]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * kernel/cpuset.c | |
3 | * | |
4 | * Processor and Memory placement constraints for sets of tasks. | |
5 | * | |
6 | * Copyright (C) 2003 BULL SA. | |
029190c5 | 7 | * Copyright (C) 2004-2007 Silicon Graphics, Inc. |
8793d854 | 8 | * Copyright (C) 2006 Google, Inc |
1da177e4 LT |
9 | * |
10 | * Portions derived from Patrick Mochel's sysfs code. | |
11 | * sysfs is Copyright (c) 2001-3 Patrick Mochel | |
1da177e4 | 12 | * |
825a46af | 13 | * 2003-10-10 Written by Simon Derr. |
1da177e4 | 14 | * 2003-10-22 Updates by Stephen Hemminger. |
825a46af | 15 | * 2004 May-July Rework by Paul Jackson. |
8793d854 | 16 | * 2006 Rework by Paul Menage to use generic cgroups |
cf417141 MK |
17 | * 2008 Rework of the scheduler domains and CPU hotplug handling |
18 | * by Max Krasnyansky | |
1da177e4 LT |
19 | * |
20 | * This file is subject to the terms and conditions of the GNU General Public | |
21 | * License. See the file COPYING in the main directory of the Linux | |
22 | * distribution for more details. | |
23 | */ | |
24 | ||
1da177e4 LT |
25 | #include <linux/cpu.h> |
26 | #include <linux/cpumask.h> | |
27 | #include <linux/cpuset.h> | |
28 | #include <linux/err.h> | |
29 | #include <linux/errno.h> | |
30 | #include <linux/file.h> | |
31 | #include <linux/fs.h> | |
32 | #include <linux/init.h> | |
33 | #include <linux/interrupt.h> | |
34 | #include <linux/kernel.h> | |
35 | #include <linux/kmod.h> | |
36 | #include <linux/list.h> | |
68860ec1 | 37 | #include <linux/mempolicy.h> |
1da177e4 | 38 | #include <linux/mm.h> |
f481891f | 39 | #include <linux/memory.h> |
1da177e4 LT |
40 | #include <linux/module.h> |
41 | #include <linux/mount.h> | |
42 | #include <linux/namei.h> | |
43 | #include <linux/pagemap.h> | |
44 | #include <linux/proc_fs.h> | |
6b9c2603 | 45 | #include <linux/rcupdate.h> |
1da177e4 LT |
46 | #include <linux/sched.h> |
47 | #include <linux/seq_file.h> | |
22fb52dd | 48 | #include <linux/security.h> |
1da177e4 | 49 | #include <linux/slab.h> |
1da177e4 LT |
50 | #include <linux/spinlock.h> |
51 | #include <linux/stat.h> | |
52 | #include <linux/string.h> | |
53 | #include <linux/time.h> | |
54 | #include <linux/backing-dev.h> | |
55 | #include <linux/sort.h> | |
56 | ||
57 | #include <asm/uaccess.h> | |
58 | #include <asm/atomic.h> | |
3d3f26a7 | 59 | #include <linux/mutex.h> |
956db3ca CW |
60 | #include <linux/workqueue.h> |
61 | #include <linux/cgroup.h> | |
1da177e4 | 62 | |
f90d4118 MX |
63 | /* |
64 | * Workqueue for cpuset related tasks. | |
65 | * | |
66 | * Using kevent workqueue may cause deadlock when memory_migrate | |
67 | * is set. So we create a separate workqueue thread for cpuset. | |
68 | */ | |
69 | static struct workqueue_struct *cpuset_wq; | |
70 | ||
202f72d5 PJ |
71 | /* |
72 | * Tracks how many cpusets are currently defined in system. | |
73 | * When there is only one cpuset (the root cpuset) we can | |
74 | * short circuit some hooks. | |
75 | */ | |
7edc5962 | 76 | int number_of_cpusets __read_mostly; |
202f72d5 | 77 | |
2df167a3 | 78 | /* Forward declare cgroup structures */ |
8793d854 PM |
79 | struct cgroup_subsys cpuset_subsys; |
80 | struct cpuset; | |
81 | ||
3e0d98b9 PJ |
82 | /* See "Frequency meter" comments, below. */ |
83 | ||
84 | struct fmeter { | |
85 | int cnt; /* unprocessed events count */ | |
86 | int val; /* most recent output value */ | |
87 | time_t time; /* clock (secs) when val computed */ | |
88 | spinlock_t lock; /* guards read or write of above */ | |
89 | }; | |
90 | ||
1da177e4 | 91 | struct cpuset { |
8793d854 PM |
92 | struct cgroup_subsys_state css; |
93 | ||
1da177e4 | 94 | unsigned long flags; /* "unsigned long" so bitops work */ |
300ed6cb | 95 | cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */ |
1da177e4 LT |
96 | nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */ |
97 | ||
1da177e4 | 98 | struct cpuset *parent; /* my parent */ |
1da177e4 LT |
99 | |
100 | /* | |
101 | * Copy of global cpuset_mems_generation as of the most | |
102 | * recent time this cpuset changed its mems_allowed. | |
103 | */ | |
3e0d98b9 PJ |
104 | int mems_generation; |
105 | ||
106 | struct fmeter fmeter; /* memory_pressure filter */ | |
029190c5 PJ |
107 | |
108 | /* partition number for rebuild_sched_domains() */ | |
109 | int pn; | |
956db3ca | 110 | |
1d3504fc HS |
111 | /* for custom sched domain */ |
112 | int relax_domain_level; | |
113 | ||
956db3ca CW |
114 | /* used for walking a cpuset heirarchy */ |
115 | struct list_head stack_list; | |
1da177e4 LT |
116 | }; |
117 | ||
8793d854 PM |
118 | /* Retrieve the cpuset for a cgroup */ |
119 | static inline struct cpuset *cgroup_cs(struct cgroup *cont) | |
120 | { | |
121 | return container_of(cgroup_subsys_state(cont, cpuset_subsys_id), | |
122 | struct cpuset, css); | |
123 | } | |
124 | ||
125 | /* Retrieve the cpuset for a task */ | |
126 | static inline struct cpuset *task_cs(struct task_struct *task) | |
127 | { | |
128 | return container_of(task_subsys_state(task, cpuset_subsys_id), | |
129 | struct cpuset, css); | |
130 | } | |
956db3ca CW |
131 | struct cpuset_hotplug_scanner { |
132 | struct cgroup_scanner scan; | |
133 | struct cgroup *to; | |
134 | }; | |
8793d854 | 135 | |
1da177e4 LT |
136 | /* bits in struct cpuset flags field */ |
137 | typedef enum { | |
138 | CS_CPU_EXCLUSIVE, | |
139 | CS_MEM_EXCLUSIVE, | |
78608366 | 140 | CS_MEM_HARDWALL, |
45b07ef3 | 141 | CS_MEMORY_MIGRATE, |
029190c5 | 142 | CS_SCHED_LOAD_BALANCE, |
825a46af PJ |
143 | CS_SPREAD_PAGE, |
144 | CS_SPREAD_SLAB, | |
1da177e4 LT |
145 | } cpuset_flagbits_t; |
146 | ||
147 | /* convenient tests for these bits */ | |
148 | static inline int is_cpu_exclusive(const struct cpuset *cs) | |
149 | { | |
7b5b9ef0 | 150 | return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); |
1da177e4 LT |
151 | } |
152 | ||
153 | static inline int is_mem_exclusive(const struct cpuset *cs) | |
154 | { | |
7b5b9ef0 | 155 | return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); |
1da177e4 LT |
156 | } |
157 | ||
78608366 PM |
158 | static inline int is_mem_hardwall(const struct cpuset *cs) |
159 | { | |
160 | return test_bit(CS_MEM_HARDWALL, &cs->flags); | |
161 | } | |
162 | ||
029190c5 PJ |
163 | static inline int is_sched_load_balance(const struct cpuset *cs) |
164 | { | |
165 | return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); | |
166 | } | |
167 | ||
45b07ef3 PJ |
168 | static inline int is_memory_migrate(const struct cpuset *cs) |
169 | { | |
7b5b9ef0 | 170 | return test_bit(CS_MEMORY_MIGRATE, &cs->flags); |
45b07ef3 PJ |
171 | } |
172 | ||
825a46af PJ |
173 | static inline int is_spread_page(const struct cpuset *cs) |
174 | { | |
175 | return test_bit(CS_SPREAD_PAGE, &cs->flags); | |
176 | } | |
177 | ||
178 | static inline int is_spread_slab(const struct cpuset *cs) | |
179 | { | |
180 | return test_bit(CS_SPREAD_SLAB, &cs->flags); | |
181 | } | |
182 | ||
1da177e4 | 183 | /* |
151a4420 | 184 | * Increment this integer everytime any cpuset changes its |
1da177e4 LT |
185 | * mems_allowed value. Users of cpusets can track this generation |
186 | * number, and avoid having to lock and reload mems_allowed unless | |
187 | * the cpuset they're using changes generation. | |
188 | * | |
2df167a3 | 189 | * A single, global generation is needed because cpuset_attach_task() could |
1da177e4 LT |
190 | * reattach a task to a different cpuset, which must not have its |
191 | * generation numbers aliased with those of that tasks previous cpuset. | |
192 | * | |
193 | * Generations are needed for mems_allowed because one task cannot | |
2df167a3 | 194 | * modify another's memory placement. So we must enable every task, |
1da177e4 LT |
195 | * on every visit to __alloc_pages(), to efficiently check whether |
196 | * its current->cpuset->mems_allowed has changed, requiring an update | |
197 | * of its current->mems_allowed. | |
151a4420 | 198 | * |
2df167a3 | 199 | * Since writes to cpuset_mems_generation are guarded by the cgroup lock |
151a4420 | 200 | * there is no need to mark it atomic. |
1da177e4 | 201 | */ |
151a4420 | 202 | static int cpuset_mems_generation; |
1da177e4 LT |
203 | |
204 | static struct cpuset top_cpuset = { | |
205 | .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), | |
1da177e4 LT |
206 | }; |
207 | ||
1da177e4 | 208 | /* |
2df167a3 PM |
209 | * There are two global mutexes guarding cpuset structures. The first |
210 | * is the main control groups cgroup_mutex, accessed via | |
211 | * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific | |
212 | * callback_mutex, below. They can nest. It is ok to first take | |
213 | * cgroup_mutex, then nest callback_mutex. We also require taking | |
214 | * task_lock() when dereferencing a task's cpuset pointer. See "The | |
215 | * task_lock() exception", at the end of this comment. | |
053199ed | 216 | * |
3d3f26a7 | 217 | * A task must hold both mutexes to modify cpusets. If a task |
2df167a3 | 218 | * holds cgroup_mutex, then it blocks others wanting that mutex, |
3d3f26a7 | 219 | * ensuring that it is the only task able to also acquire callback_mutex |
053199ed PJ |
220 | * and be able to modify cpusets. It can perform various checks on |
221 | * the cpuset structure first, knowing nothing will change. It can | |
2df167a3 | 222 | * also allocate memory while just holding cgroup_mutex. While it is |
053199ed | 223 | * performing these checks, various callback routines can briefly |
3d3f26a7 IM |
224 | * acquire callback_mutex to query cpusets. Once it is ready to make |
225 | * the changes, it takes callback_mutex, blocking everyone else. | |
053199ed PJ |
226 | * |
227 | * Calls to the kernel memory allocator can not be made while holding | |
3d3f26a7 | 228 | * callback_mutex, as that would risk double tripping on callback_mutex |
053199ed PJ |
229 | * from one of the callbacks into the cpuset code from within |
230 | * __alloc_pages(). | |
231 | * | |
3d3f26a7 | 232 | * If a task is only holding callback_mutex, then it has read-only |
053199ed PJ |
233 | * access to cpusets. |
234 | * | |
235 | * The task_struct fields mems_allowed and mems_generation may only | |
236 | * be accessed in the context of that task, so require no locks. | |
237 | * | |
3d3f26a7 | 238 | * The cpuset_common_file_read() handlers only hold callback_mutex across |
053199ed PJ |
239 | * small pieces of code, such as when reading out possibly multi-word |
240 | * cpumasks and nodemasks. | |
241 | * | |
2df167a3 PM |
242 | * Accessing a task's cpuset should be done in accordance with the |
243 | * guidelines for accessing subsystem state in kernel/cgroup.c | |
1da177e4 LT |
244 | */ |
245 | ||
3d3f26a7 | 246 | static DEFINE_MUTEX(callback_mutex); |
4247bdc6 | 247 | |
75aa1994 DR |
248 | /* |
249 | * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist | |
250 | * buffers. They are statically allocated to prevent using excess stack | |
251 | * when calling cpuset_print_task_mems_allowed(). | |
252 | */ | |
253 | #define CPUSET_NAME_LEN (128) | |
254 | #define CPUSET_NODELIST_LEN (256) | |
255 | static char cpuset_name[CPUSET_NAME_LEN]; | |
256 | static char cpuset_nodelist[CPUSET_NODELIST_LEN]; | |
257 | static DEFINE_SPINLOCK(cpuset_buffer_lock); | |
258 | ||
cf417141 MK |
259 | /* |
260 | * This is ugly, but preserves the userspace API for existing cpuset | |
8793d854 | 261 | * users. If someone tries to mount the "cpuset" filesystem, we |
cf417141 MK |
262 | * silently switch it to mount "cgroup" instead |
263 | */ | |
454e2398 DH |
264 | static int cpuset_get_sb(struct file_system_type *fs_type, |
265 | int flags, const char *unused_dev_name, | |
266 | void *data, struct vfsmount *mnt) | |
1da177e4 | 267 | { |
8793d854 PM |
268 | struct file_system_type *cgroup_fs = get_fs_type("cgroup"); |
269 | int ret = -ENODEV; | |
270 | if (cgroup_fs) { | |
271 | char mountopts[] = | |
272 | "cpuset,noprefix," | |
273 | "release_agent=/sbin/cpuset_release_agent"; | |
274 | ret = cgroup_fs->get_sb(cgroup_fs, flags, | |
275 | unused_dev_name, mountopts, mnt); | |
276 | put_filesystem(cgroup_fs); | |
277 | } | |
278 | return ret; | |
1da177e4 LT |
279 | } |
280 | ||
281 | static struct file_system_type cpuset_fs_type = { | |
282 | .name = "cpuset", | |
283 | .get_sb = cpuset_get_sb, | |
1da177e4 LT |
284 | }; |
285 | ||
1da177e4 | 286 | /* |
300ed6cb | 287 | * Return in pmask the portion of a cpusets's cpus_allowed that |
1da177e4 LT |
288 | * are online. If none are online, walk up the cpuset hierarchy |
289 | * until we find one that does have some online cpus. If we get | |
290 | * all the way to the top and still haven't found any online cpus, | |
291 | * return cpu_online_map. Or if passed a NULL cs from an exit'ing | |
292 | * task, return cpu_online_map. | |
293 | * | |
294 | * One way or another, we guarantee to return some non-empty subset | |
295 | * of cpu_online_map. | |
296 | * | |
3d3f26a7 | 297 | * Call with callback_mutex held. |
1da177e4 LT |
298 | */ |
299 | ||
6af866af LZ |
300 | static void guarantee_online_cpus(const struct cpuset *cs, |
301 | struct cpumask *pmask) | |
1da177e4 | 302 | { |
300ed6cb | 303 | while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask)) |
1da177e4 LT |
304 | cs = cs->parent; |
305 | if (cs) | |
300ed6cb | 306 | cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask); |
1da177e4 | 307 | else |
300ed6cb LZ |
308 | cpumask_copy(pmask, cpu_online_mask); |
309 | BUG_ON(!cpumask_intersects(pmask, cpu_online_mask)); | |
