]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/fs/binfmt_elf.c | |
3 | * | |
4 | * These are the functions used to load ELF format executables as used | |
5 | * on SVr4 machines. Information on the format may be found in the book | |
6 | * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support | |
7 | * Tools". | |
8 | * | |
9 | * Copyright 1993, 1994: Eric Youngdale ([email protected]). | |
10 | */ | |
11 | ||
12 | #include <linux/module.h> | |
13 | #include <linux/kernel.h> | |
14 | #include <linux/fs.h> | |
1da177e4 LT |
15 | #include <linux/mm.h> |
16 | #include <linux/mman.h> | |
1da177e4 LT |
17 | #include <linux/errno.h> |
18 | #include <linux/signal.h> | |
19 | #include <linux/binfmts.h> | |
20 | #include <linux/string.h> | |
21 | #include <linux/file.h> | |
1da177e4 | 22 | #include <linux/slab.h> |
1da177e4 LT |
23 | #include <linux/personality.h> |
24 | #include <linux/elfcore.h> | |
25 | #include <linux/init.h> | |
26 | #include <linux/highuid.h> | |
1da177e4 LT |
27 | #include <linux/compiler.h> |
28 | #include <linux/highmem.h> | |
29 | #include <linux/pagemap.h> | |
2aa362c4 | 30 | #include <linux/vmalloc.h> |
1da177e4 | 31 | #include <linux/security.h> |
1da177e4 | 32 | #include <linux/random.h> |
f4e5cc2c | 33 | #include <linux/elf.h> |
d1fd836d | 34 | #include <linux/elf-randomize.h> |
7e80d0d0 | 35 | #include <linux/utsname.h> |
088e7af7 | 36 | #include <linux/coredump.h> |
6fac4829 | 37 | #include <linux/sched.h> |
f7ccbae4 | 38 | #include <linux/sched/coredump.h> |
68db0cf1 | 39 | #include <linux/sched/task_stack.h> |
32ef5517 | 40 | #include <linux/sched/cputime.h> |
5b825c3a | 41 | #include <linux/cred.h> |
5037835c | 42 | #include <linux/dax.h> |
7c0f6ba6 | 43 | #include <linux/uaccess.h> |
1da177e4 LT |
44 | #include <asm/param.h> |
45 | #include <asm/page.h> | |
46 | ||
2aa362c4 DV |
47 | #ifndef user_long_t |
48 | #define user_long_t long | |
49 | #endif | |
49ae4d4b DV |
50 | #ifndef user_siginfo_t |
51 | #define user_siginfo_t siginfo_t | |
52 | #endif | |
53 | ||
71613c3b | 54 | static int load_elf_binary(struct linux_binprm *bprm); |
bb1ad820 AM |
55 | static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *, |
56 | int, int, unsigned long); | |
1da177e4 | 57 | |
69369a70 JT |
58 | #ifdef CONFIG_USELIB |
59 | static int load_elf_library(struct file *); | |
60 | #else | |
61 | #define load_elf_library NULL | |
62 | #endif | |
63 | ||
1da177e4 LT |
64 | /* |
65 | * If we don't support core dumping, then supply a NULL so we | |
66 | * don't even try. | |
67 | */ | |
698ba7b5 | 68 | #ifdef CONFIG_ELF_CORE |
f6151dfe | 69 | static int elf_core_dump(struct coredump_params *cprm); |
1da177e4 LT |
70 | #else |
71 | #define elf_core_dump NULL | |
72 | #endif | |
73 | ||
74 | #if ELF_EXEC_PAGESIZE > PAGE_SIZE | |
f4e5cc2c | 75 | #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE |
1da177e4 | 76 | #else |
f4e5cc2c | 77 | #define ELF_MIN_ALIGN PAGE_SIZE |
1da177e4 LT |
78 | #endif |
79 | ||
80 | #ifndef ELF_CORE_EFLAGS | |
81 | #define ELF_CORE_EFLAGS 0 | |
82 | #endif | |
83 | ||
84 | #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1)) | |
85 | #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) | |
86 | #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) | |
87 | ||
88 | static struct linux_binfmt elf_format = { | |
f670d0ec MP |
89 | .module = THIS_MODULE, |
90 | .load_binary = load_elf_binary, | |
91 | .load_shlib = load_elf_library, | |
92 | .core_dump = elf_core_dump, | |
93 | .min_coredump = ELF_EXEC_PAGESIZE, | |
1da177e4 LT |
94 | }; |
95 | ||
d4e3cc38 | 96 | #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE) |
1da177e4 | 97 | |
16e72e9b | 98 | static int set_brk(unsigned long start, unsigned long end, int prot) |
1da177e4 LT |
99 | { |
100 | start = ELF_PAGEALIGN(start); | |
101 | end = ELF_PAGEALIGN(end); | |
102 | if (end > start) { | |
16e72e9b DV |
103 | /* |
104 | * Map the last of the bss segment. | |
105 | * If the header is requesting these pages to be | |
106 | * executable, honour that (ppc32 needs this). | |
107 | */ | |
108 | int error = vm_brk_flags(start, end - start, | |
109 | prot & PROT_EXEC ? VM_EXEC : 0); | |
5d22fc25 LT |
110 | if (error) |
111 | return error; | |
1da177e4 LT |
112 | } |
113 | current->mm->start_brk = current->mm->brk = end; | |
114 | return 0; | |
115 | } | |
116 | ||
1da177e4 LT |
117 | /* We need to explicitly zero any fractional pages |
118 | after the data section (i.e. bss). This would | |
119 | contain the junk from the file that should not | |
f4e5cc2c JJ |
120 | be in memory |
121 | */ | |
1da177e4 LT |
122 | static int padzero(unsigned long elf_bss) |
123 | { | |
124 | unsigned long nbyte; | |
125 | ||
126 | nbyte = ELF_PAGEOFFSET(elf_bss); | |
127 | if (nbyte) { | |
128 | nbyte = ELF_MIN_ALIGN - nbyte; | |
129 | if (clear_user((void __user *) elf_bss, nbyte)) | |
130 | return -EFAULT; | |
131 | } | |
132 | return 0; | |
133 | } | |
134 | ||
09c6dd3c | 135 | /* Let's use some macros to make this stack manipulation a little clearer */ |
1da177e4 LT |
136 | #ifdef CONFIG_STACK_GROWSUP |
137 | #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) | |
138 | #define STACK_ROUND(sp, items) \ | |
139 | ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) | |
f4e5cc2c JJ |
140 | #define STACK_ALLOC(sp, len) ({ \ |
141 | elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ | |
142 | old_sp; }) | |
1da177e4 LT |
143 | #else |
144 | #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) | |
145 | #define STACK_ROUND(sp, items) \ | |
146 | (((unsigned long) (sp - items)) &~ 15UL) | |
147 | #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; }) | |
148 | #endif | |
149 | ||
483fad1c NL |
150 | #ifndef ELF_BASE_PLATFORM |
151 | /* | |
152 | * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. | |
153 | * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value | |
154 | * will be copied to the user stack in the same manner as AT_PLATFORM. | |
155 | */ | |
156 | #define ELF_BASE_PLATFORM NULL | |
157 | #endif | |
158 | ||
1da177e4 | 159 | static int |
f4e5cc2c | 160 | create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec, |
d20894a2 | 161 | unsigned long load_addr, unsigned long interp_load_addr) |
1da177e4 LT |
162 | { |
163 | unsigned long p = bprm->p; | |
164 | int argc = bprm->argc; | |
165 | int envc = bprm->envc; | |
1da177e4 LT |
166 | elf_addr_t __user *sp; |
167 | elf_addr_t __user *u_platform; | |
483fad1c | 168 | elf_addr_t __user *u_base_platform; |
f06295b4 | 169 | elf_addr_t __user *u_rand_bytes; |
1da177e4 | 170 | const char *k_platform = ELF_PLATFORM; |
483fad1c | 171 | const char *k_base_platform = ELF_BASE_PLATFORM; |
f06295b4 | 172 | unsigned char k_rand_bytes[16]; |
1da177e4 LT |
173 | int items; |
174 | elf_addr_t *elf_info; | |
175 | int ei_index = 0; | |
86a264ab | 176 | const struct cred *cred = current_cred(); |
b6a2fea3 | 177 | struct vm_area_struct *vma; |
1da177e4 | 178 | |
d68c9d6a FBH |
179 | /* |
180 | * In some cases (e.g. Hyper-Threading), we want to avoid L1 | |
181 | * evictions by the processes running on the same package. One | |
182 | * thing we can do is to shuffle the initial stack for them. | |
183 | */ | |
184 | ||
185 | p = arch_align_stack(p); | |
186 | ||
1da177e4 LT |
187 | /* |
188 | * If this architecture has a platform capability string, copy it | |
189 | * to userspace. In some cases (Sparc), this info is impossible | |
190 | * for userspace to get any other way, in others (i386) it is | |
191 | * merely difficult. | |
192 | */ | |
1da177e4 LT |
193 | u_platform = NULL; |
194 | if (k_platform) { | |
195 | size_t len = strlen(k_platform) + 1; | |
196 | ||
1da177e4 LT |
197 | u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); |
198 | if (__copy_to_user(u_platform, k_platform, len)) | |
199 | return -EFAULT; | |
200 | } | |
201 | ||
483fad1c NL |
202 | /* |
203 | * If this architecture has a "base" platform capability | |
204 | * string, copy it to userspace. | |
205 | */ | |
206 | u_base_platform = NULL; | |
207 | if (k_base_platform) { | |
208 | size_t len = strlen(k_base_platform) + 1; | |
209 | ||
210 | u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); | |
211 | if (__copy_to_user(u_base_platform, k_base_platform, len)) | |
212 | return -EFAULT; | |
213 | } | |
214 | ||
f06295b4 KC |
215 | /* |
216 | * Generate 16 random bytes for userspace PRNG seeding. | |
217 | */ | |
218 | get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); | |
219 | u_rand_bytes = (elf_addr_t __user *) | |
220 | STACK_ALLOC(p, sizeof(k_rand_bytes)); | |
221 | if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) | |
222 | return -EFAULT; | |
223 | ||
1da177e4 | 224 | /* Create the ELF interpreter info */ |
785d5570 | 225 | elf_info = (elf_addr_t *)current->mm->saved_auxv; |
4f9a58d7 | 226 | /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ |
1da177e4 | 227 | #define NEW_AUX_ENT(id, val) \ |
f4e5cc2c | 228 | do { \ |
785d5570 JJ |
229 | elf_info[ei_index++] = id; \ |
230 | elf_info[ei_index++] = val; \ | |
f4e5cc2c | 231 | } while (0) |
1da177e4 LT |
232 | |
233 | #ifdef ARCH_DLINFO | |
234 | /* | |
235 | * ARCH_DLINFO must come first so PPC can do its special alignment of | |
236 | * AUXV. | |
4f9a58d7 OH |
237 | * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in |
238 | * ARCH_DLINFO changes | |
1da177e4 LT |
239 | */ |
240 | ARCH_DLINFO; | |
241 | #endif | |
242 | NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); | |
243 | NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); | |
244 | NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); | |
245 | NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff); | |
f4e5cc2c | 246 | NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); |
1da177e4 LT |
247 | NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); |
248 | NEW_AUX_ENT(AT_BASE, interp_load_addr); | |
249 | NEW_AUX_ENT(AT_FLAGS, 0); | |
250 | NEW_AUX_ENT(AT_ENTRY, exec->e_entry); | |
ebc887b2 EB |
251 | NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid)); |
252 | NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid)); | |
253 | NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid)); | |
254 | NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid)); | |
785d5570 | 255 | NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm)); |
f06295b4 | 256 | NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); |
2171364d MN |
257 | #ifdef ELF_HWCAP2 |
258 | NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2); | |
259 | #endif | |
65191087 | 260 | NEW_AUX_ENT(AT_EXECFN, bprm->exec); |
1da177e4 | 261 | if (k_platform) { |
f4e5cc2c | 262 | NEW_AUX_ENT(AT_PLATFORM, |
785d5570 | 263 | (elf_addr_t)(unsigned long)u_platform); |
1da177e4 | 264 | } |
483fad1c NL |
265 | if (k_base_platform) { |
266 | NEW_AUX_ENT(AT_BASE_PLATFORM, | |
267 | (elf_addr_t)(unsigned long)u_base_platform); | |
268 | } | |
1da177e4 | 269 | if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) { |
785d5570 | 270 | NEW_AUX_ENT(AT_EXECFD, bprm->interp_data); |
1da177e4 LT |
271 | } |
272 | #undef NEW_AUX_ENT | |
273 | /* AT_NULL is zero; clear the rest too */ | |
274 | memset(&elf_info[ei_index], 0, | |
275 | sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]); | |
276 | ||
277 | /* And advance past the AT_NULL entry. */ | |
278 | ei_index += 2; | |
279 | ||
280 | sp = STACK_ADD(p, ei_index); | |
281 | ||
d20894a2 | 282 | items = (argc + 1) + (envc + 1) + 1; |
1da177e4 LT |
283 | bprm->p = STACK_ROUND(sp, items); |
284 | ||
285 | /* Point sp at the lowest address on the stack */ | |
286 | #ifdef CONFIG_STACK_GROWSUP | |
