]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/slab.c | |
3 | * Written by Mark Hemment, 1996/97. | |
4 | * ([email protected]) | |
5 | * | |
6 | * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli | |
7 | * | |
8 | * Major cleanup, different bufctl logic, per-cpu arrays | |
9 | * (c) 2000 Manfred Spraul | |
10 | * | |
11 | * Cleanup, make the head arrays unconditional, preparation for NUMA | |
12 | * (c) 2002 Manfred Spraul | |
13 | * | |
14 | * An implementation of the Slab Allocator as described in outline in; | |
15 | * UNIX Internals: The New Frontiers by Uresh Vahalia | |
16 | * Pub: Prentice Hall ISBN 0-13-101908-2 | |
17 | * or with a little more detail in; | |
18 | * The Slab Allocator: An Object-Caching Kernel Memory Allocator | |
19 | * Jeff Bonwick (Sun Microsystems). | |
20 | * Presented at: USENIX Summer 1994 Technical Conference | |
21 | * | |
22 | * The memory is organized in caches, one cache for each object type. | |
23 | * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) | |
24 | * Each cache consists out of many slabs (they are small (usually one | |
25 | * page long) and always contiguous), and each slab contains multiple | |
26 | * initialized objects. | |
27 | * | |
28 | * This means, that your constructor is used only for newly allocated | |
183ff22b | 29 | * slabs and you must pass objects with the same initializations to |
1da177e4 LT |
30 | * kmem_cache_free. |
31 | * | |
32 | * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, | |
33 | * normal). If you need a special memory type, then must create a new | |
34 | * cache for that memory type. | |
35 | * | |
36 | * In order to reduce fragmentation, the slabs are sorted in 3 groups: | |
37 | * full slabs with 0 free objects | |
38 | * partial slabs | |
39 | * empty slabs with no allocated objects | |
40 | * | |
41 | * If partial slabs exist, then new allocations come from these slabs, | |
42 | * otherwise from empty slabs or new slabs are allocated. | |
43 | * | |
44 | * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache | |
45 | * during kmem_cache_destroy(). The caller must prevent concurrent allocs. | |
46 | * | |
47 | * Each cache has a short per-cpu head array, most allocs | |
48 | * and frees go into that array, and if that array overflows, then 1/2 | |
49 | * of the entries in the array are given back into the global cache. | |
50 | * The head array is strictly LIFO and should improve the cache hit rates. | |
51 | * On SMP, it additionally reduces the spinlock operations. | |
52 | * | |
a737b3e2 | 53 | * The c_cpuarray may not be read with enabled local interrupts - |
1da177e4 LT |
54 | * it's changed with a smp_call_function(). |
55 | * | |
56 | * SMP synchronization: | |
57 | * constructors and destructors are called without any locking. | |
343e0d7a | 58 | * Several members in struct kmem_cache and struct slab never change, they |
1da177e4 LT |
59 | * are accessed without any locking. |
60 | * The per-cpu arrays are never accessed from the wrong cpu, no locking, | |
61 | * and local interrupts are disabled so slab code is preempt-safe. | |
62 | * The non-constant members are protected with a per-cache irq spinlock. | |
63 | * | |
64 | * Many thanks to Mark Hemment, who wrote another per-cpu slab patch | |
65 | * in 2000 - many ideas in the current implementation are derived from | |
66 | * his patch. | |
67 | * | |
68 | * Further notes from the original documentation: | |
69 | * | |
70 | * 11 April '97. Started multi-threading - markhe | |
18004c5d | 71 | * The global cache-chain is protected by the mutex 'slab_mutex'. |
1da177e4 LT |
72 | * The sem is only needed when accessing/extending the cache-chain, which |
73 | * can never happen inside an interrupt (kmem_cache_create(), | |
74 | * kmem_cache_shrink() and kmem_cache_reap()). | |
75 | * | |
76 | * At present, each engine can be growing a cache. This should be blocked. | |
77 | * | |
e498be7d CL |
78 | * 15 March 2005. NUMA slab allocator. |
79 | * Shai Fultheim <[email protected]>. | |
80 | * Shobhit Dayal <[email protected]> | |
81 | * Alok N Kataria <[email protected]> | |
82 | * Christoph Lameter <[email protected]> | |
83 | * | |
84 | * Modified the slab allocator to be node aware on NUMA systems. | |
85 | * Each node has its own list of partial, free and full slabs. | |
86 | * All object allocations for a node occur from node specific slab lists. | |
1da177e4 LT |
87 | */ |
88 | ||
1da177e4 LT |
89 | #include <linux/slab.h> |
90 | #include <linux/mm.h> | |
c9cf5528 | 91 | #include <linux/poison.h> |
1da177e4 LT |
92 | #include <linux/swap.h> |
93 | #include <linux/cache.h> | |
94 | #include <linux/interrupt.h> | |
95 | #include <linux/init.h> | |
96 | #include <linux/compiler.h> | |
101a5001 | 97 | #include <linux/cpuset.h> |
a0ec95a8 | 98 | #include <linux/proc_fs.h> |
1da177e4 LT |
99 | #include <linux/seq_file.h> |
100 | #include <linux/notifier.h> | |
101 | #include <linux/kallsyms.h> | |
102 | #include <linux/cpu.h> | |
103 | #include <linux/sysctl.h> | |
104 | #include <linux/module.h> | |
105 | #include <linux/rcupdate.h> | |
543537bd | 106 | #include <linux/string.h> |
138ae663 | 107 | #include <linux/uaccess.h> |
e498be7d | 108 | #include <linux/nodemask.h> |
d5cff635 | 109 | #include <linux/kmemleak.h> |
dc85da15 | 110 | #include <linux/mempolicy.h> |
fc0abb14 | 111 | #include <linux/mutex.h> |
8a8b6502 | 112 | #include <linux/fault-inject.h> |
e7eebaf6 | 113 | #include <linux/rtmutex.h> |
6a2d7a95 | 114 | #include <linux/reciprocal_div.h> |
3ac7fe5a | 115 | #include <linux/debugobjects.h> |
c175eea4 | 116 | #include <linux/kmemcheck.h> |
8f9f8d9e | 117 | #include <linux/memory.h> |
268bb0ce | 118 | #include <linux/prefetch.h> |
1da177e4 | 119 | |
381760ea MG |
120 | #include <net/sock.h> |
121 | ||
1da177e4 LT |
122 | #include <asm/cacheflush.h> |
123 | #include <asm/tlbflush.h> | |
124 | #include <asm/page.h> | |
125 | ||
4dee6b64 SR |
126 | #include <trace/events/kmem.h> |
127 | ||
072bb0aa MG |
128 | #include "internal.h" |
129 | ||
b9ce5ef4 GC |
130 | #include "slab.h" |
131 | ||
1da177e4 | 132 | /* |
50953fe9 | 133 | * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. |
1da177e4 LT |
134 | * 0 for faster, smaller code (especially in the critical paths). |
135 | * | |
136 | * STATS - 1 to collect stats for /proc/slabinfo. | |
137 | * 0 for faster, smaller code (especially in the critical paths). | |
138 | * | |
139 | * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) | |
140 | */ | |
141 | ||
142 | #ifdef CONFIG_DEBUG_SLAB | |
143 | #define DEBUG 1 | |
144 | #define STATS 1 | |
145 | #define FORCED_DEBUG 1 | |
146 | #else | |
147 | #define DEBUG 0 | |
148 | #define STATS 0 | |
149 | #define FORCED_DEBUG 0 | |
150 | #endif | |
151 | ||
1da177e4 LT |
152 | /* Shouldn't this be in a header file somewhere? */ |
153 | #define BYTES_PER_WORD sizeof(void *) | |
87a927c7 | 154 | #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) |
1da177e4 | 155 | |
1da177e4 LT |
156 | #ifndef ARCH_KMALLOC_FLAGS |
157 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | |
158 | #endif | |
159 | ||
f315e3fa JK |
160 | #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ |
161 | <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) | |
162 | ||
163 | #if FREELIST_BYTE_INDEX | |
164 | typedef unsigned char freelist_idx_t; | |
165 | #else | |
166 | typedef unsigned short freelist_idx_t; | |
167 | #endif | |
168 | ||
30321c7b | 169 | #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) |
f315e3fa | 170 | |
1da177e4 LT |
171 | /* |
172 | * struct array_cache | |
173 | * | |
1da177e4 LT |
174 | * Purpose: |
175 | * - LIFO ordering, to hand out cache-warm objects from _alloc | |
176 | * - reduce the number of linked list operations | |
177 | * - reduce spinlock operations | |
178 | * | |
179 | * The limit is stored in the per-cpu structure to reduce the data cache | |
180 | * footprint. | |
181 | * | |
182 | */ | |
183 | struct array_cache { | |
184 | unsigned int avail; | |
185 | unsigned int limit; | |
186 | unsigned int batchcount; | |
187 | unsigned int touched; | |
bda5b655 | 188 | void *entry[]; /* |
a737b3e2 AM |
189 | * Must have this definition in here for the proper |
190 | * alignment of array_cache. Also simplifies accessing | |
191 | * the entries. | |
a737b3e2 | 192 | */ |
1da177e4 LT |
193 | }; |
194 | ||
c8522a3a JK |
195 | struct alien_cache { |
196 | spinlock_t lock; | |
197 | struct array_cache ac; | |
198 | }; | |
199 | ||
e498be7d CL |
200 | /* |
201 | * Need this for bootstrapping a per node allocator. | |
202 | */ | |
bf0dea23 | 203 | #define NUM_INIT_LISTS (2 * MAX_NUMNODES) |
ce8eb6c4 | 204 | static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; |
e498be7d | 205 | #define CACHE_CACHE 0 |
bf0dea23 | 206 | #define SIZE_NODE (MAX_NUMNODES) |
e498be7d | 207 | |
ed11d9eb | 208 | static int drain_freelist(struct kmem_cache *cache, |
ce8eb6c4 | 209 | struct kmem_cache_node *n, int tofree); |
ed11d9eb | 210 | static void free_block(struct kmem_cache *cachep, void **objpp, int len, |
97654dfa JK |
211 | int node, struct list_head *list); |
212 | static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); | |
83b519e8 | 213 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); |
65f27f38 | 214 | static void cache_reap(struct work_struct *unused); |
ed11d9eb | 215 | |
76b342bd JK |
216 | static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, |
217 | void **list); | |
218 | static inline void fixup_slab_list(struct kmem_cache *cachep, | |
219 | struct kmem_cache_node *n, struct page *page, | |
220 | void **list); | |
e0a42726 IM |
221 | static int slab_early_init = 1; |
222 | ||
ce8eb6c4 | 223 | #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) |
1da177e4 | 224 | |
ce8eb6c4 | 225 | static void kmem_cache_node_init(struct kmem_cache_node *parent) |
e498be7d CL |
226 | { |
227 | INIT_LIST_HEAD(&parent->slabs_full); | |
228 | INIT_LIST_HEAD(&parent->slabs_partial); | |
229 | INIT_LIST_HEAD(&parent->slabs_free); | |
230 | parent->shared = NULL; | |
231 | parent->alien = NULL; | |
2e1217cf | 232 | parent->colour_next = 0; |
e498be7d CL |
233 | spin_lock_init(&parent->list_lock); |
234 | parent->free_objects = 0; | |
235 | parent->free_touched = 0; | |
236 | } | |
237 | ||
a737b3e2 AM |
238 | #define MAKE_LIST(cachep, listp, slab, nodeid) \ |
239 | do { \ | |
240 | INIT_LIST_HEAD(listp); \ | |
18bf8541 | 241 | list_splice(&get_node(cachep, nodeid)->slab, listp); \ |
e498be7d CL |
242 | } while (0) |
243 | ||
a737b3e2 AM |
244 | #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ |
245 | do { \ | |
e498be7d CL |
246 | MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ |
247 | MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ | |
248 | MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ | |
249 | } while (0) | |
1da177e4 | 250 | |
b03a017b | 251 | #define CFLGS_OBJFREELIST_SLAB (0x40000000UL) |
1da177e4 | 252 | #define CFLGS_OFF_SLAB (0x80000000UL) |
b03a017b | 253 | #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) |
1da177e4 LT |
254 | #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) |
255 | ||
256 | #define BATCHREFILL_LIMIT 16 | |
a737b3e2 AM |
257 | /* |
258 | * Optimization question: fewer reaps means less probability for unnessary | |
259 | * cpucache drain/refill cycles. | |
1da177e4 | 260 | * |
dc6f3f27 | 261 | * OTOH the cpuarrays can contain lots of objects, |
1da177e4 LT |
262 | * which could lock up otherwise freeable slabs. |
263 | */ | |
5f0985bb JZ |
264 | #define REAPTIMEOUT_AC (2*HZ) |
265 | #define REAPTIMEOUT_NODE (4*HZ) | |
1da177e4 LT |
266 | |
267 | #if STATS | |
268 | #define STATS_INC_ACTIVE(x) ((x)->num_active++) | |
269 | #define STATS_DEC_ACTIVE(x) ((x)->num_active--) | |
270 | #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) | |
271 | #define STATS_INC_GROWN(x) ((x)->grown++) | |
ed11d9eb | 272 | #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) |
a737b3e2 AM |
273 | #define STATS_SET_HIGH(x) \ |
274 | do { \ | |
275 | if ((x)->num_active > (x)->high_mark) \ | |
276 | (x)->high_mark = (x)->num_active; \ | |
277 | } while (0) | |
1da177e4 LT |
278 | #define STATS_INC_ERR(x) ((x)->errors++) |
279 | #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) | |
e498be7d | 280 | #define STATS_INC_NODEFREES(x) ((x)->node_frees++) |
fb7faf33 | 281 | #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) |
a737b3e2 AM |
282 | #define STATS_SET_FREEABLE(x, i) \ |
283 | do { \ | |
284 | if ((x)->max_freeable < i) \ | |
285 | (x)->max_freeable = i; \ | |
286 | } while (0) | |
1da177e4 LT |
287 | #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) |
288 | #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) | |
289 | #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) | |
290 | #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) | |
291 | #else | |
292 | #define STATS_INC_ACTIVE(x) do { } while (0) | |
293 | #define STATS_DEC_ACTIVE(x) do { } while (0) | |
294 | #define STATS_INC_ALLOCED(x) do { } while (0) | |
295 | #define STATS_INC_GROWN(x) do { } while (0) | |
4e60c86b | 296 | #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) |
1da177e4 LT |
297 | #define STATS_SET_HIGH(x) do { } while (0) |
298 | #define STATS_INC_ERR(x) do { } while (0) | |
299 | #define STATS_INC_NODEALLOCS(x) do { } while (0) | |
e498be7d | 300 | #define STATS_INC_NODEFREES(x) do { } while (0) |
fb7faf33 | 301 | #define STATS_INC_ACOVERFLOW(x) do { } while (0) |
a737b3e2 | 302 | #define STATS_SET_FREEABLE(x, i) do { } while (0) |
1da177e4 LT |
303 | #define STATS_INC_ALLOCHIT(x) do { } while (0) |
304 | #define STATS_INC_ALLOCMISS(x) do { } while (0) | |
305 | #define STATS_INC_FREEHIT(x) do { } while (0) | |
306 | #define STATS_INC_FREEMISS(x) do { } while (0) | |
307 | #endif | |
308 | ||
309 | #if DEBUG | |
1da177e4 | 310 | |
a737b3e2 AM |
311 | /* |
312 | * memory layout of objects: | |
1da177e4 | 313 | * 0 : objp |
3dafccf2 | 314 | * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that |
1da177e4 LT |
315 | * the end of an object is aligned with the end of the real |
316 | * allocation. Catches writes behind the end of the allocation. | |
3dafccf2 | 317 | * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: |
1da177e4 | 318 | * redzone word. |
3dafccf2 | 319 | * cachep->obj_offset: The real object. |
3b0efdfa CL |
320 | * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] |
321 | * cachep->size - 1* BYTES_PER_WORD: last caller address | |
a737b3e2 | 322 | * [BYTES_PER_WORD long] |
1da177e4 | 323 | */ |
343e0d7a | 324 | static int obj_offset(struct kmem_cache *cachep) |
1da177e4 | 325 | { |
3dafccf2 | 326 | return cachep->obj_offset; |
1da177e4 LT |
327 | } |
328 | ||
b46b8f19 | 329 | static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
330 | { |
331 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
b46b8f19 DW |
332 | return (unsigned long long*) (objp + obj_offset(cachep) - |
333 | sizeof(unsigned long long)); | |
1da177e4 LT |
334 | } |
335 | ||
b46b8f19 | 336 | static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
337 | { |
338 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
339 | if (cachep->flags & SLAB_STORE_USER) | |
3b0efdfa | 340 | return (unsigned long long *)(objp + cachep->size - |
b46b8f19 | 341 | sizeof(unsigned long long) - |
87a927c7 | 342 | REDZONE_ALIGN); |
3b0efdfa | 343 | return (unsigned long long *) (objp + cachep->size - |
b46b8f19 | 344 | sizeof(unsigned long long)); |
1da177e4 LT |
345 | } |
346 | ||
343e0d7a | 347 | static void **dbg_userword(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
348 | { |
349 | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | |
3b0efdfa | 350 | return (void **)(objp + cachep->size - BYTES_PER_WORD); |
1da177e4 LT |
351 | } |
352 | ||
353 | #else | |
354 | ||
3dafccf2 | 355 | #define obj_offset(x) 0 |
b46b8f19 DW |
356 | #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) |
357 | #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) | |
1da177e4 LT |
358 | #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) |
359 | ||
360 | #endif | |
361 | ||
03787301 JK |
362 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
363 | ||
d31676df | 364 | static inline bool is_store_user_clean(struct kmem_cache *cachep) |
03787301 | 365 | { |
d31676df JK |
366 | return atomic_read(&cachep->store_user_clean) == 1; |
367 | } | |
03787301 | 368 | |
d31676df JK |
369 | static inline void set_store_user_clean(struct kmem_cache *cachep) |
370 | { | |
371 | atomic_set(&cachep->store_user_clean, 1); | |
372 | } | |
03787301 | 373 | |
d31676df JK |
374 | static inline void set_store_user_dirty(struct kmem_cache *cachep) |
375 | { | |
376 | if (is_store_user_clean(cachep)) | |
377 | atomic_set(&cachep->store_user_clean, 0); | |
03787301 JK |
378 | } |
379 | ||
380 | #else | |
d31676df | 381 | static inline void set_store_user_dirty(struct kmem_cache *cachep) {} |
03787301 JK |
382 | |
383 | #endif | |
384 | ||
1da177e4 | 385 | /* |
3df1cccd DR |
386 | * Do not go above this order unless 0 objects fit into the slab or |
387 | * overridden on the command line. | |
1da177e4 | 388 | */ |
543585cc DR |
389 | #define SLAB_MAX_ORDER_HI 1 |
390 | #define SLAB_MAX_ORDER_LO 0 | |
391 | static int slab_max_order = SLAB_MAX_ORDER_LO; | |
3df1cccd | 392 | static bool slab_max_order_set __initdata; |
1da177e4 | 393 | |
6ed5eb22 PE |
394 | static inline struct kmem_cache *virt_to_cache(const void *obj) |
395 | { | |
b49af68f | 396 | struct page *page = virt_to_head_page(obj); |
35026088 | 397 | return page->slab_cache; |
6ed5eb22 PE |
398 | } |
399 | ||
8456a648 | 400 | static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, |
8fea4e96 PE |
401 | unsigned int idx) |
402 | { | |
8456a648 | 403 | return page->s_mem + cache->size * idx; |
8fea4e96 PE |
404 | } |
405 | ||
6a2d7a95 | 406 | /* |
3b0efdfa CL |
407 | * We want to avoid an expensive divide : (offset / cache->size) |
408 | * Using the fact that size is a constant for a particular cache, | |
409 | * we can replace (offset / cache->size) by | |
6a2d7a95 ED |
410 | * reciprocal_divide(offset, cache->reciprocal_buffer_size) |
411 | */ | |
412 | static inline unsigned int obj_to_index(const struct kmem_cache *cache, | |
8456a648 | 413 | const struct page *page, void *obj) |
8fea4e96 | 414 | { |
8456a648 | 415 | u32 offset = (obj - page->s_mem); |
6a2d7a95 | 416 | return reciprocal_divide(offset, cache->reciprocal_buffer_size); |
8fea4e96 PE |
417 | } |
418 | ||
6fb92430 | 419 | #define BOOT_CPUCACHE_ENTRIES 1 |
1da177e4 | 420 | /* internal cache of cache description objs */ |
9b030cb8 | 421 | static struct kmem_cache kmem_cache_boot = { |
b28a02de PE |
422 | .batchcount = 1, |
423 | .limit = BOOT_CPUCACHE_ENTRIES, | |
424 | .shared = 1, | |
3b0efdfa | 425 | .size = sizeof(struct kmem_cache), |
b28a02de | 426 | .name = "kmem_cache", |
1da177e4 LT |
427 | }; |
428 | ||
1871e52c | 429 | static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); |
1da177e4 | 430 | |
343e0d7a | 431 | static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) |
1da177e4 | 432 | { |
bf0dea23 | 433 | return this_cpu_ptr(cachep->cpu_cache); |
1da177e4 LT |
434 | } |
435 | ||
a737b3e2 AM |
436 | /* |
437 | * Calculate the number of objects and left-over bytes for a given buffer size. | |
438 | */ | |
70f75067 JK |
439 | static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, |
440 | unsigned long flags, size_t *left_over) | |
fbaccacf | 441 | { |
70f75067 | 442 | unsigned int num; |
fbaccacf | 443 | size_t slab_size = PAGE_SIZE << gfporder; |
1da177e4 | 444 | |
fbaccacf SR |
445 | /* |
446 | * The slab management structure can be either off the slab or | |
447 | * on it. For the latter case, the memory allocated for a | |
448 | * slab is used for: | |
449 | * | |
fbaccacf | 450 | * - @buffer_size bytes for each object |
2e6b3602 JK |
451 | * - One freelist_idx_t for each object |
452 | * | |
453 | * We don't need to consider alignment of freelist because | |
454 | * freelist will be at the end of slab page. The objects will be | |
455 | * at the correct alignment. | |
fbaccacf SR |
456 | * |
457 | * If the slab management structure is off the slab, then the | |
458 | * alignment will already be calculated into the size. Because | |
459 | * the slabs are all pages aligned, the objects will be at the | |
460 | * correct alignment when allocated. | |
461 | */ | |
b03a017b | 462 | if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { |
70f75067 | 463 | num = slab_size / buffer_size; |
2e6b3602 | 464 | *left_over = slab_size % buffer_size; |
fbaccacf | 465 | } else { |
70f75067 | 466 | num = slab_size / (buffer_size + sizeof(freelist_idx_t)); |
2e6b3602 JK |
467 | *left_over = slab_size % |
468 | (buffer_size + sizeof(freelist_idx_t)); | |
fbaccacf | 469 | } |
70f75067 JK |
470 | |
471 | return num; | |
1da177e4 LT |
472 | } |
473 | ||
f28510d3 | 474 | #if DEBUG |
d40cee24 | 475 | #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) |
1da177e4 | 476 | |
a737b3e2 AM |
477 | static void __slab_error(const char *function, struct kmem_cache *cachep, |
478 | char *msg) | |
1da177e4 | 479 | { |
1170532b | 480 | pr_err("slab error in %s(): cache `%s': %s\n", |
b28a02de | 481 | function, cachep->name, msg); |
1da177e4 | 482 | dump_stack(); |
373d4d09 | 483 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
1da177e4 | 484 | } |
f28510d3 | 485 | #endif |
1da177e4 | 486 | |
3395ee05 PM |
487 | /* |
488 | * By default on NUMA we use alien caches to stage the freeing of | |
489 | * objects allocated from other nodes. This causes massive memory | |
490 | * inefficiencies when using fake NUMA setup to split memory into a | |
491 | * large number of small nodes, so it can be disabled on the command | |
492 | * line | |
493 | */ | |
494 | ||
495 | static int use_alien_caches __read_mostly = 1; | |