1da177e4 LT |
310 | } |
311 | ||
312 | /* | |
313 | * Return in *pmask the portion of a cpusets's mems_allowed that | |
0e1e7c7a CL |
314 | * are online, with memory. If none are online with memory, walk |
315 | * up the cpuset hierarchy until we find one that does have some | |
316 | * online mems. If we get all the way to the top and still haven't | |
317 | * found any online mems, return node_states[N_HIGH_MEMORY]. | |
1da177e4 LT |
318 | * |
319 | * One way or another, we guarantee to return some non-empty subset | |
0e1e7c7a | 320 | * of node_states[N_HIGH_MEMORY]. |
1da177e4 | 321 | * |
3d3f26a7 | 322 | * Call with callback_mutex held. |
1da177e4 LT |
323 | */ |
324 | ||
325 | static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask) | |
326 | { | |
0e1e7c7a CL |
327 | while (cs && !nodes_intersects(cs->mems_allowed, |
328 | node_states[N_HIGH_MEMORY])) | |
1da177e4 LT |
329 | cs = cs->parent; |
330 | if (cs) | |
0e1e7c7a CL |
331 | nodes_and(*pmask, cs->mems_allowed, |
332 | node_states[N_HIGH_MEMORY]); | |
1da177e4 | 333 | else |
0e1e7c7a CL |
334 | *pmask = node_states[N_HIGH_MEMORY]; |
335 | BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY])); | |
1da177e4 LT |
336 | } |
337 | ||
cf2a473c PJ |
338 | /** |
339 | * cpuset_update_task_memory_state - update task memory placement | |
340 | * | |
341 | * If the current tasks cpusets mems_allowed changed behind our | |
342 | * backs, update current->mems_allowed, mems_generation and task NUMA | |
343 | * mempolicy to the new value. | |
053199ed | 344 | * |
cf2a473c PJ |
345 | * Task mempolicy is updated by rebinding it relative to the |
346 | * current->cpuset if a task has its memory placement changed. | |
347 | * Do not call this routine if in_interrupt(). | |
348 | * | |
4a01c8d5 | 349 | * Call without callback_mutex or task_lock() held. May be |
2df167a3 PM |
350 | * called with or without cgroup_mutex held. Thanks in part to |
351 | * 'the_top_cpuset_hack', the task's cpuset pointer will never | |
41f7f60d DR |
352 | * be NULL. This routine also might acquire callback_mutex during |
353 | * call. | |
053199ed | 354 | * |
6b9c2603 PJ |
355 | * Reading current->cpuset->mems_generation doesn't need task_lock |
356 | * to guard the current->cpuset derefence, because it is guarded | |
2df167a3 | 357 | * from concurrent freeing of current->cpuset using RCU. |
6b9c2603 PJ |
358 | * |
359 | * The rcu_dereference() is technically probably not needed, | |
360 | * as I don't actually mind if I see a new cpuset pointer but | |
361 | * an old value of mems_generation. However this really only | |
362 | * matters on alpha systems using cpusets heavily. If I dropped | |
363 | * that rcu_dereference(), it would save them a memory barrier. | |
364 | * For all other arch's, rcu_dereference is a no-op anyway, and for | |
365 | * alpha systems not using cpusets, another planned optimization, | |
366 | * avoiding the rcu critical section for tasks in the root cpuset | |
367 | * which is statically allocated, so can't vanish, will make this | |
368 | * irrelevant. Better to use RCU as intended, than to engage in | |
369 | * some cute trick to save a memory barrier that is impossible to | |
370 | * test, for alpha systems using cpusets heavily, which might not | |
371 | * even exist. | |
053199ed PJ |
372 | * |
373 | * This routine is needed to update the per-task mems_allowed data, | |
374 | * within the tasks context, when it is trying to allocate memory | |
375 | * (in various mm/mempolicy.c routines) and notices that some other | |
376 | * task has been modifying its cpuset. | |
1da177e4 LT |
377 | */ |
378 | ||
fe85a998 | 379 | void cpuset_update_task_memory_state(void) |
1da177e4 | 380 | { |
053199ed | 381 | int my_cpusets_mem_gen; |
cf2a473c | 382 | struct task_struct *tsk = current; |
6b9c2603 | 383 | struct cpuset *cs; |
053199ed | 384 | |
13337714 LJ |
385 | rcu_read_lock(); |
386 | my_cpusets_mem_gen = task_cs(tsk)->mems_generation; | |
387 | rcu_read_unlock(); | |
1da177e4 | 388 | |
cf2a473c | 389 | if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) { |
3d3f26a7 | 390 | mutex_lock(&callback_mutex); |
cf2a473c | 391 | task_lock(tsk); |
8793d854 | 392 | cs = task_cs(tsk); /* Maybe changed when task not locked */ |
cf2a473c PJ |
393 | guarantee_online_mems(cs, &tsk->mems_allowed); |
394 | tsk->cpuset_mems_generation = cs->mems_generation; | |
825a46af PJ |
395 | if (is_spread_page(cs)) |
396 | tsk->flags |= PF_SPREAD_PAGE; | |
397 | else | |
398 | tsk->flags &= ~PF_SPREAD_PAGE; | |
399 | if (is_spread_slab(cs)) | |
400 | tsk->flags |= PF_SPREAD_SLAB; | |
401 | else | |
402 | tsk->flags &= ~PF_SPREAD_SLAB; | |
cf2a473c | 403 | task_unlock(tsk); |
3d3f26a7 | 404 | mutex_unlock(&callback_mutex); |
74cb2155 | 405 | mpol_rebind_task(tsk, &tsk->mems_allowed); |
1da177e4 LT |
406 | } |
407 | } | |
408 | ||
409 | /* | |
410 | * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? | |
411 | * | |
412 | * One cpuset is a subset of another if all its allowed CPUs and | |
413 | * Memory Nodes are a subset of the other, and its exclusive flags | |
2df167a3 | 414 | * are only set if the other's are set. Call holding cgroup_mutex. |
1da177e4 LT |
415 | */ |
416 | ||
417 | static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) | |
418 | { | |
300ed6cb | 419 | return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && |
1da177e4 LT |
420 | nodes_subset(p->mems_allowed, q->mems_allowed) && |
421 | is_cpu_exclusive(p) <= is_cpu_exclusive(q) && | |
422 | is_mem_exclusive(p) <= is_mem_exclusive(q); | |
423 | } | |
424 | ||
645fcc9d LZ |
425 | /** |
426 | * alloc_trial_cpuset - allocate a trial cpuset | |
427 | * @cs: the cpuset that the trial cpuset duplicates | |
428 | */ | |
429 | static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs) | |
430 | { | |
300ed6cb LZ |
431 | struct cpuset *trial; |
432 | ||
433 | trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); | |
434 | if (!trial) | |
435 | return NULL; | |
436 | ||
437 | if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) { | |
438 | kfree(trial); | |
439 | return NULL; | |
440 | } | |
441 | cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); | |
442 | ||
443 | return trial; | |
645fcc9d LZ |
444 | } |
445 | ||
446 | /** | |
447 | * free_trial_cpuset - free the trial cpuset | |
448 | * @trial: the trial cpuset to be freed | |
449 | */ | |
450 | static void free_trial_cpuset(struct cpuset *trial) | |
451 | { | |
300ed6cb | 452 | free_cpumask_var(trial->cpus_allowed); |
645fcc9d LZ |
453 | kfree(trial); |
454 | } | |
455 | ||
1da177e4 LT |
456 | /* |
457 | * validate_change() - Used to validate that any proposed cpuset change | |
458 | * follows the structural rules for cpusets. | |
459 | * | |
460 | * If we replaced the flag and mask values of the current cpuset | |
461 | * (cur) with those values in the trial cpuset (trial), would | |
462 | * our various subset and exclusive rules still be valid? Presumes | |
2df167a3 | 463 | * cgroup_mutex held. |
1da177e4 LT |
464 | * |
465 | * 'cur' is the address of an actual, in-use cpuset. Operations | |
466 | * such as list traversal that depend on the actual address of the | |
467 | * cpuset in the list must use cur below, not trial. | |
468 | * | |
469 | * 'trial' is the address of bulk structure copy of cur, with | |
470 | * perhaps one or more of the fields cpus_allowed, mems_allowed, | |
471 | * or flags changed to new, trial values. | |
472 | * | |
473 | * Return 0 if valid, -errno if not. | |
474 | */ | |
475 | ||
476 | static int validate_change(const struct cpuset *cur, const struct cpuset *trial) | |
477 | { | |
8793d854 | 478 | struct cgroup *cont; |
1da177e4 LT |
479 | struct cpuset *c, *par; |
480 | ||
481 | /* Each of our child cpusets must be a subset of us */ | |
8793d854 PM |
482 | list_for_each_entry(cont, &cur->css.cgroup->children, sibling) { |
483 | if (!is_cpuset_subset(cgroup_cs(cont), trial)) | |
1da177e4 LT |
484 | return -EBUSY; |
485 | } | |
486 | ||
487 | /* Remaining checks don't apply to root cpuset */ | |
69604067 | 488 | if (cur == &top_cpuset) |
1da177e4 LT |
489 | return 0; |
490 | ||
69604067 PJ |
491 | par = cur->parent; |
492 | ||
1da177e4 LT |
493 | /* We must be a subset of our parent cpuset */ |
494 | if (!is_cpuset_subset(trial, par)) | |
495 | return -EACCES; | |
496 | ||
2df167a3 PM |
497 | /* |
498 | * If either I or some sibling (!= me) is exclusive, we can't | |
499 | * overlap | |
500 | */ | |
8793d854 PM |
501 | list_for_each_entry(cont, &par->css.cgroup->children, sibling) { |
502 | c = cgroup_cs(cont); | |
1da177e4 LT |
503 | if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && |
504 | c != cur && | |
300ed6cb | 505 | cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) |
1da177e4 LT |
506 | return -EINVAL; |
507 | if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && | |
508 | c != cur && | |
509 | nodes_intersects(trial->mems_allowed, c->mems_allowed)) | |
510 | return -EINVAL; | |
511 | } | |
512 | ||
020958b6 PJ |
513 | /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */ |
514 | if (cgroup_task_count(cur->css.cgroup)) { | |
300ed6cb | 515 | if (cpumask_empty(trial->cpus_allowed) || |
020958b6 PJ |
516 | nodes_empty(trial->mems_allowed)) { |
517 | return -ENOSPC; | |
518 | } | |
519 | } | |
520 | ||
1da177e4 LT |
521 | return 0; |
522 | } | |
523 | ||
029190c5 | 524 | /* |
cf417141 | 525 | * Helper routine for generate_sched_domains(). |
029190c5 PJ |
526 | * Do cpusets a, b have overlapping cpus_allowed masks? |
527 | */ | |
029190c5 PJ |
528 | static int cpusets_overlap(struct cpuset *a, struct cpuset *b) |
529 | { | |
300ed6cb | 530 | return cpumask_intersects(a->cpus_allowed, b->cpus_allowed); |
029190c5 PJ |
531 | } |
532 | ||
1d3504fc HS |
533 | static void |
534 | update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) | |
535 | { | |
1d3504fc HS |
536 | if (dattr->relax_domain_level < c->relax_domain_level) |
537 | dattr->relax_domain_level = c->relax_domain_level; | |
538 | return; | |
539 | } | |
540 | ||
f5393693 LJ |
541 | static void |
542 | update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c) | |
543 | { | |
544 | LIST_HEAD(q); | |
545 | ||
546 | list_add(&c->stack_list, &q); | |
547 | while (!list_empty(&q)) { | |
548 | struct cpuset *cp; | |
549 | struct cgroup *cont; | |
550 | struct cpuset *child; | |
551 | ||
552 | cp = list_first_entry(&q, struct cpuset, stack_list); | |
553 | list_del(q.next); | |
554 | ||
300ed6cb | 555 | if (cpumask_empty(cp->cpus_allowed)) |
f5393693 LJ |
556 | continue; |
557 | ||
558 | if (is_sched_load_balance(cp)) | |
559 | update_domain_attr(dattr, cp); | |
560 | ||
561 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | |
562 | child = cgroup_cs(cont); | |
563 | list_add_tail(&child->stack_list, &q); | |
564 | } | |
565 | } | |
566 | } | |
567 | ||
029190c5 | 568 | /* |
cf417141 MK |
569 | * generate_sched_domains() |
570 | * | |
571 | * This function builds a partial partition of the systems CPUs | |
572 | * A 'partial partition' is a set of non-overlapping subsets whose | |
573 | * union is a subset of that set. | |
574 | * The output of this function needs to be passed to kernel/sched.c | |
575 | * partition_sched_domains() routine, which will rebuild the scheduler's | |
576 | * load balancing domains (sched domains) as specified by that partial | |
577 | * partition. | |
029190c5 | 578 | * |
45ce80fb | 579 | * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt |
029190c5 PJ |
580 | * for a background explanation of this. |
581 | * | |
582 | * Does not return errors, on the theory that the callers of this | |
583 | * routine would rather not worry about failures to rebuild sched | |
584 | * domains when operating in the severe memory shortage situations | |
585 | * that could cause allocation failures below. | |
586 | * | |
cf417141 | 587 | * Must be called with cgroup_lock held. |
029190c5 PJ |
588 | * |
589 | * The three key local variables below are: | |
aeed6824 | 590 | * q - a linked-list queue of cpuset pointers, used to implement a |
029190c5 PJ |
591 | * top-down scan of all cpusets. This scan loads a pointer |
592 | * to each cpuset marked is_sched_load_balance into the | |
593 | * array 'csa'. For our purposes, rebuilding the schedulers | |
594 | * sched domains, we can ignore !is_sched_load_balance cpusets. | |
595 | * csa - (for CpuSet Array) Array of pointers to all the cpusets | |
596 | * that need to be load balanced, for convenient iterative | |
597 | * access by the subsequent code that finds the best partition, | |
598 | * i.e the set of domains (subsets) of CPUs such that the | |
599 | * cpus_allowed of every cpuset marked is_sched_load_balance | |
600 | * is a subset of one of these domains, while there are as | |
601 | * many such domains as possible, each as small as possible. | |
602 | * doms - Conversion of 'csa' to an array of cpumasks, for passing to | |
603 | * the kernel/sched.c routine partition_sched_domains() in a | |
604 | * convenient format, that can be easily compared to the prior | |
605 | * value to determine what partition elements (sched domains) | |
606 | * were changed (added or removed.) | |
607 | * | |
608 | * Finding the best partition (set of domains): | |
609 | * The triple nested loops below over i, j, k scan over the | |
610 | * load balanced cpusets (using the array of cpuset pointers in | |
611 | * csa[]) looking for pairs of cpusets that have overlapping | |
