]>
Commit | Line | Data |
---|---|---|
64db4cff PM |
1 | /* |
2 | * Read-Copy Update mechanism for mutual exclusion | |
3 | * | |
4 | * This program is free software; you can redistribute it and/or modify | |
5 | * it under the terms of the GNU General Public License as published by | |
6 | * the Free Software Foundation; either version 2 of the License, or | |
7 | * (at your option) any later version. | |
8 | * | |
9 | * This program is distributed in the hope that it will be useful, | |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
12 | * GNU General Public License for more details. | |
13 | * | |
14 | * You should have received a copy of the GNU General Public License | |
15 | * along with this program; if not, write to the Free Software | |
16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | |
17 | * | |
18 | * Copyright IBM Corporation, 2008 | |
19 | * | |
20 | * Authors: Dipankar Sarma <[email protected]> | |
21 | * Manfred Spraul <[email protected]> | |
22 | * Paul E. McKenney <[email protected]> Hierarchical version | |
23 | * | |
24 | * Based on the original work by Paul McKenney <[email protected]> | |
25 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | |
26 | * | |
27 | * For detailed explanation of Read-Copy Update mechanism see - | |
a71fca58 | 28 | * Documentation/RCU |
64db4cff PM |
29 | */ |
30 | #include <linux/types.h> | |
31 | #include <linux/kernel.h> | |
32 | #include <linux/init.h> | |
33 | #include <linux/spinlock.h> | |
34 | #include <linux/smp.h> | |
35 | #include <linux/rcupdate.h> | |
36 | #include <linux/interrupt.h> | |
37 | #include <linux/sched.h> | |
c1dc0b9c | 38 | #include <linux/nmi.h> |
64db4cff PM |
39 | #include <asm/atomic.h> |
40 | #include <linux/bitops.h> | |
41 | #include <linux/module.h> | |
42 | #include <linux/completion.h> | |
43 | #include <linux/moduleparam.h> | |
44 | #include <linux/percpu.h> | |
45 | #include <linux/notifier.h> | |
46 | #include <linux/cpu.h> | |
47 | #include <linux/mutex.h> | |
48 | #include <linux/time.h> | |
49 | ||
9f77da9f PM |
50 | #include "rcutree.h" |
51 | ||
64db4cff PM |
52 | /* Data structures. */ |
53 | ||
88b91c7c PZ |
54 | static struct lock_class_key rcu_root_class; |
55 | ||
64db4cff PM |
56 | #define RCU_STATE_INITIALIZER(name) { \ |
57 | .level = { &name.node[0] }, \ | |
58 | .levelcnt = { \ | |
59 | NUM_RCU_LVL_0, /* root of hierarchy. */ \ | |
60 | NUM_RCU_LVL_1, \ | |
61 | NUM_RCU_LVL_2, \ | |
62 | NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \ | |
63 | }, \ | |
83f5b01f | 64 | .signaled = RCU_GP_IDLE, \ |
64db4cff PM |
65 | .gpnum = -300, \ |
66 | .completed = -300, \ | |
67 | .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \ | |
e74f4c45 PM |
68 | .orphan_cbs_list = NULL, \ |
69 | .orphan_cbs_tail = &name.orphan_cbs_list, \ | |
70 | .orphan_qlen = 0, \ | |
64db4cff PM |
71 | .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \ |
72 | .n_force_qs = 0, \ | |
73 | .n_force_qs_ngp = 0, \ | |
74 | } | |
75 | ||
d6714c22 PM |
76 | struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state); |
77 | DEFINE_PER_CPU(struct rcu_data, rcu_sched_data); | |
64db4cff | 78 | |
6258c4fb IM |
79 | struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state); |
80 | DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); | |
b1f77b05 | 81 | |
f41d911f | 82 | |
fc2219d4 PM |
83 | /* |
84 | * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s | |
85 | * permit this function to be invoked without holding the root rcu_node | |
86 | * structure's ->lock, but of course results can be subject to change. | |
87 | */ | |
88 | static int rcu_gp_in_progress(struct rcu_state *rsp) | |
89 | { | |
90 | return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum); | |
91 | } | |
92 | ||
b1f77b05 | 93 | /* |
d6714c22 | 94 | * Note a quiescent state. Because we do not need to know |
b1f77b05 | 95 | * how many quiescent states passed, just if there was at least |
d6714c22 | 96 | * one since the start of the grace period, this just sets a flag. |
b1f77b05 | 97 | */ |
d6714c22 | 98 | void rcu_sched_qs(int cpu) |
b1f77b05 | 99 | { |
f41d911f PM |
100 | struct rcu_data *rdp; |
101 | ||
f41d911f | 102 | rdp = &per_cpu(rcu_sched_data, cpu); |
b1f77b05 | 103 | rdp->passed_quiesc_completed = rdp->completed; |
c3422bea PM |
104 | barrier(); |
105 | rdp->passed_quiesc = 1; | |
106 | rcu_preempt_note_context_switch(cpu); | |
b1f77b05 IM |
107 | } |
108 | ||
d6714c22 | 109 | void rcu_bh_qs(int cpu) |
b1f77b05 | 110 | { |
f41d911f PM |
111 | struct rcu_data *rdp; |
112 | ||
f41d911f | 113 | rdp = &per_cpu(rcu_bh_data, cpu); |
b1f77b05 | 114 | rdp->passed_quiesc_completed = rdp->completed; |
c3422bea PM |
115 | barrier(); |
116 | rdp->passed_quiesc = 1; | |
b1f77b05 | 117 | } |
64db4cff PM |
118 | |
119 | #ifdef CONFIG_NO_HZ | |
90a4d2c0 PM |
120 | DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { |
121 | .dynticks_nesting = 1, | |
122 | .dynticks = 1, | |
123 | }; | |
64db4cff PM |
124 | #endif /* #ifdef CONFIG_NO_HZ */ |
125 | ||
126 | static int blimit = 10; /* Maximum callbacks per softirq. */ | |
127 | static int qhimark = 10000; /* If this many pending, ignore blimit. */ | |
128 | static int qlowmark = 100; /* Once only this many pending, use blimit. */ | |
129 | ||
3d76c082 PM |
130 | module_param(blimit, int, 0); |
131 | module_param(qhimark, int, 0); | |
132 | module_param(qlowmark, int, 0); | |
133 | ||
64db4cff | 134 | static void force_quiescent_state(struct rcu_state *rsp, int relaxed); |
a157229c | 135 | static int rcu_pending(int cpu); |
64db4cff PM |
136 | |
137 | /* | |
d6714c22 | 138 | * Return the number of RCU-sched batches processed thus far for debug & stats. |
64db4cff | 139 | */ |
d6714c22 | 140 | long rcu_batches_completed_sched(void) |
64db4cff | 141 | { |
d6714c22 | 142 | return rcu_sched_state.completed; |
64db4cff | 143 | } |
d6714c22 | 144 | EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); |
64db4cff PM |
145 | |
146 | /* | |
147 | * Return the number of RCU BH batches processed thus far for debug & stats. | |
148 | */ | |
149 | long rcu_batches_completed_bh(void) | |
150 | { | |
151 | return rcu_bh_state.completed; | |
152 | } | |
153 | EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); | |
154 | ||
155 | /* | |
156 | * Does the CPU have callbacks ready to be invoked? | |
157 | */ | |
158 | static int | |
159 | cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) | |
160 | { | |
161 | return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL]; | |
162 | } | |
163 | ||
164 | /* | |
165 | * Does the current CPU require a yet-as-unscheduled grace period? | |
166 | */ | |
167 | static int | |
168 | cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) | |
169 | { | |
fc2219d4 | 170 | return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp); |
64db4cff PM |
171 | } |
172 | ||
173 | /* | |
174 | * Return the root node of the specified rcu_state structure. | |
175 | */ | |
176 | static struct rcu_node *rcu_get_root(struct rcu_state *rsp) | |
177 | { | |
178 | return &rsp->node[0]; | |
179 | } | |
180 | ||
281d150c PM |
181 | /* |
182 | * Record the specified "completed" value, which is later used to validate | |
183 | * dynticks counter manipulations and CPU-offline checks. Specify | |
184 | * "rsp->completed - 1" to unconditionally invalidate any future dynticks | |
185 | * manipulations and CPU-offline checks. Such invalidation is useful at | |
186 | * the beginning of a grace period. | |
187 | */ | |
188 | static void dyntick_record_completed(struct rcu_state *rsp, long comp) | |
189 | { | |
4bcfe055 | 190 | rsp->completed_fqs = comp; |
281d150c PM |
191 | } |
192 | ||
64db4cff PM |
193 | #ifdef CONFIG_SMP |
194 | ||
281d150c PM |
195 | /* |
196 | * Recall the previously recorded value of the completion for dynticks. | |
197 | */ | |
198 | static long dyntick_recall_completed(struct rcu_state *rsp) | |
199 | { | |
4bcfe055 | 200 | return rsp->completed_fqs; |
281d150c PM |
201 | } |
202 | ||
64db4cff PM |
203 | /* |
204 | * If the specified CPU is offline, tell the caller that it is in | |
205 | * a quiescent state. Otherwise, whack it with a reschedule IPI. | |
206 | * Grace periods can end up waiting on an offline CPU when that | |
207 | * CPU is in the process of coming online -- it will be added to the | |
208 | * rcu_node bitmasks before it actually makes it online. The same thing | |
209 | * can happen while a CPU is in the process of coming online. Because this | |
210 | * race is quite rare, we check for it after detecting that the grace | |
211 | * period has been delayed rather than checking each and every CPU | |
212 | * each and every time we start a new grace period. | |
213 | */ | |
214 | static int rcu_implicit_offline_qs(struct rcu_data *rdp) | |
215 | { | |
216 | /* | |
217 | * If the CPU is offline, it is in a quiescent state. We can | |
218 | * trust its state not to change because interrupts are disabled. | |
219 | */ | |
220 | if (cpu_is_offline(rdp->cpu)) { | |
221 | rdp->offline_fqs++; | |