496 | static int __init noaliencache_setup(char *s) | |
497 | { | |
498 | use_alien_caches = 0; | |
499 | return 1; | |
500 | } | |
501 | __setup("noaliencache", noaliencache_setup); | |
502 | ||
3df1cccd DR |
503 | static int __init slab_max_order_setup(char *str) |
504 | { | |
505 | get_option(&str, &slab_max_order); | |
506 | slab_max_order = slab_max_order < 0 ? 0 : | |
507 | min(slab_max_order, MAX_ORDER - 1); | |
508 | slab_max_order_set = true; | |
509 | ||
510 | return 1; | |
511 | } | |
512 | __setup("slab_max_order=", slab_max_order_setup); | |
513 | ||
8fce4d8e CL |
514 | #ifdef CONFIG_NUMA |
515 | /* | |
516 | * Special reaping functions for NUMA systems called from cache_reap(). | |
517 | * These take care of doing round robin flushing of alien caches (containing | |
518 | * objects freed on different nodes from which they were allocated) and the | |
519 | * flushing of remote pcps by calling drain_node_pages. | |
520 | */ | |
1871e52c | 521 | static DEFINE_PER_CPU(unsigned long, slab_reap_node); |
8fce4d8e CL |
522 | |
523 | static void init_reap_node(int cpu) | |
524 | { | |
0edaf86c AM |
525 | per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), |
526 | node_online_map); | |
8fce4d8e CL |
527 | } |
528 | ||
529 | static void next_reap_node(void) | |
530 | { | |
909ea964 | 531 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e | 532 | |
0edaf86c | 533 | node = next_node_in(node, node_online_map); |
909ea964 | 534 | __this_cpu_write(slab_reap_node, node); |
8fce4d8e CL |
535 | } |
536 | ||
537 | #else | |
538 | #define init_reap_node(cpu) do { } while (0) | |
539 | #define next_reap_node(void) do { } while (0) | |
540 | #endif | |
541 | ||
1da177e4 LT |
542 | /* |
543 | * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz | |
544 | * via the workqueue/eventd. | |
545 | * Add the CPU number into the expiration time to minimize the possibility of | |
546 | * the CPUs getting into lockstep and contending for the global cache chain | |
547 | * lock. | |
548 | */ | |
0db0628d | 549 | static void start_cpu_timer(int cpu) |
1da177e4 | 550 | { |
1871e52c | 551 | struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); |
1da177e4 LT |
552 | |
553 | /* | |
554 | * When this gets called from do_initcalls via cpucache_init(), | |
555 | * init_workqueues() has already run, so keventd will be setup | |
556 | * at that time. | |
557 | */ | |
52bad64d | 558 | if (keventd_up() && reap_work->work.func == NULL) { |
8fce4d8e | 559 | init_reap_node(cpu); |
203b42f7 | 560 | INIT_DEFERRABLE_WORK(reap_work, cache_reap); |
2b284214 AV |
561 | schedule_delayed_work_on(cpu, reap_work, |
562 | __round_jiffies_relative(HZ, cpu)); | |
1da177e4 LT |
563 | } |
564 | } | |
565 | ||
1fe00d50 | 566 | static void init_arraycache(struct array_cache *ac, int limit, int batch) |
1da177e4 | 567 | { |
d5cff635 CM |
568 | /* |
569 | * The array_cache structures contain pointers to free object. | |
25985edc | 570 | * However, when such objects are allocated or transferred to another |
d5cff635 CM |
571 | * cache the pointers are not cleared and they could be counted as |
572 | * valid references during a kmemleak scan. Therefore, kmemleak must | |
573 | * not scan such objects. | |
574 | */ | |
1fe00d50 JK |
575 | kmemleak_no_scan(ac); |
576 | if (ac) { | |
577 | ac->avail = 0; | |
578 | ac->limit = limit; | |
579 | ac->batchcount = batch; | |
580 | ac->touched = 0; | |
1da177e4 | 581 | } |
1fe00d50 JK |
582 | } |
583 | ||
584 | static struct array_cache *alloc_arraycache(int node, int entries, | |
585 | int batchcount, gfp_t gfp) | |
586 | { | |
5e804789 | 587 | size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); |
1fe00d50 JK |
588 | struct array_cache *ac = NULL; |
589 | ||
590 | ac = kmalloc_node(memsize, gfp, node); | |
591 | init_arraycache(ac, entries, batchcount); | |
592 | return ac; | |
1da177e4 LT |
593 | } |
594 | ||
f68f8ddd JK |
595 | static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, |
596 | struct page *page, void *objp) | |
072bb0aa | 597 | { |
f68f8ddd JK |
598 | struct kmem_cache_node *n; |
599 | int page_node; | |
600 | LIST_HEAD(list); | |
072bb0aa | 601 | |
f68f8ddd JK |
602 | page_node = page_to_nid(page); |
603 | n = get_node(cachep, page_node); | |
381760ea | 604 | |
f68f8ddd JK |
605 | spin_lock(&n->list_lock); |
606 | free_block(cachep, &objp, 1, page_node, &list); | |
607 | spin_unlock(&n->list_lock); | |
381760ea | 608 | |
f68f8ddd | 609 | slabs_destroy(cachep, &list); |
072bb0aa MG |
610 | } |
611 | ||
3ded175a CL |
612 | /* |
613 | * Transfer objects in one arraycache to another. | |
614 | * Locking must be handled by the caller. | |
615 | * | |
616 | * Return the number of entries transferred. | |
617 | */ | |
618 | static int transfer_objects(struct array_cache *to, | |
619 | struct array_cache *from, unsigned int max) | |
620 | { | |
621 | /* Figure out how many entries to transfer */ | |
732eacc0 | 622 | int nr = min3(from->avail, max, to->limit - to->avail); |
3ded175a CL |
623 | |
624 | if (!nr) | |
625 | return 0; | |
626 | ||
627 | memcpy(to->entry + to->avail, from->entry + from->avail -nr, | |
628 | sizeof(void *) *nr); | |
629 | ||
630 | from->avail -= nr; | |
631 | to->avail += nr; | |
3ded175a CL |
632 | return nr; |
633 | } | |
634 | ||
765c4507 CL |
635 | #ifndef CONFIG_NUMA |
636 | ||
637 | #define drain_alien_cache(cachep, alien) do { } while (0) | |
ce8eb6c4 | 638 | #define reap_alien(cachep, n) do { } while (0) |
765c4507 | 639 | |
c8522a3a JK |
640 | static inline struct alien_cache **alloc_alien_cache(int node, |
641 | int limit, gfp_t gfp) | |
765c4507 | 642 | { |
8888177e | 643 | return NULL; |
765c4507 CL |
644 | } |
645 | ||
c8522a3a | 646 | static inline void free_alien_cache(struct alien_cache **ac_ptr) |
765c4507 CL |
647 | { |
648 | } | |
649 | ||
650 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |
651 | { | |
652 | return 0; | |
653 | } | |
654 | ||
655 | static inline void *alternate_node_alloc(struct kmem_cache *cachep, | |
656 | gfp_t flags) | |
657 | { | |
658 | return NULL; | |
659 | } | |
660 | ||
8b98c169 | 661 | static inline void *____cache_alloc_node(struct kmem_cache *cachep, |
765c4507 CL |
662 | gfp_t flags, int nodeid) |
663 | { | |
664 | return NULL; | |
665 | } | |
666 | ||
4167e9b2 DR |
667 | static inline gfp_t gfp_exact_node(gfp_t flags) |
668 | { | |
444eb2a4 | 669 | return flags & ~__GFP_NOFAIL; |
4167e9b2 DR |
670 | } |
671 | ||
765c4507 CL |
672 | #else /* CONFIG_NUMA */ |
673 | ||
8b98c169 | 674 | static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); |
c61afb18 | 675 | static void *alternate_node_alloc(struct kmem_cache *, gfp_t); |
dc85da15 | 676 | |
c8522a3a JK |
677 | static struct alien_cache *__alloc_alien_cache(int node, int entries, |
678 | int batch, gfp_t gfp) | |
679 | { | |
5e804789 | 680 | size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); |
c8522a3a JK |
681 | struct alien_cache *alc = NULL; |
682 | ||
683 | alc = kmalloc_node(memsize, gfp, node); | |
684 | init_arraycache(&alc->ac, entries, batch); | |
49dfc304 | 685 | spin_lock_init(&alc->lock); |
c8522a3a JK |
686 | return alc; |
687 | } | |
688 | ||
689 | static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) | |
e498be7d | 690 | { |
c8522a3a | 691 | struct alien_cache **alc_ptr; |
5e804789 | 692 | size_t memsize = sizeof(void *) * nr_node_ids; |
e498be7d CL |
693 | int i; |
694 | ||
695 | if (limit > 1) | |
696 | limit = 12; | |
c8522a3a JK |
697 | alc_ptr = kzalloc_node(memsize, gfp, node); |
698 | if (!alc_ptr) | |
699 | return NULL; | |
700 | ||
701 | for_each_node(i) { | |
702 | if (i == node || !node_online(i)) | |
703 | continue; | |
704 | alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); | |
705 | if (!alc_ptr[i]) { | |
706 | for (i--; i >= 0; i--) | |
707 | kfree(alc_ptr[i]); | |
708 | kfree(alc_ptr); | |
709 | return NULL; | |
e498be7d CL |
710 | } |
711 | } | |
c8522a3a | 712 | return alc_ptr; |
e498be7d CL |
713 | } |
714 | ||
c8522a3a | 715 | static void free_alien_cache(struct alien_cache **alc_ptr) |
e498be7d CL |
716 | { |
717 | int i; | |
718 | ||
c8522a3a | 719 | if (!alc_ptr) |
e498be7d | 720 | return; |
e498be7d | 721 | for_each_node(i) |
c8522a3a JK |
722 | kfree(alc_ptr[i]); |
723 | kfree(alc_ptr); | |
e498be7d CL |
724 | } |
725 | ||
343e0d7a | 726 | static void __drain_alien_cache(struct kmem_cache *cachep, |
833b706c JK |
727 | struct array_cache *ac, int node, |
728 | struct list_head *list) | |
e498be7d | 729 | { |
18bf8541 | 730 | struct kmem_cache_node *n = get_node(cachep, node); |
e498be7d CL |
731 | |
732 | if (ac->avail) { | |
ce8eb6c4 | 733 | spin_lock(&n->list_lock); |
e00946fe CL |
734 | /* |
735 | * Stuff objects into the remote nodes shared array first. | |
736 | * That way we could avoid the overhead of putting the objects | |
737 | * into the free lists and getting them back later. | |
738 | */ | |
ce8eb6c4 CL |
739 | if (n->shared) |
740 | transfer_objects(n->shared, ac, ac->limit); | |
e00946fe | 741 | |
833b706c | 742 | free_block(cachep, ac->entry, ac->avail, node, list); |
e498be7d | 743 | ac->avail = 0; |
ce8eb6c4 | 744 | spin_unlock(&n->list_lock); |
e498be7d CL |
745 | } |
746 | } | |
747 | ||
8fce4d8e CL |
748 | /* |
749 | * Called from cache_reap() to regularly drain alien caches round robin. | |
750 | */ | |
ce8eb6c4 | 751 | static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) |
8fce4d8e | 752 | { |
909ea964 | 753 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e | 754 | |
ce8eb6c4 | 755 | if (n->alien) { |
c8522a3a JK |
756 | struct alien_cache *alc = n->alien[node]; |
757 | struct array_cache *ac; | |
758 | ||
759 | if (alc) { | |
760 | ac = &alc->ac; | |
49dfc304 | 761 | if (ac->avail && spin_trylock_irq(&alc->lock)) { |
833b706c JK |
762 | LIST_HEAD(list); |
763 | ||
764 | __drain_alien_cache(cachep, ac, node, &list); | |
49dfc304 | 765 | spin_unlock_irq(&alc->lock); |
833b706c | 766 | slabs_destroy(cachep, &list); |
c8522a3a | 767 | } |
8fce4d8e CL |
768 | } |
769 | } | |
770 | } | |
771 | ||
a737b3e2 | 772 | static void drain_alien_cache(struct kmem_cache *cachep, |
c8522a3a | 773 | struct alien_cache **alien) |
e498be7d | 774 | { |
b28a02de | 775 | int i = 0; |
c8522a3a | 776 | struct alien_cache *alc; |
e498be7d CL |
777 | struct array_cache *ac; |
778 | unsigned long flags; | |
779 | ||
780 | for_each_online_node(i) { | |
c8522a3a JK |
781 | alc = alien[i]; |
782 | if (alc) { | |
833b706c JK |
783 | LIST_HEAD(list); |
784 | ||
c8522a3a | 785 | ac = &alc->ac; |
49dfc304 | 786 | spin_lock_irqsave(&alc->lock, flags); |
833b706c | 787 | __drain_alien_cache(cachep, ac, i, &list); |
49dfc304 | 788 | spin_unlock_irqrestore(&alc->lock, flags); |
833b706c | 789 | slabs_destroy(cachep, &list); |
e498be7d CL |
790 | } |
791 | } | |
792 | } | |
729bd0b7 | 793 | |
25c4f304 JK |
794 | static int __cache_free_alien(struct kmem_cache *cachep, void *objp, |
795 | int node, int page_node) | |
729bd0b7 | 796 | { |
ce8eb6c4 | 797 | struct kmem_cache_node *n; |
c8522a3a JK |
798 | struct alien_cache *alien = NULL; |
799 | struct array_cache *ac; | |
97654dfa | 800 | LIST_HEAD(list); |
1ca4cb24 | 801 | |
18bf8541 | 802 | n = get_node(cachep, node); |
729bd0b7 | 803 | STATS_INC_NODEFREES(cachep); |
25c4f304 JK |
804 | if (n->alien && n->alien[page_node]) { |
805 | alien = n->alien[page_node]; | |
c8522a3a | 806 | ac = &alien->ac; |
49dfc304 | 807 | spin_lock(&alien->lock); |
c8522a3a | 808 | if (unlikely(ac->avail == ac->limit)) { |
729bd0b7 | 809 | STATS_INC_ACOVERFLOW(cachep); |
25c4f304 | 810 | __drain_alien_cache(cachep, ac, page_node, &list); |
729bd0b7 | 811 | } |
f68f8ddd | 812 | ac->entry[ac->avail++] = objp; |
49dfc304 | 813 | spin_unlock(&alien->lock); |
833b706c | 814 | slabs_destroy(cachep, &list); |
729bd0b7 | 815 | } else { |
25c4f304 | 816 | n = get_node(cachep, page_node); |
18bf8541 | 817 | spin_lock(&n->list_lock); |
25c4f304 | 818 | free_block(cachep, &objp, 1, page_node, &list); |
18bf8541 | 819 | spin_unlock(&n->list_lock); |
97654dfa | 820 | slabs_destroy(cachep, &list); |
729bd0b7 PE |
821 | } |
822 | return 1; | |
823 | } | |
25c4f304 JK |
824 | |
825 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |
826 | { | |
827 | int page_node = page_to_nid(virt_to_page(objp)); | |
828 | int node = numa_mem_id(); | |
829 | /* | |
830 | * Make sure we are not freeing a object from another node to the array | |
831 | * cache on this cpu. | |
832 | */ | |
833 | if (likely(node == page_node)) | |
834 | return 0; | |
835 | ||
836 | return __cache_free_alien(cachep, objp, node, page_node); | |
837 | } | |
4167e9b2 DR |
838 | |
839 | /* | |
444eb2a4 MG |
840 | * Construct gfp mask to allocate from a specific node but do not reclaim or |
841 | * warn about failures. | |
4167e9b2 DR |
842 | */ |
843 | static inline gfp_t gfp_exact_node(gfp_t flags) | |
844 | { | |
444eb2a4 | 845 | return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); |
4167e9b2 | 846 | } |
e498be7d CL |
847 | #endif |
848 | ||
ded0ecf6 JK |
849 | static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) |
850 | { | |
851 | struct kmem_cache_node *n; | |
852 | ||
853 | /* | |
854 | * Set up the kmem_cache_node for cpu before we can | |
855 | * begin anything. Make sure some other cpu on this | |
856 | * node has not already allocated this | |
857 | */ | |
858 | n = get_node(cachep, node); | |
859 | if (n) { | |
860 | spin_lock_irq(&n->list_lock); | |
861 | n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + | |
862 | cachep->num; | |
863 | spin_unlock_irq(&n->list_lock); | |
864 | ||
865 | return 0; | |
866 | } | |
867 | ||
868 | n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); | |
869 | if (!n) | |
870 | return -ENOMEM; | |
871 | ||
872 | kmem_cache_node_init(n); | |
873 | n->next_reap = jiffies + REAPTIMEOUT_NODE + | |
874 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
875 | ||
876 | n->free_limit = | |
877 | (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; | |
878 | ||
879 | /* | |
880 | * The kmem_cache_nodes don't come and go as CPUs | |
881 | * come and go. slab_mutex is sufficient | |
882 | * protection here. | |
883 | */ | |
884 | cachep->node[node] = n; | |
885 | ||
886 | return 0; | |
887 | } | |
888 | ||
8f9f8d9e | 889 | /* |
6a67368c | 890 | * Allocates and initializes node for a node on each slab cache, used for |
ce8eb6c4 | 891 | * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node |
8f9f8d9e | 892 | * will be allocated off-node since memory is not yet online for the new node. |
6a67368c | 893 | * When hotplugging memory or a cpu, existing node are not replaced if |
8f9f8d9e DR |
894 | * already in use. |
895 | * | |
18004c5d | 896 | * Must hold slab_mutex. |
8f9f8d9e | 897 | */ |
6a67368c | 898 | static int init_cache_node_node(int node) |
8f9f8d9e | 899 | { |
ded0ecf6 | 900 | int ret; |
8f9f8d9e | 901 | struct kmem_cache *cachep; |
8f9f8d9e | 902 | |
18004c5d | 903 | list_for_each_entry(cachep, &slab_caches, list) { |
ded0ecf6 JK |
904 | ret = init_cache_node(cachep, node, GFP_KERNEL); |
905 | if (ret) | |
906 | return ret; | |
8f9f8d9e | 907 | } |
ded0ecf6 | 908 | |
8f9f8d9e DR |
909 | return 0; |
910 | } | |
911 | ||
c3d332b6 JK |
912 | static int setup_kmem_cache_node(struct kmem_cache *cachep, |
913 | int node, gfp_t gfp, bool force_change) | |
914 | { | |
915 | int ret = -ENOMEM; | |
916 | struct kmem_cache_node *n; | |
917 | struct array_cache *old_shared = NULL; | |
918 | struct array_cache *new_shared = NULL; | |
919 | struct alien_cache **new_alien = NULL; | |
920 | LIST_HEAD(list); | |
921 | ||
922 | if (use_alien_caches) { | |
923 | new_alien = alloc_alien_cache(node, cachep->limit, gfp); | |
924 | if (!new_alien) | |
925 | goto fail; | |
926 | } | |
927 | ||
928 | if (cachep->shared) { | |
929 | new_shared = alloc_arraycache(node, | |
930 | cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); | |
931 | if (!new_shared) | |
932 | goto fail; | |
933 | } | |
934 | ||
935 | ret = init_cache_node(cachep, node, gfp); | |
936 | if (ret) | |
937 | goto fail; | |
938 | ||
939 | n = get_node(cachep, node); | |
940 | spin_lock_irq(&n->list_lock); | |
941 | if (n->shared && force_change) { | |
942 | free_block(cachep, n->shared->entry, | |
943 | n->shared->avail, node, &list); | |
944 | n->shared->avail = 0; | |
945 | } | |
946 | ||
947 | if (!n->shared || force_change) { | |
948 | old_shared = n->shared; | |
949 | n->shared = new_shared; | |
950 | new_shared = NULL; | |
951 | } | |
952 | ||
953 | if (!n->alien) { | |
954 | n->alien = new_alien; | |
955 | new_alien = NULL; | |
956 | } | |
957 | ||
958 | spin_unlock_irq(&n->list_lock); | |
959 | slabs_destroy(cachep, &list); | |
960 | ||
801faf0d JK |
961 | /* |
962 | * To protect lockless access to n->shared during irq disabled context. | |
963 | * If n->shared isn't NULL in irq disabled context, accessing to it is | |
964 | * guaranteed to be valid until irq is re-enabled, because it will be | |
965 | * freed after synchronize_sched(). | |
966 | */ | |
967 | if (force_change) | |
968 | synchronize_sched(); | |
969 | ||
c3d332b6 JK |
970 | fail: |
971 | kfree(old_shared); | |
972 | kfree(new_shared); | |
973 | free_alien_cache(new_alien); | |
974 | ||
975 | return ret; | |
976 | } | |
977 | ||
0db0628d | 978 | static void cpuup_canceled(long cpu) |
fbf1e473 AM |
979 | { |
980 | struct kmem_cache *cachep; | |
ce8eb6c4 | 981 | struct kmem_cache_node *n = NULL; |
7d6e6d09 | 982 | int node = cpu_to_mem(cpu); |
a70f7302 | 983 | const struct cpumask *mask = cpumask_of_node(node); |
fbf1e473 | 984 | |
18004c5d | 985 | list_for_each_entry(cachep, &slab_caches, list) { |
fbf1e473 AM |
986 | struct array_cache *nc; |
987 | struct array_cache *shared; | |
c8522a3a | 988 | struct alien_cache **alien; |
97654dfa | 989 | LIST_HEAD(list); |
fbf1e473 | 990 | |
18bf8541 | 991 | n = get_node(cachep, node); |
ce8eb6c4 | 992 | if (!n) |
bf0dea23 | 993 | continue; |
fbf1e473 | 994 | |
ce8eb6c4 | 995 | spin_lock_irq(&n->list_lock); |
fbf1e473 | 996 | |
ce8eb6c4 CL |
997 | /* Free limit for this kmem_cache_node */ |
998 | n->free_limit -= cachep->batchcount; | |
bf0dea23 JK |
999 | |
1000 | /* cpu is dead; no one can alloc from it. */ | |
1001 | nc = per_cpu_ptr(cachep->cpu_cache, cpu); | |
1002 | if (nc) { | |
97654dfa | 1003 | free_block(cachep, nc->entry, nc->avail, node, &list); |
bf0dea23 JK |
1004 | nc->avail = 0; |
1005 | } | |
fbf1e473 | 1006 | |
58463c1f | 1007 | if (!cpumask_empty(mask)) { |
ce8eb6c4 | 1008 | spin_unlock_irq(&n->list_lock); |
bf0dea23 | 1009 | goto free_slab; |
fbf1e473 AM |
1010 | } |
1011 | ||
ce8eb6c4 | 1012 | shared = n->shared; |
fbf1e473 AM |
1013 | if (shared) { |
1014 | free_block(cachep, shared->entry, | |
97654dfa | 1015 | shared->avail, node, &list); |
ce8eb6c4 | 1016 | n->shared = NULL; |
fbf1e473 AM |
1017 | } |
1018 | ||
ce8eb6c4 CL |
1019 | alien = n->alien; |
1020 | n->alien = NULL; | |
fbf1e473 | 1021 | |
ce8eb6c4 | 1022 | spin_unlock_irq(&n->list_lock); |
fbf1e473 AM |
1023 | |
1024 | kfree(shared); | |
1025 | if (alien) { | |
1026 | drain_alien_cache(cachep, alien); | |
1027 | free_alien_cache(alien); | |
1028 | } | |
bf0dea23 JK |
1029 | |
1030 | free_slab: | |
97654dfa | 1031 | slabs_destroy(cachep, &list); |
fbf1e473 AM |
1032 | } |
1033 | /* | |
1034 | * In the previous loop, all the objects were freed to | |
1035 | * the respective cache's slabs, now we can go ahead and | |
1036 | * shrink each nodelist to its limit. | |
1037 | */ | |
18004c5d | 1038 | list_for_each_entry(cachep, &slab_caches, list) { |
18bf8541 | 1039 | n = get_node(cachep, node); |
ce8eb6c4 | 1040 | if (!n) |
fbf1e473 | 1041 | continue; |
a5aa63a5 | 1042 | drain_freelist(cachep, n, INT_MAX); |
fbf1e473 AM |
1043 | } |
1044 | } | |
1045 | ||
0db0628d | 1046 | static int cpuup_prepare(long cpu) |
1da177e4 | 1047 | { |
343e0d7a | 1048 | struct kmem_cache *cachep; |
7d6e6d09 | 1049 | int node = cpu_to_mem(cpu); |
8f9f8d9e | 1050 | int err; |
1da177e4 | 1051 | |
fbf1e473 AM |
1052 | /* |
1053 | * We need to do this right in the beginning since | |
1054 | * alloc_arraycache's are going to use this list. | |
1055 | * kmalloc_node allows us to add the slab to the right | |
ce8eb6c4 | 1056 | * kmem_cache_node and not this cpu's kmem_cache_node |
fbf1e473 | 1057 | */ |
6a67368c | 1058 | err = init_cache_node_node(node); |
8f9f8d9e DR |
1059 | if (err < 0) |
1060 | goto bad; | |
fbf1e473 AM |
1061 | |
1062 | /* | |
1063 | * Now we can go ahead with allocating the shared arrays and | |
1064 | * array caches | |
1065 | */ | |
18004c5d | 1066 | list_for_each_entry(cachep, &slab_caches, list) { |
c3d332b6 JK |
1067 | err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); |
1068 | if (err) | |
1069 | goto bad; | |
fbf1e473 | 1070 | } |
ce79ddc8 | 1071 | |
fbf1e473 AM |
1072 | return 0; |
1073 | bad: | |
12d00f6a | 1074 | cpuup_canceled(cpu); |
fbf1e473 AM |
1075 | return -ENOMEM; |
1076 | } | |
1077 | ||
0db0628d | 1078 | static int cpuup_callback(struct notifier_block *nfb, |
fbf1e473 AM |
1079 | unsigned long action, void *hcpu) |
1080 | { | |
1081 | long cpu = (long)hcpu; | |
1082 | int err = 0; | |
1083 | ||
1084 | switch (action) { | |
fbf1e473 AM |
1085 | case CPU_UP_PREPARE: |
1086 | case CPU_UP_PREPARE_FROZEN: | |
18004c5d | 1087 | mutex_lock(&slab_mutex); |
fbf1e473 | 1088 | err = cpuup_prepare(cpu); |
18004c5d | 1089 | mutex_unlock(&slab_mutex); |
1da177e4 LT |
1090 | break; |
1091 | case CPU_ONLINE: | |
8bb78442 | 1092 | case CPU_ONLINE_FROZEN: |
1da177e4 LT |
1093 | start_cpu_timer(cpu); |
1094 | break; | |
1095 | #ifdef CONFIG_HOTPLUG_CPU | |
5830c590 | 1096 | case CPU_DOWN_PREPARE: |
8bb78442 | 1097 | case CPU_DOWN_PREPARE_FROZEN: |
5830c590 | 1098 | /* |
18004c5d | 1099 | * Shutdown cache reaper. Note that the slab_mutex is |
5830c590 CL |
1100 | * held so that if cache_reap() is invoked it cannot do |
