df VG |
11472 | * constraints. Clear the imbalance flag only if other tasks got |
11473 | * a chance to move and fix the imbalance. | |
afdeee05 | 11474 | */ |
f6cad8df | 11475 | if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { |
afdeee05 VG |
11476 | int *group_imbalance = &sd_parent->groups->sgc->imbalance; |
11477 | ||
11478 | if (*group_imbalance) | |
11479 | *group_imbalance = 0; | |
11480 | } | |
11481 | ||
11482 | out_all_pinned: | |
11483 | /* | |
11484 | * We reach balance because all tasks are pinned at this level so | |
11485 | * we can't migrate them. Let the imbalance flag set so parent level | |
11486 | * can try to migrate them. | |
11487 | */ | |
ae92882e | 11488 | schedstat_inc(sd->lb_balanced[idle]); |
1e3c88bd PZ |
11489 | |
11490 | sd->nr_balance_failed = 0; | |
11491 | ||
11492 | out_one_pinned: | |
3f130a37 VS |
11493 | ld_moved = 0; |
11494 | ||
11495 | /* | |
5ba553ef PZ |
11496 | * newidle_balance() disregards balance intervals, so we could |
11497 | * repeatedly reach this code, which would lead to balance_interval | |
3b03706f | 11498 | * skyrocketing in a short amount of time. Skip the balance_interval |
5ba553ef | 11499 | * increase logic to avoid that. |
3f130a37 VS |
11500 | */ |
11501 | if (env.idle == CPU_NEWLY_IDLE) | |
11502 | goto out; | |
11503 | ||
1e3c88bd | 11504 | /* tune up the balancing interval */ |
47b7aee1 VS |
11505 | if ((env.flags & LBF_ALL_PINNED && |
11506 | sd->balance_interval < MAX_PINNED_INTERVAL) || | |
11507 | sd->balance_interval < sd->max_interval) | |
1e3c88bd | 11508 | sd->balance_interval *= 2; |
1e3c88bd | 11509 | out: |
1e3c88bd PZ |
11510 | return ld_moved; |
11511 | } | |
11512 | ||
52a08ef1 JL |
11513 | static inline unsigned long |
11514 | get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) | |
11515 | { | |
11516 | unsigned long interval = sd->balance_interval; | |
11517 | ||
11518 | if (cpu_busy) | |
11519 | interval *= sd->busy_factor; | |
11520 | ||
11521 | /* scale ms to jiffies */ | |
11522 | interval = msecs_to_jiffies(interval); | |
e4d32e4d VG |
11523 | |
11524 | /* | |
11525 | * Reduce likelihood of busy balancing at higher domains racing with | |
11526 | * balancing at lower domains by preventing their balancing periods | |
11527 | * from being multiples of each other. | |
11528 | */ | |
11529 | if (cpu_busy) | |
11530 | interval -= 1; | |
11531 | ||
52a08ef1 JL |
11532 | interval = clamp(interval, 1UL, max_load_balance_interval); |
11533 | ||
11534 | return interval; | |
11535 | } | |
11536 | ||
11537 | static inline void | |
31851a98 | 11538 | update_next_balance(struct sched_domain *sd, unsigned long *next_balance) |
52a08ef1 JL |
11539 | { |
11540 | unsigned long interval, next; | |
11541 | ||
31851a98 LY |
11542 | /* used by idle balance, so cpu_busy = 0 */ |
11543 | interval = get_sd_balance_interval(sd, 0); | |
52a08ef1 JL |
11544 | next = sd->last_balance + interval; |
11545 | ||
11546 | if (time_after(*next_balance, next)) | |
11547 | *next_balance = next; | |
11548 | } | |
11549 | ||
1e3c88bd | 11550 | /* |
97fb7a0a | 11551 | * active_load_balance_cpu_stop is run by the CPU stopper. It pushes |
969c7921 TH |
11552 | * running tasks off the busiest CPU onto idle CPUs. It requires at |
11553 | * least 1 task to be running on each physical CPU where possible, and | |
11554 | * avoids physical / logical imbalances. | |
1e3c88bd | 11555 | */ |
969c7921 | 11556 | static int active_load_balance_cpu_stop(void *data) |
1e3c88bd | 11557 | { |
969c7921 TH |
11558 | struct rq *busiest_rq = data; |
11559 | int busiest_cpu = cpu_of(busiest_rq); | |
1e3c88bd | 11560 | int target_cpu = busiest_rq->push_cpu; |
969c7921 | 11561 | struct rq *target_rq = cpu_rq(target_cpu); |
1e3c88bd | 11562 | struct sched_domain *sd; |
e5673f28 | 11563 | struct task_struct *p = NULL; |
8a8c69c3 | 11564 | struct rq_flags rf; |
969c7921 | 11565 | |
8a8c69c3 | 11566 | rq_lock_irq(busiest_rq, &rf); |
edd8e41d PZ |
11567 | /* |
11568 | * Between queueing the stop-work and running it is a hole in which | |
11569 | * CPUs can become inactive. We should not move tasks from or to | |
11570 | * inactive CPUs. | |
11571 | */ | |
11572 | if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) | |
11573 | goto out_unlock; | |
969c7921 | 11574 | |
97fb7a0a | 11575 | /* Make sure the requested CPU hasn't gone down in the meantime: */ |
969c7921 TH |
11576 | if (unlikely(busiest_cpu != smp_processor_id() || |
11577 | !busiest_rq->active_balance)) | |
11578 | goto out_unlock; | |
1e3c88bd PZ |
11579 | |
11580 | /* Is there any task to move? */ | |
11581 | if (busiest_rq->nr_running <= 1) | |
969c7921 | 11582 | goto out_unlock; |
1e3c88bd PZ |
11583 | |
11584 | /* | |
11585 | * This condition is "impossible", if it occurs | |
11586 | * we need to fix it. Originally reported by | |
97fb7a0a | 11587 | * Bjorn Helgaas on a 128-CPU setup. |
1e3c88bd | 11588 | */ |
09348d75 | 11589 | WARN_ON_ONCE(busiest_rq == target_rq); |
1e3c88bd | 11590 | |
1e3c88bd | 11591 | /* Search for an sd spanning us and the target CPU. */ |
dce840a0 | 11592 | rcu_read_lock(); |
1e3c88bd | 11593 | for_each_domain(target_cpu, sd) { |
e669ac8a VS |
11594 | if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) |
11595 | break; | |
1e3c88bd PZ |
11596 | } |
11597 | ||
11598 | if (likely(sd)) { | |
8e45cb54 PZ |
11599 | struct lb_env env = { |
11600 | .sd = sd, | |
ddcdf6e7 PZ |
11601 | .dst_cpu = target_cpu, |
11602 | .dst_rq = target_rq, | |
11603 | .src_cpu = busiest_rq->cpu, | |
11604 | .src_rq = busiest_rq, | |
8e45cb54 | 11605 | .idle = CPU_IDLE, |
23fb06d9 | 11606 | .flags = LBF_ACTIVE_LB, |
8e45cb54 PZ |
11607 | }; |
11608 | ||
ae92882e | 11609 | schedstat_inc(sd->alb_count); |
3bed5e21 | 11610 | update_rq_clock(busiest_rq); |
1e3c88bd | 11611 | |
e5673f28 | 11612 | p = detach_one_task(&env); |
d02c0711 | 11613 | if (p) { |
ae92882e | 11614 | schedstat_inc(sd->alb_pushed); |
d02c0711 SD |
11615 | /* Active balancing done, reset the failure counter. */ |
11616 | sd->nr_balance_failed = 0; | |
11617 | } else { | |
ae92882e | 11618 | schedstat_inc(sd->alb_failed); |
d02c0711 | 11619 | } |
1e3c88bd | 11620 | } |
dce840a0 | 11621 | rcu_read_unlock(); |
969c7921 TH |
11622 | out_unlock: |
11623 | busiest_rq->active_balance = 0; | |
8a8c69c3 | 11624 | rq_unlock(busiest_rq, &rf); |
e5673f28 KT |
11625 | |
11626 | if (p) | |
11627 | attach_one_task(target_rq, p); | |
11628 | ||
11629 | local_irq_enable(); | |
11630 | ||
969c7921 | 11631 | return 0; |
1e3c88bd PZ |
11632 | } |
11633 | ||
214c1b7f IM |
11634 | /* |
11635 | * This flag serializes load-balancing passes over large domains | |
11636 | * (above the NODE topology level) - only one load-balancing instance | |
11637 | * may run at a time, to reduce overhead on very large systems with | |
11638 | * lots of CPUs and large NUMA distances. | |
11639 | * | |
11640 | * - Note that load-balancing passes triggered while another one | |
11641 | * is executing are skipped and not re-tried. | |
11642 | * | |
11643 | * - Also note that this does not serialize rebalance_domains() | |
11644 | * execution, as non-SD_SERIALIZE domains will still be | |
11645 | * load-balanced in parallel. | |
11646 | */ | |
11647 | static atomic_t sched_balance_running = ATOMIC_INIT(0); | |
af3fe03c PZ |
11648 | |
11649 | /* | |
4c3e509e | 11650 | * Scale the max sched_balance_rq interval with the number of CPUs in the system. |
af3fe03c PZ |
11651 | * This trades load-balance latency on larger machines for less cross talk. |
11652 | */ | |
11653 | void update_max_interval(void) | |
11654 | { | |
11655 | max_load_balance_interval = HZ*num_online_cpus()/10; | |
11656 | } | |
11657 | ||
e60b56e4 VG |
11658 | static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) |
11659 | { | |
11660 | if (cost > sd->max_newidle_lb_cost) { | |
11661 | /* | |
11662 | * Track max cost of a domain to make sure to not delay the | |
11663 | * next wakeup on the CPU. | |
11664 | */ | |
11665 | sd->max_newidle_lb_cost = cost; | |
11666 | sd->last_decay_max_lb_cost = jiffies; | |
11667 | } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { | |
11668 | /* | |
11669 | * Decay the newidle max times by ~1% per second to ensure that | |
11670 | * it is not outdated and the current max cost is actually | |
11671 | * shorter. | |
11672 | */ | |
11673 | sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; | |
11674 | sd->last_decay_max_lb_cost = jiffies; | |
11675 | ||
11676 | return true; | |
11677 | } | |
11678 | ||
11679 | return false; | |
11680 | } | |
11681 | ||
af3fe03c PZ |
11682 | /* |