222 | return 1; | |
223 | } | |
224 | ||
f41d911f PM |
225 | /* If preemptable RCU, no point in sending reschedule IPI. */ |
226 | if (rdp->preemptable) | |
227 | return 0; | |
228 | ||
64db4cff PM |
229 | /* The CPU is online, so send it a reschedule IPI. */ |
230 | if (rdp->cpu != smp_processor_id()) | |
231 | smp_send_reschedule(rdp->cpu); | |
232 | else | |
233 | set_need_resched(); | |
234 | rdp->resched_ipi++; | |
235 | return 0; | |
236 | } | |
237 | ||
238 | #endif /* #ifdef CONFIG_SMP */ | |
239 | ||
240 | #ifdef CONFIG_NO_HZ | |
64db4cff PM |
241 | |
242 | /** | |
243 | * rcu_enter_nohz - inform RCU that current CPU is entering nohz | |
244 | * | |
245 | * Enter nohz mode, in other words, -leave- the mode in which RCU | |
246 | * read-side critical sections can occur. (Though RCU read-side | |
247 | * critical sections can occur in irq handlers in nohz mode, a possibility | |
248 | * handled by rcu_irq_enter() and rcu_irq_exit()). | |
249 | */ | |
250 | void rcu_enter_nohz(void) | |
251 | { | |
252 | unsigned long flags; | |
253 | struct rcu_dynticks *rdtp; | |
254 | ||
255 | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ | |
256 | local_irq_save(flags); | |
257 | rdtp = &__get_cpu_var(rcu_dynticks); | |
258 | rdtp->dynticks++; | |
259 | rdtp->dynticks_nesting--; | |
86848966 | 260 | WARN_ON_ONCE(rdtp->dynticks & 0x1); |
64db4cff PM |
261 | local_irq_restore(flags); |
262 | } | |
263 | ||
264 | /* | |
265 | * rcu_exit_nohz - inform RCU that current CPU is leaving nohz | |
266 | * | |
267 | * Exit nohz mode, in other words, -enter- the mode in which RCU | |
268 | * read-side critical sections normally occur. | |
269 | */ | |
270 | void rcu_exit_nohz(void) | |
271 | { | |
272 | unsigned long flags; | |
273 | struct rcu_dynticks *rdtp; | |
274 | ||
275 | local_irq_save(flags); | |
276 | rdtp = &__get_cpu_var(rcu_dynticks); | |
277 | rdtp->dynticks++; | |
278 | rdtp->dynticks_nesting++; | |
86848966 | 279 | WARN_ON_ONCE(!(rdtp->dynticks & 0x1)); |
64db4cff PM |
280 | local_irq_restore(flags); |
281 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ | |
282 | } | |
283 | ||
284 | /** | |
285 | * rcu_nmi_enter - inform RCU of entry to NMI context | |
286 | * | |
287 | * If the CPU was idle with dynamic ticks active, and there is no | |
288 | * irq handler running, this updates rdtp->dynticks_nmi to let the | |
289 | * RCU grace-period handling know that the CPU is active. | |
290 | */ | |
291 | void rcu_nmi_enter(void) | |
292 | { | |
293 | struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); | |
294 | ||
295 | if (rdtp->dynticks & 0x1) | |
296 | return; | |
297 | rdtp->dynticks_nmi++; | |
86848966 | 298 | WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1)); |
64db4cff PM |
299 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ |
300 | } | |
301 | ||
302 | /** | |
303 | * rcu_nmi_exit - inform RCU of exit from NMI context | |
304 | * | |
305 | * If the CPU was idle with dynamic ticks active, and there is no | |
306 | * irq handler running, this updates rdtp->dynticks_nmi to let the | |
307 | * RCU grace-period handling know that the CPU is no longer active. | |
308 | */ | |
309 | void rcu_nmi_exit(void) | |
310 | { | |
311 | struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); | |
312 | ||
313 | if (rdtp->dynticks & 0x1) | |
314 | return; | |
315 | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ | |
316 | rdtp->dynticks_nmi++; | |
86848966 | 317 | WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1); |
64db4cff PM |
318 | } |
319 | ||
320 | /** | |
321 | * rcu_irq_enter - inform RCU of entry to hard irq context | |
322 | * | |
323 | * If the CPU was idle with dynamic ticks active, this updates the | |
324 | * rdtp->dynticks to let the RCU handling know that the CPU is active. | |
325 | */ | |
326 | void rcu_irq_enter(void) | |
327 | { | |
328 | struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); | |
329 | ||
330 | if (rdtp->dynticks_nesting++) | |
331 | return; | |
332 | rdtp->dynticks++; | |
86848966 | 333 | WARN_ON_ONCE(!(rdtp->dynticks & 0x1)); |
64db4cff PM |
334 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ |
335 | } | |
336 | ||
337 | /** | |
338 | * rcu_irq_exit - inform RCU of exit from hard irq context | |
339 | * | |
340 | * If the CPU was idle with dynamic ticks active, update the rdp->dynticks | |
341 | * to put let the RCU handling be aware that the CPU is going back to idle | |
342 | * with no ticks. | |
343 | */ | |
344 | void rcu_irq_exit(void) | |
345 | { | |
346 | struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); | |
347 | ||
348 | if (--rdtp->dynticks_nesting) | |
349 | return; | |
350 | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ | |
351 | rdtp->dynticks++; | |
86848966 | 352 | WARN_ON_ONCE(rdtp->dynticks & 0x1); |
64db4cff PM |
353 | |
354 | /* If the interrupt queued a callback, get out of dyntick mode. */ | |
d6714c22 | 355 | if (__get_cpu_var(rcu_sched_data).nxtlist || |
64db4cff PM |
356 | __get_cpu_var(rcu_bh_data).nxtlist) |
357 | set_need_resched(); | |
358 | } | |
359 | ||
64db4cff PM |
360 | #ifdef CONFIG_SMP |
361 | ||
64db4cff PM |
362 | /* |
363 | * Snapshot the specified CPU's dynticks counter so that we can later | |
364 | * credit them with an implicit quiescent state. Return 1 if this CPU | |
1eba8f84 | 365 | * is in dynticks idle mode, which is an extended quiescent state. |
64db4cff PM |
366 | */ |
367 | static int dyntick_save_progress_counter(struct rcu_data *rdp) | |
368 | { | |
369 | int ret; | |
370 | int snap; | |
371 | int snap_nmi; | |
372 | ||
373 | snap = rdp->dynticks->dynticks; | |
374 | snap_nmi = rdp->dynticks->dynticks_nmi; | |
375 | smp_mb(); /* Order sampling of snap with end of grace period. */ | |
376 | rdp->dynticks_snap = snap; | |
377 | rdp->dynticks_nmi_snap = snap_nmi; | |
378 | ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0); | |
379 | if (ret) | |
380 | rdp->dynticks_fqs++; | |
381 | return ret; | |
382 | } | |
383 | ||
384 | /* | |
385 | * Return true if the specified CPU has passed through a quiescent | |
386 | * state by virtue of being in or having passed through an dynticks | |
387 | * idle state since the last call to dyntick_save_progress_counter() | |
388 | * for this same CPU. | |
389 | */ | |
390 | static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) | |
391 | { | |
392 | long curr; | |
393 | long curr_nmi; | |
394 | long snap; | |
395 | long snap_nmi; | |
396 | ||
397 | curr = rdp->dynticks->dynticks; | |
398 | snap = rdp->dynticks_snap; | |
399 | curr_nmi = rdp->dynticks->dynticks_nmi; | |
400 | snap_nmi = rdp->dynticks_nmi_snap; | |
401 | smp_mb(); /* force ordering with cpu entering/leaving dynticks. */ | |
402 | ||
403 | /* | |
404 | * If the CPU passed through or entered a dynticks idle phase with | |
405 | * no active irq/NMI handlers, then we can safely pretend that the CPU | |
406 | * already acknowledged the request to pass through a quiescent | |
407 | * state. Either way, that CPU cannot possibly be in an RCU | |
408 | * read-side critical section that started before the beginning | |
409 | * of the current RCU grace period. | |
410 | */ | |
411 | if ((curr != snap || (curr & 0x1) == 0) && | |
412 | (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) { | |
413 | rdp->dynticks_fqs++; | |
414 | return 1; | |
415 | } | |
416 | ||
417 | /* Go check for the CPU being offline. */ | |
418 | return rcu_implicit_offline_qs(rdp); | |
419 | } | |
420 | ||
421 | #endif /* #ifdef CONFIG_SMP */ | |
422 | ||
423 | #else /* #ifdef CONFIG_NO_HZ */ | |
424 | ||
64db4cff PM |
425 | #ifdef CONFIG_SMP |
426 | ||
64db4cff PM |
427 | static int dyntick_save_progress_counter(struct rcu_data *rdp) |
428 | { | |
429 | return 0; | |
430 | } | |
431 | ||
432 | static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) | |
433 | { | |
434 | return rcu_implicit_offline_qs(rdp); | |
435 | } | |
436 | ||
437 | #endif /* #ifdef CONFIG_SMP */ | |
438 | ||
439 | #endif /* #else #ifdef CONFIG_NO_HZ */ | |
440 | ||
441 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | |
442 | ||
443 | static void record_gp_stall_check_time(struct rcu_state *rsp) | |
444 | { | |
445 | rsp->gp_start = jiffies; | |
446 | rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK; | |
447 | } | |
448 | ||
449 | static void print_other_cpu_stall(struct rcu_state *rsp) | |
450 | { | |
451 | int cpu; | |
452 | long delta; | |
453 | unsigned long flags; | |
454 | struct rcu_node *rnp = rcu_get_root(rsp); | |
64db4cff PM |
455 | |
456 | /* Only let one CPU complain about others per time interval. */ | |
457 | ||
458 | spin_lock_irqsave(&rnp->lock, flags); | |
459 | delta = jiffies - rsp->jiffies_stall; | |
fc2219d4 | 460 | if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { |
64db4cff PM |
461 | spin_unlock_irqrestore(&rnp->lock, flags); |
462 | return; | |
463 | } | |
464 | rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK; | |
a0b6c9a7 PM |
465 | |
466 | /* | |
467 | * Now rat on any tasks that got kicked up to the root rcu_node | |
