]>
Commit | Line | Data |
---|---|---|
19baf839 RO |
1 | /* |
2 | * This program is free software; you can redistribute it and/or | |
3 | * modify it under the terms of the GNU General Public License | |
4 | * as published by the Free Software Foundation; either version | |
5 | * 2 of the License, or (at your option) any later version. | |
6 | * | |
7 | * Robert Olsson <[email protected]> Uppsala Universitet | |
8 | * & Swedish University of Agricultural Sciences. | |
9 | * | |
10 | * Jens Laas <[email protected]> Swedish University of | |
11 | * Agricultural Sciences. | |
12 | * | |
13 | * Hans Liss <[email protected]> Uppsala Universitet | |
14 | * | |
15 | * This work is based on the LPC-trie which is originally descibed in: | |
16 | * | |
17 | * An experimental study of compression methods for dynamic tries | |
18 | * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. | |
19 | * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/ | |
20 | * | |
21 | * | |
22 | * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson | |
23 | * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 | |
24 | * | |
25 | * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $ | |
26 | * | |
27 | * | |
28 | * Code from fib_hash has been reused which includes the following header: | |
29 | * | |
30 | * | |
31 | * INET An implementation of the TCP/IP protocol suite for the LINUX | |
32 | * operating system. INET is implemented using the BSD Socket | |
33 | * interface as the means of communication with the user level. | |
34 | * | |
35 | * IPv4 FIB: lookup engine and maintenance routines. | |
36 | * | |
37 | * | |
38 | * Authors: Alexey Kuznetsov, <[email protected]> | |
39 | * | |
40 | * This program is free software; you can redistribute it and/or | |
41 | * modify it under the terms of the GNU General Public License | |
42 | * as published by the Free Software Foundation; either version | |
43 | * 2 of the License, or (at your option) any later version. | |
fd966255 RO |
44 | * |
45 | * Substantial contributions to this work comes from: | |
46 | * | |
47 | * David S. Miller, <[email protected]> | |
48 | * Stephen Hemminger <[email protected]> | |
49 | * Paul E. McKenney <[email protected]> | |
50 | * Patrick McHardy <[email protected]> | |
19baf839 RO |
51 | */ |
52 | ||
550e29bc | 53 | #define VERSION "0.407" |
19baf839 | 54 | |
19baf839 RO |
55 | #include <asm/uaccess.h> |
56 | #include <asm/system.h> | |
57 | #include <asm/bitops.h> | |
58 | #include <linux/types.h> | |
59 | #include <linux/kernel.h> | |
60 | #include <linux/sched.h> | |
61 | #include <linux/mm.h> | |
62 | #include <linux/string.h> | |
63 | #include <linux/socket.h> | |
64 | #include <linux/sockios.h> | |
65 | #include <linux/errno.h> | |
66 | #include <linux/in.h> | |
67 | #include <linux/inet.h> | |
cd8787ab | 68 | #include <linux/inetdevice.h> |
19baf839 RO |
69 | #include <linux/netdevice.h> |
70 | #include <linux/if_arp.h> | |
71 | #include <linux/proc_fs.h> | |
2373ce1c | 72 | #include <linux/rcupdate.h> |
19baf839 RO |
73 | #include <linux/skbuff.h> |
74 | #include <linux/netlink.h> | |
75 | #include <linux/init.h> | |
76 | #include <linux/list.h> | |
77 | #include <net/ip.h> | |
78 | #include <net/protocol.h> | |
79 | #include <net/route.h> | |
80 | #include <net/tcp.h> | |
81 | #include <net/sock.h> | |
82 | #include <net/ip_fib.h> | |
83 | #include "fib_lookup.h" | |
84 | ||
85 | #undef CONFIG_IP_FIB_TRIE_STATS | |
06ef921d | 86 | #define MAX_STAT_DEPTH 32 |
19baf839 | 87 | |
19baf839 RO |
88 | #define KEYLENGTH (8*sizeof(t_key)) |
89 | #define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l)) | |
90 | #define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset)) | |
91 | ||
19baf839 RO |
92 | typedef unsigned int t_key; |
93 | ||
94 | #define T_TNODE 0 | |
95 | #define T_LEAF 1 | |
96 | #define NODE_TYPE_MASK 0x1UL | |
91b9a277 | 97 | #define NODE_PARENT(node) \ |
2373ce1c RO |
98 | ((struct tnode *)rcu_dereference(((node)->parent & ~NODE_TYPE_MASK))) |
99 | ||
100 | #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK) | |
101 | ||
102 | #define NODE_SET_PARENT(node, ptr) \ | |
103 | rcu_assign_pointer((node)->parent, \ | |
104 | ((unsigned long)(ptr)) | NODE_TYPE(node)) | |
91b9a277 OJ |
105 | |
106 | #define IS_TNODE(n) (!(n->parent & T_LEAF)) | |
107 | #define IS_LEAF(n) (n->parent & T_LEAF) | |
19baf839 RO |
108 | |
109 | struct node { | |
91b9a277 OJ |
110 | t_key key; |
111 | unsigned long parent; | |
19baf839 RO |
112 | }; |
113 | ||
114 | struct leaf { | |
91b9a277 OJ |
115 | t_key key; |
116 | unsigned long parent; | |
19baf839 | 117 | struct hlist_head list; |
2373ce1c | 118 | struct rcu_head rcu; |
19baf839 RO |
119 | }; |
120 | ||
121 | struct leaf_info { | |
122 | struct hlist_node hlist; | |
2373ce1c | 123 | struct rcu_head rcu; |
19baf839 RO |
124 | int plen; |
125 | struct list_head falh; | |
126 | }; | |
127 | ||
128 | struct tnode { | |
91b9a277 OJ |
129 | t_key key; |
130 | unsigned long parent; | |
131 | unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */ | |
132 | unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */ | |
133 | unsigned short full_children; /* KEYLENGTH bits needed */ | |
134 | unsigned short empty_children; /* KEYLENGTH bits needed */ | |
2373ce1c | 135 | struct rcu_head rcu; |
91b9a277 | 136 | struct node *child[0]; |
19baf839 RO |
137 | }; |
138 | ||
139 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
140 | struct trie_use_stats { | |
141 | unsigned int gets; | |
142 | unsigned int backtrack; | |
143 | unsigned int semantic_match_passed; | |
144 | unsigned int semantic_match_miss; | |
145 | unsigned int null_node_hit; | |
2f36895a | 146 | unsigned int resize_node_skipped; |
19baf839 RO |
147 | }; |
148 | #endif | |
149 | ||
150 | struct trie_stat { | |
151 | unsigned int totdepth; | |
152 | unsigned int maxdepth; | |
153 | unsigned int tnodes; | |
154 | unsigned int leaves; | |
155 | unsigned int nullpointers; | |
06ef921d | 156 | unsigned int nodesizes[MAX_STAT_DEPTH]; |
c877efb2 | 157 | }; |
19baf839 RO |
158 | |
159 | struct trie { | |
91b9a277 | 160 | struct node *trie; |
19baf839 RO |
161 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
162 | struct trie_use_stats stats; | |
163 | #endif | |
91b9a277 | 164 | int size; |
19baf839 RO |
165 | unsigned int revision; |
166 | }; | |
167 | ||
19baf839 RO |
168 | static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n); |
169 | static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull); | |
19baf839 | 170 | static struct node *resize(struct trie *t, struct tnode *tn); |
2f80b3c8 RO |
171 | static struct tnode *inflate(struct trie *t, struct tnode *tn); |
172 | static struct tnode *halve(struct trie *t, struct tnode *tn); | |
19baf839 | 173 | static void tnode_free(struct tnode *tn); |
19baf839 | 174 | |
ba89966c | 175 | static kmem_cache_t *fn_alias_kmem __read_mostly; |
19baf839 RO |
176 | static struct trie *trie_local = NULL, *trie_main = NULL; |
177 | ||
2373ce1c RO |
178 | |
179 | /* rcu_read_lock needs to be hold by caller from readside */ | |
180 | ||
c877efb2 | 181 | static inline struct node *tnode_get_child(struct tnode *tn, int i) |
19baf839 | 182 | { |
91b9a277 | 183 | BUG_ON(i >= 1 << tn->bits); |
19baf839 | 184 | |
2373ce1c | 185 | return rcu_dereference(tn->child[i]); |
19baf839 RO |
186 | } |
187 | ||
bb435b8d | 188 | static inline int tnode_child_length(const struct tnode *tn) |
19baf839 | 189 | { |
91b9a277 | 190 | return 1 << tn->bits; |
19baf839 RO |
191 | } |
192 | ||
19baf839 RO |
193 | static inline t_key tkey_extract_bits(t_key a, int offset, int bits) |
194 | { | |
91b9a277 | 195 | if (offset < KEYLENGTH) |
19baf839 | 196 | return ((t_key)(a << offset)) >> (KEYLENGTH - bits); |
91b9a277 | 197 | else |
19baf839 RO |
198 | return 0; |
199 | } | |
200 | ||
201 | static inline int tkey_equals(t_key a, t_key b) | |
202 | { | |
c877efb2 | 203 | return a == b; |
19baf839 RO |
204 | } |
205 | ||
206 | static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) | |
207 | { | |
c877efb2 SH |
208 | if (bits == 0 || offset >= KEYLENGTH) |
209 | return 1; | |
91b9a277 OJ |
210 | bits = bits > KEYLENGTH ? KEYLENGTH : bits; |
211 | return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; | |
c877efb2 | 212 | } |
19baf839 RO |
213 | |
214 | static inline int tkey_mismatch(t_key a, int offset, t_key b) | |
215 | { | |
216 | t_key diff = a ^ b; | |
217 | int i = offset; | |
218 | ||
c877efb2 SH |
219 | if (!diff) |
220 | return 0; | |
221 | while ((diff << i) >> (KEYLENGTH-1) == 0) | |
19baf839 RO |
222 | i++; |
223 | return i; | |
224 | } | |
225 | ||
19baf839 RO |
226 | /* |
227 | To understand this stuff, an understanding of keys and all their bits is | |
228 | necessary. Every node in the trie has a key associated with it, but not | |
229 | all of the bits in that key are significant. | |
230 | ||
231 | Consider a node 'n' and its parent 'tp'. | |
232 | ||
233 | If n is a leaf, every bit in its key is significant. Its presence is | |
772cb712 | 234 | necessitated by path compression, since during a tree traversal (when |
19baf839 RO |
235 | searching for a leaf - unless we are doing an insertion) we will completely |
236 | ignore all skipped bits we encounter. Thus we need to verify, at the end of | |
237 | a potentially successful search, that we have indeed been walking the | |
238 | correct key path. | |
239 | ||
240 | Note that we can never "miss" the correct key in the tree if present by | |
241 | following the wrong path. Path compression ensures that segments of the key | |
242 | that are the same for all keys with a given prefix are skipped, but the | |
243 | skipped part *is* identical for each node in the subtrie below the skipped | |
244 | bit! trie_insert() in this implementation takes care of that - note the | |
245 | call to tkey_sub_equals() in trie_insert(). | |
246 | ||
247 | if n is an internal node - a 'tnode' here, the various parts of its key | |
248 | have many different meanings. | |
249 | ||
250 | Example: | |
251 | _________________________________________________________________ | |
252 | | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | | |
253 | ----------------------------------------------------------------- | |
254 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | |
255 | ||
256 | _________________________________________________________________ | |
257 | | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | | |
258 | ----------------------------------------------------------------- | |
259 | 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | |
260 | ||
261 | tp->pos = 7 | |
262 | tp->bits = 3 | |
263 | n->pos = 15 | |
91b9a277 | 264 | n->bits = 4 |
19baf839 RO |
265 | |
266 | First, let's just ignore the bits that come before the parent tp, that is | |
267 | the bits from 0 to (tp->pos-1). They are *known* but at this point we do | |
268 | not use them for anything. | |
269 | ||
270 | The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the | |
271 | index into the parent's child array. That is, they will be used to find | |
272 | 'n' among tp's children. | |
273 | ||
274 | The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits | |
275 | for the node n. | |
276 | ||
277 | All the bits we have seen so far are significant to the node n. The rest | |
278 | of the bits are really not needed or indeed known in n->key. | |