1101 | * anything expensive but will only modify reap_work | |
1102 | * and reschedule the timer. | |
1103 | */ | |
afe2c511 | 1104 | cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); |
5830c590 | 1105 | /* Now the cache_reaper is guaranteed to be not running. */ |
1871e52c | 1106 | per_cpu(slab_reap_work, cpu).work.func = NULL; |
5830c590 CL |
1107 | break; |
1108 | case CPU_DOWN_FAILED: | |
8bb78442 | 1109 | case CPU_DOWN_FAILED_FROZEN: |
5830c590 CL |
1110 | start_cpu_timer(cpu); |
1111 | break; | |
1da177e4 | 1112 | case CPU_DEAD: |
8bb78442 | 1113 | case CPU_DEAD_FROZEN: |
4484ebf1 RT |
1114 | /* |
1115 | * Even if all the cpus of a node are down, we don't free the | |
ce8eb6c4 | 1116 | * kmem_cache_node of any cache. This to avoid a race between |
4484ebf1 | 1117 | * cpu_down, and a kmalloc allocation from another cpu for |
ce8eb6c4 | 1118 | * memory from the node of the cpu going down. The node |
4484ebf1 RT |
1119 | * structure is usually allocated from kmem_cache_create() and |
1120 | * gets destroyed at kmem_cache_destroy(). | |
1121 | */ | |
183ff22b | 1122 | /* fall through */ |
8f5be20b | 1123 | #endif |
1da177e4 | 1124 | case CPU_UP_CANCELED: |
8bb78442 | 1125 | case CPU_UP_CANCELED_FROZEN: |
18004c5d | 1126 | mutex_lock(&slab_mutex); |
fbf1e473 | 1127 | cpuup_canceled(cpu); |
18004c5d | 1128 | mutex_unlock(&slab_mutex); |
1da177e4 | 1129 | break; |
1da177e4 | 1130 | } |
eac40680 | 1131 | return notifier_from_errno(err); |
1da177e4 LT |
1132 | } |
1133 | ||
0db0628d | 1134 | static struct notifier_block cpucache_notifier = { |
74b85f37 CS |
1135 | &cpuup_callback, NULL, 0 |
1136 | }; | |
1da177e4 | 1137 | |
8f9f8d9e DR |
1138 | #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) |
1139 | /* | |
1140 | * Drains freelist for a node on each slab cache, used for memory hot-remove. | |
1141 | * Returns -EBUSY if all objects cannot be drained so that the node is not | |
1142 | * removed. | |
1143 | * | |
18004c5d | 1144 | * Must hold slab_mutex. |
8f9f8d9e | 1145 | */ |
6a67368c | 1146 | static int __meminit drain_cache_node_node(int node) |
8f9f8d9e DR |
1147 | { |
1148 | struct kmem_cache *cachep; | |
1149 | int ret = 0; | |
1150 | ||
18004c5d | 1151 | list_for_each_entry(cachep, &slab_caches, list) { |
ce8eb6c4 | 1152 | struct kmem_cache_node *n; |
8f9f8d9e | 1153 | |
18bf8541 | 1154 | n = get_node(cachep, node); |
ce8eb6c4 | 1155 | if (!n) |
8f9f8d9e DR |
1156 | continue; |
1157 | ||
a5aa63a5 | 1158 | drain_freelist(cachep, n, INT_MAX); |
8f9f8d9e | 1159 | |
ce8eb6c4 CL |
1160 | if (!list_empty(&n->slabs_full) || |
1161 | !list_empty(&n->slabs_partial)) { | |
8f9f8d9e DR |
1162 | ret = -EBUSY; |
1163 | break; | |
1164 | } | |
1165 | } | |
1166 | return ret; | |
1167 | } | |
1168 | ||
1169 | static int __meminit slab_memory_callback(struct notifier_block *self, | |
1170 | unsigned long action, void *arg) | |
1171 | { | |
1172 | struct memory_notify *mnb = arg; | |
1173 | int ret = 0; | |
1174 | int nid; | |
1175 | ||
1176 | nid = mnb->status_change_nid; | |
1177 | if (nid < 0) | |
1178 | goto out; | |
1179 | ||
1180 | switch (action) { | |
1181 | case MEM_GOING_ONLINE: | |
18004c5d | 1182 | mutex_lock(&slab_mutex); |
6a67368c | 1183 | ret = init_cache_node_node(nid); |
18004c5d | 1184 | mutex_unlock(&slab_mutex); |
8f9f8d9e DR |
1185 | break; |
1186 | case MEM_GOING_OFFLINE: | |
18004c5d | 1187 | mutex_lock(&slab_mutex); |
6a67368c | 1188 | ret = drain_cache_node_node(nid); |
18004c5d | 1189 | mutex_unlock(&slab_mutex); |
8f9f8d9e DR |
1190 | break; |
1191 | case MEM_ONLINE: | |
1192 | case MEM_OFFLINE: | |
1193 | case MEM_CANCEL_ONLINE: | |
1194 | case MEM_CANCEL_OFFLINE: | |
1195 | break; | |
1196 | } | |
1197 | out: | |
5fda1bd5 | 1198 | return notifier_from_errno(ret); |
8f9f8d9e DR |
1199 | } |
1200 | #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ | |
1201 | ||
e498be7d | 1202 | /* |
ce8eb6c4 | 1203 | * swap the static kmem_cache_node with kmalloced memory |
e498be7d | 1204 | */ |
6744f087 | 1205 | static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, |
8f9f8d9e | 1206 | int nodeid) |
e498be7d | 1207 | { |
6744f087 | 1208 | struct kmem_cache_node *ptr; |
e498be7d | 1209 | |
6744f087 | 1210 | ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); |
e498be7d CL |
1211 | BUG_ON(!ptr); |
1212 | ||
6744f087 | 1213 | memcpy(ptr, list, sizeof(struct kmem_cache_node)); |
2b2d5493 IM |
1214 | /* |
1215 | * Do not assume that spinlocks can be initialized via memcpy: | |
1216 | */ | |
1217 | spin_lock_init(&ptr->list_lock); | |
1218 | ||
e498be7d | 1219 | MAKE_ALL_LISTS(cachep, ptr, nodeid); |
6a67368c | 1220 | cachep->node[nodeid] = ptr; |
e498be7d CL |
1221 | } |
1222 | ||
556a169d | 1223 | /* |
ce8eb6c4 CL |
1224 | * For setting up all the kmem_cache_node for cache whose buffer_size is same as |
1225 | * size of kmem_cache_node. | |
556a169d | 1226 | */ |
ce8eb6c4 | 1227 | static void __init set_up_node(struct kmem_cache *cachep, int index) |
556a169d PE |
1228 | { |
1229 | int node; | |
1230 | ||
1231 | for_each_online_node(node) { | |
ce8eb6c4 | 1232 | cachep->node[node] = &init_kmem_cache_node[index + node]; |
6a67368c | 1233 | cachep->node[node]->next_reap = jiffies + |
5f0985bb JZ |
1234 | REAPTIMEOUT_NODE + |
1235 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
556a169d PE |
1236 | } |
1237 | } | |
1238 | ||
c7ce4f60 TG |
1239 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
1240 | static void freelist_randomize(struct rnd_state *state, freelist_idx_t *list, | |
1241 | size_t count) | |
1242 | { | |
1243 | size_t i; | |
1244 | unsigned int rand; | |
1245 | ||
1246 | for (i = 0; i < count; i++) | |
1247 | list[i] = i; | |
1248 | ||
1249 | /* Fisher-Yates shuffle */ | |
1250 | for (i = count - 1; i > 0; i--) { | |
1251 | rand = prandom_u32_state(state); | |
1252 | rand %= (i + 1); | |
1253 | swap(list[i], list[rand]); | |
1254 | } | |
1255 | } | |
1256 | ||
1257 | /* Create a random sequence per cache */ | |
1258 | static int cache_random_seq_create(struct kmem_cache *cachep, gfp_t gfp) | |
1259 | { | |
1260 | unsigned int seed, count = cachep->num; | |
1261 | struct rnd_state state; | |
1262 | ||
1263 | if (count < 2) | |
1264 | return 0; | |
1265 | ||
1266 | /* If it fails, we will just use the global lists */ | |
1267 | cachep->random_seq = kcalloc(count, sizeof(freelist_idx_t), gfp); | |
1268 | if (!cachep->random_seq) | |
1269 | return -ENOMEM; | |
1270 | ||
1271 | /* Get best entropy at this stage */ | |
1272 | get_random_bytes_arch(&seed, sizeof(seed)); | |
1273 | prandom_seed_state(&state, seed); | |
1274 | ||
1275 | freelist_randomize(&state, cachep->random_seq, count); | |
1276 | return 0; | |
1277 | } | |
1278 | ||
1279 | /* Destroy the per-cache random freelist sequence */ | |
1280 | static void cache_random_seq_destroy(struct kmem_cache *cachep) | |
1281 | { | |
1282 | kfree(cachep->random_seq); | |
1283 | cachep->random_seq = NULL; | |
1284 | } | |
1285 | #else | |
1286 | static inline int cache_random_seq_create(struct kmem_cache *cachep, gfp_t gfp) | |
1287 | { | |
1288 | return 0; | |
1289 | } | |
1290 | static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { } | |
1291 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
1292 | ||
1293 | ||
a737b3e2 AM |
1294 | /* |
1295 | * Initialisation. Called after the page allocator have been initialised and | |
1296 | * before smp_init(). | |
1da177e4 LT |
1297 | */ |
1298 | void __init kmem_cache_init(void) | |
1299 | { | |
e498be7d CL |
1300 | int i; |
1301 | ||
68126702 JK |
1302 | BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) < |
1303 | sizeof(struct rcu_head)); | |
9b030cb8 CL |
1304 | kmem_cache = &kmem_cache_boot; |
1305 | ||
8888177e | 1306 | if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) |
62918a03 SS |
1307 | use_alien_caches = 0; |
1308 | ||
3c583465 | 1309 | for (i = 0; i < NUM_INIT_LISTS; i++) |
ce8eb6c4 | 1310 | kmem_cache_node_init(&init_kmem_cache_node[i]); |
3c583465 | 1311 | |
1da177e4 LT |
1312 | /* |
1313 | * Fragmentation resistance on low memory - only use bigger | |
3df1cccd DR |
1314 | * page orders on machines with more than 32MB of memory if |
1315 | * not overridden on the command line. | |
1da177e4 | 1316 | */ |
3df1cccd | 1317 | if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) |
543585cc | 1318 | slab_max_order = SLAB_MAX_ORDER_HI; |
1da177e4 | 1319 | |
1da177e4 LT |
1320 | /* Bootstrap is tricky, because several objects are allocated |
1321 | * from caches that do not exist yet: | |
9b030cb8 CL |
1322 | * 1) initialize the kmem_cache cache: it contains the struct |
1323 | * kmem_cache structures of all caches, except kmem_cache itself: | |
1324 | * kmem_cache is statically allocated. | |
e498be7d | 1325 | * Initially an __init data area is used for the head array and the |
ce8eb6c4 | 1326 | * kmem_cache_node structures, it's replaced with a kmalloc allocated |
e498be7d | 1327 | * array at the end of the bootstrap. |
1da177e4 | 1328 | * 2) Create the first kmalloc cache. |
343e0d7a | 1329 | * The struct kmem_cache for the new cache is allocated normally. |
e498be7d CL |
1330 | * An __init data area is used for the head array. |
1331 | * 3) Create the remaining kmalloc caches, with minimally sized | |
1332 | * head arrays. | |
9b030cb8 | 1333 | * 4) Replace the __init data head arrays for kmem_cache and the first |
1da177e4 | 1334 | * kmalloc cache with kmalloc allocated arrays. |
ce8eb6c4 | 1335 | * 5) Replace the __init data for kmem_cache_node for kmem_cache and |
e498be7d CL |
1336 | * the other cache's with kmalloc allocated memory. |
1337 | * 6) Resize the head arrays of the kmalloc caches to their final sizes. | |
1da177e4 LT |
1338 | */ |
1339 | ||
9b030cb8 | 1340 | /* 1) create the kmem_cache */ |
1da177e4 | 1341 | |
8da3430d | 1342 | /* |
b56efcf0 | 1343 | * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids |
8da3430d | 1344 | */ |
2f9baa9f | 1345 | create_boot_cache(kmem_cache, "kmem_cache", |
bf0dea23 | 1346 | offsetof(struct kmem_cache, node) + |
6744f087 | 1347 | nr_node_ids * sizeof(struct kmem_cache_node *), |
2f9baa9f CL |
1348 | SLAB_HWCACHE_ALIGN); |
1349 | list_add(&kmem_cache->list, &slab_caches); | |
bf0dea23 | 1350 | slab_state = PARTIAL; |
1da177e4 | 1351 | |
a737b3e2 | 1352 | /* |
bf0dea23 JK |
1353 | * Initialize the caches that provide memory for the kmem_cache_node |
1354 | * structures first. Without this, further allocations will bug. | |
e498be7d | 1355 | */ |
bf0dea23 | 1356 | kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node", |
ce8eb6c4 | 1357 | kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); |
bf0dea23 | 1358 | slab_state = PARTIAL_NODE; |
34cc6990 | 1359 | setup_kmalloc_cache_index_table(); |
e498be7d | 1360 | |
e0a42726 IM |
1361 | slab_early_init = 0; |
1362 | ||
ce8eb6c4 | 1363 | /* 5) Replace the bootstrap kmem_cache_node */ |
e498be7d | 1364 | { |
1ca4cb24 PE |
1365 | int nid; |
1366 | ||
9c09a95c | 1367 | for_each_online_node(nid) { |
ce8eb6c4 | 1368 | init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); |
556a169d | 1369 | |
bf0dea23 | 1370 | init_list(kmalloc_caches[INDEX_NODE], |
ce8eb6c4 | 1371 | &init_kmem_cache_node[SIZE_NODE + nid], nid); |
e498be7d CL |
1372 | } |
1373 | } | |
1da177e4 | 1374 | |
f97d5f63 | 1375 | create_kmalloc_caches(ARCH_KMALLOC_FLAGS); |
8429db5c PE |
1376 | } |
1377 | ||
1378 | void __init kmem_cache_init_late(void) | |
1379 | { | |
1380 | struct kmem_cache *cachep; | |
1381 | ||
97d06609 | 1382 | slab_state = UP; |
52cef189 | 1383 | |
8429db5c | 1384 | /* 6) resize the head arrays to their final sizes */ |
18004c5d CL |
1385 | mutex_lock(&slab_mutex); |
1386 | list_for_each_entry(cachep, &slab_caches, list) | |
8429db5c PE |
1387 | if (enable_cpucache(cachep, GFP_NOWAIT)) |
1388 | BUG(); | |
18004c5d | 1389 | mutex_unlock(&slab_mutex); |
056c6241 | 1390 | |
97d06609 CL |
1391 | /* Done! */ |
1392 | slab_state = FULL; | |
1393 | ||
a737b3e2 AM |
1394 | /* |
1395 | * Register a cpu startup notifier callback that initializes | |
1396 | * cpu_cache_get for all new cpus | |
1da177e4 LT |
1397 | */ |
1398 | register_cpu_notifier(&cpucache_notifier); | |
1da177e4 | 1399 | |
8f9f8d9e DR |
1400 | #ifdef CONFIG_NUMA |
1401 | /* | |
1402 | * Register a memory hotplug callback that initializes and frees | |
6a67368c | 1403 | * node. |
8f9f8d9e DR |
1404 | */ |
1405 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | |
1406 | #endif | |
1407 | ||
a737b3e2 AM |
1408 | /* |
1409 | * The reap timers are started later, with a module init call: That part | |
1410 | * of the kernel is not yet operational. | |
1da177e4 LT |
1411 | */ |
1412 | } | |
1413 | ||
1414 | static int __init cpucache_init(void) | |
1415 | { | |
1416 | int cpu; | |
1417 | ||
a737b3e2 AM |
1418 | /* |
1419 | * Register the timers that return unneeded pages to the page allocator | |
1da177e4 | 1420 | */ |
e498be7d | 1421 | for_each_online_cpu(cpu) |
a737b3e2 | 1422 | start_cpu_timer(cpu); |
a164f896 GC |
1423 | |
1424 | /* Done! */ | |
97d06609 | 1425 | slab_state = FULL; |
1da177e4 LT |
1426 | return 0; |
1427 | } | |
1da177e4 LT |
1428 | __initcall(cpucache_init); |
1429 | ||
8bdec192 RA |
1430 | static noinline void |
1431 | slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) | |
1432 | { | |
9a02d699 | 1433 | #if DEBUG |
ce8eb6c4 | 1434 | struct kmem_cache_node *n; |
8456a648 | 1435 | struct page *page; |
8bdec192 RA |
1436 | unsigned long flags; |
1437 | int node; | |
9a02d699 DR |
1438 | static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, |
1439 | DEFAULT_RATELIMIT_BURST); | |
1440 | ||
1441 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) | |
1442 | return; | |
8bdec192 | 1443 | |
5b3810e5 VB |
1444 | pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", |
1445 | nodeid, gfpflags, &gfpflags); | |
1446 | pr_warn(" cache: %s, object size: %d, order: %d\n", | |
3b0efdfa | 1447 | cachep->name, cachep->size, cachep->gfporder); |
8bdec192 | 1448 | |
18bf8541 | 1449 | for_each_kmem_cache_node(cachep, node, n) { |
8bdec192 RA |
1450 | unsigned long active_objs = 0, num_objs = 0, free_objects = 0; |
1451 | unsigned long active_slabs = 0, num_slabs = 0; | |
1452 | ||
ce8eb6c4 | 1453 | spin_lock_irqsave(&n->list_lock, flags); |
8456a648 | 1454 | list_for_each_entry(page, &n->slabs_full, lru) { |
8bdec192 RA |
1455 | active_objs += cachep->num; |
1456 | active_slabs++; | |
1457 | } | |
8456a648 JK |
1458 | list_for_each_entry(page, &n->slabs_partial, lru) { |
1459 | active_objs += page->active; | |
8bdec192 RA |
1460 | active_slabs++; |
1461 | } | |
8456a648 | 1462 | list_for_each_entry(page, &n->slabs_free, lru) |
8bdec192 RA |
1463 | num_slabs++; |
1464 | ||
ce8eb6c4 CL |
1465 | free_objects += n->free_objects; |
1466 | spin_unlock_irqrestore(&n->list_lock, flags); | |
8bdec192 RA |
1467 | |
1468 | num_slabs += active_slabs; | |
1469 | num_objs = num_slabs * cachep->num; | |
5b3810e5 | 1470 | pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n", |
8bdec192 RA |
1471 | node, active_slabs, num_slabs, active_objs, num_objs, |
1472 | free_objects); | |
1473 | } | |
9a02d699 | 1474 | #endif |
8bdec192 RA |
1475 | } |
1476 | ||
1da177e4 | 1477 | /* |
8a7d9b43 WSH |
1478 | * Interface to system's page allocator. No need to hold the |
1479 | * kmem_cache_node ->list_lock. | |
1da177e4 LT |
1480 | * |
1481 | * If we requested dmaable memory, we will get it. Even if we | |
1482 | * did not request dmaable memory, we might get it, but that | |
1483 | * would be relatively rare and ignorable. | |
1484 | */ | |
0c3aa83e JK |
1485 | static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, |
1486 | int nodeid) | |
1da177e4 LT |
1487 | { |
1488 | struct page *page; | |
e1b6aa6f | 1489 | int nr_pages; |
765c4507 | 1490 | |
a618e89f | 1491 | flags |= cachep->allocflags; |
e12ba74d MG |
1492 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
1493 | flags |= __GFP_RECLAIMABLE; | |
e1b6aa6f | 1494 | |
96db800f | 1495 | page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); |
8bdec192 | 1496 | if (!page) { |
9a02d699 | 1497 | slab_out_of_memory(cachep, flags, nodeid); |
1da177e4 | 1498 | return NULL; |
8bdec192 | 1499 | } |
1da177e4 | 1500 | |
f3ccb2c4 VD |
1501 | if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) { |
1502 | __free_pages(page, cachep->gfporder); | |
1503 | return NULL; | |
1504 | } | |
1505 | ||
e1b6aa6f | 1506 | nr_pages = (1 << cachep->gfporder); |
1da177e4 | 1507 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
972d1a7b CL |
1508 | add_zone_page_state(page_zone(page), |
1509 | NR_SLAB_RECLAIMABLE, nr_pages); | |
1510 | else | |
1511 | add_zone_page_state(page_zone(page), | |
1512 | NR_SLAB_UNRECLAIMABLE, nr_pages); | |
f68f8ddd | 1513 | |
a57a4988 | 1514 | __SetPageSlab(page); |
f68f8ddd JK |
1515 | /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ |
1516 | if (sk_memalloc_socks() && page_is_pfmemalloc(page)) | |
a57a4988 | 1517 | SetPageSlabPfmemalloc(page); |
072bb0aa | 1518 | |
b1eeab67 VN |
1519 | if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { |
1520 | kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); | |
1521 | ||
1522 | if (cachep->ctor) | |
1523 | kmemcheck_mark_uninitialized_pages(page, nr_pages); | |
1524 | else | |
1525 | kmemcheck_mark_unallocated_pages(page, nr_pages); | |
1526 | } | |
c175eea4 | 1527 | |
0c3aa83e | 1528 | return page; |
1da177e4 LT |
1529 | } |
1530 | ||
1531 | /* | |
1532 | * Interface to system's page release. | |
1533 | */ | |
0c3aa83e | 1534 | static void kmem_freepages(struct kmem_cache *cachep, struct page *page) |
1da177e4 | 1535 | { |
27ee57c9 VD |
1536 | int order = cachep->gfporder; |
1537 | unsigned long nr_freed = (1 << order); | |
1da177e4 | 1538 | |
27ee57c9 | 1539 | kmemcheck_free_shadow(page, order); |
c175eea4 | 1540 | |
972d1a7b CL |
1541 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
1542 | sub_zone_page_state(page_zone(page), | |
1543 | NR_SLAB_RECLAIMABLE, nr_freed); | |
1544 | else | |
1545 | sub_zone_page_state(page_zone(page), | |
1546 | NR_SLAB_UNRECLAIMABLE, nr_freed); | |
73293c2f | 1547 | |
a57a4988 | 1548 | BUG_ON(!PageSlab(page)); |
73293c2f | 1549 | __ClearPageSlabPfmemalloc(page); |
a57a4988 | 1550 | __ClearPageSlab(page); |
8456a648 JK |
1551 | page_mapcount_reset(page); |
1552 | page->mapping = NULL; | |
1f458cbf | 1553 | |
1da177e4 LT |
1554 | if (current->reclaim_state) |
1555 | current->reclaim_state->reclaimed_slab += nr_freed; | |
27ee57c9 VD |
1556 | memcg_uncharge_slab(page, order, cachep); |
1557 | __free_pages(page, order); | |
1da177e4 LT |
1558 | } |
1559 | ||
1560 | static void kmem_rcu_free(struct rcu_head *head) | |
1561 | { | |
68126702 JK |
1562 | struct kmem_cache *cachep; |
1563 | struct page *page; | |
1da177e4 | 1564 | |
68126702 JK |
1565 | page = container_of(head, struct page, rcu_head); |
1566 | cachep = page->slab_cache; | |
1567 | ||
1568 | kmem_freepages(cachep, page); | |
1da177e4 LT |
1569 | } |
1570 | ||
1571 | #if DEBUG | |
40b44137 JK |
1572 | static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) |
1573 | { | |
1574 | if (debug_pagealloc_enabled() && OFF_SLAB(cachep) && | |
1575 | (cachep->size % PAGE_SIZE) == 0) | |
1576 | return true; | |
1577 | ||
1578 | return false; | |
1579 | } | |
1da177e4 LT |
1580 | |
1581 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
343e0d7a | 1582 | static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, |
b28a02de | 1583 | unsigned long caller) |
1da177e4 | 1584 | { |
8c138bc0 | 1585 | int size = cachep->object_size; |
1da177e4 | 1586 | |
3dafccf2 | 1587 | addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; |
1da177e4 | 1588 | |
b28a02de | 1589 | if (size < 5 * sizeof(unsigned long)) |
1da177e4 LT |
1590 | return; |
1591 | ||
b28a02de PE |
1592 | *addr++ = 0x12345678; |
1593 | *addr++ = caller; | |
1594 | *addr++ = smp_processor_id(); | |
1595 | size -= 3 * sizeof(unsigned long); | |
1da177e4 LT |
1596 | { |
1597 | unsigned long *sptr = &caller; | |
1598 | unsigned long svalue; | |
1599 | ||
1600 | while (!kstack_end(sptr)) { | |
1601 | svalue = *sptr++; | |
1602 | if (kernel_text_address(svalue)) { | |
b28a02de | 1603 | *addr++ = svalue; |
1da177e4 LT |
1604 | size -= sizeof(unsigned long); |
1605 | if (size <= sizeof(unsigned long)) | |
1606 | break; | |
1607 | } | |
1608 | } | |
1609 | ||
1610 | } | |
b28a02de | 1611 | *addr++ = 0x87654321; |
1da177e4 | 1612 | } |
40b44137 JK |
1613 | |
1614 | static void slab_kernel_map(struct kmem_cache *cachep, void *objp, | |
1615 | int map, unsigned long caller) | |
1616 | { | |
1617 | if (!is_debug_pagealloc_cache(cachep)) | |
1618 | return; | |
1619 | ||
1620 | if (caller) | |
1621 | store_stackinfo(cachep, objp, caller); | |
1622 | ||
1623 | kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); | |
1624 | } | |
1625 | ||
1626 | #else | |
1627 | static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, | |
1628 | int map, unsigned long caller) {} | |
1629 | ||
1da177e4 LT |
1630 | #endif |
1631 | ||
343e0d7a | 1632 | static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) |
1da177e4 | 1633 | { |
8c138bc0 | 1634 | int size = cachep->object_size; |
3dafccf2 | 1635 | addr = &((char *)addr)[obj_offset(cachep)]; |
1da177e4 LT |
1636 | |
1637 | memset(addr, val, size); | |
b28a02de | 1638 | *(unsigned char *)(addr + size - 1) = POISON_END; |
1da177e4 LT |
1639 | } |
1640 | ||
1641 | static void dump_line(char *data, int offset, int limit) | |
1642 | { | |
1643 | int i; | |
aa83aa40 DJ |
1644 | unsigned char error = 0; |
1645 | int bad_count = 0; | |
1646 | ||
1170532b | 1647 | pr_err("%03x: ", offset); |
aa83aa40 DJ |
1648 | for (i = 0; i < limit; i++) { |
1649 | if (data[offset + i] != POISON_FREE) { | |
1650 | error = data[offset + i]; | |
1651 | bad_count++; | |
1652 | } | |
aa83aa40 | 1653 | } |
fdde6abb SAS |