468 | * due to CPU offlining. | |
469 | */ | |
470 | rcu_print_task_stall(rnp); | |
64db4cff PM |
471 | spin_unlock_irqrestore(&rnp->lock, flags); |
472 | ||
473 | /* OK, time to rat on our buddy... */ | |
474 | ||
475 | printk(KERN_ERR "INFO: RCU detected CPU stalls:"); | |
a0b6c9a7 | 476 | rcu_for_each_leaf_node(rsp, rnp) { |
f41d911f | 477 | rcu_print_task_stall(rnp); |
a0b6c9a7 | 478 | if (rnp->qsmask == 0) |
64db4cff | 479 | continue; |
a0b6c9a7 PM |
480 | for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) |
481 | if (rnp->qsmask & (1UL << cpu)) | |
482 | printk(" %d", rnp->grplo + cpu); | |
64db4cff PM |
483 | } |
484 | printk(" (detected by %d, t=%ld jiffies)\n", | |
485 | smp_processor_id(), (long)(jiffies - rsp->gp_start)); | |
c1dc0b9c IM |
486 | trigger_all_cpu_backtrace(); |
487 | ||
64db4cff PM |
488 | force_quiescent_state(rsp, 0); /* Kick them all. */ |
489 | } | |
490 | ||
491 | static void print_cpu_stall(struct rcu_state *rsp) | |
492 | { | |
493 | unsigned long flags; | |
494 | struct rcu_node *rnp = rcu_get_root(rsp); | |
495 | ||
496 | printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n", | |
497 | smp_processor_id(), jiffies - rsp->gp_start); | |
c1dc0b9c IM |
498 | trigger_all_cpu_backtrace(); |
499 | ||
64db4cff PM |
500 | spin_lock_irqsave(&rnp->lock, flags); |
501 | if ((long)(jiffies - rsp->jiffies_stall) >= 0) | |
502 | rsp->jiffies_stall = | |
503 | jiffies + RCU_SECONDS_TILL_STALL_RECHECK; | |
504 | spin_unlock_irqrestore(&rnp->lock, flags); | |
c1dc0b9c | 505 | |
64db4cff PM |
506 | set_need_resched(); /* kick ourselves to get things going. */ |
507 | } | |
508 | ||
509 | static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) | |
510 | { | |
511 | long delta; | |
512 | struct rcu_node *rnp; | |
513 | ||
514 | delta = jiffies - rsp->jiffies_stall; | |
515 | rnp = rdp->mynode; | |
516 | if ((rnp->qsmask & rdp->grpmask) && delta >= 0) { | |
517 | ||
518 | /* We haven't checked in, so go dump stack. */ | |
519 | print_cpu_stall(rsp); | |
520 | ||
fc2219d4 | 521 | } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) { |
64db4cff PM |
522 | |
523 | /* They had two time units to dump stack, so complain. */ | |
524 | print_other_cpu_stall(rsp); | |
525 | } | |
526 | } | |
527 | ||
528 | #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | |
529 | ||
530 | static void record_gp_stall_check_time(struct rcu_state *rsp) | |
531 | { | |
532 | } | |
533 | ||
534 | static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) | |
535 | { | |
536 | } | |
537 | ||
538 | #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | |
539 | ||
540 | /* | |
541 | * Update CPU-local rcu_data state to record the newly noticed grace period. | |
542 | * This is used both when we started the grace period and when we notice | |
9160306e PM |
543 | * that someone else started the grace period. The caller must hold the |
544 | * ->lock of the leaf rcu_node structure corresponding to the current CPU, | |
545 | * and must have irqs disabled. | |
64db4cff | 546 | */ |
9160306e PM |
547 | static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) |
548 | { | |
549 | if (rdp->gpnum != rnp->gpnum) { | |
550 | rdp->qs_pending = 1; | |
551 | rdp->passed_quiesc = 0; | |
552 | rdp->gpnum = rnp->gpnum; | |
553 | } | |
554 | } | |
555 | ||
64db4cff PM |
556 | static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp) |
557 | { | |
9160306e PM |
558 | unsigned long flags; |
559 | struct rcu_node *rnp; | |
560 | ||
561 | local_irq_save(flags); | |
562 | rnp = rdp->mynode; | |
563 | if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */ | |
564 | !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */ | |
565 | local_irq_restore(flags); | |
566 | return; | |
567 | } | |
568 | __note_new_gpnum(rsp, rnp, rdp); | |
569 | spin_unlock_irqrestore(&rnp->lock, flags); | |
64db4cff PM |
570 | } |
571 | ||
572 | /* | |
573 | * Did someone else start a new RCU grace period start since we last | |
574 | * checked? Update local state appropriately if so. Must be called | |
575 | * on the CPU corresponding to rdp. | |
576 | */ | |
577 | static int | |
578 | check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp) | |
579 | { | |
580 | unsigned long flags; | |
581 | int ret = 0; | |
582 | ||
583 | local_irq_save(flags); | |
584 | if (rdp->gpnum != rsp->gpnum) { | |
585 | note_new_gpnum(rsp, rdp); | |
586 | ret = 1; | |
587 | } | |
588 | local_irq_restore(flags); | |
589 | return ret; | |
590 | } | |
591 | ||
d09b62df PM |
592 | /* |
593 | * Advance this CPU's callbacks, but only if the current grace period | |
594 | * has ended. This may be called only from the CPU to whom the rdp | |
595 | * belongs. In addition, the corresponding leaf rcu_node structure's | |
596 | * ->lock must be held by the caller, with irqs disabled. | |
597 | */ | |
598 | static void | |
599 | __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) | |
600 | { | |
601 | /* Did another grace period end? */ | |
602 | if (rdp->completed != rnp->completed) { | |
603 | ||
604 | /* Advance callbacks. No harm if list empty. */ | |
605 | rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL]; | |
606 | rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL]; | |
607 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | |
608 | ||
609 | /* Remember that we saw this grace-period completion. */ | |
610 | rdp->completed = rnp->completed; | |
611 | } | |
612 | } | |
613 | ||
614 | /* | |
615 | * Advance this CPU's callbacks, but only if the current grace period | |
616 | * has ended. This may be called only from the CPU to whom the rdp | |
617 | * belongs. | |
618 | */ | |
619 | static void | |
620 | rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp) | |
621 | { | |
622 | unsigned long flags; | |
623 | struct rcu_node *rnp; | |
624 | ||
625 | local_irq_save(flags); | |
626 | rnp = rdp->mynode; | |
627 | if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */ | |
628 | !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */ | |
629 | local_irq_restore(flags); | |
630 | return; | |
631 | } | |
632 | __rcu_process_gp_end(rsp, rnp, rdp); | |
633 | spin_unlock_irqrestore(&rnp->lock, flags); | |
634 | } | |
635 | ||
636 | /* | |
637 | * Do per-CPU grace-period initialization for running CPU. The caller | |
638 | * must hold the lock of the leaf rcu_node structure corresponding to | |
639 | * this CPU. | |
640 | */ | |
641 | static void | |
642 | rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) | |
643 | { | |
644 | /* Prior grace period ended, so advance callbacks for current CPU. */ | |
645 | __rcu_process_gp_end(rsp, rnp, rdp); | |
646 | ||
647 | /* | |
648 | * Because this CPU just now started the new grace period, we know | |
649 | * that all of its callbacks will be covered by this upcoming grace | |
650 | * period, even the ones that were registered arbitrarily recently. | |
651 | * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL. | |
652 | * | |
653 | * Other CPUs cannot be sure exactly when the grace period started. | |
654 | * Therefore, their recently registered callbacks must pass through | |
655 | * an additional RCU_NEXT_READY stage, so that they will be handled | |
656 | * by the next RCU grace period. | |
657 | */ | |
658 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | |
659 | rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | |
9160306e PM |
660 | |
661 | /* Set state so that this CPU will detect the next quiescent state. */ | |
662 | __note_new_gpnum(rsp, rnp, rdp); | |
d09b62df PM |
663 | } |
664 | ||
64db4cff PM |
665 | /* |
666 | * Start a new RCU grace period if warranted, re-initializing the hierarchy | |
667 | * in preparation for detecting the next grace period. The caller must hold | |
668 | * the root node's ->lock, which is released before return. Hard irqs must | |
669 | * be disabled. | |
670 | */ | |
671 | static void | |
672 | rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |
673 | __releases(rcu_get_root(rsp)->lock) | |
674 | { | |
675 | struct rcu_data *rdp = rsp->rda[smp_processor_id()]; | |
676 | struct rcu_node *rnp = rcu_get_root(rsp); | |
64db4cff PM |
677 | |
678 | if (!cpu_needs_another_gp(rsp, rdp)) { | |
679 | spin_unlock_irqrestore(&rnp->lock, flags); | |
680 | return; | |
681 | } | |
682 | ||
683 | /* Advance to a new grace period and initialize state. */ | |
684 | rsp->gpnum++; | |
c3422bea | 685 | WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT); |
64db4cff PM |
686 | rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */ |
687 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; | |
64db4cff PM |
688 | record_gp_stall_check_time(rsp); |
689 | dyntick_record_completed(rsp, rsp->completed - 1); | |
64db4cff | 690 | |
64db4cff PM |
691 | /* Special-case the common single-level case. */ |
692 | if (NUM_RCU_NODES == 1) { | |
b0e165c0 | 693 | rcu_preempt_check_blocked_tasks(rnp); |
28ecd580 | 694 | rnp->qsmask = rnp->qsmaskinit; |
de078d87 | 695 | rnp->gpnum = rsp->gpnum; |