287 | sp = (elf_addr_t __user *)bprm->p - items - ei_index; | |
f4e5cc2c | 288 | bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ |
1da177e4 LT |
289 | #else |
290 | sp = (elf_addr_t __user *)bprm->p; | |
291 | #endif | |
292 | ||
b6a2fea3 OW |
293 | |
294 | /* | |
295 | * Grow the stack manually; some architectures have a limit on how | |
296 | * far ahead a user-space access may be in order to grow the stack. | |
297 | */ | |
298 | vma = find_extend_vma(current->mm, bprm->p); | |
299 | if (!vma) | |
300 | return -EFAULT; | |
301 | ||
1da177e4 LT |
302 | /* Now, let's put argc (and argv, envp if appropriate) on the stack */ |
303 | if (__put_user(argc, sp++)) | |
304 | return -EFAULT; | |
1da177e4 | 305 | |
67c6777a | 306 | /* Populate list of argv pointers back to argv strings. */ |
a84a5059 | 307 | p = current->mm->arg_end = current->mm->arg_start; |
1da177e4 LT |
308 | while (argc-- > 0) { |
309 | size_t len; | |
67c6777a | 310 | if (__put_user((elf_addr_t)p, sp++)) |
841d5fb7 | 311 | return -EFAULT; |
b6a2fea3 OW |
312 | len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); |
313 | if (!len || len > MAX_ARG_STRLEN) | |
23c4971e | 314 | return -EINVAL; |
1da177e4 LT |
315 | p += len; |
316 | } | |
67c6777a | 317 | if (__put_user(0, sp++)) |
1da177e4 | 318 | return -EFAULT; |
67c6777a KC |
319 | current->mm->arg_end = p; |
320 | ||
321 | /* Populate list of envp pointers back to envp strings. */ | |
322 | current->mm->env_end = current->mm->env_start = p; | |
1da177e4 LT |
323 | while (envc-- > 0) { |
324 | size_t len; | |
67c6777a | 325 | if (__put_user((elf_addr_t)p, sp++)) |
841d5fb7 | 326 | return -EFAULT; |
b6a2fea3 OW |
327 | len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); |
328 | if (!len || len > MAX_ARG_STRLEN) | |
23c4971e | 329 | return -EINVAL; |
1da177e4 LT |
330 | p += len; |
331 | } | |
67c6777a | 332 | if (__put_user(0, sp++)) |
1da177e4 LT |
333 | return -EFAULT; |
334 | current->mm->env_end = p; | |
335 | ||
336 | /* Put the elf_info on the stack in the right place. */ | |
1da177e4 LT |
337 | if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t))) |
338 | return -EFAULT; | |
339 | return 0; | |
340 | } | |
341 | ||
c07380be JH |
342 | #ifndef elf_map |
343 | ||
1da177e4 | 344 | static unsigned long elf_map(struct file *filep, unsigned long addr, |
cc503c1b JK |
345 | struct elf_phdr *eppnt, int prot, int type, |
346 | unsigned long total_size) | |
1da177e4 LT |
347 | { |
348 | unsigned long map_addr; | |
cc503c1b JK |
349 | unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); |
350 | unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); | |
351 | addr = ELF_PAGESTART(addr); | |
352 | size = ELF_PAGEALIGN(size); | |
1da177e4 | 353 | |
dda6ebde DG |
354 | /* mmap() will return -EINVAL if given a zero size, but a |
355 | * segment with zero filesize is perfectly valid */ | |
cc503c1b JK |
356 | if (!size) |
357 | return addr; | |
358 | ||
cc503c1b JK |
359 | /* |
360 | * total_size is the size of the ELF (interpreter) image. | |
361 | * The _first_ mmap needs to know the full size, otherwise | |
362 | * randomization might put this image into an overlapping | |
363 | * position with the ELF binary image. (since size < total_size) | |
364 | * So we first map the 'big' image - and unmap the remainder at | |
365 | * the end. (which unmap is needed for ELF images with holes.) | |
366 | */ | |
367 | if (total_size) { | |
368 | total_size = ELF_PAGEALIGN(total_size); | |
5a5e4c2e | 369 | map_addr = vm_mmap(filep, addr, total_size, prot, type, off); |
cc503c1b | 370 | if (!BAD_ADDR(map_addr)) |
5a5e4c2e | 371 | vm_munmap(map_addr+size, total_size-size); |
cc503c1b | 372 | } else |
5a5e4c2e | 373 | map_addr = vm_mmap(filep, addr, size, prot, type, off); |
cc503c1b | 374 | |
1da177e4 LT |
375 | return(map_addr); |
376 | } | |
377 | ||
c07380be JH |
378 | #endif /* !elf_map */ |
379 | ||
cc503c1b JK |
380 | static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr) |
381 | { | |
382 | int i, first_idx = -1, last_idx = -1; | |
383 | ||
384 | for (i = 0; i < nr; i++) { | |
385 | if (cmds[i].p_type == PT_LOAD) { | |
386 | last_idx = i; | |
387 | if (first_idx == -1) | |
388 | first_idx = i; | |
389 | } | |
390 | } | |
391 | if (first_idx == -1) | |
392 | return 0; | |
393 | ||
394 | return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz - | |
395 | ELF_PAGESTART(cmds[first_idx].p_vaddr); | |
396 | } | |
397 | ||
6a8d3894 PB |
398 | /** |
399 | * load_elf_phdrs() - load ELF program headers | |
400 | * @elf_ex: ELF header of the binary whose program headers should be loaded | |
401 | * @elf_file: the opened ELF binary file | |
402 | * | |
403 | * Loads ELF program headers from the binary file elf_file, which has the ELF | |
404 | * header pointed to by elf_ex, into a newly allocated array. The caller is | |
405 | * responsible for freeing the allocated data. Returns an ERR_PTR upon failure. | |
406 | */ | |
407 | static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex, | |
408 | struct file *elf_file) | |
409 | { | |
410 | struct elf_phdr *elf_phdata = NULL; | |
411 | int retval, size, err = -1; | |
412 | ||
413 | /* | |
414 | * If the size of this structure has changed, then punt, since | |
415 | * we will be doing the wrong thing. | |
416 | */ | |
417 | if (elf_ex->e_phentsize != sizeof(struct elf_phdr)) | |
418 | goto out; | |
419 | ||
420 | /* Sanity check the number of program headers... */ | |
421 | if (elf_ex->e_phnum < 1 || | |
422 | elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr)) | |
423 | goto out; | |
424 | ||
425 | /* ...and their total size. */ | |
426 | size = sizeof(struct elf_phdr) * elf_ex->e_phnum; | |
427 | if (size > ELF_MIN_ALIGN) | |
428 | goto out; | |
429 | ||
430 | elf_phdata = kmalloc(size, GFP_KERNEL); | |
431 | if (!elf_phdata) | |
432 | goto out; | |
433 | ||
434 | /* Read in the program headers */ | |
435 | retval = kernel_read(elf_file, elf_ex->e_phoff, | |
436 | (char *)elf_phdata, size); | |
437 | if (retval != size) { | |
438 | err = (retval < 0) ? retval : -EIO; | |
439 | goto out; | |
440 | } | |
441 | ||
442 | /* Success! */ | |
443 | err = 0; | |
444 | out: | |
445 | if (err) { | |
446 | kfree(elf_phdata); | |
447 | elf_phdata = NULL; | |
448 | } | |
449 | return elf_phdata; | |
450 | } | |
cc503c1b | 451 | |
774c105e PB |
452 | #ifndef CONFIG_ARCH_BINFMT_ELF_STATE |
453 | ||
454 | /** | |
455 | * struct arch_elf_state - arch-specific ELF loading state | |
456 | * | |
457 | * This structure is used to preserve architecture specific data during | |
458 | * the loading of an ELF file, throughout the checking of architecture | |
459 | * specific ELF headers & through to the point where the ELF load is | |
460 | * known to be proceeding (ie. SET_PERSONALITY). | |
461 | * | |
462 | * This implementation is a dummy for architectures which require no | |
463 | * specific state. | |
464 | */ | |
465 | struct arch_elf_state { | |
466 | }; | |
467 | ||
468 | #define INIT_ARCH_ELF_STATE {} | |
469 | ||
470 | /** | |
471 | * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header | |
472 | * @ehdr: The main ELF header | |
473 | * @phdr: The program header to check | |
474 | * @elf: The open ELF file | |
475 | * @is_interp: True if the phdr is from the interpreter of the ELF being | |
476 | * loaded, else false. | |
477 | * @state: Architecture-specific state preserved throughout the process | |
478 | * of loading the ELF. | |
479 | * | |
480 | * Inspects the program header phdr to validate its correctness and/or | |
481 | * suitability for the system. Called once per ELF program header in the | |
482 | * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its | |
483 | * interpreter. | |
484 | * | |
485 | * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load | |
486 | * with that return code. | |
487 | */ | |
488 | static inline int arch_elf_pt_proc(struct elfhdr *ehdr, | |
489 | struct elf_phdr *phdr, | |
490 | struct file *elf, bool is_interp, | |
491 | struct arch_elf_state *state) | |
492 | { | |
493 | /* Dummy implementation, always proceed */ | |
494 | return 0; | |
495 | } | |
496 | ||
497 | /** | |
54d15714 | 498 | * arch_check_elf() - check an ELF executable |
774c105e PB |
499 | * @ehdr: The main ELF header |
500 | * @has_interp: True if the ELF has an interpreter, else false. | |
eb4bc076 | 501 | * @interp_ehdr: The interpreter's ELF header |
774c105e PB |
502 | * @state: Architecture-specific state preserved throughout the process |
503 | * of loading the ELF. | |
504 | * | |
505 | * Provides a final opportunity for architecture code to reject the loading | |
506 | * of the ELF & cause an exec syscall to return an error. This is called after | |
507 | * all program headers to be checked by arch_elf_pt_proc have been. | |
508 | * | |
509 | * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load | |
510 | * with that return code. | |
511 | */ | |
512 | static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp, | |
eb4bc076 | 513 | struct elfhdr *interp_ehdr, |
774c105e PB |
514 | struct arch_elf_state *state) |
515 | { | |
516 | /* Dummy implementation, always proceed */ | |
517 | return 0; | |
518 | } | |
519 | ||
520 | #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */ | |
cc503c1b | 521 | |
1da177e4 LT |
522 | /* This is much more generalized than the library routine read function, |
523 | so we keep this separate. Technically the library read function | |
524 | is only provided so that we can read a.out libraries that have | |
525 | an ELF header */ | |
526 | ||
f4e5cc2c | 527 | static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, |
cc503c1b | 528 | struct file *interpreter, unsigned long *interp_map_addr, |
a9d9ef13 | 529 | unsigned long no_base, struct elf_phdr *interp_elf_phdata) |
1da177e4 | 530 | { |
1da177e4 LT |
531 | struct elf_phdr *eppnt; |
532 | unsigned long load_addr = 0; | |
533 | int load_addr_set = 0; | |
534 | unsigned long last_bss = 0, elf_bss = 0; | |
16e72e9b | 535 | int bss_prot = 0; |
1da177e4 | 536 | unsigned long error = ~0UL; |
cc503c1b | 537 | unsigned long total_size; |
6a8d3894 | 538 | int i; |
1da177e4 LT |
539 | |
540 | /* First of all, some simple consistency checks */ | |
541 | if (interp_elf_ex->e_type != ET_EXEC && | |
542 | interp_elf_ex->e_type != ET_DYN) | |
543 | goto out; | |
544 | if (!elf_check_arch(interp_elf_ex)) | |
545 | goto out; | |
72c2d531 | 546 | if (!interpreter->f_op->mmap) |
1da177e4 LT |
547 | goto out; |
548 | ||
a9d9ef13 PB |
549 | total_size = total_mapping_size(interp_elf_phdata, |
550 | interp_elf_ex->e_phnum); | |
cc503c1b JK |
551 | if (!total_size) { |
552 | error = -EINVAL; | |
a9d9ef13 | 553 | goto out; |
cc503c1b JK |
554 | } |
555 | ||
a9d9ef13 | 556 | eppnt = interp_elf_phdata; |
f4e5cc2c JJ |
557 | for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { |
558 | if (eppnt->p_type == PT_LOAD) { | |
559 | int elf_type = MAP_PRIVATE | MAP_DENYWRITE; | |
560 | int elf_prot = 0; | |
561 | unsigned long vaddr = 0; | |
562 | unsigned long k, map_addr; | |
563 | ||
564 | if (eppnt->p_flags & PF_R) | |
565 | elf_prot = PROT_READ; | |
566 | if (eppnt->p_flags & PF_W) | |
567 | elf_prot |= PROT_WRITE; | |
568 | if (eppnt->p_flags & PF_X) | |
569 | elf_prot |= PROT_EXEC; | |
570 | vaddr = eppnt->p_vaddr; | |
571 | if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) | |
572 | elf_type |= MAP_FIXED; | |
cc503c1b JK |
573 | else if (no_base && interp_elf_ex->e_type == ET_DYN) |
574 | load_addr = -vaddr; | |
f4e5cc2c JJ |
575 | |
576 | map_addr = elf_map(interpreter, load_addr + vaddr, | |
bb1ad820 | 577 | eppnt, elf_prot, elf_type, total_size); |
