]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | #ifndef _LINUX_MMZONE_H |
2 | #define _LINUX_MMZONE_H | |
3 | ||
4 | #ifdef __KERNEL__ | |
5 | #ifndef __ASSEMBLY__ | |
6 | ||
1da177e4 LT |
7 | #include <linux/spinlock.h> |
8 | #include <linux/list.h> | |
9 | #include <linux/wait.h> | |
10 | #include <linux/cache.h> | |
11 | #include <linux/threads.h> | |
12 | #include <linux/numa.h> | |
13 | #include <linux/init.h> | |
bdc8cb98 | 14 | #include <linux/seqlock.h> |
8357f869 | 15 | #include <linux/nodemask.h> |
1da177e4 | 16 | #include <asm/atomic.h> |
93ff66bf | 17 | #include <asm/page.h> |
1da177e4 LT |
18 | |
19 | /* Free memory management - zoned buddy allocator. */ | |
20 | #ifndef CONFIG_FORCE_MAX_ZONEORDER | |
21 | #define MAX_ORDER 11 | |
22 | #else | |
23 | #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER | |
24 | #endif | |
e984bb43 | 25 | #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) |
1da177e4 LT |
26 | |
27 | struct free_area { | |
28 | struct list_head free_list; | |
29 | unsigned long nr_free; | |
30 | }; | |
31 | ||
32 | struct pglist_data; | |
33 | ||
34 | /* | |
35 | * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. | |
36 | * So add a wild amount of padding here to ensure that they fall into separate | |
37 | * cachelines. There are very few zone structures in the machine, so space | |
38 | * consumption is not a concern here. | |
39 | */ | |
40 | #if defined(CONFIG_SMP) | |
41 | struct zone_padding { | |
42 | char x[0]; | |
22fc6ecc | 43 | } ____cacheline_internodealigned_in_smp; |
1da177e4 LT |
44 | #define ZONE_PADDING(name) struct zone_padding name; |
45 | #else | |
46 | #define ZONE_PADDING(name) | |
47 | #endif | |
48 | ||
2244b95a | 49 | enum zone_stat_item { |
f3dbd344 CL |
50 | NR_ANON_PAGES, /* Mapped anonymous pages */ |
51 | NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. | |
65ba55f5 | 52 | only modified from process context */ |
347ce434 | 53 | NR_FILE_PAGES, |
972d1a7b CL |
54 | NR_SLAB_RECLAIMABLE, |
55 | NR_SLAB_UNRECLAIMABLE, | |
df849a15 | 56 | NR_PAGETABLE, /* used for pagetables */ |
b1e7a8fd | 57 | NR_FILE_DIRTY, |
ce866b34 | 58 | NR_WRITEBACK, |
fd39fc85 | 59 | NR_UNSTABLE_NFS, /* NFS unstable pages */ |
d2c5e30c | 60 | NR_BOUNCE, |
e129b5c2 | 61 | NR_VMSCAN_WRITE, |
ca889e6c CL |
62 | #ifdef CONFIG_NUMA |
63 | NUMA_HIT, /* allocated in intended node */ | |
64 | NUMA_MISS, /* allocated in non intended node */ | |
65 | NUMA_FOREIGN, /* was intended here, hit elsewhere */ | |
66 | NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ | |
67 | NUMA_LOCAL, /* allocation from local node */ | |
68 | NUMA_OTHER, /* allocation from other node */ | |
69 | #endif | |
2244b95a CL |
70 | NR_VM_ZONE_STAT_ITEMS }; |
71 | ||
1da177e4 LT |
72 | struct per_cpu_pages { |
73 | int count; /* number of pages in the list */ | |
1da177e4 LT |
74 | int high; /* high watermark, emptying needed */ |
75 | int batch; /* chunk size for buddy add/remove */ | |
76 | struct list_head list; /* the list of pages */ | |
77 | }; | |
78 | ||
79 | struct per_cpu_pageset { | |
80 | struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */ | |
2244b95a | 81 | #ifdef CONFIG_SMP |
df9ecaba | 82 | s8 stat_threshold; |
2244b95a CL |
83 | s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; |
84 | #endif | |
1da177e4 LT |
85 | } ____cacheline_aligned_in_smp; |
86 | ||
e7c8d5c9 CL |
87 | #ifdef CONFIG_NUMA |
88 | #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)]) | |
89 | #else | |
90 | #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)]) | |
91 | #endif | |
92 | ||
2f1b6248 CL |
93 | enum zone_type { |
94 | /* | |
95 | * ZONE_DMA is used when there are devices that are not able | |
96 | * to do DMA to all of addressable memory (ZONE_NORMAL). Then we | |
97 | * carve out the portion of memory that is needed for these devices. | |
98 | * The range is arch specific. | |
99 | * | |
100 | * Some examples | |
101 | * | |
102 | * Architecture Limit | |
103 | * --------------------------- | |
104 | * parisc, ia64, sparc <4G | |
105 | * s390 <2G | |
106 | * arm26 <48M | |
107 | * arm Various | |
108 | * alpha Unlimited or 0-16MB. | |
109 | * | |
110 | * i386, x86_64 and multiple other arches | |