279 | ||
280 | The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into | |
281 | n's child array, and will of course be different for each child. | |
282 | ||
c877efb2 | 283 | |
19baf839 RO |
284 | The rest of the bits, from (n->pos + n->bits) onward, are completely unknown |
285 | at this point. | |
286 | ||
287 | */ | |
288 | ||
0c7770c7 | 289 | static inline void check_tnode(const struct tnode *tn) |
19baf839 | 290 | { |
0c7770c7 | 291 | WARN_ON(tn && tn->pos+tn->bits > 32); |
19baf839 RO |
292 | } |
293 | ||
294 | static int halve_threshold = 25; | |
295 | static int inflate_threshold = 50; | |
e6308be8 RO |
296 | static int halve_threshold_root = 15; |
297 | static int inflate_threshold_root = 25; | |
19baf839 | 298 | |
2373ce1c RO |
299 | |
300 | static void __alias_free_mem(struct rcu_head *head) | |
19baf839 | 301 | { |
2373ce1c RO |
302 | struct fib_alias *fa = container_of(head, struct fib_alias, rcu); |
303 | kmem_cache_free(fn_alias_kmem, fa); | |
19baf839 RO |
304 | } |
305 | ||
2373ce1c | 306 | static inline void alias_free_mem_rcu(struct fib_alias *fa) |
19baf839 | 307 | { |
2373ce1c RO |
308 | call_rcu(&fa->rcu, __alias_free_mem); |
309 | } | |
91b9a277 | 310 | |
2373ce1c RO |
311 | static void __leaf_free_rcu(struct rcu_head *head) |
312 | { | |
313 | kfree(container_of(head, struct leaf, rcu)); | |
314 | } | |
91b9a277 | 315 | |
2373ce1c | 316 | static void __leaf_info_free_rcu(struct rcu_head *head) |
19baf839 | 317 | { |
2373ce1c | 318 | kfree(container_of(head, struct leaf_info, rcu)); |
19baf839 RO |
319 | } |
320 | ||
2373ce1c | 321 | static inline void free_leaf_info(struct leaf_info *leaf) |
19baf839 | 322 | { |
2373ce1c | 323 | call_rcu(&leaf->rcu, __leaf_info_free_rcu); |
19baf839 RO |
324 | } |
325 | ||
f0e36f8c PM |
326 | static struct tnode *tnode_alloc(unsigned int size) |
327 | { | |
2373ce1c RO |
328 | struct page *pages; |
329 | ||
330 | if (size <= PAGE_SIZE) | |
331 | return kcalloc(size, 1, GFP_KERNEL); | |
332 | ||
333 | pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size)); | |
334 | if (!pages) | |
335 | return NULL; | |
336 | ||
337 | return page_address(pages); | |
f0e36f8c PM |
338 | } |
339 | ||
2373ce1c | 340 | static void __tnode_free_rcu(struct rcu_head *head) |
f0e36f8c | 341 | { |
2373ce1c | 342 | struct tnode *tn = container_of(head, struct tnode, rcu); |
f0e36f8c | 343 | unsigned int size = sizeof(struct tnode) + |
2373ce1c | 344 | (1 << tn->bits) * sizeof(struct node *); |
f0e36f8c PM |
345 | |
346 | if (size <= PAGE_SIZE) | |
347 | kfree(tn); | |
348 | else | |
349 | free_pages((unsigned long)tn, get_order(size)); | |
350 | } | |
351 | ||
2373ce1c RO |
352 | static inline void tnode_free(struct tnode *tn) |
353 | { | |
550e29bc RO |
354 | if(IS_LEAF(tn)) { |
355 | struct leaf *l = (struct leaf *) tn; | |
356 | call_rcu_bh(&l->rcu, __leaf_free_rcu); | |
357 | } | |
358 | else | |
359 | call_rcu(&tn->rcu, __tnode_free_rcu); | |
2373ce1c RO |
360 | } |
361 | ||
362 | static struct leaf *leaf_new(void) | |
363 | { | |
364 | struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL); | |
365 | if (l) { | |
366 | l->parent = T_LEAF; | |
367 | INIT_HLIST_HEAD(&l->list); | |
368 | } | |
369 | return l; | |
370 | } | |
371 | ||
372 | static struct leaf_info *leaf_info_new(int plen) | |
373 | { | |
374 | struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); | |
375 | if (li) { | |
376 | li->plen = plen; | |
377 | INIT_LIST_HEAD(&li->falh); | |
378 | } | |
379 | return li; | |
380 | } | |
381 | ||
19baf839 RO |
382 | static struct tnode* tnode_new(t_key key, int pos, int bits) |
383 | { | |
384 | int nchildren = 1<<bits; | |
385 | int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *); | |
f0e36f8c | 386 | struct tnode *tn = tnode_alloc(sz); |
19baf839 | 387 | |
91b9a277 | 388 | if (tn) { |
19baf839 | 389 | memset(tn, 0, sz); |
2373ce1c | 390 | tn->parent = T_TNODE; |
19baf839 RO |
391 | tn->pos = pos; |
392 | tn->bits = bits; | |
393 | tn->key = key; | |
394 | tn->full_children = 0; | |
395 | tn->empty_children = 1<<bits; | |
396 | } | |
c877efb2 | 397 | |
0c7770c7 SH |
398 | pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode), |
399 | (unsigned int) (sizeof(struct node) * 1<<bits)); | |
19baf839 RO |
400 | return tn; |
401 | } | |
402 | ||
19baf839 RO |
403 | /* |
404 | * Check whether a tnode 'n' is "full", i.e. it is an internal node | |
405 | * and no bits are skipped. See discussion in dyntree paper p. 6 | |
406 | */ | |
407 | ||
bb435b8d | 408 | static inline int tnode_full(const struct tnode *tn, const struct node *n) |
19baf839 | 409 | { |
c877efb2 | 410 | if (n == NULL || IS_LEAF(n)) |
19baf839 RO |
411 | return 0; |
412 | ||
413 | return ((struct tnode *) n)->pos == tn->pos + tn->bits; | |
414 | } | |
415 | ||
c877efb2 | 416 | static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n) |
19baf839 RO |
417 | { |
418 | tnode_put_child_reorg(tn, i, n, -1); | |
419 | } | |
420 | ||
c877efb2 | 421 | /* |
19baf839 RO |
422 | * Add a child at position i overwriting the old value. |
423 | * Update the value of full_children and empty_children. | |
424 | */ | |
425 | ||
c877efb2 | 426 | static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull) |
19baf839 | 427 | { |
2373ce1c | 428 | struct node *chi = tn->child[i]; |
19baf839 RO |
429 | int isfull; |
430 | ||
0c7770c7 SH |
431 | BUG_ON(i >= 1<<tn->bits); |
432 | ||
19baf839 RO |
433 | |
434 | /* update emptyChildren */ | |
435 | if (n == NULL && chi != NULL) | |
436 | tn->empty_children++; | |
437 | else if (n != NULL && chi == NULL) | |
438 | tn->empty_children--; | |
c877efb2 | 439 | |
19baf839 | 440 | /* update fullChildren */ |
91b9a277 | 441 | if (wasfull == -1) |
19baf839 RO |
442 | wasfull = tnode_full(tn, chi); |
443 | ||
444 | isfull = tnode_full(tn, n); | |
c877efb2 | 445 | if (wasfull && !isfull) |
19baf839 | 446 | tn->full_children--; |
c877efb2 | 447 | else if (!wasfull && isfull) |
19baf839 | 448 | tn->full_children++; |
91b9a277 | 449 | |
c877efb2 SH |
450 | if (n) |
451 | NODE_SET_PARENT(n, tn); | |
19baf839 | 452 | |
2373ce1c | 453 | rcu_assign_pointer(tn->child[i], n); |
19baf839 RO |
454 | } |
455 | ||
c877efb2 | 456 | static struct node *resize(struct trie *t, struct tnode *tn) |
19baf839 RO |
457 | { |
458 | int i; | |
2f36895a | 459 | int err = 0; |
2f80b3c8 | 460 | struct tnode *old_tn; |
e6308be8 RO |
461 | int inflate_threshold_use; |
462 | int halve_threshold_use; | |
19baf839 RO |
463 | |
464 | if (!tn) | |
465 | return NULL; | |
466 | ||
0c7770c7 SH |
467 | pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", |
468 | tn, inflate_threshold, halve_threshold); | |
19baf839 RO |
469 | |
470 | /* No children */ | |
471 | if (tn->empty_children == tnode_child_length(tn)) { | |
472 | tnode_free(tn); | |
473 | return NULL; | |
474 | } | |
475 | /* One child */ | |
476 | if (tn->empty_children == tnode_child_length(tn) - 1) | |
477 | for (i = 0; i < tnode_child_length(tn); i++) { | |
91b9a277 | 478 | struct node *n; |
19baf839 | 479 | |
91b9a277 | 480 | n = tn->child[i]; |
2373ce1c | 481 | if (!n) |
91b9a277 | 482 | continue; |
91b9a277 OJ |
483 | |
484 | /* compress one level */ | |
2373ce1c | 485 | NODE_SET_PARENT(n, NULL); |
91b9a277 OJ |
486 | tnode_free(tn); |
487 | return n; | |
19baf839 | 488 | } |
c877efb2 | 489 | /* |
19baf839 RO |
490 | * Double as long as the resulting node has a number of |
491 | * nonempty nodes that are above the threshold. | |
492 | */ | |
493 | ||
494 | /* | |
c877efb2 SH |
495 | * From "Implementing a dynamic compressed trie" by Stefan Nilsson of |
496 | * the Helsinki University of Technology and Matti Tikkanen of Nokia | |
19baf839 | 497 | * Telecommunications, page 6: |
c877efb2 | 498 | * "A node is doubled if the ratio of non-empty children to all |
19baf839 RO |
499 | * children in the *doubled* node is at least 'high'." |
500 | * | |
c877efb2 SH |
501 | * 'high' in this instance is the variable 'inflate_threshold'. It |
502 | * is expressed as a percentage, so we multiply it with | |
503 | * tnode_child_length() and instead of multiplying by 2 (since the | |
504 | * child array will be doubled by inflate()) and multiplying | |
505 | * the left-hand side by 100 (to handle the percentage thing) we | |
19baf839 | 506 | * multiply the left-hand side by 50. |
c877efb2 SH |
507 | * |
508 | * The left-hand side may look a bit weird: tnode_child_length(tn) | |
509 | * - tn->empty_children is of course the number of non-null children | |
510 | * in the current node. tn->full_children is the number of "full" | |
19baf839 | 511 | * children, that is non-null tnodes with a skip value of 0. |
c877efb2 | 512 | * All of those will be doubled in the resulting inflated tnode, so |
19baf839 | 513 | * we just count them one extra time here. |
c877efb2 | 514 | * |
19baf839 | 515 | * A clearer way to write this would be: |
c877efb2 | 516 | * |
19baf839 | 517 | * to_be_doubled = tn->full_children; |
c877efb2 | 518 | * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - |
19baf839 RO |
519 | * tn->full_children; |
520 | * | |
521 | * new_child_length = tnode_child_length(tn) * 2; | |
522 | * | |
c877efb2 | 523 | * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / |
19baf839 RO |
524 | * new_child_length; |
525 | * if (new_fill_factor >= inflate_threshold) | |
c877efb2 SH |
526 | * |
527 | * ...and so on, tho it would mess up the while () loop. | |
528 | * | |
19baf839 RO |
529 | * anyway, |
530 | * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= | |
531 | * inflate_threshold | |
c877efb2 | 532 | * |
19baf839 RO |
533 | * avoid a division: |
534 | * 100 * (not_to_be_doubled + 2*to_be_doubled) >= | |
535 | * inflate_threshold * new_child_length | |
c877efb2 | 536 | * |
19baf839 | 537 | * expand not_to_be_doubled and to_be_doubled, and shorten: |
c877efb2 | 538 | * 100 * (tnode_child_length(tn) - tn->empty_children + |
91b9a277 | 539 | * tn->full_children) >= inflate_threshold * new_child_length |
c877efb2 | 540 | * |
19baf839 | 541 | * expand new_child_length: |
c877efb2 | 542 | * 100 * (tnode_child_length(tn) - tn->empty_children + |
91b9a277 | 543 | * tn->full_children) >= |
19baf839 | 544 | * inflate_threshold * tnode_child_length(tn) * 2 |
c877efb2 | 545 | * |
19baf839 | 546 | * shorten again: |
c877efb2 | 547 | * 50 * (tn->full_children + tnode_child_length(tn) - |
91b9a277 | 548 | * tn->empty_children) >= inflate_threshold * |
19baf839 | 549 | * tnode_child_length(tn) |
c877efb2 | 550 | * |
19baf839 RO |
551 | */ |
552 | ||
553 | check_tnode(tn); | |
c877efb2 | 554 | |
e6308be8 RO |
555 | /* Keep root node larger */ |
556 | ||
557 | if(!tn->parent) | |
558 | inflate_threshold_use = inflate_threshold_root; | |
559 | else | |
560 | inflate_threshold_use = inflate_threshold; | |
561 | ||
2f36895a | 562 | err = 0; |
19baf839 RO |
563 | while ((tn->full_children > 0 && |
564 | 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >= | |
e6308be8 | 565 | inflate_threshold_use * tnode_child_length(tn))) { |
19baf839 | 566 | |
2f80b3c8 RO |
567 | old_tn = tn; |
568 | tn = inflate(t, tn); | |
569 | if (IS_ERR(tn)) { | |
570 | tn = old_tn; | |
2f36895a RO |
571 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
572 | t->stats.resize_node_skipped++; | |
573 | #endif | |
574 | break; | |
575 | } | |
19baf839 RO |
576 | } |
577 | ||
578 | check_tnode(tn); | |
579 | ||
580 | /* | |