cc503c1b JK |
578 | total_size = 0; |
579 | if (!*interp_map_addr) | |
580 | *interp_map_addr = map_addr; | |
f4e5cc2c JJ |
581 | error = map_addr; |
582 | if (BAD_ADDR(map_addr)) | |
a9d9ef13 | 583 | goto out; |
f4e5cc2c JJ |
584 | |
585 | if (!load_addr_set && | |
586 | interp_elf_ex->e_type == ET_DYN) { | |
587 | load_addr = map_addr - ELF_PAGESTART(vaddr); | |
588 | load_addr_set = 1; | |
589 | } | |
590 | ||
591 | /* | |
592 | * Check to see if the section's size will overflow the | |
593 | * allowed task size. Note that p_filesz must always be | |
594 | * <= p_memsize so it's only necessary to check p_memsz. | |
595 | */ | |
596 | k = load_addr + eppnt->p_vaddr; | |
ce51059b | 597 | if (BAD_ADDR(k) || |
f4e5cc2c JJ |
598 | eppnt->p_filesz > eppnt->p_memsz || |
599 | eppnt->p_memsz > TASK_SIZE || | |
600 | TASK_SIZE - eppnt->p_memsz < k) { | |
601 | error = -ENOMEM; | |
a9d9ef13 | 602 | goto out; |
f4e5cc2c JJ |
603 | } |
604 | ||
605 | /* | |
606 | * Find the end of the file mapping for this phdr, and | |
607 | * keep track of the largest address we see for this. | |
608 | */ | |
609 | k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; | |
610 | if (k > elf_bss) | |
611 | elf_bss = k; | |
612 | ||
613 | /* | |
614 | * Do the same thing for the memory mapping - between | |
615 | * elf_bss and last_bss is the bss section. | |
616 | */ | |
0036d1f7 | 617 | k = load_addr + eppnt->p_vaddr + eppnt->p_memsz; |
16e72e9b | 618 | if (k > last_bss) { |
f4e5cc2c | 619 | last_bss = k; |
16e72e9b DV |
620 | bss_prot = elf_prot; |
621 | } | |
f4e5cc2c | 622 | } |
1da177e4 LT |
623 | } |
624 | ||
0036d1f7 KC |
625 | /* |
626 | * Now fill out the bss section: first pad the last page from | |
627 | * the file up to the page boundary, and zero it from elf_bss | |
628 | * up to the end of the page. | |
629 | */ | |
630 | if (padzero(elf_bss)) { | |
631 | error = -EFAULT; | |
632 | goto out; | |
633 | } | |
634 | /* | |
635 | * Next, align both the file and mem bss up to the page size, | |
636 | * since this is where elf_bss was just zeroed up to, and where | |
16e72e9b | 637 | * last_bss will end after the vm_brk_flags() below. |
0036d1f7 KC |
638 | */ |
639 | elf_bss = ELF_PAGEALIGN(elf_bss); | |
640 | last_bss = ELF_PAGEALIGN(last_bss); | |
641 | /* Finally, if there is still more bss to allocate, do it. */ | |
752015d1 | 642 | if (last_bss > elf_bss) { |
16e72e9b DV |
643 | error = vm_brk_flags(elf_bss, last_bss - elf_bss, |
644 | bss_prot & PROT_EXEC ? VM_EXEC : 0); | |
5d22fc25 | 645 | if (error) |
a9d9ef13 | 646 | goto out; |
1da177e4 LT |
647 | } |
648 | ||
cc503c1b | 649 | error = load_addr; |
1da177e4 LT |
650 | out: |
651 | return error; | |
652 | } | |
653 | ||
1da177e4 LT |
654 | /* |
655 | * These are the functions used to load ELF style executables and shared | |
656 | * libraries. There is no binary dependent code anywhere else. | |
657 | */ | |
658 | ||
913bd906 | 659 | #ifndef STACK_RND_MASK |
d1cabd63 | 660 | #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ |
913bd906 | 661 | #endif |
1da177e4 LT |
662 | |
663 | static unsigned long randomize_stack_top(unsigned long stack_top) | |
664 | { | |
4e7c22d4 | 665 | unsigned long random_variable = 0; |
1da177e4 | 666 | |
c16b63e0 AK |
667 | if ((current->flags & PF_RANDOMIZE) && |
668 | !(current->personality & ADDR_NO_RANDOMIZE)) { | |
5ef11c35 | 669 | random_variable = get_random_long(); |
4e7c22d4 | 670 | random_variable &= STACK_RND_MASK; |
913bd906 AK |
671 | random_variable <<= PAGE_SHIFT; |
672 | } | |
1da177e4 | 673 | #ifdef CONFIG_STACK_GROWSUP |
913bd906 | 674 | return PAGE_ALIGN(stack_top) + random_variable; |
1da177e4 | 675 | #else |
913bd906 | 676 | return PAGE_ALIGN(stack_top) - random_variable; |
1da177e4 LT |
677 | #endif |
678 | } | |
679 | ||
71613c3b | 680 | static int load_elf_binary(struct linux_binprm *bprm) |
1da177e4 LT |
681 | { |
682 | struct file *interpreter = NULL; /* to shut gcc up */ | |
683 | unsigned long load_addr = 0, load_bias = 0; | |
684 | int load_addr_set = 0; | |
685 | char * elf_interpreter = NULL; | |
1da177e4 | 686 | unsigned long error; |
a9d9ef13 | 687 | struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL; |
1da177e4 | 688 | unsigned long elf_bss, elf_brk; |
16e72e9b | 689 | int bss_prot = 0; |
1da177e4 | 690 | int retval, i; |
cc503c1b JK |
691 | unsigned long elf_entry; |
692 | unsigned long interp_load_addr = 0; | |
1da177e4 | 693 | unsigned long start_code, end_code, start_data, end_data; |
1a530a6f | 694 | unsigned long reloc_func_desc __maybe_unused = 0; |
8de61e69 | 695 | int executable_stack = EXSTACK_DEFAULT; |
71613c3b | 696 | struct pt_regs *regs = current_pt_regs(); |
1da177e4 LT |
697 | struct { |
698 | struct elfhdr elf_ex; | |
699 | struct elfhdr interp_elf_ex; | |
1da177e4 | 700 | } *loc; |
774c105e | 701 | struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE; |
1da177e4 LT |
702 | |
703 | loc = kmalloc(sizeof(*loc), GFP_KERNEL); | |
704 | if (!loc) { | |
705 | retval = -ENOMEM; | |
706 | goto out_ret; | |
707 | } | |
708 | ||
709 | /* Get the exec-header */ | |
f4e5cc2c | 710 | loc->elf_ex = *((struct elfhdr *)bprm->buf); |
1da177e4 LT |
711 | |
712 | retval = -ENOEXEC; | |
713 | /* First of all, some simple consistency checks */ | |
714 | if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0) | |
715 | goto out; | |
716 | ||
717 | if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN) | |
718 | goto out; | |
719 | if (!elf_check_arch(&loc->elf_ex)) | |
720 | goto out; | |
72c2d531 | 721 | if (!bprm->file->f_op->mmap) |
1da177e4 LT |
722 | goto out; |
723 | ||
6a8d3894 | 724 | elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file); |
1da177e4 LT |
725 | if (!elf_phdata) |
726 | goto out; | |
727 | ||
1da177e4 LT |
728 | elf_ppnt = elf_phdata; |
729 | elf_bss = 0; | |
730 | elf_brk = 0; | |
731 | ||
732 | start_code = ~0UL; | |
733 | end_code = 0; | |
734 | start_data = 0; | |
735 | end_data = 0; | |
736 | ||
737 | for (i = 0; i < loc->elf_ex.e_phnum; i++) { | |
738 | if (elf_ppnt->p_type == PT_INTERP) { | |
739 | /* This is the program interpreter used for | |
740 | * shared libraries - for now assume that this | |
741 | * is an a.out format binary | |
742 | */ | |
1da177e4 LT |
743 | retval = -ENOEXEC; |
744 | if (elf_ppnt->p_filesz > PATH_MAX || | |
745 | elf_ppnt->p_filesz < 2) | |
e7b9b550 | 746 | goto out_free_ph; |
1da177e4 LT |
747 | |
748 | retval = -ENOMEM; | |
792db3af | 749 | elf_interpreter = kmalloc(elf_ppnt->p_filesz, |
f4e5cc2c | 750 | GFP_KERNEL); |
1da177e4 | 751 | if (!elf_interpreter) |
e7b9b550 | 752 | goto out_free_ph; |
1da177e4 LT |
753 | |
754 | retval = kernel_read(bprm->file, elf_ppnt->p_offset, | |
f4e5cc2c JJ |
755 | elf_interpreter, |
756 | elf_ppnt->p_filesz); | |
1da177e4 LT |
757 | if (retval != elf_ppnt->p_filesz) { |
758 | if (retval >= 0) | |
759 | retval = -EIO; | |
760 | goto out_free_interp; | |
761 | } | |
762 | /* make sure path is NULL terminated */ | |
763 | retval = -ENOEXEC; | |
764 | if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') | |
765 | goto out_free_interp; | |
766 | ||
1da177e4 LT |
767 | interpreter = open_exec(elf_interpreter); |
768 | retval = PTR_ERR(interpreter); | |
769 | if (IS_ERR(interpreter)) | |
770 | goto out_free_interp; | |
1fb84496 AD |
771 | |
772 | /* | |
773 | * If the binary is not readable then enforce | |
774 | * mm->dumpable = 0 regardless of the interpreter's | |
775 | * permissions. | |
776 | */ | |
1b5d783c | 777 | would_dump(bprm, interpreter); |
1fb84496 | 778 | |
b582ef5c MR |
779 | /* Get the exec headers */ |
780 | retval = kernel_read(interpreter, 0, | |
781 | (void *)&loc->interp_elf_ex, | |
782 | sizeof(loc->interp_elf_ex)); | |
783 | if (retval != sizeof(loc->interp_elf_ex)) { | |
1da177e4 LT |
784 | if (retval >= 0) |
785 | retval = -EIO; | |
786 | goto out_free_dentry; | |
787 | } | |
788 | ||
1da177e4 LT |
789 | break; |
790 | } | |
791 | elf_ppnt++; | |
792 | } | |
793 | ||
794 | elf_ppnt = elf_phdata; | |
795 | for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) | |
774c105e PB |
796 | switch (elf_ppnt->p_type) { |
797 | case PT_GNU_STACK: | |
1da177e4 LT |
798 | if (elf_ppnt->p_flags & PF_X) |
799 | executable_stack = EXSTACK_ENABLE_X; | |
800 | else | |
801 | executable_stack = EXSTACK_DISABLE_X; | |
802 | break; | |
774c105e PB |
803 | |
804 | case PT_LOPROC ... PT_HIPROC: | |
805 | retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt, | |
806 | bprm->file, false, | |
807 | &arch_state); | |
808 | if (retval) | |
809 | goto out_free_dentry; | |
810 | break; | |
1da177e4 | 811 | } |
1da177e4 LT |
812 | |
813 | /* Some simple consistency checks for the interpreter */ | |
814 | if (elf_interpreter) { | |
1da177e4 | 815 | retval = -ELIBBAD; |
d20894a2 AK |
816 | /* Not an ELF interpreter */ |
817 | if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0) | |
1da177e4 | 818 | goto out_free_dentry; |
1da177e4 | 819 | /* Verify the interpreter has a valid arch */ |
d20894a2 | 820 | if (!elf_check_arch(&loc->interp_elf_ex)) |
1da177e4 | 821 | goto out_free_dentry; |
a9d9ef13 PB |
822 | |
823 | /* Load the interpreter program headers */ | |
824 | interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex, | |
825 | interpreter); | |
826 | if (!interp_elf_phdata) | |
827 | goto out_free_dentry; | |
774c105e PB |
828 | |
829 | /* Pass PT_LOPROC..PT_HIPROC headers to arch code */ | |
830 | elf_ppnt = interp_elf_phdata; | |
831 | for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++) | |
832 | switch (elf_ppnt->p_type) { | |
833 | case PT_LOPROC ... PT_HIPROC: | |
834 | retval = arch_elf_pt_proc(&loc->interp_elf_ex, | |
835 | elf_ppnt, interpreter, | |
836 | true, &arch_state); | |
837 | if (retval) | |
838 | goto out_free_dentry; | |
839 | break; | |
840 | } | |
1da177e4 LT |
841 | } |
842 | ||
774c105e PB |
843 | /* |
844 | * Allow arch code to reject the ELF at this point, whilst it's | |
845 | * still possible to return an error to the code that invoked | |
846 | * the exec syscall. | |
847 | */ | |
eb4bc076 MR |
848 | retval = arch_check_elf(&loc->elf_ex, |
849 | !!interpreter, &loc->interp_elf_ex, | |
850 | &arch_state); | |
774c105e PB |
851 | if (retval) |
852 | goto out_free_dentry; | |
853 | ||
1da177e4 LT |
854 | /* Flush all traces of the currently running executable */ |
855 | retval = flush_old_exec(bprm); | |
856 | if (retval) | |
857 | goto out_free_dentry; | |
858 | ||
1da177e4 LT |
859 | /* Do this immediately, since STACK_TOP as used in setup_arg_pages |
860 | may depend on the personality. */ | |
774c105e | 861 | SET_PERSONALITY2(loc->elf_ex, &arch_state); |
1da177e4 LT |
862 | if (elf_read_implies_exec(loc->elf_ex, executable_stack)) |
863 | current->personality |= READ_IMPLIES_EXEC; | |
864 | ||
f4e5cc2c | 865 | if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) |
1da177e4 | 866 | current->flags |= PF_RANDOMIZE; |
221af7f8 LT |
867 | |
868 | setup_new_exec(bprm); | |
9f834ec1 | 869 | install_exec_creds(bprm); |
1da177e4 LT |
870 | |
871 | /* Do this so that we can load the interpreter, if need be. We will | |
872 | change some of these later */ | |
1da177e4 LT |
873 | retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), |
874 | executable_stack); | |
19d860a1 | 875 | if (retval < 0) |
1da177e4 | 876 | goto out_free_dentry; |
1da177e4 | 877 | |
1da177e4 LT |
878 | current->mm->start_stack = bprm->p; |
879 | ||
af901ca1 | 880 | /* Now we do a little grungy work by mmapping the ELF image into |
cc503c1b | 881 | the correct location in memory. */ |
f4e5cc2c JJ |
882 | for(i = 0, elf_ppnt = elf_phdata; |
883 | i < loc->elf_ex.e_phnum; i++, elf_ppnt++) { | |