1654 | print_hex_dump(KERN_CONT, "", 0, 16, 1, |
1655 | &data[offset], limit, 1); | |
aa83aa40 DJ |
1656 | |
1657 | if (bad_count == 1) { | |
1658 | error ^= POISON_FREE; | |
1659 | if (!(error & (error - 1))) { | |
1170532b | 1660 | pr_err("Single bit error detected. Probably bad RAM.\n"); |
aa83aa40 | 1661 | #ifdef CONFIG_X86 |
1170532b | 1662 | pr_err("Run memtest86+ or a similar memory test tool.\n"); |
aa83aa40 | 1663 | #else |
1170532b | 1664 | pr_err("Run a memory test tool.\n"); |
aa83aa40 DJ |
1665 | #endif |
1666 | } | |
1667 | } | |
1da177e4 LT |
1668 | } |
1669 | #endif | |
1670 | ||
1671 | #if DEBUG | |
1672 | ||
343e0d7a | 1673 | static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) |
1da177e4 LT |
1674 | { |
1675 | int i, size; | |
1676 | char *realobj; | |
1677 | ||
1678 | if (cachep->flags & SLAB_RED_ZONE) { | |
1170532b JP |
1679 | pr_err("Redzone: 0x%llx/0x%llx\n", |
1680 | *dbg_redzone1(cachep, objp), | |
1681 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
1682 | } |
1683 | ||
1684 | if (cachep->flags & SLAB_STORE_USER) { | |
1170532b | 1685 | pr_err("Last user: [<%p>](%pSR)\n", |
071361d3 JP |
1686 | *dbg_userword(cachep, objp), |
1687 | *dbg_userword(cachep, objp)); | |
1da177e4 | 1688 | } |
3dafccf2 | 1689 | realobj = (char *)objp + obj_offset(cachep); |
8c138bc0 | 1690 | size = cachep->object_size; |
b28a02de | 1691 | for (i = 0; i < size && lines; i += 16, lines--) { |
1da177e4 LT |
1692 | int limit; |
1693 | limit = 16; | |
b28a02de PE |
1694 | if (i + limit > size) |
1695 | limit = size - i; | |
1da177e4 LT |
1696 | dump_line(realobj, i, limit); |
1697 | } | |
1698 | } | |
1699 | ||
343e0d7a | 1700 | static void check_poison_obj(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
1701 | { |
1702 | char *realobj; | |
1703 | int size, i; | |
1704 | int lines = 0; | |
1705 | ||
40b44137 JK |
1706 | if (is_debug_pagealloc_cache(cachep)) |
1707 | return; | |
1708 | ||
3dafccf2 | 1709 | realobj = (char *)objp + obj_offset(cachep); |
8c138bc0 | 1710 | size = cachep->object_size; |
1da177e4 | 1711 | |
b28a02de | 1712 | for (i = 0; i < size; i++) { |
1da177e4 | 1713 | char exp = POISON_FREE; |
b28a02de | 1714 | if (i == size - 1) |
1da177e4 LT |
1715 | exp = POISON_END; |
1716 | if (realobj[i] != exp) { | |
1717 | int limit; | |
1718 | /* Mismatch ! */ | |
1719 | /* Print header */ | |
1720 | if (lines == 0) { | |
1170532b JP |
1721 | pr_err("Slab corruption (%s): %s start=%p, len=%d\n", |
1722 | print_tainted(), cachep->name, | |
1723 | realobj, size); | |
1da177e4 LT |
1724 | print_objinfo(cachep, objp, 0); |
1725 | } | |
1726 | /* Hexdump the affected line */ | |
b28a02de | 1727 | i = (i / 16) * 16; |
1da177e4 | 1728 | limit = 16; |
b28a02de PE |
1729 | if (i + limit > size) |
1730 | limit = size - i; | |
1da177e4 LT |
1731 | dump_line(realobj, i, limit); |
1732 | i += 16; | |
1733 | lines++; | |
1734 | /* Limit to 5 lines */ | |
1735 | if (lines > 5) | |
1736 | break; | |
1737 | } | |
1738 | } | |
1739 | if (lines != 0) { | |
1740 | /* Print some data about the neighboring objects, if they | |
1741 | * exist: | |
1742 | */ | |
8456a648 | 1743 | struct page *page = virt_to_head_page(objp); |
8fea4e96 | 1744 | unsigned int objnr; |
1da177e4 | 1745 | |
8456a648 | 1746 | objnr = obj_to_index(cachep, page, objp); |
1da177e4 | 1747 | if (objnr) { |
8456a648 | 1748 | objp = index_to_obj(cachep, page, objnr - 1); |
3dafccf2 | 1749 | realobj = (char *)objp + obj_offset(cachep); |
1170532b | 1750 | pr_err("Prev obj: start=%p, len=%d\n", realobj, size); |
1da177e4 LT |
1751 | print_objinfo(cachep, objp, 2); |
1752 | } | |
b28a02de | 1753 | if (objnr + 1 < cachep->num) { |
8456a648 | 1754 | objp = index_to_obj(cachep, page, objnr + 1); |
3dafccf2 | 1755 | realobj = (char *)objp + obj_offset(cachep); |
1170532b | 1756 | pr_err("Next obj: start=%p, len=%d\n", realobj, size); |
1da177e4 LT |
1757 | print_objinfo(cachep, objp, 2); |
1758 | } | |
1759 | } | |
1760 | } | |
1761 | #endif | |
1762 | ||
12dd36fa | 1763 | #if DEBUG |
8456a648 JK |
1764 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, |
1765 | struct page *page) | |
1da177e4 | 1766 | { |
1da177e4 | 1767 | int i; |
b03a017b JK |
1768 | |
1769 | if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { | |
1770 | poison_obj(cachep, page->freelist - obj_offset(cachep), | |
1771 | POISON_FREE); | |
1772 | } | |
1773 | ||
1da177e4 | 1774 | for (i = 0; i < cachep->num; i++) { |
8456a648 | 1775 | void *objp = index_to_obj(cachep, page, i); |
1da177e4 LT |
1776 | |
1777 | if (cachep->flags & SLAB_POISON) { | |
1da177e4 | 1778 | check_poison_obj(cachep, objp); |
40b44137 | 1779 | slab_kernel_map(cachep, objp, 1, 0); |
1da177e4 LT |
1780 | } |
1781 | if (cachep->flags & SLAB_RED_ZONE) { | |
1782 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | |
756a025f | 1783 | slab_error(cachep, "start of a freed object was overwritten"); |
1da177e4 | 1784 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) |
756a025f | 1785 | slab_error(cachep, "end of a freed object was overwritten"); |
1da177e4 | 1786 | } |
1da177e4 | 1787 | } |
12dd36fa | 1788 | } |
1da177e4 | 1789 | #else |
8456a648 JK |
1790 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, |
1791 | struct page *page) | |
12dd36fa | 1792 | { |
12dd36fa | 1793 | } |
1da177e4 LT |
1794 | #endif |
1795 | ||
911851e6 RD |
1796 | /** |
1797 | * slab_destroy - destroy and release all objects in a slab | |
1798 | * @cachep: cache pointer being destroyed | |
cb8ee1a3 | 1799 | * @page: page pointer being destroyed |
911851e6 | 1800 | * |
8a7d9b43 WSH |
1801 | * Destroy all the objs in a slab page, and release the mem back to the system. |
1802 | * Before calling the slab page must have been unlinked from the cache. The | |
1803 | * kmem_cache_node ->list_lock is not held/needed. | |
12dd36fa | 1804 | */ |
8456a648 | 1805 | static void slab_destroy(struct kmem_cache *cachep, struct page *page) |
12dd36fa | 1806 | { |
7e007355 | 1807 | void *freelist; |
12dd36fa | 1808 | |
8456a648 JK |
1809 | freelist = page->freelist; |
1810 | slab_destroy_debugcheck(cachep, page); | |
bc4f610d KS |
1811 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) |
1812 | call_rcu(&page->rcu_head, kmem_rcu_free); | |
1813 | else | |
0c3aa83e | 1814 | kmem_freepages(cachep, page); |
68126702 JK |
1815 | |
1816 | /* | |
8456a648 | 1817 | * From now on, we don't use freelist |
68126702 JK |
1818 | * although actual page can be freed in rcu context |
1819 | */ | |
1820 | if (OFF_SLAB(cachep)) | |
8456a648 | 1821 | kmem_cache_free(cachep->freelist_cache, freelist); |
1da177e4 LT |
1822 | } |
1823 | ||
97654dfa JK |
1824 | static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) |
1825 | { | |
1826 | struct page *page, *n; | |
1827 | ||
1828 | list_for_each_entry_safe(page, n, list, lru) { | |
1829 | list_del(&page->lru); | |
1830 | slab_destroy(cachep, page); | |
1831 | } | |
1832 | } | |
1833 | ||
4d268eba | 1834 | /** |
a70773dd RD |
1835 | * calculate_slab_order - calculate size (page order) of slabs |
1836 | * @cachep: pointer to the cache that is being created | |
1837 | * @size: size of objects to be created in this cache. | |
a70773dd RD |
1838 | * @flags: slab allocation flags |
1839 | * | |
1840 | * Also calculates the number of objects per slab. | |
4d268eba PE |
1841 | * |
1842 | * This could be made much more intelligent. For now, try to avoid using | |
1843 | * high order pages for slabs. When the gfp() functions are more friendly | |
1844 | * towards high-order requests, this should be changed. | |
1845 | */ | |
a737b3e2 | 1846 | static size_t calculate_slab_order(struct kmem_cache *cachep, |
2e6b3602 | 1847 | size_t size, unsigned long flags) |
4d268eba PE |
1848 | { |
1849 | size_t left_over = 0; | |
9888e6fa | 1850 | int gfporder; |
4d268eba | 1851 | |
0aa817f0 | 1852 | for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { |
4d268eba PE |
1853 | unsigned int num; |
1854 | size_t remainder; | |
1855 | ||
70f75067 | 1856 | num = cache_estimate(gfporder, size, flags, &remainder); |
4d268eba PE |
1857 | if (!num) |
1858 | continue; | |
9888e6fa | 1859 | |
f315e3fa JK |
1860 | /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ |
1861 | if (num > SLAB_OBJ_MAX_NUM) | |
1862 | break; | |
1863 | ||
b1ab41c4 | 1864 | if (flags & CFLGS_OFF_SLAB) { |
3217fd9b JK |
1865 | struct kmem_cache *freelist_cache; |
1866 | size_t freelist_size; | |
1867 | ||
1868 | freelist_size = num * sizeof(freelist_idx_t); | |
1869 | freelist_cache = kmalloc_slab(freelist_size, 0u); | |
1870 | if (!freelist_cache) | |
1871 | continue; | |
1872 | ||
b1ab41c4 | 1873 | /* |
3217fd9b | 1874 | * Needed to avoid possible looping condition |
76b342bd | 1875 | * in cache_grow_begin() |
b1ab41c4 | 1876 | */ |
3217fd9b JK |
1877 | if (OFF_SLAB(freelist_cache)) |
1878 | continue; | |
b1ab41c4 | 1879 | |
3217fd9b JK |
1880 | /* check if off slab has enough benefit */ |
1881 | if (freelist_cache->size > cachep->size / 2) | |
1882 | continue; | |
b1ab41c4 | 1883 | } |
4d268eba | 1884 | |
9888e6fa | 1885 | /* Found something acceptable - save it away */ |
4d268eba | 1886 | cachep->num = num; |
9888e6fa | 1887 | cachep->gfporder = gfporder; |
4d268eba PE |
1888 | left_over = remainder; |
1889 | ||
f78bb8ad LT |
1890 | /* |
1891 | * A VFS-reclaimable slab tends to have most allocations | |
1892 | * as GFP_NOFS and we really don't want to have to be allocating | |
1893 | * higher-order pages when we are unable to shrink dcache. | |
1894 | */ | |
1895 | if (flags & SLAB_RECLAIM_ACCOUNT) | |
1896 | break; | |
1897 | ||
4d268eba PE |
1898 | /* |
1899 | * Large number of objects is good, but very large slabs are | |
1900 | * currently bad for the gfp()s. | |
1901 | */ | |
543585cc | 1902 | if (gfporder >= slab_max_order) |
4d268eba PE |
1903 | break; |
1904 | ||
9888e6fa LT |
1905 | /* |
1906 | * Acceptable internal fragmentation? | |
1907 | */ | |
a737b3e2 | 1908 | if (left_over * 8 <= (PAGE_SIZE << gfporder)) |
4d268eba PE |
1909 | break; |
1910 | } | |
1911 | return left_over; | |
1912 | } | |
1913 | ||
bf0dea23 JK |
1914 | static struct array_cache __percpu *alloc_kmem_cache_cpus( |
1915 | struct kmem_cache *cachep, int entries, int batchcount) | |
1916 | { | |
1917 | int cpu; | |
1918 | size_t size; | |
1919 | struct array_cache __percpu *cpu_cache; | |
1920 | ||
1921 | size = sizeof(void *) * entries + sizeof(struct array_cache); | |
85c9f4b0 | 1922 | cpu_cache = __alloc_percpu(size, sizeof(void *)); |
bf0dea23 JK |
1923 | |
1924 | if (!cpu_cache) | |
1925 | return NULL; | |
1926 | ||
1927 | for_each_possible_cpu(cpu) { | |
1928 | init_arraycache(per_cpu_ptr(cpu_cache, cpu), | |
1929 | entries, batchcount); | |
1930 | } | |
1931 | ||
1932 | return cpu_cache; | |
1933 | } | |
1934 | ||
83b519e8 | 1935 | static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) |
f30cf7d1 | 1936 | { |
97d06609 | 1937 | if (slab_state >= FULL) |
83b519e8 | 1938 | return enable_cpucache(cachep, gfp); |
2ed3a4ef | 1939 | |
bf0dea23 JK |
1940 | cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); |
1941 | if (!cachep->cpu_cache) | |
1942 | return 1; | |
1943 | ||
97d06609 | 1944 | if (slab_state == DOWN) { |
bf0dea23 JK |
1945 | /* Creation of first cache (kmem_cache). */ |
1946 | set_up_node(kmem_cache, CACHE_CACHE); | |
2f9baa9f | 1947 | } else if (slab_state == PARTIAL) { |
bf0dea23 JK |
1948 | /* For kmem_cache_node */ |
1949 | set_up_node(cachep, SIZE_NODE); | |
f30cf7d1 | 1950 | } else { |
bf0dea23 | 1951 | int node; |
f30cf7d1 | 1952 | |
bf0dea23 JK |
1953 | for_each_online_node(node) { |
1954 | cachep->node[node] = kmalloc_node( | |
1955 | sizeof(struct kmem_cache_node), gfp, node); | |
1956 | BUG_ON(!cachep->node[node]); | |
1957 | kmem_cache_node_init(cachep->node[node]); | |
f30cf7d1 PE |
1958 | } |
1959 | } | |
bf0dea23 | 1960 | |
6a67368c | 1961 | cachep->node[numa_mem_id()]->next_reap = |
5f0985bb JZ |
1962 | jiffies + REAPTIMEOUT_NODE + |
1963 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
f30cf7d1 PE |
1964 | |
1965 | cpu_cache_get(cachep)->avail = 0; | |
1966 | cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | |
1967 | cpu_cache_get(cachep)->batchcount = 1; | |
1968 | cpu_cache_get(cachep)->touched = 0; | |
1969 | cachep->batchcount = 1; | |
1970 | cachep->limit = BOOT_CPUCACHE_ENTRIES; | |
2ed3a4ef | 1971 | return 0; |
f30cf7d1 PE |
1972 | } |
1973 | ||
12220dea JK |
1974 | unsigned long kmem_cache_flags(unsigned long object_size, |
1975 | unsigned long flags, const char *name, | |
1976 | void (*ctor)(void *)) | |
1977 | { | |
1978 | return flags; | |
1979 | } | |
1980 | ||
1981 | struct kmem_cache * | |
1982 | __kmem_cache_alias(const char *name, size_t size, size_t align, | |
1983 | unsigned long flags, void (*ctor)(void *)) | |
1984 | { | |
1985 | struct kmem_cache *cachep; | |
1986 | ||
1987 | cachep = find_mergeable(size, align, flags, name, ctor); | |
1988 | if (cachep) { | |
1989 | cachep->refcount++; | |
1990 | ||
1991 | /* | |
1992 | * Adjust the object sizes so that we clear | |
1993 | * the complete object on kzalloc. | |
1994 | */ | |
1995 | cachep->object_size = max_t(int, cachep->object_size, size); | |
1996 | } | |
1997 | return cachep; | |
1998 | } | |
1999 | ||
b03a017b JK |
2000 | static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, |
2001 | size_t size, unsigned long flags) | |
2002 | { | |
2003 | size_t left; | |
2004 | ||
2005 | cachep->num = 0; | |
2006 | ||
2007 | if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU) | |
2008 | return false; | |
2009 | ||
2010 | left = calculate_slab_order(cachep, size, | |
2011 | flags | CFLGS_OBJFREELIST_SLAB); | |
2012 | if (!cachep->num) | |
2013 | return false; | |
2014 | ||
2015 | if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) | |
2016 | return false; | |
2017 | ||
2018 | cachep->colour = left / cachep->colour_off; | |
2019 | ||
2020 | return true; | |
2021 | } | |
2022 | ||
158e319b JK |
2023 | static bool set_off_slab_cache(struct kmem_cache *cachep, |
2024 | size_t size, unsigned long flags) | |
2025 | { | |
2026 | size_t left; | |
2027 | ||
2028 | cachep->num = 0; | |
2029 | ||
2030 | /* | |
3217fd9b JK |
2031 | * Always use on-slab management when SLAB_NOLEAKTRACE |
2032 | * to avoid recursive calls into kmemleak. | |
158e319b | 2033 | */ |
158e319b JK |
2034 | if (flags & SLAB_NOLEAKTRACE) |
2035 | return false; | |
2036 | ||
2037 | /* | |
2038 | * Size is large, assume best to place the slab management obj | |
2039 | * off-slab (should allow better packing of objs). | |
2040 | */ | |
2041 | left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); | |
2042 | if (!cachep->num) | |
2043 | return false; | |
2044 | ||
2045 | /* | |
2046 | * If the slab has been placed off-slab, and we have enough space then | |
2047 | * move it on-slab. This is at the expense of any extra colouring. | |
2048 | */ | |
2049 | if (left >= cachep->num * sizeof(freelist_idx_t)) | |
2050 | return false; | |
2051 | ||
2052 | cachep->colour = left / cachep->colour_off; | |
2053 | ||
2054 | return true; | |
2055 | } | |
2056 | ||
2057 | static bool set_on_slab_cache(struct kmem_cache *cachep, | |
2058 | size_t size, unsigned long flags) | |
2059 | { | |
2060 | size_t left; | |
2061 | ||
2062 | cachep->num = 0; | |
2063 | ||
2064 | left = calculate_slab_order(cachep, size, flags); | |
2065 | if (!cachep->num) | |
2066 | return false; | |
2067 | ||
2068 | cachep->colour = left / cachep->colour_off; | |
2069 | ||
2070 | return true; | |
2071 | } | |
2072 | ||
1da177e4 | 2073 | /** |
039363f3 | 2074 | * __kmem_cache_create - Create a cache. |
a755b76a | 2075 | * @cachep: cache management descriptor |
1da177e4 | 2076 | * @flags: SLAB flags |
1da177e4 LT |
2077 | * |
2078 | * Returns a ptr to the cache on success, NULL on failure. | |
2079 | * Cannot be called within a int, but can be interrupted. | |
20c2df83 | 2080 | * The @ctor is run when new pages are allocated by the cache. |
1da177e4 | 2081 | * |
1da177e4 LT |
2082 | * The flags are |
2083 | * | |
2084 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
2085 | * to catch references to uninitialised memory. | |
2086 | * | |
2087 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
2088 | * for buffer overruns. | |
2089 | * | |
1da177e4 LT |
2090 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware |
2091 | * cacheline. This can be beneficial if you're counting cycles as closely | |
2092 | * as davem. | |
2093 | */ | |
278b1bb1 | 2094 | int |
8a13a4cc | 2095 | __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) |
1da177e4 | 2096 | { |
d4a5fca5 | 2097 | size_t ralign = BYTES_PER_WORD; |
83b519e8 | 2098 | gfp_t gfp; |
278b1bb1 | 2099 | int err; |
8a13a4cc | 2100 | size_t size = cachep->size; |
1da177e4 | 2101 | |
1da177e4 | 2102 | #if DEBUG |
1da177e4 LT |
2103 | #if FORCED_DEBUG |
2104 | /* | |
2105 | * Enable redzoning and last user accounting, except for caches with | |
2106 | * large objects, if the increased size would increase the object size | |
2107 | * above the next power of two: caches with object sizes just above a | |
2108 | * power of two have a significant amount of internal fragmentation. | |
2109 | */ | |
87a927c7 DW |
2110 | if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + |
2111 | 2 * sizeof(unsigned long long))) | |
b28a02de | 2112 | flags |= SLAB_RED_ZONE | SLAB_STORE_USER; |
1da177e4 LT |
2113 | if (!(flags & SLAB_DESTROY_BY_RCU)) |
2114 | flags |= SLAB_POISON; | |
2115 | #endif | |
1da177e4 | 2116 | #endif |
1da177e4 | 2117 | |
a737b3e2 AM |
2118 | /* |
2119 | * Check that size is in terms of words. This is needed to avoid | |
1da177e4 LT |
2120 | * unaligned accesses for some archs when redzoning is used, and makes |
2121 | * sure any on-slab bufctl's are also correctly aligned. | |
2122 | */ | |
b28a02de PE |
2123 | if (size & (BYTES_PER_WORD - 1)) { |
2124 | size += (BYTES_PER_WORD - 1); | |
2125 | size &= ~(BYTES_PER_WORD - 1); | |
1da177e4 LT |
2126 | } |
2127 | ||
87a927c7 DW |
2128 | if (flags & SLAB_RED_ZONE) { |
2129 | ralign = REDZONE_ALIGN; | |
2130 | /* If redzoning, ensure that the second redzone is suitably | |
2131 | * aligned, by adjusting the object size accordingly. */ | |
2132 | size += REDZONE_ALIGN - 1; | |
2133 | size &= ~(REDZONE_ALIGN - 1); | |
2134 | } | |
ca5f9703 | 2135 | |
a44b56d3 | 2136 | /* 3) caller mandated alignment */ |
8a13a4cc CL |
2137 | if (ralign < cachep->align) { |
2138 | ralign = cachep->align; | |
1da177e4 | 2139 | } |
3ff84a7f PE |
2140 | /* disable debug if necessary */ |
2141 | if (ralign > __alignof__(unsigned long long)) | |
a44b56d3 | 2142 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); |
a737b3e2 | 2143 | /* |
ca5f9703 | 2144 | * 4) Store it. |
1da177e4 | 2145 | */ |
8a13a4cc | 2146 | cachep->align = ralign; |
158e319b JK |
2147 | cachep->colour_off = cache_line_size(); |
2148 | /* Offset must be a multiple of the alignment. */ | |
2149 | if (cachep->colour_off < cachep->align) | |
2150 | cachep->colour_off = cachep->align; | |
1da177e4 | 2151 | |
83b519e8 PE |
2152 | if (slab_is_available()) |
2153 | gfp = GFP_KERNEL; | |
2154 | else | |
2155 | gfp = GFP_NOWAIT; | |
2156 | ||
1da177e4 | 2157 | #if DEBUG |
1da177e4 | 2158 | |
ca5f9703 PE |
2159 | /* |
2160 | * Both debugging options require word-alignment which is calculated | |
2161 | * into align above. | |
2162 | */ | |
1da177e4 | 2163 | if (flags & SLAB_RED_ZONE) { |
1da177e4 | 2164 | /* add space for red zone words */ |
3ff84a7f PE |
2165 | cachep->obj_offset += sizeof(unsigned long long); |
2166 | size += 2 * sizeof(unsigned long long); | |
1da177e4 LT |
2167 | } |
2168 | if (flags & SLAB_STORE_USER) { | |
ca5f9703 | 2169 | /* user store requires one word storage behind the end of |
87a927c7 DW |
2170 | * the real object. But if the second red zone needs to be |
2171 | * aligned to 64 bits, we must allow that much space. | |
1da177e4 | 2172 | */ |
87a927c7 DW |
2173 | if (flags & SLAB_RED_ZONE) |
2174 | size += REDZONE_ALIGN; | |
2175 | else | |
2176 | size += BYTES_PER_WORD; | |
1da177e4 | 2177 | } |
832a15d2 JK |
2178 | #endif |
2179 | ||
7ed2f9e6 AP |
2180 | kasan_cache_create(cachep, &size, &flags); |
2181 | ||
832a15d2 JK |
2182 | size = ALIGN(size, cachep->align); |
2183 | /* | |
2184 | * We should restrict the number of objects in a slab to implement | |
2185 | * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. | |
2186 | */ | |
2187 | if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) | |
2188 | size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); | |
2189 | ||
2190 | #if DEBUG | |
03a2d2a3 JK |
2191 | /* |
2192 | * To activate debug pagealloc, off-slab management is necessary | |
2193 | * requirement. In early phase of initialization, small sized slab | |
2194 | * doesn't get initialized so it would not be possible. So, we need | |
2195 | * to check size >= 256. It guarantees that all necessary small | |
2196 | * sized slab is initialized in current slab initialization sequence. | |
2197 | */ | |
40323278 | 2198 | if (debug_pagealloc_enabled() && (flags & SLAB_POISON) && |
f3a3c320 JK |
2199 | size >= 256 && cachep->object_size > cache_line_size()) { |
2200 | if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { | |
2201 | size_t tmp_size = ALIGN(size, PAGE_SIZE); | |
2202 | ||
2203 | if (set_off_slab_cache(cachep, tmp_size, flags)) { | |
2204 | flags |= CFLGS_OFF_SLAB; | |
2205 | cachep->obj_offset += tmp_size - size; | |
2206 | size = tmp_size; | |
2207 | goto done; | |
2208 | } | |
2209 | } | |
1da177e4 | 2210 | } |
1da177e4 LT |
2211 | #endif |
2212 | ||
b03a017b JK |
2213 | if (set_objfreelist_slab_cache(cachep, size, flags)) { |
2214 | flags |= CFLGS_OBJFREELIST_SLAB; | |
2215 | goto done; | |
2216 | } | |
2217 | ||
158e319b | 2218 | if (set_off_slab_cache(cachep, size, flags)) { |
1da177e4 | 2219 | flags |= CFLGS_OFF_SLAB; |