d09b62df | 696 | rnp->completed = rsp->completed; |
c12172c0 | 697 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */ |
d09b62df | 698 | rcu_start_gp_per_cpu(rsp, rnp, rdp); |
64db4cff PM |
699 | spin_unlock_irqrestore(&rnp->lock, flags); |
700 | return; | |
701 | } | |
702 | ||
703 | spin_unlock(&rnp->lock); /* leave irqs disabled. */ | |
704 | ||
705 | ||
706 | /* Exclude any concurrent CPU-hotplug operations. */ | |
707 | spin_lock(&rsp->onofflock); /* irqs already disabled. */ | |
708 | ||
709 | /* | |
b835db1f PM |
710 | * Set the quiescent-state-needed bits in all the rcu_node |
711 | * structures for all currently online CPUs in breadth-first | |
712 | * order, starting from the root rcu_node structure. This | |
713 | * operation relies on the layout of the hierarchy within the | |
714 | * rsp->node[] array. Note that other CPUs will access only | |
715 | * the leaves of the hierarchy, which still indicate that no | |
716 | * grace period is in progress, at least until the corresponding | |
717 | * leaf node has been initialized. In addition, we have excluded | |
718 | * CPU-hotplug operations. | |
64db4cff PM |
719 | * |
720 | * Note that the grace period cannot complete until we finish | |
721 | * the initialization process, as there will be at least one | |
722 | * qsmask bit set in the root node until that time, namely the | |
b835db1f PM |
723 | * one corresponding to this CPU, due to the fact that we have |
724 | * irqs disabled. | |
64db4cff | 725 | */ |
a0b6c9a7 | 726 | rcu_for_each_node_breadth_first(rsp, rnp) { |
83f5b01f | 727 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
b0e165c0 | 728 | rcu_preempt_check_blocked_tasks(rnp); |
49e29126 | 729 | rnp->qsmask = rnp->qsmaskinit; |
de078d87 | 730 | rnp->gpnum = rsp->gpnum; |
d09b62df PM |
731 | rnp->completed = rsp->completed; |
732 | if (rnp == rdp->mynode) | |
733 | rcu_start_gp_per_cpu(rsp, rnp, rdp); | |
83f5b01f | 734 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
64db4cff PM |
735 | } |
736 | ||
83f5b01f PM |
737 | rnp = rcu_get_root(rsp); |
738 | spin_lock(&rnp->lock); /* irqs already disabled. */ | |
64db4cff | 739 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ |
83f5b01f | 740 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
64db4cff PM |
741 | spin_unlock_irqrestore(&rsp->onofflock, flags); |
742 | } | |
743 | ||
f41d911f PM |
744 | /* |
745 | * Clean up after the prior grace period and let rcu_start_gp() start up | |
746 | * the next grace period if one is needed. Note that the caller must | |
747 | * hold rnp->lock, as required by rcu_start_gp(), which will release it. | |
748 | */ | |
749 | static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags) | |
fc2219d4 | 750 | __releases(rcu_get_root(rsp)->lock) |
f41d911f | 751 | { |
fc2219d4 | 752 | WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); |
f41d911f | 753 | rsp->completed = rsp->gpnum; |
83f5b01f | 754 | rsp->signaled = RCU_GP_IDLE; |
f41d911f PM |
755 | rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */ |
756 | } | |
757 | ||
64db4cff PM |
758 | /* |
759 | * Similar to cpu_quiet(), for which it is a helper function. Allows | |
760 | * a group of CPUs to be quieted at one go, though all the CPUs in the | |
761 | * group must be represented by the same leaf rcu_node structure. | |
762 | * That structure's lock must be held upon entry, and it is released | |
763 | * before return. | |
764 | */ | |
765 | static void | |
766 | cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, | |
767 | unsigned long flags) | |
768 | __releases(rnp->lock) | |
769 | { | |
28ecd580 PM |
770 | struct rcu_node *rnp_c; |
771 | ||
64db4cff PM |
772 | /* Walk up the rcu_node hierarchy. */ |
773 | for (;;) { | |
774 | if (!(rnp->qsmask & mask)) { | |
775 | ||
776 | /* Our bit has already been cleared, so done. */ | |
777 | spin_unlock_irqrestore(&rnp->lock, flags); | |
778 | return; | |
779 | } | |
780 | rnp->qsmask &= ~mask; | |
f41d911f | 781 | if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) { |
64db4cff PM |
782 | |
783 | /* Other bits still set at this level, so done. */ | |
784 | spin_unlock_irqrestore(&rnp->lock, flags); | |
785 | return; | |
786 | } | |
787 | mask = rnp->grpmask; | |
788 | if (rnp->parent == NULL) { | |
789 | ||
790 | /* No more levels. Exit loop holding root lock. */ | |
791 | ||
792 | break; | |
793 | } | |
794 | spin_unlock_irqrestore(&rnp->lock, flags); | |
28ecd580 | 795 | rnp_c = rnp; |
64db4cff PM |
796 | rnp = rnp->parent; |
797 | spin_lock_irqsave(&rnp->lock, flags); | |
28ecd580 | 798 | WARN_ON_ONCE(rnp_c->qsmask); |
64db4cff PM |
799 | } |
800 | ||
801 | /* | |
802 | * Get here if we are the last CPU to pass through a quiescent | |
f41d911f PM |
803 | * state for this grace period. Invoke cpu_quiet_msk_finish() |
804 | * to clean up and start the next grace period if one is needed. | |
64db4cff | 805 | */ |
f41d911f | 806 | cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */ |
64db4cff PM |
807 | } |
808 | ||
809 | /* | |
810 | * Record a quiescent state for the specified CPU, which must either be | |
e7d8842e PM |
811 | * the current CPU. The lastcomp argument is used to make sure we are |
812 | * still in the grace period of interest. We don't want to end the current | |
813 | * grace period based on quiescent states detected in an earlier grace | |
814 | * period! | |
64db4cff PM |
815 | */ |
816 | static void | |
817 | cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) | |
818 | { | |
819 | unsigned long flags; | |
820 | unsigned long mask; | |
821 | struct rcu_node *rnp; | |
822 | ||
823 | rnp = rdp->mynode; | |
824 | spin_lock_irqsave(&rnp->lock, flags); | |
825 | if (lastcomp != ACCESS_ONCE(rsp->completed)) { | |
826 | ||
827 | /* | |
828 | * Someone beat us to it for this grace period, so leave. | |
829 | * The race with GP start is resolved by the fact that we | |
830 | * hold the leaf rcu_node lock, so that the per-CPU bits | |
831 | * cannot yet be initialized -- so we would simply find our | |
832 | * CPU's bit already cleared in cpu_quiet_msk() if this race | |
833 | * occurred. | |
834 | */ | |
835 | rdp->passed_quiesc = 0; /* try again later! */ | |
836 | spin_unlock_irqrestore(&rnp->lock, flags); | |
837 | return; | |
838 | } | |
839 | mask = rdp->grpmask; | |
840 | if ((rnp->qsmask & mask) == 0) { | |
841 | spin_unlock_irqrestore(&rnp->lock, flags); | |
842 | } else { | |
843 | rdp->qs_pending = 0; | |
844 | ||
845 | /* | |
846 | * This GP can't end until cpu checks in, so all of our | |
847 | * callbacks can be processed during the next GP. | |
848 | */ | |
64db4cff PM |
849 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; |
850 | ||
851 | cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */ | |
852 | } | |
853 | } | |
854 | ||
855 | /* | |
856 | * Check to see if there is a new grace period of which this CPU | |
857 | * is not yet aware, and if so, set up local rcu_data state for it. | |
858 | * Otherwise, see if this CPU has just passed through its first | |
859 | * quiescent state for this grace period, and record that fact if so. | |
860 | */ | |
861 | static void | |
862 | rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) | |
863 | { | |
864 | /* If there is now a new grace period, record and return. */ | |
865 | if (check_for_new_grace_period(rsp, rdp)) | |
866 | return; | |
867 | ||
868 | /* | |
869 | * Does this CPU still need to do its part for current grace period? | |
870 | * If no, return and let the other CPUs do their part as well. | |
871 | */ | |
872 | if (!rdp->qs_pending) | |
873 | return; | |
874 | ||
875 | /* | |
876 | * Was there a quiescent state since the beginning of the grace | |
877 | * period? If no, then exit and wait for the next call. | |
878 | */ | |
879 | if (!rdp->passed_quiesc) | |
880 | return; | |
881 | ||
882 | /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */ | |
883 | cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed); | |
884 | } | |
885 | ||
886 | #ifdef CONFIG_HOTPLUG_CPU | |
887 | ||
e74f4c45 PM |
888 | /* |
889 | * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the | |
890 | * specified flavor of RCU. The callbacks will be adopted by the next | |
891 | * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever | |
892 | * comes first. Because this is invoked from the CPU_DYING notifier, | |
893 | * irqs are already disabled. | |
894 | */ | |
895 | static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp) | |
896 | { | |
897 | int i; | |
898 | struct rcu_data *rdp = rsp->rda[smp_processor_id()]; | |
899 | ||
900 | if (rdp->nxtlist == NULL) | |
901 | return; /* irqs disabled, so comparison is stable. */ | |
902 | spin_lock(&rsp->onofflock); /* irqs already disabled. */ | |
903 | *rsp->orphan_cbs_tail = rdp->nxtlist; | |
904 | rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL]; | |
905 | rdp->nxtlist = NULL; | |
906 | for (i = 0; i < RCU_NEXT_SIZE; i++) | |
907 | rdp->nxttail[i] = &rdp->nxtlist; | |
908 | rsp->orphan_qlen += rdp->qlen; | |