612 | * cpus_allowed, but which don't have the same 'pn' partition | |
613 | * number and gives them in the same partition number. It keeps | |
614 | * looping on the 'restart' label until it can no longer find | |
615 | * any such pairs. | |
616 | * | |
617 | * The union of the cpus_allowed masks from the set of | |
618 | * all cpusets having the same 'pn' value then form the one | |
619 | * element of the partition (one sched domain) to be passed to | |
620 | * partition_sched_domains(). | |
621 | */ | |
6af866af LZ |
622 | /* FIXME: see the FIXME in partition_sched_domains() */ |
623 | static int generate_sched_domains(struct cpumask **domains, | |
cf417141 | 624 | struct sched_domain_attr **attributes) |
029190c5 | 625 | { |
cf417141 | 626 | LIST_HEAD(q); /* queue of cpusets to be scanned */ |
029190c5 PJ |
627 | struct cpuset *cp; /* scans q */ |
628 | struct cpuset **csa; /* array of all cpuset ptrs */ | |
629 | int csn; /* how many cpuset ptrs in csa so far */ | |
630 | int i, j, k; /* indices for partition finding loops */ | |
6af866af | 631 | struct cpumask *doms; /* resulting partition; i.e. sched domains */ |
1d3504fc | 632 | struct sched_domain_attr *dattr; /* attributes for custom domains */ |
1583715d | 633 | int ndoms = 0; /* number of sched domains in result */ |
6af866af | 634 | int nslot; /* next empty doms[] struct cpumask slot */ |
029190c5 | 635 | |
029190c5 | 636 | doms = NULL; |
1d3504fc | 637 | dattr = NULL; |
cf417141 | 638 | csa = NULL; |
029190c5 PJ |
639 | |
640 | /* Special case for the 99% of systems with one, full, sched domain */ | |
641 | if (is_sched_load_balance(&top_cpuset)) { | |
6af866af | 642 | doms = kmalloc(cpumask_size(), GFP_KERNEL); |
029190c5 | 643 | if (!doms) |
cf417141 MK |
644 | goto done; |
645 | ||
1d3504fc HS |
646 | dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); |
647 | if (dattr) { | |
648 | *dattr = SD_ATTR_INIT; | |
93a65575 | 649 | update_domain_attr_tree(dattr, &top_cpuset); |
1d3504fc | 650 | } |
300ed6cb | 651 | cpumask_copy(doms, top_cpuset.cpus_allowed); |
cf417141 MK |
652 | |
653 | ndoms = 1; | |
654 | goto done; | |
029190c5 PJ |
655 | } |
656 | ||
029190c5 PJ |
657 | csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL); |
658 | if (!csa) | |
659 | goto done; | |
660 | csn = 0; | |
661 | ||
aeed6824 LZ |
662 | list_add(&top_cpuset.stack_list, &q); |
663 | while (!list_empty(&q)) { | |
029190c5 PJ |
664 | struct cgroup *cont; |
665 | struct cpuset *child; /* scans child cpusets of cp */ | |
489a5393 | 666 | |
aeed6824 LZ |
667 | cp = list_first_entry(&q, struct cpuset, stack_list); |
668 | list_del(q.next); | |
669 | ||
300ed6cb | 670 | if (cpumask_empty(cp->cpus_allowed)) |
489a5393 LJ |
671 | continue; |
672 | ||
f5393693 LJ |
673 | /* |
674 | * All child cpusets contain a subset of the parent's cpus, so | |
675 | * just skip them, and then we call update_domain_attr_tree() | |
676 | * to calc relax_domain_level of the corresponding sched | |
677 | * domain. | |
678 | */ | |
679 | if (is_sched_load_balance(cp)) { | |
029190c5 | 680 | csa[csn++] = cp; |
f5393693 LJ |
681 | continue; |
682 | } | |
489a5393 | 683 | |
029190c5 PJ |
684 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { |
685 | child = cgroup_cs(cont); | |
aeed6824 | 686 | list_add_tail(&child->stack_list, &q); |
029190c5 PJ |
687 | } |
688 | } | |
689 | ||
690 | for (i = 0; i < csn; i++) | |
691 | csa[i]->pn = i; | |
692 | ndoms = csn; | |
693 | ||
694 | restart: | |
695 | /* Find the best partition (set of sched domains) */ | |
696 | for (i = 0; i < csn; i++) { | |
697 | struct cpuset *a = csa[i]; | |
698 | int apn = a->pn; | |
699 | ||
700 | for (j = 0; j < csn; j++) { | |
701 | struct cpuset *b = csa[j]; | |
702 | int bpn = b->pn; | |
703 | ||
704 | if (apn != bpn && cpusets_overlap(a, b)) { | |
705 | for (k = 0; k < csn; k++) { | |
706 | struct cpuset *c = csa[k]; | |
707 | ||
708 | if (c->pn == bpn) | |
709 | c->pn = apn; | |
710 | } | |
711 | ndoms--; /* one less element */ | |
712 | goto restart; | |
713 | } | |
714 | } | |
715 | } | |
716 | ||
cf417141 MK |
717 | /* |
718 | * Now we know how many domains to create. | |
719 | * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. | |
720 | */ | |
6af866af | 721 | doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL); |
700018e0 | 722 | if (!doms) |
cf417141 | 723 | goto done; |
cf417141 MK |
724 | |
725 | /* | |
726 | * The rest of the code, including the scheduler, can deal with | |
727 | * dattr==NULL case. No need to abort if alloc fails. | |
728 | */ | |
1d3504fc | 729 | dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL); |
029190c5 PJ |
730 | |
731 | for (nslot = 0, i = 0; i < csn; i++) { | |
732 | struct cpuset *a = csa[i]; | |
6af866af | 733 | struct cpumask *dp; |
029190c5 PJ |
734 | int apn = a->pn; |
735 | ||
cf417141 MK |
736 | if (apn < 0) { |
737 | /* Skip completed partitions */ | |
738 | continue; | |
739 | } | |
740 | ||
741 | dp = doms + nslot; | |
742 | ||
743 | if (nslot == ndoms) { | |
744 | static int warnings = 10; | |
745 | if (warnings) { | |
746 | printk(KERN_WARNING | |
747 | "rebuild_sched_domains confused:" | |
748 | " nslot %d, ndoms %d, csn %d, i %d," | |
749 | " apn %d\n", | |
750 | nslot, ndoms, csn, i, apn); | |
751 | warnings--; | |
029190c5 | 752 | } |
cf417141 MK |
753 | continue; |
754 | } | |
029190c5 | 755 | |
6af866af | 756 | cpumask_clear(dp); |
cf417141 MK |
757 | if (dattr) |
758 | *(dattr + nslot) = SD_ATTR_INIT; | |
759 | for (j = i; j < csn; j++) { | |
760 | struct cpuset *b = csa[j]; | |
761 | ||
762 | if (apn == b->pn) { | |
300ed6cb | 763 | cpumask_or(dp, dp, b->cpus_allowed); |
cf417141 MK |
764 | if (dattr) |
765 | update_domain_attr_tree(dattr + nslot, b); | |
766 | ||
767 | /* Done with this partition */ | |
768 | b->pn = -1; | |
029190c5 | 769 | } |
029190c5 | 770 | } |
cf417141 | 771 | nslot++; |
029190c5 PJ |
772 | } |
773 | BUG_ON(nslot != ndoms); | |
774 | ||
cf417141 MK |
775 | done: |
776 | kfree(csa); | |
777 | ||
700018e0 LZ |
778 | /* |
779 | * Fallback to the default domain if kmalloc() failed. | |
780 | * See comments in partition_sched_domains(). | |
781 | */ | |
782 | if (doms == NULL) | |
783 | ndoms = 1; | |
784 | ||
cf417141 MK |
785 | *domains = doms; |
786 | *attributes = dattr; | |
787 | return ndoms; | |
788 | } | |
789 | ||
790 | /* | |
791 | * Rebuild scheduler domains. | |
792 | * | |
793 | * Call with neither cgroup_mutex held nor within get_online_cpus(). | |
794 | * Takes both cgroup_mutex and get_online_cpus(). | |
795 | * | |
796 | * Cannot be directly called from cpuset code handling changes | |
797 | * to the cpuset pseudo-filesystem, because it cannot be called | |
798 | * from code that already holds cgroup_mutex. | |
799 | */ | |
800 | static void do_rebuild_sched_domains(struct work_struct *unused) | |
801 | { | |
802 | struct sched_domain_attr *attr; | |
6af866af | 803 | struct cpumask *doms; |
cf417141 MK |
804 | int ndoms; |
805 | ||
86ef5c9a | 806 | get_online_cpus(); |
cf417141 MK |
807 | |
808 | /* Generate domain masks and attrs */ | |
809 | cgroup_lock(); | |
810 | ndoms = generate_sched_domains(&doms, &attr); | |
811 | cgroup_unlock(); | |
812 | ||
813 | /* Have scheduler rebuild the domains */ | |
814 | partition_sched_domains(ndoms, doms, attr); | |
815 | ||
86ef5c9a | 816 | put_online_cpus(); |
cf417141 | 817 | } |
029190c5 | 818 | |
cf417141 MK |
819 | static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains); |
820 | ||
821 | /* | |
822 | * Rebuild scheduler domains, asynchronously via workqueue. | |
823 | * | |
824 | * If the flag 'sched_load_balance' of any cpuset with non-empty | |
825 | * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset | |
826 | * which has that flag enabled, or if any cpuset with a non-empty | |
827 | * 'cpus' is removed, then call this routine to rebuild the | |
828 | * scheduler's dynamic sched domains. | |
829 | * | |
830 | * The rebuild_sched_domains() and partition_sched_domains() | |
831 | * routines must nest cgroup_lock() inside get_online_cpus(), | |
832 | * but such cpuset changes as these must nest that locking the | |
833 | * other way, holding cgroup_lock() for much of the code. | |
834 | * | |
835 | * So in order to avoid an ABBA deadlock, the cpuset code handling | |
836 | * these user changes delegates the actual sched domain rebuilding | |
837 | * to a separate workqueue thread, which ends up processing the | |
838 | * above do_rebuild_sched_domains() function. | |
839 | */ | |
840 | static void async_rebuild_sched_domains(void) | |
841 | { | |
f90d4118 | 842 | queue_work(cpuset_wq, &rebuild_sched_domains_work); |
cf417141 MK |
843 | } |
844 | ||
845 | /* | |
846 | * Accomplishes the same scheduler domain rebuild as the above | |
847 | * async_rebuild_sched_domains(), however it directly calls the | |
848 | * rebuild routine synchronously rather than calling it via an | |
849 | * asynchronous work thread. | |
850 | * | |
851 | * This can only be called from code that is not holding | |
852 | * cgroup_mutex (not nested in a cgroup_lock() call.) | |
853 | */ | |
854 | void rebuild_sched_domains(void) | |
855 | { | |
856 | do_rebuild_sched_domains(NULL); | |
029190c5 PJ |
857 | } |
858 | ||
58f4790b CW |
859 | /** |
860 | * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's | |
861 | * @tsk: task to test | |
862 | * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner | |
863 | * | |
2df167a3 | 864 | * Call with cgroup_mutex held. May take callback_mutex during call. |
58f4790b CW |
865 | * Called for each task in a cgroup by cgroup_scan_tasks(). |
866 | * Return nonzero if this tasks's cpus_allowed mask should be changed (in other | |
867 | * words, if its mask is not equal to its cpuset's mask). | |
053199ed | 868 | */ |
9e0c914c AB |
869 | static int cpuset_test_cpumask(struct task_struct *tsk, |
870 | struct cgroup_scanner *scan) | |
58f4790b | 871 | { |
300ed6cb | 872 | return !cpumask_equal(&tsk->cpus_allowed, |
58f4790b CW |
873 | (cgroup_cs(scan->cg))->cpus_allowed); |
874 | } | |
053199ed | 875 | |
58f4790b CW |
876 | /** |
877 | * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's | |
878 | * @tsk: task to test | |
879 | * @scan: struct cgroup_scanner containing the cgroup of the task | |
880 | * | |
881 | * Called by cgroup_scan_tasks() for each task in a cgroup whose | |
882 | * cpus_allowed mask needs to be changed. | |
883 | * | |
884 | * We don't need to re-check for the cgroup/cpuset membership, since we're | |
885 | * holding cgroup_lock() at this point. | |
886 | */ | |
9e0c914c AB |
887 | static void cpuset_change_cpumask(struct task_struct *tsk, |
888 | struct cgroup_scanner *scan) | |
58f4790b | 889 | { |
300ed6cb | 890 | set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed)); |
58f4790b CW |
891 | } |
892 | ||
0b2f630a MX |
893 | /** |
894 | * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. | |
895 | * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed | |
4e74339a | 896 | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() |
0b2f630a MX |
897 | * |
898 | * Called with cgroup_mutex held | |
899 | * | |
900 | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | |
901 | * calling callback functions for each. | |
902 | * | |
4e74339a LZ |
903 | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 |
904 | * if @heap != NULL. | |
0b2f630a | 905 | */ |
4e74339a | 906 | static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap) |
0b2f630a MX |
907 | { |
908 | struct cgroup_scanner scan; | |
0b2f630a MX |
909 | |
910 | scan.cg = cs->css.cgroup; | |
911 | scan.test_task = cpuset_test_cpumask; | |
912 | scan.process_task = cpuset_change_cpumask; | |
4e74339a LZ |
913 | scan.heap = heap; |
914 | cgroup_scan_tasks(&scan); | |
0b2f630a MX |
915 | } |
916 | ||
58f4790b CW |
917 | /** |
918 | * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it | |
919 | * @cs: the cpuset to consider | |
920 | * @buf: buffer of cpu numbers written to this cpuset | |
921 | */ | |
645fcc9d LZ |
922 | static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, |
923 | const char *buf) | |
1da177e4 | 924 | { |
4e74339a | 925 | struct ptr_heap heap; |
58f4790b CW |
926 | int retval; |
927 | int is_load_balanced; | |
1da177e4 | 928 | |
4c4d50f7 PJ |
929 | /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */ |
930 | if (cs == &top_cpuset) | |
931 | return -EACCES; | |
932 | ||
6f7f02e7 | 933 | /* |
c8d9c90c | 934 | * An empty cpus_allowed is ok only if the cpuset has no tasks. |
020958b6 PJ |
935 | * Since cpulist_parse() fails on an empty mask, we special case |
936 | * that parsing. The validate_change() call ensures that cpusets | |
937 | * with tasks have cpus. | |
6f7f02e7 | 938 | */ |
020958b6 | 939 | if (!*buf) { |
300ed6cb | 940 | cpumask_clear(trialcs->cpus_allowed); |
6f7f02e7 | 941 | } else { |
300ed6cb | 942 | retval = cpulist_parse(buf, trialcs->cpus_allowed); |
6f7f02e7 DR |
943 | if (retval < 0) |
944 | return retval; | |
37340746 | 945 | |
300ed6cb | 946 | if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask)) |
37340746 | 947 | return -EINVAL; |
6f7f02e7 | 948 | } |
645fcc9d | 949 | retval = validate_change(cs, trialcs); |
85d7b949 DG |
950 | if (retval < 0) |
951 | return retval; | |
029190c5 | 952 | |
8707d8b8 | 953 | /* Nothing to do if the cpus didn't change */ |
300ed6cb | 954 | if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) |
8707d8b8 | 955 | return 0; |
58f4790b | 956 | |