581 | * Halve as long as the number of empty children in this | |
582 | * node is above threshold. | |
583 | */ | |
2f36895a | 584 | |
e6308be8 RO |
585 | |
586 | /* Keep root node larger */ | |
587 | ||
588 | if(!tn->parent) | |
589 | halve_threshold_use = halve_threshold_root; | |
590 | else | |
591 | halve_threshold_use = halve_threshold; | |
592 | ||
2f36895a | 593 | err = 0; |
19baf839 RO |
594 | while (tn->bits > 1 && |
595 | 100 * (tnode_child_length(tn) - tn->empty_children) < | |
e6308be8 | 596 | halve_threshold_use * tnode_child_length(tn)) { |
2f36895a | 597 | |
2f80b3c8 RO |
598 | old_tn = tn; |
599 | tn = halve(t, tn); | |
600 | if (IS_ERR(tn)) { | |
601 | tn = old_tn; | |
2f36895a RO |
602 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
603 | t->stats.resize_node_skipped++; | |
604 | #endif | |
605 | break; | |
606 | } | |
607 | } | |
19baf839 | 608 | |
c877efb2 | 609 | |
19baf839 | 610 | /* Only one child remains */ |
19baf839 RO |
611 | if (tn->empty_children == tnode_child_length(tn) - 1) |
612 | for (i = 0; i < tnode_child_length(tn); i++) { | |
91b9a277 | 613 | struct node *n; |
19baf839 | 614 | |
91b9a277 | 615 | n = tn->child[i]; |
2373ce1c | 616 | if (!n) |
91b9a277 | 617 | continue; |
91b9a277 OJ |
618 | |
619 | /* compress one level */ | |
620 | ||
2373ce1c | 621 | NODE_SET_PARENT(n, NULL); |
91b9a277 OJ |
622 | tnode_free(tn); |
623 | return n; | |
19baf839 RO |
624 | } |
625 | ||
626 | return (struct node *) tn; | |
627 | } | |
628 | ||
2f80b3c8 | 629 | static struct tnode *inflate(struct trie *t, struct tnode *tn) |
19baf839 RO |
630 | { |
631 | struct tnode *inode; | |
632 | struct tnode *oldtnode = tn; | |
633 | int olen = tnode_child_length(tn); | |
634 | int i; | |
635 | ||
0c7770c7 | 636 | pr_debug("In inflate\n"); |
19baf839 RO |
637 | |
638 | tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); | |
639 | ||
0c7770c7 | 640 | if (!tn) |
2f80b3c8 | 641 | return ERR_PTR(-ENOMEM); |
2f36895a RO |
642 | |
643 | /* | |
c877efb2 SH |
644 | * Preallocate and store tnodes before the actual work so we |
645 | * don't get into an inconsistent state if memory allocation | |
646 | * fails. In case of failure we return the oldnode and inflate | |
2f36895a RO |
647 | * of tnode is ignored. |
648 | */ | |
91b9a277 OJ |
649 | |
650 | for (i = 0; i < olen; i++) { | |
2f36895a RO |
651 | struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i); |
652 | ||
653 | if (inode && | |
654 | IS_TNODE(inode) && | |
655 | inode->pos == oldtnode->pos + oldtnode->bits && | |
656 | inode->bits > 1) { | |
657 | struct tnode *left, *right; | |
2f36895a | 658 | t_key m = TKEY_GET_MASK(inode->pos, 1); |
c877efb2 | 659 | |
2f36895a RO |
660 | left = tnode_new(inode->key&(~m), inode->pos + 1, |
661 | inode->bits - 1); | |
2f80b3c8 RO |
662 | if (!left) |
663 | goto nomem; | |
91b9a277 | 664 | |
2f36895a RO |
665 | right = tnode_new(inode->key|m, inode->pos + 1, |
666 | inode->bits - 1); | |
667 | ||
2f80b3c8 RO |
668 | if (!right) { |
669 | tnode_free(left); | |
670 | goto nomem; | |
671 | } | |
2f36895a RO |
672 | |
673 | put_child(t, tn, 2*i, (struct node *) left); | |
674 | put_child(t, tn, 2*i+1, (struct node *) right); | |
675 | } | |
676 | } | |
677 | ||
91b9a277 | 678 | for (i = 0; i < olen; i++) { |
19baf839 | 679 | struct node *node = tnode_get_child(oldtnode, i); |
91b9a277 OJ |
680 | struct tnode *left, *right; |
681 | int size, j; | |
c877efb2 | 682 | |
19baf839 RO |
683 | /* An empty child */ |
684 | if (node == NULL) | |
685 | continue; | |
686 | ||
687 | /* A leaf or an internal node with skipped bits */ | |
688 | ||
c877efb2 | 689 | if (IS_LEAF(node) || ((struct tnode *) node)->pos > |
19baf839 | 690 | tn->pos + tn->bits - 1) { |
c877efb2 | 691 | if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits, |
19baf839 RO |
692 | 1) == 0) |
693 | put_child(t, tn, 2*i, node); | |
694 | else | |
695 | put_child(t, tn, 2*i+1, node); | |
696 | continue; | |
697 | } | |
698 | ||
699 | /* An internal node with two children */ | |
700 | inode = (struct tnode *) node; | |
701 | ||
702 | if (inode->bits == 1) { | |
703 | put_child(t, tn, 2*i, inode->child[0]); | |
704 | put_child(t, tn, 2*i+1, inode->child[1]); | |
705 | ||
706 | tnode_free(inode); | |
91b9a277 | 707 | continue; |
19baf839 RO |
708 | } |
709 | ||
91b9a277 OJ |
710 | /* An internal node with more than two children */ |
711 | ||
712 | /* We will replace this node 'inode' with two new | |
713 | * ones, 'left' and 'right', each with half of the | |
714 | * original children. The two new nodes will have | |
715 | * a position one bit further down the key and this | |
716 | * means that the "significant" part of their keys | |
717 | * (see the discussion near the top of this file) | |
718 | * will differ by one bit, which will be "0" in | |
719 | * left's key and "1" in right's key. Since we are | |
720 | * moving the key position by one step, the bit that | |
721 | * we are moving away from - the bit at position | |
722 | * (inode->pos) - is the one that will differ between | |
723 | * left and right. So... we synthesize that bit in the | |
724 | * two new keys. | |
725 | * The mask 'm' below will be a single "one" bit at | |
726 | * the position (inode->pos) | |
727 | */ | |
19baf839 | 728 | |
91b9a277 OJ |
729 | /* Use the old key, but set the new significant |
730 | * bit to zero. | |
731 | */ | |
2f36895a | 732 | |
91b9a277 OJ |
733 | left = (struct tnode *) tnode_get_child(tn, 2*i); |
734 | put_child(t, tn, 2*i, NULL); | |
2f36895a | 735 | |
91b9a277 | 736 | BUG_ON(!left); |
2f36895a | 737 | |
91b9a277 OJ |
738 | right = (struct tnode *) tnode_get_child(tn, 2*i+1); |
739 | put_child(t, tn, 2*i+1, NULL); | |
19baf839 | 740 | |
91b9a277 | 741 | BUG_ON(!right); |
19baf839 | 742 | |
91b9a277 OJ |
743 | size = tnode_child_length(left); |
744 | for (j = 0; j < size; j++) { | |
745 | put_child(t, left, j, inode->child[j]); | |
746 | put_child(t, right, j, inode->child[j + size]); | |
19baf839 | 747 | } |
91b9a277 OJ |
748 | put_child(t, tn, 2*i, resize(t, left)); |
749 | put_child(t, tn, 2*i+1, resize(t, right)); | |
750 | ||
751 | tnode_free(inode); | |
19baf839 RO |
752 | } |
753 | tnode_free(oldtnode); | |
754 | return tn; | |
2f80b3c8 RO |
755 | nomem: |
756 | { | |
757 | int size = tnode_child_length(tn); | |
758 | int j; | |
759 | ||
0c7770c7 | 760 | for (j = 0; j < size; j++) |
2f80b3c8 RO |
761 | if (tn->child[j]) |
762 | tnode_free((struct tnode *)tn->child[j]); | |
763 | ||
764 | tnode_free(tn); | |
0c7770c7 | 765 | |
2f80b3c8 RO |
766 | return ERR_PTR(-ENOMEM); |
767 | } | |
19baf839 RO |
768 | } |
769 | ||
2f80b3c8 | 770 | static struct tnode *halve(struct trie *t, struct tnode *tn) |
19baf839 RO |
771 | { |
772 | struct tnode *oldtnode = tn; | |
773 | struct node *left, *right; | |
774 | int i; | |
775 | int olen = tnode_child_length(tn); | |
776 | ||
0c7770c7 | 777 | pr_debug("In halve\n"); |
c877efb2 SH |
778 | |
779 | tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); | |
19baf839 | 780 | |
2f80b3c8 RO |
781 | if (!tn) |
782 | return ERR_PTR(-ENOMEM); | |
2f36895a RO |
783 | |
784 | /* | |
c877efb2 SH |
785 | * Preallocate and store tnodes before the actual work so we |
786 | * don't get into an inconsistent state if memory allocation | |
787 | * fails. In case of failure we return the oldnode and halve | |
2f36895a RO |
788 | * of tnode is ignored. |
789 | */ | |
790 | ||
91b9a277 | 791 | for (i = 0; i < olen; i += 2) { |
2f36895a RO |
792 | left = tnode_get_child(oldtnode, i); |
793 | right = tnode_get_child(oldtnode, i+1); | |
c877efb2 | 794 | |
2f36895a | 795 | /* Two nonempty children */ |
0c7770c7 | 796 | if (left && right) { |
2f80b3c8 | 797 | struct tnode *newn; |
0c7770c7 | 798 | |
2f80b3c8 | 799 | newn = tnode_new(left->key, tn->pos + tn->bits, 1); |
0c7770c7 SH |
800 | |
801 | if (!newn) | |
2f80b3c8 | 802 | goto nomem; |
0c7770c7 | 803 | |
2f80b3c8 | 804 | put_child(t, tn, i/2, (struct node *)newn); |
2f36895a | 805 | } |
2f36895a | 806 | |
2f36895a | 807 | } |
19baf839 | 808 | |
91b9a277 OJ |
809 | for (i = 0; i < olen; i += 2) { |
810 | struct tnode *newBinNode; | |
811 | ||
19baf839 RO |
812 | left = tnode_get_child(oldtnode, i); |
813 | right = tnode_get_child(oldtnode, i+1); | |
c877efb2 | 814 | |
19baf839 RO |
815 | /* At least one of the children is empty */ |
816 | if (left == NULL) { | |
817 | if (right == NULL) /* Both are empty */ | |
818 | continue; | |
819 | put_child(t, tn, i/2, right); | |
91b9a277 | 820 | continue; |
0c7770c7 | 821 | } |
91b9a277 OJ |
822 | |
823 | if (right == NULL) { | |
19baf839 | 824 | put_child(t, tn, i/2, left); |
91b9a277 OJ |
825 | continue; |
826 | } | |
c877efb2 | 827 | |
19baf839 | 828 | /* Two nonempty children */ |
91b9a277 OJ |
829 | newBinNode = (struct tnode *) tnode_get_child(tn, i/2); |
830 | put_child(t, tn, i/2, NULL); | |
91b9a277 OJ |
831 | put_child(t, newBinNode, 0, left); |
832 | put_child(t, newBinNode, 1, right); | |
833 | put_child(t, tn, i/2, resize(t, newBinNode)); | |
19baf839 RO |
834 | } |
835 | tnode_free(oldtnode); | |
836 | return tn; | |
2f80b3c8 RO |
837 | nomem: |
838 | { | |
839 | int size = tnode_child_length(tn); | |
840 | int j; | |
841 | ||
0c7770c7 | 842 | for (j = 0; j < size; j++) |
2f80b3c8 RO |
843 | if (tn->child[j]) |
844 | tnode_free((struct tnode *)tn->child[j]); | |
845 | ||
846 | tnode_free(tn); | |
0c7770c7 | 847 | |
2f80b3c8 RO |
848 | return ERR_PTR(-ENOMEM); |
849 | } | |
19baf839 RO |
850 | } |
851 | ||
91b9a277 | 852 | static void trie_init(struct trie *t) |
19baf839 | 853 | { |
91b9a277 OJ |
854 | if (!t) |
855 | return; | |
856 | ||
857 | t->size = 0; | |
2373ce1c | 858 | rcu_assign_pointer(t->trie, NULL); |
91b9a277 | 859 | t->revision = 0; |
19baf839 | 860 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
91b9a277 | 861 | memset(&t->stats, 0, sizeof(struct trie_use_stats)); |
19baf839 | 862 | #endif |
19baf839 RO |
863 | } |
864 | ||
772cb712 | 865 | /* readside must use rcu_read_lock currently dump routines |
2373ce1c RO |
866 | via get_fa_head and dump */ |
867 | ||
772cb712 | 868 | static struct leaf_info *find_leaf_info(struct leaf *l, int plen) |
19baf839 | 869 | { |
772cb712 | 870 | struct hlist_head *head = &l->list; |
19baf839 RO |
871 | struct hlist_node *node; |
872 | struct leaf_info *li; | |
873 | ||
2373ce1c | 874 | hlist_for_each_entry_rcu(li, node, head, hlist) |
c877efb2 | 875 | if (li->plen == plen) |
19baf839 | 876 | return li; |
91b9a277 | 877 | |
19baf839 RO |
878 | return NULL; |
879 | } | |
880 | ||
881 | static inline struct list_head * get_fa_head(struct leaf *l, int plen) | |
882 | { | |
772cb712 | 883 | struct leaf_info *li = find_leaf_info(l, plen); |
c877efb2 | 884 | |
91b9a277 OJ |
885 | if (!li) |
886 | return NULL; | |
c877efb2 | 887 | |
91b9a277 | 888 | return &li->falh; |
19baf839 RO |
889 | } |
890 | ||
891 | static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) | |
892 | { | |
2373ce1c RO |
893 | struct leaf_info *li = NULL, *last = NULL; |
894 | struct hlist_node *node; | |
895 | ||
896 | if (hlist_empty(head)) { | |
897 | hlist_add_head_rcu(&new->hlist, head); | |
898 | } else { | |
899 | hlist_for_each_entry(li, node, head, hlist) { | |
900 | if (new->plen > li->plen) | |
901 | break; | |
902 | ||
903 | last = li; | |
904 | } | |
905 | if (last) | |
906 | hlist_add_after_rcu(&last->hlist, &new->hlist); | |
907 | else | |
908 | hlist_add_before_rcu(&new->hlist, &li->hlist); | |