1da177e4 LT |
884 | int elf_prot = 0, elf_flags; |
885 | unsigned long k, vaddr; | |
a87938b2 | 886 | unsigned long total_size = 0; |
1da177e4 LT |
887 | |
888 | if (elf_ppnt->p_type != PT_LOAD) | |
889 | continue; | |
890 | ||
891 | if (unlikely (elf_brk > elf_bss)) { | |
892 | unsigned long nbyte; | |
893 | ||
894 | /* There was a PT_LOAD segment with p_memsz > p_filesz | |
895 | before this one. Map anonymous pages, if needed, | |
896 | and clear the area. */ | |
f670d0ec | 897 | retval = set_brk(elf_bss + load_bias, |
16e72e9b DV |
898 | elf_brk + load_bias, |
899 | bss_prot); | |
19d860a1 | 900 | if (retval) |
1da177e4 | 901 | goto out_free_dentry; |
1da177e4 LT |
902 | nbyte = ELF_PAGEOFFSET(elf_bss); |
903 | if (nbyte) { | |
904 | nbyte = ELF_MIN_ALIGN - nbyte; | |
905 | if (nbyte > elf_brk - elf_bss) | |
906 | nbyte = elf_brk - elf_bss; | |
907 | if (clear_user((void __user *)elf_bss + | |
908 | load_bias, nbyte)) { | |
909 | /* | |
910 | * This bss-zeroing can fail if the ELF | |
f4e5cc2c | 911 | * file specifies odd protections. So |
1da177e4 LT |
912 | * we don't check the return value |
913 | */ | |
914 | } | |
915 | } | |
916 | } | |
917 | ||
f4e5cc2c JJ |
918 | if (elf_ppnt->p_flags & PF_R) |
919 | elf_prot |= PROT_READ; | |
920 | if (elf_ppnt->p_flags & PF_W) | |
921 | elf_prot |= PROT_WRITE; | |
922 | if (elf_ppnt->p_flags & PF_X) | |
923 | elf_prot |= PROT_EXEC; | |
1da177e4 | 924 | |
f4e5cc2c | 925 | elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE; |
1da177e4 LT |
926 | |
927 | vaddr = elf_ppnt->p_vaddr; | |
eab09532 KC |
928 | /* |
929 | * If we are loading ET_EXEC or we have already performed | |
930 | * the ET_DYN load_addr calculations, proceed normally. | |
931 | */ | |
1da177e4 LT |
932 | if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) { |
933 | elf_flags |= MAP_FIXED; | |
934 | } else if (loc->elf_ex.e_type == ET_DYN) { | |
eab09532 KC |
935 | /* |
936 | * This logic is run once for the first LOAD Program | |
937 | * Header for ET_DYN binaries to calculate the | |
938 | * randomization (load_bias) for all the LOAD | |
939 | * Program Headers, and to calculate the entire | |
940 | * size of the ELF mapping (total_size). (Note that | |
941 | * load_addr_set is set to true later once the | |
942 | * initial mapping is performed.) | |
943 | * | |
944 | * There are effectively two types of ET_DYN | |
945 | * binaries: programs (i.e. PIE: ET_DYN with INTERP) | |
946 | * and loaders (ET_DYN without INTERP, since they | |
947 | * _are_ the ELF interpreter). The loaders must | |
948 | * be loaded away from programs since the program | |
949 | * may otherwise collide with the loader (especially | |
950 | * for ET_EXEC which does not have a randomized | |
951 | * position). For example to handle invocations of | |
952 | * "./ld.so someprog" to test out a new version of | |
953 | * the loader, the subsequent program that the | |
954 | * loader loads must avoid the loader itself, so | |
955 | * they cannot share the same load range. Sufficient | |
956 | * room for the brk must be allocated with the | |
957 | * loader as well, since brk must be available with | |
958 | * the loader. | |
959 | * | |
960 | * Therefore, programs are loaded offset from | |
961 | * ELF_ET_DYN_BASE and loaders are loaded into the | |
962 | * independently randomized mmap region (0 load_bias | |
963 | * without MAP_FIXED). | |
964 | */ | |
965 | if (elf_interpreter) { | |
966 | load_bias = ELF_ET_DYN_BASE; | |
967 | if (current->flags & PF_RANDOMIZE) | |
968 | load_bias += arch_mmap_rnd(); | |
969 | elf_flags |= MAP_FIXED; | |
970 | } else | |
971 | load_bias = 0; | |
972 | ||
973 | /* | |
974 | * Since load_bias is used for all subsequent loading | |
975 | * calculations, we must lower it by the first vaddr | |
976 | * so that the remaining calculations based on the | |
977 | * ELF vaddrs will be correctly offset. The result | |
978 | * is then page aligned. | |
979 | */ | |
980 | load_bias = ELF_PAGESTART(load_bias - vaddr); | |
981 | ||
a87938b2 MD |
982 | total_size = total_mapping_size(elf_phdata, |
983 | loc->elf_ex.e_phnum); | |
984 | if (!total_size) { | |
2b1d3ae9 | 985 | retval = -EINVAL; |
a87938b2 MD |
986 | goto out_free_dentry; |
987 | } | |
1da177e4 LT |
988 | } |
989 | ||
f4e5cc2c | 990 | error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, |
a87938b2 | 991 | elf_prot, elf_flags, total_size); |
1da177e4 | 992 | if (BAD_ADDR(error)) { |
b140f251 AK |
993 | retval = IS_ERR((void *)error) ? |
994 | PTR_ERR((void*)error) : -EINVAL; | |
1da177e4 LT |
995 | goto out_free_dentry; |
996 | } | |
997 | ||
998 | if (!load_addr_set) { | |
999 | load_addr_set = 1; | |
1000 | load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset); | |
1001 | if (loc->elf_ex.e_type == ET_DYN) { | |
1002 | load_bias += error - | |
1003 | ELF_PAGESTART(load_bias + vaddr); | |
1004 | load_addr += load_bias; | |
1005 | reloc_func_desc = load_bias; | |
1006 | } | |
1007 | } | |
1008 | k = elf_ppnt->p_vaddr; | |
f4e5cc2c JJ |
1009 | if (k < start_code) |
1010 | start_code = k; | |
1011 | if (start_data < k) | |
1012 | start_data = k; | |
1da177e4 LT |
1013 | |
1014 | /* | |
1015 | * Check to see if the section's size will overflow the | |
1016 | * allowed task size. Note that p_filesz must always be | |
1017 | * <= p_memsz so it is only necessary to check p_memsz. | |
1018 | */ | |
ce51059b | 1019 | if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || |
1da177e4 LT |
1020 | elf_ppnt->p_memsz > TASK_SIZE || |
1021 | TASK_SIZE - elf_ppnt->p_memsz < k) { | |
f4e5cc2c | 1022 | /* set_brk can never work. Avoid overflows. */ |
b140f251 | 1023 | retval = -EINVAL; |
1da177e4 LT |
1024 | goto out_free_dentry; |
1025 | } | |
1026 | ||
1027 | k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; | |
1028 | ||
1029 | if (k > elf_bss) | |
1030 | elf_bss = k; | |
1031 | if ((elf_ppnt->p_flags & PF_X) && end_code < k) | |
1032 | end_code = k; | |
1033 | if (end_data < k) | |
1034 | end_data = k; | |
1035 | k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; | |
16e72e9b DV |
1036 | if (k > elf_brk) { |
1037 | bss_prot = elf_prot; | |
1da177e4 | 1038 | elf_brk = k; |
16e72e9b | 1039 | } |
1da177e4 LT |
1040 | } |
1041 | ||
1042 | loc->elf_ex.e_entry += load_bias; | |
1043 | elf_bss += load_bias; | |
1044 | elf_brk += load_bias; | |
1045 | start_code += load_bias; | |
1046 | end_code += load_bias; | |
1047 | start_data += load_bias; | |
1048 | end_data += load_bias; | |
1049 | ||
1050 | /* Calling set_brk effectively mmaps the pages that we need | |
1051 | * for the bss and break sections. We must do this before | |
1052 | * mapping in the interpreter, to make sure it doesn't wind | |
1053 | * up getting placed where the bss needs to go. | |
1054 | */ | |
16e72e9b | 1055 | retval = set_brk(elf_bss, elf_brk, bss_prot); |
19d860a1 | 1056 | if (retval) |
1da177e4 | 1057 | goto out_free_dentry; |
6de50517 | 1058 | if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) { |
1da177e4 LT |
1059 | retval = -EFAULT; /* Nobody gets to see this, but.. */ |
1060 | goto out_free_dentry; | |
1061 | } | |
1062 | ||
1063 | if (elf_interpreter) { | |
6eec482f | 1064 | unsigned long interp_map_addr = 0; |
d20894a2 AK |
1065 | |
1066 | elf_entry = load_elf_interp(&loc->interp_elf_ex, | |
1067 | interpreter, | |
1068 | &interp_map_addr, | |
a9d9ef13 | 1069 | load_bias, interp_elf_phdata); |
d20894a2 AK |
1070 | if (!IS_ERR((void *)elf_entry)) { |
1071 | /* | |
1072 | * load_elf_interp() returns relocation | |
1073 | * adjustment | |
1074 | */ | |
1075 | interp_load_addr = elf_entry; | |
1076 | elf_entry += loc->interp_elf_ex.e_entry; | |
cc503c1b | 1077 | } |
1da177e4 | 1078 | if (BAD_ADDR(elf_entry)) { |
ce51059b CE |
1079 | retval = IS_ERR((void *)elf_entry) ? |
1080 | (int)elf_entry : -EINVAL; | |
1da177e4 LT |
1081 | goto out_free_dentry; |
1082 | } | |
1083 | reloc_func_desc = interp_load_addr; | |
1084 | ||
1085 | allow_write_access(interpreter); | |
1086 | fput(interpreter); | |
1087 | kfree(elf_interpreter); | |
1088 | } else { | |
1089 | elf_entry = loc->elf_ex.e_entry; | |
5342fba5 | 1090 | if (BAD_ADDR(elf_entry)) { |
ce51059b | 1091 | retval = -EINVAL; |
5342fba5 SS |
1092 | goto out_free_dentry; |
1093 | } | |
1da177e4 LT |
1094 | } |
1095 | ||
774c105e | 1096 | kfree(interp_elf_phdata); |
1da177e4 LT |
1097 | kfree(elf_phdata); |
1098 | ||
1da177e4 LT |
1099 | set_binfmt(&elf_format); |
1100 | ||
547ee84c | 1101 | #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES |
fc5243d9 | 1102 | retval = arch_setup_additional_pages(bprm, !!elf_interpreter); |
19d860a1 | 1103 | if (retval < 0) |
18c8baff | 1104 | goto out; |
547ee84c BH |
1105 | #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ |
1106 | ||
b6a2fea3 | 1107 | retval = create_elf_tables(bprm, &loc->elf_ex, |
f4e5cc2c | 1108 | load_addr, interp_load_addr); |
19d860a1 | 1109 | if (retval < 0) |
b6a2fea3 | 1110 | goto out; |
1da177e4 | 1111 | /* N.B. passed_fileno might not be initialized? */ |
1da177e4 LT |
1112 | current->mm->end_code = end_code; |
1113 | current->mm->start_code = start_code; | |
1114 | current->mm->start_data = start_data; | |
1115 | current->mm->end_data = end_data; | |
1116 | current->mm->start_stack = bprm->p; | |
1117 | ||
4471a675 | 1118 | if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) { |
c1d171a0 JK |
1119 | current->mm->brk = current->mm->start_brk = |
1120 | arch_randomize_brk(current->mm); | |
204db6ed | 1121 | #ifdef compat_brk_randomized |
4471a675 JK |
1122 | current->brk_randomized = 1; |
1123 | #endif | |
1124 | } | |
c1d171a0 | 1125 | |
1da177e4 LT |
1126 | if (current->personality & MMAP_PAGE_ZERO) { |
1127 | /* Why this, you ask??? Well SVr4 maps page 0 as read-only, | |
1128 | and some applications "depend" upon this behavior. | |
1129 | Since we do not have the power to recompile these, we | |
f4e5cc2c | 1130 | emulate the SVr4 behavior. Sigh. */ |
6be5ceb0 | 1131 | error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, |
1da177e4 | 1132 | MAP_FIXED | MAP_PRIVATE, 0); |
1da177e4 LT |
1133 | } |
1134 | ||
1135 | #ifdef ELF_PLAT_INIT | |
1136 | /* | |
1137 | * The ABI may specify that certain registers be set up in special | |
1138 | * ways (on i386 %edx is the address of a DT_FINI function, for | |
1139 | * example. In addition, it may also specify (eg, PowerPC64 ELF) | |
1140 | * that the e_entry field is the address of the function descriptor | |
1141 | * for the startup routine, rather than the address of the startup | |
1142 | * routine itself. This macro performs whatever initialization to | |
1143 | * the regs structure is required as well as any relocations to the | |
1144 | * function descriptor entries when executing dynamically links apps. | |
1145 | */ | |
1146 | ELF_PLAT_INIT(regs, reloc_func_desc); | |
1147 | #endif | |
1148 | ||
1149 | start_thread(regs, elf_entry, bprm->p); | |
1da177e4 LT |
1150 | retval = 0; |
1151 | out: | |
1152 | kfree(loc); | |
1153 | out_ret: | |
1154 | return retval; | |
1155 | ||
1156 | /* error cleanup */ | |
1157 | out_free_dentry: | |
a9d9ef13 | 1158 | kfree(interp_elf_phdata); |
1da177e4 LT |
1159 | allow_write_access(interpreter); |
1160 | if (interpreter) | |
1161 | fput(interpreter); | |
1162 | out_free_interp: | |
f99d49ad | 1163 | kfree(elf_interpreter); |
1da177e4 LT |
1164 | out_free_ph: |
1165 | kfree(elf_phdata); | |
1166 | goto out; | |
1167 | } | |
1168 | ||
69369a70 | 1169 | #ifdef CONFIG_USELIB |
1da177e4 LT |
1170 | /* This is really simpleminded and specialized - we are loading an |
1171 | a.out library that is given an ELF header. */ | |