4e74339a LZ |
957 | retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); |
958 | if (retval) | |
959 | return retval; | |
960 | ||
645fcc9d | 961 | is_load_balanced = is_sched_load_balance(trialcs); |
029190c5 | 962 | |
3d3f26a7 | 963 | mutex_lock(&callback_mutex); |
300ed6cb | 964 | cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); |
3d3f26a7 | 965 | mutex_unlock(&callback_mutex); |
029190c5 | 966 | |
8707d8b8 PM |
967 | /* |
968 | * Scan tasks in the cpuset, and update the cpumasks of any | |
58f4790b | 969 | * that need an update. |
8707d8b8 | 970 | */ |
4e74339a LZ |
971 | update_tasks_cpumask(cs, &heap); |
972 | ||
973 | heap_free(&heap); | |
58f4790b | 974 | |
8707d8b8 | 975 | if (is_load_balanced) |
cf417141 | 976 | async_rebuild_sched_domains(); |
85d7b949 | 977 | return 0; |
1da177e4 LT |
978 | } |
979 | ||
e4e364e8 PJ |
980 | /* |
981 | * cpuset_migrate_mm | |
982 | * | |
983 | * Migrate memory region from one set of nodes to another. | |
984 | * | |
985 | * Temporarilly set tasks mems_allowed to target nodes of migration, | |
986 | * so that the migration code can allocate pages on these nodes. | |
987 | * | |
2df167a3 | 988 | * Call holding cgroup_mutex, so current's cpuset won't change |
c8d9c90c | 989 | * during this call, as manage_mutex holds off any cpuset_attach() |
e4e364e8 PJ |
990 | * calls. Therefore we don't need to take task_lock around the |
991 | * call to guarantee_online_mems(), as we know no one is changing | |
2df167a3 | 992 | * our task's cpuset. |
e4e364e8 PJ |
993 | * |
994 | * Hold callback_mutex around the two modifications of our tasks | |
995 | * mems_allowed to synchronize with cpuset_mems_allowed(). | |
996 | * | |
997 | * While the mm_struct we are migrating is typically from some | |
998 | * other task, the task_struct mems_allowed that we are hacking | |
999 | * is for our current task, which must allocate new pages for that | |
1000 | * migrating memory region. | |
1001 | * | |
1002 | * We call cpuset_update_task_memory_state() before hacking | |
1003 | * our tasks mems_allowed, so that we are assured of being in | |
1004 | * sync with our tasks cpuset, and in particular, callbacks to | |
1005 | * cpuset_update_task_memory_state() from nested page allocations | |
1006 | * won't see any mismatch of our cpuset and task mems_generation | |
1007 | * values, so won't overwrite our hacked tasks mems_allowed | |
1008 | * nodemask. | |
1009 | */ | |
1010 | ||
1011 | static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, | |
1012 | const nodemask_t *to) | |
1013 | { | |
1014 | struct task_struct *tsk = current; | |
1015 | ||
1016 | cpuset_update_task_memory_state(); | |
1017 | ||
1018 | mutex_lock(&callback_mutex); | |
1019 | tsk->mems_allowed = *to; | |
1020 | mutex_unlock(&callback_mutex); | |
1021 | ||
1022 | do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL); | |
1023 | ||
1024 | mutex_lock(&callback_mutex); | |
8793d854 | 1025 | guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed); |
e4e364e8 PJ |
1026 | mutex_unlock(&callback_mutex); |
1027 | } | |
1028 | ||
8793d854 PM |
1029 | static void *cpuset_being_rebound; |
1030 | ||
0b2f630a MX |
1031 | /** |
1032 | * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. | |
1033 | * @cs: the cpuset in which each task's mems_allowed mask needs to be changed | |
1034 | * @oldmem: old mems_allowed of cpuset cs | |
1035 | * | |
1036 | * Called with cgroup_mutex held | |
1037 | * Return 0 if successful, -errno if not. | |
1038 | */ | |
1039 | static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem) | |
1da177e4 | 1040 | { |
8793d854 | 1041 | struct task_struct *p; |
4225399a PJ |
1042 | struct mm_struct **mmarray; |
1043 | int i, n, ntasks; | |
04c19fa6 | 1044 | int migrate; |
4225399a | 1045 | int fudge; |
8793d854 | 1046 | struct cgroup_iter it; |
0b2f630a | 1047 | int retval; |
59dac16f | 1048 | |
846a16bf | 1049 | cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ |
4225399a PJ |
1050 | |
1051 | fudge = 10; /* spare mmarray[] slots */ | |
300ed6cb | 1052 | fudge += cpumask_weight(cs->cpus_allowed);/* imagine 1 fork-bomb/cpu */ |
4225399a PJ |
1053 | retval = -ENOMEM; |
1054 | ||
1055 | /* | |
1056 | * Allocate mmarray[] to hold mm reference for each task | |
1057 | * in cpuset cs. Can't kmalloc GFP_KERNEL while holding | |
1058 | * tasklist_lock. We could use GFP_ATOMIC, but with a | |
1059 | * few more lines of code, we can retry until we get a big | |
1060 | * enough mmarray[] w/o using GFP_ATOMIC. | |
1061 | */ | |
1062 | while (1) { | |
8793d854 | 1063 | ntasks = cgroup_task_count(cs->css.cgroup); /* guess */ |
4225399a PJ |
1064 | ntasks += fudge; |
1065 | mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL); | |
1066 | if (!mmarray) | |
1067 | goto done; | |
c2aef333 | 1068 | read_lock(&tasklist_lock); /* block fork */ |
8793d854 | 1069 | if (cgroup_task_count(cs->css.cgroup) <= ntasks) |
4225399a | 1070 | break; /* got enough */ |
c2aef333 | 1071 | read_unlock(&tasklist_lock); /* try again */ |
4225399a PJ |
1072 | kfree(mmarray); |
1073 | } | |
1074 | ||
1075 | n = 0; | |
1076 | ||
1077 | /* Load up mmarray[] with mm reference for each task in cpuset. */ | |
8793d854 PM |
1078 | cgroup_iter_start(cs->css.cgroup, &it); |
1079 | while ((p = cgroup_iter_next(cs->css.cgroup, &it))) { | |
4225399a PJ |
1080 | struct mm_struct *mm; |
1081 | ||
1082 | if (n >= ntasks) { | |
1083 | printk(KERN_WARNING | |
1084 | "Cpuset mempolicy rebind incomplete.\n"); | |
8793d854 | 1085 | break; |
4225399a | 1086 | } |
4225399a PJ |
1087 | mm = get_task_mm(p); |
1088 | if (!mm) | |
1089 | continue; | |
1090 | mmarray[n++] = mm; | |
8793d854 PM |
1091 | } |
1092 | cgroup_iter_end(cs->css.cgroup, &it); | |
c2aef333 | 1093 | read_unlock(&tasklist_lock); |
4225399a PJ |
1094 | |
1095 | /* | |
1096 | * Now that we've dropped the tasklist spinlock, we can | |
1097 | * rebind the vma mempolicies of each mm in mmarray[] to their | |
1098 | * new cpuset, and release that mm. The mpol_rebind_mm() | |
1099 | * call takes mmap_sem, which we couldn't take while holding | |
846a16bf | 1100 | * tasklist_lock. Forks can happen again now - the mpol_dup() |
4225399a PJ |
1101 | * cpuset_being_rebound check will catch such forks, and rebind |
1102 | * their vma mempolicies too. Because we still hold the global | |
2df167a3 | 1103 | * cgroup_mutex, we know that no other rebind effort will |
4225399a PJ |
1104 | * be contending for the global variable cpuset_being_rebound. |
1105 | * It's ok if we rebind the same mm twice; mpol_rebind_mm() | |
04c19fa6 | 1106 | * is idempotent. Also migrate pages in each mm to new nodes. |
4225399a | 1107 | */ |
04c19fa6 | 1108 | migrate = is_memory_migrate(cs); |
4225399a PJ |
1109 | for (i = 0; i < n; i++) { |
1110 | struct mm_struct *mm = mmarray[i]; | |
1111 | ||
1112 | mpol_rebind_mm(mm, &cs->mems_allowed); | |
e4e364e8 | 1113 | if (migrate) |
0b2f630a | 1114 | cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed); |
4225399a PJ |
1115 | mmput(mm); |
1116 | } | |
1117 | ||
2df167a3 | 1118 | /* We're done rebinding vmas to this cpuset's new mems_allowed. */ |
4225399a | 1119 | kfree(mmarray); |
8793d854 | 1120 | cpuset_being_rebound = NULL; |
4225399a | 1121 | retval = 0; |
59dac16f | 1122 | done: |
1da177e4 LT |
1123 | return retval; |
1124 | } | |
1125 | ||
0b2f630a MX |
1126 | /* |
1127 | * Handle user request to change the 'mems' memory placement | |
1128 | * of a cpuset. Needs to validate the request, update the | |
1129 | * cpusets mems_allowed and mems_generation, and for each | |
1130 | * task in the cpuset, rebind any vma mempolicies and if | |
1131 | * the cpuset is marked 'memory_migrate', migrate the tasks | |
1132 | * pages to the new memory. | |
1133 | * | |
1134 | * Call with cgroup_mutex held. May take callback_mutex during call. | |
1135 | * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, | |
1136 | * lock each such tasks mm->mmap_sem, scan its vma's and rebind | |
1137 | * their mempolicies to the cpusets new mems_allowed. | |
1138 | */ | |
645fcc9d LZ |
1139 | static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, |
1140 | const char *buf) | |
0b2f630a | 1141 | { |
0b2f630a MX |
1142 | nodemask_t oldmem; |
1143 | int retval; | |
1144 | ||
1145 | /* | |
1146 | * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY]; | |
1147 | * it's read-only | |
1148 | */ | |
1149 | if (cs == &top_cpuset) | |
1150 | return -EACCES; | |
1151 | ||
0b2f630a MX |
1152 | /* |
1153 | * An empty mems_allowed is ok iff there are no tasks in the cpuset. | |
1154 | * Since nodelist_parse() fails on an empty mask, we special case | |
1155 | * that parsing. The validate_change() call ensures that cpusets | |
1156 | * with tasks have memory. | |
1157 | */ | |
1158 | if (!*buf) { | |
645fcc9d | 1159 | nodes_clear(trialcs->mems_allowed); |
0b2f630a | 1160 | } else { |
645fcc9d | 1161 | retval = nodelist_parse(buf, trialcs->mems_allowed); |
0b2f630a MX |
1162 | if (retval < 0) |
1163 | goto done; | |
1164 | ||
645fcc9d | 1165 | if (!nodes_subset(trialcs->mems_allowed, |
0b2f630a MX |
1166 | node_states[N_HIGH_MEMORY])) |
1167 | return -EINVAL; | |
1168 | } | |
1169 | oldmem = cs->mems_allowed; | |
645fcc9d | 1170 | if (nodes_equal(oldmem, trialcs->mems_allowed)) { |
0b2f630a MX |
1171 | retval = 0; /* Too easy - nothing to do */ |
1172 | goto done; | |
1173 | } | |
645fcc9d | 1174 | retval = validate_change(cs, trialcs); |
0b2f630a MX |
1175 | if (retval < 0) |
1176 | goto done; | |
1177 | ||
1178 | mutex_lock(&callback_mutex); | |
645fcc9d | 1179 | cs->mems_allowed = trialcs->mems_allowed; |
0b2f630a MX |
1180 | cs->mems_generation = cpuset_mems_generation++; |
1181 | mutex_unlock(&callback_mutex); | |
1182 | ||
1183 | retval = update_tasks_nodemask(cs, &oldmem); | |
1184 | done: | |
1185 | return retval; | |
1186 | } | |
1187 | ||
8793d854 PM |
1188 | int current_cpuset_is_being_rebound(void) |
1189 | { | |
1190 | return task_cs(current) == cpuset_being_rebound; | |
1191 | } | |
1192 | ||
5be7a479 | 1193 | static int update_relax_domain_level(struct cpuset *cs, s64 val) |
1d3504fc | 1194 | { |
30e0e178 LZ |
1195 | if (val < -1 || val >= SD_LV_MAX) |
1196 | return -EINVAL; | |
1d3504fc HS |
1197 | |
1198 | if (val != cs->relax_domain_level) { | |
1199 | cs->relax_domain_level = val; | |
300ed6cb LZ |
1200 | if (!cpumask_empty(cs->cpus_allowed) && |
1201 | is_sched_load_balance(cs)) | |
cf417141 | 1202 | async_rebuild_sched_domains(); |
1d3504fc HS |
1203 | } |
1204 | ||
1205 | return 0; | |
1206 | } | |
1207 | ||
1da177e4 LT |
1208 | /* |
1209 | * update_flag - read a 0 or a 1 in a file and update associated flag | |
78608366 PM |
1210 | * bit: the bit to update (see cpuset_flagbits_t) |
1211 | * cs: the cpuset to update | |
1212 | * turning_on: whether the flag is being set or cleared | |
053199ed | 1213 | * |
2df167a3 | 1214 | * Call with cgroup_mutex held. |
1da177e4 LT |
1215 | */ |
1216 | ||
700fe1ab PM |
1217 | static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, |
1218 | int turning_on) | |
1da177e4 | 1219 | { |
645fcc9d | 1220 | struct cpuset *trialcs; |
607717a6 | 1221 | int err; |
40b6a762 | 1222 | int balance_flag_changed; |
1da177e4 | 1223 | |
645fcc9d LZ |
1224 | trialcs = alloc_trial_cpuset(cs); |
1225 | if (!trialcs) | |
1226 | return -ENOMEM; | |
1227 | ||
1da177e4 | 1228 | if (turning_on) |
645fcc9d | 1229 | set_bit(bit, &trialcs->flags); |
1da177e4 | 1230 | else |
645fcc9d | 1231 | clear_bit(bit, &trialcs->flags); |
1da177e4 | 1232 | |
645fcc9d | 1233 | err = validate_change(cs, trialcs); |
85d7b949 | 1234 | if (err < 0) |
645fcc9d | 1235 | goto out; |
029190c5 | 1236 | |
029190c5 | 1237 | balance_flag_changed = (is_sched_load_balance(cs) != |
645fcc9d | 1238 | is_sched_load_balance(trialcs)); |
029190c5 | 1239 | |
3d3f26a7 | 1240 | mutex_lock(&callback_mutex); |
645fcc9d | 1241 | cs->flags = trialcs->flags; |
3d3f26a7 | 1242 | mutex_unlock(&callback_mutex); |
85d7b949 | 1243 | |
300ed6cb | 1244 | if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) |
cf417141 | 1245 | async_rebuild_sched_domains(); |
029190c5 | 1246 | |
645fcc9d LZ |
1247 | out: |
1248 | free_trial_cpuset(trialcs); | |
1249 | return err; | |
1da177e4 LT |
1250 | } |
1251 | ||
3e0d98b9 | 1252 | /* |
80f7228b | 1253 | * Frequency meter - How fast is some event occurring? |
3e0d98b9 PJ |
1254 | * |
1255 | * These routines manage a digitally filtered, constant time based, | |
1256 | * event frequency meter. There are four routines: | |
1257 | * fmeter_init() - initialize a frequency meter. | |
1258 | * fmeter_markevent() - called each time the event happens. | |
1259 | * fmeter_getrate() - returns the recent rate of such events. | |
1260 | * fmeter_update() - internal routine used to update fmeter. | |
1261 | * | |
1262 | * A common data structure is passed to each of these routines, | |
1263 | * which is used to keep track of the state required to manage the | |
1264 | * frequency meter and its digital filter. | |
1265 | * | |
1266 | * The filter works on the number of events marked per unit time. | |
1267 | * The filter is single-pole low-pass recursive (IIR). The time unit | |
1268 | * is 1 second. Arithmetic is done using 32-bit integers scaled to | |
1269 | * simulate 3 decimal digits of precision (multiplied by 1000). | |
1270 | * | |
1271 | * With an FM_COEF of 933, and a time base of 1 second, the filter | |
1272 | * has a half-life of 10 seconds, meaning that if the events quit | |