158e319b | 2220 | goto done; |
832a15d2 | 2221 | } |
1da177e4 | 2222 | |
158e319b JK |
2223 | if (set_on_slab_cache(cachep, size, flags)) |
2224 | goto done; | |
1da177e4 | 2225 | |
158e319b | 2226 | return -E2BIG; |
1da177e4 | 2227 | |
158e319b JK |
2228 | done: |
2229 | cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); | |
1da177e4 | 2230 | cachep->flags = flags; |
a57a4988 | 2231 | cachep->allocflags = __GFP_COMP; |
a3187e43 | 2232 | if (flags & SLAB_CACHE_DMA) |
a618e89f | 2233 | cachep->allocflags |= GFP_DMA; |
3b0efdfa | 2234 | cachep->size = size; |
6a2d7a95 | 2235 | cachep->reciprocal_buffer_size = reciprocal_value(size); |
1da177e4 | 2236 | |
40b44137 JK |
2237 | #if DEBUG |
2238 | /* | |
2239 | * If we're going to use the generic kernel_map_pages() | |
2240 | * poisoning, then it's going to smash the contents of | |
2241 | * the redzone and userword anyhow, so switch them off. | |
2242 | */ | |
2243 | if (IS_ENABLED(CONFIG_PAGE_POISONING) && | |
2244 | (cachep->flags & SLAB_POISON) && | |
2245 | is_debug_pagealloc_cache(cachep)) | |
2246 | cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); | |
2247 | #endif | |
2248 | ||
2249 | if (OFF_SLAB(cachep)) { | |
158e319b JK |
2250 | cachep->freelist_cache = |
2251 | kmalloc_slab(cachep->freelist_size, 0u); | |
e5ac9c5a | 2252 | } |
1da177e4 | 2253 | |
278b1bb1 CL |
2254 | err = setup_cpu_cache(cachep, gfp); |
2255 | if (err) { | |
52b4b950 | 2256 | __kmem_cache_release(cachep); |
278b1bb1 | 2257 | return err; |
2ed3a4ef | 2258 | } |
1da177e4 | 2259 | |
278b1bb1 | 2260 | return 0; |
1da177e4 | 2261 | } |
1da177e4 LT |
2262 | |
2263 | #if DEBUG | |
2264 | static void check_irq_off(void) | |
2265 | { | |
2266 | BUG_ON(!irqs_disabled()); | |
2267 | } | |
2268 | ||
2269 | static void check_irq_on(void) | |
2270 | { | |
2271 | BUG_ON(irqs_disabled()); | |
2272 | } | |
2273 | ||
18726ca8 JK |
2274 | static void check_mutex_acquired(void) |
2275 | { | |
2276 | BUG_ON(!mutex_is_locked(&slab_mutex)); | |
2277 | } | |
2278 | ||
343e0d7a | 2279 | static void check_spinlock_acquired(struct kmem_cache *cachep) |
1da177e4 LT |
2280 | { |
2281 | #ifdef CONFIG_SMP | |
2282 | check_irq_off(); | |
18bf8541 | 2283 | assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); |
1da177e4 LT |
2284 | #endif |
2285 | } | |
e498be7d | 2286 | |
343e0d7a | 2287 | static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) |
e498be7d CL |
2288 | { |
2289 | #ifdef CONFIG_SMP | |
2290 | check_irq_off(); | |
18bf8541 | 2291 | assert_spin_locked(&get_node(cachep, node)->list_lock); |
e498be7d CL |
2292 | #endif |
2293 | } | |
2294 | ||
1da177e4 LT |
2295 | #else |
2296 | #define check_irq_off() do { } while(0) | |
2297 | #define check_irq_on() do { } while(0) | |
18726ca8 | 2298 | #define check_mutex_acquired() do { } while(0) |
1da177e4 | 2299 | #define check_spinlock_acquired(x) do { } while(0) |
e498be7d | 2300 | #define check_spinlock_acquired_node(x, y) do { } while(0) |
1da177e4 LT |
2301 | #endif |
2302 | ||
18726ca8 JK |
2303 | static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, |
2304 | int node, bool free_all, struct list_head *list) | |
2305 | { | |
2306 | int tofree; | |
2307 | ||
2308 | if (!ac || !ac->avail) | |
2309 | return; | |
2310 | ||
2311 | tofree = free_all ? ac->avail : (ac->limit + 4) / 5; | |
2312 | if (tofree > ac->avail) | |
2313 | tofree = (ac->avail + 1) / 2; | |
2314 | ||
2315 | free_block(cachep, ac->entry, tofree, node, list); | |
2316 | ac->avail -= tofree; | |
2317 | memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); | |
2318 | } | |
aab2207c | 2319 | |
1da177e4 LT |
2320 | static void do_drain(void *arg) |
2321 | { | |
a737b3e2 | 2322 | struct kmem_cache *cachep = arg; |
1da177e4 | 2323 | struct array_cache *ac; |
7d6e6d09 | 2324 | int node = numa_mem_id(); |
18bf8541 | 2325 | struct kmem_cache_node *n; |
97654dfa | 2326 | LIST_HEAD(list); |
1da177e4 LT |
2327 | |
2328 | check_irq_off(); | |
9a2dba4b | 2329 | ac = cpu_cache_get(cachep); |
18bf8541 CL |
2330 | n = get_node(cachep, node); |
2331 | spin_lock(&n->list_lock); | |
97654dfa | 2332 | free_block(cachep, ac->entry, ac->avail, node, &list); |
18bf8541 | 2333 | spin_unlock(&n->list_lock); |
97654dfa | 2334 | slabs_destroy(cachep, &list); |
1da177e4 LT |
2335 | ac->avail = 0; |
2336 | } | |
2337 | ||
343e0d7a | 2338 | static void drain_cpu_caches(struct kmem_cache *cachep) |
1da177e4 | 2339 | { |
ce8eb6c4 | 2340 | struct kmem_cache_node *n; |
e498be7d | 2341 | int node; |
18726ca8 | 2342 | LIST_HEAD(list); |
e498be7d | 2343 | |
15c8b6c1 | 2344 | on_each_cpu(do_drain, cachep, 1); |
1da177e4 | 2345 | check_irq_on(); |
18bf8541 CL |
2346 | for_each_kmem_cache_node(cachep, node, n) |
2347 | if (n->alien) | |
ce8eb6c4 | 2348 | drain_alien_cache(cachep, n->alien); |
a4523a8b | 2349 | |
18726ca8 JK |
2350 | for_each_kmem_cache_node(cachep, node, n) { |
2351 | spin_lock_irq(&n->list_lock); | |
2352 | drain_array_locked(cachep, n->shared, node, true, &list); | |
2353 | spin_unlock_irq(&n->list_lock); | |
2354 | ||
2355 | slabs_destroy(cachep, &list); | |
2356 | } | |
1da177e4 LT |
2357 | } |
2358 | ||
ed11d9eb CL |
2359 | /* |
2360 | * Remove slabs from the list of free slabs. | |
2361 | * Specify the number of slabs to drain in tofree. | |
2362 | * | |
2363 | * Returns the actual number of slabs released. | |
2364 | */ | |
2365 | static int drain_freelist(struct kmem_cache *cache, | |
ce8eb6c4 | 2366 | struct kmem_cache_node *n, int tofree) |
1da177e4 | 2367 | { |
ed11d9eb CL |
2368 | struct list_head *p; |
2369 | int nr_freed; | |
8456a648 | 2370 | struct page *page; |
1da177e4 | 2371 | |
ed11d9eb | 2372 | nr_freed = 0; |
ce8eb6c4 | 2373 | while (nr_freed < tofree && !list_empty(&n->slabs_free)) { |
1da177e4 | 2374 | |
ce8eb6c4 CL |
2375 | spin_lock_irq(&n->list_lock); |
2376 | p = n->slabs_free.prev; | |
2377 | if (p == &n->slabs_free) { | |
2378 | spin_unlock_irq(&n->list_lock); | |
ed11d9eb CL |
2379 | goto out; |
2380 | } | |
1da177e4 | 2381 | |
8456a648 | 2382 | page = list_entry(p, struct page, lru); |
8456a648 | 2383 | list_del(&page->lru); |
ed11d9eb CL |
2384 | /* |
2385 | * Safe to drop the lock. The slab is no longer linked | |
2386 | * to the cache. | |
2387 | */ | |
ce8eb6c4 CL |
2388 | n->free_objects -= cache->num; |
2389 | spin_unlock_irq(&n->list_lock); | |
8456a648 | 2390 | slab_destroy(cache, page); |
ed11d9eb | 2391 | nr_freed++; |
1da177e4 | 2392 | } |
ed11d9eb CL |
2393 | out: |
2394 | return nr_freed; | |
1da177e4 LT |
2395 | } |
2396 | ||
d6e0b7fa | 2397 | int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate) |
e498be7d | 2398 | { |
18bf8541 CL |
2399 | int ret = 0; |
2400 | int node; | |
ce8eb6c4 | 2401 | struct kmem_cache_node *n; |
e498be7d CL |
2402 | |
2403 | drain_cpu_caches(cachep); | |
2404 | ||
2405 | check_irq_on(); | |
18bf8541 | 2406 | for_each_kmem_cache_node(cachep, node, n) { |
a5aa63a5 | 2407 | drain_freelist(cachep, n, INT_MAX); |
ed11d9eb | 2408 | |
ce8eb6c4 CL |
2409 | ret += !list_empty(&n->slabs_full) || |
2410 | !list_empty(&n->slabs_partial); | |
e498be7d CL |
2411 | } |
2412 | return (ret ? 1 : 0); | |
2413 | } | |
2414 | ||
945cf2b6 | 2415 | int __kmem_cache_shutdown(struct kmem_cache *cachep) |
52b4b950 DS |
2416 | { |
2417 | return __kmem_cache_shrink(cachep, false); | |
2418 | } | |
2419 | ||
2420 | void __kmem_cache_release(struct kmem_cache *cachep) | |
1da177e4 | 2421 | { |
12c3667f | 2422 | int i; |
ce8eb6c4 | 2423 | struct kmem_cache_node *n; |
1da177e4 | 2424 | |
c7ce4f60 TG |
2425 | cache_random_seq_destroy(cachep); |
2426 | ||
bf0dea23 | 2427 | free_percpu(cachep->cpu_cache); |
1da177e4 | 2428 | |
ce8eb6c4 | 2429 | /* NUMA: free the node structures */ |
18bf8541 CL |
2430 | for_each_kmem_cache_node(cachep, i, n) { |
2431 | kfree(n->shared); | |
2432 | free_alien_cache(n->alien); | |
2433 | kfree(n); | |
2434 | cachep->node[i] = NULL; | |
12c3667f | 2435 | } |
1da177e4 | 2436 | } |
1da177e4 | 2437 | |
e5ac9c5a RT |
2438 | /* |
2439 | * Get the memory for a slab management obj. | |
5f0985bb JZ |
2440 | * |
2441 | * For a slab cache when the slab descriptor is off-slab, the | |
2442 | * slab descriptor can't come from the same cache which is being created, | |
2443 | * Because if it is the case, that means we defer the creation of | |
2444 | * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. | |
2445 | * And we eventually call down to __kmem_cache_create(), which | |
2446 | * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. | |
2447 | * This is a "chicken-and-egg" problem. | |
2448 | * | |
2449 | * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, | |
2450 | * which are all initialized during kmem_cache_init(). | |
e5ac9c5a | 2451 | */ |
7e007355 | 2452 | static void *alloc_slabmgmt(struct kmem_cache *cachep, |
0c3aa83e JK |
2453 | struct page *page, int colour_off, |
2454 | gfp_t local_flags, int nodeid) | |
1da177e4 | 2455 | { |
7e007355 | 2456 | void *freelist; |
0c3aa83e | 2457 | void *addr = page_address(page); |
b28a02de | 2458 | |
2e6b3602 JK |
2459 | page->s_mem = addr + colour_off; |
2460 | page->active = 0; | |
2461 | ||
b03a017b JK |
2462 | if (OBJFREELIST_SLAB(cachep)) |
2463 | freelist = NULL; | |
2464 | else if (OFF_SLAB(cachep)) { | |
1da177e4 | 2465 | /* Slab management obj is off-slab. */ |
8456a648 | 2466 | freelist = kmem_cache_alloc_node(cachep->freelist_cache, |
8759ec50 | 2467 | local_flags, nodeid); |
8456a648 | 2468 | if (!freelist) |
1da177e4 LT |
2469 | return NULL; |
2470 | } else { | |
2e6b3602 JK |
2471 | /* We will use last bytes at the slab for freelist */ |
2472 | freelist = addr + (PAGE_SIZE << cachep->gfporder) - | |
2473 | cachep->freelist_size; | |
1da177e4 | 2474 | } |
2e6b3602 | 2475 | |
8456a648 | 2476 | return freelist; |
1da177e4 LT |
2477 | } |
2478 | ||
7cc68973 | 2479 | static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) |
1da177e4 | 2480 | { |
a41adfaa | 2481 | return ((freelist_idx_t *)page->freelist)[idx]; |
e5c58dfd JK |
2482 | } |
2483 | ||
2484 | static inline void set_free_obj(struct page *page, | |
7cc68973 | 2485 | unsigned int idx, freelist_idx_t val) |
e5c58dfd | 2486 | { |
a41adfaa | 2487 | ((freelist_idx_t *)(page->freelist))[idx] = val; |
1da177e4 LT |
2488 | } |
2489 | ||
10b2e9e8 | 2490 | static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) |
1da177e4 | 2491 | { |
10b2e9e8 | 2492 | #if DEBUG |
1da177e4 LT |
2493 | int i; |
2494 | ||
2495 | for (i = 0; i < cachep->num; i++) { | |
8456a648 | 2496 | void *objp = index_to_obj(cachep, page, i); |
10b2e9e8 | 2497 | |
1da177e4 LT |
2498 | if (cachep->flags & SLAB_STORE_USER) |
2499 | *dbg_userword(cachep, objp) = NULL; | |
2500 | ||
2501 | if (cachep->flags & SLAB_RED_ZONE) { | |
2502 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | |
2503 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2504 | } | |
2505 | /* | |
a737b3e2 AM |
2506 | * Constructors are not allowed to allocate memory from the same |
2507 | * cache which they are a constructor for. Otherwise, deadlock. | |
2508 | * They must also be threaded. | |
1da177e4 | 2509 | */ |
7ed2f9e6 AP |
2510 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { |
2511 | kasan_unpoison_object_data(cachep, | |
2512 | objp + obj_offset(cachep)); | |
51cc5068 | 2513 | cachep->ctor(objp + obj_offset(cachep)); |
7ed2f9e6 AP |
2514 | kasan_poison_object_data( |
2515 | cachep, objp + obj_offset(cachep)); | |
2516 | } | |
1da177e4 LT |
2517 | |
2518 | if (cachep->flags & SLAB_RED_ZONE) { | |
2519 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | |
756a025f | 2520 | slab_error(cachep, "constructor overwrote the end of an object"); |
1da177e4 | 2521 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) |
756a025f | 2522 | slab_error(cachep, "constructor overwrote the start of an object"); |
1da177e4 | 2523 | } |
40b44137 JK |
2524 | /* need to poison the objs? */ |
2525 | if (cachep->flags & SLAB_POISON) { | |
2526 | poison_obj(cachep, objp, POISON_FREE); | |
2527 | slab_kernel_map(cachep, objp, 0, 0); | |
2528 | } | |
10b2e9e8 | 2529 | } |
1da177e4 | 2530 | #endif |
10b2e9e8 JK |
2531 | } |
2532 | ||
c7ce4f60 TG |
2533 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
2534 | /* Hold information during a freelist initialization */ | |
2535 | union freelist_init_state { | |
2536 | struct { | |
2537 | unsigned int pos; | |
2538 | freelist_idx_t *list; | |
2539 | unsigned int count; | |
2540 | unsigned int rand; | |
2541 | }; | |
2542 | struct rnd_state rnd_state; | |
2543 | }; | |
2544 | ||
2545 | /* | |
2546 | * Initialize the state based on the randomization methode available. | |
2547 | * return true if the pre-computed list is available, false otherwize. | |
2548 | */ | |
2549 | static bool freelist_state_initialize(union freelist_init_state *state, | |
2550 | struct kmem_cache *cachep, | |
2551 | unsigned int count) | |
2552 | { | |
2553 | bool ret; | |
2554 | unsigned int rand; | |
2555 | ||
2556 | /* Use best entropy available to define a random shift */ | |
2557 | get_random_bytes_arch(&rand, sizeof(rand)); | |
2558 | ||
2559 | /* Use a random state if the pre-computed list is not available */ | |
2560 | if (!cachep->random_seq) { | |
2561 | prandom_seed_state(&state->rnd_state, rand); | |
2562 | ret = false; | |
2563 | } else { | |
2564 | state->list = cachep->random_seq; | |
2565 | state->count = count; | |
2566 | state->pos = 0; | |
2567 | state->rand = rand; | |
2568 | ret = true; | |
2569 | } | |
2570 | return ret; | |
2571 | } | |
2572 | ||
2573 | /* Get the next entry on the list and randomize it using a random shift */ | |
2574 | static freelist_idx_t next_random_slot(union freelist_init_state *state) | |
2575 | { | |
2576 | return (state->list[state->pos++] + state->rand) % state->count; | |
2577 | } | |
2578 | ||
2579 | /* | |
2580 | * Shuffle the freelist initialization state based on pre-computed lists. | |
2581 | * return true if the list was successfully shuffled, false otherwise. | |
2582 | */ | |
2583 | static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page) | |
2584 | { | |
2585 | unsigned int objfreelist = 0, i, count = cachep->num; | |
2586 | union freelist_init_state state; | |
2587 | bool precomputed; | |
2588 | ||
2589 | if (count < 2) | |
2590 | return false; | |
2591 | ||
2592 | precomputed = freelist_state_initialize(&state, cachep, count); | |
2593 | ||
2594 | /* Take a random entry as the objfreelist */ | |
2595 | if (OBJFREELIST_SLAB(cachep)) { | |
2596 | if (!precomputed) | |
2597 | objfreelist = count - 1; | |
2598 | else | |
2599 | objfreelist = next_random_slot(&state); | |
2600 | page->freelist = index_to_obj(cachep, page, objfreelist) + | |
2601 | obj_offset(cachep); | |
2602 | count--; | |
2603 | } | |
2604 | ||
2605 | /* | |
2606 | * On early boot, generate the list dynamically. | |
2607 | * Later use a pre-computed list for speed. | |
2608 | */ | |
2609 | if (!precomputed) { | |
2610 | freelist_randomize(&state.rnd_state, page->freelist, count); | |
2611 | } else { | |
2612 | for (i = 0; i < count; i++) | |
2613 | set_free_obj(page, i, next_random_slot(&state)); | |
2614 | } | |
2615 | ||
2616 | if (OBJFREELIST_SLAB(cachep)) | |
2617 | set_free_obj(page, cachep->num - 1, objfreelist); | |
2618 | ||
2619 | return true; | |
2620 | } | |
2621 | #else | |
2622 | static inline bool shuffle_freelist(struct kmem_cache *cachep, | |
2623 | struct page *page) | |
2624 | { | |
2625 | return false; | |
2626 | } | |
2627 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
2628 | ||
10b2e9e8 JK |
2629 | static void cache_init_objs(struct kmem_cache *cachep, |
2630 | struct page *page) | |
2631 | { | |
2632 | int i; | |
7ed2f9e6 | 2633 | void *objp; |
c7ce4f60 | 2634 | bool shuffled; |
10b2e9e8 JK |
2635 | |
2636 | cache_init_objs_debug(cachep, page); | |
2637 | ||
c7ce4f60 TG |
2638 | /* Try to randomize the freelist if enabled */ |
2639 | shuffled = shuffle_freelist(cachep, page); | |
2640 | ||
2641 | if (!shuffled && OBJFREELIST_SLAB(cachep)) { | |
b03a017b JK |
2642 | page->freelist = index_to_obj(cachep, page, cachep->num - 1) + |
2643 | obj_offset(cachep); | |
2644 | } | |
2645 | ||
10b2e9e8 JK |
2646 | for (i = 0; i < cachep->num; i++) { |
2647 | /* constructor could break poison info */ | |
7ed2f9e6 AP |
2648 | if (DEBUG == 0 && cachep->ctor) { |
2649 | objp = index_to_obj(cachep, page, i); | |
2650 | kasan_unpoison_object_data(cachep, objp); | |
2651 | cachep->ctor(objp); | |
2652 | kasan_poison_object_data(cachep, objp); | |
2653 | } | |
10b2e9e8 | 2654 | |
c7ce4f60 TG |
2655 | if (!shuffled) |
2656 | set_free_obj(page, i, i); | |
1da177e4 | 2657 | } |
1da177e4 LT |
2658 | } |
2659 | ||
260b61dd | 2660 | static void *slab_get_obj(struct kmem_cache *cachep, struct page *page) |
78d382d7 | 2661 | { |
b1cb0982 | 2662 | void *objp; |
78d382d7 | 2663 | |
e5c58dfd | 2664 | objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); |
8456a648 | 2665 | page->active++; |
78d382d7 | 2666 | |
d31676df JK |
2667 | #if DEBUG |
2668 | if (cachep->flags & SLAB_STORE_USER) | |
2669 | set_store_user_dirty(cachep); | |
2670 | #endif | |
2671 | ||
78d382d7 MD |
2672 | return objp; |
2673 | } | |
2674 | ||
260b61dd JK |
2675 | static void slab_put_obj(struct kmem_cache *cachep, |
2676 | struct page *page, void *objp) | |
78d382d7 | 2677 | { |
8456a648 | 2678 | unsigned int objnr = obj_to_index(cachep, page, objp); |
78d382d7 | 2679 | #if DEBUG |
16025177 | 2680 | unsigned int i; |
b1cb0982 | 2681 | |
b1cb0982 | 2682 | /* Verify double free bug */ |
8456a648 | 2683 | for (i = page->active; i < cachep->num; i++) { |
e5c58dfd | 2684 | if (get_free_obj(page, i) == objnr) { |
1170532b | 2685 | pr_err("slab: double free detected in cache '%s', objp %p\n", |
756a025f | 2686 | cachep->name, objp); |
b1cb0982 JK |
2687 | BUG(); |
2688 | } | |
78d382d7 MD |
2689 | } |
2690 | #endif | |
8456a648 | 2691 | page->active--; |
b03a017b JK |
2692 | if (!page->freelist) |
2693 | page->freelist = objp + obj_offset(cachep); | |
2694 | ||
e5c58dfd | 2695 | set_free_obj(page, page->active, objnr); |
78d382d7 MD |
2696 | } |
2697 | ||
4776874f PE |
2698 | /* |
2699 | * Map pages beginning at addr to the given cache and slab. This is required | |
2700 | * for the slab allocator to be able to lookup the cache and slab of a | |
ccd35fb9 | 2701 | * virtual address for kfree, ksize, and slab debugging. |
4776874f | 2702 | */ |
8456a648 | 2703 | static void slab_map_pages(struct kmem_cache *cache, struct page *page, |
7e007355 | 2704 | void *freelist) |
1da177e4 | 2705 | { |
a57a4988 | 2706 | page->slab_cache = cache; |
8456a648 | 2707 | page->freelist = freelist; |
1da177e4 LT |
2708 | } |
2709 | ||
2710 | /* | |
2711 | * Grow (by 1) the number of slabs within a cache. This is called by | |
2712 | * kmem_cache_alloc() when there are no active objs left in a cache. | |
2713 | */ | |
76b342bd JK |
2714 | static struct page *cache_grow_begin(struct kmem_cache *cachep, |
2715 | gfp_t flags, int nodeid) | |
1da177e4 | 2716 | { |
7e007355 | 2717 | void *freelist; |
b28a02de PE |
2718 | size_t offset; |
2719 | gfp_t local_flags; | |
511e3a05 | 2720 | int page_node; |
ce8eb6c4 | 2721 | struct kmem_cache_node *n; |
511e3a05 | 2722 | struct page *page; |
1da177e4 | 2723 | |
a737b3e2 AM |
2724 | /* |
2725 | * Be lazy and only check for valid flags here, keeping it out of the | |
2726 | * critical path in kmem_cache_alloc(). | |
1da177e4 | 2727 | */ |
c871ac4e AM |
2728 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) { |
2729 | pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK); | |
2730 | BUG(); | |
2731 | } | |
6cb06229 | 2732 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); |
1da177e4 | 2733 | |
1da177e4 | 2734 | check_irq_off(); |
d0164adc | 2735 | if (gfpflags_allow_blocking(local_flags)) |
1da177e4 LT |
2736 | local_irq_enable(); |
2737 | ||
a737b3e2 AM |
2738 | /* |
2739 | * Get mem for the objs. Attempt to allocate a physical page from | |
2740 | * 'nodeid'. | |
e498be7d | 2741 | */ |
511e3a05 | 2742 | page = kmem_getpages(cachep, local_flags, nodeid); |
0c3aa83e | 2743 | if (!page) |
1da177e4 LT |
2744 | goto failed; |
2745 | ||
511e3a05 JK |
2746 | page_node = page_to_nid(page); |
2747 | n = get_node(cachep, page_node); | |
03d1d43a JK |
2748 | |
2749 | /* Get colour for the slab, and cal the next value. */ | |
2750 | n->colour_next++; | |
2751 | if (n->colour_next >= cachep->colour) | |
2752 | n->colour_next = 0; | |
2753 | ||
2754 | offset = n->colour_next; | |
2755 | if (offset >= cachep->colour) | |
2756 | offset = 0; | |
2757 | ||
2758 | offset *= cachep->colour_off; | |
2759 | ||
1da177e4 | 2760 | /* Get slab management. */ |
8456a648 | 2761 | freelist = alloc_slabmgmt(cachep, page, offset, |
511e3a05 | 2762 | local_flags & ~GFP_CONSTRAINT_MASK, page_node); |
b03a017b | 2763 | if (OFF_SLAB(cachep) && !freelist) |
1da177e4 LT |
2764 | goto opps1; |
2765 | ||
8456a648 | 2766 | slab_map_pages(cachep, page, freelist); |
1da177e4 | 2767 | |
7ed2f9e6 | 2768 | kasan_poison_slab(page); |
8456a648 | 2769 | cache_init_objs(cachep, page); |
1da177e4 | 2770 | |
d0164adc | 2771 | if (gfpflags_allow_blocking(local_flags)) |
1da177e4 | 2772 | local_irq_disable(); |
1da177e4 | 2773 | |
76b342bd JK |
2774 | return page; |
2775 | ||
a737b3e2 | 2776 | opps1: |
0c3aa83e | 2777 | kmem_freepages(cachep, page); |
a737b3e2 | 2778 | failed: |
d0164adc | 2779 | if (gfpflags_allow_blocking(local_flags)) |
1da177e4 | 2780 | local_irq_disable(); |
76b342bd JK |
2781 | return NULL; |
2782 | } | |
2783 | ||
2784 | static void cache_grow_end(struct kmem_cache *cachep, struct page *page) | |
2785 | { | |
2786 | struct kmem_cache_node *n; | |
2787 | void *list = NULL; | |
2788 | ||
2789 | check_irq_off(); | |
2790 | ||
2791 | if (!page) | |
2792 | return; | |
2793 | ||
2794 | INIT_LIST_HEAD(&page->lru); | |
2795 | n = get_node(cachep, page_to_nid(page)); | |