1da177e4 LT |
1172 | static int load_elf_library(struct file *file) |
1173 | { | |
1174 | struct elf_phdr *elf_phdata; | |
1175 | struct elf_phdr *eppnt; | |
1176 | unsigned long elf_bss, bss, len; | |
1177 | int retval, error, i, j; | |
1178 | struct elfhdr elf_ex; | |
1179 | ||
1180 | error = -ENOEXEC; | |
f4e5cc2c | 1181 | retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex)); |
1da177e4 LT |
1182 | if (retval != sizeof(elf_ex)) |
1183 | goto out; | |
1184 | ||
1185 | if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) | |
1186 | goto out; | |
1187 | ||
1188 | /* First of all, some simple consistency checks */ | |
1189 | if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || | |
72c2d531 | 1190 | !elf_check_arch(&elf_ex) || !file->f_op->mmap) |
1da177e4 LT |
1191 | goto out; |
1192 | ||
1193 | /* Now read in all of the header information */ | |
1194 | ||
1195 | j = sizeof(struct elf_phdr) * elf_ex.e_phnum; | |
1196 | /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ | |
1197 | ||
1198 | error = -ENOMEM; | |
1199 | elf_phdata = kmalloc(j, GFP_KERNEL); | |
1200 | if (!elf_phdata) | |
1201 | goto out; | |
1202 | ||
1203 | eppnt = elf_phdata; | |
1204 | error = -ENOEXEC; | |
1205 | retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j); | |
1206 | if (retval != j) | |
1207 | goto out_free_ph; | |
1208 | ||
1209 | for (j = 0, i = 0; i<elf_ex.e_phnum; i++) | |
1210 | if ((eppnt + i)->p_type == PT_LOAD) | |
1211 | j++; | |
1212 | if (j != 1) | |
1213 | goto out_free_ph; | |
1214 | ||
1215 | while (eppnt->p_type != PT_LOAD) | |
1216 | eppnt++; | |
1217 | ||
1218 | /* Now use mmap to map the library into memory. */ | |
6be5ceb0 | 1219 | error = vm_mmap(file, |
1da177e4 LT |
1220 | ELF_PAGESTART(eppnt->p_vaddr), |
1221 | (eppnt->p_filesz + | |
1222 | ELF_PAGEOFFSET(eppnt->p_vaddr)), | |
1223 | PROT_READ | PROT_WRITE | PROT_EXEC, | |
1224 | MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE, | |
1225 | (eppnt->p_offset - | |
1226 | ELF_PAGEOFFSET(eppnt->p_vaddr))); | |
1da177e4 LT |
1227 | if (error != ELF_PAGESTART(eppnt->p_vaddr)) |
1228 | goto out_free_ph; | |
1229 | ||
1230 | elf_bss = eppnt->p_vaddr + eppnt->p_filesz; | |
1231 | if (padzero(elf_bss)) { | |
1232 | error = -EFAULT; | |
1233 | goto out_free_ph; | |
1234 | } | |
1235 | ||
f4e5cc2c JJ |
1236 | len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr + |
1237 | ELF_MIN_ALIGN - 1); | |
1da177e4 | 1238 | bss = eppnt->p_memsz + eppnt->p_vaddr; |
ecc2bc8a MH |
1239 | if (bss > len) { |
1240 | error = vm_brk(len, bss - len); | |
5d22fc25 | 1241 | if (error) |
ecc2bc8a MH |
1242 | goto out_free_ph; |
1243 | } | |
1da177e4 LT |
1244 | error = 0; |
1245 | ||
1246 | out_free_ph: | |
1247 | kfree(elf_phdata); | |
1248 | out: | |
1249 | return error; | |
1250 | } | |
69369a70 | 1251 | #endif /* #ifdef CONFIG_USELIB */ |
1da177e4 | 1252 | |
698ba7b5 | 1253 | #ifdef CONFIG_ELF_CORE |
1da177e4 LT |
1254 | /* |
1255 | * ELF core dumper | |
1256 | * | |
1257 | * Modelled on fs/exec.c:aout_core_dump() | |
1258 | * Jeremy Fitzhardinge <[email protected]> | |
1259 | */ | |
1da177e4 | 1260 | |
909af768 JB |
1261 | /* |
1262 | * The purpose of always_dump_vma() is to make sure that special kernel mappings | |
1263 | * that are useful for post-mortem analysis are included in every core dump. | |
1264 | * In that way we ensure that the core dump is fully interpretable later | |
1265 | * without matching up the same kernel and hardware config to see what PC values | |
1266 | * meant. These special mappings include - vDSO, vsyscall, and other | |
1267 | * architecture specific mappings | |
1268 | */ | |
1269 | static bool always_dump_vma(struct vm_area_struct *vma) | |
1270 | { | |
1271 | /* Any vsyscall mappings? */ | |
1272 | if (vma == get_gate_vma(vma->vm_mm)) | |
1273 | return true; | |
78d683e8 AL |
1274 | |
1275 | /* | |
1276 | * Assume that all vmas with a .name op should always be dumped. | |
1277 | * If this changes, a new vm_ops field can easily be added. | |
1278 | */ | |
1279 | if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma)) | |
1280 | return true; | |
1281 | ||
909af768 JB |
1282 | /* |
1283 | * arch_vma_name() returns non-NULL for special architecture mappings, | |
1284 | * such as vDSO sections. | |
1285 | */ | |
1286 | if (arch_vma_name(vma)) | |
1287 | return true; | |
1288 | ||
1289 | return false; | |
1290 | } | |
1291 | ||
1da177e4 | 1292 | /* |
82df3973 | 1293 | * Decide what to dump of a segment, part, all or none. |
1da177e4 | 1294 | */ |
82df3973 RM |
1295 | static unsigned long vma_dump_size(struct vm_area_struct *vma, |
1296 | unsigned long mm_flags) | |
1da177e4 | 1297 | { |
e575f111 KM |
1298 | #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type)) |
1299 | ||
909af768 JB |
1300 | /* always dump the vdso and vsyscall sections */ |
1301 | if (always_dump_vma(vma)) | |
82df3973 | 1302 | goto whole; |
e5b97dde | 1303 | |
0103bd16 | 1304 | if (vma->vm_flags & VM_DONTDUMP) |
accb61fe JB |
1305 | return 0; |
1306 | ||
5037835c RZ |
1307 | /* support for DAX */ |
1308 | if (vma_is_dax(vma)) { | |
1309 | if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED)) | |
1310 | goto whole; | |
1311 | if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE)) | |
1312 | goto whole; | |
1313 | return 0; | |
1314 | } | |
1315 | ||
e575f111 KM |
1316 | /* Hugetlb memory check */ |
1317 | if (vma->vm_flags & VM_HUGETLB) { | |
1318 | if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED)) | |
1319 | goto whole; | |
1320 | if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE)) | |
1321 | goto whole; | |
23d9e482 | 1322 | return 0; |
e575f111 KM |
1323 | } |
1324 | ||
1da177e4 | 1325 | /* Do not dump I/O mapped devices or special mappings */ |
314e51b9 | 1326 | if (vma->vm_flags & VM_IO) |
1da177e4 LT |
1327 | return 0; |
1328 | ||
a1b59e80 KH |
1329 | /* By default, dump shared memory if mapped from an anonymous file. */ |
1330 | if (vma->vm_flags & VM_SHARED) { | |
496ad9aa | 1331 | if (file_inode(vma->vm_file)->i_nlink == 0 ? |
82df3973 RM |
1332 | FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED)) |
1333 | goto whole; | |
1334 | return 0; | |
a1b59e80 | 1335 | } |
1da177e4 | 1336 | |
82df3973 RM |
1337 | /* Dump segments that have been written to. */ |
1338 | if (vma->anon_vma && FILTER(ANON_PRIVATE)) | |
1339 | goto whole; | |
1340 | if (vma->vm_file == NULL) | |
1341 | return 0; | |
1da177e4 | 1342 | |
82df3973 RM |
1343 | if (FILTER(MAPPED_PRIVATE)) |
1344 | goto whole; | |
1345 | ||
1346 | /* | |
1347 | * If this looks like the beginning of a DSO or executable mapping, | |
1348 | * check for an ELF header. If we find one, dump the first page to | |
1349 | * aid in determining what was mapped here. | |
1350 | */ | |
92dc07b1 RM |
1351 | if (FILTER(ELF_HEADERS) && |
1352 | vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) { | |
82df3973 RM |
1353 | u32 __user *header = (u32 __user *) vma->vm_start; |
1354 | u32 word; | |
92dc07b1 | 1355 | mm_segment_t fs = get_fs(); |
82df3973 RM |
1356 | /* |
1357 | * Doing it this way gets the constant folded by GCC. | |
1358 | */ | |
1359 | union { | |
1360 | u32 cmp; | |
1361 | char elfmag[SELFMAG]; | |
1362 | } magic; | |
1363 | BUILD_BUG_ON(SELFMAG != sizeof word); | |
1364 | magic.elfmag[EI_MAG0] = ELFMAG0; | |
1365 | magic.elfmag[EI_MAG1] = ELFMAG1; | |
1366 | magic.elfmag[EI_MAG2] = ELFMAG2; | |
1367 | magic.elfmag[EI_MAG3] = ELFMAG3; | |
92dc07b1 RM |
1368 | /* |
1369 | * Switch to the user "segment" for get_user(), | |
1370 | * then put back what elf_core_dump() had in place. | |
1371 | */ | |
1372 | set_fs(USER_DS); | |
1373 | if (unlikely(get_user(word, header))) | |
1374 | word = 0; | |
1375 | set_fs(fs); | |
1376 | if (word == magic.cmp) | |
82df3973 RM |
1377 | return PAGE_SIZE; |
1378 | } | |
1379 | ||
1380 | #undef FILTER | |
1381 | ||
1382 | return 0; | |
1383 | ||
1384 | whole: | |
1385 | return vma->vm_end - vma->vm_start; | |
1da177e4 LT |
1386 | } |
1387 | ||
1da177e4 LT |
1388 | /* An ELF note in memory */ |
1389 | struct memelfnote | |
1390 | { | |
1391 | const char *name; | |
1392 | int type; | |
1393 | unsigned int datasz; | |
1394 | void *data; | |
1395 | }; | |
1396 | ||
1397 | static int notesize(struct memelfnote *en) | |
1398 | { | |
1399 | int sz; | |
1400 | ||
1401 | sz = sizeof(struct elf_note); | |
1402 | sz += roundup(strlen(en->name) + 1, 4); | |
1403 | sz += roundup(en->datasz, 4); | |
1404 | ||
1405 | return sz; | |
1406 | } | |
1407 | ||
ecc8c772 | 1408 | static int writenote(struct memelfnote *men, struct coredump_params *cprm) |
d025c9db AK |
1409 | { |
1410 | struct elf_note en; | |
1da177e4 LT |
1411 | en.n_namesz = strlen(men->name) + 1; |
1412 | en.n_descsz = men->datasz; | |
1413 | en.n_type = men->type; | |
1414 | ||
ecc8c772 | 1415 | return dump_emit(cprm, &en, sizeof(en)) && |
22a8cb82 AV |
1416 | dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) && |
1417 | dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4); | |
1da177e4 | 1418 | } |
1da177e4 | 1419 | |
3aba481f | 1420 | static void fill_elf_header(struct elfhdr *elf, int segs, |
d3330cf0 | 1421 | u16 machine, u32 flags) |
1da177e4 | 1422 | { |
6970c8ef CG |
1423 | memset(elf, 0, sizeof(*elf)); |
1424 | ||
1da177e4 LT |
1425 | memcpy(elf->e_ident, ELFMAG, SELFMAG); |
1426 | elf->e_ident[EI_CLASS] = ELF_CLASS; | |
1427 | elf->e_ident[EI_DATA] = ELF_DATA; | |
1428 | elf->e_ident[EI_VERSION] = EV_CURRENT; | |
1429 | elf->e_ident[EI_OSABI] = ELF_OSABI; | |
1da177e4 LT |
1430 | |
1431 | elf->e_type = ET_CORE; | |
3aba481f | 1432 | elf->e_machine = machine; |
1da177e4 | 1433 | elf->e_version = EV_CURRENT; |
1da177e4 | 1434 | elf->e_phoff = sizeof(struct elfhdr); |
3aba481f | 1435 | elf->e_flags = flags; |
1da177e4 LT |
1436 | elf->e_ehsize = sizeof(struct elfhdr); |
1437 | elf->e_phentsize = sizeof(struct elf_phdr); | |
1438 | elf->e_phnum = segs; | |
6970c8ef | 1439 | |
1da177e4 LT |
1440 | return; |
1441 | } | |
1442 | ||
8d6b5eee | 1443 | static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) |
1da177e4 LT |
1444 | { |
1445 | phdr->p_type = PT_NOTE; | |
1446 | phdr->p_offset = offset; | |
1447 | phdr->p_vaddr = 0; | |
1448 | phdr->p_paddr = 0; | |
1449 | phdr->p_filesz = sz; | |
1450 | phdr->p_memsz = 0; | |
1451 | phdr->p_flags = 0; | |
1452 | phdr->p_align = 0; | |
1453 | return; | |
1454 | } | |
1455 | ||
1456 | static void fill_note(struct memelfnote *note, const char *name, int type, | |
1457 | unsigned int sz, void *data) | |
1458 | { | |
1459 | note->name = name; | |
1460 | note->type = type; | |
1461 | note->datasz = sz; | |
1462 | note->data = data; | |
1463 | return; | |
1464 | } | |
1465 | ||
1466 | /* | |
f4e5cc2c JJ |
1467 | * fill up all the fields in prstatus from the given task struct, except |
1468 | * registers which need to be filled up separately. | |
1da177e4 LT |
1469 | */ |
1470 | static void fill_prstatus(struct elf_prstatus *prstatus, | |
f4e5cc2c | 1471 | struct task_struct *p, long signr) |
1da177e4 LT |
1472 | { |
1473 | prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; | |
1474 | prstatus->pr_sigpend = p->pending.signal.sig[0]; | |
1475 | prstatus->pr_sighold = p->blocked.sig[0]; | |
3b34fc58 ON |
1476 | rcu_read_lock(); |
1477 | prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); | |
1478 | rcu_read_unlock(); | |
b488893a | 1479 | prstatus->pr_pid = task_pid_vnr(p); |
b488893a PE |
1480 | prstatus->pr_pgrp = task_pgrp_vnr(p); |
1481 | prstatus->pr_sid = task_session_vnr(p); | |
1da177e4 | 1482 | if (thread_group_leader(p)) { |
cd19c364 | 1483 | struct task_cputime cputime; |
f06febc9 | 1484 | |
1da177e4 | 1485 | /* |