11683 | * It checks each scheduling domain to see if it is due to be balanced, | |
11684 | * and initiates a balancing operation if so. | |
11685 | * | |
11686 | * Balancing parameters are set up in init_sched_domains. | |
11687 | */ | |
14ff4dbd | 11688 | static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) |
af3fe03c PZ |
11689 | { |
11690 | int continue_balancing = 1; | |
11691 | int cpu = rq->cpu; | |
323af6de | 11692 | int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); |
af3fe03c PZ |
11693 | unsigned long interval; |
11694 | struct sched_domain *sd; | |
11695 | /* Earliest time when we have to do rebalance again */ | |
11696 | unsigned long next_balance = jiffies + 60*HZ; | |
11697 | int update_next_balance = 0; | |
11698 | int need_serialize, need_decay = 0; | |
11699 | u64 max_cost = 0; | |
11700 | ||
11701 | rcu_read_lock(); | |
11702 | for_each_domain(cpu, sd) { | |
11703 | /* | |
11704 | * Decay the newidle max times here because this is a regular | |
e60b56e4 | 11705 | * visit to all the domains. |
af3fe03c | 11706 | */ |
e60b56e4 | 11707 | need_decay = update_newidle_cost(sd, 0); |
af3fe03c PZ |
11708 | max_cost += sd->max_newidle_lb_cost; |
11709 | ||
af3fe03c PZ |
11710 | /* |
11711 | * Stop the load balance at this level. There is another | |
11712 | * CPU in our sched group which is doing load balancing more | |
11713 | * actively. | |
11714 | */ | |
11715 | if (!continue_balancing) { | |
11716 | if (need_decay) | |
11717 | continue; | |
11718 | break; | |
11719 | } | |
11720 | ||
323af6de | 11721 | interval = get_sd_balance_interval(sd, busy); |
af3fe03c PZ |
11722 | |
11723 | need_serialize = sd->flags & SD_SERIALIZE; | |
11724 | if (need_serialize) { | |
214c1b7f | 11725 | if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) |
af3fe03c PZ |
11726 | goto out; |
11727 | } | |
11728 | ||
11729 | if (time_after_eq(jiffies, sd->last_balance + interval)) { | |
4c3e509e | 11730 | if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { |
af3fe03c PZ |
11731 | /* |
11732 | * The LBF_DST_PINNED logic could have changed | |
11733 | * env->dst_cpu, so we can't know our idle | |
11734 | * state even if we migrated tasks. Update it. | |
11735 | */ | |
38d707c5 IM |
11736 | idle = idle_cpu(cpu); |
11737 | busy = !idle && !sched_idle_cpu(cpu); | |
af3fe03c PZ |
11738 | } |
11739 | sd->last_balance = jiffies; | |
323af6de | 11740 | interval = get_sd_balance_interval(sd, busy); |
af3fe03c PZ |
11741 | } |
11742 | if (need_serialize) | |
214c1b7f | 11743 | atomic_set_release(&sched_balance_running, 0); |
af3fe03c PZ |
11744 | out: |
11745 | if (time_after(next_balance, sd->last_balance + interval)) { | |
11746 | next_balance = sd->last_balance + interval; | |
11747 | update_next_balance = 1; | |
11748 | } | |
11749 | } | |
11750 | if (need_decay) { | |
11751 | /* | |
11752 | * Ensure the rq-wide value also decays but keep it at a | |
11753 | * reasonable floor to avoid funnies with rq->avg_idle. | |
11754 | */ | |
11755 | rq->max_idle_balance_cost = | |
11756 | max((u64)sysctl_sched_migration_cost, max_cost); | |
11757 | } | |
11758 | rcu_read_unlock(); | |
11759 | ||
11760 | /* | |
11761 | * next_balance will be updated only when there is a need. | |
11762 | * When the cpu is attached to null domain for ex, it will not be | |
11763 | * updated. | |
11764 | */ | |
7a82e5f5 | 11765 | if (likely(update_next_balance)) |
af3fe03c PZ |
11766 | rq->next_balance = next_balance; |
11767 | ||
af3fe03c PZ |
11768 | } |
11769 | ||
d987fc7f MG |
11770 | static inline int on_null_domain(struct rq *rq) |
11771 | { | |
11772 | return unlikely(!rcu_dereference_sched(rq->sd)); | |
11773 | } | |
11774 | ||
3451d024 | 11775 | #ifdef CONFIG_NO_HZ_COMMON |
83cd4fe2 | 11776 | /* |
7ef7145a IM |
11777 | * NOHZ idle load balancing (ILB) details: |
11778 | * | |
11779 | * - When one of the busy CPUs notices that there may be an idle rebalancing | |
83cd4fe2 VP |
11780 | * needed, they will kick the idle load balancer, which then does idle |
11781 | * load balancing for all the idle CPUs. | |
7ef7145a IM |
11782 | * |
11783 | * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set | |
9b019acb | 11784 | * anywhere yet. |
83cd4fe2 | 11785 | */ |
3dd0337d | 11786 | static inline int find_new_ilb(void) |
1e3c88bd | 11787 | { |
031e3bd8 | 11788 | const struct cpumask *hk_mask; |
b6dd6984 | 11789 | int ilb_cpu; |
1e3c88bd | 11790 | |
04d4e665 | 11791 | hk_mask = housekeeping_cpumask(HK_TYPE_MISC); |
1e3c88bd | 11792 | |
b6dd6984 | 11793 | for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { |
45da7a2b | 11794 | |
b6dd6984 | 11795 | if (ilb_cpu == smp_processor_id()) |
45da7a2b PZ |
11796 | continue; |
11797 | ||
b6dd6984 IM |
11798 | if (idle_cpu(ilb_cpu)) |
11799 | return ilb_cpu; | |
9b019acb | 11800 | } |
786d6dc7 | 11801 | |
f4bb5705 | 11802 | return -1; |
1e3c88bd | 11803 | } |
1e3c88bd | 11804 | |
83cd4fe2 | 11805 | /* |
7ef7145a IM |
11806 | * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU |
11807 | * SMP function call (IPI). | |
11808 | * | |
11809 | * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). | |
83cd4fe2 | 11810 | */ |
a4064fb6 | 11811 | static void kick_ilb(unsigned int flags) |
83cd4fe2 VP |
11812 | { |
11813 | int ilb_cpu; | |
11814 | ||
3ea2f097 VG |
11815 | /* |
11816 | * Increase nohz.next_balance only when if full ilb is triggered but | |
11817 | * not if we only update stats. | |
11818 | */ | |
11819 | if (flags & NOHZ_BALANCE_KICK) | |
11820 | nohz.next_balance = jiffies+1; | |
83cd4fe2 | 11821 | |
3dd0337d | 11822 | ilb_cpu = find_new_ilb(); |
f4bb5705 | 11823 | if (ilb_cpu < 0) |
0b005cf5 | 11824 | return; |
83cd4fe2 | 11825 | |
19a1f5ec PZ |
11826 | /* |
11827 | * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets | |
11828 | * the first flag owns it; cleared by nohz_csd_func(). | |
11829 | */ | |
a4064fb6 | 11830 | flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); |
b7031a02 | 11831 | if (flags & NOHZ_KICK_MASK) |
1c792db7 | 11832 | return; |
4550487a | 11833 | |
1c792db7 | 11834 | /* |
90b5363a | 11835 | * This way we generate an IPI on the target CPU which |
7ef7145a | 11836 | * is idle, and the softirq performing NOHZ idle load balancing |
1c792db7 SS |
11837 | * will be run before returning from the IPI. |
11838 | */ | |
90b5363a | 11839 | smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); |
4550487a PZ |
11840 | } |
11841 | ||
11842 | /* | |
9f132742 VS |
11843 | * Current decision point for kicking the idle load balancer in the presence |
11844 | * of idle CPUs in the system. | |
4550487a PZ |
11845 | */ |
11846 | static void nohz_balancer_kick(struct rq *rq) | |
11847 | { | |
11848 | unsigned long now = jiffies; | |
11849 | struct sched_domain_shared *sds; | |
11850 | struct sched_domain *sd; | |
11851 | int nr_busy, i, cpu = rq->cpu; | |
a4064fb6 | 11852 | unsigned int flags = 0; |
4550487a PZ |
11853 | |
11854 | if (unlikely(rq->idle_balance)) | |
11855 | return; | |
11856 | ||
11857 | /* | |
11858 | * We may be recently in ticked or tickless idle mode. At the first | |
11859 | * busy tick after returning from idle, we will update the busy stats. | |
11860 | */ | |
00357f5e | 11861 | nohz_balance_exit_idle(rq); |
4550487a PZ |
11862 | |
11863 | /* | |
11864 | * None are in tickless mode and hence no need for NOHZ idle load | |
7ef7145a | 11865 | * balancing: |
4550487a PZ |
11866 | */ |
11867 | if (likely(!atomic_read(&nohz.nr_cpus))) | |
11868 | return; | |
11869 | ||
f643ea22 VG |
11870 | if (READ_ONCE(nohz.has_blocked) && |
11871 | time_after(now, READ_ONCE(nohz.next_blocked))) | |
a4064fb6 PZ |
11872 | flags = NOHZ_STATS_KICK; |
11873 | ||
4550487a | 11874 | if (time_before(now, nohz.next_balance)) |
a4064fb6 | 11875 | goto out; |
4550487a | 11876 | |
a0fe2cf0 | 11877 | if (rq->nr_running >= 2) { |
efd984c4 | 11878 | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; |
4550487a PZ |
11879 | goto out; |
11880 | } | |
11881 | ||
11882 | rcu_read_lock(); | |
4550487a PZ |
11883 | |
11884 | sd = rcu_dereference(rq->sd); | |
11885 | if (sd) { | |
e25a7a94 | 11886 | /* |
7ef7145a IM |
11887 | * If there's a runnable CFS task and the current CPU has reduced |
11888 | * capacity, kick the ILB to see if there's a better CPU to run on: | |
e25a7a94 VS |
11889 | */ |
11890 | if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { | |
efd984c4 | 11891 | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; |
4550487a PZ |
11892 | goto unlock; |
11893 | } | |
11894 | } | |
11895 | ||
011b27bb | 11896 | sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); |
4550487a | 11897 | if (sd) { |