2796 | ||
2797 | spin_lock(&n->list_lock); | |
2798 | if (!page->active) | |
2799 | list_add_tail(&page->lru, &(n->slabs_free)); | |
2800 | else | |
2801 | fixup_slab_list(cachep, n, page, &list); | |
2802 | STATS_INC_GROWN(cachep); | |
2803 | n->free_objects += cachep->num - page->active; | |
2804 | spin_unlock(&n->list_lock); | |
2805 | ||
2806 | fixup_objfreelist_debug(cachep, &list); | |
1da177e4 LT |
2807 | } |
2808 | ||
2809 | #if DEBUG | |
2810 | ||
2811 | /* | |
2812 | * Perform extra freeing checks: | |
2813 | * - detect bad pointers. | |
2814 | * - POISON/RED_ZONE checking | |
1da177e4 LT |
2815 | */ |
2816 | static void kfree_debugcheck(const void *objp) | |
2817 | { | |
1da177e4 | 2818 | if (!virt_addr_valid(objp)) { |
1170532b | 2819 | pr_err("kfree_debugcheck: out of range ptr %lxh\n", |
b28a02de PE |
2820 | (unsigned long)objp); |
2821 | BUG(); | |
1da177e4 | 2822 | } |
1da177e4 LT |
2823 | } |
2824 | ||
58ce1fd5 PE |
2825 | static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) |
2826 | { | |
b46b8f19 | 2827 | unsigned long long redzone1, redzone2; |
58ce1fd5 PE |
2828 | |
2829 | redzone1 = *dbg_redzone1(cache, obj); | |
2830 | redzone2 = *dbg_redzone2(cache, obj); | |
2831 | ||
2832 | /* | |
2833 | * Redzone is ok. | |
2834 | */ | |
2835 | if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) | |
2836 | return; | |
2837 | ||
2838 | if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) | |
2839 | slab_error(cache, "double free detected"); | |
2840 | else | |
2841 | slab_error(cache, "memory outside object was overwritten"); | |
2842 | ||
1170532b JP |
2843 | pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n", |
2844 | obj, redzone1, redzone2); | |
58ce1fd5 PE |
2845 | } |
2846 | ||
343e0d7a | 2847 | static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, |
7c0cb9c6 | 2848 | unsigned long caller) |
1da177e4 | 2849 | { |
1da177e4 | 2850 | unsigned int objnr; |
8456a648 | 2851 | struct page *page; |
1da177e4 | 2852 | |
80cbd911 MW |
2853 | BUG_ON(virt_to_cache(objp) != cachep); |
2854 | ||
3dafccf2 | 2855 | objp -= obj_offset(cachep); |
1da177e4 | 2856 | kfree_debugcheck(objp); |
b49af68f | 2857 | page = virt_to_head_page(objp); |
1da177e4 | 2858 | |
1da177e4 | 2859 | if (cachep->flags & SLAB_RED_ZONE) { |
58ce1fd5 | 2860 | verify_redzone_free(cachep, objp); |
1da177e4 LT |
2861 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; |
2862 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2863 | } | |
d31676df JK |
2864 | if (cachep->flags & SLAB_STORE_USER) { |
2865 | set_store_user_dirty(cachep); | |
7c0cb9c6 | 2866 | *dbg_userword(cachep, objp) = (void *)caller; |
d31676df | 2867 | } |
1da177e4 | 2868 | |
8456a648 | 2869 | objnr = obj_to_index(cachep, page, objp); |
1da177e4 LT |
2870 | |
2871 | BUG_ON(objnr >= cachep->num); | |
8456a648 | 2872 | BUG_ON(objp != index_to_obj(cachep, page, objnr)); |
1da177e4 | 2873 | |
1da177e4 | 2874 | if (cachep->flags & SLAB_POISON) { |
1da177e4 | 2875 | poison_obj(cachep, objp, POISON_FREE); |
40b44137 | 2876 | slab_kernel_map(cachep, objp, 0, caller); |
1da177e4 LT |
2877 | } |
2878 | return objp; | |
2879 | } | |
2880 | ||
1da177e4 LT |
2881 | #else |
2882 | #define kfree_debugcheck(x) do { } while(0) | |
2883 | #define cache_free_debugcheck(x,objp,z) (objp) | |
1da177e4 LT |
2884 | #endif |
2885 | ||
b03a017b JK |
2886 | static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, |
2887 | void **list) | |
2888 | { | |
2889 | #if DEBUG | |
2890 | void *next = *list; | |
2891 | void *objp; | |
2892 | ||
2893 | while (next) { | |
2894 | objp = next - obj_offset(cachep); | |
2895 | next = *(void **)next; | |
2896 | poison_obj(cachep, objp, POISON_FREE); | |
2897 | } | |
2898 | #endif | |
2899 | } | |
2900 | ||
d8410234 | 2901 | static inline void fixup_slab_list(struct kmem_cache *cachep, |
b03a017b JK |
2902 | struct kmem_cache_node *n, struct page *page, |
2903 | void **list) | |
d8410234 JK |
2904 | { |
2905 | /* move slabp to correct slabp list: */ | |
2906 | list_del(&page->lru); | |
b03a017b | 2907 | if (page->active == cachep->num) { |
d8410234 | 2908 | list_add(&page->lru, &n->slabs_full); |
b03a017b JK |
2909 | if (OBJFREELIST_SLAB(cachep)) { |
2910 | #if DEBUG | |
2911 | /* Poisoning will be done without holding the lock */ | |
2912 | if (cachep->flags & SLAB_POISON) { | |
2913 | void **objp = page->freelist; | |
2914 | ||
2915 | *objp = *list; | |
2916 | *list = objp; | |
2917 | } | |
2918 | #endif | |
2919 | page->freelist = NULL; | |
2920 | } | |
2921 | } else | |
d8410234 JK |
2922 | list_add(&page->lru, &n->slabs_partial); |
2923 | } | |
2924 | ||
f68f8ddd JK |
2925 | /* Try to find non-pfmemalloc slab if needed */ |
2926 | static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n, | |
2927 | struct page *page, bool pfmemalloc) | |
2928 | { | |
2929 | if (!page) | |
2930 | return NULL; | |
2931 | ||
2932 | if (pfmemalloc) | |
2933 | return page; | |
2934 | ||
2935 | if (!PageSlabPfmemalloc(page)) | |
2936 | return page; | |
2937 | ||
2938 | /* No need to keep pfmemalloc slab if we have enough free objects */ | |
2939 | if (n->free_objects > n->free_limit) { | |
2940 | ClearPageSlabPfmemalloc(page); | |
2941 | return page; | |
2942 | } | |
2943 | ||
2944 | /* Move pfmemalloc slab to the end of list to speed up next search */ | |
2945 | list_del(&page->lru); | |
2946 | if (!page->active) | |
2947 | list_add_tail(&page->lru, &n->slabs_free); | |
2948 | else | |
2949 | list_add_tail(&page->lru, &n->slabs_partial); | |
2950 | ||
2951 | list_for_each_entry(page, &n->slabs_partial, lru) { | |
2952 | if (!PageSlabPfmemalloc(page)) | |
2953 | return page; | |
2954 | } | |
2955 | ||
2956 | list_for_each_entry(page, &n->slabs_free, lru) { | |
2957 | if (!PageSlabPfmemalloc(page)) | |
2958 | return page; | |
2959 | } | |
2960 | ||
2961 | return NULL; | |
2962 | } | |
2963 | ||
2964 | static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) | |
7aa0d227 GT |
2965 | { |
2966 | struct page *page; | |
2967 | ||
2968 | page = list_first_entry_or_null(&n->slabs_partial, | |
2969 | struct page, lru); | |
2970 | if (!page) { | |
2971 | n->free_touched = 1; | |
2972 | page = list_first_entry_or_null(&n->slabs_free, | |
2973 | struct page, lru); | |
2974 | } | |
2975 | ||
f68f8ddd JK |
2976 | if (sk_memalloc_socks()) |
2977 | return get_valid_first_slab(n, page, pfmemalloc); | |
2978 | ||
7aa0d227 GT |
2979 | return page; |
2980 | } | |
2981 | ||
f68f8ddd JK |
2982 | static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, |
2983 | struct kmem_cache_node *n, gfp_t flags) | |
2984 | { | |
2985 | struct page *page; | |
2986 | void *obj; | |
2987 | void *list = NULL; | |
2988 | ||
2989 | if (!gfp_pfmemalloc_allowed(flags)) | |
2990 | return NULL; | |
2991 | ||
2992 | spin_lock(&n->list_lock); | |
2993 | page = get_first_slab(n, true); | |
2994 | if (!page) { | |
2995 | spin_unlock(&n->list_lock); | |
2996 | return NULL; | |
2997 | } | |
2998 | ||
2999 | obj = slab_get_obj(cachep, page); | |
3000 | n->free_objects--; | |
3001 | ||
3002 | fixup_slab_list(cachep, n, page, &list); | |
3003 | ||
3004 | spin_unlock(&n->list_lock); | |
3005 | fixup_objfreelist_debug(cachep, &list); | |
3006 | ||
3007 | return obj; | |
3008 | } | |
3009 | ||
213b4695 JK |
3010 | /* |
3011 | * Slab list should be fixed up by fixup_slab_list() for existing slab | |
3012 | * or cache_grow_end() for new slab | |
3013 | */ | |
3014 | static __always_inline int alloc_block(struct kmem_cache *cachep, | |
3015 | struct array_cache *ac, struct page *page, int batchcount) | |
3016 | { | |
3017 | /* | |
3018 | * There must be at least one object available for | |
3019 | * allocation. | |
3020 | */ | |
3021 | BUG_ON(page->active >= cachep->num); | |
3022 | ||
3023 | while (page->active < cachep->num && batchcount--) { | |
3024 | STATS_INC_ALLOCED(cachep); | |
3025 | STATS_INC_ACTIVE(cachep); | |
3026 | STATS_SET_HIGH(cachep); | |
3027 | ||
3028 | ac->entry[ac->avail++] = slab_get_obj(cachep, page); | |
3029 | } | |
3030 | ||
3031 | return batchcount; | |
3032 | } | |
3033 | ||
f68f8ddd | 3034 | static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 LT |
3035 | { |
3036 | int batchcount; | |
ce8eb6c4 | 3037 | struct kmem_cache_node *n; |
801faf0d | 3038 | struct array_cache *ac, *shared; |
1ca4cb24 | 3039 | int node; |
b03a017b | 3040 | void *list = NULL; |
76b342bd | 3041 | struct page *page; |
1ca4cb24 | 3042 | |
1da177e4 | 3043 | check_irq_off(); |
7d6e6d09 | 3044 | node = numa_mem_id(); |
f68f8ddd | 3045 | |
9a2dba4b | 3046 | ac = cpu_cache_get(cachep); |
1da177e4 LT |
3047 | batchcount = ac->batchcount; |
3048 | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | |
a737b3e2 AM |
3049 | /* |
3050 | * If there was little recent activity on this cache, then | |
3051 | * perform only a partial refill. Otherwise we could generate | |
3052 | * refill bouncing. | |
1da177e4 LT |
3053 | */ |
3054 | batchcount = BATCHREFILL_LIMIT; | |
3055 | } | |
18bf8541 | 3056 | n = get_node(cachep, node); |
e498be7d | 3057 | |
ce8eb6c4 | 3058 | BUG_ON(ac->avail > 0 || !n); |
801faf0d JK |
3059 | shared = READ_ONCE(n->shared); |
3060 | if (!n->free_objects && (!shared || !shared->avail)) | |
3061 | goto direct_grow; | |
3062 | ||
ce8eb6c4 | 3063 | spin_lock(&n->list_lock); |
801faf0d | 3064 | shared = READ_ONCE(n->shared); |
1da177e4 | 3065 | |
3ded175a | 3066 | /* See if we can refill from the shared array */ |
801faf0d JK |
3067 | if (shared && transfer_objects(ac, shared, batchcount)) { |
3068 | shared->touched = 1; | |
3ded175a | 3069 | goto alloc_done; |
44b57f1c | 3070 | } |
3ded175a | 3071 | |
1da177e4 | 3072 | while (batchcount > 0) { |
1da177e4 | 3073 | /* Get slab alloc is to come from. */ |
f68f8ddd | 3074 | page = get_first_slab(n, false); |
7aa0d227 GT |
3075 | if (!page) |
3076 | goto must_grow; | |
1da177e4 | 3077 | |
1da177e4 | 3078 | check_spinlock_acquired(cachep); |
714b8171 | 3079 | |
213b4695 | 3080 | batchcount = alloc_block(cachep, ac, page, batchcount); |
b03a017b | 3081 | fixup_slab_list(cachep, n, page, &list); |
1da177e4 LT |
3082 | } |
3083 | ||
a737b3e2 | 3084 | must_grow: |
ce8eb6c4 | 3085 | n->free_objects -= ac->avail; |
a737b3e2 | 3086 | alloc_done: |
ce8eb6c4 | 3087 | spin_unlock(&n->list_lock); |
b03a017b | 3088 | fixup_objfreelist_debug(cachep, &list); |
1da177e4 | 3089 | |
801faf0d | 3090 | direct_grow: |
1da177e4 | 3091 | if (unlikely(!ac->avail)) { |
f68f8ddd JK |
3092 | /* Check if we can use obj in pfmemalloc slab */ |
3093 | if (sk_memalloc_socks()) { | |
3094 | void *obj = cache_alloc_pfmemalloc(cachep, n, flags); | |
3095 | ||
3096 | if (obj) | |
3097 | return obj; | |
3098 | } | |
3099 | ||
76b342bd | 3100 | page = cache_grow_begin(cachep, gfp_exact_node(flags), node); |
e498be7d | 3101 | |
76b342bd JK |
3102 | /* |
3103 | * cache_grow_begin() can reenable interrupts, | |
3104 | * then ac could change. | |
3105 | */ | |
9a2dba4b | 3106 | ac = cpu_cache_get(cachep); |
213b4695 JK |
3107 | if (!ac->avail && page) |
3108 | alloc_block(cachep, ac, page, batchcount); | |
3109 | cache_grow_end(cachep, page); | |
072bb0aa | 3110 | |
213b4695 | 3111 | if (!ac->avail) |
1da177e4 | 3112 | return NULL; |
1da177e4 LT |
3113 | } |
3114 | ac->touched = 1; | |
072bb0aa | 3115 | |
f68f8ddd | 3116 | return ac->entry[--ac->avail]; |
1da177e4 LT |
3117 | } |
3118 | ||
a737b3e2 AM |
3119 | static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, |
3120 | gfp_t flags) | |
1da177e4 | 3121 | { |
d0164adc | 3122 | might_sleep_if(gfpflags_allow_blocking(flags)); |
1da177e4 LT |
3123 | } |
3124 | ||
3125 | #if DEBUG | |
a737b3e2 | 3126 | static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, |
7c0cb9c6 | 3127 | gfp_t flags, void *objp, unsigned long caller) |
1da177e4 | 3128 | { |
b28a02de | 3129 | if (!objp) |
1da177e4 | 3130 | return objp; |
b28a02de | 3131 | if (cachep->flags & SLAB_POISON) { |
1da177e4 | 3132 | check_poison_obj(cachep, objp); |
40b44137 | 3133 | slab_kernel_map(cachep, objp, 1, 0); |
1da177e4 LT |
3134 | poison_obj(cachep, objp, POISON_INUSE); |
3135 | } | |
3136 | if (cachep->flags & SLAB_STORE_USER) | |
7c0cb9c6 | 3137 | *dbg_userword(cachep, objp) = (void *)caller; |
1da177e4 LT |
3138 | |
3139 | if (cachep->flags & SLAB_RED_ZONE) { | |
a737b3e2 AM |
3140 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || |
3141 | *dbg_redzone2(cachep, objp) != RED_INACTIVE) { | |
756a025f | 3142 | slab_error(cachep, "double free, or memory outside object was overwritten"); |
1170532b JP |
3143 | pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n", |
3144 | objp, *dbg_redzone1(cachep, objp), | |
3145 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
3146 | } |
3147 | *dbg_redzone1(cachep, objp) = RED_ACTIVE; | |
3148 | *dbg_redzone2(cachep, objp) = RED_ACTIVE; | |
3149 | } | |
03787301 | 3150 | |
3dafccf2 | 3151 | objp += obj_offset(cachep); |
4f104934 | 3152 | if (cachep->ctor && cachep->flags & SLAB_POISON) |
51cc5068 | 3153 | cachep->ctor(objp); |
7ea466f2 TH |
3154 | if (ARCH_SLAB_MINALIGN && |
3155 | ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { | |
1170532b | 3156 | pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", |
c225150b | 3157 | objp, (int)ARCH_SLAB_MINALIGN); |
a44b56d3 | 3158 | } |
1da177e4 LT |
3159 | return objp; |
3160 | } | |
3161 | #else | |
3162 | #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) | |
3163 | #endif | |
3164 | ||
343e0d7a | 3165 | static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3166 | { |
b28a02de | 3167 | void *objp; |
1da177e4 LT |
3168 | struct array_cache *ac; |
3169 | ||
5c382300 | 3170 | check_irq_off(); |
8a8b6502 | 3171 | |
9a2dba4b | 3172 | ac = cpu_cache_get(cachep); |
1da177e4 | 3173 | if (likely(ac->avail)) { |
1da177e4 | 3174 | ac->touched = 1; |
f68f8ddd | 3175 | objp = ac->entry[--ac->avail]; |
072bb0aa | 3176 | |
f68f8ddd JK |
3177 | STATS_INC_ALLOCHIT(cachep); |
3178 | goto out; | |
1da177e4 | 3179 | } |
072bb0aa MG |
3180 | |
3181 | STATS_INC_ALLOCMISS(cachep); | |
f68f8ddd | 3182 | objp = cache_alloc_refill(cachep, flags); |
072bb0aa MG |
3183 | /* |
3184 | * the 'ac' may be updated by cache_alloc_refill(), | |
3185 | * and kmemleak_erase() requires its correct value. | |
3186 | */ | |
3187 | ac = cpu_cache_get(cachep); | |
3188 | ||
3189 | out: | |
d5cff635 CM |
3190 | /* |
3191 | * To avoid a false negative, if an object that is in one of the | |
3192 | * per-CPU caches is leaked, we need to make sure kmemleak doesn't | |
3193 | * treat the array pointers as a reference to the object. | |
3194 | */ | |
f3d8b53a O |
3195 | if (objp) |
3196 | kmemleak_erase(&ac->entry[ac->avail]); | |
5c382300 AK |
3197 | return objp; |
3198 | } | |
3199 | ||
e498be7d | 3200 | #ifdef CONFIG_NUMA |
c61afb18 | 3201 | /* |
2ad654bc | 3202 | * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. |
c61afb18 PJ |
3203 | * |
3204 | * If we are in_interrupt, then process context, including cpusets and | |
3205 | * mempolicy, may not apply and should not be used for allocation policy. | |
3206 | */ | |
3207 | static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3208 | { | |
3209 | int nid_alloc, nid_here; | |
3210 | ||
765c4507 | 3211 | if (in_interrupt() || (flags & __GFP_THISNODE)) |
c61afb18 | 3212 | return NULL; |
7d6e6d09 | 3213 | nid_alloc = nid_here = numa_mem_id(); |
c61afb18 | 3214 | if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) |
6adef3eb | 3215 | nid_alloc = cpuset_slab_spread_node(); |
c61afb18 | 3216 | else if (current->mempolicy) |
2a389610 | 3217 | nid_alloc = mempolicy_slab_node(); |
c61afb18 | 3218 | if (nid_alloc != nid_here) |
8b98c169 | 3219 | return ____cache_alloc_node(cachep, flags, nid_alloc); |
c61afb18 PJ |
3220 | return NULL; |
3221 | } | |
3222 | ||
765c4507 CL |
3223 | /* |
3224 | * Fallback function if there was no memory available and no objects on a | |
3c517a61 | 3225 | * certain node and fall back is permitted. First we scan all the |
6a67368c | 3226 | * available node for available objects. If that fails then we |
3c517a61 CL |
3227 | * perform an allocation without specifying a node. This allows the page |
3228 | * allocator to do its reclaim / fallback magic. We then insert the | |
3229 | * slab into the proper nodelist and then allocate from it. | |
765c4507 | 3230 | */ |
8c8cc2c1 | 3231 | static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) |
765c4507 | 3232 | { |
8c8cc2c1 | 3233 | struct zonelist *zonelist; |
dd1a239f | 3234 | struct zoneref *z; |
54a6eb5c MG |
3235 | struct zone *zone; |
3236 | enum zone_type high_zoneidx = gfp_zone(flags); | |
765c4507 | 3237 | void *obj = NULL; |
76b342bd | 3238 | struct page *page; |
3c517a61 | 3239 | int nid; |
cc9a6c87 | 3240 | unsigned int cpuset_mems_cookie; |
8c8cc2c1 PE |
3241 | |
3242 | if (flags & __GFP_THISNODE) | |
3243 | return NULL; | |
3244 | ||
cc9a6c87 | 3245 | retry_cpuset: |
d26914d1 | 3246 | cpuset_mems_cookie = read_mems_allowed_begin(); |
2a389610 | 3247 | zonelist = node_zonelist(mempolicy_slab_node(), flags); |
cc9a6c87 | 3248 | |
3c517a61 CL |
3249 | retry: |
3250 | /* | |
3251 | * Look through allowed nodes for objects available | |
3252 | * from existing per node queues. | |
3253 | */ | |
54a6eb5c MG |
3254 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
3255 | nid = zone_to_nid(zone); | |
aedb0eb1 | 3256 | |
061d7074 | 3257 | if (cpuset_zone_allowed(zone, flags) && |
18bf8541 CL |
3258 | get_node(cache, nid) && |
3259 | get_node(cache, nid)->free_objects) { | |
3c517a61 | 3260 | obj = ____cache_alloc_node(cache, |
4167e9b2 | 3261 | gfp_exact_node(flags), nid); |
481c5346 CL |
3262 | if (obj) |
3263 | break; | |
3264 | } | |
3c517a61 CL |
3265 | } |
3266 | ||
cfce6604 | 3267 | if (!obj) { |
3c517a61 CL |
3268 | /* |
3269 | * This allocation will be performed within the constraints | |
3270 | * of the current cpuset / memory policy requirements. | |
3271 | * We may trigger various forms of reclaim on the allowed | |
3272 | * set and go into memory reserves if necessary. | |
3273 | */ | |
76b342bd JK |
3274 | page = cache_grow_begin(cache, flags, numa_mem_id()); |
3275 | cache_grow_end(cache, page); | |
3276 | if (page) { | |
3277 | nid = page_to_nid(page); | |
511e3a05 JK |
3278 | obj = ____cache_alloc_node(cache, |
3279 | gfp_exact_node(flags), nid); | |
0c3aa83e | 3280 | |
3c517a61 | 3281 | /* |
511e3a05 JK |
3282 | * Another processor may allocate the objects in |
3283 | * the slab since we are not holding any locks. | |
3c517a61 | 3284 | */ |
511e3a05 JK |
3285 | if (!obj) |
3286 | goto retry; | |
3c517a61 | 3287 | } |
aedb0eb1 | 3288 | } |
cc9a6c87 | 3289 | |
d26914d1 | 3290 | if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) |
cc9a6c87 | 3291 | goto retry_cpuset; |
765c4507 CL |
3292 | return obj; |
3293 | } | |
3294 | ||
e498be7d CL |
3295 | /* |
3296 | * A interface to enable slab creation on nodeid | |
1da177e4 | 3297 | */ |
8b98c169 | 3298 | static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, |
a737b3e2 | 3299 | int nodeid) |
e498be7d | 3300 | { |
8456a648 | 3301 | struct page *page; |
ce8eb6c4 | 3302 | struct kmem_cache_node *n; |
213b4695 | 3303 | void *obj = NULL; |
b03a017b | 3304 | void *list = NULL; |
b28a02de | 3305 | |
7c3fbbdd | 3306 | VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); |
18bf8541 | 3307 | n = get_node(cachep, nodeid); |
ce8eb6c4 | 3308 | BUG_ON(!n); |
b28a02de | 3309 | |
ca3b9b91 | 3310 | check_irq_off(); |
ce8eb6c4 | 3311 | spin_lock(&n->list_lock); |
f68f8ddd | 3312 | page = get_first_slab(n, false); |
7aa0d227 GT |
3313 | if (!page) |
3314 | goto must_grow; | |
b28a02de | 3315 | |
b28a02de | 3316 | check_spinlock_acquired_node(cachep, nodeid); |
b28a02de PE |
3317 | |
3318 | STATS_INC_NODEALLOCS(cachep); | |
3319 | STATS_INC_ACTIVE(cachep); | |
3320 | STATS_SET_HIGH(cachep); | |
3321 | ||
8456a648 | 3322 | BUG_ON(page->active == cachep->num); |
b28a02de | 3323 | |
260b61dd | 3324 | obj = slab_get_obj(cachep, page); |
ce8eb6c4 | 3325 | n->free_objects--; |
b28a02de | 3326 | |
b03a017b | 3327 | fixup_slab_list(cachep, n, page, &list); |
e498be7d | 3328 | |
ce8eb6c4 | 3329 | spin_unlock(&n->list_lock); |
b03a017b | 3330 | fixup_objfreelist_debug(cachep, &list); |
213b4695 | 3331 | return obj; |
e498be7d | 3332 | |
a737b3e2 | 3333 | must_grow: |
ce8eb6c4 | 3334 | spin_unlock(&n->list_lock); |
76b342bd | 3335 | page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); |
213b4695 JK |
3336 | if (page) { |
3337 | /* This slab isn't counted yet so don't update free_objects */ | |
3338 | obj = slab_get_obj(cachep, page); | |
3339 | } | |
76b342bd | 3340 | cache_grow_end(cachep, page); |
1da177e4 | 3341 | |
213b4695 | 3342 | return obj ? obj : fallback_alloc(cachep, flags); |
e498be7d | 3343 | } |
8c8cc2c1 | 3344 | |
8c8cc2c1 | 3345 | static __always_inline void * |
48356303 | 3346 | slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, |
7c0cb9c6 | 3347 | unsigned long caller) |
8c8cc2c1 PE |
3348 | { |
3349 | unsigned long save_flags; | |
3350 | void *ptr; | |
7d6e6d09 | 3351 | int slab_node = numa_mem_id(); |
8c8cc2c1 | 3352 | |
dcce284a | 3353 | flags &= gfp_allowed_mask; |
011eceaf JDB |
3354 | cachep = slab_pre_alloc_hook(cachep, flags); |
3355 | if (unlikely(!cachep)) | |
824ebef1 AM |
3356 | return NULL; |
3357 | ||
8c8cc2c1 PE |
3358 | cache_alloc_debugcheck_before(cachep, flags); |
3359 | local_irq_save(save_flags); | |
3360 | ||
eacbbae3 | 3361 | if (nodeid == NUMA_NO_NODE) |
7d6e6d09 | 3362 | nodeid = slab_node; |
8c8cc2c1 | 3363 | |
18bf8541 | 3364 | if (unlikely(!get_node(cachep, nodeid))) { |
8c8cc2c1 PE |
3365 | /* Node not bootstrapped yet */ |
3366 | ptr = fallback_alloc(cachep, flags); | |
3367 | goto out; | |
3368 | } | |
3369 | ||
7d6e6d09 | 3370 | if (nodeid == slab_node) { |
8c8cc2c1 PE |
3371 | /* |
3372 | * Use the locally cached objects if possible. | |