909 | } | |
19baf839 RO |
910 | } |
911 | ||
2373ce1c RO |
912 | /* rcu_read_lock needs to be hold by caller from readside */ |
913 | ||
19baf839 RO |
914 | static struct leaf * |
915 | fib_find_node(struct trie *t, u32 key) | |
916 | { | |
917 | int pos; | |
918 | struct tnode *tn; | |
919 | struct node *n; | |
920 | ||
921 | pos = 0; | |
2373ce1c | 922 | n = rcu_dereference(t->trie); |
19baf839 RO |
923 | |
924 | while (n != NULL && NODE_TYPE(n) == T_TNODE) { | |
925 | tn = (struct tnode *) n; | |
91b9a277 | 926 | |
19baf839 | 927 | check_tnode(tn); |
91b9a277 | 928 | |
c877efb2 | 929 | if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { |
91b9a277 | 930 | pos = tn->pos + tn->bits; |
19baf839 | 931 | n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits)); |
91b9a277 | 932 | } else |
19baf839 RO |
933 | break; |
934 | } | |
935 | /* Case we have found a leaf. Compare prefixes */ | |
936 | ||
91b9a277 OJ |
937 | if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) |
938 | return (struct leaf *)n; | |
939 | ||
19baf839 RO |
940 | return NULL; |
941 | } | |
942 | ||
943 | static struct node *trie_rebalance(struct trie *t, struct tnode *tn) | |
944 | { | |
19baf839 RO |
945 | int wasfull; |
946 | t_key cindex, key; | |
947 | struct tnode *tp = NULL; | |
948 | ||
19baf839 | 949 | key = tn->key; |
19baf839 RO |
950 | |
951 | while (tn != NULL && NODE_PARENT(tn) != NULL) { | |
19baf839 RO |
952 | |
953 | tp = NODE_PARENT(tn); | |
954 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); | |
955 | wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); | |
956 | tn = (struct tnode *) resize (t, (struct tnode *)tn); | |
957 | tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull); | |
91b9a277 | 958 | |
c877efb2 | 959 | if (!NODE_PARENT(tn)) |
19baf839 RO |
960 | break; |
961 | ||
962 | tn = NODE_PARENT(tn); | |
963 | } | |
964 | /* Handle last (top) tnode */ | |
c877efb2 | 965 | if (IS_TNODE(tn)) |
19baf839 RO |
966 | tn = (struct tnode*) resize(t, (struct tnode *)tn); |
967 | ||
968 | return (struct node*) tn; | |
969 | } | |
970 | ||
2373ce1c RO |
971 | /* only used from updater-side */ |
972 | ||
f835e471 RO |
973 | static struct list_head * |
974 | fib_insert_node(struct trie *t, int *err, u32 key, int plen) | |
19baf839 RO |
975 | { |
976 | int pos, newpos; | |
977 | struct tnode *tp = NULL, *tn = NULL; | |
978 | struct node *n; | |
979 | struct leaf *l; | |
980 | int missbit; | |
c877efb2 | 981 | struct list_head *fa_head = NULL; |
19baf839 RO |
982 | struct leaf_info *li; |
983 | t_key cindex; | |
984 | ||
985 | pos = 0; | |
c877efb2 | 986 | n = t->trie; |
19baf839 | 987 | |
c877efb2 SH |
988 | /* If we point to NULL, stop. Either the tree is empty and we should |
989 | * just put a new leaf in if, or we have reached an empty child slot, | |
19baf839 | 990 | * and we should just put our new leaf in that. |
c877efb2 SH |
991 | * If we point to a T_TNODE, check if it matches our key. Note that |
992 | * a T_TNODE might be skipping any number of bits - its 'pos' need | |
19baf839 RO |
993 | * not be the parent's 'pos'+'bits'! |
994 | * | |
c877efb2 | 995 | * If it does match the current key, get pos/bits from it, extract |
19baf839 RO |
996 | * the index from our key, push the T_TNODE and walk the tree. |
997 | * | |
998 | * If it doesn't, we have to replace it with a new T_TNODE. | |
999 | * | |
c877efb2 SH |
1000 | * If we point to a T_LEAF, it might or might not have the same key |
1001 | * as we do. If it does, just change the value, update the T_LEAF's | |
1002 | * value, and return it. | |
19baf839 RO |
1003 | * If it doesn't, we need to replace it with a T_TNODE. |
1004 | */ | |
1005 | ||
1006 | while (n != NULL && NODE_TYPE(n) == T_TNODE) { | |
1007 | tn = (struct tnode *) n; | |
91b9a277 | 1008 | |
c877efb2 | 1009 | check_tnode(tn); |
91b9a277 | 1010 | |
c877efb2 | 1011 | if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { |
19baf839 | 1012 | tp = tn; |
91b9a277 | 1013 | pos = tn->pos + tn->bits; |
19baf839 RO |
1014 | n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits)); |
1015 | ||
0c7770c7 | 1016 | BUG_ON(n && NODE_PARENT(n) != tn); |
91b9a277 | 1017 | } else |
19baf839 RO |
1018 | break; |
1019 | } | |
1020 | ||
1021 | /* | |
1022 | * n ----> NULL, LEAF or TNODE | |
1023 | * | |
c877efb2 | 1024 | * tp is n's (parent) ----> NULL or TNODE |
19baf839 RO |
1025 | */ |
1026 | ||
91b9a277 | 1027 | BUG_ON(tp && IS_LEAF(tp)); |
19baf839 RO |
1028 | |
1029 | /* Case 1: n is a leaf. Compare prefixes */ | |
1030 | ||
c877efb2 | 1031 | if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { |
91b9a277 OJ |
1032 | struct leaf *l = (struct leaf *) n; |
1033 | ||
19baf839 | 1034 | li = leaf_info_new(plen); |
91b9a277 | 1035 | |
c877efb2 | 1036 | if (!li) { |
f835e471 RO |
1037 | *err = -ENOMEM; |
1038 | goto err; | |
1039 | } | |
19baf839 RO |
1040 | |
1041 | fa_head = &li->falh; | |
1042 | insert_leaf_info(&l->list, li); | |
1043 | goto done; | |
1044 | } | |
1045 | t->size++; | |
1046 | l = leaf_new(); | |
1047 | ||
c877efb2 | 1048 | if (!l) { |
f835e471 RO |
1049 | *err = -ENOMEM; |
1050 | goto err; | |
1051 | } | |
19baf839 RO |
1052 | |
1053 | l->key = key; | |
1054 | li = leaf_info_new(plen); | |
1055 | ||
c877efb2 | 1056 | if (!li) { |
f835e471 RO |
1057 | tnode_free((struct tnode *) l); |
1058 | *err = -ENOMEM; | |
1059 | goto err; | |
1060 | } | |
19baf839 RO |
1061 | |
1062 | fa_head = &li->falh; | |
1063 | insert_leaf_info(&l->list, li); | |
1064 | ||
19baf839 | 1065 | if (t->trie && n == NULL) { |
91b9a277 | 1066 | /* Case 2: n is NULL, and will just insert a new leaf */ |
19baf839 RO |
1067 | |
1068 | NODE_SET_PARENT(l, tp); | |
19baf839 | 1069 | |
91b9a277 OJ |
1070 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); |
1071 | put_child(t, (struct tnode *)tp, cindex, (struct node *)l); | |
1072 | } else { | |
1073 | /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ | |
c877efb2 SH |
1074 | /* |
1075 | * Add a new tnode here | |
19baf839 RO |
1076 | * first tnode need some special handling |
1077 | */ | |
1078 | ||
1079 | if (tp) | |
91b9a277 | 1080 | pos = tp->pos+tp->bits; |
19baf839 | 1081 | else |
91b9a277 OJ |
1082 | pos = 0; |
1083 | ||
c877efb2 | 1084 | if (n) { |
19baf839 RO |
1085 | newpos = tkey_mismatch(key, pos, n->key); |
1086 | tn = tnode_new(n->key, newpos, 1); | |
91b9a277 | 1087 | } else { |
19baf839 | 1088 | newpos = 0; |
c877efb2 | 1089 | tn = tnode_new(key, newpos, 1); /* First tnode */ |
19baf839 | 1090 | } |
19baf839 | 1091 | |
c877efb2 | 1092 | if (!tn) { |
f835e471 RO |
1093 | free_leaf_info(li); |
1094 | tnode_free((struct tnode *) l); | |
1095 | *err = -ENOMEM; | |
1096 | goto err; | |
91b9a277 OJ |
1097 | } |
1098 | ||
19baf839 RO |
1099 | NODE_SET_PARENT(tn, tp); |
1100 | ||
91b9a277 | 1101 | missbit = tkey_extract_bits(key, newpos, 1); |
19baf839 RO |
1102 | put_child(t, tn, missbit, (struct node *)l); |
1103 | put_child(t, tn, 1-missbit, n); | |
1104 | ||
c877efb2 | 1105 | if (tp) { |
19baf839 RO |
1106 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); |
1107 | put_child(t, (struct tnode *)tp, cindex, (struct node *)tn); | |
91b9a277 | 1108 | } else { |
2373ce1c | 1109 | rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */ |
19baf839 RO |
1110 | tp = tn; |
1111 | } | |
1112 | } | |
91b9a277 OJ |
1113 | |
1114 | if (tp && tp->pos + tp->bits > 32) | |
78c6671a | 1115 | printk(KERN_WARNING "fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", |
19baf839 | 1116 | tp, tp->pos, tp->bits, key, plen); |
91b9a277 | 1117 | |
19baf839 | 1118 | /* Rebalance the trie */ |
2373ce1c RO |
1119 | |
1120 | rcu_assign_pointer(t->trie, trie_rebalance(t, tp)); | |
f835e471 RO |
1121 | done: |
1122 | t->revision++; | |
91b9a277 | 1123 | err: |
19baf839 RO |
1124 | return fa_head; |
1125 | } | |
1126 | ||
1127 | static int | |
1128 | fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta, | |
1129 | struct nlmsghdr *nlhdr, struct netlink_skb_parms *req) | |
1130 | { | |
1131 | struct trie *t = (struct trie *) tb->tb_data; | |
1132 | struct fib_alias *fa, *new_fa; | |
c877efb2 | 1133 | struct list_head *fa_head = NULL; |
19baf839 RO |
1134 | struct fib_info *fi; |
1135 | int plen = r->rtm_dst_len; | |
1136 | int type = r->rtm_type; | |
1137 | u8 tos = r->rtm_tos; | |
1138 | u32 key, mask; | |
1139 | int err; | |
1140 | struct leaf *l; | |
1141 | ||
1142 | if (plen > 32) | |
1143 | return -EINVAL; | |
1144 | ||
1145 | key = 0; | |
c877efb2 | 1146 | if (rta->rta_dst) |
19baf839 RO |
1147 | memcpy(&key, rta->rta_dst, 4); |
1148 | ||
1149 | key = ntohl(key); | |
1150 | ||
0c7770c7 | 1151 | pr_debug("Insert table=%d %08x/%d\n", tb->tb_id, key, plen); |
19baf839 | 1152 | |
91b9a277 | 1153 | mask = ntohl(inet_make_mask(plen)); |
19baf839 | 1154 | |
c877efb2 | 1155 | if (key & ~mask) |
19baf839 RO |
1156 | return -EINVAL; |
1157 | ||
1158 | key = key & mask; | |
1159 | ||
91b9a277 OJ |
1160 | fi = fib_create_info(r, rta, nlhdr, &err); |
1161 | ||
1162 | if (!fi) | |
19baf839 RO |
1163 | goto err; |
1164 | ||
1165 | l = fib_find_node(t, key); | |
c877efb2 | 1166 | fa = NULL; |
19baf839 | 1167 | |
c877efb2 | 1168 | if (l) { |
19baf839 RO |
1169 | fa_head = get_fa_head(l, plen); |
1170 | fa = fib_find_alias(fa_head, tos, fi->fib_priority); | |
1171 | } | |
1172 | ||
1173 | /* Now fa, if non-NULL, points to the first fib alias | |
1174 | * with the same keys [prefix,tos,priority], if such key already | |
1175 | * exists or to the node before which we will insert new one. | |
1176 | * | |
1177 | * If fa is NULL, we will need to allocate a new one and | |
1178 | * insert to the head of f. | |
1179 | * | |
1180 | * If f is NULL, no fib node matched the destination key | |
1181 | * and we need to allocate a new one of those as well. | |
1182 | */ | |
1183 | ||
91b9a277 | 1184 | if (fa && fa->fa_info->fib_priority == fi->fib_priority) { |
19baf839 RO |
1185 | struct fib_alias *fa_orig; |
1186 | ||
1187 | err = -EEXIST; | |
1188 | if (nlhdr->nlmsg_flags & NLM_F_EXCL) | |
1189 | goto out; | |
1190 | ||
1191 | if (nlhdr->nlmsg_flags & NLM_F_REPLACE) { | |
1192 | struct fib_info *fi_drop; | |
1193 | u8 state; | |
1194 | ||
2373ce1c RO |
1195 | err = -ENOBUFS; |
1196 | new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL); | |
1197 | if (new_fa == NULL) | |
1198 | goto out; | |
19baf839 RO |
1199 | |
1200 | fi_drop = fa->fa_info; | |
2373ce1c RO |
1201 | new_fa->fa_tos = fa->fa_tos; |
1202 | new_fa->fa_info = fi; | |
1203 | new_fa->fa_type = type; | |
1204 | new_fa->fa_scope = r->rtm_scope; | |
19baf839 | 1205 | state = fa->fa_state; |
2373ce1c | 1206 | new_fa->fa_state &= ~FA_S_ACCESSED; |
19baf839 | 1207 | |
2373ce1c RO |
1208 | list_replace_rcu(&fa->fa_list, &new_fa->fa_list); |
1209 | alias_free_mem_rcu(fa); | |
19baf839 RO |
1210 | |
1211 | fib_release_info(fi_drop); | |
1212 | if (state & FA_S_ACCESSED) | |
91b9a277 | 1213 | rt_cache_flush(-1); |
19baf839 | 1214 | |
91b9a277 | 1215 | goto succeeded; |
19baf839 RO |
1216 | } |
1217 | /* Error if we find a perfect match which | |
1218 | * uses the same scope, type, and nexthop | |
1219 | * information. | |
1220 | */ | |
1221 | fa_orig = fa; | |
1222 | list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) { | |
1223 | if (fa->fa_tos != tos) | |
1224 | break; | |
1225 | if (fa->fa_info->fib_priority != fi->fib_priority) | |
1226 | break; | |