1273 | * happening, then the rate returned from the fmeter_getrate() | |
1274 | * will be cut in half each 10 seconds, until it converges to zero. | |
1275 | * | |
1276 | * It is not worth doing a real infinitely recursive filter. If more | |
1277 | * than FM_MAXTICKS ticks have elapsed since the last filter event, | |
1278 | * just compute FM_MAXTICKS ticks worth, by which point the level | |
1279 | * will be stable. | |
1280 | * | |
1281 | * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid | |
1282 | * arithmetic overflow in the fmeter_update() routine. | |
1283 | * | |
1284 | * Given the simple 32 bit integer arithmetic used, this meter works | |
1285 | * best for reporting rates between one per millisecond (msec) and | |
1286 | * one per 32 (approx) seconds. At constant rates faster than one | |
1287 | * per msec it maxes out at values just under 1,000,000. At constant | |
1288 | * rates between one per msec, and one per second it will stabilize | |
1289 | * to a value N*1000, where N is the rate of events per second. | |
1290 | * At constant rates between one per second and one per 32 seconds, | |
1291 | * it will be choppy, moving up on the seconds that have an event, | |
1292 | * and then decaying until the next event. At rates slower than | |
1293 | * about one in 32 seconds, it decays all the way back to zero between | |
1294 | * each event. | |
1295 | */ | |
1296 | ||
1297 | #define FM_COEF 933 /* coefficient for half-life of 10 secs */ | |
1298 | #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */ | |
1299 | #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ | |
1300 | #define FM_SCALE 1000 /* faux fixed point scale */ | |
1301 | ||
1302 | /* Initialize a frequency meter */ | |
1303 | static void fmeter_init(struct fmeter *fmp) | |
1304 | { | |
1305 | fmp->cnt = 0; | |
1306 | fmp->val = 0; | |
1307 | fmp->time = 0; | |
1308 | spin_lock_init(&fmp->lock); | |
1309 | } | |
1310 | ||
1311 | /* Internal meter update - process cnt events and update value */ | |
1312 | static void fmeter_update(struct fmeter *fmp) | |
1313 | { | |
1314 | time_t now = get_seconds(); | |
1315 | time_t ticks = now - fmp->time; | |
1316 | ||
1317 | if (ticks == 0) | |
1318 | return; | |
1319 | ||
1320 | ticks = min(FM_MAXTICKS, ticks); | |
1321 | while (ticks-- > 0) | |
1322 | fmp->val = (FM_COEF * fmp->val) / FM_SCALE; | |
1323 | fmp->time = now; | |
1324 | ||
1325 | fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; | |
1326 | fmp->cnt = 0; | |
1327 | } | |
1328 | ||
1329 | /* Process any previous ticks, then bump cnt by one (times scale). */ | |
1330 | static void fmeter_markevent(struct fmeter *fmp) | |
1331 | { | |
1332 | spin_lock(&fmp->lock); | |
1333 | fmeter_update(fmp); | |
1334 | fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); | |
1335 | spin_unlock(&fmp->lock); | |
1336 | } | |
1337 | ||
1338 | /* Process any previous ticks, then return current value. */ | |
1339 | static int fmeter_getrate(struct fmeter *fmp) | |
1340 | { | |
1341 | int val; | |
1342 | ||
1343 | spin_lock(&fmp->lock); | |
1344 | fmeter_update(fmp); | |
1345 | val = fmp->val; | |
1346 | spin_unlock(&fmp->lock); | |
1347 | return val; | |
1348 | } | |
1349 | ||
2341d1b6 LZ |
1350 | /* Protected by cgroup_lock */ |
1351 | static cpumask_var_t cpus_attach; | |
1352 | ||
2df167a3 | 1353 | /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ |
8793d854 PM |
1354 | static int cpuset_can_attach(struct cgroup_subsys *ss, |
1355 | struct cgroup *cont, struct task_struct *tsk) | |
1da177e4 | 1356 | { |
8793d854 | 1357 | struct cpuset *cs = cgroup_cs(cont); |
5771f0a2 | 1358 | int ret = 0; |
1da177e4 | 1359 | |
300ed6cb | 1360 | if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) |
1da177e4 | 1361 | return -ENOSPC; |
9985b0ba | 1362 | |
5771f0a2 | 1363 | if (tsk->flags & PF_THREAD_BOUND) { |
9985b0ba | 1364 | mutex_lock(&callback_mutex); |
300ed6cb | 1365 | if (!cpumask_equal(&tsk->cpus_allowed, cs->cpus_allowed)) |
5771f0a2 | 1366 | ret = -EINVAL; |
9985b0ba | 1367 | mutex_unlock(&callback_mutex); |
9985b0ba | 1368 | } |
1da177e4 | 1369 | |
5771f0a2 | 1370 | return ret < 0 ? ret : security_task_setscheduler(tsk, 0, NULL); |
8793d854 | 1371 | } |
1da177e4 | 1372 | |
8793d854 PM |
1373 | static void cpuset_attach(struct cgroup_subsys *ss, |
1374 | struct cgroup *cont, struct cgroup *oldcont, | |
1375 | struct task_struct *tsk) | |
1376 | { | |
8793d854 PM |
1377 | nodemask_t from, to; |
1378 | struct mm_struct *mm; | |
1379 | struct cpuset *cs = cgroup_cs(cont); | |
1380 | struct cpuset *oldcs = cgroup_cs(oldcont); | |
9985b0ba | 1381 | int err; |
22fb52dd | 1382 | |
f5813d94 | 1383 | if (cs == &top_cpuset) { |
2341d1b6 | 1384 | cpumask_copy(cpus_attach, cpu_possible_mask); |
f5813d94 MX |
1385 | } else { |
1386 | mutex_lock(&callback_mutex); | |
2341d1b6 | 1387 | guarantee_online_cpus(cs, cpus_attach); |
f5813d94 MX |
1388 | mutex_unlock(&callback_mutex); |
1389 | } | |
2341d1b6 | 1390 | err = set_cpus_allowed_ptr(tsk, cpus_attach); |
9985b0ba DR |
1391 | if (err) |
1392 | return; | |
1da177e4 | 1393 | |
45b07ef3 PJ |
1394 | from = oldcs->mems_allowed; |
1395 | to = cs->mems_allowed; | |
4225399a PJ |
1396 | mm = get_task_mm(tsk); |
1397 | if (mm) { | |
1398 | mpol_rebind_mm(mm, &to); | |
2741a559 | 1399 | if (is_memory_migrate(cs)) |
e4e364e8 | 1400 | cpuset_migrate_mm(mm, &from, &to); |
4225399a PJ |
1401 | mmput(mm); |
1402 | } | |
1da177e4 LT |
1403 | } |
1404 | ||
1405 | /* The various types of files and directories in a cpuset file system */ | |
1406 | ||
1407 | typedef enum { | |
45b07ef3 | 1408 | FILE_MEMORY_MIGRATE, |
1da177e4 LT |
1409 | FILE_CPULIST, |
1410 | FILE_MEMLIST, | |
1411 | FILE_CPU_EXCLUSIVE, | |
1412 | FILE_MEM_EXCLUSIVE, | |
78608366 | 1413 | FILE_MEM_HARDWALL, |
029190c5 | 1414 | FILE_SCHED_LOAD_BALANCE, |
1d3504fc | 1415 | FILE_SCHED_RELAX_DOMAIN_LEVEL, |
3e0d98b9 PJ |
1416 | FILE_MEMORY_PRESSURE_ENABLED, |
1417 | FILE_MEMORY_PRESSURE, | |
825a46af PJ |
1418 | FILE_SPREAD_PAGE, |
1419 | FILE_SPREAD_SLAB, | |
1da177e4 LT |
1420 | } cpuset_filetype_t; |
1421 | ||
700fe1ab PM |
1422 | static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val) |
1423 | { | |
1424 | int retval = 0; | |
1425 | struct cpuset *cs = cgroup_cs(cgrp); | |
1426 | cpuset_filetype_t type = cft->private; | |
1427 | ||
e3712395 | 1428 | if (!cgroup_lock_live_group(cgrp)) |
700fe1ab | 1429 | return -ENODEV; |
700fe1ab PM |
1430 | |
1431 | switch (type) { | |
1da177e4 | 1432 | case FILE_CPU_EXCLUSIVE: |
700fe1ab | 1433 | retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); |
1da177e4 LT |
1434 | break; |
1435 | case FILE_MEM_EXCLUSIVE: | |
700fe1ab | 1436 | retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); |
1da177e4 | 1437 | break; |
78608366 PM |
1438 | case FILE_MEM_HARDWALL: |
1439 | retval = update_flag(CS_MEM_HARDWALL, cs, val); | |
1440 | break; | |
029190c5 | 1441 | case FILE_SCHED_LOAD_BALANCE: |
700fe1ab | 1442 | retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); |
1d3504fc | 1443 | break; |
45b07ef3 | 1444 | case FILE_MEMORY_MIGRATE: |
700fe1ab | 1445 | retval = update_flag(CS_MEMORY_MIGRATE, cs, val); |
45b07ef3 | 1446 | break; |
3e0d98b9 | 1447 | case FILE_MEMORY_PRESSURE_ENABLED: |
700fe1ab | 1448 | cpuset_memory_pressure_enabled = !!val; |
3e0d98b9 PJ |
1449 | break; |
1450 | case FILE_MEMORY_PRESSURE: | |
1451 | retval = -EACCES; | |
1452 | break; | |
825a46af | 1453 | case FILE_SPREAD_PAGE: |
700fe1ab | 1454 | retval = update_flag(CS_SPREAD_PAGE, cs, val); |
151a4420 | 1455 | cs->mems_generation = cpuset_mems_generation++; |
825a46af PJ |
1456 | break; |
1457 | case FILE_SPREAD_SLAB: | |
700fe1ab | 1458 | retval = update_flag(CS_SPREAD_SLAB, cs, val); |
151a4420 | 1459 | cs->mems_generation = cpuset_mems_generation++; |
825a46af | 1460 | break; |
1da177e4 LT |
1461 | default: |
1462 | retval = -EINVAL; | |
700fe1ab | 1463 | break; |
1da177e4 | 1464 | } |
8793d854 | 1465 | cgroup_unlock(); |
1da177e4 LT |
1466 | return retval; |
1467 | } | |
1468 | ||
5be7a479 PM |
1469 | static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val) |
1470 | { | |
1471 | int retval = 0; | |
1472 | struct cpuset *cs = cgroup_cs(cgrp); | |
1473 | cpuset_filetype_t type = cft->private; | |
1474 | ||
e3712395 | 1475 | if (!cgroup_lock_live_group(cgrp)) |
5be7a479 | 1476 | return -ENODEV; |
e3712395 | 1477 | |
5be7a479 PM |
1478 | switch (type) { |
1479 | case FILE_SCHED_RELAX_DOMAIN_LEVEL: | |
1480 | retval = update_relax_domain_level(cs, val); | |
1481 | break; | |
1482 | default: | |
1483 | retval = -EINVAL; | |
1484 | break; | |
1485 | } | |
1486 | cgroup_unlock(); | |
1487 | return retval; | |
1488 | } | |
1489 | ||
e3712395 PM |
1490 | /* |
1491 | * Common handling for a write to a "cpus" or "mems" file. | |
1492 | */ | |
1493 | static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft, | |
1494 | const char *buf) | |
1495 | { | |
1496 | int retval = 0; | |
645fcc9d LZ |
1497 | struct cpuset *cs = cgroup_cs(cgrp); |
1498 | struct cpuset *trialcs; | |
e3712395 PM |
1499 | |
1500 | if (!cgroup_lock_live_group(cgrp)) | |
1501 | return -ENODEV; | |
1502 | ||
645fcc9d LZ |
1503 | trialcs = alloc_trial_cpuset(cs); |
1504 | if (!trialcs) | |
1505 | return -ENOMEM; | |
1506 | ||
e3712395 PM |
1507 | switch (cft->private) { |
1508 | case FILE_CPULIST: | |
645fcc9d | 1509 | retval = update_cpumask(cs, trialcs, buf); |
e3712395 PM |
1510 | break; |
1511 | case FILE_MEMLIST: | |
645fcc9d | 1512 | retval = update_nodemask(cs, trialcs, buf); |
e3712395 PM |
1513 | break; |
1514 | default: | |
1515 | retval = -EINVAL; | |
1516 | break; | |
1517 | } | |
645fcc9d LZ |
1518 | |
1519 | free_trial_cpuset(trialcs); | |
e3712395 PM |
1520 | cgroup_unlock(); |
1521 | return retval; | |
1522 | } | |
1523 | ||
1da177e4 LT |
1524 | /* |
1525 | * These ascii lists should be read in a single call, by using a user | |
1526 | * buffer large enough to hold the entire map. If read in smaller | |
1527 | * chunks, there is no guarantee of atomicity. Since the display format | |
1528 | * used, list of ranges of sequential numbers, is variable length, | |
1529 | * and since these maps can change value dynamically, one could read | |
1530 | * gibberish by doing partial reads while a list was changing. | |
1531 | * A single large read to a buffer that crosses a page boundary is | |
1532 | * ok, because the result being copied to user land is not recomputed | |
1533 | * across a page fault. | |
1534 | */ | |
1535 | ||
1536 | static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs) | |
1537 | { | |
5a7625df | 1538 | int ret; |
1da177e4 | 1539 | |
3d3f26a7 | 1540 | mutex_lock(&callback_mutex); |
300ed6cb | 1541 | ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed); |
3d3f26a7 | 1542 | mutex_unlock(&callback_mutex); |
1da177e4 | 1543 | |
5a7625df | 1544 | return ret; |
1da177e4 LT |
1545 | } |
1546 | ||
1547 | static int cpuset_sprintf_memlist(char *page, struct cpuset *cs) | |
1548 | { | |
1549 | nodemask_t mask; | |
1550 | ||
3d3f26a7 | 1551 | mutex_lock(&callback_mutex); |
1da177e4 | 1552 | mask = cs->mems_allowed; |
3d3f26a7 | 1553 | mutex_unlock(&callback_mutex); |
1da177e4 LT |
1554 | |
1555 | return nodelist_scnprintf(page, PAGE_SIZE, mask); | |
1556 | } | |
1557 | ||
8793d854 PM |
1558 | static ssize_t cpuset_common_file_read(struct cgroup *cont, |
1559 | struct cftype *cft, | |
1560 | struct file *file, | |
1561 | char __user *buf, | |
1562 | size_t nbytes, loff_t *ppos) | |
1da177e4 | 1563 | { |
8793d854 | 1564 | struct cpuset *cs = cgroup_cs(cont); |
1da177e4 LT |
1565 | cpuset_filetype_t type = cft->private; |
1566 | char *page; | |
1567 | ssize_t retval = 0; | |
1568 | char *s; | |
1da177e4 | 1569 | |
e12ba74d | 1570 | if (!(page = (char *)__get_free_page(GFP_TEMPORARY))) |
1da177e4 LT |
1571 | return -ENOMEM; |
1572 | ||
1573 | s = page; | |
1574 | ||
1575 | switch (type) { | |
1576 | case FILE_CPULIST: | |
1577 | s += cpuset_sprintf_cpulist(s, cs); | |
1578 | break; | |
1579 | case FILE_MEMLIST: | |
1580 | s += cpuset_sprintf_memlist(s, cs); | |
1581 | break; | |
1da177e4 LT |
1582 | default: |
1583 | retval = -EINVAL; | |
1584 | goto out; | |
1585 | } | |
1586 | *s++ = '\n'; | |
1da177e4 | 1587 | |
eacaa1f5 | 1588 | retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page); |
1da177e4 LT |
1589 | out: |
1590 | free_page((unsigned long)page); | |
1591 | return retval; | |
1592 | } | |
1593 | ||
700fe1ab PM |
1594 | static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft) |
1595 | { | |
1596 | struct cpuset *cs = cgroup_cs(cont); | |
1597 | cpuset_filetype_t type = cft->private; | |
1598 | switch (type) { | |
1599 | case FILE_CPU_EXCLUSIVE: | |
1600 | return is_cpu_exclusive(cs); | |
1601 | case FILE_MEM_EXCLUSIVE: | |
1602 | return is_mem_exclusive(cs); | |
78608366 PM |
1603 | case FILE_MEM_HARDWALL: |
1604 | return is_mem_hardwall(cs); | |
700fe1ab PM |
1605 | case FILE_SCHED_LOAD_BALANCE: |
1606 | return is_sched_load_balance(cs); | |
1607 | case FILE_MEMORY_MIGRATE: | |
1608 | return is_memory_migrate(cs); | |
1609 | case FILE_MEMORY_PRESSURE_ENABLED: | |
1610 | return cpuset_memory_pressure_enabled; | |
1611 | case FILE_MEMORY_PRESSURE: | |
1612 | return fmeter_getrate(&cs->fmeter); | |
1613 | case FILE_SPREAD_PAGE: | |
1614 | return is_spread_page(cs); | |
1615 | case FILE_SPREAD_SLAB: | |
1616 | return is_spread_slab(cs); | |
1617 | default: | |
1618 | BUG(); | |
1619 | } | |
cf417141 MK |
1620 | |