f06febc9 FM |
1486 | * This is the record for the group leader. It shows the |
1487 | * group-wide total, not its individual thread total. | |
1da177e4 | 1488 | */ |
cd19c364 FW |
1489 | thread_group_cputime(p, &cputime); |
1490 | prstatus->pr_utime = ns_to_timeval(cputime.utime); | |
1491 | prstatus->pr_stime = ns_to_timeval(cputime.stime); | |
1da177e4 | 1492 | } else { |
cd19c364 | 1493 | u64 utime, stime; |
6fac4829 | 1494 | |
cd19c364 FW |
1495 | task_cputime(p, &utime, &stime); |
1496 | prstatus->pr_utime = ns_to_timeval(utime); | |
1497 | prstatus->pr_stime = ns_to_timeval(stime); | |
1da177e4 | 1498 | } |
5613fda9 | 1499 | |
cd19c364 FW |
1500 | prstatus->pr_cutime = ns_to_timeval(p->signal->cutime); |
1501 | prstatus->pr_cstime = ns_to_timeval(p->signal->cstime); | |
1da177e4 LT |
1502 | } |
1503 | ||
1504 | static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, | |
1505 | struct mm_struct *mm) | |
1506 | { | |
c69e8d9c | 1507 | const struct cred *cred; |
a84a5059 | 1508 | unsigned int i, len; |
1da177e4 LT |
1509 | |
1510 | /* first copy the parameters from user space */ | |
1511 | memset(psinfo, 0, sizeof(struct elf_prpsinfo)); | |
1512 | ||
1513 | len = mm->arg_end - mm->arg_start; | |
1514 | if (len >= ELF_PRARGSZ) | |
1515 | len = ELF_PRARGSZ-1; | |
1516 | if (copy_from_user(&psinfo->pr_psargs, | |
1517 | (const char __user *)mm->arg_start, len)) | |
1518 | return -EFAULT; | |
1519 | for(i = 0; i < len; i++) | |
1520 | if (psinfo->pr_psargs[i] == 0) | |
1521 | psinfo->pr_psargs[i] = ' '; | |
1522 | psinfo->pr_psargs[len] = 0; | |
1523 | ||
3b34fc58 ON |
1524 | rcu_read_lock(); |
1525 | psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); | |
1526 | rcu_read_unlock(); | |
b488893a | 1527 | psinfo->pr_pid = task_pid_vnr(p); |
b488893a PE |
1528 | psinfo->pr_pgrp = task_pgrp_vnr(p); |
1529 | psinfo->pr_sid = task_session_vnr(p); | |
1da177e4 LT |
1530 | |
1531 | i = p->state ? ffz(~p->state) + 1 : 0; | |
1532 | psinfo->pr_state = i; | |
55148548 | 1533 | psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; |
1da177e4 LT |
1534 | psinfo->pr_zomb = psinfo->pr_sname == 'Z'; |
1535 | psinfo->pr_nice = task_nice(p); | |
1536 | psinfo->pr_flag = p->flags; | |
c69e8d9c DH |
1537 | rcu_read_lock(); |
1538 | cred = __task_cred(p); | |
ebc887b2 EB |
1539 | SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid)); |
1540 | SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid)); | |
c69e8d9c | 1541 | rcu_read_unlock(); |
1da177e4 LT |
1542 | strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname)); |
1543 | ||
1544 | return 0; | |
1545 | } | |
1546 | ||
3aba481f RM |
1547 | static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) |
1548 | { | |
1549 | elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; | |
1550 | int i = 0; | |
1551 | do | |
1552 | i += 2; | |
1553 | while (auxv[i - 2] != AT_NULL); | |
1554 | fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); | |
1555 | } | |
1556 | ||
49ae4d4b | 1557 | static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata, |
ce395960 | 1558 | const siginfo_t *siginfo) |
49ae4d4b DV |
1559 | { |
1560 | mm_segment_t old_fs = get_fs(); | |
1561 | set_fs(KERNEL_DS); | |
1562 | copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo); | |
1563 | set_fs(old_fs); | |
1564 | fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata); | |
1565 | } | |
1566 | ||
2aa362c4 DV |
1567 | #define MAX_FILE_NOTE_SIZE (4*1024*1024) |
1568 | /* | |
1569 | * Format of NT_FILE note: | |
1570 | * | |
1571 | * long count -- how many files are mapped | |
1572 | * long page_size -- units for file_ofs | |
1573 | * array of [COUNT] elements of | |
1574 | * long start | |
1575 | * long end | |
1576 | * long file_ofs | |
1577 | * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL... | |
1578 | */ | |
72023656 | 1579 | static int fill_files_note(struct memelfnote *note) |
2aa362c4 DV |
1580 | { |
1581 | struct vm_area_struct *vma; | |
1582 | unsigned count, size, names_ofs, remaining, n; | |
1583 | user_long_t *data; | |
1584 | user_long_t *start_end_ofs; | |
1585 | char *name_base, *name_curpos; | |
1586 | ||
1587 | /* *Estimated* file count and total data size needed */ | |
1588 | count = current->mm->map_count; | |
1589 | size = count * 64; | |
1590 | ||
1591 | names_ofs = (2 + 3 * count) * sizeof(data[0]); | |
1592 | alloc: | |
1593 | if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */ | |
72023656 | 1594 | return -EINVAL; |
2aa362c4 DV |
1595 | size = round_up(size, PAGE_SIZE); |
1596 | data = vmalloc(size); | |
1597 | if (!data) | |
72023656 | 1598 | return -ENOMEM; |
2aa362c4 DV |
1599 | |
1600 | start_end_ofs = data + 2; | |
1601 | name_base = name_curpos = ((char *)data) + names_ofs; | |
1602 | remaining = size - names_ofs; | |
1603 | count = 0; | |
1604 | for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) { | |
1605 | struct file *file; | |
1606 | const char *filename; | |
1607 | ||
1608 | file = vma->vm_file; | |
1609 | if (!file) | |
1610 | continue; | |
9bf39ab2 | 1611 | filename = file_path(file, name_curpos, remaining); |
2aa362c4 DV |
1612 | if (IS_ERR(filename)) { |
1613 | if (PTR_ERR(filename) == -ENAMETOOLONG) { | |
1614 | vfree(data); | |
1615 | size = size * 5 / 4; | |
1616 | goto alloc; | |
1617 | } | |
1618 | continue; | |
1619 | } | |
1620 | ||
9bf39ab2 | 1621 | /* file_path() fills at the end, move name down */ |
2aa362c4 DV |
1622 | /* n = strlen(filename) + 1: */ |
1623 | n = (name_curpos + remaining) - filename; | |
1624 | remaining = filename - name_curpos; | |
1625 | memmove(name_curpos, filename, n); | |
1626 | name_curpos += n; | |
1627 | ||
1628 | *start_end_ofs++ = vma->vm_start; | |
1629 | *start_end_ofs++ = vma->vm_end; | |
1630 | *start_end_ofs++ = vma->vm_pgoff; | |
1631 | count++; | |
1632 | } | |
1633 | ||
1634 | /* Now we know exact count of files, can store it */ | |
1635 | data[0] = count; | |
1636 | data[1] = PAGE_SIZE; | |
1637 | /* | |
1638 | * Count usually is less than current->mm->map_count, | |
1639 | * we need to move filenames down. | |
1640 | */ | |
1641 | n = current->mm->map_count - count; | |
1642 | if (n != 0) { | |
1643 | unsigned shift_bytes = n * 3 * sizeof(data[0]); | |
1644 | memmove(name_base - shift_bytes, name_base, | |
1645 | name_curpos - name_base); | |
1646 | name_curpos -= shift_bytes; | |
1647 | } | |
1648 | ||
1649 | size = name_curpos - (char *)data; | |
1650 | fill_note(note, "CORE", NT_FILE, size, data); | |
72023656 | 1651 | return 0; |
2aa362c4 DV |
1652 | } |
1653 | ||
4206d3aa RM |
1654 | #ifdef CORE_DUMP_USE_REGSET |
1655 | #include <linux/regset.h> | |
1656 | ||
1657 | struct elf_thread_core_info { | |
1658 | struct elf_thread_core_info *next; | |
1659 | struct task_struct *task; | |
1660 | struct elf_prstatus prstatus; | |
1661 | struct memelfnote notes[0]; | |
1662 | }; | |
1663 | ||
1664 | struct elf_note_info { | |
1665 | struct elf_thread_core_info *thread; | |
1666 | struct memelfnote psinfo; | |
49ae4d4b | 1667 | struct memelfnote signote; |
4206d3aa | 1668 | struct memelfnote auxv; |
2aa362c4 | 1669 | struct memelfnote files; |
49ae4d4b | 1670 | user_siginfo_t csigdata; |
4206d3aa RM |
1671 | size_t size; |
1672 | int thread_notes; | |
1673 | }; | |
1674 | ||
d31472b6 RM |
1675 | /* |
1676 | * When a regset has a writeback hook, we call it on each thread before | |
1677 | * dumping user memory. On register window machines, this makes sure the | |
1678 | * user memory backing the register data is up to date before we read it. | |
1679 | */ | |
1680 | static void do_thread_regset_writeback(struct task_struct *task, | |
1681 | const struct user_regset *regset) | |
1682 | { | |
1683 | if (regset->writeback) | |
1684 | regset->writeback(task, regset, 1); | |
1685 | } | |
1686 | ||
0953f65d | 1687 | #ifndef PRSTATUS_SIZE |
90954e7b | 1688 | #define PRSTATUS_SIZE(S, R) sizeof(S) |
0953f65d L |
1689 | #endif |
1690 | ||
1691 | #ifndef SET_PR_FPVALID | |
90954e7b | 1692 | #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V)) |
0953f65d L |
1693 | #endif |
1694 | ||
4206d3aa RM |
1695 | static int fill_thread_core_info(struct elf_thread_core_info *t, |
1696 | const struct user_regset_view *view, | |
1697 | long signr, size_t *total) | |
1698 | { | |
1699 | unsigned int i; | |
90954e7b | 1700 | unsigned int regset_size = view->regsets[0].n * view->regsets[0].size; |
4206d3aa RM |
1701 | |
1702 | /* | |
1703 | * NT_PRSTATUS is the one special case, because the regset data | |
1704 | * goes into the pr_reg field inside the note contents, rather | |
1705 | * than being the whole note contents. We fill the reset in here. | |
1706 | * We assume that regset 0 is NT_PRSTATUS. | |
1707 | */ | |
1708 | fill_prstatus(&t->prstatus, t->task, signr); | |
90954e7b DS |
1709 | (void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset_size, |
1710 | &t->prstatus.pr_reg, NULL); | |
4206d3aa RM |
1711 | |
1712 | fill_note(&t->notes[0], "CORE", NT_PRSTATUS, | |
90954e7b | 1713 | PRSTATUS_SIZE(t->prstatus, regset_size), &t->prstatus); |
4206d3aa RM |
1714 | *total += notesize(&t->notes[0]); |
1715 | ||
d31472b6 RM |
1716 | do_thread_regset_writeback(t->task, &view->regsets[0]); |
1717 | ||
4206d3aa RM |
1718 | /* |
1719 | * Each other regset might generate a note too. For each regset | |
1720 | * that has no core_note_type or is inactive, we leave t->notes[i] | |
1721 | * all zero and we'll know to skip writing it later. | |
1722 | */ | |
1723 | for (i = 1; i < view->n; ++i) { | |
1724 | const struct user_regset *regset = &view->regsets[i]; | |
d31472b6 | 1725 | do_thread_regset_writeback(t->task, regset); |
c8e25258 | 1726 | if (regset->core_note_type && regset->get && |
4206d3aa RM |
1727 | (!regset->active || regset->active(t->task, regset))) { |
1728 | int ret; | |
1729 | size_t size = regset->n * regset->size; | |
1730 | void *data = kmalloc(size, GFP_KERNEL); | |
1731 | if (unlikely(!data)) | |
1732 | return 0; | |
1733 | ret = regset->get(t->task, regset, | |
1734 | 0, size, data, NULL); | |
1735 | if (unlikely(ret)) | |
1736 | kfree(data); | |
1737 | else { | |
1738 | if (regset->core_note_type != NT_PRFPREG) | |
1739 | fill_note(&t->notes[i], "LINUX", | |
1740 | regset->core_note_type, | |
1741 | size, data); | |
1742 | else { | |
90954e7b DS |
1743 | SET_PR_FPVALID(&t->prstatus, |
1744 | 1, regset_size); | |
4206d3aa RM |
1745 | fill_note(&t->notes[i], "CORE", |
1746 | NT_PRFPREG, size, data); | |
1747 | } | |
1748 | *total += notesize(&t->notes[i]); | |
1749 | } | |
1750 | } | |
1751 | } | |
1752 | ||
1753 | return 1; | |
1754 | } | |
1755 | ||
1756 | static int fill_note_info(struct elfhdr *elf, int phdrs, | |
1757 | struct elf_note_info *info, | |
ec57941e | 1758 | const siginfo_t *siginfo, struct pt_regs *regs) |
4206d3aa RM |
1759 | { |
1760 | struct task_struct *dump_task = current; | |
1761 | const struct user_regset_view *view = task_user_regset_view(dump_task); | |
1762 | struct elf_thread_core_info *t; | |
1763 | struct elf_prpsinfo *psinfo; | |
83914441 | 1764 | struct core_thread *ct; |
4206d3aa RM |
1765 | unsigned int i; |
1766 | ||
1767 | info->size = 0; | |
1768 | info->thread = NULL; | |
1769 | ||
1770 | psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); | |
6899e92d AC |
1771 | if (psinfo == NULL) { |
1772 | info->psinfo.data = NULL; /* So we don't free this wrongly */ | |
4206d3aa | 1773 | return 0; |
6899e92d | 1774 | } |
4206d3aa | 1775 | |
e2dbe125 AW |
1776 | fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); |
1777 | ||
4206d3aa RM |
1778 | /* |
1779 | * Figure out how many notes we're going to need for each thread. | |
1780 | */ | |