111 | * <16M. | |
112 | */ | |
113 | ZONE_DMA, | |
fb0e7942 | 114 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 CL |
115 | /* |
116 | * x86_64 needs two ZONE_DMAs because it supports devices that are | |
117 | * only able to do DMA to the lower 16M but also 32 bit devices that | |
118 | * can only do DMA areas below 4G. | |
119 | */ | |
120 | ZONE_DMA32, | |
fb0e7942 | 121 | #endif |
2f1b6248 CL |
122 | /* |
123 | * Normal addressable memory is in ZONE_NORMAL. DMA operations can be | |
124 | * performed on pages in ZONE_NORMAL if the DMA devices support | |
125 | * transfers to all addressable memory. | |
126 | */ | |
127 | ZONE_NORMAL, | |
e53ef38d | 128 | #ifdef CONFIG_HIGHMEM |
2f1b6248 CL |
129 | /* |
130 | * A memory area that is only addressable by the kernel through | |
131 | * mapping portions into its own address space. This is for example | |
132 | * used by i386 to allow the kernel to address the memory beyond | |
133 | * 900MB. The kernel will set up special mappings (page | |
134 | * table entries on i386) for each page that the kernel needs to | |
135 | * access. | |
136 | */ | |
137 | ZONE_HIGHMEM, | |
e53ef38d | 138 | #endif |
2f1b6248 CL |
139 | MAX_NR_ZONES |
140 | }; | |
1da177e4 | 141 | |
1da177e4 LT |
142 | /* |
143 | * When a memory allocation must conform to specific limitations (such | |
144 | * as being suitable for DMA) the caller will pass in hints to the | |
145 | * allocator in the gfp_mask, in the zone modifier bits. These bits | |
146 | * are used to select a priority ordered list of memory zones which | |
19655d34 | 147 | * match the requested limits. See gfp_zone() in include/linux/gfp.h |
1da177e4 | 148 | */ |
fb0e7942 | 149 | |
19655d34 CL |
150 | #if !defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_HIGHMEM) |
151 | #define ZONES_SHIFT 1 | |
e53ef38d | 152 | #else |
19655d34 | 153 | #define ZONES_SHIFT 2 |
fb0e7942 | 154 | #endif |
1da177e4 | 155 | |
1da177e4 LT |
156 | struct zone { |
157 | /* Fields commonly accessed by the page allocator */ | |
158 | unsigned long free_pages; | |
159 | unsigned long pages_min, pages_low, pages_high; | |
160 | /* | |
161 | * We don't know if the memory that we're going to allocate will be freeable | |
162 | * or/and it will be released eventually, so to avoid totally wasting several | |
163 | * GB of ram we must reserve some of the lower zone memory (otherwise we risk | |
164 | * to run OOM on the lower zones despite there's tons of freeable ram | |
165 | * on the higher zones). This array is recalculated at runtime if the | |
166 | * sysctl_lowmem_reserve_ratio sysctl changes. | |
167 | */ | |
168 | unsigned long lowmem_reserve[MAX_NR_ZONES]; | |
169 | ||
e7c8d5c9 | 170 | #ifdef CONFIG_NUMA |
d5f541ed | 171 | int node; |
9614634f CL |
172 | /* |
173 | * zone reclaim becomes active if more unmapped pages exist. | |
174 | */ | |
8417bba4 | 175 | unsigned long min_unmapped_pages; |
0ff38490 | 176 | unsigned long min_slab_pages; |
e7c8d5c9 CL |
177 | struct per_cpu_pageset *pageset[NR_CPUS]; |
178 | #else | |
1da177e4 | 179 | struct per_cpu_pageset pageset[NR_CPUS]; |
e7c8d5c9 | 180 | #endif |
1da177e4 LT |
181 | /* |
182 | * free areas of different sizes | |
183 | */ | |
184 | spinlock_t lock; | |
bdc8cb98 DH |
185 | #ifdef CONFIG_MEMORY_HOTPLUG |
186 | /* see spanned/present_pages for more description */ | |
187 | seqlock_t span_seqlock; | |
188 | #endif | |
1da177e4 LT |
189 | struct free_area free_area[MAX_ORDER]; |
190 | ||
191 | ||
192 | ZONE_PADDING(_pad1_) | |
193 | ||
194 | /* Fields commonly accessed by the page reclaim scanner */ | |
195 | spinlock_t lru_lock; | |
196 | struct list_head active_list; | |
197 | struct list_head inactive_list; | |
198 | unsigned long nr_scan_active; | |
199 | unsigned long nr_scan_inactive; | |
200 | unsigned long nr_active; | |
201 | unsigned long nr_inactive; | |
202 | unsigned long pages_scanned; /* since last reclaim */ | |
203 | int all_unreclaimable; /* All pages pinned */ | |
204 | ||
1e7e5a90 MH |
205 | /* A count of how many reclaimers are scanning this zone */ |
206 | atomic_t reclaim_in_progress; | |
753ee728 | 207 | |
2244b95a CL |
208 | /* Zone statistics */ |