1621 | /* Unreachable but makes gcc happy */ | |
1622 | return 0; | |
700fe1ab | 1623 | } |
1da177e4 | 1624 | |
5be7a479 PM |
1625 | static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft) |
1626 | { | |
1627 | struct cpuset *cs = cgroup_cs(cont); | |
1628 | cpuset_filetype_t type = cft->private; | |
1629 | switch (type) { | |
1630 | case FILE_SCHED_RELAX_DOMAIN_LEVEL: | |
1631 | return cs->relax_domain_level; | |
1632 | default: | |
1633 | BUG(); | |
1634 | } | |
cf417141 MK |
1635 | |
1636 | /* Unrechable but makes gcc happy */ | |
1637 | return 0; | |
5be7a479 PM |
1638 | } |
1639 | ||
1da177e4 LT |
1640 | |
1641 | /* | |
1642 | * for the common functions, 'private' gives the type of file | |
1643 | */ | |
1644 | ||
addf2c73 PM |
1645 | static struct cftype files[] = { |
1646 | { | |
1647 | .name = "cpus", | |
1648 | .read = cpuset_common_file_read, | |
e3712395 PM |
1649 | .write_string = cpuset_write_resmask, |
1650 | .max_write_len = (100U + 6 * NR_CPUS), | |
addf2c73 PM |
1651 | .private = FILE_CPULIST, |
1652 | }, | |
1653 | ||
1654 | { | |
1655 | .name = "mems", | |
1656 | .read = cpuset_common_file_read, | |
e3712395 PM |
1657 | .write_string = cpuset_write_resmask, |
1658 | .max_write_len = (100U + 6 * MAX_NUMNODES), | |
addf2c73 PM |
1659 | .private = FILE_MEMLIST, |
1660 | }, | |
1661 | ||
1662 | { | |
1663 | .name = "cpu_exclusive", | |
1664 | .read_u64 = cpuset_read_u64, | |
1665 | .write_u64 = cpuset_write_u64, | |
1666 | .private = FILE_CPU_EXCLUSIVE, | |
1667 | }, | |
1668 | ||
1669 | { | |
1670 | .name = "mem_exclusive", | |
1671 | .read_u64 = cpuset_read_u64, | |
1672 | .write_u64 = cpuset_write_u64, | |
1673 | .private = FILE_MEM_EXCLUSIVE, | |
1674 | }, | |
1675 | ||
78608366 PM |
1676 | { |
1677 | .name = "mem_hardwall", | |
1678 | .read_u64 = cpuset_read_u64, | |
1679 | .write_u64 = cpuset_write_u64, | |
1680 | .private = FILE_MEM_HARDWALL, | |
1681 | }, | |
1682 | ||
addf2c73 PM |
1683 | { |
1684 | .name = "sched_load_balance", | |
1685 | .read_u64 = cpuset_read_u64, | |
1686 | .write_u64 = cpuset_write_u64, | |
1687 | .private = FILE_SCHED_LOAD_BALANCE, | |
1688 | }, | |
1689 | ||
1690 | { | |
1691 | .name = "sched_relax_domain_level", | |
5be7a479 PM |
1692 | .read_s64 = cpuset_read_s64, |
1693 | .write_s64 = cpuset_write_s64, | |
addf2c73 PM |
1694 | .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, |
1695 | }, | |
1696 | ||
1697 | { | |
1698 | .name = "memory_migrate", | |
1699 | .read_u64 = cpuset_read_u64, | |
1700 | .write_u64 = cpuset_write_u64, | |
1701 | .private = FILE_MEMORY_MIGRATE, | |
1702 | }, | |
1703 | ||
1704 | { | |
1705 | .name = "memory_pressure", | |
1706 | .read_u64 = cpuset_read_u64, | |
1707 | .write_u64 = cpuset_write_u64, | |
1708 | .private = FILE_MEMORY_PRESSURE, | |
1709 | }, | |
1710 | ||
1711 | { | |
1712 | .name = "memory_spread_page", | |
1713 | .read_u64 = cpuset_read_u64, | |
1714 | .write_u64 = cpuset_write_u64, | |
1715 | .private = FILE_SPREAD_PAGE, | |
1716 | }, | |
1717 | ||
1718 | { | |
1719 | .name = "memory_spread_slab", | |
1720 | .read_u64 = cpuset_read_u64, | |
1721 | .write_u64 = cpuset_write_u64, | |
1722 | .private = FILE_SPREAD_SLAB, | |
1723 | }, | |
45b07ef3 PJ |
1724 | }; |
1725 | ||
3e0d98b9 PJ |
1726 | static struct cftype cft_memory_pressure_enabled = { |
1727 | .name = "memory_pressure_enabled", | |
700fe1ab PM |
1728 | .read_u64 = cpuset_read_u64, |
1729 | .write_u64 = cpuset_write_u64, | |
3e0d98b9 PJ |
1730 | .private = FILE_MEMORY_PRESSURE_ENABLED, |
1731 | }; | |
1732 | ||
8793d854 | 1733 | static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont) |
1da177e4 LT |
1734 | { |
1735 | int err; | |
1736 | ||
addf2c73 PM |
1737 | err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files)); |
1738 | if (err) | |
1da177e4 | 1739 | return err; |
8793d854 | 1740 | /* memory_pressure_enabled is in root cpuset only */ |
addf2c73 | 1741 | if (!cont->parent) |
8793d854 | 1742 | err = cgroup_add_file(cont, ss, |
addf2c73 PM |
1743 | &cft_memory_pressure_enabled); |
1744 | return err; | |
1da177e4 LT |
1745 | } |
1746 | ||
8793d854 PM |
1747 | /* |
1748 | * post_clone() is called at the end of cgroup_clone(). | |
1749 | * 'cgroup' was just created automatically as a result of | |
1750 | * a cgroup_clone(), and the current task is about to | |
1751 | * be moved into 'cgroup'. | |
1752 | * | |
1753 | * Currently we refuse to set up the cgroup - thereby | |
1754 | * refusing the task to be entered, and as a result refusing | |
1755 | * the sys_unshare() or clone() which initiated it - if any | |
1756 | * sibling cpusets have exclusive cpus or mem. | |
1757 | * | |
1758 | * If this becomes a problem for some users who wish to | |
1759 | * allow that scenario, then cpuset_post_clone() could be | |
1760 | * changed to grant parent->cpus_allowed-sibling_cpus_exclusive | |
2df167a3 PM |
1761 | * (and likewise for mems) to the new cgroup. Called with cgroup_mutex |
1762 | * held. | |
8793d854 PM |
1763 | */ |
1764 | static void cpuset_post_clone(struct cgroup_subsys *ss, | |
1765 | struct cgroup *cgroup) | |
1766 | { | |
1767 | struct cgroup *parent, *child; | |
1768 | struct cpuset *cs, *parent_cs; | |
1769 | ||
1770 | parent = cgroup->parent; | |
1771 | list_for_each_entry(child, &parent->children, sibling) { | |
1772 | cs = cgroup_cs(child); | |
1773 | if (is_mem_exclusive(cs) || is_cpu_exclusive(cs)) | |
1774 | return; | |
1775 | } | |
1776 | cs = cgroup_cs(cgroup); | |
1777 | parent_cs = cgroup_cs(parent); | |
1778 | ||
1779 | cs->mems_allowed = parent_cs->mems_allowed; | |
300ed6cb | 1780 | cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed); |
8793d854 PM |
1781 | return; |
1782 | } | |
1783 | ||
1da177e4 LT |
1784 | /* |
1785 | * cpuset_create - create a cpuset | |
2df167a3 PM |
1786 | * ss: cpuset cgroup subsystem |
1787 | * cont: control group that the new cpuset will be part of | |
1da177e4 LT |
1788 | */ |
1789 | ||
8793d854 PM |
1790 | static struct cgroup_subsys_state *cpuset_create( |
1791 | struct cgroup_subsys *ss, | |
1792 | struct cgroup *cont) | |
1da177e4 LT |
1793 | { |
1794 | struct cpuset *cs; | |
8793d854 | 1795 | struct cpuset *parent; |
1da177e4 | 1796 | |
8793d854 PM |
1797 | if (!cont->parent) { |
1798 | /* This is early initialization for the top cgroup */ | |
1799 | top_cpuset.mems_generation = cpuset_mems_generation++; | |
1800 | return &top_cpuset.css; | |
1801 | } | |
1802 | parent = cgroup_cs(cont->parent); | |
1da177e4 LT |
1803 | cs = kmalloc(sizeof(*cs), GFP_KERNEL); |
1804 | if (!cs) | |
8793d854 | 1805 | return ERR_PTR(-ENOMEM); |
300ed6cb LZ |
1806 | if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) { |
1807 | kfree(cs); | |
1808 | return ERR_PTR(-ENOMEM); | |
1809 | } | |
1da177e4 | 1810 | |
cf2a473c | 1811 | cpuset_update_task_memory_state(); |
1da177e4 | 1812 | cs->flags = 0; |
825a46af PJ |
1813 | if (is_spread_page(parent)) |
1814 | set_bit(CS_SPREAD_PAGE, &cs->flags); | |
1815 | if (is_spread_slab(parent)) | |
1816 | set_bit(CS_SPREAD_SLAB, &cs->flags); | |
029190c5 | 1817 | set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); |
300ed6cb | 1818 | cpumask_clear(cs->cpus_allowed); |
f9a86fcb | 1819 | nodes_clear(cs->mems_allowed); |
151a4420 | 1820 | cs->mems_generation = cpuset_mems_generation++; |
3e0d98b9 | 1821 | fmeter_init(&cs->fmeter); |
1d3504fc | 1822 | cs->relax_domain_level = -1; |
1da177e4 LT |
1823 | |
1824 | cs->parent = parent; | |
202f72d5 | 1825 | number_of_cpusets++; |
8793d854 | 1826 | return &cs->css ; |
1da177e4 LT |
1827 | } |
1828 | ||
029190c5 | 1829 | /* |
029190c5 PJ |
1830 | * If the cpuset being removed has its flag 'sched_load_balance' |
1831 | * enabled, then simulate turning sched_load_balance off, which | |
cf417141 | 1832 | * will call async_rebuild_sched_domains(). |
029190c5 PJ |
1833 | */ |
1834 | ||
8793d854 | 1835 | static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont) |
1da177e4 | 1836 | { |
8793d854 | 1837 | struct cpuset *cs = cgroup_cs(cont); |
1da177e4 | 1838 | |
cf2a473c | 1839 | cpuset_update_task_memory_state(); |
029190c5 PJ |
1840 | |
1841 | if (is_sched_load_balance(cs)) | |
700fe1ab | 1842 | update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); |
029190c5 | 1843 | |
202f72d5 | 1844 | number_of_cpusets--; |
300ed6cb | 1845 | free_cpumask_var(cs->cpus_allowed); |
8793d854 | 1846 | kfree(cs); |
1da177e4 LT |
1847 | } |
1848 | ||
8793d854 PM |
1849 | struct cgroup_subsys cpuset_subsys = { |
1850 | .name = "cpuset", | |
1851 | .create = cpuset_create, | |
cf417141 | 1852 | .destroy = cpuset_destroy, |
8793d854 PM |
1853 | .can_attach = cpuset_can_attach, |
1854 | .attach = cpuset_attach, | |
1855 | .populate = cpuset_populate, | |
1856 | .post_clone = cpuset_post_clone, | |
1857 | .subsys_id = cpuset_subsys_id, | |
1858 | .early_init = 1, | |
1859 | }; | |
1860 | ||
c417f024 PJ |
1861 | /* |
1862 | * cpuset_init_early - just enough so that the calls to | |
1863 | * cpuset_update_task_memory_state() in early init code | |
1864 | * are harmless. | |
1865 | */ | |
1866 | ||
1867 | int __init cpuset_init_early(void) | |
1868 | { | |
300ed6cb LZ |
1869 | alloc_bootmem_cpumask_var(&top_cpuset.cpus_allowed); |
1870 | ||
8793d854 | 1871 | top_cpuset.mems_generation = cpuset_mems_generation++; |
c417f024 PJ |
1872 | return 0; |
1873 | } | |
1874 | ||
8793d854 | 1875 | |
1da177e4 LT |
1876 | /** |
1877 | * cpuset_init - initialize cpusets at system boot | |
1878 | * | |
1879 | * Description: Initialize top_cpuset and the cpuset internal file system, | |
1880 | **/ | |
1881 | ||
1882 | int __init cpuset_init(void) | |
1883 | { | |
8793d854 | 1884 | int err = 0; |
1da177e4 | 1885 | |
300ed6cb | 1886 | cpumask_setall(top_cpuset.cpus_allowed); |
f9a86fcb | 1887 | nodes_setall(top_cpuset.mems_allowed); |
1da177e4 | 1888 | |
3e0d98b9 | 1889 | fmeter_init(&top_cpuset.fmeter); |
151a4420 | 1890 | top_cpuset.mems_generation = cpuset_mems_generation++; |
029190c5 | 1891 | set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); |
1d3504fc | 1892 | top_cpuset.relax_domain_level = -1; |
1da177e4 | 1893 | |
1da177e4 LT |
1894 | err = register_filesystem(&cpuset_fs_type); |
1895 | if (err < 0) | |
8793d854 PM |
1896 | return err; |
1897 | ||
2341d1b6 LZ |
1898 | if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)) |
1899 | BUG(); | |
1900 | ||
202f72d5 | 1901 | number_of_cpusets = 1; |
8793d854 | 1902 | return 0; |
1da177e4 LT |
1903 | } |
1904 | ||
956db3ca CW |
1905 | /** |
1906 | * cpuset_do_move_task - move a given task to another cpuset | |
1907 | * @tsk: pointer to task_struct the task to move | |
1908 | * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner | |
1909 | * | |
1910 | * Called by cgroup_scan_tasks() for each task in a cgroup. | |
1911 | * Return nonzero to stop the walk through the tasks. | |
1912 | */ | |
9e0c914c AB |
1913 | static void cpuset_do_move_task(struct task_struct *tsk, |
1914 | struct cgroup_scanner *scan) | |
956db3ca CW |
1915 | { |
1916 | struct cpuset_hotplug_scanner *chsp; | |
1917 | ||
1918 | chsp = container_of(scan, struct cpuset_hotplug_scanner, scan); | |
1919 | cgroup_attach_task(chsp->to, tsk); | |
1920 | } | |
1921 | ||
1922 | /** | |
1923 | * move_member_tasks_to_cpuset - move tasks from one cpuset to another | |
1924 | * @from: cpuset in which the tasks currently reside | |
1925 | * @to: cpuset to which the tasks will be moved | |
1926 | * | |
c8d9c90c PJ |
1927 | * Called with cgroup_mutex held |
1928 | * callback_mutex must not be held, as cpuset_attach() will take it. | |
956db3ca CW |
1929 | * |
1930 | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | |
1931 | * calling callback functions for each. | |
1932 | */ | |
1933 | static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to) | |
1934 | { | |
1935 | struct cpuset_hotplug_scanner scan; | |
1936 | ||
1937 | scan.scan.cg = from->css.cgroup; | |
1938 | scan.scan.test_task = NULL; /* select all tasks in cgroup */ | |
1939 | scan.scan.process_task = cpuset_do_move_task; | |
1940 | scan.scan.heap = NULL; | |
1941 | scan.to = to->css.cgroup; | |
1942 | ||
da5ef6bb | 1943 | if (cgroup_scan_tasks(&scan.scan)) |
956db3ca CW |
1944 | printk(KERN_ERR "move_member_tasks_to_cpuset: " |
1945 | "cgroup_scan_tasks failed\n"); | |
1946 | } | |
1947 | ||
b1aac8bb | 1948 | /* |
cf417141 | 1949 | * If CPU and/or memory hotplug handlers, below, unplug any CPUs |
b1aac8bb PJ |
1950 | * or memory nodes, we need to walk over the cpuset hierarchy, |
1951 | * removing that CPU or node from all cpusets. If this removes the | |
956db3ca CW |
1952 | * last CPU or node from a cpuset, then move the tasks in the empty |
1953 | * cpuset to its next-highest non-empty parent. | |
b1aac8bb | 1954 | * |
c8d9c90c PJ |
1955 | * Called with cgroup_mutex held |
1956 | * callback_mutex must not be held, as cpuset_attach() will take it. | |
b1aac8bb | 1957 | */ |
956db3ca CW |
1958 | static void remove_tasks_in_empty_cpuset(struct cpuset *cs) |
1959 | { | |
1960 | struct cpuset *parent; | |
1961 | ||
c8d9c90c PJ |
1962 | /* |
1963 | * The cgroup's css_sets list is in use if there are tasks | |
1964 | * in the cpuset; the list is empty if there are none; | |
1965 | * the cs->css.refcnt seems always 0. | |
1966 | */ | |
956db3ca CW |
1967 | if (list_empty(&cs->css.cgroup->css_sets)) |
1968 | return; | |
b1aac8bb | 1969 | |
956db3ca CW |
1970 | /* |
1971 | * Find its next-highest non-empty parent, (top cpuset | |
1972 | * has online cpus, so can't be empty). | |