b9a7b883 VS |
11898 | /* |
11899 | * When ASYM_PACKING; see if there's a more preferred CPU | |
11900 | * currently idle; in which case, kick the ILB to move tasks | |
11901 | * around. | |
eefefa71 RN |
11902 | * |
11903 | * When balancing betwen cores, all the SMT siblings of the | |
11904 | * preferred CPU must be idle. | |
b9a7b883 | 11905 | */ |
7edab78d | 11906 | for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { |
45de2062 | 11907 | if (sched_asym(sd, i, cpu)) { |
efd984c4 | 11908 | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; |
4550487a PZ |
11909 | goto unlock; |
11910 | } | |
11911 | } | |
11912 | } | |
b9a7b883 | 11913 | |
a0fe2cf0 VS |
11914 | sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); |
11915 | if (sd) { | |
11916 | /* | |
11917 | * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU | |
11918 | * to run the misfit task on. | |
11919 | */ | |
11920 | if (check_misfit_status(rq, sd)) { | |
efd984c4 | 11921 | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; |
a0fe2cf0 VS |
11922 | goto unlock; |
11923 | } | |
b9a7b883 VS |
11924 | |
11925 | /* | |
11926 | * For asymmetric systems, we do not want to nicely balance | |
11927 | * cache use, instead we want to embrace asymmetry and only | |
11928 | * ensure tasks have enough CPU capacity. | |
11929 | * | |
11930 | * Skip the LLC logic because it's not relevant in that case. | |
11931 | */ | |
11932 | goto unlock; | |
a0fe2cf0 VS |
11933 | } |
11934 | ||
b9a7b883 VS |
11935 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); |
11936 | if (sds) { | |
e25a7a94 | 11937 | /* |
b9a7b883 | 11938 | * If there is an imbalance between LLC domains (IOW we could |
7ef7145a IM |
11939 | * increase the overall cache utilization), we need a less-loaded LLC |
11940 | * domain to pull some load from. Likewise, we may need to spread | |
b9a7b883 VS |
11941 | * load within the current LLC domain (e.g. packed SMT cores but |
11942 | * other CPUs are idle). We can't really know from here how busy | |
7ef7145a | 11943 | * the others are - so just get a NOHZ balance going if it looks |
b9a7b883 | 11944 | * like this LLC domain has tasks we could move. |
e25a7a94 | 11945 | */ |
b9a7b883 VS |
11946 | nr_busy = atomic_read(&sds->nr_busy_cpus); |
11947 | if (nr_busy > 1) { | |
efd984c4 | 11948 | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; |
b9a7b883 | 11949 | goto unlock; |
4550487a PZ |
11950 | } |
11951 | } | |
11952 | unlock: | |
11953 | rcu_read_unlock(); | |
11954 | out: | |
7fd7a9e0 VS |
11955 | if (READ_ONCE(nohz.needs_update)) |
11956 | flags |= NOHZ_NEXT_KICK; | |
11957 | ||
a4064fb6 PZ |
11958 | if (flags) |
11959 | kick_ilb(flags); | |
83cd4fe2 VP |
11960 | } |
11961 | ||
00357f5e | 11962 | static void set_cpu_sd_state_busy(int cpu) |
71325960 | 11963 | { |
00357f5e | 11964 | struct sched_domain *sd; |
a22e47a4 | 11965 | |
00357f5e PZ |
11966 | rcu_read_lock(); |
11967 | sd = rcu_dereference(per_cpu(sd_llc, cpu)); | |
a22e47a4 | 11968 | |
00357f5e PZ |
11969 | if (!sd || !sd->nohz_idle) |
11970 | goto unlock; | |
11971 | sd->nohz_idle = 0; | |
11972 | ||
11973 | atomic_inc(&sd->shared->nr_busy_cpus); | |
11974 | unlock: | |
11975 | rcu_read_unlock(); | |
71325960 SS |
11976 | } |
11977 | ||
00357f5e PZ |
11978 | void nohz_balance_exit_idle(struct rq *rq) |
11979 | { | |
11980 | SCHED_WARN_ON(rq != this_rq()); | |
11981 | ||
11982 | if (likely(!rq->nohz_tick_stopped)) | |
11983 | return; | |
11984 | ||
11985 | rq->nohz_tick_stopped = 0; | |
11986 | cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); | |
11987 | atomic_dec(&nohz.nr_cpus); | |
11988 | ||
11989 | set_cpu_sd_state_busy(rq->cpu); | |
11990 | } | |
11991 | ||
11992 | static void set_cpu_sd_state_idle(int cpu) | |
69e1e811 SS |
11993 | { |
11994 | struct sched_domain *sd; | |
69e1e811 | 11995 | |
69e1e811 | 11996 | rcu_read_lock(); |
0e369d75 | 11997 | sd = rcu_dereference(per_cpu(sd_llc, cpu)); |
25f55d9d VG |
11998 | |
11999 | if (!sd || sd->nohz_idle) | |
12000 | goto unlock; | |
12001 | sd->nohz_idle = 1; | |
12002 | ||
0e369d75 | 12003 | atomic_dec(&sd->shared->nr_busy_cpus); |
25f55d9d | 12004 | unlock: |
69e1e811 SS |
12005 | rcu_read_unlock(); |
12006 | } | |
12007 | ||
1e3c88bd | 12008 | /* |
97fb7a0a | 12009 | * This routine will record that the CPU is going idle with tick stopped. |
0b005cf5 | 12010 | * This info will be used in performing idle load balancing in the future. |
1e3c88bd | 12011 | */ |
c1cc017c | 12012 | void nohz_balance_enter_idle(int cpu) |
1e3c88bd | 12013 | { |
00357f5e PZ |
12014 | struct rq *rq = cpu_rq(cpu); |
12015 | ||
12016 | SCHED_WARN_ON(cpu != smp_processor_id()); | |
12017 | ||
97fb7a0a | 12018 | /* If this CPU is going down, then nothing needs to be done: */ |
71325960 SS |
12019 | if (!cpu_active(cpu)) |
12020 | return; | |
12021 | ||
387bc8b5 | 12022 | /* Spare idle load balancing on CPUs that don't want to be disturbed: */ |
04d4e665 | 12023 | if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) |
387bc8b5 FW |
12024 | return; |
12025 | ||
f643ea22 VG |
12026 | /* |
12027 | * Can be set safely without rq->lock held | |
12028 | * If a clear happens, it will have evaluated last additions because | |
12029 | * rq->lock is held during the check and the clear | |
12030 | */ | |
12031 | rq->has_blocked_load = 1; | |
12032 | ||
12033 | /* | |
12034 | * The tick is still stopped but load could have been added in the | |
12035 | * meantime. We set the nohz.has_blocked flag to trig a check of the | |
12036 | * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear | |
12037 | * of nohz.has_blocked can only happen after checking the new load | |
12038 | */ | |
00357f5e | 12039 | if (rq->nohz_tick_stopped) |
f643ea22 | 12040 | goto out; |
1e3c88bd | 12041 | |
97fb7a0a | 12042 | /* If we're a completely isolated CPU, we don't play: */ |
00357f5e | 12043 | if (on_null_domain(rq)) |
d987fc7f MG |
12044 | return; |
12045 | ||
00357f5e PZ |
12046 | rq->nohz_tick_stopped = 1; |
12047 | ||
c1cc017c AS |
12048 | cpumask_set_cpu(cpu, nohz.idle_cpus_mask); |
12049 | atomic_inc(&nohz.nr_cpus); | |
00357f5e | 12050 | |
f643ea22 VG |
12051 | /* |
12052 | * Ensures that if nohz_idle_balance() fails to observe our | |
12053 | * @idle_cpus_mask store, it must observe the @has_blocked | |
7fd7a9e0 | 12054 | * and @needs_update stores. |
f643ea22 VG |
12055 | */ |
12056 | smp_mb__after_atomic(); | |
12057 | ||
00357f5e | 12058 | set_cpu_sd_state_idle(cpu); |
f643ea22 | 12059 | |
7fd7a9e0 | 12060 | WRITE_ONCE(nohz.needs_update, 1); |
f643ea22 VG |
12061 | out: |
12062 | /* | |
12063 | * Each time a cpu enter idle, we assume that it has blocked load and | |
12064 | * enable the periodic update of the load of idle cpus | |
12065 | */ | |
12066 | WRITE_ONCE(nohz.has_blocked, 1); | |
1e3c88bd | 12067 | } |
1e3c88bd | 12068 | |
3f5ad914 Y |
12069 | static bool update_nohz_stats(struct rq *rq) |
12070 | { | |
12071 | unsigned int cpu = rq->cpu; | |
12072 | ||
12073 | if (!rq->has_blocked_load) | |
12074 | return false; | |
12075 | ||
12076 | if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) | |
12077 | return false; | |
12078 | ||
12079 | if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) | |
12080 | return true; | |
12081 | ||
12082 | update_blocked_averages(cpu); | |
12083 | ||
12084 | return rq->has_blocked_load; | |
12085 | } | |
12086 | ||
1e3c88bd | 12087 | /* |
31e77c93 VG |
12088 | * Internal function that runs load balance for all idle cpus. The load balance |
12089 | * can be a simple update of blocked load or a complete load balance with | |
12090 | * tasks movement depending of flags. | |
1e3c88bd | 12091 | */ |
d985ee9f | 12092 | static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) |
83cd4fe2 | 12093 | { |
c5afb6a8 | 12094 | /* Earliest time when we have to do rebalance again */ |
a4064fb6 PZ |
12095 | unsigned long now = jiffies; |
12096 | unsigned long next_balance = now + 60*HZ; | |
f643ea22 | 12097 | bool has_blocked_load = false; |
c5afb6a8 | 12098 | int update_next_balance = 0; |
b7031a02 | 12099 | int this_cpu = this_rq->cpu; |
b7031a02 PZ |
12100 | int balance_cpu; |
12101 | struct rq *rq; | |
83cd4fe2 | 12102 | |
b7031a02 | 12103 | SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); |
83cd4fe2 | 12104 | |
f643ea22 VG |
12105 | /* |
12106 | * We assume there will be no idle load after this update and clear | |
12107 | * the has_blocked flag. If a cpu enters idle in the mean time, it will | |
7fd7a9e0 | 12108 | * set the has_blocked flag and trigger another update of idle load. |
f643ea22 VG |