1227 | if (fa->fa_type == type && | |
1228 | fa->fa_scope == r->rtm_scope && | |
1229 | fa->fa_info == fi) { | |
1230 | goto out; | |
1231 | } | |
1232 | } | |
1233 | if (!(nlhdr->nlmsg_flags & NLM_F_APPEND)) | |
1234 | fa = fa_orig; | |
1235 | } | |
1236 | err = -ENOENT; | |
91b9a277 | 1237 | if (!(nlhdr->nlmsg_flags & NLM_F_CREATE)) |
19baf839 RO |
1238 | goto out; |
1239 | ||
1240 | err = -ENOBUFS; | |
1241 | new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL); | |
1242 | if (new_fa == NULL) | |
1243 | goto out; | |
1244 | ||
1245 | new_fa->fa_info = fi; | |
1246 | new_fa->fa_tos = tos; | |
1247 | new_fa->fa_type = type; | |
1248 | new_fa->fa_scope = r->rtm_scope; | |
1249 | new_fa->fa_state = 0; | |
19baf839 RO |
1250 | /* |
1251 | * Insert new entry to the list. | |
1252 | */ | |
1253 | ||
c877efb2 | 1254 | if (!fa_head) { |
f835e471 RO |
1255 | fa_head = fib_insert_node(t, &err, key, plen); |
1256 | err = 0; | |
c877efb2 | 1257 | if (err) |
f835e471 RO |
1258 | goto out_free_new_fa; |
1259 | } | |
19baf839 | 1260 | |
2373ce1c RO |
1261 | list_add_tail_rcu(&new_fa->fa_list, |
1262 | (fa ? &fa->fa_list : fa_head)); | |
19baf839 RO |
1263 | |
1264 | rt_cache_flush(-1); | |
1265 | rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, nlhdr, req); | |
1266 | succeeded: | |
1267 | return 0; | |
f835e471 RO |
1268 | |
1269 | out_free_new_fa: | |
1270 | kmem_cache_free(fn_alias_kmem, new_fa); | |
19baf839 RO |
1271 | out: |
1272 | fib_release_info(fi); | |
91b9a277 | 1273 | err: |
19baf839 RO |
1274 | return err; |
1275 | } | |
1276 | ||
2373ce1c | 1277 | |
772cb712 | 1278 | /* should be called with rcu_read_lock */ |
0c7770c7 SH |
1279 | static inline int check_leaf(struct trie *t, struct leaf *l, |
1280 | t_key key, int *plen, const struct flowi *flp, | |
06c74270 | 1281 | struct fib_result *res) |
19baf839 | 1282 | { |
06c74270 | 1283 | int err, i; |
19baf839 RO |
1284 | t_key mask; |
1285 | struct leaf_info *li; | |
1286 | struct hlist_head *hhead = &l->list; | |
1287 | struct hlist_node *node; | |
c877efb2 | 1288 | |
2373ce1c | 1289 | hlist_for_each_entry_rcu(li, node, hhead, hlist) { |
19baf839 RO |
1290 | i = li->plen; |
1291 | mask = ntohl(inet_make_mask(i)); | |
c877efb2 | 1292 | if (l->key != (key & mask)) |
19baf839 RO |
1293 | continue; |
1294 | ||
06c74270 | 1295 | if ((err = fib_semantic_match(&li->falh, flp, res, l->key, mask, i)) <= 0) { |
19baf839 RO |
1296 | *plen = i; |
1297 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1298 | t->stats.semantic_match_passed++; | |
1299 | #endif | |
06c74270 | 1300 | return err; |
19baf839 RO |
1301 | } |
1302 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1303 | t->stats.semantic_match_miss++; | |
1304 | #endif | |
1305 | } | |
06c74270 | 1306 | return 1; |
19baf839 RO |
1307 | } |
1308 | ||
1309 | static int | |
1310 | fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res) | |
1311 | { | |
1312 | struct trie *t = (struct trie *) tb->tb_data; | |
1313 | int plen, ret = 0; | |
1314 | struct node *n; | |
1315 | struct tnode *pn; | |
1316 | int pos, bits; | |
91b9a277 | 1317 | t_key key = ntohl(flp->fl4_dst); |
19baf839 RO |
1318 | int chopped_off; |
1319 | t_key cindex = 0; | |
1320 | int current_prefix_length = KEYLENGTH; | |
91b9a277 OJ |
1321 | struct tnode *cn; |
1322 | t_key node_prefix, key_prefix, pref_mismatch; | |
1323 | int mp; | |
1324 | ||
2373ce1c | 1325 | rcu_read_lock(); |
91b9a277 | 1326 | |
2373ce1c | 1327 | n = rcu_dereference(t->trie); |
c877efb2 | 1328 | if (!n) |
19baf839 RO |
1329 | goto failed; |
1330 | ||
1331 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1332 | t->stats.gets++; | |
1333 | #endif | |
1334 | ||
1335 | /* Just a leaf? */ | |
1336 | if (IS_LEAF(n)) { | |
06c74270 | 1337 | if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0) |
19baf839 RO |
1338 | goto found; |
1339 | goto failed; | |
1340 | } | |
1341 | pn = (struct tnode *) n; | |
1342 | chopped_off = 0; | |
c877efb2 | 1343 | |
91b9a277 | 1344 | while (pn) { |
19baf839 RO |
1345 | pos = pn->pos; |
1346 | bits = pn->bits; | |
1347 | ||
c877efb2 | 1348 | if (!chopped_off) |
19baf839 RO |
1349 | cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits); |
1350 | ||
1351 | n = tnode_get_child(pn, cindex); | |
1352 | ||
1353 | if (n == NULL) { | |
1354 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1355 | t->stats.null_node_hit++; | |
1356 | #endif | |
1357 | goto backtrace; | |
1358 | } | |
1359 | ||
91b9a277 OJ |
1360 | if (IS_LEAF(n)) { |
1361 | if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0) | |
1362 | goto found; | |
1363 | else | |
1364 | goto backtrace; | |
1365 | } | |
1366 | ||
19baf839 RO |
1367 | #define HL_OPTIMIZE |
1368 | #ifdef HL_OPTIMIZE | |
91b9a277 | 1369 | cn = (struct tnode *)n; |
19baf839 | 1370 | |
91b9a277 OJ |
1371 | /* |
1372 | * It's a tnode, and we can do some extra checks here if we | |
1373 | * like, to avoid descending into a dead-end branch. | |
1374 | * This tnode is in the parent's child array at index | |
1375 | * key[p_pos..p_pos+p_bits] but potentially with some bits | |
1376 | * chopped off, so in reality the index may be just a | |
1377 | * subprefix, padded with zero at the end. | |
1378 | * We can also take a look at any skipped bits in this | |
1379 | * tnode - everything up to p_pos is supposed to be ok, | |
1380 | * and the non-chopped bits of the index (se previous | |
1381 | * paragraph) are also guaranteed ok, but the rest is | |
1382 | * considered unknown. | |
1383 | * | |
1384 | * The skipped bits are key[pos+bits..cn->pos]. | |
1385 | */ | |
19baf839 | 1386 | |
91b9a277 OJ |
1387 | /* If current_prefix_length < pos+bits, we are already doing |
1388 | * actual prefix matching, which means everything from | |
1389 | * pos+(bits-chopped_off) onward must be zero along some | |
1390 | * branch of this subtree - otherwise there is *no* valid | |
1391 | * prefix present. Here we can only check the skipped | |
1392 | * bits. Remember, since we have already indexed into the | |
1393 | * parent's child array, we know that the bits we chopped of | |
1394 | * *are* zero. | |
1395 | */ | |
19baf839 | 1396 | |
91b9a277 | 1397 | /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */ |
19baf839 | 1398 | |
91b9a277 OJ |
1399 | if (current_prefix_length < pos+bits) { |
1400 | if (tkey_extract_bits(cn->key, current_prefix_length, | |
1401 | cn->pos - current_prefix_length) != 0 || | |
1402 | !(cn->child[0])) | |
1403 | goto backtrace; | |
1404 | } | |
19baf839 | 1405 | |
91b9a277 OJ |
1406 | /* |
1407 | * If chopped_off=0, the index is fully validated and we | |
1408 | * only need to look at the skipped bits for this, the new, | |
1409 | * tnode. What we actually want to do is to find out if | |
1410 | * these skipped bits match our key perfectly, or if we will | |
1411 | * have to count on finding a matching prefix further down, | |
1412 | * because if we do, we would like to have some way of | |
1413 | * verifying the existence of such a prefix at this point. | |
1414 | */ | |
19baf839 | 1415 | |
91b9a277 OJ |
1416 | /* The only thing we can do at this point is to verify that |
1417 | * any such matching prefix can indeed be a prefix to our | |
1418 | * key, and if the bits in the node we are inspecting that | |
1419 | * do not match our key are not ZERO, this cannot be true. | |
1420 | * Thus, find out where there is a mismatch (before cn->pos) | |
1421 | * and verify that all the mismatching bits are zero in the | |
1422 | * new tnode's key. | |
1423 | */ | |
19baf839 | 1424 | |
91b9a277 OJ |
1425 | /* Note: We aren't very concerned about the piece of the key |
1426 | * that precede pn->pos+pn->bits, since these have already been | |
1427 | * checked. The bits after cn->pos aren't checked since these are | |
1428 | * by definition "unknown" at this point. Thus, what we want to | |
1429 | * see is if we are about to enter the "prefix matching" state, | |
1430 | * and in that case verify that the skipped bits that will prevail | |
1431 | * throughout this subtree are zero, as they have to be if we are | |
1432 | * to find a matching prefix. | |
1433 | */ | |
1434 | ||
1435 | node_prefix = MASK_PFX(cn->key, cn->pos); | |
1436 | key_prefix = MASK_PFX(key, cn->pos); | |
1437 | pref_mismatch = key_prefix^node_prefix; | |
1438 | mp = 0; | |
1439 | ||
1440 | /* In short: If skipped bits in this node do not match the search | |
1441 | * key, enter the "prefix matching" state.directly. | |
1442 | */ | |
1443 | if (pref_mismatch) { | |
1444 | while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) { | |
1445 | mp++; | |
1446 | pref_mismatch = pref_mismatch <<1; | |
1447 | } | |
1448 | key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp); | |
1449 | ||
1450 | if (key_prefix != 0) | |
1451 | goto backtrace; | |
1452 | ||
1453 | if (current_prefix_length >= cn->pos) | |
1454 | current_prefix_length = mp; | |
c877efb2 | 1455 | } |
91b9a277 OJ |
1456 | #endif |
1457 | pn = (struct tnode *)n; /* Descend */ | |
1458 | chopped_off = 0; | |
1459 | continue; | |
1460 | ||
19baf839 RO |
1461 | backtrace: |
1462 | chopped_off++; | |
1463 | ||
1464 | /* As zero don't change the child key (cindex) */ | |
91b9a277 | 1465 | while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1)))) |
19baf839 | 1466 | chopped_off++; |
19baf839 RO |
1467 | |
1468 | /* Decrease current_... with bits chopped off */ | |
1469 | if (current_prefix_length > pn->pos + pn->bits - chopped_off) | |
1470 | current_prefix_length = pn->pos + pn->bits - chopped_off; | |
91b9a277 | 1471 | |
19baf839 | 1472 | /* |
c877efb2 | 1473 | * Either we do the actual chop off according or if we have |
19baf839 RO |
1474 | * chopped off all bits in this tnode walk up to our parent. |
1475 | */ | |
1476 | ||
91b9a277 | 1477 | if (chopped_off <= pn->bits) { |
19baf839 | 1478 | cindex &= ~(1 << (chopped_off-1)); |
91b9a277 | 1479 | } else { |
c877efb2 | 1480 | if (NODE_PARENT(pn) == NULL) |
19baf839 | 1481 | goto failed; |
91b9a277 | 1482 | |
19baf839 RO |
1483 | /* Get Child's index */ |
1484 | cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits); | |
1485 | pn = NODE_PARENT(pn); | |
1486 | chopped_off = 0; | |
1487 | ||
1488 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1489 | t->stats.backtrack++; | |
1490 | #endif | |
1491 | goto backtrace; | |
c877efb2 | 1492 | } |
19baf839 RO |
1493 | } |
1494 | failed: | |
c877efb2 | 1495 | ret = 1; |
19baf839 | 1496 | found: |
2373ce1c | 1497 | rcu_read_unlock(); |
19baf839 RO |
1498 | return ret; |
1499 | } | |
1500 | ||
2373ce1c | 1501 | /* only called from updater side */ |
19baf839 RO |
1502 | static int trie_leaf_remove(struct trie *t, t_key key) |
1503 | { | |
1504 | t_key cindex; | |
1505 | struct tnode *tp = NULL; | |
1506 | struct node *n = t->trie; | |
1507 | struct leaf *l; | |
1508 | ||
0c7770c7 | 1509 | pr_debug("entering trie_leaf_remove(%p)\n", n); |
19baf839 RO |
1510 | |
1511 | /* Note that in the case skipped bits, those bits are *not* checked! | |
c877efb2 | 1512 | * When we finish this, we will have NULL or a T_LEAF, and the |
19baf839 RO |
1513 | * T_LEAF may or may not match our key. |
1514 | */ | |
1515 | ||
91b9a277 | 1516 | while (n != NULL && IS_TNODE(n)) { |
19baf839 RO |
1517 | struct tnode *tn = (struct tnode *) n; |
1518 | check_tnode(tn); | |
1519 | n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits)); | |
1520 | ||