909 | rdp->qlen = 0; | |
910 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ | |
911 | } | |
912 | ||
913 | /* | |
914 | * Adopt previously orphaned RCU callbacks. | |
915 | */ | |
916 | static void rcu_adopt_orphan_cbs(struct rcu_state *rsp) | |
917 | { | |
918 | unsigned long flags; | |
919 | struct rcu_data *rdp; | |
920 | ||
921 | spin_lock_irqsave(&rsp->onofflock, flags); | |
922 | rdp = rsp->rda[smp_processor_id()]; | |
923 | if (rsp->orphan_cbs_list == NULL) { | |
924 | spin_unlock_irqrestore(&rsp->onofflock, flags); | |
925 | return; | |
926 | } | |
927 | *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list; | |
928 | rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail; | |
929 | rdp->qlen += rsp->orphan_qlen; | |
930 | rsp->orphan_cbs_list = NULL; | |
931 | rsp->orphan_cbs_tail = &rsp->orphan_cbs_list; | |
932 | rsp->orphan_qlen = 0; | |
933 | spin_unlock_irqrestore(&rsp->onofflock, flags); | |
934 | } | |
935 | ||
64db4cff PM |
936 | /* |
937 | * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy | |
938 | * and move all callbacks from the outgoing CPU to the current one. | |
939 | */ | |
940 | static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) | |
941 | { | |
64db4cff PM |
942 | unsigned long flags; |
943 | long lastcomp; | |
944 | unsigned long mask; | |
945 | struct rcu_data *rdp = rsp->rda[cpu]; | |
64db4cff PM |
946 | struct rcu_node *rnp; |
947 | ||
948 | /* Exclude any attempts to start a new grace period. */ | |
949 | spin_lock_irqsave(&rsp->onofflock, flags); | |
950 | ||
951 | /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ | |
28ecd580 | 952 | rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */ |
64db4cff PM |
953 | mask = rdp->grpmask; /* rnp->grplo is constant. */ |
954 | do { | |
955 | spin_lock(&rnp->lock); /* irqs already disabled. */ | |
956 | rnp->qsmaskinit &= ~mask; | |
957 | if (rnp->qsmaskinit != 0) { | |
f41d911f | 958 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
64db4cff PM |
959 | break; |
960 | } | |
237c80c5 PM |
961 | |
962 | /* | |
963 | * If there was a task blocking the current grace period, | |
964 | * and if all CPUs have checked in, we need to propagate | |
965 | * the quiescent state up the rcu_node hierarchy. But that | |
966 | * is inconvenient at the moment due to deadlock issues if | |
967 | * this should end the current grace period. So set the | |
968 | * offlined CPU's bit in ->qsmask in order to force the | |
969 | * next force_quiescent_state() invocation to clean up this | |
970 | * mess in a deadlock-free manner. | |
971 | */ | |
972 | if (rcu_preempt_offline_tasks(rsp, rnp, rdp) && !rnp->qsmask) | |
973 | rnp->qsmask |= mask; | |
974 | ||
64db4cff | 975 | mask = rnp->grpmask; |
f41d911f | 976 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
64db4cff PM |
977 | rnp = rnp->parent; |
978 | } while (rnp != NULL); | |
979 | lastcomp = rsp->completed; | |
980 | ||
e74f4c45 | 981 | spin_unlock_irqrestore(&rsp->onofflock, flags); |
64db4cff | 982 | |
e74f4c45 | 983 | rcu_adopt_orphan_cbs(rsp); |
64db4cff PM |
984 | } |
985 | ||
986 | /* | |
987 | * Remove the specified CPU from the RCU hierarchy and move any pending | |
988 | * callbacks that it might have to the current CPU. This code assumes | |
989 | * that at least one CPU in the system will remain running at all times. | |
990 | * Any attempt to offline -all- CPUs is likely to strand RCU callbacks. | |
991 | */ | |
992 | static void rcu_offline_cpu(int cpu) | |
993 | { | |
d6714c22 | 994 | __rcu_offline_cpu(cpu, &rcu_sched_state); |
64db4cff | 995 | __rcu_offline_cpu(cpu, &rcu_bh_state); |
33f76148 | 996 | rcu_preempt_offline_cpu(cpu); |
64db4cff PM |
997 | } |
998 | ||
999 | #else /* #ifdef CONFIG_HOTPLUG_CPU */ | |
1000 | ||
e74f4c45 PM |
1001 | static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp) |
1002 | { | |
1003 | } | |
1004 | ||
1005 | static void rcu_adopt_orphan_cbs(struct rcu_state *rsp) | |
1006 | { | |
1007 | } | |
1008 | ||
64db4cff PM |
1009 | static void rcu_offline_cpu(int cpu) |
1010 | { | |
1011 | } | |
1012 | ||
1013 | #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ | |
1014 | ||
1015 | /* | |
1016 | * Invoke any RCU callbacks that have made it to the end of their grace | |
1017 | * period. Thottle as specified by rdp->blimit. | |
1018 | */ | |
37c72e56 | 1019 | static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) |
64db4cff PM |
1020 | { |
1021 | unsigned long flags; | |
1022 | struct rcu_head *next, *list, **tail; | |
1023 | int count; | |
1024 | ||
1025 | /* If no callbacks are ready, just return.*/ | |
1026 | if (!cpu_has_callbacks_ready_to_invoke(rdp)) | |
1027 | return; | |
1028 | ||
1029 | /* | |
1030 | * Extract the list of ready callbacks, disabling to prevent | |
1031 | * races with call_rcu() from interrupt handlers. | |
1032 | */ | |
1033 | local_irq_save(flags); | |
1034 | list = rdp->nxtlist; | |
1035 | rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; | |
1036 | *rdp->nxttail[RCU_DONE_TAIL] = NULL; | |
1037 | tail = rdp->nxttail[RCU_DONE_TAIL]; | |
1038 | for (count = RCU_NEXT_SIZE - 1; count >= 0; count--) | |
1039 | if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL]) | |
1040 | rdp->nxttail[count] = &rdp->nxtlist; | |
1041 | local_irq_restore(flags); | |
1042 | ||
1043 | /* Invoke callbacks. */ | |
1044 | count = 0; | |
1045 | while (list) { | |
1046 | next = list->next; | |
1047 | prefetch(next); | |
1048 | list->func(list); | |
1049 | list = next; | |
1050 | if (++count >= rdp->blimit) | |
1051 | break; | |
1052 | } | |
1053 | ||
1054 | local_irq_save(flags); | |
1055 | ||
1056 | /* Update count, and requeue any remaining callbacks. */ | |
1057 | rdp->qlen -= count; | |
1058 | if (list != NULL) { | |
1059 | *tail = rdp->nxtlist; | |
1060 | rdp->nxtlist = list; | |
1061 | for (count = 0; count < RCU_NEXT_SIZE; count++) | |
1062 | if (&rdp->nxtlist == rdp->nxttail[count]) | |
1063 | rdp->nxttail[count] = tail; | |
1064 | else | |
1065 | break; | |
1066 | } | |
1067 | ||
1068 | /* Reinstate batch limit if we have worked down the excess. */ | |
1069 | if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) | |
1070 | rdp->blimit = blimit; | |
1071 | ||
37c72e56 PM |
1072 | /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ |
1073 | if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { | |
1074 | rdp->qlen_last_fqs_check = 0; | |
1075 | rdp->n_force_qs_snap = rsp->n_force_qs; | |
1076 | } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) | |
1077 | rdp->qlen_last_fqs_check = rdp->qlen; | |
1078 | ||
64db4cff PM |
1079 | local_irq_restore(flags); |
1080 | ||
1081 | /* Re-raise the RCU softirq if there are callbacks remaining. */ | |
1082 | if (cpu_has_callbacks_ready_to_invoke(rdp)) | |
1083 | raise_softirq(RCU_SOFTIRQ); | |
1084 | } | |
1085 | ||
1086 | /* | |
1087 | * Check to see if this CPU is in a non-context-switch quiescent state | |
1088 | * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). | |
1089 | * Also schedule the RCU softirq handler. | |
1090 | * | |
1091 | * This function must be called with hardirqs disabled. It is normally | |
1092 | * invoked from the scheduling-clock interrupt. If rcu_pending returns | |
1093 | * false, there is no point in invoking rcu_check_callbacks(). | |
1094 | */ | |
1095 | void rcu_check_callbacks(int cpu, int user) | |
1096 | { | |
a157229c PM |
1097 | if (!rcu_pending(cpu)) |
1098 | return; /* if nothing for RCU to do. */ | |
64db4cff | 1099 | if (user || |
a6826048 PM |
1100 | (idle_cpu(cpu) && rcu_scheduler_active && |
1101 | !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) { | |
64db4cff PM |
1102 | |
1103 | /* | |
1104 | * Get here if this CPU took its interrupt from user | |
1105 | * mode or from the idle loop, and if this is not a | |
1106 | * nested interrupt. In this case, the CPU is in | |
d6714c22 | 1107 | * a quiescent state, so note it. |
64db4cff PM |
1108 | * |
1109 | * No memory barrier is required here because both | |
d6714c22 PM |
1110 | * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local |
1111 | * variables that other CPUs neither access nor modify, | |
1112 | * at least not while the corresponding CPU is online. | |
64db4cff PM |
1113 | */ |
1114 | ||
d6714c22 PM |
1115 | rcu_sched_qs(cpu); |
1116 | rcu_bh_qs(cpu); | |
64db4cff PM |
1117 | |
1118 | } else if (!in_softirq()) { | |
1119 | ||
1120 | /* | |
1121 | * Get here if this CPU did not take its interrupt from | |
1122 | * softirq, in other words, if it is not interrupting | |
1123 | * a rcu_bh read-side critical section. This is an _bh | |
d6714c22 | 1124 | * critical section, so note it. |
64db4cff PM |
1125 | */ |
1126 | ||
d6714c22 | 1127 | rcu_bh_qs(cpu); |
64db4cff | 1128 | } |
f41d911f | 1129 | rcu_preempt_check_callbacks(cpu); |
64db4cff PM |
1130 | raise_softirq(RCU_SOFTIRQ); |
1131 | } | |
1132 | ||
1133 | #ifdef CONFIG_SMP | |
1134 | ||
1135 | /* | |
1136 | * Scan the leaf rcu_node structures, processing dyntick state for any that | |