12109 | * Because a cpu that becomes idle, is added to idle_cpus_mask before |
12110 | * setting the flag, we are sure to not clear the state and not | |
12111 | * check the load of an idle cpu. | |
7fd7a9e0 VS |
12112 | * |
12113 | * Same applies to idle_cpus_mask vs needs_update. | |
f643ea22 | 12114 | */ |
efd984c4 VS |
12115 | if (flags & NOHZ_STATS_KICK) |
12116 | WRITE_ONCE(nohz.has_blocked, 0); | |
7fd7a9e0 VS |
12117 | if (flags & NOHZ_NEXT_KICK) |
12118 | WRITE_ONCE(nohz.needs_update, 0); | |
f643ea22 VG |
12119 | |
12120 | /* | |
12121 | * Ensures that if we miss the CPU, we must see the has_blocked | |
12122 | * store from nohz_balance_enter_idle(). | |
12123 | */ | |
12124 | smp_mb(); | |
12125 | ||
7a82e5f5 VG |
12126 | /* |
12127 | * Start with the next CPU after this_cpu so we will end with this_cpu and let a | |
12128 | * chance for other idle cpu to pull load. | |
12129 | */ | |
12130 | for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { | |
12131 | if (!idle_cpu(balance_cpu)) | |
83cd4fe2 VP |
12132 | continue; |
12133 | ||
12134 | /* | |
97fb7a0a IM |
12135 | * If this CPU gets work to do, stop the load balancing |
12136 | * work being done for other CPUs. Next load | |
83cd4fe2 VP |
12137 | * balancing owner will pick it up. |
12138 | */ | |
f643ea22 | 12139 | if (need_resched()) { |
efd984c4 VS |
12140 | if (flags & NOHZ_STATS_KICK) |
12141 | has_blocked_load = true; | |
7fd7a9e0 VS |
12142 | if (flags & NOHZ_NEXT_KICK) |
12143 | WRITE_ONCE(nohz.needs_update, 1); | |
f643ea22 VG |
12144 | goto abort; |
12145 | } | |
83cd4fe2 | 12146 | |
5ed4f1d9 VG |
12147 | rq = cpu_rq(balance_cpu); |
12148 | ||
efd984c4 VS |
12149 | if (flags & NOHZ_STATS_KICK) |
12150 | has_blocked_load |= update_nohz_stats(rq); | |
f643ea22 | 12151 | |
ed61bbc6 TC |
12152 | /* |
12153 | * If time for next balance is due, | |
12154 | * do the balance. | |
12155 | */ | |
12156 | if (time_after_eq(jiffies, rq->next_balance)) { | |
8a8c69c3 PZ |
12157 | struct rq_flags rf; |
12158 | ||
31e77c93 | 12159 | rq_lock_irqsave(rq, &rf); |
ed61bbc6 | 12160 | update_rq_clock(rq); |
31e77c93 | 12161 | rq_unlock_irqrestore(rq, &rf); |
8a8c69c3 | 12162 | |
b7031a02 | 12163 | if (flags & NOHZ_BALANCE_KICK) |
14ff4dbd | 12164 | sched_balance_domains(rq, CPU_IDLE); |
ed61bbc6 | 12165 | } |
83cd4fe2 | 12166 | |
c5afb6a8 VG |
12167 | if (time_after(next_balance, rq->next_balance)) { |
12168 | next_balance = rq->next_balance; | |
12169 | update_next_balance = 1; | |
12170 | } | |
83cd4fe2 | 12171 | } |
c5afb6a8 | 12172 | |
3ea2f097 VG |
12173 | /* |
12174 | * next_balance will be updated only when there is a need. | |
12175 | * When the CPU is attached to null domain for ex, it will not be | |
12176 | * updated. | |
12177 | */ | |
12178 | if (likely(update_next_balance)) | |
12179 | nohz.next_balance = next_balance; | |
12180 | ||
efd984c4 VS |
12181 | if (flags & NOHZ_STATS_KICK) |
12182 | WRITE_ONCE(nohz.next_blocked, | |
12183 | now + msecs_to_jiffies(LOAD_AVG_PERIOD)); | |
f643ea22 VG |
12184 | |
12185 | abort: | |
12186 | /* There is still blocked load, enable periodic update */ | |
12187 | if (has_blocked_load) | |
12188 | WRITE_ONCE(nohz.has_blocked, 1); | |
31e77c93 VG |
12189 | } |
12190 | ||
12191 | /* | |
12192 | * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the | |
12193 | * rebalancing for all the cpus for whom scheduler ticks are stopped. | |
12194 | */ | |
12195 | static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) | |
12196 | { | |
19a1f5ec | 12197 | unsigned int flags = this_rq->nohz_idle_balance; |
31e77c93 | 12198 | |
19a1f5ec | 12199 | if (!flags) |
31e77c93 VG |
12200 | return false; |
12201 | ||
19a1f5ec | 12202 | this_rq->nohz_idle_balance = 0; |
31e77c93 | 12203 | |
19a1f5ec | 12204 | if (idle != CPU_IDLE) |
31e77c93 VG |
12205 | return false; |
12206 | ||
d985ee9f | 12207 | _nohz_idle_balance(this_rq, flags); |
31e77c93 | 12208 | |
b7031a02 | 12209 | return true; |
83cd4fe2 | 12210 | } |
31e77c93 | 12211 | |
c6f88654 | 12212 | /* |
fb064e5a JFG |
12213 | * Check if we need to directly run the ILB for updating blocked load before |
12214 | * entering idle state. Here we run ILB directly without issuing IPIs. | |
12215 | * | |
12216 | * Note that when this function is called, the tick may not yet be stopped on | |
12217 | * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and | |
12218 | * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates | |
12219 | * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle | |
12220 | * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is | |
12221 | * called from this function on (this) CPU that's not yet in the mask. That's | |
12222 | * OK because the goal of nohz_run_idle_balance() is to run ILB only for | |
12223 | * updating the blocked load of already idle CPUs without waking up one of | |
12224 | * those idle CPUs and outside the preempt disable / irq off phase of the local | |
12225 | * cpu about to enter idle, because it can take a long time. | |
c6f88654 VG |
12226 | */ |
12227 | void nohz_run_idle_balance(int cpu) | |
12228 | { | |
12229 | unsigned int flags; | |
12230 | ||
12231 | flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); | |
12232 | ||
12233 | /* | |
12234 | * Update the blocked load only if no SCHED_SOFTIRQ is about to happen | |
12235 | * (ie NOHZ_STATS_KICK set) and will do the same. | |
12236 | */ | |
12237 | if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) | |
d985ee9f | 12238 | _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); |
c6f88654 VG |
12239 | } |
12240 | ||
31e77c93 VG |
12241 | static void nohz_newidle_balance(struct rq *this_rq) |
12242 | { | |
12243 | int this_cpu = this_rq->cpu; | |
12244 | ||
12245 | /* | |
12246 | * This CPU doesn't want to be disturbed by scheduler | |
12247 | * housekeeping | |
12248 | */ | |
04d4e665 | 12249 | if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) |
31e77c93 VG |
12250 | return; |
12251 | ||
12252 | /* Will wake up very soon. No time for doing anything else*/ | |
12253 | if (this_rq->avg_idle < sysctl_sched_migration_cost) | |
12254 | return; | |
12255 | ||
12256 | /* Don't need to update blocked load of idle CPUs*/ | |
12257 | if (!READ_ONCE(nohz.has_blocked) || | |
12258 | time_before(jiffies, READ_ONCE(nohz.next_blocked))) | |
12259 | return; | |
12260 | ||
31e77c93 | 12261 | /* |
c6f88654 VG |
12262 | * Set the need to trigger ILB in order to update blocked load |
12263 | * before entering idle state. | |
31e77c93 | 12264 | */ |
c6f88654 | 12265 | atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); |
31e77c93 VG |
12266 | } |
12267 | ||
dd707247 PZ |
12268 | #else /* !CONFIG_NO_HZ_COMMON */ |
12269 | static inline void nohz_balancer_kick(struct rq *rq) { } | |
12270 | ||
31e77c93 | 12271 | static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) |
b7031a02 PZ |
12272 | { |
12273 | return false; | |
12274 | } | |
31e77c93 VG |
12275 | |
12276 | static inline void nohz_newidle_balance(struct rq *this_rq) { } | |
dd707247 | 12277 | #endif /* CONFIG_NO_HZ_COMMON */ |
83cd4fe2 | 12278 | |
47ea5412 | 12279 | /* |
5b78f2dc | 12280 | * newidle_balance is called by schedule() if this_cpu is about to become |
47ea5412 | 12281 | * idle. Attempts to pull tasks from other CPUs. |
7277a34c PZ |
12282 | * |
12283 | * Returns: | |
12284 | * < 0 - we released the lock and there are !fair tasks present | |
12285 | * 0 - failed, no new tasks | |
12286 | * > 0 - success, new (fair) tasks present | |
47ea5412 | 12287 | */ |
d91cecc1 | 12288 | static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) |
47ea5412 PZ |
12289 | { |
12290 | unsigned long next_balance = jiffies + HZ; | |
12291 | int this_cpu = this_rq->cpu; | |
9e9af819 | 12292 | u64 t0, t1, curr_cost = 0; |
47ea5412 PZ |
12293 | struct sched_domain *sd; |
12294 | int pulled_task = 0; | |
47ea5412 | 12295 | |
5ba553ef | 12296 | update_misfit_status(NULL, this_rq); |
e5e678e4 RR |
12297 | |
12298 | /* | |
12299 | * There is a task waiting to run. No need to search for one. | |
12300 | * Return 0; the task will be enqueued when switching to idle. | |
12301 | */ | |
12302 | if (this_rq->ttwu_pending) | |
12303 | return 0; | |
12304 | ||
47ea5412 PZ |
12305 | /* |
12306 | * We must set idle_stamp _before_ calling idle_balance(), such that we | |
12307 | * measure the duration of idle_balance() as idle time. | |
12308 | */ | |
12309 | this_rq->idle_stamp = rq_clock(this_rq); | |
12310 | ||
12311 | /* | |
12312 | * Do not pull tasks towards !active CPUs... | |
12313 | */ | |
12314 | if (!cpu_active(this_cpu)) | |
12315 | return 0; | |