0c7770c7 | 1521 | BUG_ON(n && NODE_PARENT(n) != tn); |
91b9a277 | 1522 | } |
19baf839 RO |
1523 | l = (struct leaf *) n; |
1524 | ||
c877efb2 | 1525 | if (!n || !tkey_equals(l->key, key)) |
19baf839 | 1526 | return 0; |
c877efb2 SH |
1527 | |
1528 | /* | |
1529 | * Key found. | |
1530 | * Remove the leaf and rebalance the tree | |
19baf839 RO |
1531 | */ |
1532 | ||
1533 | t->revision++; | |
1534 | t->size--; | |
1535 | ||
2373ce1c | 1536 | preempt_disable(); |
19baf839 RO |
1537 | tp = NODE_PARENT(n); |
1538 | tnode_free((struct tnode *) n); | |
1539 | ||
c877efb2 | 1540 | if (tp) { |
19baf839 RO |
1541 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); |
1542 | put_child(t, (struct tnode *)tp, cindex, NULL); | |
2373ce1c | 1543 | rcu_assign_pointer(t->trie, trie_rebalance(t, tp)); |
91b9a277 | 1544 | } else |
2373ce1c RO |
1545 | rcu_assign_pointer(t->trie, NULL); |
1546 | preempt_enable(); | |
19baf839 RO |
1547 | |
1548 | return 1; | |
1549 | } | |
1550 | ||
1551 | static int | |
1552 | fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta, | |
91b9a277 | 1553 | struct nlmsghdr *nlhdr, struct netlink_skb_parms *req) |
19baf839 RO |
1554 | { |
1555 | struct trie *t = (struct trie *) tb->tb_data; | |
1556 | u32 key, mask; | |
1557 | int plen = r->rtm_dst_len; | |
1558 | u8 tos = r->rtm_tos; | |
1559 | struct fib_alias *fa, *fa_to_delete; | |
1560 | struct list_head *fa_head; | |
1561 | struct leaf *l; | |
91b9a277 OJ |
1562 | struct leaf_info *li; |
1563 | ||
19baf839 | 1564 | |
c877efb2 | 1565 | if (plen > 32) |
19baf839 RO |
1566 | return -EINVAL; |
1567 | ||
1568 | key = 0; | |
c877efb2 | 1569 | if (rta->rta_dst) |
19baf839 RO |
1570 | memcpy(&key, rta->rta_dst, 4); |
1571 | ||
1572 | key = ntohl(key); | |
91b9a277 | 1573 | mask = ntohl(inet_make_mask(plen)); |
19baf839 | 1574 | |
c877efb2 | 1575 | if (key & ~mask) |
19baf839 RO |
1576 | return -EINVAL; |
1577 | ||
1578 | key = key & mask; | |
1579 | l = fib_find_node(t, key); | |
1580 | ||
c877efb2 | 1581 | if (!l) |
19baf839 RO |
1582 | return -ESRCH; |
1583 | ||
1584 | fa_head = get_fa_head(l, plen); | |
1585 | fa = fib_find_alias(fa_head, tos, 0); | |
1586 | ||
1587 | if (!fa) | |
1588 | return -ESRCH; | |
1589 | ||
0c7770c7 | 1590 | pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); |
19baf839 RO |
1591 | |
1592 | fa_to_delete = NULL; | |
1593 | fa_head = fa->fa_list.prev; | |
2373ce1c | 1594 | |
19baf839 RO |
1595 | list_for_each_entry(fa, fa_head, fa_list) { |
1596 | struct fib_info *fi = fa->fa_info; | |
1597 | ||
1598 | if (fa->fa_tos != tos) | |
1599 | break; | |
1600 | ||
1601 | if ((!r->rtm_type || | |
1602 | fa->fa_type == r->rtm_type) && | |
1603 | (r->rtm_scope == RT_SCOPE_NOWHERE || | |
1604 | fa->fa_scope == r->rtm_scope) && | |
1605 | (!r->rtm_protocol || | |
1606 | fi->fib_protocol == r->rtm_protocol) && | |
1607 | fib_nh_match(r, nlhdr, rta, fi) == 0) { | |
1608 | fa_to_delete = fa; | |
1609 | break; | |
1610 | } | |
1611 | } | |
1612 | ||
91b9a277 OJ |
1613 | if (!fa_to_delete) |
1614 | return -ESRCH; | |
19baf839 | 1615 | |
91b9a277 OJ |
1616 | fa = fa_to_delete; |
1617 | rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, nlhdr, req); | |
1618 | ||
1619 | l = fib_find_node(t, key); | |
772cb712 | 1620 | li = find_leaf_info(l, plen); |
19baf839 | 1621 | |
2373ce1c | 1622 | list_del_rcu(&fa->fa_list); |
19baf839 | 1623 | |
91b9a277 | 1624 | if (list_empty(fa_head)) { |
2373ce1c | 1625 | hlist_del_rcu(&li->hlist); |
91b9a277 | 1626 | free_leaf_info(li); |
2373ce1c | 1627 | } |
19baf839 | 1628 | |
91b9a277 OJ |
1629 | if (hlist_empty(&l->list)) |
1630 | trie_leaf_remove(t, key); | |
19baf839 | 1631 | |
91b9a277 OJ |
1632 | if (fa->fa_state & FA_S_ACCESSED) |
1633 | rt_cache_flush(-1); | |
19baf839 | 1634 | |
2373ce1c RO |
1635 | fib_release_info(fa->fa_info); |
1636 | alias_free_mem_rcu(fa); | |
91b9a277 | 1637 | return 0; |
19baf839 RO |
1638 | } |
1639 | ||
1640 | static int trie_flush_list(struct trie *t, struct list_head *head) | |
1641 | { | |
1642 | struct fib_alias *fa, *fa_node; | |
1643 | int found = 0; | |
1644 | ||
1645 | list_for_each_entry_safe(fa, fa_node, head, fa_list) { | |
1646 | struct fib_info *fi = fa->fa_info; | |
19baf839 | 1647 | |
2373ce1c RO |
1648 | if (fi && (fi->fib_flags & RTNH_F_DEAD)) { |
1649 | list_del_rcu(&fa->fa_list); | |
1650 | fib_release_info(fa->fa_info); | |
1651 | alias_free_mem_rcu(fa); | |
19baf839 RO |
1652 | found++; |
1653 | } | |
1654 | } | |
1655 | return found; | |
1656 | } | |
1657 | ||
1658 | static int trie_flush_leaf(struct trie *t, struct leaf *l) | |
1659 | { | |
1660 | int found = 0; | |
1661 | struct hlist_head *lih = &l->list; | |
1662 | struct hlist_node *node, *tmp; | |
1663 | struct leaf_info *li = NULL; | |
1664 | ||
1665 | hlist_for_each_entry_safe(li, node, tmp, lih, hlist) { | |
19baf839 RO |
1666 | found += trie_flush_list(t, &li->falh); |
1667 | ||
1668 | if (list_empty(&li->falh)) { | |
2373ce1c | 1669 | hlist_del_rcu(&li->hlist); |
19baf839 RO |
1670 | free_leaf_info(li); |
1671 | } | |
1672 | } | |
1673 | return found; | |
1674 | } | |
1675 | ||
2373ce1c RO |
1676 | /* rcu_read_lock needs to be hold by caller from readside */ |
1677 | ||
19baf839 RO |
1678 | static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf) |
1679 | { | |
1680 | struct node *c = (struct node *) thisleaf; | |
1681 | struct tnode *p; | |
1682 | int idx; | |
2373ce1c | 1683 | struct node *trie = rcu_dereference(t->trie); |
19baf839 | 1684 | |
c877efb2 | 1685 | if (c == NULL) { |
2373ce1c | 1686 | if (trie == NULL) |
19baf839 RO |
1687 | return NULL; |
1688 | ||
2373ce1c RO |
1689 | if (IS_LEAF(trie)) /* trie w. just a leaf */ |
1690 | return (struct leaf *) trie; | |
19baf839 | 1691 | |
2373ce1c | 1692 | p = (struct tnode*) trie; /* Start */ |
91b9a277 | 1693 | } else |
19baf839 | 1694 | p = (struct tnode *) NODE_PARENT(c); |
c877efb2 | 1695 | |
19baf839 RO |
1696 | while (p) { |
1697 | int pos, last; | |
1698 | ||
1699 | /* Find the next child of the parent */ | |
c877efb2 SH |
1700 | if (c) |
1701 | pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits); | |
1702 | else | |
19baf839 RO |
1703 | pos = 0; |
1704 | ||
1705 | last = 1 << p->bits; | |
91b9a277 | 1706 | for (idx = pos; idx < last ; idx++) { |
2373ce1c RO |
1707 | c = rcu_dereference(p->child[idx]); |
1708 | ||
1709 | if (!c) | |
91b9a277 OJ |
1710 | continue; |
1711 | ||
1712 | /* Decend if tnode */ | |
2373ce1c RO |
1713 | while (IS_TNODE(c)) { |
1714 | p = (struct tnode *) c; | |
1715 | idx = 0; | |
91b9a277 OJ |
1716 | |
1717 | /* Rightmost non-NULL branch */ | |
1718 | if (p && IS_TNODE(p)) | |
2373ce1c RO |
1719 | while (!(c = rcu_dereference(p->child[idx])) |
1720 | && idx < (1<<p->bits)) idx++; | |
91b9a277 OJ |
1721 | |
1722 | /* Done with this tnode? */ | |
2373ce1c | 1723 | if (idx >= (1 << p->bits) || !c) |
91b9a277 | 1724 | goto up; |
19baf839 | 1725 | } |
2373ce1c | 1726 | return (struct leaf *) c; |
19baf839 RO |
1727 | } |
1728 | up: | |
1729 | /* No more children go up one step */ | |
91b9a277 | 1730 | c = (struct node *) p; |
19baf839 RO |
1731 | p = (struct tnode *) NODE_PARENT(p); |
1732 | } | |
1733 | return NULL; /* Ready. Root of trie */ | |
1734 | } | |
1735 | ||
1736 | static int fn_trie_flush(struct fib_table *tb) | |
1737 | { | |
1738 | struct trie *t = (struct trie *) tb->tb_data; | |
1739 | struct leaf *ll = NULL, *l = NULL; | |
1740 | int found = 0, h; | |
1741 | ||
1742 | t->revision++; | |
1743 | ||
91b9a277 | 1744 | for (h = 0; (l = nextleaf(t, l)) != NULL; h++) { |
19baf839 RO |
1745 | found += trie_flush_leaf(t, l); |
1746 | ||
1747 | if (ll && hlist_empty(&ll->list)) | |
1748 | trie_leaf_remove(t, ll->key); | |
1749 | ll = l; | |
1750 | } | |
1751 | ||
1752 | if (ll && hlist_empty(&ll->list)) | |
1753 | trie_leaf_remove(t, ll->key); | |
1754 | ||
0c7770c7 | 1755 | pr_debug("trie_flush found=%d\n", found); |
19baf839 RO |
1756 | return found; |
1757 | } | |
1758 | ||
91b9a277 | 1759 | static int trie_last_dflt = -1; |
19baf839 RO |
1760 | |
1761 | static void | |
1762 | fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res) | |
1763 | { | |
1764 | struct trie *t = (struct trie *) tb->tb_data; | |
1765 | int order, last_idx; | |
1766 | struct fib_info *fi = NULL; | |
1767 | struct fib_info *last_resort; | |
1768 | struct fib_alias *fa = NULL; | |
1769 | struct list_head *fa_head; | |
1770 | struct leaf *l; | |
1771 | ||
1772 | last_idx = -1; | |
1773 | last_resort = NULL; | |
1774 | order = -1; | |
1775 | ||
2373ce1c | 1776 | rcu_read_lock(); |
c877efb2 | 1777 | |
19baf839 | 1778 | l = fib_find_node(t, 0); |
c877efb2 | 1779 | if (!l) |
19baf839 RO |
1780 | goto out; |
1781 | ||
1782 | fa_head = get_fa_head(l, 0); | |
c877efb2 | 1783 | if (!fa_head) |
19baf839 RO |
1784 | goto out; |
1785 | ||
c877efb2 | 1786 | if (list_empty(fa_head)) |
19baf839 RO |
1787 | goto out; |
1788 | ||
2373ce1c | 1789 | list_for_each_entry_rcu(fa, fa_head, fa_list) { |
19baf839 | 1790 | struct fib_info *next_fi = fa->fa_info; |
91b9a277 | 1791 | |
19baf839 RO |
1792 | if (fa->fa_scope != res->scope || |
1793 | fa->fa_type != RTN_UNICAST) | |
1794 | continue; | |
91b9a277 | 1795 | |
19baf839 RO |
1796 | if (next_fi->fib_priority > res->fi->fib_priority) |
1797 | break; | |
1798 | if (!next_fi->fib_nh[0].nh_gw || | |
1799 | next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK) | |
1800 | continue; | |
1801 | fa->fa_state |= FA_S_ACCESSED; | |
91b9a277 | 1802 | |
19baf839 RO |
1803 | if (fi == NULL) { |
1804 | if (next_fi != res->fi) | |
1805 | break; | |
1806 | } else if (!fib_detect_death(fi, order, &last_resort, | |
1807 | &last_idx, &trie_last_dflt)) { | |
1808 | if (res->fi) | |
1809 | fib_info_put(res->fi); | |
1810 | res->fi = fi; | |
1811 | atomic_inc(&fi->fib_clntref); | |
1812 | trie_last_dflt = order; | |
1813 | goto out; | |
1814 | } | |
1815 | fi = next_fi; | |
1816 | order++; | |
1817 | } | |
1818 | if (order <= 0 || fi == NULL) { | |
1819 | trie_last_dflt = -1; | |
1820 | goto out; | |
1821 | } | |
1822 | ||
1823 | if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) { | |
1824 | if (res->fi) | |
1825 | fib_info_put(res->fi); | |
1826 | res->fi = fi; | |
1827 | atomic_inc(&fi->fib_clntref); | |
1828 | trie_last_dflt = order; | |
1829 | goto out; | |
1830 | } | |
1831 | if (last_idx >= 0) { | |
1832 | if (res->fi) | |
1833 | fib_info_put(res->fi); | |
1834 | res->fi = last_resort; | |
1835 | if (last_resort) | |
1836 | atomic_inc(&last_resort->fib_clntref); | |
1837 | } | |
1838 | trie_last_dflt = last_idx; | |
1839 | out:; | |
2373ce1c | 1840 | rcu_read_unlock(); |
19baf839 RO |
1841 | } |
1842 | ||
c877efb2 | 1843 | static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb, |
19baf839 RO |
1844 | struct sk_buff *skb, struct netlink_callback *cb) |
1845 | { | |
1846 | int i, s_i; | |
1847 | struct fib_alias *fa; | |
1848 | ||
91b9a277 | 1849 | u32 xkey = htonl(key); |
19baf839 | 1850 | |
91b9a277 | 1851 | s_i = cb->args[3]; |
19baf839 RO |
1852 | i = 0; |
1853 | ||
2373ce1c RO |
1854 | /* rcu_read_lock is hold by caller */ |
1855 | ||
1856 | list_for_each_entry_rcu(fa, fah, fa_list) { | |
19baf839 RO |
1857 | if (i < s_i) { |
1858 | i++; | |
1859 | continue; | |
1860 | } | |
78c6671a | 1861 | BUG_ON(!fa->fa_info); |
19baf839 RO |
1862 | |
1863 | if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid, | |
1864 | cb->nlh->nlmsg_seq, | |
1865 | RTM_NEWROUTE, | |