3373 | * However ____cache_alloc does not allow fallback | |
3374 | * to other nodes. It may fail while we still have | |
3375 | * objects on other nodes available. | |
3376 | */ | |
3377 | ptr = ____cache_alloc(cachep, flags); | |
3378 | if (ptr) | |
3379 | goto out; | |
3380 | } | |
3381 | /* ___cache_alloc_node can fall back to other nodes */ | |
3382 | ptr = ____cache_alloc_node(cachep, flags, nodeid); | |
3383 | out: | |
3384 | local_irq_restore(save_flags); | |
3385 | ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); | |
3386 | ||
d5e3ed66 JDB |
3387 | if (unlikely(flags & __GFP_ZERO) && ptr) |
3388 | memset(ptr, 0, cachep->object_size); | |
d07dbea4 | 3389 | |
d5e3ed66 | 3390 | slab_post_alloc_hook(cachep, flags, 1, &ptr); |
8c8cc2c1 PE |
3391 | return ptr; |
3392 | } | |
3393 | ||
3394 | static __always_inline void * | |
3395 | __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) | |
3396 | { | |
3397 | void *objp; | |
3398 | ||
2ad654bc | 3399 | if (current->mempolicy || cpuset_do_slab_mem_spread()) { |
8c8cc2c1 PE |
3400 | objp = alternate_node_alloc(cache, flags); |
3401 | if (objp) | |
3402 | goto out; | |
3403 | } | |
3404 | objp = ____cache_alloc(cache, flags); | |
3405 | ||
3406 | /* | |
3407 | * We may just have run out of memory on the local node. | |
3408 | * ____cache_alloc_node() knows how to locate memory on other nodes | |
3409 | */ | |
7d6e6d09 LS |
3410 | if (!objp) |
3411 | objp = ____cache_alloc_node(cache, flags, numa_mem_id()); | |
8c8cc2c1 PE |
3412 | |
3413 | out: | |
3414 | return objp; | |
3415 | } | |
3416 | #else | |
3417 | ||
3418 | static __always_inline void * | |
3419 | __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3420 | { | |
3421 | return ____cache_alloc(cachep, flags); | |
3422 | } | |
3423 | ||
3424 | #endif /* CONFIG_NUMA */ | |
3425 | ||
3426 | static __always_inline void * | |
48356303 | 3427 | slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) |
8c8cc2c1 PE |
3428 | { |
3429 | unsigned long save_flags; | |
3430 | void *objp; | |
3431 | ||
dcce284a | 3432 | flags &= gfp_allowed_mask; |
011eceaf JDB |
3433 | cachep = slab_pre_alloc_hook(cachep, flags); |
3434 | if (unlikely(!cachep)) | |
824ebef1 AM |
3435 | return NULL; |
3436 | ||
8c8cc2c1 PE |
3437 | cache_alloc_debugcheck_before(cachep, flags); |
3438 | local_irq_save(save_flags); | |
3439 | objp = __do_cache_alloc(cachep, flags); | |
3440 | local_irq_restore(save_flags); | |
3441 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); | |
3442 | prefetchw(objp); | |
3443 | ||
d5e3ed66 JDB |
3444 | if (unlikely(flags & __GFP_ZERO) && objp) |
3445 | memset(objp, 0, cachep->object_size); | |
d07dbea4 | 3446 | |
d5e3ed66 | 3447 | slab_post_alloc_hook(cachep, flags, 1, &objp); |
8c8cc2c1 PE |
3448 | return objp; |
3449 | } | |
e498be7d CL |
3450 | |
3451 | /* | |
5f0985bb | 3452 | * Caller needs to acquire correct kmem_cache_node's list_lock |
97654dfa | 3453 | * @list: List of detached free slabs should be freed by caller |
e498be7d | 3454 | */ |
97654dfa JK |
3455 | static void free_block(struct kmem_cache *cachep, void **objpp, |
3456 | int nr_objects, int node, struct list_head *list) | |
1da177e4 LT |
3457 | { |
3458 | int i; | |
25c063fb | 3459 | struct kmem_cache_node *n = get_node(cachep, node); |
6052b788 JK |
3460 | struct page *page; |
3461 | ||
3462 | n->free_objects += nr_objects; | |
1da177e4 LT |
3463 | |
3464 | for (i = 0; i < nr_objects; i++) { | |
072bb0aa | 3465 | void *objp; |
8456a648 | 3466 | struct page *page; |
1da177e4 | 3467 | |
072bb0aa MG |
3468 | objp = objpp[i]; |
3469 | ||
8456a648 | 3470 | page = virt_to_head_page(objp); |
8456a648 | 3471 | list_del(&page->lru); |
ff69416e | 3472 | check_spinlock_acquired_node(cachep, node); |
260b61dd | 3473 | slab_put_obj(cachep, page, objp); |
1da177e4 | 3474 | STATS_DEC_ACTIVE(cachep); |
1da177e4 LT |
3475 | |
3476 | /* fixup slab chains */ | |
6052b788 JK |
3477 | if (page->active == 0) |
3478 | list_add(&page->lru, &n->slabs_free); | |
3479 | else { | |
1da177e4 LT |
3480 | /* Unconditionally move a slab to the end of the |
3481 | * partial list on free - maximum time for the | |
3482 | * other objects to be freed, too. | |
3483 | */ | |
8456a648 | 3484 | list_add_tail(&page->lru, &n->slabs_partial); |
1da177e4 LT |
3485 | } |
3486 | } | |
6052b788 JK |
3487 | |
3488 | while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { | |
3489 | n->free_objects -= cachep->num; | |
3490 | ||
3491 | page = list_last_entry(&n->slabs_free, struct page, lru); | |
3492 | list_del(&page->lru); | |
3493 | list_add(&page->lru, list); | |
3494 | } | |
1da177e4 LT |
3495 | } |
3496 | ||
343e0d7a | 3497 | static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) |
1da177e4 LT |
3498 | { |
3499 | int batchcount; | |
ce8eb6c4 | 3500 | struct kmem_cache_node *n; |
7d6e6d09 | 3501 | int node = numa_mem_id(); |
97654dfa | 3502 | LIST_HEAD(list); |
1da177e4 LT |
3503 | |
3504 | batchcount = ac->batchcount; | |
260b61dd | 3505 | |
1da177e4 | 3506 | check_irq_off(); |
18bf8541 | 3507 | n = get_node(cachep, node); |
ce8eb6c4 CL |
3508 | spin_lock(&n->list_lock); |
3509 | if (n->shared) { | |
3510 | struct array_cache *shared_array = n->shared; | |
b28a02de | 3511 | int max = shared_array->limit - shared_array->avail; |
1da177e4 LT |
3512 | if (max) { |
3513 | if (batchcount > max) | |
3514 | batchcount = max; | |
e498be7d | 3515 | memcpy(&(shared_array->entry[shared_array->avail]), |
b28a02de | 3516 | ac->entry, sizeof(void *) * batchcount); |
1da177e4 LT |
3517 | shared_array->avail += batchcount; |
3518 | goto free_done; | |
3519 | } | |
3520 | } | |
3521 | ||
97654dfa | 3522 | free_block(cachep, ac->entry, batchcount, node, &list); |
a737b3e2 | 3523 | free_done: |
1da177e4 LT |
3524 | #if STATS |
3525 | { | |
3526 | int i = 0; | |
73c0219d | 3527 | struct page *page; |
1da177e4 | 3528 | |
73c0219d | 3529 | list_for_each_entry(page, &n->slabs_free, lru) { |
8456a648 | 3530 | BUG_ON(page->active); |
1da177e4 LT |
3531 | |
3532 | i++; | |
1da177e4 LT |
3533 | } |
3534 | STATS_SET_FREEABLE(cachep, i); | |
3535 | } | |
3536 | #endif | |
ce8eb6c4 | 3537 | spin_unlock(&n->list_lock); |
97654dfa | 3538 | slabs_destroy(cachep, &list); |
1da177e4 | 3539 | ac->avail -= batchcount; |
a737b3e2 | 3540 | memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); |
1da177e4 LT |
3541 | } |
3542 | ||
3543 | /* | |
a737b3e2 AM |
3544 | * Release an obj back to its cache. If the obj has a constructed state, it must |
3545 | * be in this state _before_ it is released. Called with disabled ints. | |
1da177e4 | 3546 | */ |
a947eb95 | 3547 | static inline void __cache_free(struct kmem_cache *cachep, void *objp, |
7c0cb9c6 | 3548 | unsigned long caller) |
1da177e4 | 3549 | { |
55834c59 AP |
3550 | /* Put the object into the quarantine, don't touch it for now. */ |
3551 | if (kasan_slab_free(cachep, objp)) | |
3552 | return; | |
3553 | ||
3554 | ___cache_free(cachep, objp, caller); | |
3555 | } | |
1da177e4 | 3556 | |
55834c59 AP |
3557 | void ___cache_free(struct kmem_cache *cachep, void *objp, |
3558 | unsigned long caller) | |
3559 | { | |
3560 | struct array_cache *ac = cpu_cache_get(cachep); | |
7ed2f9e6 | 3561 | |
1da177e4 | 3562 | check_irq_off(); |
d5cff635 | 3563 | kmemleak_free_recursive(objp, cachep->flags); |
a947eb95 | 3564 | objp = cache_free_debugcheck(cachep, objp, caller); |
1da177e4 | 3565 | |
8c138bc0 | 3566 | kmemcheck_slab_free(cachep, objp, cachep->object_size); |
c175eea4 | 3567 | |
1807a1aa SS |
3568 | /* |
3569 | * Skip calling cache_free_alien() when the platform is not numa. | |
3570 | * This will avoid cache misses that happen while accessing slabp (which | |
3571 | * is per page memory reference) to get nodeid. Instead use a global | |
3572 | * variable to skip the call, which is mostly likely to be present in | |
3573 | * the cache. | |
3574 | */ | |
b6e68bc1 | 3575 | if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) |
729bd0b7 PE |
3576 | return; |
3577 | ||
3d880194 | 3578 | if (ac->avail < ac->limit) { |
1da177e4 | 3579 | STATS_INC_FREEHIT(cachep); |
1da177e4 LT |
3580 | } else { |
3581 | STATS_INC_FREEMISS(cachep); | |
3582 | cache_flusharray(cachep, ac); | |
1da177e4 | 3583 | } |
42c8c99c | 3584 | |
f68f8ddd JK |
3585 | if (sk_memalloc_socks()) { |
3586 | struct page *page = virt_to_head_page(objp); | |
3587 | ||
3588 | if (unlikely(PageSlabPfmemalloc(page))) { | |
3589 | cache_free_pfmemalloc(cachep, page, objp); | |
3590 | return; | |
3591 | } | |
3592 | } | |
3593 | ||
3594 | ac->entry[ac->avail++] = objp; | |
1da177e4 LT |
3595 | } |
3596 | ||
3597 | /** | |
3598 | * kmem_cache_alloc - Allocate an object | |
3599 | * @cachep: The cache to allocate from. | |
3600 | * @flags: See kmalloc(). | |
3601 | * | |
3602 | * Allocate an object from this cache. The flags are only relevant | |
3603 | * if the cache has no available objects. | |
3604 | */ | |
343e0d7a | 3605 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3606 | { |
48356303 | 3607 | void *ret = slab_alloc(cachep, flags, _RET_IP_); |
36555751 | 3608 | |
505f5dcb | 3609 | kasan_slab_alloc(cachep, ret, flags); |
ca2b84cb | 3610 | trace_kmem_cache_alloc(_RET_IP_, ret, |
8c138bc0 | 3611 | cachep->object_size, cachep->size, flags); |
36555751 EGM |
3612 | |
3613 | return ret; | |
1da177e4 LT |
3614 | } |
3615 | EXPORT_SYMBOL(kmem_cache_alloc); | |
3616 | ||
7b0501dd JDB |
3617 | static __always_inline void |
3618 | cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, | |
3619 | size_t size, void **p, unsigned long caller) | |
3620 | { | |
3621 | size_t i; | |
3622 | ||
3623 | for (i = 0; i < size; i++) | |
3624 | p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); | |
3625 | } | |
3626 | ||
865762a8 | 3627 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, |
2a777eac | 3628 | void **p) |
484748f0 | 3629 | { |
2a777eac JDB |
3630 | size_t i; |
3631 | ||
3632 | s = slab_pre_alloc_hook(s, flags); | |
3633 | if (!s) | |
3634 | return 0; | |
3635 | ||
3636 | cache_alloc_debugcheck_before(s, flags); | |
3637 | ||
3638 | local_irq_disable(); | |
3639 | for (i = 0; i < size; i++) { | |
3640 | void *objp = __do_cache_alloc(s, flags); | |
3641 | ||
2a777eac JDB |
3642 | if (unlikely(!objp)) |
3643 | goto error; | |
3644 | p[i] = objp; | |
3645 | } | |
3646 | local_irq_enable(); | |
3647 | ||
7b0501dd JDB |
3648 | cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); |
3649 | ||
2a777eac JDB |
3650 | /* Clear memory outside IRQ disabled section */ |
3651 | if (unlikely(flags & __GFP_ZERO)) | |
3652 | for (i = 0; i < size; i++) | |
3653 | memset(p[i], 0, s->object_size); | |
3654 | ||
3655 | slab_post_alloc_hook(s, flags, size, p); | |
3656 | /* FIXME: Trace call missing. Christoph would like a bulk variant */ | |
3657 | return size; | |
3658 | error: | |
3659 | local_irq_enable(); | |
7b0501dd | 3660 | cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); |
2a777eac JDB |
3661 | slab_post_alloc_hook(s, flags, i, p); |
3662 | __kmem_cache_free_bulk(s, i, p); | |
3663 | return 0; | |
484748f0 CL |
3664 | } |
3665 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | |
3666 | ||
0f24f128 | 3667 | #ifdef CONFIG_TRACING |
85beb586 | 3668 | void * |
4052147c | 3669 | kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) |
36555751 | 3670 | { |
85beb586 SR |
3671 | void *ret; |
3672 | ||
48356303 | 3673 | ret = slab_alloc(cachep, flags, _RET_IP_); |
85beb586 | 3674 | |
505f5dcb | 3675 | kasan_kmalloc(cachep, ret, size, flags); |
85beb586 | 3676 | trace_kmalloc(_RET_IP_, ret, |
ff4fcd01 | 3677 | size, cachep->size, flags); |
85beb586 | 3678 | return ret; |
36555751 | 3679 | } |
85beb586 | 3680 | EXPORT_SYMBOL(kmem_cache_alloc_trace); |
36555751 EGM |
3681 | #endif |
3682 | ||
1da177e4 | 3683 | #ifdef CONFIG_NUMA |
d0d04b78 ZL |
3684 | /** |
3685 | * kmem_cache_alloc_node - Allocate an object on the specified node | |
3686 | * @cachep: The cache to allocate from. | |
3687 | * @flags: See kmalloc(). | |
3688 | * @nodeid: node number of the target node. | |
3689 | * | |
3690 | * Identical to kmem_cache_alloc but it will allocate memory on the given | |
3691 | * node, which can improve the performance for cpu bound structures. | |
3692 | * | |
3693 | * Fallback to other node is possible if __GFP_THISNODE is not set. | |
3694 | */ | |
8b98c169 CH |
3695 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
3696 | { | |
48356303 | 3697 | void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); |
36555751 | 3698 | |
505f5dcb | 3699 | kasan_slab_alloc(cachep, ret, flags); |
ca2b84cb | 3700 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
8c138bc0 | 3701 | cachep->object_size, cachep->size, |
ca2b84cb | 3702 | flags, nodeid); |
36555751 EGM |
3703 | |
3704 | return ret; | |
8b98c169 | 3705 | } |
1da177e4 LT |
3706 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
3707 | ||
0f24f128 | 3708 | #ifdef CONFIG_TRACING |
4052147c | 3709 | void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, |
85beb586 | 3710 | gfp_t flags, |
4052147c EG |
3711 | int nodeid, |
3712 | size_t size) | |
36555751 | 3713 | { |
85beb586 SR |
3714 | void *ret; |
3715 | ||
592f4145 | 3716 | ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); |
505f5dcb AP |
3717 | |
3718 | kasan_kmalloc(cachep, ret, size, flags); | |
85beb586 | 3719 | trace_kmalloc_node(_RET_IP_, ret, |
ff4fcd01 | 3720 | size, cachep->size, |
85beb586 SR |
3721 | flags, nodeid); |
3722 | return ret; | |
36555751 | 3723 | } |
85beb586 | 3724 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
36555751 EGM |
3725 | #endif |
3726 | ||
8b98c169 | 3727 | static __always_inline void * |
7c0cb9c6 | 3728 | __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) |
97e2bde4 | 3729 | { |
343e0d7a | 3730 | struct kmem_cache *cachep; |
7ed2f9e6 | 3731 | void *ret; |
97e2bde4 | 3732 | |
2c59dd65 | 3733 | cachep = kmalloc_slab(size, flags); |
6cb8f913 CL |
3734 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3735 | return cachep; | |
7ed2f9e6 | 3736 | ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); |
505f5dcb | 3737 | kasan_kmalloc(cachep, ret, size, flags); |
7ed2f9e6 AP |
3738 | |
3739 | return ret; | |
97e2bde4 | 3740 | } |
8b98c169 | 3741 | |
8b98c169 CH |
3742 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3743 | { | |
7c0cb9c6 | 3744 | return __do_kmalloc_node(size, flags, node, _RET_IP_); |
8b98c169 | 3745 | } |
dbe5e69d | 3746 | EXPORT_SYMBOL(__kmalloc_node); |
8b98c169 CH |
3747 | |
3748 | void *__kmalloc_node_track_caller(size_t size, gfp_t flags, | |
ce71e27c | 3749 | int node, unsigned long caller) |
8b98c169 | 3750 | { |
7c0cb9c6 | 3751 | return __do_kmalloc_node(size, flags, node, caller); |
8b98c169 CH |
3752 | } |
3753 | EXPORT_SYMBOL(__kmalloc_node_track_caller); | |
8b98c169 | 3754 | #endif /* CONFIG_NUMA */ |
1da177e4 LT |
3755 | |
3756 | /** | |
800590f5 | 3757 | * __do_kmalloc - allocate memory |
1da177e4 | 3758 | * @size: how many bytes of memory are required. |
800590f5 | 3759 | * @flags: the type of memory to allocate (see kmalloc). |
911851e6 | 3760 | * @caller: function caller for debug tracking of the caller |
1da177e4 | 3761 | */ |
7fd6b141 | 3762 | static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, |
7c0cb9c6 | 3763 | unsigned long caller) |
1da177e4 | 3764 | { |
343e0d7a | 3765 | struct kmem_cache *cachep; |
36555751 | 3766 | void *ret; |
1da177e4 | 3767 | |
2c59dd65 | 3768 | cachep = kmalloc_slab(size, flags); |
a5c96d8a LT |
3769 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3770 | return cachep; | |
48356303 | 3771 | ret = slab_alloc(cachep, flags, caller); |
36555751 | 3772 | |
505f5dcb | 3773 | kasan_kmalloc(cachep, ret, size, flags); |
7c0cb9c6 | 3774 | trace_kmalloc(caller, ret, |
3b0efdfa | 3775 | size, cachep->size, flags); |
36555751 EGM |
3776 | |
3777 | return ret; | |
7fd6b141 PE |
3778 | } |
3779 | ||
7fd6b141 PE |
3780 | void *__kmalloc(size_t size, gfp_t flags) |
3781 | { | |
7c0cb9c6 | 3782 | return __do_kmalloc(size, flags, _RET_IP_); |
1da177e4 LT |
3783 | } |
3784 | EXPORT_SYMBOL(__kmalloc); | |
3785 | ||
ce71e27c | 3786 | void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) |
7fd6b141 | 3787 | { |
7c0cb9c6 | 3788 | return __do_kmalloc(size, flags, caller); |
7fd6b141 PE |
3789 | } |
3790 | EXPORT_SYMBOL(__kmalloc_track_caller); | |
1d2c8eea | 3791 | |
1da177e4 LT |
3792 | /** |
3793 | * kmem_cache_free - Deallocate an object | |
3794 | * @cachep: The cache the allocation was from. | |
3795 | * @objp: The previously allocated object. | |
3796 | * | |
3797 | * Free an object which was previously allocated from this | |
3798 | * cache. | |
3799 | */ | |
343e0d7a | 3800 | void kmem_cache_free(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
3801 | { |
3802 | unsigned long flags; | |
b9ce5ef4 GC |
3803 | cachep = cache_from_obj(cachep, objp); |
3804 | if (!cachep) | |
3805 | return; | |
1da177e4 LT |
3806 | |
3807 | local_irq_save(flags); | |
d97d476b | 3808 | debug_check_no_locks_freed(objp, cachep->object_size); |
3ac7fe5a | 3809 | if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) |
8c138bc0 | 3810 | debug_check_no_obj_freed(objp, cachep->object_size); |
7c0cb9c6 | 3811 | __cache_free(cachep, objp, _RET_IP_); |
1da177e4 | 3812 | local_irq_restore(flags); |
36555751 | 3813 | |
ca2b84cb | 3814 | trace_kmem_cache_free(_RET_IP_, objp); |
1da177e4 LT |
3815 | } |
3816 | EXPORT_SYMBOL(kmem_cache_free); | |
3817 | ||
e6cdb58d JDB |
3818 | void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) |
3819 | { | |
3820 | struct kmem_cache *s; | |
3821 | size_t i; | |
3822 | ||
3823 | local_irq_disable(); | |
3824 | for (i = 0; i < size; i++) { | |
3825 | void *objp = p[i]; | |
3826 | ||
ca257195 JDB |
3827 | if (!orig_s) /* called via kfree_bulk */ |
3828 | s = virt_to_cache(objp); | |
3829 | else | |
3830 | s = cache_from_obj(orig_s, objp); | |
e6cdb58d JDB |
3831 | |
3832 | debug_check_no_locks_freed(objp, s->object_size); | |
3833 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) | |
3834 | debug_check_no_obj_freed(objp, s->object_size); | |
3835 | ||
3836 | __cache_free(s, objp, _RET_IP_); | |
3837 | } | |
3838 | local_irq_enable(); | |
3839 | ||
3840 | /* FIXME: add tracing */ | |
3841 | } | |
3842 | EXPORT_SYMBOL(kmem_cache_free_bulk); | |
3843 | ||
1da177e4 LT |
3844 | /** |
3845 | * kfree - free previously allocated memory | |
3846 | * @objp: pointer returned by kmalloc. | |
3847 | * | |
80e93eff PE |
3848 | * If @objp is NULL, no operation is performed. |
3849 | * | |
1da177e4 LT |
3850 | * Don't free memory not originally allocated by kmalloc() |
3851 | * or you will run into trouble. | |
3852 | */ | |
3853 | void kfree(const void *objp) | |
3854 | { | |
343e0d7a | 3855 | struct kmem_cache *c; |
1da177e4 LT |
3856 | unsigned long flags; |
3857 | ||
2121db74 PE |
3858 | trace_kfree(_RET_IP_, objp); |
3859 | ||
6cb8f913 | 3860 | if (unlikely(ZERO_OR_NULL_PTR(objp))) |
1da177e4 LT |
3861 | return; |
3862 | local_irq_save(flags); | |
3863 | kfree_debugcheck(objp); | |
6ed5eb22 | 3864 | c = virt_to_cache(objp); |
8c138bc0 CL |
3865 | debug_check_no_locks_freed(objp, c->object_size); |
3866 | ||
3867 | debug_check_no_obj_freed(objp, c->object_size); | |
7c0cb9c6 | 3868 | __cache_free(c, (void *)objp, _RET_IP_); |
1da177e4 LT |
3869 | local_irq_restore(flags); |
3870 | } | |
3871 | EXPORT_SYMBOL(kfree); | |
3872 | ||
e498be7d | 3873 | /* |
ce8eb6c4 | 3874 | * This initializes kmem_cache_node or resizes various caches for all nodes. |
e498be7d | 3875 | */ |
c3d332b6 | 3876 | static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) |
e498be7d | 3877 | { |
c3d332b6 | 3878 | int ret; |
e498be7d | 3879 | int node; |
ce8eb6c4 | 3880 | struct kmem_cache_node *n; |
e498be7d | 3881 | |
9c09a95c | 3882 | for_each_online_node(node) { |
c3d332b6 JK |
3883 | ret = setup_kmem_cache_node(cachep, node, gfp, true); |
3884 | if (ret) | |
e498be7d CL |
3885 | goto fail; |
3886 | ||
e498be7d | 3887 | } |
c3d332b6 | 3888 | |
cafeb02e | 3889 | return 0; |
0718dc2a | 3890 | |
a737b3e2 | 3891 | fail: |
3b0efdfa | 3892 | if (!cachep->list.next) { |
0718dc2a CL |
3893 | /* Cache is not active yet. Roll back what we did */ |
3894 | node--; | |
3895 | while (node >= 0) { | |
18bf8541 CL |
3896 | n = get_node(cachep, node); |
3897 | if (n) { | |
ce8eb6c4 CL |
3898 | kfree(n->shared); |
3899 | free_alien_cache(n->alien); | |
3900 | kfree(n); | |
6a67368c | 3901 | cachep->node[node] = NULL; |
0718dc2a CL |
3902 | } |
3903 | node--; | |
3904 | } | |
3905 | } | |
cafeb02e | 3906 | return -ENOMEM; |
e498be7d CL |
3907 | } |
3908 | ||
18004c5d | 3909 | /* Always called with the slab_mutex held */ |
943a451a | 3910 | static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, |
83b519e8 | 3911 | int batchcount, int shared, gfp_t gfp) |
1da177e4 | 3912 | { |
bf0dea23 JK |
3913 | struct array_cache __percpu *cpu_cache, *prev; |
3914 | int cpu; | |
1da177e4 | 3915 | |
bf0dea23 JK |
3916 | cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); |
3917 | if (!cpu_cache) | |
d2e7b7d0 SS |
3918 | return -ENOMEM; |
3919 | ||
bf0dea23 JK |
3920 | prev = cachep->cpu_cache; |
3921 | cachep->cpu_cache = cpu_cache; | |
3922 | kick_all_cpus_sync(); | |
e498be7d | 3923 | |
1da177e4 | 3924 | check_irq_on(); |
1da177e4 LT |
3925 | cachep->batchcount = batchcount; |
3926 | cachep->limit = limit; | |
e498be7d | 3927 | cachep->shared = shared; |
1da177e4 | 3928 | |
bf0dea23 | 3929 | if (!prev) |
c3d332b6 | 3930 | goto setup_node; |
bf0dea23 JK |
3931 | |
3932 | for_each_online_cpu(cpu) { | |
97654dfa | 3933 | LIST_HEAD(list); |
18bf8541 CL |
3934 | int node; |
3935 | struct kmem_cache_node *n; | |
bf0dea23 | 3936 | struct array_cache *ac = per_cpu_ptr(prev, cpu); |
18bf8541 | 3937 | |
bf0dea23 | 3938 | node = cpu_to_mem(cpu); |
18bf8541 CL |
3939 | n = get_node(cachep, node); |
3940 | spin_lock_irq(&n->list_lock); | |