12316 | ||
12317 | /* | |
12318 | * This is OK, because current is on_cpu, which avoids it being picked | |
12319 | * for load-balance and preemption/IRQs are still disabled avoiding | |
12320 | * further scheduler activity on it and we're being very careful to | |
12321 | * re-start the picking loop. | |
12322 | */ | |
12323 | rq_unpin_lock(this_rq, rf); | |
12324 | ||
9d783c8d VG |
12325 | rcu_read_lock(); |
12326 | sd = rcu_dereference_check_sched_domain(this_rq->sd); | |
12327 | ||
c5b0a7ee | 12328 | if (!READ_ONCE(this_rq->rd->overload) || |
9d783c8d | 12329 | (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { |
31e77c93 | 12330 | |
47ea5412 PZ |
12331 | if (sd) |
12332 | update_next_balance(sd, &next_balance); | |
12333 | rcu_read_unlock(); | |
12334 | ||
12335 | goto out; | |
12336 | } | |
9d783c8d | 12337 | rcu_read_unlock(); |
47ea5412 | 12338 | |
5cb9eaa3 | 12339 | raw_spin_rq_unlock(this_rq); |
47ea5412 | 12340 | |
9e9af819 | 12341 | t0 = sched_clock_cpu(this_cpu); |
47ea5412 | 12342 | update_blocked_averages(this_cpu); |
9e9af819 | 12343 | |
47ea5412 PZ |
12344 | rcu_read_lock(); |
12345 | for_each_domain(this_cpu, sd) { | |
12346 | int continue_balancing = 1; | |
9e9af819 | 12347 | u64 domain_cost; |
47ea5412 | 12348 | |
8ea9183d VG |
12349 | update_next_balance(sd, &next_balance); |
12350 | ||
12351 | if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) | |
47ea5412 | 12352 | break; |
47ea5412 PZ |
12353 | |
12354 | if (sd->flags & SD_BALANCE_NEWIDLE) { | |
47ea5412 | 12355 | |
4c3e509e | 12356 | pulled_task = sched_balance_rq(this_cpu, this_rq, |
47ea5412 PZ |
12357 | sd, CPU_NEWLY_IDLE, |
12358 | &continue_balancing); | |
12359 | ||
9e9af819 VG |
12360 | t1 = sched_clock_cpu(this_cpu); |
12361 | domain_cost = t1 - t0; | |
e60b56e4 | 12362 | update_newidle_cost(sd, domain_cost); |
47ea5412 PZ |
12363 | |
12364 | curr_cost += domain_cost; | |
9e9af819 | 12365 | t0 = t1; |
47ea5412 PZ |
12366 | } |
12367 | ||
47ea5412 PZ |
12368 | /* |
12369 | * Stop searching for tasks to pull if there are | |
12370 | * now runnable tasks on this rq. | |
12371 | */ | |
e5e678e4 RR |
12372 | if (pulled_task || this_rq->nr_running > 0 || |
12373 | this_rq->ttwu_pending) | |
47ea5412 PZ |
12374 | break; |
12375 | } | |
12376 | rcu_read_unlock(); | |
12377 | ||
5cb9eaa3 | 12378 | raw_spin_rq_lock(this_rq); |
47ea5412 PZ |
12379 | |
12380 | if (curr_cost > this_rq->max_idle_balance_cost) | |
12381 | this_rq->max_idle_balance_cost = curr_cost; | |
12382 | ||
12383 | /* | |
12384 | * While browsing the domains, we released the rq lock, a task could | |
12385 | * have been enqueued in the meantime. Since we're not going idle, | |
12386 | * pretend we pulled a task. | |
12387 | */ | |
12388 | if (this_rq->cfs.h_nr_running && !pulled_task) | |
12389 | pulled_task = 1; | |
12390 | ||
47ea5412 PZ |
12391 | /* Is there a task of a high priority class? */ |
12392 | if (this_rq->nr_running != this_rq->cfs.h_nr_running) | |
12393 | pulled_task = -1; | |
12394 | ||
6553fc18 VG |
12395 | out: |
12396 | /* Move the next balance forward */ | |
12397 | if (time_after(this_rq->next_balance, next_balance)) | |
12398 | this_rq->next_balance = next_balance; | |
12399 | ||
47ea5412 PZ |
12400 | if (pulled_task) |
12401 | this_rq->idle_stamp = 0; | |
0826530d VG |
12402 | else |
12403 | nohz_newidle_balance(this_rq); | |
47ea5412 PZ |
12404 | |
12405 | rq_repin_lock(this_rq, rf); | |
12406 | ||
12407 | return pulled_task; | |
12408 | } | |
12409 | ||
83cd4fe2 | 12410 | /* |
3dc6f6c8 IM |
12411 | * This softirq handler is triggered via SCHED_SOFTIRQ from two places: |
12412 | * | |
12413 | * - directly from the local scheduler_tick() for periodic load balancing | |
12414 | * | |
12415 | * - indirectly from a remote scheduler_tick() for NOHZ idle balancing | |
12416 | * through the SMP cross-call nohz_csd_func() | |
83cd4fe2 | 12417 | */ |
70a27d6d | 12418 | static __latent_entropy void sched_balance_softirq(struct softirq_action *h) |
1e3c88bd | 12419 | { |
208cb16b | 12420 | struct rq *this_rq = this_rq(); |
38d707c5 | 12421 | enum cpu_idle_type idle = this_rq->idle_balance; |
1e3c88bd | 12422 | /* |
3a5fe930 | 12423 | * If this CPU has a pending NOHZ_BALANCE_KICK, then do the |
97fb7a0a | 12424 | * balancing on behalf of the other idle CPUs whose ticks are |
14ff4dbd | 12425 | * stopped. Do nohz_idle_balance *before* sched_balance_domains to |
97fb7a0a | 12426 | * give the idle CPUs a chance to load balance. Else we may |
d4573c3e PM |
12427 | * load balance only within the local sched_domain hierarchy |
12428 | * and abort nohz_idle_balance altogether if we pull some load. | |
1e3c88bd | 12429 | */ |
b7031a02 PZ |
12430 | if (nohz_idle_balance(this_rq, idle)) |
12431 | return; | |
12432 | ||
12433 | /* normal load balance */ | |
12434 | update_blocked_averages(this_rq->cpu); | |
14ff4dbd | 12435 | sched_balance_domains(this_rq, idle); |
1e3c88bd PZ |
12436 | } |
12437 | ||
1e3c88bd PZ |
12438 | /* |
12439 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | |
1e3c88bd | 12440 | */ |
983be062 | 12441 | void sched_balance_trigger(struct rq *rq) |
1e3c88bd | 12442 | { |
e0b257c3 AMB |
12443 | /* |
12444 | * Don't need to rebalance while attached to NULL domain or | |
12445 | * runqueue CPU is not active | |
12446 | */ | |
12447 | if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) | |
c726099e DL |
12448 | return; |
12449 | ||
12450 | if (time_after_eq(jiffies, rq->next_balance)) | |
1e3c88bd | 12451 | raise_softirq(SCHED_SOFTIRQ); |
4550487a PZ |
12452 | |
12453 | nohz_balancer_kick(rq); | |
1e3c88bd PZ |
12454 | } |
12455 | ||
0bcdcf28 CE |
12456 | static void rq_online_fair(struct rq *rq) |
12457 | { | |
12458 | update_sysctl(); | |
0e59bdae KT |
12459 | |
12460 | update_runtime_enabled(rq); | |
0bcdcf28 CE |
12461 | } |
12462 | ||
12463 | static void rq_offline_fair(struct rq *rq) | |
12464 | { | |
12465 | update_sysctl(); | |
a4c96ae3 PB |
12466 | |
12467 | /* Ensure any throttled groups are reachable by pick_next_task */ | |
12468 | unthrottle_offline_cfs_rqs(rq); | |
f60a631a VG |
12469 | |
12470 | /* Ensure that we remove rq contribution to group share: */ | |
12471 | clear_tg_offline_cfs_rqs(rq); | |
0bcdcf28 CE |
12472 | } |
12473 | ||
55e12e5e | 12474 | #endif /* CONFIG_SMP */ |
e1d1484f | 12475 | |
8039e96f VP |
12476 | #ifdef CONFIG_SCHED_CORE |
12477 | static inline bool | |
12478 | __entity_slice_used(struct sched_entity *se, int min_nr_tasks) | |
12479 | { | |
8039e96f | 12480 | u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; |
147f3efa | 12481 | u64 slice = se->slice; |
8039e96f VP |
12482 | |
12483 | return (rtime * min_nr_tasks > slice); | |
12484 | } | |
12485 | ||
12486 | #define MIN_NR_TASKS_DURING_FORCEIDLE 2 | |
12487 | static inline void task_tick_core(struct rq *rq, struct task_struct *curr) | |
12488 | { | |
12489 | if (!sched_core_enabled(rq)) | |
12490 | return; | |
12491 | ||
12492 | /* | |
12493 | * If runqueue has only one task which used up its slice and | |
12494 | * if the sibling is forced idle, then trigger schedule to | |
12495 | * give forced idle task a chance. | |
12496 | * | |
12497 | * sched_slice() considers only this active rq and it gets the | |
12498 | * whole slice. But during force idle, we have siblings acting | |
12499 | * like a single runqueue and hence we need to consider runnable | |
cc00c198 | 12500 | * tasks on this CPU and the forced idle CPU. Ideally, we should |
8039e96f | 12501 | * go through the forced idle rq, but that would be a perf hit. |
cc00c198 | 12502 | * We can assume that the forced idle CPU has at least |
8039e96f | 12503 | * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check |
cc00c198 | 12504 | * if we need to give up the CPU. |
8039e96f | 12505 | */ |
4feee7d1 | 12506 | if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && |
8039e96f VP |
12507 | __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) |
12508 | resched_curr(rq); | |
12509 | } | |
c6047c2e JFG |
12510 | |
12511 | /* | |
12512 | * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. | |
12513 | */ | |
904cbab7 MWO |
12514 | static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, |
12515 | bool forceidle) | |
c6047c2e JFG |
12516 | { |
12517 | for_each_sched_entity(se) { | |
12518 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
12519 | ||
12520 | if (forceidle) { | |
12521 | if (cfs_rq->forceidle_seq == fi_seq) | |
12522 | break; | |
12523 | cfs_rq->forceidle_seq = fi_seq; | |
12524 | } | |
12525 | ||
12526 | cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; | |