1866 | tb->tb_id, | |
1867 | fa->fa_type, | |
1868 | fa->fa_scope, | |
1869 | &xkey, | |
1870 | plen, | |
1871 | fa->fa_tos, | |
90f66914 | 1872 | fa->fa_info, 0) < 0) { |
19baf839 RO |
1873 | cb->args[3] = i; |
1874 | return -1; | |
91b9a277 | 1875 | } |
19baf839 RO |
1876 | i++; |
1877 | } | |
91b9a277 | 1878 | cb->args[3] = i; |
19baf839 RO |
1879 | return skb->len; |
1880 | } | |
1881 | ||
c877efb2 | 1882 | static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb, |
19baf839 RO |
1883 | struct netlink_callback *cb) |
1884 | { | |
1885 | int h, s_h; | |
1886 | struct list_head *fa_head; | |
1887 | struct leaf *l = NULL; | |
19baf839 | 1888 | |
91b9a277 | 1889 | s_h = cb->args[2]; |
19baf839 | 1890 | |
91b9a277 | 1891 | for (h = 0; (l = nextleaf(t, l)) != NULL; h++) { |
19baf839 RO |
1892 | if (h < s_h) |
1893 | continue; | |
1894 | if (h > s_h) | |
1895 | memset(&cb->args[3], 0, | |
1896 | sizeof(cb->args) - 3*sizeof(cb->args[0])); | |
1897 | ||
1898 | fa_head = get_fa_head(l, plen); | |
91b9a277 | 1899 | |
c877efb2 | 1900 | if (!fa_head) |
19baf839 RO |
1901 | continue; |
1902 | ||
c877efb2 | 1903 | if (list_empty(fa_head)) |
19baf839 RO |
1904 | continue; |
1905 | ||
1906 | if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) { | |
91b9a277 | 1907 | cb->args[2] = h; |
19baf839 RO |
1908 | return -1; |
1909 | } | |
1910 | } | |
91b9a277 | 1911 | cb->args[2] = h; |
19baf839 RO |
1912 | return skb->len; |
1913 | } | |
1914 | ||
1915 | static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb) | |
1916 | { | |
1917 | int m, s_m; | |
1918 | struct trie *t = (struct trie *) tb->tb_data; | |
1919 | ||
1920 | s_m = cb->args[1]; | |
1921 | ||
2373ce1c | 1922 | rcu_read_lock(); |
91b9a277 | 1923 | for (m = 0; m <= 32; m++) { |
19baf839 RO |
1924 | if (m < s_m) |
1925 | continue; | |
1926 | if (m > s_m) | |
1927 | memset(&cb->args[2], 0, | |
91b9a277 | 1928 | sizeof(cb->args) - 2*sizeof(cb->args[0])); |
19baf839 RO |
1929 | |
1930 | if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) { | |
1931 | cb->args[1] = m; | |
1932 | goto out; | |
1933 | } | |
1934 | } | |
2373ce1c | 1935 | rcu_read_unlock(); |
19baf839 RO |
1936 | cb->args[1] = m; |
1937 | return skb->len; | |
91b9a277 | 1938 | out: |
2373ce1c | 1939 | rcu_read_unlock(); |
19baf839 RO |
1940 | return -1; |
1941 | } | |
1942 | ||
1943 | /* Fix more generic FIB names for init later */ | |
1944 | ||
1945 | #ifdef CONFIG_IP_MULTIPLE_TABLES | |
1946 | struct fib_table * fib_hash_init(int id) | |
1947 | #else | |
1948 | struct fib_table * __init fib_hash_init(int id) | |
1949 | #endif | |
1950 | { | |
1951 | struct fib_table *tb; | |
1952 | struct trie *t; | |
1953 | ||
1954 | if (fn_alias_kmem == NULL) | |
1955 | fn_alias_kmem = kmem_cache_create("ip_fib_alias", | |
1956 | sizeof(struct fib_alias), | |
1957 | 0, SLAB_HWCACHE_ALIGN, | |
1958 | NULL, NULL); | |
1959 | ||
1960 | tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), | |
1961 | GFP_KERNEL); | |
1962 | if (tb == NULL) | |
1963 | return NULL; | |
1964 | ||
1965 | tb->tb_id = id; | |
1966 | tb->tb_lookup = fn_trie_lookup; | |
1967 | tb->tb_insert = fn_trie_insert; | |
1968 | tb->tb_delete = fn_trie_delete; | |
1969 | tb->tb_flush = fn_trie_flush; | |
1970 | tb->tb_select_default = fn_trie_select_default; | |
1971 | tb->tb_dump = fn_trie_dump; | |
1972 | memset(tb->tb_data, 0, sizeof(struct trie)); | |
1973 | ||
1974 | t = (struct trie *) tb->tb_data; | |
1975 | ||
1976 | trie_init(t); | |
1977 | ||
c877efb2 | 1978 | if (id == RT_TABLE_LOCAL) |
91b9a277 | 1979 | trie_local = t; |
c877efb2 | 1980 | else if (id == RT_TABLE_MAIN) |
91b9a277 | 1981 | trie_main = t; |
19baf839 RO |
1982 | |
1983 | if (id == RT_TABLE_LOCAL) | |
78c6671a | 1984 | printk(KERN_INFO "IPv4 FIB: Using LC-trie version %s\n", VERSION); |
19baf839 RO |
1985 | |
1986 | return tb; | |
1987 | } | |
1988 | ||
cb7b593c SH |
1989 | #ifdef CONFIG_PROC_FS |
1990 | /* Depth first Trie walk iterator */ | |
1991 | struct fib_trie_iter { | |
1992 | struct tnode *tnode; | |
1993 | struct trie *trie; | |
1994 | unsigned index; | |
1995 | unsigned depth; | |
1996 | }; | |
19baf839 | 1997 | |
cb7b593c | 1998 | static struct node *fib_trie_get_next(struct fib_trie_iter *iter) |
19baf839 | 1999 | { |
cb7b593c SH |
2000 | struct tnode *tn = iter->tnode; |
2001 | unsigned cindex = iter->index; | |
2002 | struct tnode *p; | |
19baf839 | 2003 | |
cb7b593c SH |
2004 | pr_debug("get_next iter={node=%p index=%d depth=%d}\n", |
2005 | iter->tnode, iter->index, iter->depth); | |
2006 | rescan: | |
2007 | while (cindex < (1<<tn->bits)) { | |
2008 | struct node *n = tnode_get_child(tn, cindex); | |
19baf839 | 2009 | |
cb7b593c SH |
2010 | if (n) { |
2011 | if (IS_LEAF(n)) { | |
2012 | iter->tnode = tn; | |
2013 | iter->index = cindex + 1; | |
2014 | } else { | |
2015 | /* push down one level */ | |
2016 | iter->tnode = (struct tnode *) n; | |
2017 | iter->index = 0; | |
2018 | ++iter->depth; | |
2019 | } | |
2020 | return n; | |
2021 | } | |
19baf839 | 2022 | |
cb7b593c SH |
2023 | ++cindex; |
2024 | } | |
91b9a277 | 2025 | |
cb7b593c SH |
2026 | /* Current node exhausted, pop back up */ |
2027 | p = NODE_PARENT(tn); | |
2028 | if (p) { | |
2029 | cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1; | |
2030 | tn = p; | |
2031 | --iter->depth; | |
2032 | goto rescan; | |
19baf839 | 2033 | } |
cb7b593c SH |
2034 | |
2035 | /* got root? */ | |
2036 | return NULL; | |
19baf839 RO |
2037 | } |
2038 | ||
cb7b593c SH |
2039 | static struct node *fib_trie_get_first(struct fib_trie_iter *iter, |
2040 | struct trie *t) | |
19baf839 | 2041 | { |
5ddf0eb2 RO |
2042 | struct node *n ; |
2043 | ||
2044 | if(!t) | |
2045 | return NULL; | |
2046 | ||
2047 | n = rcu_dereference(t->trie); | |
2048 | ||
2049 | if(!iter) | |
2050 | return NULL; | |
19baf839 | 2051 | |
cb7b593c SH |
2052 | if (n && IS_TNODE(n)) { |
2053 | iter->tnode = (struct tnode *) n; | |
2054 | iter->trie = t; | |
2055 | iter->index = 0; | |
1d25cd6c | 2056 | iter->depth = 1; |
cb7b593c | 2057 | return n; |
91b9a277 | 2058 | } |
cb7b593c SH |
2059 | return NULL; |
2060 | } | |
91b9a277 | 2061 | |
cb7b593c SH |
2062 | static void trie_collect_stats(struct trie *t, struct trie_stat *s) |
2063 | { | |
2064 | struct node *n; | |
2065 | struct fib_trie_iter iter; | |
91b9a277 | 2066 | |
cb7b593c | 2067 | memset(s, 0, sizeof(*s)); |
91b9a277 | 2068 | |
cb7b593c SH |
2069 | rcu_read_lock(); |
2070 | for (n = fib_trie_get_first(&iter, t); n; | |
2071 | n = fib_trie_get_next(&iter)) { | |
2072 | if (IS_LEAF(n)) { | |
2073 | s->leaves++; | |
2074 | s->totdepth += iter.depth; | |
2075 | if (iter.depth > s->maxdepth) | |
2076 | s->maxdepth = iter.depth; | |
2077 | } else { | |
2078 | const struct tnode *tn = (const struct tnode *) n; | |
2079 | int i; | |
2080 | ||
2081 | s->tnodes++; | |
06ef921d RO |
2082 | if(tn->bits < MAX_STAT_DEPTH) |
2083 | s->nodesizes[tn->bits]++; | |
2084 | ||
cb7b593c SH |
2085 | for (i = 0; i < (1<<tn->bits); i++) |
2086 | if (!tn->child[i]) | |
2087 | s->nullpointers++; | |
19baf839 | 2088 | } |
19baf839 | 2089 | } |
2373ce1c | 2090 | rcu_read_unlock(); |
19baf839 RO |
2091 | } |
2092 | ||
cb7b593c SH |
2093 | /* |
2094 | * This outputs /proc/net/fib_triestats | |
2095 | */ | |
2096 | static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) | |
19baf839 | 2097 | { |
cb7b593c | 2098 | unsigned i, max, pointers, bytes, avdepth; |
c877efb2 | 2099 | |
cb7b593c SH |
2100 | if (stat->leaves) |
2101 | avdepth = stat->totdepth*100 / stat->leaves; | |
2102 | else | |
2103 | avdepth = 0; | |
91b9a277 | 2104 | |
cb7b593c SH |
2105 | seq_printf(seq, "\tAver depth: %d.%02d\n", avdepth / 100, avdepth % 100 ); |
2106 | seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); | |
91b9a277 | 2107 | |
cb7b593c | 2108 | seq_printf(seq, "\tLeaves: %u\n", stat->leaves); |
91b9a277 | 2109 | |
cb7b593c SH |
2110 | bytes = sizeof(struct leaf) * stat->leaves; |
2111 | seq_printf(seq, "\tInternal nodes: %d\n\t", stat->tnodes); | |
2112 | bytes += sizeof(struct tnode) * stat->tnodes; | |
19baf839 | 2113 | |
06ef921d RO |
2114 | max = MAX_STAT_DEPTH; |
2115 | while (max > 0 && stat->nodesizes[max-1] == 0) | |
cb7b593c | 2116 | max--; |
19baf839 | 2117 | |
cb7b593c SH |
2118 | pointers = 0; |
2119 | for (i = 1; i <= max; i++) | |
2120 | if (stat->nodesizes[i] != 0) { | |
2121 | seq_printf(seq, " %d: %d", i, stat->nodesizes[i]); | |
2122 | pointers += (1<<i) * stat->nodesizes[i]; | |
2123 | } | |
2124 | seq_putc(seq, '\n'); | |
2125 | seq_printf(seq, "\tPointers: %d\n", pointers); | |
2373ce1c | 2126 | |
cb7b593c SH |
2127 | bytes += sizeof(struct node *) * pointers; |
2128 | seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers); | |
2129 | seq_printf(seq, "Total size: %d kB\n", (bytes + 1023) / 1024); | |
2373ce1c | 2130 | |
cb7b593c SH |
2131 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
2132 | seq_printf(seq, "Counters:\n---------\n"); | |
2133 | seq_printf(seq,"gets = %d\n", t->stats.gets); | |
2134 | seq_printf(seq,"backtracks = %d\n", t->stats.backtrack); | |
2135 | seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed); | |
2136 | seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss); | |
2137 | seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit); | |
2138 | seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped); | |
2139 | #ifdef CLEAR_STATS | |
2140 | memset(&(t->stats), 0, sizeof(t->stats)); | |
2141 | #endif | |
2142 | #endif /* CONFIG_IP_FIB_TRIE_STATS */ | |
2143 | } | |
19baf839 | 2144 | |
cb7b593c SH |
2145 | static int fib_triestat_seq_show(struct seq_file *seq, void *v) |
2146 | { | |
2147 | struct trie_stat *stat; | |
91b9a277 | 2148 | |
cb7b593c SH |
2149 | stat = kmalloc(sizeof(*stat), GFP_KERNEL); |
2150 | if (!stat) | |
2151 | return -ENOMEM; | |
91b9a277 | 2152 | |
cb7b593c SH |
2153 | seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n", |
2154 | sizeof(struct leaf), sizeof(struct tnode)); | |
91b9a277 | 2155 | |
cb7b593c SH |
2156 | if (trie_local) { |
2157 | seq_printf(seq, "Local:\n"); | |
2158 | trie_collect_stats(trie_local, stat); | |
2159 | trie_show_stats(seq, stat); | |
2160 | } | |
91b9a277 | 2161 | |
cb7b593c SH |
2162 | if (trie_main) { |
2163 | seq_printf(seq, "Main:\n"); | |
2164 | trie_collect_stats(trie_main, stat); | |
2165 | trie_show_stats(seq, stat); | |
19baf839 | 2166 | } |
cb7b593c | 2167 | kfree(stat); |
19baf839 | 2168 | |
cb7b593c | 2169 | return 0; |
19baf839 RO |
2170 | } |
2171 | ||
cb7b593c | 2172 | static int fib_triestat_seq_open(struct inode *inode, struct file *file) |
19baf839 | 2173 | { |
cb7b593c | 2174 | return single_open(file, fib_triestat_seq_show, NULL); |
19baf839 RO |
2175 | } |
2176 | ||
cb7b593c SH |
2177 | static struct file_operations fib_triestat_fops = { |
2178 | .owner = THIS_MODULE, | |
2179 | .open = fib_triestat_seq_open, | |
2180 | .read = seq_read, | |
2181 | .llseek = seq_lseek, | |
2182 | .release = single_release, | |
2183 | }; | |
2184 | ||
2185 | static struct node *fib_trie_get_idx(struct fib_trie_iter *iter, | |
2186 | loff_t pos) | |
19baf839 | 2187 | { |
cb7b593c SH |
2188 | loff_t idx = 0; |
2189 | struct node *n; | |
2190 | ||
2191 | for (n = fib_trie_get_first(iter, trie_local); | |
2192 | n; ++idx, n = fib_trie_get_next(iter)) { | |
2193 | if (pos == idx) | |
2194 | return n; | |
2195 | } | |
2196 | ||