1137 | * have not yet encountered a quiescent state, using the function specified. | |
1138 | * Returns 1 if the current grace period ends while scanning (possibly | |
1139 | * because we made it end). | |
1140 | */ | |
1141 | static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp, | |
1142 | int (*f)(struct rcu_data *)) | |
1143 | { | |
1144 | unsigned long bit; | |
1145 | int cpu; | |
1146 | unsigned long flags; | |
1147 | unsigned long mask; | |
a0b6c9a7 | 1148 | struct rcu_node *rnp; |
64db4cff | 1149 | |
a0b6c9a7 | 1150 | rcu_for_each_leaf_node(rsp, rnp) { |
64db4cff | 1151 | mask = 0; |
a0b6c9a7 | 1152 | spin_lock_irqsave(&rnp->lock, flags); |
64db4cff | 1153 | if (rsp->completed != lastcomp) { |
a0b6c9a7 | 1154 | spin_unlock_irqrestore(&rnp->lock, flags); |
64db4cff PM |
1155 | return 1; |
1156 | } | |
a0b6c9a7 PM |
1157 | if (rnp->qsmask == 0) { |
1158 | spin_unlock_irqrestore(&rnp->lock, flags); | |
64db4cff PM |
1159 | continue; |
1160 | } | |
a0b6c9a7 | 1161 | cpu = rnp->grplo; |
64db4cff | 1162 | bit = 1; |
a0b6c9a7 PM |
1163 | for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { |
1164 | if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu])) | |
64db4cff PM |
1165 | mask |= bit; |
1166 | } | |
1167 | if (mask != 0 && rsp->completed == lastcomp) { | |
1168 | ||
a0b6c9a7 PM |
1169 | /* cpu_quiet_msk() releases rnp->lock. */ |
1170 | cpu_quiet_msk(mask, rsp, rnp, flags); | |
64db4cff PM |
1171 | continue; |
1172 | } | |
a0b6c9a7 | 1173 | spin_unlock_irqrestore(&rnp->lock, flags); |
64db4cff PM |
1174 | } |
1175 | return 0; | |
1176 | } | |
1177 | ||
1178 | /* | |
1179 | * Force quiescent states on reluctant CPUs, and also detect which | |
1180 | * CPUs are in dyntick-idle mode. | |
1181 | */ | |
1182 | static void force_quiescent_state(struct rcu_state *rsp, int relaxed) | |
1183 | { | |
1184 | unsigned long flags; | |
1185 | long lastcomp; | |
64db4cff PM |
1186 | struct rcu_node *rnp = rcu_get_root(rsp); |
1187 | u8 signaled; | |
281d150c | 1188 | u8 forcenow; |
64db4cff | 1189 | |
fc2219d4 | 1190 | if (!rcu_gp_in_progress(rsp)) |
64db4cff PM |
1191 | return; /* No grace period in progress, nothing to force. */ |
1192 | if (!spin_trylock_irqsave(&rsp->fqslock, flags)) { | |
1193 | rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */ | |
1194 | return; /* Someone else is already on the job. */ | |
1195 | } | |
1196 | if (relaxed && | |
ef631b0c | 1197 | (long)(rsp->jiffies_force_qs - jiffies) >= 0) |
64db4cff PM |
1198 | goto unlock_ret; /* no emergency and done recently. */ |
1199 | rsp->n_force_qs++; | |
1200 | spin_lock(&rnp->lock); | |
1201 | lastcomp = rsp->completed; | |
1202 | signaled = rsp->signaled; | |
1203 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; | |
64db4cff PM |
1204 | if (lastcomp == rsp->gpnum) { |
1205 | rsp->n_force_qs_ngp++; | |
1206 | spin_unlock(&rnp->lock); | |
1207 | goto unlock_ret; /* no GP in progress, time updated. */ | |
1208 | } | |
1209 | spin_unlock(&rnp->lock); | |
1210 | switch (signaled) { | |
83f5b01f | 1211 | case RCU_GP_IDLE: |
64db4cff PM |
1212 | case RCU_GP_INIT: |
1213 | ||
83f5b01f | 1214 | break; /* grace period idle or initializing, ignore. */ |
64db4cff PM |
1215 | |
1216 | case RCU_SAVE_DYNTICK: | |
1217 | ||
1218 | if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK) | |
1219 | break; /* So gcc recognizes the dead code. */ | |
1220 | ||
1221 | /* Record dyntick-idle state. */ | |
1222 | if (rcu_process_dyntick(rsp, lastcomp, | |
1223 | dyntick_save_progress_counter)) | |
1224 | goto unlock_ret; | |
281d150c PM |
1225 | /* fall into next case. */ |
1226 | ||
1227 | case RCU_SAVE_COMPLETED: | |
64db4cff PM |
1228 | |
1229 | /* Update state, record completion counter. */ | |
281d150c | 1230 | forcenow = 0; |
64db4cff | 1231 | spin_lock(&rnp->lock); |
83f5b01f | 1232 | if (lastcomp == rsp->completed && |
281d150c | 1233 | rsp->signaled == signaled) { |
64db4cff PM |
1234 | rsp->signaled = RCU_FORCE_QS; |
1235 | dyntick_record_completed(rsp, lastcomp); | |
281d150c | 1236 | forcenow = signaled == RCU_SAVE_COMPLETED; |
64db4cff PM |
1237 | } |
1238 | spin_unlock(&rnp->lock); | |
281d150c PM |
1239 | if (!forcenow) |
1240 | break; | |
1241 | /* fall into next case. */ | |
64db4cff PM |
1242 | |
1243 | case RCU_FORCE_QS: | |
1244 | ||
1245 | /* Check dyntick-idle state, send IPI to laggarts. */ | |
1246 | if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp), | |
1247 | rcu_implicit_dynticks_qs)) | |
1248 | goto unlock_ret; | |
1249 | ||
1250 | /* Leave state in case more forcing is required. */ | |
1251 | ||
1252 | break; | |
1253 | } | |
1254 | unlock_ret: | |
1255 | spin_unlock_irqrestore(&rsp->fqslock, flags); | |
1256 | } | |
1257 | ||
1258 | #else /* #ifdef CONFIG_SMP */ | |
1259 | ||
1260 | static void force_quiescent_state(struct rcu_state *rsp, int relaxed) | |
1261 | { | |
1262 | set_need_resched(); | |
1263 | } | |
1264 | ||
1265 | #endif /* #else #ifdef CONFIG_SMP */ | |
1266 | ||
1267 | /* | |
1268 | * This does the RCU processing work from softirq context for the | |
1269 | * specified rcu_state and rcu_data structures. This may be called | |
1270 | * only from the CPU to whom the rdp belongs. | |
1271 | */ | |
1272 | static void | |
1273 | __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) | |
1274 | { | |
1275 | unsigned long flags; | |
1276 | ||
2e597558 PM |
1277 | WARN_ON_ONCE(rdp->beenonline == 0); |
1278 | ||
64db4cff PM |
1279 | /* |
1280 | * If an RCU GP has gone long enough, go check for dyntick | |
1281 | * idle CPUs and, if needed, send resched IPIs. | |
1282 | */ | |
ef631b0c | 1283 | if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0) |
64db4cff PM |
1284 | force_quiescent_state(rsp, 1); |
1285 | ||
1286 | /* | |
1287 | * Advance callbacks in response to end of earlier grace | |
1288 | * period that some other CPU ended. | |
1289 | */ | |
1290 | rcu_process_gp_end(rsp, rdp); | |
1291 | ||
1292 | /* Update RCU state based on any recent quiescent states. */ | |
1293 | rcu_check_quiescent_state(rsp, rdp); | |
1294 | ||
1295 | /* Does this CPU require a not-yet-started grace period? */ | |
1296 | if (cpu_needs_another_gp(rsp, rdp)) { | |
1297 | spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags); | |
1298 | rcu_start_gp(rsp, flags); /* releases above lock */ | |
1299 | } | |
1300 | ||
1301 | /* If there are callbacks ready, invoke them. */ | |
37c72e56 | 1302 | rcu_do_batch(rsp, rdp); |
64db4cff PM |
1303 | } |
1304 | ||
1305 | /* | |
1306 | * Do softirq processing for the current CPU. | |
1307 | */ | |
1308 | static void rcu_process_callbacks(struct softirq_action *unused) | |
1309 | { | |
1310 | /* | |
1311 | * Memory references from any prior RCU read-side critical sections | |
1312 | * executed by the interrupted code must be seen before any RCU | |
1313 | * grace-period manipulations below. | |
1314 | */ | |
1315 | smp_mb(); /* See above block comment. */ | |
1316 | ||
d6714c22 PM |
1317 | __rcu_process_callbacks(&rcu_sched_state, |
1318 | &__get_cpu_var(rcu_sched_data)); | |
64db4cff | 1319 | __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data)); |
f41d911f | 1320 | rcu_preempt_process_callbacks(); |
64db4cff PM |
1321 | |
1322 | /* | |
1323 | * Memory references from any later RCU read-side critical sections | |
1324 | * executed by the interrupted code must be seen after any RCU | |
1325 | * grace-period manipulations above. | |
1326 | */ | |
1327 | smp_mb(); /* See above block comment. */ | |
1328 | } | |
1329 | ||
1330 | static void | |
1331 | __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), | |
1332 | struct rcu_state *rsp) | |
1333 | { | |
1334 | unsigned long flags; | |
1335 | struct rcu_data *rdp; | |
1336 | ||
1337 | head->func = func; | |
1338 | head->next = NULL; | |
1339 | ||
1340 | smp_mb(); /* Ensure RCU update seen before callback registry. */ | |
1341 | ||
1342 | /* | |
1343 | * Opportunistically note grace-period endings and beginnings. | |
1344 | * Note that we might see a beginning right after we see an | |
1345 | * end, but never vice versa, since this CPU has to pass through | |
1346 | * a quiescent state betweentimes. | |
1347 | */ | |
1348 | local_irq_save(flags); | |
1349 | rdp = rsp->rda[smp_processor_id()]; | |
1350 | rcu_process_gp_end(rsp, rdp); | |
1351 | check_for_new_grace_period(rsp, rdp); | |
1352 | ||
1353 | /* Add the callback to our list. */ | |
1354 | *rdp->nxttail[RCU_NEXT_TAIL] = head; | |
1355 | rdp->nxttail[RCU_NEXT_TAIL] = &head->next; | |
1356 | ||
1357 | /* Start a new grace period if one not already started. */ | |
fc2219d4 | 1358 | if (!rcu_gp_in_progress(rsp)) { |
64db4cff PM |
1359 | unsigned long nestflag; |
1360 | struct rcu_node *rnp_root = rcu_get_root(rsp); | |
1361 | ||
1362 | spin_lock_irqsave(&rnp_root->lock, nestflag); | |
1363 | rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */ | |
1364 | } | |
1365 | ||
37c72e56 PM |
1366 | /* |
1367 | * Force the grace period if too many callbacks or too long waiting. | |
1368 | * Enforce hysteresis, and don't invoke force_quiescent_state() | |