12527 | } | |
12528 | } | |
12529 | ||
12530 | void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) | |
12531 | { | |
12532 | struct sched_entity *se = &p->se; | |
12533 | ||
12534 | if (p->sched_class != &fair_sched_class) | |
12535 | return; | |
12536 | ||
12537 | se_fi_update(se, rq->core->core_forceidle_seq, in_fi); | |
12538 | } | |
12539 | ||
904cbab7 MWO |
12540 | bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, |
12541 | bool in_fi) | |
c6047c2e JFG |
12542 | { |
12543 | struct rq *rq = task_rq(a); | |
904cbab7 MWO |
12544 | const struct sched_entity *sea = &a->se; |
12545 | const struct sched_entity *seb = &b->se; | |
c6047c2e JFG |
12546 | struct cfs_rq *cfs_rqa; |
12547 | struct cfs_rq *cfs_rqb; | |
12548 | s64 delta; | |
12549 | ||
12550 | SCHED_WARN_ON(task_rq(b)->core != rq->core); | |
12551 | ||
12552 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
12553 | /* | |
12554 | * Find an se in the hierarchy for tasks a and b, such that the se's | |
12555 | * are immediate siblings. | |
12556 | */ | |
12557 | while (sea->cfs_rq->tg != seb->cfs_rq->tg) { | |
12558 | int sea_depth = sea->depth; | |
12559 | int seb_depth = seb->depth; | |
12560 | ||
12561 | if (sea_depth >= seb_depth) | |
12562 | sea = parent_entity(sea); | |
12563 | if (sea_depth <= seb_depth) | |
12564 | seb = parent_entity(seb); | |
12565 | } | |
12566 | ||
12567 | se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); | |
12568 | se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); | |
12569 | ||
12570 | cfs_rqa = sea->cfs_rq; | |
12571 | cfs_rqb = seb->cfs_rq; | |
12572 | #else | |
12573 | cfs_rqa = &task_rq(a)->cfs; | |
12574 | cfs_rqb = &task_rq(b)->cfs; | |
12575 | #endif | |
12576 | ||
12577 | /* | |
12578 | * Find delta after normalizing se's vruntime with its cfs_rq's | |
12579 | * min_vruntime_fi, which would have been updated in prior calls | |
12580 | * to se_fi_update(). | |
12581 | */ | |
12582 | delta = (s64)(sea->vruntime - seb->vruntime) + | |
12583 | (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); | |
12584 | ||
12585 | return delta > 0; | |
12586 | } | |
530bfad1 HJ |
12587 | |
12588 | static int task_is_throttled_fair(struct task_struct *p, int cpu) | |
12589 | { | |
12590 | struct cfs_rq *cfs_rq; | |
12591 | ||
12592 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
12593 | cfs_rq = task_group(p)->cfs_rq[cpu]; | |
12594 | #else | |
12595 | cfs_rq = &cpu_rq(cpu)->cfs; | |
12596 | #endif | |
12597 | return throttled_hierarchy(cfs_rq); | |
12598 | } | |
8039e96f VP |
12599 | #else |
12600 | static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} | |
12601 | #endif | |
12602 | ||
bf0f6f24 | 12603 | /* |
d84b3131 FW |
12604 | * scheduler tick hitting a task of our scheduling class. |
12605 | * | |
12606 | * NOTE: This function can be called remotely by the tick offload that | |
12607 | * goes along full dynticks. Therefore no local assumption can be made | |
12608 | * and everything must be accessed through the @rq and @curr passed in | |
12609 | * parameters. | |
bf0f6f24 | 12610 | */ |
8f4d37ec | 12611 | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) |
bf0f6f24 IM |
12612 | { |
12613 | struct cfs_rq *cfs_rq; | |
12614 | struct sched_entity *se = &curr->se; | |
12615 | ||
12616 | for_each_sched_entity(se) { | |
12617 | cfs_rq = cfs_rq_of(se); | |
8f4d37ec | 12618 | entity_tick(cfs_rq, se, queued); |
bf0f6f24 | 12619 | } |
18bf2805 | 12620 | |
b52da86e | 12621 | if (static_branch_unlikely(&sched_numa_balancing)) |
cbee9f88 | 12622 | task_tick_numa(rq, curr); |
3b1baa64 MR |
12623 | |
12624 | update_misfit_status(curr, rq); | |
2802bf3c | 12625 | update_overutilized_status(task_rq(curr)); |
8039e96f VP |
12626 | |
12627 | task_tick_core(rq, curr); | |
bf0f6f24 IM |
12628 | } |
12629 | ||
12630 | /* | |
cd29fe6f PZ |
12631 | * called on fork with the child task as argument from the parent's context |
12632 | * - child not yet on the tasklist | |
12633 | * - preemption disabled | |
bf0f6f24 | 12634 | */ |
cd29fe6f | 12635 | static void task_fork_fair(struct task_struct *p) |
bf0f6f24 | 12636 | { |
4fc420c9 | 12637 | struct sched_entity *se = &p->se, *curr; |
e8f331bc | 12638 | struct cfs_rq *cfs_rq; |
cd29fe6f | 12639 | struct rq *rq = this_rq(); |
8a8c69c3 | 12640 | struct rq_flags rf; |
bf0f6f24 | 12641 | |
8a8c69c3 | 12642 | rq_lock(rq, &rf); |
861d034e PZ |
12643 | update_rq_clock(rq); |
12644 | ||
4fc420c9 DN |
12645 | cfs_rq = task_cfs_rq(current); |
12646 | curr = cfs_rq->curr; | |
e8f331bc | 12647 | if (curr) |
e210bffd | 12648 | update_curr(cfs_rq); |
d07f09a1 | 12649 | place_entity(cfs_rq, se, ENQUEUE_INITIAL); |
8a8c69c3 | 12650 | rq_unlock(rq, &rf); |
bf0f6f24 IM |
12651 | } |
12652 | ||
cb469845 SR |
12653 | /* |
12654 | * Priority of the task has changed. Check to see if we preempt | |
12655 | * the current task. | |
12656 | */ | |
da7a735e PZ |
12657 | static void |
12658 | prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) | |
cb469845 | 12659 | { |
da0c1e65 | 12660 | if (!task_on_rq_queued(p)) |
da7a735e PZ |
12661 | return; |
12662 | ||
7c2e8bbd FW |
12663 | if (rq->cfs.nr_running == 1) |
12664 | return; | |
12665 | ||
cb469845 SR |
12666 | /* |
12667 | * Reschedule if we are currently running on this runqueue and | |
12668 | * our priority decreased, or if we are not currently running on | |
12669 | * this runqueue and our priority is higher than the current's | |
12670 | */ | |
65bcf072 | 12671 | if (task_current(rq, p)) { |
cb469845 | 12672 | if (p->prio > oldprio) |
8875125e | 12673 | resched_curr(rq); |
cb469845 | 12674 | } else |
e23edc86 | 12675 | wakeup_preempt(rq, p, 0); |
cb469845 SR |
12676 | } |
12677 | ||
09a43ace VG |
12678 | #ifdef CONFIG_FAIR_GROUP_SCHED |
12679 | /* | |
12680 | * Propagate the changes of the sched_entity across the tg tree to make it | |
12681 | * visible to the root | |
12682 | */ | |
12683 | static void propagate_entity_cfs_rq(struct sched_entity *se) | |
12684 | { | |
51bf903b CZ |
12685 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
12686 | ||
12687 | if (cfs_rq_throttled(cfs_rq)) | |
12688 | return; | |
09a43ace | 12689 | |
51bf903b CZ |
12690 | if (!throttled_hierarchy(cfs_rq)) |
12691 | list_add_leaf_cfs_rq(cfs_rq); | |
0258bdfa | 12692 | |
09a43ace VG |
12693 | /* Start to propagate at parent */ |
12694 | se = se->parent; | |
12695 | ||
12696 | for_each_sched_entity(se) { | |
12697 | cfs_rq = cfs_rq_of(se); | |
12698 | ||
51bf903b | 12699 | update_load_avg(cfs_rq, se, UPDATE_TG); |
09a43ace | 12700 | |
51bf903b | 12701 | if (cfs_rq_throttled(cfs_rq)) |
0258bdfa | 12702 | break; |
51bf903b CZ |
12703 | |
12704 | if (!throttled_hierarchy(cfs_rq)) | |
12705 | list_add_leaf_cfs_rq(cfs_rq); | |
09a43ace VG |
12706 | } |
12707 | } | |
12708 | #else | |
12709 | static void propagate_entity_cfs_rq(struct sched_entity *se) { } | |
12710 | #endif | |
12711 | ||
df217913 | 12712 | static void detach_entity_cfs_rq(struct sched_entity *se) |
daa59407 | 12713 | { |
daa59407 BP |
12714 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
12715 | ||
7e2edaf6 CZ |
12716 | #ifdef CONFIG_SMP |
12717 | /* | |
12718 | * In case the task sched_avg hasn't been attached: | |
12719 | * - A forked task which hasn't been woken up by wake_up_new_task(). | |
12720 | * - A task which has been woken up by try_to_wake_up() but is | |
12721 | * waiting for actually being woken up by sched_ttwu_pending(). | |
12722 | */ | |
12723 | if (!se->avg.last_update_time) | |
12724 | return; | |
12725 | #endif | |
12726 | ||
9d89c257 | 12727 | /* Catch up with the cfs_rq and remove our load when we leave */ |
88c0616e | 12728 | update_load_avg(cfs_rq, se, 0); |
a05e8c51 | 12729 | detach_entity_load_avg(cfs_rq, se); |
fe749158 | 12730 | update_tg_load_avg(cfs_rq); |
09a43ace | 12731 | propagate_entity_cfs_rq(se); |
da7a735e PZ |
12732 | } |
12733 | ||
df217913 | 12734 | static void attach_entity_cfs_rq(struct sched_entity *se) |
cb469845 | 12735 | { |
daa59407 | 12736 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
7855a35a | 12737 | |
df217913 | 12738 | /* Synchronize entity with its cfs_rq */ |
88c0616e | 12739 | update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); |
a4f9a0e5 | 12740 | attach_entity_load_avg(cfs_rq, se); |
fe749158 | 12741 | update_tg_load_avg(cfs_rq); |
09a43ace | 12742 | propagate_entity_cfs_rq(se); |
df217913 VG |
12743 | } |
12744 | ||
12745 | static void detach_task_cfs_rq(struct task_struct *p) | |
12746 | { | |
12747 | struct sched_entity *se = &p->se; | |
df217913 VG |
12748 | |
12749 | detach_entity_cfs_rq(se); | |