bf0dea23 | 3941 | free_block(cachep, ac->entry, ac->avail, node, &list); |
18bf8541 | 3942 | spin_unlock_irq(&n->list_lock); |
97654dfa | 3943 | slabs_destroy(cachep, &list); |
1da177e4 | 3944 | } |
bf0dea23 JK |
3945 | free_percpu(prev); |
3946 | ||
c3d332b6 JK |
3947 | setup_node: |
3948 | return setup_kmem_cache_nodes(cachep, gfp); | |
1da177e4 LT |
3949 | } |
3950 | ||
943a451a GC |
3951 | static int do_tune_cpucache(struct kmem_cache *cachep, int limit, |
3952 | int batchcount, int shared, gfp_t gfp) | |
3953 | { | |
3954 | int ret; | |
426589f5 | 3955 | struct kmem_cache *c; |
943a451a GC |
3956 | |
3957 | ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); | |
3958 | ||
3959 | if (slab_state < FULL) | |
3960 | return ret; | |
3961 | ||
3962 | if ((ret < 0) || !is_root_cache(cachep)) | |
3963 | return ret; | |
3964 | ||
426589f5 VD |
3965 | lockdep_assert_held(&slab_mutex); |
3966 | for_each_memcg_cache(c, cachep) { | |
3967 | /* return value determined by the root cache only */ | |
3968 | __do_tune_cpucache(c, limit, batchcount, shared, gfp); | |
943a451a GC |
3969 | } |
3970 | ||
3971 | return ret; | |
3972 | } | |
3973 | ||
18004c5d | 3974 | /* Called with slab_mutex held always */ |
83b519e8 | 3975 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) |
1da177e4 LT |
3976 | { |
3977 | int err; | |
943a451a GC |
3978 | int limit = 0; |
3979 | int shared = 0; | |
3980 | int batchcount = 0; | |
3981 | ||
c7ce4f60 TG |
3982 | err = cache_random_seq_create(cachep, gfp); |
3983 | if (err) | |
3984 | goto end; | |
3985 | ||
943a451a GC |
3986 | if (!is_root_cache(cachep)) { |
3987 | struct kmem_cache *root = memcg_root_cache(cachep); | |
3988 | limit = root->limit; | |
3989 | shared = root->shared; | |
3990 | batchcount = root->batchcount; | |
3991 | } | |
1da177e4 | 3992 | |
943a451a GC |
3993 | if (limit && shared && batchcount) |
3994 | goto skip_setup; | |
a737b3e2 AM |
3995 | /* |
3996 | * The head array serves three purposes: | |
1da177e4 LT |
3997 | * - create a LIFO ordering, i.e. return objects that are cache-warm |
3998 | * - reduce the number of spinlock operations. | |
a737b3e2 | 3999 | * - reduce the number of linked list operations on the slab and |
1da177e4 LT |
4000 | * bufctl chains: array operations are cheaper. |
4001 | * The numbers are guessed, we should auto-tune as described by | |
4002 | * Bonwick. | |
4003 | */ | |
3b0efdfa | 4004 | if (cachep->size > 131072) |
1da177e4 | 4005 | limit = 1; |
3b0efdfa | 4006 | else if (cachep->size > PAGE_SIZE) |
1da177e4 | 4007 | limit = 8; |
3b0efdfa | 4008 | else if (cachep->size > 1024) |
1da177e4 | 4009 | limit = 24; |
3b0efdfa | 4010 | else if (cachep->size > 256) |
1da177e4 LT |
4011 | limit = 54; |
4012 | else | |
4013 | limit = 120; | |
4014 | ||
a737b3e2 AM |
4015 | /* |
4016 | * CPU bound tasks (e.g. network routing) can exhibit cpu bound | |
1da177e4 LT |
4017 | * allocation behaviour: Most allocs on one cpu, most free operations |
4018 | * on another cpu. For these cases, an efficient object passing between | |
4019 | * cpus is necessary. This is provided by a shared array. The array | |
4020 | * replaces Bonwick's magazine layer. | |
4021 | * On uniprocessor, it's functionally equivalent (but less efficient) | |
4022 | * to a larger limit. Thus disabled by default. | |
4023 | */ | |
4024 | shared = 0; | |
3b0efdfa | 4025 | if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) |
1da177e4 | 4026 | shared = 8; |
1da177e4 LT |
4027 | |
4028 | #if DEBUG | |
a737b3e2 AM |
4029 | /* |
4030 | * With debugging enabled, large batchcount lead to excessively long | |
4031 | * periods with disabled local interrupts. Limit the batchcount | |
1da177e4 LT |
4032 | */ |
4033 | if (limit > 32) | |
4034 | limit = 32; | |
4035 | #endif | |
943a451a GC |
4036 | batchcount = (limit + 1) / 2; |
4037 | skip_setup: | |
4038 | err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); | |
c7ce4f60 | 4039 | end: |
1da177e4 | 4040 | if (err) |
1170532b | 4041 | pr_err("enable_cpucache failed for %s, error %d\n", |
b28a02de | 4042 | cachep->name, -err); |
2ed3a4ef | 4043 | return err; |
1da177e4 LT |
4044 | } |
4045 | ||
1b55253a | 4046 | /* |
ce8eb6c4 CL |
4047 | * Drain an array if it contains any elements taking the node lock only if |
4048 | * necessary. Note that the node listlock also protects the array_cache | |
b18e7e65 | 4049 | * if drain_array() is used on the shared array. |
1b55253a | 4050 | */ |
ce8eb6c4 | 4051 | static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, |
18726ca8 | 4052 | struct array_cache *ac, int node) |
1da177e4 | 4053 | { |
97654dfa | 4054 | LIST_HEAD(list); |
18726ca8 JK |
4055 | |
4056 | /* ac from n->shared can be freed if we don't hold the slab_mutex. */ | |
4057 | check_mutex_acquired(); | |
1da177e4 | 4058 | |
1b55253a CL |
4059 | if (!ac || !ac->avail) |
4060 | return; | |
18726ca8 JK |
4061 | |
4062 | if (ac->touched) { | |
1da177e4 | 4063 | ac->touched = 0; |
18726ca8 | 4064 | return; |
1da177e4 | 4065 | } |
18726ca8 JK |
4066 | |
4067 | spin_lock_irq(&n->list_lock); | |
4068 | drain_array_locked(cachep, ac, node, false, &list); | |
4069 | spin_unlock_irq(&n->list_lock); | |
4070 | ||
4071 | slabs_destroy(cachep, &list); | |
1da177e4 LT |
4072 | } |
4073 | ||
4074 | /** | |
4075 | * cache_reap - Reclaim memory from caches. | |
05fb6bf0 | 4076 | * @w: work descriptor |
1da177e4 LT |
4077 | * |
4078 | * Called from workqueue/eventd every few seconds. | |
4079 | * Purpose: | |
4080 | * - clear the per-cpu caches for this CPU. | |
4081 | * - return freeable pages to the main free memory pool. | |
4082 | * | |
a737b3e2 AM |
4083 | * If we cannot acquire the cache chain mutex then just give up - we'll try |
4084 | * again on the next iteration. | |
1da177e4 | 4085 | */ |
7c5cae36 | 4086 | static void cache_reap(struct work_struct *w) |
1da177e4 | 4087 | { |
7a7c381d | 4088 | struct kmem_cache *searchp; |
ce8eb6c4 | 4089 | struct kmem_cache_node *n; |
7d6e6d09 | 4090 | int node = numa_mem_id(); |
bf6aede7 | 4091 | struct delayed_work *work = to_delayed_work(w); |
1da177e4 | 4092 | |
18004c5d | 4093 | if (!mutex_trylock(&slab_mutex)) |
1da177e4 | 4094 | /* Give up. Setup the next iteration. */ |
7c5cae36 | 4095 | goto out; |
1da177e4 | 4096 | |
18004c5d | 4097 | list_for_each_entry(searchp, &slab_caches, list) { |
1da177e4 LT |
4098 | check_irq_on(); |
4099 | ||
35386e3b | 4100 | /* |
ce8eb6c4 | 4101 | * We only take the node lock if absolutely necessary and we |
35386e3b CL |
4102 | * have established with reasonable certainty that |
4103 | * we can do some work if the lock was obtained. | |
4104 | */ | |
18bf8541 | 4105 | n = get_node(searchp, node); |
35386e3b | 4106 | |
ce8eb6c4 | 4107 | reap_alien(searchp, n); |
1da177e4 | 4108 | |
18726ca8 | 4109 | drain_array(searchp, n, cpu_cache_get(searchp), node); |
1da177e4 | 4110 | |
35386e3b CL |
4111 | /* |
4112 | * These are racy checks but it does not matter | |
4113 | * if we skip one check or scan twice. | |
4114 | */ | |
ce8eb6c4 | 4115 | if (time_after(n->next_reap, jiffies)) |
35386e3b | 4116 | goto next; |
1da177e4 | 4117 | |
5f0985bb | 4118 | n->next_reap = jiffies + REAPTIMEOUT_NODE; |
1da177e4 | 4119 | |
18726ca8 | 4120 | drain_array(searchp, n, n->shared, node); |
1da177e4 | 4121 | |
ce8eb6c4 CL |
4122 | if (n->free_touched) |
4123 | n->free_touched = 0; | |
ed11d9eb CL |
4124 | else { |
4125 | int freed; | |
1da177e4 | 4126 | |
ce8eb6c4 | 4127 | freed = drain_freelist(searchp, n, (n->free_limit + |
ed11d9eb CL |
4128 | 5 * searchp->num - 1) / (5 * searchp->num)); |
4129 | STATS_ADD_REAPED(searchp, freed); | |
4130 | } | |
35386e3b | 4131 | next: |
1da177e4 LT |
4132 | cond_resched(); |
4133 | } | |
4134 | check_irq_on(); | |
18004c5d | 4135 | mutex_unlock(&slab_mutex); |
8fce4d8e | 4136 | next_reap_node(); |
7c5cae36 | 4137 | out: |
a737b3e2 | 4138 | /* Set up the next iteration */ |
5f0985bb | 4139 | schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC)); |
1da177e4 LT |
4140 | } |
4141 | ||
158a9624 | 4142 | #ifdef CONFIG_SLABINFO |
0d7561c6 | 4143 | void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) |
1da177e4 | 4144 | { |
8456a648 | 4145 | struct page *page; |
b28a02de PE |
4146 | unsigned long active_objs; |
4147 | unsigned long num_objs; | |
4148 | unsigned long active_slabs = 0; | |
4149 | unsigned long num_slabs, free_objects = 0, shared_avail = 0; | |
e498be7d | 4150 | const char *name; |
1da177e4 | 4151 | char *error = NULL; |
e498be7d | 4152 | int node; |
ce8eb6c4 | 4153 | struct kmem_cache_node *n; |
1da177e4 | 4154 | |
1da177e4 LT |
4155 | active_objs = 0; |
4156 | num_slabs = 0; | |
18bf8541 | 4157 | for_each_kmem_cache_node(cachep, node, n) { |
e498be7d | 4158 | |
ca3b9b91 | 4159 | check_irq_on(); |
ce8eb6c4 | 4160 | spin_lock_irq(&n->list_lock); |
e498be7d | 4161 | |
8456a648 JK |
4162 | list_for_each_entry(page, &n->slabs_full, lru) { |
4163 | if (page->active != cachep->num && !error) | |
e498be7d CL |
4164 | error = "slabs_full accounting error"; |
4165 | active_objs += cachep->num; | |
4166 | active_slabs++; | |
4167 | } | |
8456a648 JK |
4168 | list_for_each_entry(page, &n->slabs_partial, lru) { |
4169 | if (page->active == cachep->num && !error) | |
106a74e1 | 4170 | error = "slabs_partial accounting error"; |
8456a648 | 4171 | if (!page->active && !error) |
106a74e1 | 4172 | error = "slabs_partial accounting error"; |
8456a648 | 4173 | active_objs += page->active; |
e498be7d CL |
4174 | active_slabs++; |
4175 | } | |
8456a648 JK |
4176 | list_for_each_entry(page, &n->slabs_free, lru) { |
4177 | if (page->active && !error) | |
106a74e1 | 4178 | error = "slabs_free accounting error"; |
e498be7d CL |
4179 | num_slabs++; |
4180 | } | |
ce8eb6c4 CL |
4181 | free_objects += n->free_objects; |
4182 | if (n->shared) | |
4183 | shared_avail += n->shared->avail; | |
e498be7d | 4184 | |
ce8eb6c4 | 4185 | spin_unlock_irq(&n->list_lock); |
1da177e4 | 4186 | } |
b28a02de PE |
4187 | num_slabs += active_slabs; |
4188 | num_objs = num_slabs * cachep->num; | |
e498be7d | 4189 | if (num_objs - active_objs != free_objects && !error) |
1da177e4 LT |
4190 | error = "free_objects accounting error"; |
4191 | ||
b28a02de | 4192 | name = cachep->name; |
1da177e4 | 4193 | if (error) |
1170532b | 4194 | pr_err("slab: cache %s error: %s\n", name, error); |
1da177e4 | 4195 | |
0d7561c6 GC |
4196 | sinfo->active_objs = active_objs; |
4197 | sinfo->num_objs = num_objs; | |
4198 | sinfo->active_slabs = active_slabs; | |
4199 | sinfo->num_slabs = num_slabs; | |
4200 | sinfo->shared_avail = shared_avail; | |
4201 | sinfo->limit = cachep->limit; | |
4202 | sinfo->batchcount = cachep->batchcount; | |
4203 | sinfo->shared = cachep->shared; | |
4204 | sinfo->objects_per_slab = cachep->num; | |
4205 | sinfo->cache_order = cachep->gfporder; | |
4206 | } | |
4207 | ||
4208 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) | |
4209 | { | |
1da177e4 | 4210 | #if STATS |
ce8eb6c4 | 4211 | { /* node stats */ |
1da177e4 LT |
4212 | unsigned long high = cachep->high_mark; |
4213 | unsigned long allocs = cachep->num_allocations; | |
4214 | unsigned long grown = cachep->grown; | |
4215 | unsigned long reaped = cachep->reaped; | |
4216 | unsigned long errors = cachep->errors; | |
4217 | unsigned long max_freeable = cachep->max_freeable; | |
1da177e4 | 4218 | unsigned long node_allocs = cachep->node_allocs; |
e498be7d | 4219 | unsigned long node_frees = cachep->node_frees; |
fb7faf33 | 4220 | unsigned long overflows = cachep->node_overflow; |
1da177e4 | 4221 | |
756a025f | 4222 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", |
e92dd4fd JP |
4223 | allocs, high, grown, |
4224 | reaped, errors, max_freeable, node_allocs, | |
4225 | node_frees, overflows); | |
1da177e4 LT |
4226 | } |
4227 | /* cpu stats */ | |
4228 | { | |
4229 | unsigned long allochit = atomic_read(&cachep->allochit); | |
4230 | unsigned long allocmiss = atomic_read(&cachep->allocmiss); | |
4231 | unsigned long freehit = atomic_read(&cachep->freehit); | |
4232 | unsigned long freemiss = atomic_read(&cachep->freemiss); | |
4233 | ||
4234 | seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", | |
b28a02de | 4235 | allochit, allocmiss, freehit, freemiss); |
1da177e4 LT |
4236 | } |
4237 | #endif | |
1da177e4 LT |
4238 | } |
4239 | ||
1da177e4 LT |
4240 | #define MAX_SLABINFO_WRITE 128 |
4241 | /** | |
4242 | * slabinfo_write - Tuning for the slab allocator | |
4243 | * @file: unused | |
4244 | * @buffer: user buffer | |
4245 | * @count: data length | |
4246 | * @ppos: unused | |
4247 | */ | |
b7454ad3 | 4248 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
b28a02de | 4249 | size_t count, loff_t *ppos) |
1da177e4 | 4250 | { |
b28a02de | 4251 | char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; |
1da177e4 | 4252 | int limit, batchcount, shared, res; |
7a7c381d | 4253 | struct kmem_cache *cachep; |
b28a02de | 4254 | |
1da177e4 LT |
4255 | if (count > MAX_SLABINFO_WRITE) |
4256 | return -EINVAL; | |
4257 | if (copy_from_user(&kbuf, buffer, count)) | |
4258 | return -EFAULT; | |
b28a02de | 4259 | kbuf[MAX_SLABINFO_WRITE] = '\0'; |
1da177e4 LT |
4260 | |
4261 | tmp = strchr(kbuf, ' '); | |
4262 | if (!tmp) | |
4263 | return -EINVAL; | |
4264 | *tmp = '\0'; | |
4265 | tmp++; | |
4266 | if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) | |
4267 | return -EINVAL; | |
4268 | ||
4269 | /* Find the cache in the chain of caches. */ | |
18004c5d | 4270 | mutex_lock(&slab_mutex); |
1da177e4 | 4271 | res = -EINVAL; |
18004c5d | 4272 | list_for_each_entry(cachep, &slab_caches, list) { |
1da177e4 | 4273 | if (!strcmp(cachep->name, kbuf)) { |
a737b3e2 AM |
4274 | if (limit < 1 || batchcount < 1 || |
4275 | batchcount > limit || shared < 0) { | |
e498be7d | 4276 | res = 0; |
1da177e4 | 4277 | } else { |
e498be7d | 4278 | res = do_tune_cpucache(cachep, limit, |
83b519e8 PE |
4279 | batchcount, shared, |
4280 | GFP_KERNEL); | |
1da177e4 LT |
4281 | } |
4282 | break; | |
4283 | } | |
4284 | } | |
18004c5d | 4285 | mutex_unlock(&slab_mutex); |
1da177e4 LT |
4286 | if (res >= 0) |
4287 | res = count; | |
4288 | return res; | |
4289 | } | |
871751e2 AV |
4290 | |
4291 | #ifdef CONFIG_DEBUG_SLAB_LEAK | |
4292 | ||
871751e2 AV |
4293 | static inline int add_caller(unsigned long *n, unsigned long v) |
4294 | { | |
4295 | unsigned long *p; | |
4296 | int l; | |
4297 | if (!v) | |
4298 | return 1; | |
4299 | l = n[1]; | |
4300 | p = n + 2; | |
4301 | while (l) { | |
4302 | int i = l/2; | |
4303 | unsigned long *q = p + 2 * i; | |
4304 | if (*q == v) { | |
4305 | q[1]++; | |
4306 | return 1; | |
4307 | } | |
4308 | if (*q > v) { | |
4309 | l = i; | |
4310 | } else { | |
4311 | p = q + 2; | |
4312 | l -= i + 1; | |
4313 | } | |
4314 | } | |
4315 | if (++n[1] == n[0]) | |
4316 | return 0; | |
4317 | memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); | |
4318 | p[0] = v; | |
4319 | p[1] = 1; | |
4320 | return 1; | |
4321 | } | |
4322 | ||
8456a648 JK |
4323 | static void handle_slab(unsigned long *n, struct kmem_cache *c, |
4324 | struct page *page) | |
871751e2 AV |
4325 | { |
4326 | void *p; | |
d31676df JK |
4327 | int i, j; |
4328 | unsigned long v; | |
b1cb0982 | 4329 | |
871751e2 AV |
4330 | if (n[0] == n[1]) |
4331 | return; | |
8456a648 | 4332 | for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { |
d31676df JK |
4333 | bool active = true; |
4334 | ||
4335 | for (j = page->active; j < c->num; j++) { | |
4336 | if (get_free_obj(page, j) == i) { | |
4337 | active = false; | |
4338 | break; | |
4339 | } | |
4340 | } | |
4341 | ||
4342 | if (!active) | |
871751e2 | 4343 | continue; |
b1cb0982 | 4344 | |
d31676df JK |
4345 | /* |
4346 | * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table | |
4347 | * mapping is established when actual object allocation and | |
4348 | * we could mistakenly access the unmapped object in the cpu | |
4349 | * cache. | |
4350 | */ | |
4351 | if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v))) | |
4352 | continue; | |
4353 | ||
4354 | if (!add_caller(n, v)) | |
871751e2 AV |
4355 | return; |
4356 | } | |
4357 | } | |
4358 | ||
4359 | static void show_symbol(struct seq_file *m, unsigned long address) | |
4360 | { | |
4361 | #ifdef CONFIG_KALLSYMS | |
871751e2 | 4362 | unsigned long offset, size; |
9281acea | 4363 | char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; |
871751e2 | 4364 | |
a5c43dae | 4365 | if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { |
871751e2 | 4366 | seq_printf(m, "%s+%#lx/%#lx", name, offset, size); |
a5c43dae | 4367 | if (modname[0]) |
871751e2 AV |
4368 | seq_printf(m, " [%s]", modname); |
4369 | return; | |
4370 | } | |
4371 | #endif | |
4372 | seq_printf(m, "%p", (void *)address); | |
4373 | } | |
4374 | ||
4375 | static int leaks_show(struct seq_file *m, void *p) | |
4376 | { | |
0672aa7c | 4377 | struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); |
8456a648 | 4378 | struct page *page; |
ce8eb6c4 | 4379 | struct kmem_cache_node *n; |
871751e2 | 4380 | const char *name; |
db845067 | 4381 | unsigned long *x = m->private; |
871751e2 AV |
4382 | int node; |
4383 | int i; | |
4384 | ||
4385 | if (!(cachep->flags & SLAB_STORE_USER)) | |
4386 | return 0; | |
4387 | if (!(cachep->flags & SLAB_RED_ZONE)) | |
4388 | return 0; | |
4389 | ||
d31676df JK |
4390 | /* |
4391 | * Set store_user_clean and start to grab stored user information | |
4392 | * for all objects on this cache. If some alloc/free requests comes | |
4393 | * during the processing, information would be wrong so restart | |
4394 | * whole processing. | |
4395 | */ | |
4396 | do { | |
4397 | set_store_user_clean(cachep); | |
4398 | drain_cpu_caches(cachep); | |
4399 | ||
4400 | x[1] = 0; | |
871751e2 | 4401 | |
d31676df | 4402 | for_each_kmem_cache_node(cachep, node, n) { |
871751e2 | 4403 | |
d31676df JK |
4404 | check_irq_on(); |
4405 | spin_lock_irq(&n->list_lock); | |
871751e2 | 4406 | |
d31676df JK |
4407 | list_for_each_entry(page, &n->slabs_full, lru) |
4408 | handle_slab(x, cachep, page); | |
4409 | list_for_each_entry(page, &n->slabs_partial, lru) | |
4410 | handle_slab(x, cachep, page); | |
4411 | spin_unlock_irq(&n->list_lock); | |
4412 | } | |
4413 | } while (!is_store_user_clean(cachep)); | |
871751e2 | 4414 | |
871751e2 | 4415 | name = cachep->name; |
db845067 | 4416 | if (x[0] == x[1]) { |
871751e2 | 4417 | /* Increase the buffer size */ |
18004c5d | 4418 | mutex_unlock(&slab_mutex); |
db845067 | 4419 | m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); |
871751e2 AV |
4420 | if (!m->private) { |
4421 | /* Too bad, we are really out */ | |
db845067 | 4422 | m->private = x; |
18004c5d | 4423 | mutex_lock(&slab_mutex); |
871751e2 AV |
4424 | return -ENOMEM; |
4425 | } | |
db845067 CL |
4426 | *(unsigned long *)m->private = x[0] * 2; |
4427 | kfree(x); | |
18004c5d | 4428 | mutex_lock(&slab_mutex); |
871751e2 AV |
4429 | /* Now make sure this entry will be retried */ |
4430 | m->count = m->size; | |
4431 | return 0; | |
4432 | } | |
db845067 CL |
4433 | for (i = 0; i < x[1]; i++) { |
4434 | seq_printf(m, "%s: %lu ", name, x[2*i+3]); | |
4435 | show_symbol(m, x[2*i+2]); | |
871751e2 AV |
4436 | seq_putc(m, '\n'); |
4437 | } | |
d2e7b7d0 | 4438 | |
871751e2 AV |
4439 | return 0; |
4440 | } | |
4441 | ||
a0ec95a8 | 4442 | static const struct seq_operations slabstats_op = { |
1df3b26f | 4443 | .start = slab_start, |
276a2439 WL |
4444 | .next = slab_next, |
4445 | .stop = slab_stop, | |
871751e2 AV |
4446 | .show = leaks_show, |
4447 | }; | |
a0ec95a8 AD |
4448 | |
4449 | static int slabstats_open(struct inode *inode, struct file *file) | |
4450 | { | |
b208ce32 RJ |
4451 | unsigned long *n; |
4452 | ||
4453 | n = __seq_open_private(file, &slabstats_op, PAGE_SIZE); | |
4454 | if (!n) | |
4455 | return -ENOMEM; | |
4456 | ||
4457 | *n = PAGE_SIZE / (2 * sizeof(unsigned long)); | |
4458 | ||
4459 | return 0; | |
a0ec95a8 AD |
4460 | } |
4461 | ||
4462 | static const struct file_operations proc_slabstats_operations = { | |
4463 | .open = slabstats_open, | |
4464 | .read = seq_read, | |
4465 | .llseek = seq_lseek, | |
4466 | .release = seq_release_private, | |
4467 | }; | |
4468 | #endif | |
4469 | ||
4470 | static int __init slab_proc_init(void) | |
4471 | { | |
4472 | #ifdef CONFIG_DEBUG_SLAB_LEAK | |
4473 | proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); | |
871751e2 | 4474 | #endif |
a0ec95a8 AD |
4475 | return 0; |
4476 | } | |
4477 | module_init(slab_proc_init); | |
1da177e4 LT |
4478 | #endif |
4479 | ||
00e145b6 MS |
4480 | /** |
4481 | * ksize - get the actual amount of memory allocated for a given object | |
4482 | * @objp: Pointer to the object | |
4483 | * | |
4484 | * kmalloc may internally round up allocations and return more memory | |
4485 | * than requested. ksize() can be used to determine the actual amount of | |
4486 | * memory allocated. The caller may use this additional memory, even though | |
4487 | * a smaller amount of memory was initially specified with the kmalloc call. | |
4488 | * The caller must guarantee that objp points to a valid object previously | |
4489 | * allocated with either kmalloc() or kmem_cache_alloc(). The object | |
4490 | * must not be freed during the duration of the call. | |
4491 | */ | |
fd76bab2 | 4492 | size_t ksize(const void *objp) |
1da177e4 | 4493 | { |
7ed2f9e6 AP |
4494 | size_t size; |
4495 | ||
ef8b4520 CL |
4496 | BUG_ON(!objp); |
4497 | if (unlikely(objp == ZERO_SIZE_PTR)) | |
00e145b6 | 4498 | return 0; |
1da177e4 | 4499 | |
7ed2f9e6 AP |
4500 | size = virt_to_cache(objp)->object_size; |
4501 | /* We assume that ksize callers could use the whole allocated area, | |
4502 | * so we need to unpoison this area. | |
4503 | */ | |
4ebb31a4 | 4504 | kasan_unpoison_shadow(objp, size); |
7ed2f9e6 AP |
4505 | |
4506 | return size; | |
1da177e4 | 4507 | } |
b1aabecd | 4508 | EXPORT_SYMBOL(ksize); |