209 | atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; | |
9eeff239 | 210 | |
1da177e4 LT |
211 | /* |
212 | * prev_priority holds the scanning priority for this zone. It is | |
213 | * defined as the scanning priority at which we achieved our reclaim | |
214 | * target at the previous try_to_free_pages() or balance_pgdat() | |
215 | * invokation. | |
216 | * | |
217 | * We use prev_priority as a measure of how much stress page reclaim is | |
218 | * under - it drives the swappiness decision: whether to unmap mapped | |
219 | * pages. | |
220 | * | |
3bb1a852 | 221 | * Access to both this field is quite racy even on uniprocessor. But |
1da177e4 LT |
222 | * it is expected to average out OK. |
223 | */ | |
1da177e4 LT |
224 | int prev_priority; |
225 | ||
226 | ||
227 | ZONE_PADDING(_pad2_) | |
228 | /* Rarely used or read-mostly fields */ | |
229 | ||
230 | /* | |
231 | * wait_table -- the array holding the hash table | |
02b694de | 232 | * wait_table_hash_nr_entries -- the size of the hash table array |
1da177e4 LT |
233 | * wait_table_bits -- wait_table_size == (1 << wait_table_bits) |
234 | * | |
235 | * The purpose of all these is to keep track of the people | |
236 | * waiting for a page to become available and make them | |
237 | * runnable again when possible. The trouble is that this | |
238 | * consumes a lot of space, especially when so few things | |
239 | * wait on pages at a given time. So instead of using | |
240 | * per-page waitqueues, we use a waitqueue hash table. | |
241 | * | |
242 | * The bucket discipline is to sleep on the same queue when | |
243 | * colliding and wake all in that wait queue when removing. | |
244 | * When something wakes, it must check to be sure its page is | |
245 | * truly available, a la thundering herd. The cost of a | |
246 | * collision is great, but given the expected load of the | |
247 | * table, they should be so rare as to be outweighed by the | |
248 | * benefits from the saved space. | |
249 | * | |
250 | * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the | |
251 | * primary users of these fields, and in mm/page_alloc.c | |
252 | * free_area_init_core() performs the initialization of them. | |
253 | */ | |
254 | wait_queue_head_t * wait_table; | |
02b694de | 255 | unsigned long wait_table_hash_nr_entries; |
1da177e4 LT |
256 | unsigned long wait_table_bits; |
257 | ||
258 | /* | |
259 | * Discontig memory support fields. | |
260 | */ | |
261 | struct pglist_data *zone_pgdat; | |
1da177e4 LT |
262 | /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ |
263 | unsigned long zone_start_pfn; | |
264 | ||
bdc8cb98 DH |
265 | /* |
266 | * zone_start_pfn, spanned_pages and present_pages are all | |
267 | * protected by span_seqlock. It is a seqlock because it has | |
268 | * to be read outside of zone->lock, and it is done in the main | |
269 | * allocator path. But, it is written quite infrequently. | |
270 | * | |
271 | * The lock is declared along with zone->lock because it is | |
272 | * frequently read in proximity to zone->lock. It's good to | |
273 | * give them a chance of being in the same cacheline. | |
274 | */ | |
1da177e4 LT |
275 | unsigned long spanned_pages; /* total size, including holes */ |
276 | unsigned long present_pages; /* amount of memory (excluding holes) */ | |
277 | ||
278 | /* | |
279 | * rarely used fields: | |
280 | */ | |
15ad7cdc | 281 | const char *name; |
22fc6ecc | 282 | } ____cacheline_internodealigned_in_smp; |
1da177e4 | 283 | |
1da177e4 LT |
284 | /* |
285 | * The "priority" of VM scanning is how much of the queues we will scan in one | |
286 | * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the | |
287 | * queues ("queue_length >> 12") during an aging round. | |
288 | */ | |
289 | #define DEF_PRIORITY 12 | |
290 | ||
9276b1bc PJ |
291 | /* Maximum number of zones on a zonelist */ |
292 | #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) | |
293 | ||
294 | #ifdef CONFIG_NUMA | |
295 | /* | |
296 | * We cache key information from each zonelist for smaller cache | |
297 | * footprint when scanning for free pages in get_page_from_freelist(). | |
298 | * | |
299 | * 1) The BITMAP fullzones tracks which zones in a zonelist have come | |