12750 | } | |
12751 | ||
12752 | static void attach_task_cfs_rq(struct task_struct *p) | |
12753 | { | |
12754 | struct sched_entity *se = &p->se; | |
df217913 VG |
12755 | |
12756 | attach_entity_cfs_rq(se); | |
daa59407 | 12757 | } |
6efdb105 | 12758 | |
daa59407 BP |
12759 | static void switched_from_fair(struct rq *rq, struct task_struct *p) |
12760 | { | |
12761 | detach_task_cfs_rq(p); | |
12762 | } | |
12763 | ||
12764 | static void switched_to_fair(struct rq *rq, struct task_struct *p) | |
12765 | { | |
12766 | attach_task_cfs_rq(p); | |
7855a35a | 12767 | |
daa59407 | 12768 | if (task_on_rq_queued(p)) { |
7855a35a | 12769 | /* |
daa59407 BP |
12770 | * We were most likely switched from sched_rt, so |
12771 | * kick off the schedule if running, otherwise just see | |
12772 | * if we can still preempt the current task. | |
7855a35a | 12773 | */ |
65bcf072 | 12774 | if (task_current(rq, p)) |
daa59407 BP |
12775 | resched_curr(rq); |
12776 | else | |
e23edc86 | 12777 | wakeup_preempt(rq, p, 0); |
7855a35a | 12778 | } |
cb469845 SR |
12779 | } |
12780 | ||
83b699ed SV |
12781 | /* Account for a task changing its policy or group. |
12782 | * | |
12783 | * This routine is mostly called to set cfs_rq->curr field when a task | |
12784 | * migrates between groups/classes. | |
12785 | */ | |
a0e813f2 | 12786 | static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) |
83b699ed | 12787 | { |
03b7fad1 PZ |
12788 | struct sched_entity *se = &p->se; |
12789 | ||
12790 | #ifdef CONFIG_SMP | |
12791 | if (task_on_rq_queued(p)) { | |
12792 | /* | |
12793 | * Move the next running task to the front of the list, so our | |
12794 | * cfs_tasks list becomes MRU one. | |
12795 | */ | |
12796 | list_move(&se->group_node, &rq->cfs_tasks); | |
12797 | } | |
12798 | #endif | |
83b699ed | 12799 | |
ec12cb7f PT |
12800 | for_each_sched_entity(se) { |
12801 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
12802 | ||
12803 | set_next_entity(cfs_rq, se); | |
12804 | /* ensure bandwidth has been allocated on our new cfs_rq */ | |
12805 | account_cfs_rq_runtime(cfs_rq, 0); | |
12806 | } | |
83b699ed SV |
12807 | } |
12808 | ||
029632fb PZ |
12809 | void init_cfs_rq(struct cfs_rq *cfs_rq) |
12810 | { | |
bfb06889 | 12811 | cfs_rq->tasks_timeline = RB_ROOT_CACHED; |
d05b4305 | 12812 | u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); |
141965c7 | 12813 | #ifdef CONFIG_SMP |
2a2f5d4e | 12814 | raw_spin_lock_init(&cfs_rq->removed.lock); |
9ee474f5 | 12815 | #endif |
029632fb PZ |
12816 | } |
12817 | ||
810b3817 | 12818 | #ifdef CONFIG_FAIR_GROUP_SCHED |
39c42611 | 12819 | static void task_change_group_fair(struct task_struct *p) |
810b3817 | 12820 | { |
df16b71c CZ |
12821 | /* |
12822 | * We couldn't detach or attach a forked task which | |
12823 | * hasn't been woken up by wake_up_new_task(). | |
12824 | */ | |
12825 | if (READ_ONCE(p->__state) == TASK_NEW) | |
12826 | return; | |
12827 | ||
daa59407 | 12828 | detach_task_cfs_rq(p); |
6efdb105 BP |
12829 | |
12830 | #ifdef CONFIG_SMP | |
12831 | /* Tell se's cfs_rq has been changed -- migrated */ | |
12832 | p->se.avg.last_update_time = 0; | |
12833 | #endif | |
5d6da83c | 12834 | set_task_rq(p, task_cpu(p)); |
daa59407 | 12835 | attach_task_cfs_rq(p); |
810b3817 | 12836 | } |
029632fb PZ |
12837 | |
12838 | void free_fair_sched_group(struct task_group *tg) | |
12839 | { | |
12840 | int i; | |
12841 | ||
029632fb PZ |
12842 | for_each_possible_cpu(i) { |
12843 | if (tg->cfs_rq) | |
12844 | kfree(tg->cfs_rq[i]); | |
6fe1f348 | 12845 | if (tg->se) |
029632fb PZ |
12846 | kfree(tg->se[i]); |
12847 | } | |
12848 | ||
12849 | kfree(tg->cfs_rq); | |
12850 | kfree(tg->se); | |
12851 | } | |
12852 | ||
12853 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
12854 | { | |
029632fb | 12855 | struct sched_entity *se; |
b7fa30c9 | 12856 | struct cfs_rq *cfs_rq; |
029632fb PZ |
12857 | int i; |
12858 | ||
6396bb22 | 12859 | tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); |
029632fb PZ |
12860 | if (!tg->cfs_rq) |
12861 | goto err; | |
6396bb22 | 12862 | tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); |
029632fb PZ |
12863 | if (!tg->se) |
12864 | goto err; | |
12865 | ||
12866 | tg->shares = NICE_0_LOAD; | |
12867 | ||
c98c1827 | 12868 | init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); |
029632fb PZ |
12869 | |
12870 | for_each_possible_cpu(i) { | |
12871 | cfs_rq = kzalloc_node(sizeof(struct cfs_rq), | |
12872 | GFP_KERNEL, cpu_to_node(i)); | |
12873 | if (!cfs_rq) | |
12874 | goto err; | |
12875 | ||
ceeadb83 | 12876 | se = kzalloc_node(sizeof(struct sched_entity_stats), |
029632fb PZ |
12877 | GFP_KERNEL, cpu_to_node(i)); |
12878 | if (!se) | |
12879 | goto err_free_rq; | |
12880 | ||
12881 | init_cfs_rq(cfs_rq); | |
12882 | init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); | |
540247fb | 12883 | init_entity_runnable_average(se); |
029632fb PZ |
12884 | } |
12885 | ||
12886 | return 1; | |
12887 | ||
12888 | err_free_rq: | |
12889 | kfree(cfs_rq); | |
12890 | err: | |
12891 | return 0; | |
12892 | } | |
12893 | ||
8663e24d PZ |
12894 | void online_fair_sched_group(struct task_group *tg) |
12895 | { | |
12896 | struct sched_entity *se; | |
a46d14ec | 12897 | struct rq_flags rf; |
8663e24d PZ |
12898 | struct rq *rq; |
12899 | int i; | |
12900 | ||
12901 | for_each_possible_cpu(i) { | |
12902 | rq = cpu_rq(i); | |
12903 | se = tg->se[i]; | |
a46d14ec | 12904 | rq_lock_irq(rq, &rf); |
4126bad6 | 12905 | update_rq_clock(rq); |
d0326691 | 12906 | attach_entity_cfs_rq(se); |
55e16d30 | 12907 | sync_throttle(tg, i); |
a46d14ec | 12908 | rq_unlock_irq(rq, &rf); |
8663e24d PZ |
12909 | } |
12910 | } | |
12911 | ||
6fe1f348 | 12912 | void unregister_fair_sched_group(struct task_group *tg) |
029632fb | 12913 | { |
029632fb | 12914 | unsigned long flags; |
6fe1f348 PZ |
12915 | struct rq *rq; |
12916 | int cpu; | |
029632fb | 12917 | |
b027789e MK |
12918 | destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); |
12919 | ||
6fe1f348 PZ |
12920 | for_each_possible_cpu(cpu) { |
12921 | if (tg->se[cpu]) | |
12922 | remove_entity_load_avg(tg->se[cpu]); | |
029632fb | 12923 | |
6fe1f348 PZ |
12924 | /* |
12925 | * Only empty task groups can be destroyed; so we can speculatively | |
12926 | * check on_list without danger of it being re-added. | |
12927 | */ | |
12928 | if (!tg->cfs_rq[cpu]->on_list) | |
12929 | continue; | |
12930 | ||
12931 | rq = cpu_rq(cpu); | |
12932 | ||
5cb9eaa3 | 12933 | raw_spin_rq_lock_irqsave(rq, flags); |
6fe1f348 | 12934 | list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); |
5cb9eaa3 | 12935 | raw_spin_rq_unlock_irqrestore(rq, flags); |
6fe1f348 | 12936 | } |
029632fb PZ |
12937 | } |
12938 | ||
12939 | void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | |
12940 | struct sched_entity *se, int cpu, | |
12941 | struct sched_entity *parent) | |
12942 | { | |
12943 | struct rq *rq = cpu_rq(cpu); | |
12944 | ||
12945 | cfs_rq->tg = tg; | |
12946 | cfs_rq->rq = rq; | |
029632fb PZ |
12947 | init_cfs_rq_runtime(cfs_rq); |
12948 | ||
12949 | tg->cfs_rq[cpu] = cfs_rq; | |
12950 | tg->se[cpu] = se; | |
12951 | ||
12952 | /* se could be NULL for root_task_group */ | |
12953 | if (!se) | |
12954 | return; | |
12955 | ||
fed14d45 | 12956 | if (!parent) { |
029632fb | 12957 | se->cfs_rq = &rq->cfs; |
fed14d45 PZ |
12958 | se->depth = 0; |
12959 | } else { | |
029632fb | 12960 | se->cfs_rq = parent->my_q; |
fed14d45 PZ |
12961 | se->depth = parent->depth + 1; |
12962 | } | |
029632fb PZ |
12963 | |
12964 | se->my_q = cfs_rq; | |
0ac9b1c2 PT |
12965 | /* guarantee group entities always have weight */ |
12966 | update_load_set(&se->load, NICE_0_LOAD); | |
029632fb PZ |
12967 | se->parent = parent; |
12968 | } | |
12969 | ||
12970 | static DEFINE_MUTEX(shares_mutex); | |
12971 | ||
30400039 | 12972 | static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) |
029632fb PZ |
12973 | { |
12974 | int i; | |
029632fb | 12975 | |
30400039 JD |
12976 | lockdep_assert_held(&shares_mutex); |
12977 | ||
029632fb PZ |
12978 | /* |
12979 | * We can't change the weight of the root cgroup. | |
12980 | */ | |
12981 | if (!tg->se[0]) | |
12982 | return -EINVAL; | |
12983 | ||
12984 | shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); | |
12985 | ||
029632fb | 12986 | if (tg->shares == shares) |
30400039 | 12987 | return 0; |
029632fb PZ |
12988 | |
12989 | tg->shares = shares; | |
12990 | for_each_possible_cpu(i) { | |
12991 | struct rq *rq = cpu_rq(i); | |
8a8c69c3 PZ |
12992 | struct sched_entity *se = tg->se[i]; |
12993 | struct rq_flags rf; | |