1973 | */ | |
1974 | parent = cs->parent; | |
300ed6cb | 1975 | while (cpumask_empty(parent->cpus_allowed) || |
b4501295 | 1976 | nodes_empty(parent->mems_allowed)) |
956db3ca | 1977 | parent = parent->parent; |
956db3ca CW |
1978 | |
1979 | move_member_tasks_to_cpuset(cs, parent); | |
1980 | } | |
1981 | ||
1982 | /* | |
1983 | * Walk the specified cpuset subtree and look for empty cpusets. | |
1984 | * The tasks of such cpuset must be moved to a parent cpuset. | |
1985 | * | |
2df167a3 | 1986 | * Called with cgroup_mutex held. We take callback_mutex to modify |
956db3ca CW |
1987 | * cpus_allowed and mems_allowed. |
1988 | * | |
1989 | * This walk processes the tree from top to bottom, completing one layer | |
1990 | * before dropping down to the next. It always processes a node before | |
1991 | * any of its children. | |
1992 | * | |
1993 | * For now, since we lack memory hot unplug, we'll never see a cpuset | |
1994 | * that has tasks along with an empty 'mems'. But if we did see such | |
1995 | * a cpuset, we'd handle it just like we do if its 'cpus' was empty. | |
1996 | */ | |
d294eb83 | 1997 | static void scan_for_empty_cpusets(struct cpuset *root) |
b1aac8bb | 1998 | { |
8d1e6266 | 1999 | LIST_HEAD(queue); |
956db3ca CW |
2000 | struct cpuset *cp; /* scans cpusets being updated */ |
2001 | struct cpuset *child; /* scans child cpusets of cp */ | |
8793d854 | 2002 | struct cgroup *cont; |
f9b4fb8d | 2003 | nodemask_t oldmems; |
b1aac8bb | 2004 | |
956db3ca CW |
2005 | list_add_tail((struct list_head *)&root->stack_list, &queue); |
2006 | ||
956db3ca | 2007 | while (!list_empty(&queue)) { |
8d1e6266 | 2008 | cp = list_first_entry(&queue, struct cpuset, stack_list); |
956db3ca CW |
2009 | list_del(queue.next); |
2010 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | |
2011 | child = cgroup_cs(cont); | |
2012 | list_add_tail(&child->stack_list, &queue); | |
2013 | } | |
b4501295 PJ |
2014 | |
2015 | /* Continue past cpusets with all cpus, mems online */ | |
300ed6cb | 2016 | if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) && |
b4501295 PJ |
2017 | nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY])) |
2018 | continue; | |
2019 | ||
f9b4fb8d MX |
2020 | oldmems = cp->mems_allowed; |
2021 | ||
956db3ca | 2022 | /* Remove offline cpus and mems from this cpuset. */ |
b4501295 | 2023 | mutex_lock(&callback_mutex); |
300ed6cb LZ |
2024 | cpumask_and(cp->cpus_allowed, cp->cpus_allowed, |
2025 | cpu_online_mask); | |
956db3ca CW |
2026 | nodes_and(cp->mems_allowed, cp->mems_allowed, |
2027 | node_states[N_HIGH_MEMORY]); | |
b4501295 PJ |
2028 | mutex_unlock(&callback_mutex); |
2029 | ||
2030 | /* Move tasks from the empty cpuset to a parent */ | |
300ed6cb | 2031 | if (cpumask_empty(cp->cpus_allowed) || |
b4501295 | 2032 | nodes_empty(cp->mems_allowed)) |
956db3ca | 2033 | remove_tasks_in_empty_cpuset(cp); |
f9b4fb8d | 2034 | else { |
4e74339a | 2035 | update_tasks_cpumask(cp, NULL); |
f9b4fb8d MX |
2036 | update_tasks_nodemask(cp, &oldmems); |
2037 | } | |
b1aac8bb PJ |
2038 | } |
2039 | } | |
2040 | ||
4c4d50f7 PJ |
2041 | /* |
2042 | * The top_cpuset tracks what CPUs and Memory Nodes are online, | |
2043 | * period. This is necessary in order to make cpusets transparent | |
2044 | * (of no affect) on systems that are actively using CPU hotplug | |
2045 | * but making no active use of cpusets. | |
2046 | * | |
38837fc7 PJ |
2047 | * This routine ensures that top_cpuset.cpus_allowed tracks |
2048 | * cpu_online_map on each CPU hotplug (cpuhp) event. | |
cf417141 MK |
2049 | * |
2050 | * Called within get_online_cpus(). Needs to call cgroup_lock() | |
2051 | * before calling generate_sched_domains(). | |
4c4d50f7 | 2052 | */ |
cf417141 | 2053 | static int cpuset_track_online_cpus(struct notifier_block *unused_nb, |
029190c5 | 2054 | unsigned long phase, void *unused_cpu) |
4c4d50f7 | 2055 | { |
cf417141 | 2056 | struct sched_domain_attr *attr; |
6af866af | 2057 | struct cpumask *doms; |
cf417141 MK |
2058 | int ndoms; |
2059 | ||
3e84050c | 2060 | switch (phase) { |
3e84050c DA |
2061 | case CPU_ONLINE: |
2062 | case CPU_ONLINE_FROZEN: | |
2063 | case CPU_DEAD: | |
2064 | case CPU_DEAD_FROZEN: | |
3e84050c | 2065 | break; |
cf417141 | 2066 | |
3e84050c | 2067 | default: |
ac076758 | 2068 | return NOTIFY_DONE; |
3e84050c | 2069 | } |
ac076758 | 2070 | |
cf417141 | 2071 | cgroup_lock(); |
300ed6cb | 2072 | cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask); |
cf417141 MK |
2073 | scan_for_empty_cpusets(&top_cpuset); |
2074 | ndoms = generate_sched_domains(&doms, &attr); | |
2075 | cgroup_unlock(); | |
2076 | ||
2077 | /* Have scheduler rebuild the domains */ | |
2078 | partition_sched_domains(ndoms, doms, attr); | |
2079 | ||
3e84050c | 2080 | return NOTIFY_OK; |
4c4d50f7 | 2081 | } |
4c4d50f7 | 2082 | |
b1aac8bb | 2083 | #ifdef CONFIG_MEMORY_HOTPLUG |
38837fc7 | 2084 | /* |
0e1e7c7a | 2085 | * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY]. |
cf417141 MK |
2086 | * Call this routine anytime after node_states[N_HIGH_MEMORY] changes. |
2087 | * See also the previous routine cpuset_track_online_cpus(). | |
38837fc7 | 2088 | */ |
f481891f MX |
2089 | static int cpuset_track_online_nodes(struct notifier_block *self, |
2090 | unsigned long action, void *arg) | |
38837fc7 | 2091 | { |
cf417141 | 2092 | cgroup_lock(); |
f481891f MX |
2093 | switch (action) { |
2094 | case MEM_ONLINE: | |
2095 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; | |
2096 | break; | |
2097 | case MEM_OFFLINE: | |
2098 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; | |
2099 | scan_for_empty_cpusets(&top_cpuset); | |
2100 | break; | |
2101 | default: | |
2102 | break; | |
2103 | } | |
cf417141 | 2104 | cgroup_unlock(); |
f481891f | 2105 | return NOTIFY_OK; |
38837fc7 PJ |
2106 | } |
2107 | #endif | |
2108 | ||
1da177e4 LT |
2109 | /** |
2110 | * cpuset_init_smp - initialize cpus_allowed | |
2111 | * | |
2112 | * Description: Finish top cpuset after cpu, node maps are initialized | |
2113 | **/ | |
2114 | ||
2115 | void __init cpuset_init_smp(void) | |
2116 | { | |
300ed6cb | 2117 | cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask); |
0e1e7c7a | 2118 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; |
4c4d50f7 | 2119 | |
cf417141 | 2120 | hotcpu_notifier(cpuset_track_online_cpus, 0); |
f481891f | 2121 | hotplug_memory_notifier(cpuset_track_online_nodes, 10); |
f90d4118 MX |
2122 | |
2123 | cpuset_wq = create_singlethread_workqueue("cpuset"); | |
2124 | BUG_ON(!cpuset_wq); | |
1da177e4 LT |
2125 | } |
2126 | ||
2127 | /** | |
1da177e4 LT |
2128 | * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. |
2129 | * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. | |
6af866af | 2130 | * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. |
1da177e4 | 2131 | * |
300ed6cb | 2132 | * Description: Returns the cpumask_var_t cpus_allowed of the cpuset |
1da177e4 LT |
2133 | * attached to the specified @tsk. Guaranteed to return some non-empty |
2134 | * subset of cpu_online_map, even if this means going outside the | |
2135 | * tasks cpuset. | |
2136 | **/ | |
2137 | ||
6af866af | 2138 | void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) |
1da177e4 | 2139 | { |
3d3f26a7 | 2140 | mutex_lock(&callback_mutex); |
f9a86fcb | 2141 | cpuset_cpus_allowed_locked(tsk, pmask); |
470fd646 | 2142 | mutex_unlock(&callback_mutex); |
470fd646 CW |
2143 | } |
2144 | ||
2145 | /** | |
2146 | * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset. | |
2df167a3 | 2147 | * Must be called with callback_mutex held. |
470fd646 | 2148 | **/ |
6af866af | 2149 | void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask) |
470fd646 | 2150 | { |
909d75a3 | 2151 | task_lock(tsk); |
f9a86fcb | 2152 | guarantee_online_cpus(task_cs(tsk), pmask); |
909d75a3 | 2153 | task_unlock(tsk); |
1da177e4 LT |
2154 | } |
2155 | ||
2156 | void cpuset_init_current_mems_allowed(void) | |
2157 | { | |
f9a86fcb | 2158 | nodes_setall(current->mems_allowed); |
1da177e4 LT |
2159 | } |
2160 | ||
909d75a3 PJ |
2161 | /** |
2162 | * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. | |
2163 | * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. | |
2164 | * | |
2165 | * Description: Returns the nodemask_t mems_allowed of the cpuset | |
2166 | * attached to the specified @tsk. Guaranteed to return some non-empty | |
0e1e7c7a | 2167 | * subset of node_states[N_HIGH_MEMORY], even if this means going outside the |
909d75a3 PJ |
2168 | * tasks cpuset. |
2169 | **/ | |
2170 | ||
2171 | nodemask_t cpuset_mems_allowed(struct task_struct *tsk) | |
2172 | { | |
2173 | nodemask_t mask; | |
2174 | ||
3d3f26a7 | 2175 | mutex_lock(&callback_mutex); |
909d75a3 | 2176 | task_lock(tsk); |
8793d854 | 2177 | guarantee_online_mems(task_cs(tsk), &mask); |
909d75a3 | 2178 | task_unlock(tsk); |
3d3f26a7 | 2179 | mutex_unlock(&callback_mutex); |
909d75a3 PJ |
2180 | |
2181 | return mask; | |
2182 | } | |
2183 | ||
d9fd8a6d | 2184 | /** |
19770b32 MG |
2185 | * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed |
2186 | * @nodemask: the nodemask to be checked | |
d9fd8a6d | 2187 | * |
19770b32 | 2188 | * Are any of the nodes in the nodemask allowed in current->mems_allowed? |
1da177e4 | 2189 | */ |
19770b32 | 2190 | int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) |
1da177e4 | 2191 | { |
19770b32 | 2192 | return nodes_intersects(*nodemask, current->mems_allowed); |
1da177e4 LT |
2193 | } |
2194 | ||
9bf2229f | 2195 | /* |
78608366 PM |
2196 | * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or |
2197 | * mem_hardwall ancestor to the specified cpuset. Call holding | |
2198 | * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall | |
2199 | * (an unusual configuration), then returns the root cpuset. | |
9bf2229f | 2200 | */ |
78608366 | 2201 | static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs) |
9bf2229f | 2202 | { |
78608366 | 2203 | while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent) |
9bf2229f PJ |
2204 | cs = cs->parent; |
2205 | return cs; | |
2206 | } | |
2207 | ||
d9fd8a6d | 2208 | /** |
02a0e53d | 2209 | * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node? |
9bf2229f | 2210 | * @z: is this zone on an allowed node? |
02a0e53d | 2211 | * @gfp_mask: memory allocation flags |
d9fd8a6d | 2212 | * |
02a0e53d PJ |
2213 | * If we're in interrupt, yes, we can always allocate. If |
2214 | * __GFP_THISNODE is set, yes, we can always allocate. If zone | |
9bf2229f PJ |
2215 | * z's node is in our tasks mems_allowed, yes. If it's not a |
2216 | * __GFP_HARDWALL request and this zone's nodes is in the nearest | |
78608366 | 2217 | * hardwalled cpuset ancestor to this tasks cpuset, yes. |
c596d9f3 DR |
2218 | * If the task has been OOM killed and has access to memory reserves |
2219 | * as specified by the TIF_MEMDIE flag, yes. | |
9bf2229f PJ |
2220 | * Otherwise, no. |
2221 | * | |
02a0e53d PJ |
2222 | * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall() |
2223 | * reduces to cpuset_zone_allowed_hardwall(). Otherwise, | |
2224 | * cpuset_zone_allowed_softwall() might sleep, and might allow a zone | |
2225 | * from an enclosing cpuset. | |
2226 | * | |
2227 | * cpuset_zone_allowed_hardwall() only handles the simpler case of | |
2228 | * hardwall cpusets, and never sleeps. | |
2229 | * | |
2230 | * The __GFP_THISNODE placement logic is really handled elsewhere, | |
2231 | * by forcibly using a zonelist starting at a specified node, and by | |
2232 | * (in get_page_from_freelist()) refusing to consider the zones for | |
2233 | * any node on the zonelist except the first. By the time any such | |
2234 | * calls get to this routine, we should just shut up and say 'yes'. | |
2235 | * | |
9bf2229f | 2236 | * GFP_USER allocations are marked with the __GFP_HARDWALL bit, |
c596d9f3 DR |
2237 | * and do not allow allocations outside the current tasks cpuset |
2238 | * unless the task has been OOM killed as is marked TIF_MEMDIE. | |
9bf2229f | 2239 | * GFP_KERNEL allocations are not so marked, so can escape to the |
78608366 | 2240 | * nearest enclosing hardwalled ancestor cpuset. |
9bf2229f | 2241 | * |
02a0e53d PJ |
2242 | * Scanning up parent cpusets requires callback_mutex. The |
2243 | * __alloc_pages() routine only calls here with __GFP_HARDWALL bit | |
2244 | * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the | |
2245 | * current tasks mems_allowed came up empty on the first pass over | |
2246 | * the zonelist. So only GFP_KERNEL allocations, if all nodes in the | |
2247 | * cpuset are short of memory, might require taking the callback_mutex | |
2248 | * mutex. | |
9bf2229f | 2249 | * |
36be57ff | 2250 | * The first call here from mm/page_alloc:get_page_from_freelist() |
02a0e53d PJ |
2251 | * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, |
2252 | * so no allocation on a node outside the cpuset is allowed (unless | |
2253 | * in interrupt, of course). | |
36be57ff PJ |
2254 | * |
2255 | * The second pass through get_page_from_freelist() doesn't even call | |
2256 | * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() | |
2257 | * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set | |
2258 | * in alloc_flags. That logic and the checks below have the combined | |
2259 | * affect that: | |
9bf2229f PJ |
2260 | * in_interrupt - any node ok (current task context irrelevant) |
2261 | * GFP_ATOMIC - any node ok | |
c596d9f3 | 2262 | * TIF_MEMDIE - any node ok |