300 | * up short of free memory since the last time (last_fullzone_zap) | |
301 | * we zero'd fullzones. | |
302 | * 2) The array z_to_n[] maps each zone in the zonelist to its node | |
303 | * id, so that we can efficiently evaluate whether that node is | |
304 | * set in the current tasks mems_allowed. | |
305 | * | |
306 | * Both fullzones and z_to_n[] are one-to-one with the zonelist, | |
307 | * indexed by a zones offset in the zonelist zones[] array. | |
308 | * | |
309 | * The get_page_from_freelist() routine does two scans. During the | |
310 | * first scan, we skip zones whose corresponding bit in 'fullzones' | |
311 | * is set or whose corresponding node in current->mems_allowed (which | |
312 | * comes from cpusets) is not set. During the second scan, we bypass | |
313 | * this zonelist_cache, to ensure we look methodically at each zone. | |
314 | * | |
315 | * Once per second, we zero out (zap) fullzones, forcing us to | |
316 | * reconsider nodes that might have regained more free memory. | |
317 | * The field last_full_zap is the time we last zapped fullzones. | |
318 | * | |
319 | * This mechanism reduces the amount of time we waste repeatedly | |
320 | * reexaming zones for free memory when they just came up low on | |
321 | * memory momentarilly ago. | |
322 | * | |
323 | * The zonelist_cache struct members logically belong in struct | |
324 | * zonelist. However, the mempolicy zonelists constructed for | |
325 | * MPOL_BIND are intentionally variable length (and usually much | |
326 | * shorter). A general purpose mechanism for handling structs with | |
327 | * multiple variable length members is more mechanism than we want | |
328 | * here. We resort to some special case hackery instead. | |
329 | * | |
330 | * The MPOL_BIND zonelists don't need this zonelist_cache (in good | |
331 | * part because they are shorter), so we put the fixed length stuff | |
332 | * at the front of the zonelist struct, ending in a variable length | |
333 | * zones[], as is needed by MPOL_BIND. | |
334 | * | |
335 | * Then we put the optional zonelist cache on the end of the zonelist | |
336 | * struct. This optional stuff is found by a 'zlcache_ptr' pointer in | |
337 | * the fixed length portion at the front of the struct. This pointer | |
338 | * both enables us to find the zonelist cache, and in the case of | |
339 | * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) | |
340 | * to know that the zonelist cache is not there. | |
341 | * | |
342 | * The end result is that struct zonelists come in two flavors: | |
343 | * 1) The full, fixed length version, shown below, and | |
344 | * 2) The custom zonelists for MPOL_BIND. | |
345 | * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. | |
346 | * | |
347 | * Even though there may be multiple CPU cores on a node modifying | |
348 | * fullzones or last_full_zap in the same zonelist_cache at the same | |
349 | * time, we don't lock it. This is just hint data - if it is wrong now | |
350 | * and then, the allocator will still function, perhaps a bit slower. | |
351 | */ | |
352 | ||
353 | ||
354 | struct zonelist_cache { | |
9276b1bc | 355 | unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ |
7253f4ef | 356 | DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ |
9276b1bc PJ |
357 | unsigned long last_full_zap; /* when last zap'd (jiffies) */ |
358 | }; | |
359 | #else | |
360 | struct zonelist_cache; | |
361 | #endif | |
362 | ||
1da177e4 LT |
363 | /* |
364 | * One allocation request operates on a zonelist. A zonelist | |
365 | * is a list of zones, the first one is the 'goal' of the | |
366 | * allocation, the other zones are fallback zones, in decreasing | |
367 | * priority. | |
368 | * | |
9276b1bc PJ |
369 | * If zlcache_ptr is not NULL, then it is just the address of zlcache, |
370 | * as explained above. If zlcache_ptr is NULL, there is no zlcache. | |
1da177e4 | 371 | */ |
9276b1bc | 372 | |
1da177e4 | 373 | struct zonelist { |
9276b1bc PJ |
374 | struct zonelist_cache *zlcache_ptr; // NULL or &zlcache |
375 | struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited | |
376 | #ifdef CONFIG_NUMA | |
377 | struct zonelist_cache zlcache; // optional ... | |