1369 | * if some other CPU has recently done so. Also, don't bother | |
1370 | * invoking force_quiescent_state() if the newly enqueued callback | |
1371 | * is the only one waiting for a grace period to complete. | |
1372 | */ | |
1373 | if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { | |
64db4cff | 1374 | rdp->blimit = LONG_MAX; |
37c72e56 PM |
1375 | if (rsp->n_force_qs == rdp->n_force_qs_snap && |
1376 | *rdp->nxttail[RCU_DONE_TAIL] != head) | |
1377 | force_quiescent_state(rsp, 0); | |
1378 | rdp->n_force_qs_snap = rsp->n_force_qs; | |
1379 | rdp->qlen_last_fqs_check = rdp->qlen; | |
ef631b0c | 1380 | } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0) |
64db4cff PM |
1381 | force_quiescent_state(rsp, 1); |
1382 | local_irq_restore(flags); | |
1383 | } | |
1384 | ||
1385 | /* | |
d6714c22 | 1386 | * Queue an RCU-sched callback for invocation after a grace period. |
64db4cff | 1387 | */ |
d6714c22 | 1388 | void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) |
64db4cff | 1389 | { |
d6714c22 | 1390 | __call_rcu(head, func, &rcu_sched_state); |
64db4cff | 1391 | } |
d6714c22 | 1392 | EXPORT_SYMBOL_GPL(call_rcu_sched); |
64db4cff PM |
1393 | |
1394 | /* | |
1395 | * Queue an RCU for invocation after a quicker grace period. | |
1396 | */ | |
1397 | void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | |
1398 | { | |
1399 | __call_rcu(head, func, &rcu_bh_state); | |
1400 | } | |
1401 | EXPORT_SYMBOL_GPL(call_rcu_bh); | |
1402 | ||
1403 | /* | |
1404 | * Check to see if there is any immediate RCU-related work to be done | |
1405 | * by the current CPU, for the specified type of RCU, returning 1 if so. | |
1406 | * The checks are in order of increasing expense: checks that can be | |
1407 | * carried out against CPU-local state are performed first. However, | |
1408 | * we must check for CPU stalls first, else we might not get a chance. | |
1409 | */ | |
1410 | static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) | |
1411 | { | |
1412 | rdp->n_rcu_pending++; | |
1413 | ||
1414 | /* Check for CPU stalls, if enabled. */ | |
1415 | check_cpu_stall(rsp, rdp); | |
1416 | ||
1417 | /* Is the RCU core waiting for a quiescent state from this CPU? */ | |
7ba5c840 PM |
1418 | if (rdp->qs_pending) { |
1419 | rdp->n_rp_qs_pending++; | |
64db4cff | 1420 | return 1; |
7ba5c840 | 1421 | } |
64db4cff PM |
1422 | |
1423 | /* Does this CPU have callbacks ready to invoke? */ | |
7ba5c840 PM |
1424 | if (cpu_has_callbacks_ready_to_invoke(rdp)) { |
1425 | rdp->n_rp_cb_ready++; | |
64db4cff | 1426 | return 1; |
7ba5c840 | 1427 | } |
64db4cff PM |
1428 | |
1429 | /* Has RCU gone idle with this CPU needing another grace period? */ | |
7ba5c840 PM |
1430 | if (cpu_needs_another_gp(rsp, rdp)) { |
1431 | rdp->n_rp_cpu_needs_gp++; | |
64db4cff | 1432 | return 1; |
7ba5c840 | 1433 | } |
64db4cff PM |
1434 | |
1435 | /* Has another RCU grace period completed? */ | |
7ba5c840 PM |
1436 | if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */ |
1437 | rdp->n_rp_gp_completed++; | |
64db4cff | 1438 | return 1; |
7ba5c840 | 1439 | } |
64db4cff PM |
1440 | |
1441 | /* Has a new RCU grace period started? */ | |
7ba5c840 PM |
1442 | if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */ |
1443 | rdp->n_rp_gp_started++; | |
64db4cff | 1444 | return 1; |
7ba5c840 | 1445 | } |
64db4cff PM |
1446 | |
1447 | /* Has an RCU GP gone long enough to send resched IPIs &c? */ | |
fc2219d4 | 1448 | if (rcu_gp_in_progress(rsp) && |
7ba5c840 PM |
1449 | ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) { |
1450 | rdp->n_rp_need_fqs++; | |
64db4cff | 1451 | return 1; |
7ba5c840 | 1452 | } |
64db4cff PM |
1453 | |
1454 | /* nothing to do */ | |
7ba5c840 | 1455 | rdp->n_rp_need_nothing++; |
64db4cff PM |
1456 | return 0; |
1457 | } | |
1458 | ||
1459 | /* | |
1460 | * Check to see if there is any immediate RCU-related work to be done | |
1461 | * by the current CPU, returning 1 if so. This function is part of the | |
1462 | * RCU implementation; it is -not- an exported member of the RCU API. | |
1463 | */ | |
a157229c | 1464 | static int rcu_pending(int cpu) |
64db4cff | 1465 | { |
d6714c22 | 1466 | return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) || |
f41d911f PM |
1467 | __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) || |
1468 | rcu_preempt_pending(cpu); | |
64db4cff PM |
1469 | } |
1470 | ||
1471 | /* | |
1472 | * Check to see if any future RCU-related work will need to be done | |
1473 | * by the current CPU, even if none need be done immediately, returning | |
1474 | * 1 if so. This function is part of the RCU implementation; it is -not- | |
1475 | * an exported member of the RCU API. | |
1476 | */ | |
1477 | int rcu_needs_cpu(int cpu) | |
1478 | { | |
1479 | /* RCU callbacks either ready or pending? */ | |
d6714c22 | 1480 | return per_cpu(rcu_sched_data, cpu).nxtlist || |
f41d911f PM |
1481 | per_cpu(rcu_bh_data, cpu).nxtlist || |
1482 | rcu_preempt_needs_cpu(cpu); | |
64db4cff PM |
1483 | } |
1484 | ||
d0ec774c PM |
1485 | static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL}; |
1486 | static atomic_t rcu_barrier_cpu_count; | |
1487 | static DEFINE_MUTEX(rcu_barrier_mutex); | |
1488 | static struct completion rcu_barrier_completion; | |
d0ec774c PM |
1489 | |
1490 | static void rcu_barrier_callback(struct rcu_head *notused) | |
1491 | { | |
1492 | if (atomic_dec_and_test(&rcu_barrier_cpu_count)) | |
1493 | complete(&rcu_barrier_completion); | |
1494 | } | |
1495 | ||
1496 | /* | |
1497 | * Called with preemption disabled, and from cross-cpu IRQ context. | |
1498 | */ | |
1499 | static void rcu_barrier_func(void *type) | |
1500 | { | |
1501 | int cpu = smp_processor_id(); | |
1502 | struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu); | |
1503 | void (*call_rcu_func)(struct rcu_head *head, | |
1504 | void (*func)(struct rcu_head *head)); | |
1505 | ||
1506 | atomic_inc(&rcu_barrier_cpu_count); | |
1507 | call_rcu_func = type; | |
1508 | call_rcu_func(head, rcu_barrier_callback); | |
1509 | } | |
1510 | ||
d0ec774c PM |
1511 | /* |
1512 | * Orchestrate the specified type of RCU barrier, waiting for all | |
1513 | * RCU callbacks of the specified type to complete. | |
1514 | */ | |
e74f4c45 PM |
1515 | static void _rcu_barrier(struct rcu_state *rsp, |
1516 | void (*call_rcu_func)(struct rcu_head *head, | |
d0ec774c PM |
1517 | void (*func)(struct rcu_head *head))) |
1518 | { | |
1519 | BUG_ON(in_interrupt()); | |
e74f4c45 | 1520 | /* Take mutex to serialize concurrent rcu_barrier() requests. */ |
d0ec774c PM |
1521 | mutex_lock(&rcu_barrier_mutex); |
1522 | init_completion(&rcu_barrier_completion); | |
1523 | /* | |
1524 | * Initialize rcu_barrier_cpu_count to 1, then invoke | |
1525 | * rcu_barrier_func() on each CPU, so that each CPU also has | |
1526 | * incremented rcu_barrier_cpu_count. Only then is it safe to | |
1527 | * decrement rcu_barrier_cpu_count -- otherwise the first CPU | |
1528 | * might complete its grace period before all of the other CPUs | |
1529 | * did their increment, causing this function to return too | |
1530 | * early. | |
1531 | */ | |
1532 | atomic_set(&rcu_barrier_cpu_count, 1); | |
e74f4c45 PM |
1533 | preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */ |
1534 | rcu_adopt_orphan_cbs(rsp); | |
d0ec774c | 1535 | on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1); |
e74f4c45 | 1536 | preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */ |
d0ec774c PM |
1537 | if (atomic_dec_and_test(&rcu_barrier_cpu_count)) |
1538 | complete(&rcu_barrier_completion); | |
1539 | wait_for_completion(&rcu_barrier_completion); | |
1540 | mutex_unlock(&rcu_barrier_mutex); | |
d0ec774c | 1541 | } |
d0ec774c PM |
1542 | |
1543 | /** | |
1544 | * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. | |
1545 | */ | |
1546 | void rcu_barrier_bh(void) | |
1547 | { | |
e74f4c45 | 1548 | _rcu_barrier(&rcu_bh_state, call_rcu_bh); |
d0ec774c PM |
1549 | } |
1550 | EXPORT_SYMBOL_GPL(rcu_barrier_bh); | |
1551 | ||
1552 | /** | |
1553 | * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. | |
1554 | */ | |
1555 | void rcu_barrier_sched(void) | |
1556 | { | |
e74f4c45 | 1557 | _rcu_barrier(&rcu_sched_state, call_rcu_sched); |
d0ec774c PM |
1558 | } |
1559 | EXPORT_SYMBOL_GPL(rcu_barrier_sched); | |
1560 | ||
64db4cff | 1561 | /* |
27569620 | 1562 | * Do boot-time initialization of a CPU's per-CPU RCU data. |
64db4cff | 1563 | */ |
27569620 PM |
1564 | static void __init |
1565 | rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) | |
64db4cff PM |
1566 | { |
1567 | unsigned long flags; | |
1568 | int i; | |
27569620 PM |
1569 | struct rcu_data *rdp = rsp->rda[cpu]; |
1570 | struct rcu_node *rnp = rcu_get_root(rsp); | |
1571 | ||
1572 | /* Set up local state, ensuring consistent view of global state. */ | |
1573 | spin_lock_irqsave(&rnp->lock, flags); | |
1574 | rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); | |
1575 | rdp->nxtlist = NULL; | |