029632fb | 12994 | |
029632fb | 12995 | /* Propagate contribution to hierarchy */ |
8a8c69c3 | 12996 | rq_lock_irqsave(rq, &rf); |
71b1da46 | 12997 | update_rq_clock(rq); |
89ee048f | 12998 | for_each_sched_entity(se) { |
88c0616e | 12999 | update_load_avg(cfs_rq_of(se), se, UPDATE_TG); |
1ea6c46a | 13000 | update_cfs_group(se); |
89ee048f | 13001 | } |
8a8c69c3 | 13002 | rq_unlock_irqrestore(rq, &rf); |
029632fb PZ |
13003 | } |
13004 | ||
30400039 JD |
13005 | return 0; |
13006 | } | |
13007 | ||
13008 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) | |
13009 | { | |
13010 | int ret; | |
13011 | ||
13012 | mutex_lock(&shares_mutex); | |
13013 | if (tg_is_idle(tg)) | |
13014 | ret = -EINVAL; | |
13015 | else | |
13016 | ret = __sched_group_set_shares(tg, shares); | |
13017 | mutex_unlock(&shares_mutex); | |
13018 | ||
13019 | return ret; | |
13020 | } | |
13021 | ||
13022 | int sched_group_set_idle(struct task_group *tg, long idle) | |
13023 | { | |
13024 | int i; | |
13025 | ||
13026 | if (tg == &root_task_group) | |
13027 | return -EINVAL; | |
13028 | ||
13029 | if (idle < 0 || idle > 1) | |
13030 | return -EINVAL; | |
13031 | ||
13032 | mutex_lock(&shares_mutex); | |
13033 | ||
13034 | if (tg->idle == idle) { | |
13035 | mutex_unlock(&shares_mutex); | |
13036 | return 0; | |
13037 | } | |
13038 | ||
13039 | tg->idle = idle; | |
13040 | ||
13041 | for_each_possible_cpu(i) { | |
13042 | struct rq *rq = cpu_rq(i); | |
13043 | struct sched_entity *se = tg->se[i]; | |
a480adde | 13044 | struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; |
30400039 JD |
13045 | bool was_idle = cfs_rq_is_idle(grp_cfs_rq); |
13046 | long idle_task_delta; | |
13047 | struct rq_flags rf; | |
13048 | ||
13049 | rq_lock_irqsave(rq, &rf); | |
13050 | ||
13051 | grp_cfs_rq->idle = idle; | |
13052 | if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) | |
13053 | goto next_cpu; | |
13054 | ||
a480adde JD |
13055 | if (se->on_rq) { |
13056 | parent_cfs_rq = cfs_rq_of(se); | |
13057 | if (cfs_rq_is_idle(grp_cfs_rq)) | |
13058 | parent_cfs_rq->idle_nr_running++; | |
13059 | else | |
13060 | parent_cfs_rq->idle_nr_running--; | |
13061 | } | |
13062 | ||
30400039 JD |
13063 | idle_task_delta = grp_cfs_rq->h_nr_running - |
13064 | grp_cfs_rq->idle_h_nr_running; | |
13065 | if (!cfs_rq_is_idle(grp_cfs_rq)) | |
13066 | idle_task_delta *= -1; | |
13067 | ||
13068 | for_each_sched_entity(se) { | |
13069 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
13070 | ||
13071 | if (!se->on_rq) | |
13072 | break; | |
13073 | ||
13074 | cfs_rq->idle_h_nr_running += idle_task_delta; | |
13075 | ||
13076 | /* Already accounted at parent level and above. */ | |
13077 | if (cfs_rq_is_idle(cfs_rq)) | |
13078 | break; | |
13079 | } | |
13080 | ||
13081 | next_cpu: | |
13082 | rq_unlock_irqrestore(rq, &rf); | |
13083 | } | |
13084 | ||
13085 | /* Idle groups have minimum weight. */ | |
13086 | if (tg_is_idle(tg)) | |
13087 | __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); | |
13088 | else | |
13089 | __sched_group_set_shares(tg, NICE_0_LOAD); | |
13090 | ||
029632fb PZ |
13091 | mutex_unlock(&shares_mutex); |
13092 | return 0; | |
13093 | } | |
30400039 | 13094 | |
029632fb PZ |
13095 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
13096 | ||
810b3817 | 13097 | |
6d686f45 | 13098 | static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) |
0d721cea PW |
13099 | { |
13100 | struct sched_entity *se = &task->se; | |
0d721cea PW |
13101 | unsigned int rr_interval = 0; |
13102 | ||
13103 | /* | |
13104 | * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise | |
13105 | * idle runqueue: | |
13106 | */ | |
0d721cea | 13107 | if (rq->cfs.load.weight) |
147f3efa | 13108 | rr_interval = NS_TO_JIFFIES(se->slice); |
0d721cea PW |
13109 | |
13110 | return rr_interval; | |
13111 | } | |
13112 | ||
bf0f6f24 IM |
13113 | /* |
13114 | * All the scheduling class methods: | |
13115 | */ | |
43c31ac0 PZ |
13116 | DEFINE_SCHED_CLASS(fair) = { |
13117 | ||
bf0f6f24 IM |
13118 | .enqueue_task = enqueue_task_fair, |
13119 | .dequeue_task = dequeue_task_fair, | |
13120 | .yield_task = yield_task_fair, | |
d95f4122 | 13121 | .yield_to_task = yield_to_task_fair, |
bf0f6f24 | 13122 | |
e23edc86 | 13123 | .wakeup_preempt = check_preempt_wakeup_fair, |
bf0f6f24 | 13124 | |
98c2f700 | 13125 | .pick_next_task = __pick_next_task_fair, |
bf0f6f24 | 13126 | .put_prev_task = put_prev_task_fair, |
03b7fad1 | 13127 | .set_next_task = set_next_task_fair, |
bf0f6f24 | 13128 | |
681f3e68 | 13129 | #ifdef CONFIG_SMP |
6e2df058 | 13130 | .balance = balance_fair, |
21f56ffe | 13131 | .pick_task = pick_task_fair, |
4ce72a2c | 13132 | .select_task_rq = select_task_rq_fair, |
0a74bef8 | 13133 | .migrate_task_rq = migrate_task_rq_fair, |
141965c7 | 13134 | |
0bcdcf28 CE |
13135 | .rq_online = rq_online_fair, |
13136 | .rq_offline = rq_offline_fair, | |
88ec22d3 | 13137 | |
12695578 | 13138 | .task_dead = task_dead_fair, |
c5b28038 | 13139 | .set_cpus_allowed = set_cpus_allowed_common, |
681f3e68 | 13140 | #endif |
bf0f6f24 | 13141 | |
bf0f6f24 | 13142 | .task_tick = task_tick_fair, |
cd29fe6f | 13143 | .task_fork = task_fork_fair, |
cb469845 SR |
13144 | |
13145 | .prio_changed = prio_changed_fair, | |
da7a735e | 13146 | .switched_from = switched_from_fair, |
cb469845 | 13147 | .switched_to = switched_to_fair, |
810b3817 | 13148 | |
0d721cea PW |
13149 | .get_rr_interval = get_rr_interval_fair, |
13150 | ||
6e998916 SG |
13151 | .update_curr = update_curr_fair, |
13152 | ||
810b3817 | 13153 | #ifdef CONFIG_FAIR_GROUP_SCHED |
ea86cb4b | 13154 | .task_change_group = task_change_group_fair, |
810b3817 | 13155 | #endif |
982d9cdc | 13156 | |
530bfad1 HJ |
13157 | #ifdef CONFIG_SCHED_CORE |
13158 | .task_is_throttled = task_is_throttled_fair, | |
13159 | #endif | |
13160 | ||
982d9cdc PB |
13161 | #ifdef CONFIG_UCLAMP_TASK |
13162 | .uclamp_enabled = 1, | |
13163 | #endif | |
bf0f6f24 IM |
13164 | }; |
13165 | ||
13166 | #ifdef CONFIG_SCHED_DEBUG | |
029632fb | 13167 | void print_cfs_stats(struct seq_file *m, int cpu) |
bf0f6f24 | 13168 | { |
039ae8bc | 13169 | struct cfs_rq *cfs_rq, *pos; |
bf0f6f24 | 13170 | |
5973e5b9 | 13171 | rcu_read_lock(); |
039ae8bc | 13172 | for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) |
5cef9eca | 13173 | print_cfs_rq(m, cpu, cfs_rq); |
5973e5b9 | 13174 | rcu_read_unlock(); |
bf0f6f24 | 13175 | } |
397f2378 SD |
13176 | |
13177 | #ifdef CONFIG_NUMA_BALANCING | |
13178 | void show_numa_stats(struct task_struct *p, struct seq_file *m) | |
13179 | { | |
13180 | int node; | |
13181 | unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; | |
cb361d8c | 13182 | struct numa_group *ng; |
397f2378 | 13183 | |
cb361d8c JH |
13184 | rcu_read_lock(); |
13185 | ng = rcu_dereference(p->numa_group); | |
397f2378 SD |
13186 | for_each_online_node(node) { |
13187 | if (p->numa_faults) { | |
13188 | tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; | |
13189 | tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; | |
13190 | } | |
cb361d8c JH |
13191 | if (ng) { |
13192 | gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], | |
13193 | gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; | |
397f2378 SD |
13194 | } |
13195 | print_numa_stats(m, node, tsf, tpf, gsf, gpf); | |
13196 | } | |
cb361d8c | 13197 | rcu_read_unlock(); |
397f2378 SD |
13198 | } |
13199 | #endif /* CONFIG_NUMA_BALANCING */ | |
13200 | #endif /* CONFIG_SCHED_DEBUG */ | |
029632fb PZ |
13201 | |
13202 | __init void init_sched_fair_class(void) | |
13203 | { | |
13204 | #ifdef CONFIG_SMP | |
18c31c97 BH |
13205 | int i; |
13206 | ||
13207 | for_each_possible_cpu(i) { | |
13208 | zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); | |
13209 | zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); | |
f8858d96 SH |
13210 | zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), |
13211 | GFP_KERNEL, cpu_to_node(i)); | |
8ad075c2 JD |
13212 | |
13213 | #ifdef CONFIG_CFS_BANDWIDTH | |
13214 | INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); | |
13215 | INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); | |
13216 | #endif | |
18c31c97 BH |
13217 | } |
13218 | ||
70a27d6d | 13219 | open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); |
029632fb | 13220 | |
3451d024 | 13221 | #ifdef CONFIG_NO_HZ_COMMON |
554cecaf | 13222 | nohz.next_balance = jiffies; |
f643ea22 | 13223 | nohz.next_blocked = jiffies; |
029632fb | 13224 | zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); |
029632fb PZ |
13225 | #endif |
13226 | #endif /* SMP */ | |
13227 | ||
13228 | } |