2197 | for (n = fib_trie_get_first(iter, trie_main); | |
2198 | n; ++idx, n = fib_trie_get_next(iter)) { | |
2199 | if (pos == idx) | |
2200 | return n; | |
2201 | } | |
19baf839 RO |
2202 | return NULL; |
2203 | } | |
2204 | ||
cb7b593c | 2205 | static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) |
19baf839 | 2206 | { |
cb7b593c SH |
2207 | rcu_read_lock(); |
2208 | if (*pos == 0) | |
91b9a277 | 2209 | return SEQ_START_TOKEN; |
cb7b593c | 2210 | return fib_trie_get_idx(seq->private, *pos - 1); |
19baf839 RO |
2211 | } |
2212 | ||
cb7b593c | 2213 | static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
19baf839 | 2214 | { |
cb7b593c SH |
2215 | struct fib_trie_iter *iter = seq->private; |
2216 | void *l = v; | |
2217 | ||
19baf839 | 2218 | ++*pos; |
91b9a277 | 2219 | if (v == SEQ_START_TOKEN) |
cb7b593c | 2220 | return fib_trie_get_idx(iter, 0); |
19baf839 | 2221 | |
cb7b593c SH |
2222 | v = fib_trie_get_next(iter); |
2223 | BUG_ON(v == l); | |
2224 | if (v) | |
2225 | return v; | |
19baf839 | 2226 | |
cb7b593c SH |
2227 | /* continue scan in next trie */ |
2228 | if (iter->trie == trie_local) | |
2229 | return fib_trie_get_first(iter, trie_main); | |
19baf839 | 2230 | |
cb7b593c SH |
2231 | return NULL; |
2232 | } | |
19baf839 | 2233 | |
cb7b593c | 2234 | static void fib_trie_seq_stop(struct seq_file *seq, void *v) |
19baf839 | 2235 | { |
cb7b593c SH |
2236 | rcu_read_unlock(); |
2237 | } | |
91b9a277 | 2238 | |
cb7b593c SH |
2239 | static void seq_indent(struct seq_file *seq, int n) |
2240 | { | |
2241 | while (n-- > 0) seq_puts(seq, " "); | |
2242 | } | |
19baf839 | 2243 | |
cb7b593c SH |
2244 | static inline const char *rtn_scope(enum rt_scope_t s) |
2245 | { | |
2246 | static char buf[32]; | |
19baf839 | 2247 | |
cb7b593c SH |
2248 | switch(s) { |
2249 | case RT_SCOPE_UNIVERSE: return "universe"; | |
2250 | case RT_SCOPE_SITE: return "site"; | |
2251 | case RT_SCOPE_LINK: return "link"; | |
2252 | case RT_SCOPE_HOST: return "host"; | |
2253 | case RT_SCOPE_NOWHERE: return "nowhere"; | |
2254 | default: | |
2255 | snprintf(buf, sizeof(buf), "scope=%d", s); | |
2256 | return buf; | |
2257 | } | |
2258 | } | |
19baf839 | 2259 | |
cb7b593c SH |
2260 | static const char *rtn_type_names[__RTN_MAX] = { |
2261 | [RTN_UNSPEC] = "UNSPEC", | |
2262 | [RTN_UNICAST] = "UNICAST", | |
2263 | [RTN_LOCAL] = "LOCAL", | |
2264 | [RTN_BROADCAST] = "BROADCAST", | |
2265 | [RTN_ANYCAST] = "ANYCAST", | |
2266 | [RTN_MULTICAST] = "MULTICAST", | |
2267 | [RTN_BLACKHOLE] = "BLACKHOLE", | |
2268 | [RTN_UNREACHABLE] = "UNREACHABLE", | |
2269 | [RTN_PROHIBIT] = "PROHIBIT", | |
2270 | [RTN_THROW] = "THROW", | |
2271 | [RTN_NAT] = "NAT", | |
2272 | [RTN_XRESOLVE] = "XRESOLVE", | |
2273 | }; | |
19baf839 | 2274 | |
cb7b593c SH |
2275 | static inline const char *rtn_type(unsigned t) |
2276 | { | |
2277 | static char buf[32]; | |
19baf839 | 2278 | |
cb7b593c SH |
2279 | if (t < __RTN_MAX && rtn_type_names[t]) |
2280 | return rtn_type_names[t]; | |
2281 | snprintf(buf, sizeof(buf), "type %d", t); | |
2282 | return buf; | |
19baf839 RO |
2283 | } |
2284 | ||
cb7b593c SH |
2285 | /* Pretty print the trie */ |
2286 | static int fib_trie_seq_show(struct seq_file *seq, void *v) | |
19baf839 | 2287 | { |
cb7b593c SH |
2288 | const struct fib_trie_iter *iter = seq->private; |
2289 | struct node *n = v; | |
c877efb2 | 2290 | |
cb7b593c SH |
2291 | if (v == SEQ_START_TOKEN) |
2292 | return 0; | |
19baf839 | 2293 | |
cb7b593c SH |
2294 | if (IS_TNODE(n)) { |
2295 | struct tnode *tn = (struct tnode *) n; | |
2296 | t_key prf = ntohl(MASK_PFX(tn->key, tn->pos)); | |
91b9a277 | 2297 | |
cb7b593c SH |
2298 | if (!NODE_PARENT(n)) { |
2299 | if (iter->trie == trie_local) | |
2300 | seq_puts(seq, "<local>:\n"); | |
2301 | else | |
2302 | seq_puts(seq, "<main>:\n"); | |
1d25cd6c RO |
2303 | } |
2304 | seq_indent(seq, iter->depth-1); | |
2305 | seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n", | |
2306 | NIPQUAD(prf), tn->pos, tn->bits, tn->full_children, | |
2307 | tn->empty_children); | |
2308 | ||
cb7b593c SH |
2309 | } else { |
2310 | struct leaf *l = (struct leaf *) n; | |
2311 | int i; | |
2312 | u32 val = ntohl(l->key); | |
2313 | ||
2314 | seq_indent(seq, iter->depth); | |
2315 | seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val)); | |
2316 | for (i = 32; i >= 0; i--) { | |
772cb712 | 2317 | struct leaf_info *li = find_leaf_info(l, i); |
cb7b593c SH |
2318 | if (li) { |
2319 | struct fib_alias *fa; | |
2320 | list_for_each_entry_rcu(fa, &li->falh, fa_list) { | |
2321 | seq_indent(seq, iter->depth+1); | |
2322 | seq_printf(seq, " /%d %s %s", i, | |
2323 | rtn_scope(fa->fa_scope), | |
2324 | rtn_type(fa->fa_type)); | |
2325 | if (fa->fa_tos) | |
2326 | seq_printf(seq, "tos =%d\n", | |
2327 | fa->fa_tos); | |
2328 | seq_putc(seq, '\n'); | |
2329 | } | |
2330 | } | |
2331 | } | |
19baf839 | 2332 | } |
cb7b593c | 2333 | |
19baf839 RO |
2334 | return 0; |
2335 | } | |
2336 | ||
cb7b593c SH |
2337 | static struct seq_operations fib_trie_seq_ops = { |
2338 | .start = fib_trie_seq_start, | |
2339 | .next = fib_trie_seq_next, | |
2340 | .stop = fib_trie_seq_stop, | |
2341 | .show = fib_trie_seq_show, | |
19baf839 RO |
2342 | }; |
2343 | ||
cb7b593c | 2344 | static int fib_trie_seq_open(struct inode *inode, struct file *file) |
19baf839 RO |
2345 | { |
2346 | struct seq_file *seq; | |
2347 | int rc = -ENOMEM; | |
cb7b593c | 2348 | struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL); |
19baf839 | 2349 | |
cb7b593c SH |
2350 | if (!s) |
2351 | goto out; | |
2352 | ||
2353 | rc = seq_open(file, &fib_trie_seq_ops); | |
19baf839 RO |
2354 | if (rc) |
2355 | goto out_kfree; | |
2356 | ||
cb7b593c SH |
2357 | seq = file->private_data; |
2358 | seq->private = s; | |
2359 | memset(s, 0, sizeof(*s)); | |
19baf839 RO |
2360 | out: |
2361 | return rc; | |
2362 | out_kfree: | |
cb7b593c | 2363 | kfree(s); |
19baf839 RO |
2364 | goto out; |
2365 | } | |
2366 | ||
cb7b593c SH |
2367 | static struct file_operations fib_trie_fops = { |
2368 | .owner = THIS_MODULE, | |
2369 | .open = fib_trie_seq_open, | |
2370 | .read = seq_read, | |
2371 | .llseek = seq_lseek, | |
c877efb2 | 2372 | .release = seq_release_private, |
19baf839 RO |
2373 | }; |
2374 | ||
cb7b593c | 2375 | static unsigned fib_flag_trans(int type, u32 mask, const struct fib_info *fi) |
19baf839 | 2376 | { |
cb7b593c SH |
2377 | static unsigned type2flags[RTN_MAX + 1] = { |
2378 | [7] = RTF_REJECT, [8] = RTF_REJECT, | |
2379 | }; | |
2380 | unsigned flags = type2flags[type]; | |
19baf839 | 2381 | |
cb7b593c SH |
2382 | if (fi && fi->fib_nh->nh_gw) |
2383 | flags |= RTF_GATEWAY; | |
2384 | if (mask == 0xFFFFFFFF) | |
2385 | flags |= RTF_HOST; | |
2386 | flags |= RTF_UP; | |
2387 | return flags; | |
19baf839 RO |
2388 | } |
2389 | ||
cb7b593c SH |
2390 | /* |
2391 | * This outputs /proc/net/route. | |
2392 | * The format of the file is not supposed to be changed | |
2393 | * and needs to be same as fib_hash output to avoid breaking | |
2394 | * legacy utilities | |
2395 | */ | |
2396 | static int fib_route_seq_show(struct seq_file *seq, void *v) | |
19baf839 | 2397 | { |
c9e53cbe | 2398 | const struct fib_trie_iter *iter = seq->private; |
cb7b593c SH |
2399 | struct leaf *l = v; |
2400 | int i; | |
2401 | char bf[128]; | |
19baf839 | 2402 | |
cb7b593c SH |
2403 | if (v == SEQ_START_TOKEN) { |
2404 | seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " | |
2405 | "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" | |
2406 | "\tWindow\tIRTT"); | |
2407 | return 0; | |
2408 | } | |
19baf839 | 2409 | |
c9e53cbe PM |
2410 | if (iter->trie == trie_local) |
2411 | return 0; | |
cb7b593c SH |
2412 | if (IS_TNODE(l)) |
2413 | return 0; | |
19baf839 | 2414 | |
cb7b593c | 2415 | for (i=32; i>=0; i--) { |
772cb712 | 2416 | struct leaf_info *li = find_leaf_info(l, i); |
cb7b593c SH |
2417 | struct fib_alias *fa; |
2418 | u32 mask, prefix; | |
91b9a277 | 2419 | |
cb7b593c SH |
2420 | if (!li) |
2421 | continue; | |
19baf839 | 2422 | |
cb7b593c SH |
2423 | mask = inet_make_mask(li->plen); |
2424 | prefix = htonl(l->key); | |
19baf839 | 2425 | |
cb7b593c | 2426 | list_for_each_entry_rcu(fa, &li->falh, fa_list) { |
1371e37d | 2427 | const struct fib_info *fi = fa->fa_info; |
cb7b593c | 2428 | unsigned flags = fib_flag_trans(fa->fa_type, mask, fi); |
19baf839 | 2429 | |
cb7b593c SH |
2430 | if (fa->fa_type == RTN_BROADCAST |
2431 | || fa->fa_type == RTN_MULTICAST) | |
2432 | continue; | |
19baf839 | 2433 | |
cb7b593c SH |
2434 | if (fi) |
2435 | snprintf(bf, sizeof(bf), | |
2436 | "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u", | |
2437 | fi->fib_dev ? fi->fib_dev->name : "*", | |
2438 | prefix, | |
2439 | fi->fib_nh->nh_gw, flags, 0, 0, | |
2440 | fi->fib_priority, | |
2441 | mask, | |
2442 | (fi->fib_advmss ? fi->fib_advmss + 40 : 0), | |
2443 | fi->fib_window, | |
2444 | fi->fib_rtt >> 3); | |
2445 | else | |
2446 | snprintf(bf, sizeof(bf), | |
2447 | "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u", | |
2448 | prefix, 0, flags, 0, 0, 0, | |
2449 | mask, 0, 0, 0); | |
19baf839 | 2450 | |
cb7b593c SH |
2451 | seq_printf(seq, "%-127s\n", bf); |
2452 | } | |
19baf839 RO |
2453 | } |
2454 | ||
2455 | return 0; | |
2456 | } | |
2457 | ||
cb7b593c SH |
2458 | static struct seq_operations fib_route_seq_ops = { |
2459 | .start = fib_trie_seq_start, | |
2460 | .next = fib_trie_seq_next, | |
2461 | .stop = fib_trie_seq_stop, | |
2462 | .show = fib_route_seq_show, | |
19baf839 RO |
2463 | }; |
2464 | ||
cb7b593c | 2465 | static int fib_route_seq_open(struct inode *inode, struct file *file) |
19baf839 RO |
2466 | { |
2467 | struct seq_file *seq; | |
2468 | int rc = -ENOMEM; | |
cb7b593c | 2469 | struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL); |
19baf839 | 2470 | |
cb7b593c SH |
2471 | if (!s) |
2472 | goto out; | |
2473 | ||
2474 | rc = seq_open(file, &fib_route_seq_ops); | |
19baf839 RO |
2475 | if (rc) |
2476 | goto out_kfree; | |
2477 | ||
cb7b593c SH |
2478 | seq = file->private_data; |
2479 | seq->private = s; | |
2480 | memset(s, 0, sizeof(*s)); | |
19baf839 RO |
2481 | out: |
2482 | return rc; | |
2483 | out_kfree: | |
cb7b593c | 2484 | kfree(s); |
19baf839 RO |
2485 | goto out; |
2486 | } | |
2487 | ||
cb7b593c SH |
2488 | static struct file_operations fib_route_fops = { |
2489 | .owner = THIS_MODULE, | |
2490 | .open = fib_route_seq_open, | |
2491 | .read = seq_read, | |
2492 | .llseek = seq_lseek, | |
2493 | .release = seq_release_private, | |
19baf839 RO |
2494 | }; |
2495 | ||
2496 | int __init fib_proc_init(void) | |
2497 | { | |
cb7b593c SH |
2498 | if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_fops)) |
2499 | goto out1; | |
2500 | ||
2501 | if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_fops)) | |
2502 | goto out2; | |
2503 | ||
2504 | if (!proc_net_fops_create("route", S_IRUGO, &fib_route_fops)) | |
2505 | goto out3; | |
2506 | ||
19baf839 | 2507 | return 0; |
cb7b593c SH |
2508 | |
2509 | out3: | |
2510 | proc_net_remove("fib_triestat"); | |
2511 | out2: | |
2512 | proc_net_remove("fib_trie"); | |
2513 | out1: | |
2514 | return -ENOMEM; | |
19baf839 RO |
2515 | } |
2516 | ||
2517 | void __init fib_proc_exit(void) | |
2518 | { | |
2519 | proc_net_remove("fib_trie"); | |
cb7b593c SH |
2520 | proc_net_remove("fib_triestat"); |
2521 | proc_net_remove("route"); | |
19baf839 RO |
2522 | } |
2523 | ||
2524 | #endif /* CONFIG_PROC_FS */ |