1781 | info->thread_notes = 0; | |
1782 | for (i = 0; i < view->n; ++i) | |
1783 | if (view->regsets[i].core_note_type != 0) | |
1784 | ++info->thread_notes; | |
1785 | ||
1786 | /* | |
1787 | * Sanity check. We rely on regset 0 being in NT_PRSTATUS, | |
1788 | * since it is our one special case. | |
1789 | */ | |
1790 | if (unlikely(info->thread_notes == 0) || | |
1791 | unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { | |
1792 | WARN_ON(1); | |
1793 | return 0; | |
1794 | } | |
1795 | ||
1796 | /* | |
1797 | * Initialize the ELF file header. | |
1798 | */ | |
1799 | fill_elf_header(elf, phdrs, | |
d3330cf0 | 1800 | view->e_machine, view->e_flags); |
4206d3aa RM |
1801 | |
1802 | /* | |
1803 | * Allocate a structure for each thread. | |
1804 | */ | |
83914441 ON |
1805 | for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) { |
1806 | t = kzalloc(offsetof(struct elf_thread_core_info, | |
1807 | notes[info->thread_notes]), | |
1808 | GFP_KERNEL); | |
1809 | if (unlikely(!t)) | |
1810 | return 0; | |
1811 | ||
1812 | t->task = ct->task; | |
1813 | if (ct->task == dump_task || !info->thread) { | |
1814 | t->next = info->thread; | |
1815 | info->thread = t; | |
1816 | } else { | |
1817 | /* | |
1818 | * Make sure to keep the original task at | |
1819 | * the head of the list. | |
1820 | */ | |
1821 | t->next = info->thread->next; | |
1822 | info->thread->next = t; | |
4206d3aa | 1823 | } |
83914441 | 1824 | } |
4206d3aa RM |
1825 | |
1826 | /* | |
1827 | * Now fill in each thread's information. | |
1828 | */ | |
1829 | for (t = info->thread; t != NULL; t = t->next) | |
5ab1c309 | 1830 | if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size)) |
4206d3aa RM |
1831 | return 0; |
1832 | ||
1833 | /* | |
1834 | * Fill in the two process-wide notes. | |
1835 | */ | |
1836 | fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); | |
1837 | info->size += notesize(&info->psinfo); | |
1838 | ||
49ae4d4b DV |
1839 | fill_siginfo_note(&info->signote, &info->csigdata, siginfo); |
1840 | info->size += notesize(&info->signote); | |
1841 | ||
4206d3aa RM |
1842 | fill_auxv_note(&info->auxv, current->mm); |
1843 | info->size += notesize(&info->auxv); | |
1844 | ||
72023656 DA |
1845 | if (fill_files_note(&info->files) == 0) |
1846 | info->size += notesize(&info->files); | |
2aa362c4 | 1847 | |
4206d3aa RM |
1848 | return 1; |
1849 | } | |
1850 | ||
1851 | static size_t get_note_info_size(struct elf_note_info *info) | |
1852 | { | |
1853 | return info->size; | |
1854 | } | |
1855 | ||
1856 | /* | |
1857 | * Write all the notes for each thread. When writing the first thread, the | |
1858 | * process-wide notes are interleaved after the first thread-specific note. | |
1859 | */ | |
1860 | static int write_note_info(struct elf_note_info *info, | |
ecc8c772 | 1861 | struct coredump_params *cprm) |
4206d3aa | 1862 | { |
b219e25f | 1863 | bool first = true; |
4206d3aa RM |
1864 | struct elf_thread_core_info *t = info->thread; |
1865 | ||
1866 | do { | |
1867 | int i; | |
1868 | ||
ecc8c772 | 1869 | if (!writenote(&t->notes[0], cprm)) |
4206d3aa RM |
1870 | return 0; |
1871 | ||
ecc8c772 | 1872 | if (first && !writenote(&info->psinfo, cprm)) |
4206d3aa | 1873 | return 0; |
ecc8c772 | 1874 | if (first && !writenote(&info->signote, cprm)) |
49ae4d4b | 1875 | return 0; |
ecc8c772 | 1876 | if (first && !writenote(&info->auxv, cprm)) |
4206d3aa | 1877 | return 0; |
72023656 | 1878 | if (first && info->files.data && |
ecc8c772 | 1879 | !writenote(&info->files, cprm)) |
2aa362c4 | 1880 | return 0; |
4206d3aa RM |
1881 | |
1882 | for (i = 1; i < info->thread_notes; ++i) | |
1883 | if (t->notes[i].data && | |
ecc8c772 | 1884 | !writenote(&t->notes[i], cprm)) |
4206d3aa RM |
1885 | return 0; |
1886 | ||
b219e25f | 1887 | first = false; |
4206d3aa RM |
1888 | t = t->next; |
1889 | } while (t); | |
1890 | ||
1891 | return 1; | |
1892 | } | |
1893 | ||
1894 | static void free_note_info(struct elf_note_info *info) | |
1895 | { | |
1896 | struct elf_thread_core_info *threads = info->thread; | |
1897 | while (threads) { | |
1898 | unsigned int i; | |
1899 | struct elf_thread_core_info *t = threads; | |
1900 | threads = t->next; | |
1901 | WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); | |
1902 | for (i = 1; i < info->thread_notes; ++i) | |
1903 | kfree(t->notes[i].data); | |
1904 | kfree(t); | |
1905 | } | |
1906 | kfree(info->psinfo.data); | |
2aa362c4 | 1907 | vfree(info->files.data); |
4206d3aa RM |
1908 | } |
1909 | ||
1910 | #else | |
1911 | ||
1da177e4 LT |
1912 | /* Here is the structure in which status of each thread is captured. */ |
1913 | struct elf_thread_status | |
1914 | { | |
1915 | struct list_head list; | |
1916 | struct elf_prstatus prstatus; /* NT_PRSTATUS */ | |
1917 | elf_fpregset_t fpu; /* NT_PRFPREG */ | |
1918 | struct task_struct *thread; | |
1919 | #ifdef ELF_CORE_COPY_XFPREGS | |
5b20cd80 | 1920 | elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ |
1da177e4 LT |
1921 | #endif |
1922 | struct memelfnote notes[3]; | |
1923 | int num_notes; | |
1924 | }; | |
1925 | ||
1926 | /* | |
1927 | * In order to add the specific thread information for the elf file format, | |
f4e5cc2c JJ |
1928 | * we need to keep a linked list of every threads pr_status and then create |
1929 | * a single section for them in the final core file. | |
1da177e4 LT |
1930 | */ |
1931 | static int elf_dump_thread_status(long signr, struct elf_thread_status *t) | |
1932 | { | |
1933 | int sz = 0; | |
1934 | struct task_struct *p = t->thread; | |
1935 | t->num_notes = 0; | |
1936 | ||
1937 | fill_prstatus(&t->prstatus, p, signr); | |
1938 | elf_core_copy_task_regs(p, &t->prstatus.pr_reg); | |
1939 | ||
f4e5cc2c JJ |
1940 | fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), |
1941 | &(t->prstatus)); | |
1da177e4 LT |
1942 | t->num_notes++; |
1943 | sz += notesize(&t->notes[0]); | |
1944 | ||
f4e5cc2c JJ |
1945 | if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, |
1946 | &t->fpu))) { | |
1947 | fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu), | |
1948 | &(t->fpu)); | |
1da177e4 LT |
1949 | t->num_notes++; |
1950 | sz += notesize(&t->notes[1]); | |
1951 | } | |
1952 | ||
1953 | #ifdef ELF_CORE_COPY_XFPREGS | |
1954 | if (elf_core_copy_task_xfpregs(p, &t->xfpu)) { | |
5b20cd80 MN |
1955 | fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE, |
1956 | sizeof(t->xfpu), &t->xfpu); | |
1da177e4 LT |
1957 | t->num_notes++; |
1958 | sz += notesize(&t->notes[2]); | |
1959 | } | |
1960 | #endif | |
1961 | return sz; | |
1962 | } | |
1963 | ||
3aba481f RM |
1964 | struct elf_note_info { |
1965 | struct memelfnote *notes; | |
72023656 | 1966 | struct memelfnote *notes_files; |
3aba481f RM |
1967 | struct elf_prstatus *prstatus; /* NT_PRSTATUS */ |
1968 | struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */ | |
1969 | struct list_head thread_list; | |
1970 | elf_fpregset_t *fpu; | |
1971 | #ifdef ELF_CORE_COPY_XFPREGS | |
1972 | elf_fpxregset_t *xfpu; | |
1973 | #endif | |
49ae4d4b | 1974 | user_siginfo_t csigdata; |
3aba481f RM |
1975 | int thread_status_size; |
1976 | int numnote; | |
1977 | }; | |
1978 | ||
0cf062d0 | 1979 | static int elf_note_info_init(struct elf_note_info *info) |
3aba481f | 1980 | { |
0cf062d0 | 1981 | memset(info, 0, sizeof(*info)); |
3aba481f RM |
1982 | INIT_LIST_HEAD(&info->thread_list); |
1983 | ||
49ae4d4b | 1984 | /* Allocate space for ELF notes */ |
2aa362c4 | 1985 | info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL); |
3aba481f RM |
1986 | if (!info->notes) |
1987 | return 0; | |
1988 | info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL); | |
1989 | if (!info->psinfo) | |
f34f9d18 | 1990 | return 0; |
3aba481f RM |
1991 | info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL); |
1992 | if (!info->prstatus) | |
f34f9d18 | 1993 | return 0; |
3aba481f RM |
1994 | info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL); |
1995 | if (!info->fpu) | |
f34f9d18 | 1996 | return 0; |
3aba481f RM |
1997 | #ifdef ELF_CORE_COPY_XFPREGS |
1998 | info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL); | |
1999 | if (!info->xfpu) | |
f34f9d18 | 2000 | return 0; |
3aba481f | 2001 | #endif |
0cf062d0 | 2002 | return 1; |
0cf062d0 AW |
2003 | } |
2004 | ||
2005 | static int fill_note_info(struct elfhdr *elf, int phdrs, | |
2006 | struct elf_note_info *info, | |
ec57941e | 2007 | const siginfo_t *siginfo, struct pt_regs *regs) |
0cf062d0 AW |
2008 | { |
2009 | struct list_head *t; | |
afabada9 AV |
2010 | struct core_thread *ct; |
2011 | struct elf_thread_status *ets; | |
0cf062d0 AW |
2012 | |
2013 | if (!elf_note_info_init(info)) | |
2014 | return 0; | |
3aba481f | 2015 | |
afabada9 AV |
2016 | for (ct = current->mm->core_state->dumper.next; |
2017 | ct; ct = ct->next) { | |
2018 | ets = kzalloc(sizeof(*ets), GFP_KERNEL); | |
2019 | if (!ets) | |
2020 | return 0; | |
83914441 | 2021 | |
afabada9 AV |
2022 | ets->thread = ct->task; |
2023 | list_add(&ets->list, &info->thread_list); | |
2024 | } | |
83914441 | 2025 | |
afabada9 AV |
2026 | list_for_each(t, &info->thread_list) { |
2027 | int sz; | |
3aba481f | 2028 | |
afabada9 AV |
2029 | ets = list_entry(t, struct elf_thread_status, list); |
2030 | sz = elf_dump_thread_status(siginfo->si_signo, ets); | |
2031 | info->thread_status_size += sz; | |
3aba481f RM |
2032 | } |
2033 | /* now collect the dump for the current */ | |
2034 | memset(info->prstatus, 0, sizeof(*info->prstatus)); | |
5ab1c309 | 2035 | fill_prstatus(info->prstatus, current, siginfo->si_signo); |
3aba481f RM |
2036 | elf_core_copy_regs(&info->prstatus->pr_reg, regs); |
2037 | ||
2038 | /* Set up header */ | |
d3330cf0 | 2039 | fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS); |
3aba481f RM |
2040 | |
2041 | /* | |
2042 | * Set up the notes in similar form to SVR4 core dumps made | |
2043 | * with info from their /proc. | |
2044 | */ | |
2045 | ||
2046 | fill_note(info->notes + 0, "CORE", NT_PRSTATUS, | |
2047 | sizeof(*info->prstatus), info->prstatus); | |
2048 | fill_psinfo(info->psinfo, current->group_leader, current->mm); | |
2049 | fill_note(info->notes + 1, "CORE", NT_PRPSINFO, | |
2050 | sizeof(*info->psinfo), info->psinfo); | |
2051 | ||
2aa362c4 DV |
2052 | fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo); |
2053 | fill_auxv_note(info->notes + 3, current->mm); | |
72023656 | 2054 | info->numnote = 4; |
3aba481f | 2055 | |
72023656 DA |
2056 | if (fill_files_note(info->notes + info->numnote) == 0) { |
2057 | info->notes_files = info->notes + info->numnote; | |
2058 | info->numnote++; | |
2059 | } | |
3aba481f RM |
2060 | |
2061 | /* Try to dump the FPU. */ | |
2062 | info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs, | |
2063 | info->fpu); | |
2064 | if (info->prstatus->pr_fpvalid) | |
2065 | fill_note(info->notes + info->numnote++, | |
2066 | "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu); | |
2067 | #ifdef ELF_CORE_COPY_XFPREGS | |
2068 | if (elf_core_copy_task_xfpregs(current, info->xfpu)) | |
2069 | fill_note(info->notes + info->numnote++, | |
2070 | "LINUX", ELF_CORE_XFPREG_TYPE, | |
2071 | sizeof(*info->xfpu), info->xfpu); | |
2072 | #endif | |
2073 | ||
2074 | return 1; | |
3aba481f RM |
2075 | } |
2076 | ||
2077 | static size_t get_note_info_size(struct elf_note_info *info) | |
2078 | { | |
2079 | int sz = 0; | |
2080 | int i; | |
2081 | ||
2082 | for (i = 0; i < info->numnote; i++) | |
2083 | sz += notesize(info->notes + i); | |
2084 | ||
2085 | sz += info->thread_status_size; | |
2086 | ||
2087 | return sz; | |
2088 | } | |
2089 | ||
2090 | static int write_note_info(struct elf_note_info *info, | |