1576 | for (i = 0; i < RCU_NEXT_SIZE; i++) | |
1577 | rdp->nxttail[i] = &rdp->nxtlist; | |
1578 | rdp->qlen = 0; | |
1579 | #ifdef CONFIG_NO_HZ | |
1580 | rdp->dynticks = &per_cpu(rcu_dynticks, cpu); | |
1581 | #endif /* #ifdef CONFIG_NO_HZ */ | |
1582 | rdp->cpu = cpu; | |
1583 | spin_unlock_irqrestore(&rnp->lock, flags); | |
1584 | } | |
1585 | ||
1586 | /* | |
1587 | * Initialize a CPU's per-CPU RCU data. Note that only one online or | |
1588 | * offline event can be happening at a given time. Note also that we | |
1589 | * can accept some slop in the rsp->completed access due to the fact | |
1590 | * that this CPU cannot possibly have any RCU callbacks in flight yet. | |
64db4cff | 1591 | */ |
e4fa4c97 | 1592 | static void __cpuinit |
f41d911f | 1593 | rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable) |
64db4cff PM |
1594 | { |
1595 | unsigned long flags; | |
64db4cff PM |
1596 | unsigned long mask; |
1597 | struct rcu_data *rdp = rsp->rda[cpu]; | |
1598 | struct rcu_node *rnp = rcu_get_root(rsp); | |
1599 | ||
1600 | /* Set up local state, ensuring consistent view of global state. */ | |
1601 | spin_lock_irqsave(&rnp->lock, flags); | |
64db4cff PM |
1602 | rdp->passed_quiesc = 0; /* We could be racing with new GP, */ |
1603 | rdp->qs_pending = 1; /* so set up to respond to current GP. */ | |
1604 | rdp->beenonline = 1; /* We have now been online. */ | |
f41d911f | 1605 | rdp->preemptable = preemptable; |
37c72e56 PM |
1606 | rdp->qlen_last_fqs_check = 0; |
1607 | rdp->n_force_qs_snap = rsp->n_force_qs; | |
64db4cff | 1608 | rdp->blimit = blimit; |
64db4cff PM |
1609 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
1610 | ||
1611 | /* | |
1612 | * A new grace period might start here. If so, we won't be part | |
1613 | * of it, but that is OK, as we are currently in a quiescent state. | |
1614 | */ | |
1615 | ||
1616 | /* Exclude any attempts to start a new GP on large systems. */ | |
1617 | spin_lock(&rsp->onofflock); /* irqs already disabled. */ | |
1618 | ||
1619 | /* Add CPU to rcu_node bitmasks. */ | |
1620 | rnp = rdp->mynode; | |
1621 | mask = rdp->grpmask; | |
1622 | do { | |
1623 | /* Exclude any attempts to start a new GP on small systems. */ | |
1624 | spin_lock(&rnp->lock); /* irqs already disabled. */ | |
1625 | rnp->qsmaskinit |= mask; | |
1626 | mask = rnp->grpmask; | |
d09b62df PM |
1627 | if (rnp == rdp->mynode) { |
1628 | rdp->gpnum = rnp->completed; /* if GP in progress... */ | |
1629 | rdp->completed = rnp->completed; | |
1630 | rdp->passed_quiesc_completed = rnp->completed - 1; | |
1631 | } | |
64db4cff PM |
1632 | spin_unlock(&rnp->lock); /* irqs already disabled. */ |
1633 | rnp = rnp->parent; | |
1634 | } while (rnp != NULL && !(rnp->qsmaskinit & mask)); | |
1635 | ||
e7d8842e | 1636 | spin_unlock_irqrestore(&rsp->onofflock, flags); |
64db4cff PM |
1637 | } |
1638 | ||
1639 | static void __cpuinit rcu_online_cpu(int cpu) | |
1640 | { | |
f41d911f PM |
1641 | rcu_init_percpu_data(cpu, &rcu_sched_state, 0); |
1642 | rcu_init_percpu_data(cpu, &rcu_bh_state, 0); | |
1643 | rcu_preempt_init_percpu_data(cpu); | |
64db4cff PM |
1644 | } |
1645 | ||
1646 | /* | |
f41d911f | 1647 | * Handle CPU online/offline notification events. |
64db4cff | 1648 | */ |
2e597558 PM |
1649 | int __cpuinit rcu_cpu_notify(struct notifier_block *self, |
1650 | unsigned long action, void *hcpu) | |
64db4cff PM |
1651 | { |
1652 | long cpu = (long)hcpu; | |
1653 | ||
1654 | switch (action) { | |
1655 | case CPU_UP_PREPARE: | |
1656 | case CPU_UP_PREPARE_FROZEN: | |
1657 | rcu_online_cpu(cpu); | |
1658 | break; | |
d0ec774c PM |
1659 | case CPU_DYING: |
1660 | case CPU_DYING_FROZEN: | |
1661 | /* | |
e74f4c45 | 1662 | * preempt_disable() in _rcu_barrier() prevents stop_machine(), |
d0ec774c | 1663 | * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);" |
e74f4c45 PM |
1664 | * returns, all online cpus have queued rcu_barrier_func(). |
1665 | * The dying CPU clears its cpu_online_mask bit and | |
1666 | * moves all of its RCU callbacks to ->orphan_cbs_list | |
1667 | * in the context of stop_machine(), so subsequent calls | |
1668 | * to _rcu_barrier() will adopt these callbacks and only | |
1669 | * then queue rcu_barrier_func() on all remaining CPUs. | |
d0ec774c | 1670 | */ |
e74f4c45 PM |
1671 | rcu_send_cbs_to_orphanage(&rcu_bh_state); |
1672 | rcu_send_cbs_to_orphanage(&rcu_sched_state); | |
1673 | rcu_preempt_send_cbs_to_orphanage(); | |
d0ec774c | 1674 | break; |
64db4cff PM |
1675 | case CPU_DEAD: |
1676 | case CPU_DEAD_FROZEN: | |
1677 | case CPU_UP_CANCELED: | |
1678 | case CPU_UP_CANCELED_FROZEN: | |
1679 | rcu_offline_cpu(cpu); | |
1680 | break; | |
1681 | default: | |
1682 | break; | |
1683 | } | |
1684 | return NOTIFY_OK; | |
1685 | } | |
1686 | ||
1687 | /* | |
1688 | * Compute the per-level fanout, either using the exact fanout specified | |
1689 | * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. | |
1690 | */ | |
1691 | #ifdef CONFIG_RCU_FANOUT_EXACT | |
1692 | static void __init rcu_init_levelspread(struct rcu_state *rsp) | |
1693 | { | |
1694 | int i; | |
1695 | ||
1696 | for (i = NUM_RCU_LVLS - 1; i >= 0; i--) | |
1697 | rsp->levelspread[i] = CONFIG_RCU_FANOUT; | |
1698 | } | |
1699 | #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */ | |
1700 | static void __init rcu_init_levelspread(struct rcu_state *rsp) | |
1701 | { | |
1702 | int ccur; | |
1703 | int cprv; | |
1704 | int i; | |
1705 | ||
1706 | cprv = NR_CPUS; | |
1707 | for (i = NUM_RCU_LVLS - 1; i >= 0; i--) { | |
1708 | ccur = rsp->levelcnt[i]; | |
1709 | rsp->levelspread[i] = (cprv + ccur - 1) / ccur; | |
1710 | cprv = ccur; | |
1711 | } | |
1712 | } | |
1713 | #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */ | |
1714 | ||
1715 | /* | |
1716 | * Helper function for rcu_init() that initializes one rcu_state structure. | |
1717 | */ | |
1718 | static void __init rcu_init_one(struct rcu_state *rsp) | |
1719 | { | |
1720 | int cpustride = 1; | |
1721 | int i; | |
1722 | int j; | |
1723 | struct rcu_node *rnp; | |
1724 | ||
1725 | /* Initialize the level-tracking arrays. */ | |
1726 | ||
1727 | for (i = 1; i < NUM_RCU_LVLS; i++) | |
1728 | rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1]; | |
1729 | rcu_init_levelspread(rsp); | |
1730 | ||
1731 | /* Initialize the elements themselves, starting from the leaves. */ | |
1732 | ||
1733 | for (i = NUM_RCU_LVLS - 1; i >= 0; i--) { | |
1734 | cpustride *= rsp->levelspread[i]; | |
1735 | rnp = rsp->level[i]; | |
1736 | for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { | |
88b91c7c | 1737 | spin_lock_init(&rnp->lock); |
f41d911f | 1738 | rnp->gpnum = 0; |
64db4cff PM |
1739 | rnp->qsmask = 0; |
1740 | rnp->qsmaskinit = 0; | |
1741 | rnp->grplo = j * cpustride; | |
1742 | rnp->grphi = (j + 1) * cpustride - 1; | |
1743 | if (rnp->grphi >= NR_CPUS) | |
1744 | rnp->grphi = NR_CPUS - 1; | |
1745 | if (i == 0) { | |
1746 | rnp->grpnum = 0; | |
1747 | rnp->grpmask = 0; | |
1748 | rnp->parent = NULL; | |
1749 | } else { | |
1750 | rnp->grpnum = j % rsp->levelspread[i - 1]; | |
1751 | rnp->grpmask = 1UL << rnp->grpnum; | |
1752 | rnp->parent = rsp->level[i - 1] + | |
1753 | j / rsp->levelspread[i - 1]; | |
1754 | } | |
1755 | rnp->level = i; | |
f41d911f PM |
1756 | INIT_LIST_HEAD(&rnp->blocked_tasks[0]); |
1757 | INIT_LIST_HEAD(&rnp->blocked_tasks[1]); | |
64db4cff PM |
1758 | } |
1759 | } | |
88b91c7c | 1760 | lockdep_set_class(&rcu_get_root(rsp)->lock, &rcu_root_class); |
64db4cff PM |
1761 | } |
1762 | ||
1763 | /* | |
f41d911f PM |
1764 | * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used |
1765 | * nowhere else! Assigns leaf node pointers into each CPU's rcu_data | |
1766 | * structure. | |
64db4cff | 1767 | */ |
65cf8f86 | 1768 | #define RCU_INIT_FLAVOR(rsp, rcu_data) \ |
64db4cff | 1769 | do { \ |
a0b6c9a7 PM |
1770 | int i; \ |
1771 | int j; \ | |
1772 | struct rcu_node *rnp; \ | |
1773 | \ | |
65cf8f86 | 1774 | rcu_init_one(rsp); \ |
64db4cff PM |
1775 | rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \ |
1776 | j = 0; \ | |
1777 | for_each_possible_cpu(i) { \ | |
1778 | if (i > rnp[j].grphi) \ | |
1779 | j++; \ | |
1780 | per_cpu(rcu_data, i).mynode = &rnp[j]; \ | |
1781 | (rsp)->rda[i] = &per_cpu(rcu_data, i); \ | |
65cf8f86 | 1782 | rcu_boot_init_percpu_data(i, rsp); \ |
64db4cff PM |
1783 | } \ |
1784 | } while (0) | |
1785 | ||
64db4cff PM |
1786 | void __init __rcu_init(void) |
1787 | { | |
f41d911f | 1788 | rcu_bootup_announce(); |
64db4cff PM |
1789 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR |
1790 | printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n"); | |
1791 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | |
65cf8f86 PM |
1792 | RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data); |
1793 | RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data); | |
f41d911f | 1794 | __rcu_init_preempt(); |
2e597558 | 1795 | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); |
64db4cff PM |
1796 | } |
1797 | ||
1eba8f84 | 1798 | #include "rcutree_plugin.h" |