78608366 | 2263 | * GFP_KERNEL - any node in enclosing hardwalled cpuset ok |
9bf2229f | 2264 | * GFP_USER - only nodes in current tasks mems allowed ok. |
36be57ff PJ |
2265 | * |
2266 | * Rule: | |
02a0e53d | 2267 | * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you |
36be57ff PJ |
2268 | * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables |
2269 | * the code that might scan up ancestor cpusets and sleep. | |
02a0e53d | 2270 | */ |
9bf2229f | 2271 | |
02a0e53d | 2272 | int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask) |
1da177e4 | 2273 | { |
9bf2229f PJ |
2274 | int node; /* node that zone z is on */ |
2275 | const struct cpuset *cs; /* current cpuset ancestors */ | |
29afd49b | 2276 | int allowed; /* is allocation in zone z allowed? */ |
9bf2229f | 2277 | |
9b819d20 | 2278 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) |
9bf2229f | 2279 | return 1; |
89fa3024 | 2280 | node = zone_to_nid(z); |
92d1dbd2 | 2281 | might_sleep_if(!(gfp_mask & __GFP_HARDWALL)); |
9bf2229f PJ |
2282 | if (node_isset(node, current->mems_allowed)) |
2283 | return 1; | |
c596d9f3 DR |
2284 | /* |
2285 | * Allow tasks that have access to memory reserves because they have | |
2286 | * been OOM killed to get memory anywhere. | |
2287 | */ | |
2288 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | |
2289 | return 1; | |
9bf2229f PJ |
2290 | if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ |
2291 | return 0; | |
2292 | ||
5563e770 BP |
2293 | if (current->flags & PF_EXITING) /* Let dying task have memory */ |
2294 | return 1; | |
2295 | ||
9bf2229f | 2296 | /* Not hardwall and node outside mems_allowed: scan up cpusets */ |
3d3f26a7 | 2297 | mutex_lock(&callback_mutex); |
053199ed | 2298 | |
053199ed | 2299 | task_lock(current); |
78608366 | 2300 | cs = nearest_hardwall_ancestor(task_cs(current)); |
053199ed PJ |
2301 | task_unlock(current); |
2302 | ||
9bf2229f | 2303 | allowed = node_isset(node, cs->mems_allowed); |
3d3f26a7 | 2304 | mutex_unlock(&callback_mutex); |
9bf2229f | 2305 | return allowed; |
1da177e4 LT |
2306 | } |
2307 | ||
02a0e53d PJ |
2308 | /* |
2309 | * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node? | |
2310 | * @z: is this zone on an allowed node? | |
2311 | * @gfp_mask: memory allocation flags | |
2312 | * | |
2313 | * If we're in interrupt, yes, we can always allocate. | |
2314 | * If __GFP_THISNODE is set, yes, we can always allocate. If zone | |
c596d9f3 DR |
2315 | * z's node is in our tasks mems_allowed, yes. If the task has been |
2316 | * OOM killed and has access to memory reserves as specified by the | |
2317 | * TIF_MEMDIE flag, yes. Otherwise, no. | |
02a0e53d PJ |
2318 | * |
2319 | * The __GFP_THISNODE placement logic is really handled elsewhere, | |
2320 | * by forcibly using a zonelist starting at a specified node, and by | |
2321 | * (in get_page_from_freelist()) refusing to consider the zones for | |
2322 | * any node on the zonelist except the first. By the time any such | |
2323 | * calls get to this routine, we should just shut up and say 'yes'. | |
2324 | * | |
2325 | * Unlike the cpuset_zone_allowed_softwall() variant, above, | |
2326 | * this variant requires that the zone be in the current tasks | |
2327 | * mems_allowed or that we're in interrupt. It does not scan up the | |
2328 | * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset. | |
2329 | * It never sleeps. | |
2330 | */ | |
2331 | ||
2332 | int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask) | |
2333 | { | |
2334 | int node; /* node that zone z is on */ | |
2335 | ||
2336 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) | |
2337 | return 1; | |
2338 | node = zone_to_nid(z); | |
2339 | if (node_isset(node, current->mems_allowed)) | |
2340 | return 1; | |
dedf8b79 DW |
2341 | /* |
2342 | * Allow tasks that have access to memory reserves because they have | |
2343 | * been OOM killed to get memory anywhere. | |
2344 | */ | |
2345 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | |
2346 | return 1; | |
02a0e53d PJ |
2347 | return 0; |
2348 | } | |
2349 | ||
505970b9 PJ |
2350 | /** |
2351 | * cpuset_lock - lock out any changes to cpuset structures | |
2352 | * | |
3d3f26a7 | 2353 | * The out of memory (oom) code needs to mutex_lock cpusets |
505970b9 | 2354 | * from being changed while it scans the tasklist looking for a |
3d3f26a7 | 2355 | * task in an overlapping cpuset. Expose callback_mutex via this |
505970b9 PJ |
2356 | * cpuset_lock() routine, so the oom code can lock it, before |
2357 | * locking the task list. The tasklist_lock is a spinlock, so | |
3d3f26a7 | 2358 | * must be taken inside callback_mutex. |
505970b9 PJ |
2359 | */ |
2360 | ||
2361 | void cpuset_lock(void) | |
2362 | { | |
3d3f26a7 | 2363 | mutex_lock(&callback_mutex); |
505970b9 PJ |
2364 | } |
2365 | ||
2366 | /** | |
2367 | * cpuset_unlock - release lock on cpuset changes | |
2368 | * | |
2369 | * Undo the lock taken in a previous cpuset_lock() call. | |
2370 | */ | |
2371 | ||
2372 | void cpuset_unlock(void) | |
2373 | { | |
3d3f26a7 | 2374 | mutex_unlock(&callback_mutex); |
505970b9 PJ |
2375 | } |
2376 | ||
825a46af PJ |
2377 | /** |
2378 | * cpuset_mem_spread_node() - On which node to begin search for a page | |
2379 | * | |
2380 | * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for | |
2381 | * tasks in a cpuset with is_spread_page or is_spread_slab set), | |
2382 | * and if the memory allocation used cpuset_mem_spread_node() | |
2383 | * to determine on which node to start looking, as it will for | |
2384 | * certain page cache or slab cache pages such as used for file | |
2385 | * system buffers and inode caches, then instead of starting on the | |
2386 | * local node to look for a free page, rather spread the starting | |
2387 | * node around the tasks mems_allowed nodes. | |
2388 | * | |
2389 | * We don't have to worry about the returned node being offline | |
2390 | * because "it can't happen", and even if it did, it would be ok. | |
2391 | * | |
2392 | * The routines calling guarantee_online_mems() are careful to | |
2393 | * only set nodes in task->mems_allowed that are online. So it | |
2394 | * should not be possible for the following code to return an | |
2395 | * offline node. But if it did, that would be ok, as this routine | |
2396 | * is not returning the node where the allocation must be, only | |
2397 | * the node where the search should start. The zonelist passed to | |
2398 | * __alloc_pages() will include all nodes. If the slab allocator | |
2399 | * is passed an offline node, it will fall back to the local node. | |
2400 | * See kmem_cache_alloc_node(). | |
2401 | */ | |
2402 | ||
2403 | int cpuset_mem_spread_node(void) | |
2404 | { | |
2405 | int node; | |
2406 | ||
2407 | node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed); | |
2408 | if (node == MAX_NUMNODES) | |
2409 | node = first_node(current->mems_allowed); | |
2410 | current->cpuset_mem_spread_rotor = node; | |
2411 | return node; | |
2412 | } | |
2413 | EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); | |
2414 | ||
ef08e3b4 | 2415 | /** |
bbe373f2 DR |
2416 | * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? |
2417 | * @tsk1: pointer to task_struct of some task. | |
2418 | * @tsk2: pointer to task_struct of some other task. | |
2419 | * | |
2420 | * Description: Return true if @tsk1's mems_allowed intersects the | |
2421 | * mems_allowed of @tsk2. Used by the OOM killer to determine if | |
2422 | * one of the task's memory usage might impact the memory available | |
2423 | * to the other. | |
ef08e3b4 PJ |
2424 | **/ |
2425 | ||
bbe373f2 DR |
2426 | int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, |
2427 | const struct task_struct *tsk2) | |
ef08e3b4 | 2428 | { |
bbe373f2 | 2429 | return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); |
ef08e3b4 PJ |
2430 | } |
2431 | ||
75aa1994 DR |
2432 | /** |
2433 | * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed | |
2434 | * @task: pointer to task_struct of some task. | |
2435 | * | |
2436 | * Description: Prints @task's name, cpuset name, and cached copy of its | |
2437 | * mems_allowed to the kernel log. Must hold task_lock(task) to allow | |
2438 | * dereferencing task_cs(task). | |
2439 | */ | |
2440 | void cpuset_print_task_mems_allowed(struct task_struct *tsk) | |
2441 | { | |
2442 | struct dentry *dentry; | |
2443 | ||
2444 | dentry = task_cs(tsk)->css.cgroup->dentry; | |
2445 | spin_lock(&cpuset_buffer_lock); | |
2446 | snprintf(cpuset_name, CPUSET_NAME_LEN, | |
2447 | dentry ? (const char *)dentry->d_name.name : "/"); | |
2448 | nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN, | |
2449 | tsk->mems_allowed); | |
2450 | printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n", | |
2451 | tsk->comm, cpuset_name, cpuset_nodelist); | |
2452 | spin_unlock(&cpuset_buffer_lock); | |
2453 | } | |
2454 | ||
3e0d98b9 PJ |
2455 | /* |
2456 | * Collection of memory_pressure is suppressed unless | |
2457 | * this flag is enabled by writing "1" to the special | |
2458 | * cpuset file 'memory_pressure_enabled' in the root cpuset. | |
2459 | */ | |
2460 | ||
c5b2aff8 | 2461 | int cpuset_memory_pressure_enabled __read_mostly; |
3e0d98b9 PJ |
2462 | |
2463 | /** | |
2464 | * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. | |
2465 | * | |
2466 | * Keep a running average of the rate of synchronous (direct) | |
2467 | * page reclaim efforts initiated by tasks in each cpuset. | |
2468 | * | |
2469 | * This represents the rate at which some task in the cpuset | |
2470 | * ran low on memory on all nodes it was allowed to use, and | |
2471 | * had to enter the kernels page reclaim code in an effort to | |
2472 | * create more free memory by tossing clean pages or swapping | |
2473 | * or writing dirty pages. | |
2474 | * | |
2475 | * Display to user space in the per-cpuset read-only file | |
2476 | * "memory_pressure". Value displayed is an integer | |
2477 | * representing the recent rate of entry into the synchronous | |
2478 | * (direct) page reclaim by any task attached to the cpuset. | |
2479 | **/ | |
2480 | ||
2481 | void __cpuset_memory_pressure_bump(void) | |
2482 | { | |
3e0d98b9 | 2483 | task_lock(current); |
8793d854 | 2484 | fmeter_markevent(&task_cs(current)->fmeter); |
3e0d98b9 PJ |
2485 | task_unlock(current); |
2486 | } | |
2487 | ||
8793d854 | 2488 | #ifdef CONFIG_PROC_PID_CPUSET |
1da177e4 LT |
2489 | /* |
2490 | * proc_cpuset_show() | |
2491 | * - Print tasks cpuset path into seq_file. | |
2492 | * - Used for /proc/<pid>/cpuset. | |
053199ed PJ |
2493 | * - No need to task_lock(tsk) on this tsk->cpuset reference, as it |
2494 | * doesn't really matter if tsk->cpuset changes after we read it, | |
c8d9c90c | 2495 | * and we take cgroup_mutex, keeping cpuset_attach() from changing it |
2df167a3 | 2496 | * anyway. |
1da177e4 | 2497 | */ |
029190c5 | 2498 | static int proc_cpuset_show(struct seq_file *m, void *unused_v) |
1da177e4 | 2499 | { |
13b41b09 | 2500 | struct pid *pid; |
1da177e4 LT |
2501 | struct task_struct *tsk; |
2502 | char *buf; | |
8793d854 | 2503 | struct cgroup_subsys_state *css; |
99f89551 | 2504 | int retval; |
1da177e4 | 2505 | |
99f89551 | 2506 | retval = -ENOMEM; |
1da177e4 LT |
2507 | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); |
2508 | if (!buf) | |
99f89551 EB |
2509 | goto out; |
2510 | ||
2511 | retval = -ESRCH; | |
13b41b09 EB |
2512 | pid = m->private; |
2513 | tsk = get_pid_task(pid, PIDTYPE_PID); | |
99f89551 EB |
2514 | if (!tsk) |
2515 | goto out_free; | |
1da177e4 | 2516 | |
99f89551 | 2517 | retval = -EINVAL; |
8793d854 PM |
2518 | cgroup_lock(); |
2519 | css = task_subsys_state(tsk, cpuset_subsys_id); | |
2520 | retval = cgroup_path(css->cgroup, buf, PAGE_SIZE); | |
1da177e4 | 2521 | if (retval < 0) |
99f89551 | 2522 | goto out_unlock; |
1da177e4 LT |
2523 | seq_puts(m, buf); |
2524 | seq_putc(m, '\n'); | |
99f89551 | 2525 | out_unlock: |
8793d854 | 2526 | cgroup_unlock(); |
99f89551 EB |
2527 | put_task_struct(tsk); |
2528 | out_free: | |
1da177e4 | 2529 | kfree(buf); |
99f89551 | 2530 | out: |
1da177e4 LT |
2531 | return retval; |
2532 | } | |
2533 | ||
2534 | static int cpuset_open(struct inode *inode, struct file *file) | |
2535 | { | |
13b41b09 EB |
2536 | struct pid *pid = PROC_I(inode)->pid; |
2537 | return single_open(file, proc_cpuset_show, pid); | |
1da177e4 LT |
2538 | } |
2539 | ||
9a32144e | 2540 | const struct file_operations proc_cpuset_operations = { |
1da177e4 LT |
2541 | .open = cpuset_open, |
2542 | .read = seq_read, | |
2543 | .llseek = seq_lseek, | |
2544 | .release = single_release, | |
2545 | }; | |
8793d854 | 2546 | #endif /* CONFIG_PROC_PID_CPUSET */ |
1da177e4 LT |
2547 | |
2548 | /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */ | |
df5f8314 EB |
2549 | void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) |
2550 | { | |
2551 | seq_printf(m, "Cpus_allowed:\t"); | |
30e8e136 | 2552 | seq_cpumask(m, &task->cpus_allowed); |
df5f8314 | 2553 | seq_printf(m, "\n"); |
39106dcf | 2554 | seq_printf(m, "Cpus_allowed_list:\t"); |
30e8e136 | 2555 | seq_cpumask_list(m, &task->cpus_allowed); |
39106dcf | 2556 | seq_printf(m, "\n"); |
df5f8314 | 2557 | seq_printf(m, "Mems_allowed:\t"); |
30e8e136 | 2558 | seq_nodemask(m, &task->mems_allowed); |
df5f8314 | 2559 | seq_printf(m, "\n"); |
39106dcf | 2560 | seq_printf(m, "Mems_allowed_list:\t"); |
30e8e136 | 2561 | seq_nodemask_list(m, &task->mems_allowed); |
39106dcf | 2562 | seq_printf(m, "\n"); |
1da177e4 | 2563 | } |