ecc8c772 | 2091 | struct coredump_params *cprm) |
3aba481f RM |
2092 | { |
2093 | int i; | |
2094 | struct list_head *t; | |
2095 | ||
2096 | for (i = 0; i < info->numnote; i++) | |
ecc8c772 | 2097 | if (!writenote(info->notes + i, cprm)) |
3aba481f RM |
2098 | return 0; |
2099 | ||
2100 | /* write out the thread status notes section */ | |
2101 | list_for_each(t, &info->thread_list) { | |
2102 | struct elf_thread_status *tmp = | |
2103 | list_entry(t, struct elf_thread_status, list); | |
2104 | ||
2105 | for (i = 0; i < tmp->num_notes; i++) | |
ecc8c772 | 2106 | if (!writenote(&tmp->notes[i], cprm)) |
3aba481f RM |
2107 | return 0; |
2108 | } | |
2109 | ||
2110 | return 1; | |
2111 | } | |
2112 | ||
2113 | static void free_note_info(struct elf_note_info *info) | |
2114 | { | |
2115 | while (!list_empty(&info->thread_list)) { | |
2116 | struct list_head *tmp = info->thread_list.next; | |
2117 | list_del(tmp); | |
2118 | kfree(list_entry(tmp, struct elf_thread_status, list)); | |
2119 | } | |
2120 | ||
72023656 DA |
2121 | /* Free data possibly allocated by fill_files_note(): */ |
2122 | if (info->notes_files) | |
2123 | vfree(info->notes_files->data); | |
2aa362c4 | 2124 | |
3aba481f RM |
2125 | kfree(info->prstatus); |
2126 | kfree(info->psinfo); | |
2127 | kfree(info->notes); | |
2128 | kfree(info->fpu); | |
2129 | #ifdef ELF_CORE_COPY_XFPREGS | |
2130 | kfree(info->xfpu); | |
2131 | #endif | |
2132 | } | |
2133 | ||
4206d3aa RM |
2134 | #endif |
2135 | ||
f47aef55 RM |
2136 | static struct vm_area_struct *first_vma(struct task_struct *tsk, |
2137 | struct vm_area_struct *gate_vma) | |
2138 | { | |
2139 | struct vm_area_struct *ret = tsk->mm->mmap; | |
2140 | ||
2141 | if (ret) | |
2142 | return ret; | |
2143 | return gate_vma; | |
2144 | } | |
2145 | /* | |
2146 | * Helper function for iterating across a vma list. It ensures that the caller | |
2147 | * will visit `gate_vma' prior to terminating the search. | |
2148 | */ | |
2149 | static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma, | |
2150 | struct vm_area_struct *gate_vma) | |
2151 | { | |
2152 | struct vm_area_struct *ret; | |
2153 | ||
2154 | ret = this_vma->vm_next; | |
2155 | if (ret) | |
2156 | return ret; | |
2157 | if (this_vma == gate_vma) | |
2158 | return NULL; | |
2159 | return gate_vma; | |
2160 | } | |
2161 | ||
8d9032bb DH |
2162 | static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum, |
2163 | elf_addr_t e_shoff, int segs) | |
2164 | { | |
2165 | elf->e_shoff = e_shoff; | |
2166 | elf->e_shentsize = sizeof(*shdr4extnum); | |
2167 | elf->e_shnum = 1; | |
2168 | elf->e_shstrndx = SHN_UNDEF; | |
2169 | ||
2170 | memset(shdr4extnum, 0, sizeof(*shdr4extnum)); | |
2171 | ||
2172 | shdr4extnum->sh_type = SHT_NULL; | |
2173 | shdr4extnum->sh_size = elf->e_shnum; | |
2174 | shdr4extnum->sh_link = elf->e_shstrndx; | |
2175 | shdr4extnum->sh_info = segs; | |
2176 | } | |
2177 | ||
1da177e4 LT |
2178 | /* |
2179 | * Actual dumper | |
2180 | * | |
2181 | * This is a two-pass process; first we find the offsets of the bits, | |
2182 | * and then they are actually written out. If we run out of core limit | |
2183 | * we just truncate. | |
2184 | */ | |
f6151dfe | 2185 | static int elf_core_dump(struct coredump_params *cprm) |
1da177e4 | 2186 | { |
1da177e4 LT |
2187 | int has_dumped = 0; |
2188 | mm_segment_t fs; | |
52f5592e JL |
2189 | int segs, i; |
2190 | size_t vma_data_size = 0; | |
f47aef55 | 2191 | struct vm_area_struct *vma, *gate_vma; |
1da177e4 | 2192 | struct elfhdr *elf = NULL; |
cdc3d562 | 2193 | loff_t offset = 0, dataoff; |
72023656 | 2194 | struct elf_note_info info = { }; |
93eb211e | 2195 | struct elf_phdr *phdr4note = NULL; |
8d9032bb DH |
2196 | struct elf_shdr *shdr4extnum = NULL; |
2197 | Elf_Half e_phnum; | |
2198 | elf_addr_t e_shoff; | |
52f5592e | 2199 | elf_addr_t *vma_filesz = NULL; |
1da177e4 LT |
2200 | |
2201 | /* | |
2202 | * We no longer stop all VM operations. | |
2203 | * | |
f4e5cc2c JJ |
2204 | * This is because those proceses that could possibly change map_count |
2205 | * or the mmap / vma pages are now blocked in do_exit on current | |
2206 | * finishing this core dump. | |
1da177e4 LT |
2207 | * |
2208 | * Only ptrace can touch these memory addresses, but it doesn't change | |
f4e5cc2c | 2209 | * the map_count or the pages allocated. So no possibility of crashing |
1da177e4 LT |
2210 | * exists while dumping the mm->vm_next areas to the core file. |
2211 | */ | |
2212 | ||
2213 | /* alloc memory for large data structures: too large to be on stack */ | |
2214 | elf = kmalloc(sizeof(*elf), GFP_KERNEL); | |
2215 | if (!elf) | |
5f719558 | 2216 | goto out; |
341c87bf KH |
2217 | /* |
2218 | * The number of segs are recored into ELF header as 16bit value. | |
2219 | * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here. | |
2220 | */ | |
1da177e4 | 2221 | segs = current->mm->map_count; |
1fcccbac | 2222 | segs += elf_core_extra_phdrs(); |
1da177e4 | 2223 | |
31db58b3 | 2224 | gate_vma = get_gate_vma(current->mm); |
f47aef55 RM |
2225 | if (gate_vma != NULL) |
2226 | segs++; | |
2227 | ||
8d9032bb DH |
2228 | /* for notes section */ |
2229 | segs++; | |
2230 | ||
2231 | /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid | |
2232 | * this, kernel supports extended numbering. Have a look at | |
2233 | * include/linux/elf.h for further information. */ | |
2234 | e_phnum = segs > PN_XNUM ? PN_XNUM : segs; | |
2235 | ||
1da177e4 | 2236 | /* |
3aba481f RM |
2237 | * Collect all the non-memory information about the process for the |
2238 | * notes. This also sets up the file header. | |
1da177e4 | 2239 | */ |
5ab1c309 | 2240 | if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs)) |
3aba481f | 2241 | goto cleanup; |
1da177e4 | 2242 | |
3aba481f | 2243 | has_dumped = 1; |
079148b9 | 2244 | |
1da177e4 LT |
2245 | fs = get_fs(); |
2246 | set_fs(KERNEL_DS); | |
2247 | ||
1da177e4 | 2248 | offset += sizeof(*elf); /* Elf header */ |
8d9032bb | 2249 | offset += segs * sizeof(struct elf_phdr); /* Program headers */ |
1da177e4 LT |
2250 | |
2251 | /* Write notes phdr entry */ | |
2252 | { | |
3aba481f | 2253 | size_t sz = get_note_info_size(&info); |
1da177e4 | 2254 | |
e5501492 | 2255 | sz += elf_coredump_extra_notes_size(); |
bf1ab978 | 2256 | |
93eb211e DH |
2257 | phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL); |
2258 | if (!phdr4note) | |
088e7af7 | 2259 | goto end_coredump; |
93eb211e DH |
2260 | |
2261 | fill_elf_note_phdr(phdr4note, sz, offset); | |
2262 | offset += sz; | |
1da177e4 LT |
2263 | } |
2264 | ||
1da177e4 LT |
2265 | dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); |
2266 | ||
30f74aa0 JB |
2267 | if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz)) |
2268 | goto end_coredump; | |
2269 | vma_filesz = vmalloc((segs - 1) * sizeof(*vma_filesz)); | |
52f5592e JL |
2270 | if (!vma_filesz) |
2271 | goto end_coredump; | |
2272 | ||
2273 | for (i = 0, vma = first_vma(current, gate_vma); vma != NULL; | |
2274 | vma = next_vma(vma, gate_vma)) { | |
2275 | unsigned long dump_size; | |
2276 | ||
2277 | dump_size = vma_dump_size(vma, cprm->mm_flags); | |
2278 | vma_filesz[i++] = dump_size; | |
2279 | vma_data_size += dump_size; | |
2280 | } | |
2281 | ||
2282 | offset += vma_data_size; | |
8d9032bb DH |
2283 | offset += elf_core_extra_data_size(); |
2284 | e_shoff = offset; | |
2285 | ||
2286 | if (e_phnum == PN_XNUM) { | |
2287 | shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL); | |
2288 | if (!shdr4extnum) | |
2289 | goto end_coredump; | |
2290 | fill_extnum_info(elf, shdr4extnum, e_shoff, segs); | |
2291 | } | |
2292 | ||
2293 | offset = dataoff; | |
2294 | ||
ecc8c772 | 2295 | if (!dump_emit(cprm, elf, sizeof(*elf))) |
93eb211e DH |
2296 | goto end_coredump; |
2297 | ||
ecc8c772 | 2298 | if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note))) |
93eb211e DH |
2299 | goto end_coredump; |
2300 | ||
1da177e4 | 2301 | /* Write program headers for segments dump */ |
52f5592e | 2302 | for (i = 0, vma = first_vma(current, gate_vma); vma != NULL; |
f47aef55 | 2303 | vma = next_vma(vma, gate_vma)) { |
1da177e4 | 2304 | struct elf_phdr phdr; |
1da177e4 LT |
2305 | |
2306 | phdr.p_type = PT_LOAD; | |
2307 | phdr.p_offset = offset; | |
2308 | phdr.p_vaddr = vma->vm_start; | |
2309 | phdr.p_paddr = 0; | |
52f5592e | 2310 | phdr.p_filesz = vma_filesz[i++]; |
82df3973 | 2311 | phdr.p_memsz = vma->vm_end - vma->vm_start; |
1da177e4 LT |
2312 | offset += phdr.p_filesz; |
2313 | phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0; | |
f4e5cc2c JJ |
2314 | if (vma->vm_flags & VM_WRITE) |
2315 | phdr.p_flags |= PF_W; | |
2316 | if (vma->vm_flags & VM_EXEC) | |
2317 | phdr.p_flags |= PF_X; | |
1da177e4 LT |
2318 | phdr.p_align = ELF_EXEC_PAGESIZE; |
2319 | ||
ecc8c772 | 2320 | if (!dump_emit(cprm, &phdr, sizeof(phdr))) |
088e7af7 | 2321 | goto end_coredump; |
1da177e4 LT |
2322 | } |
2323 | ||
506f21c5 | 2324 | if (!elf_core_write_extra_phdrs(cprm, offset)) |
1fcccbac | 2325 | goto end_coredump; |
1da177e4 LT |
2326 | |
2327 | /* write out the notes section */ | |
ecc8c772 | 2328 | if (!write_note_info(&info, cprm)) |
3aba481f | 2329 | goto end_coredump; |
1da177e4 | 2330 | |
cdc3d562 | 2331 | if (elf_coredump_extra_notes_write(cprm)) |
e5501492 | 2332 | goto end_coredump; |
bf1ab978 | 2333 | |
d025c9db | 2334 | /* Align to page */ |
1607f09c | 2335 | if (!dump_skip(cprm, dataoff - cprm->pos)) |
f3e8fccd | 2336 | goto end_coredump; |
1da177e4 | 2337 | |
52f5592e | 2338 | for (i = 0, vma = first_vma(current, gate_vma); vma != NULL; |
f47aef55 | 2339 | vma = next_vma(vma, gate_vma)) { |
1da177e4 | 2340 | unsigned long addr; |
82df3973 | 2341 | unsigned long end; |
1da177e4 | 2342 | |
52f5592e | 2343 | end = vma->vm_start + vma_filesz[i++]; |
1da177e4 | 2344 | |
82df3973 | 2345 | for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) { |
f4e5cc2c | 2346 | struct page *page; |
f3e8fccd HD |
2347 | int stop; |
2348 | ||
2349 | page = get_dump_page(addr); | |
2350 | if (page) { | |
2351 | void *kaddr = kmap(page); | |
13046ece | 2352 | stop = !dump_emit(cprm, kaddr, PAGE_SIZE); |
f3e8fccd | 2353 | kunmap(page); |
09cbfeaf | 2354 | put_page(page); |
f3e8fccd | 2355 | } else |
9b56d543 | 2356 | stop = !dump_skip(cprm, PAGE_SIZE); |
f3e8fccd HD |
2357 | if (stop) |
2358 | goto end_coredump; | |
1da177e4 LT |
2359 | } |
2360 | } | |
4d22c75d | 2361 | dump_truncate(cprm); |
1da177e4 | 2362 | |
aa3e7eaf | 2363 | if (!elf_core_write_extra_data(cprm)) |
1fcccbac | 2364 | goto end_coredump; |
1da177e4 | 2365 | |
8d9032bb | 2366 | if (e_phnum == PN_XNUM) { |
13046ece | 2367 | if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum))) |
8d9032bb DH |
2368 | goto end_coredump; |
2369 | } | |
2370 | ||
1da177e4 LT |
2371 | end_coredump: |
2372 | set_fs(fs); | |
2373 | ||
2374 | cleanup: | |
3aba481f | 2375 | free_note_info(&info); |
8d9032bb | 2376 | kfree(shdr4extnum); |
30f74aa0 | 2377 | vfree(vma_filesz); |
93eb211e | 2378 | kfree(phdr4note); |
5f719558 WC |
2379 | kfree(elf); |
2380 | out: | |
1da177e4 | 2381 | return has_dumped; |
1da177e4 LT |
2382 | } |
2383 | ||
698ba7b5 | 2384 | #endif /* CONFIG_ELF_CORE */ |
1da177e4 LT |
2385 | |
2386 | static int __init init_elf_binfmt(void) | |
2387 | { | |
8fc3dc5a AV |
2388 | register_binfmt(&elf_format); |
2389 | return 0; | |
1da177e4 LT |
2390 | } |
2391 | ||
2392 | static void __exit exit_elf_binfmt(void) | |
2393 | { | |
2394 | /* Remove the COFF and ELF loaders. */ | |
2395 | unregister_binfmt(&elf_format); | |
2396 | } | |
2397 | ||
2398 | core_initcall(init_elf_binfmt); | |
2399 | module_exit(exit_elf_binfmt); | |
2400 | MODULE_LICENSE("GPL"); |