378 | #endif | |
1da177e4 LT |
379 | }; |
380 | ||
c713216d MG |
381 | #ifdef CONFIG_ARCH_POPULATES_NODE_MAP |
382 | struct node_active_region { | |
383 | unsigned long start_pfn; | |
384 | unsigned long end_pfn; | |
385 | int nid; | |
386 | }; | |
387 | #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ | |
1da177e4 | 388 | |
5b99cd0e HC |
389 | #ifndef CONFIG_DISCONTIGMEM |
390 | /* The array of struct pages - for discontigmem use pgdat->lmem_map */ | |
391 | extern struct page *mem_map; | |
392 | #endif | |
393 | ||
1da177e4 LT |
394 | /* |
395 | * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM | |
396 | * (mostly NUMA machines?) to denote a higher-level memory zone than the | |
397 | * zone denotes. | |
398 | * | |
399 | * On NUMA machines, each NUMA node would have a pg_data_t to describe | |
400 | * it's memory layout. | |
401 | * | |
402 | * Memory statistics and page replacement data structures are maintained on a | |
403 | * per-zone basis. | |
404 | */ | |
405 | struct bootmem_data; | |
406 | typedef struct pglist_data { | |
407 | struct zone node_zones[MAX_NR_ZONES]; | |
19655d34 | 408 | struct zonelist node_zonelists[MAX_NR_ZONES]; |
1da177e4 | 409 | int nr_zones; |
d41dee36 | 410 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
1da177e4 | 411 | struct page *node_mem_map; |
d41dee36 | 412 | #endif |
1da177e4 | 413 | struct bootmem_data *bdata; |
208d54e5 DH |
414 | #ifdef CONFIG_MEMORY_HOTPLUG |
415 | /* | |
416 | * Must be held any time you expect node_start_pfn, node_present_pages | |
417 | * or node_spanned_pages stay constant. Holding this will also | |
418 | * guarantee that any pfn_valid() stays that way. | |
419 | * | |
420 | * Nests above zone->lock and zone->size_seqlock. | |
421 | */ | |
422 | spinlock_t node_size_lock; | |
423 | #endif | |
1da177e4 LT |
424 | unsigned long node_start_pfn; |
425 | unsigned long node_present_pages; /* total number of physical pages */ | |
426 | unsigned long node_spanned_pages; /* total size of physical page | |
427 | range, including holes */ | |
428 | int node_id; | |
1da177e4 LT |
429 | wait_queue_head_t kswapd_wait; |
430 | struct task_struct *kswapd; | |
431 | int kswapd_max_order; | |
432 | } pg_data_t; | |
433 | ||
434 | #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) | |
435 | #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) | |
d41dee36 | 436 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
408fde81 | 437 | #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) |
d41dee36 AW |
438 | #else |
439 | #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) | |
440 | #endif | |
408fde81 | 441 | #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) |
1da177e4 | 442 | |
208d54e5 DH |
443 | #include <linux/memory_hotplug.h> |
444 | ||
1da177e4 LT |
445 | void __get_zone_counts(unsigned long *active, unsigned long *inactive, |
446 | unsigned long *free, struct pglist_data *pgdat); | |
447 | void get_zone_counts(unsigned long *active, unsigned long *inactive, | |
448 | unsigned long *free); | |
449 | void build_all_zonelists(void); | |
450 | void wakeup_kswapd(struct zone *zone, int order); | |
451 | int zone_watermark_ok(struct zone *z, int order, unsigned long mark, | |
7fb1d9fc | 452 | int classzone_idx, int alloc_flags); |
1da177e4 | 453 | |
718127cc YG |
454 | extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, |
455 | unsigned long size); | |
456 | ||
1da177e4 LT |
457 | #ifdef CONFIG_HAVE_MEMORY_PRESENT |
458 | void memory_present(int nid, unsigned long start, unsigned long end); | |
459 | #else | |
460 | static inline void memory_present(int nid, unsigned long start, unsigned long end) {} | |
461 | #endif | |
462 | ||
463 | #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE | |
464 | unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); | |
465 | #endif | |
466 | ||
467 | /* | |
468 | * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. | |
469 | */ | |
470 | #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) | |
471 | ||
f3fe6512 CK |
472 | static inline int populated_zone(struct zone *zone) |
473 | { | |
474 | return (!!zone->present_pages); | |
475 | } | |
476 | ||
2f1b6248 | 477 | static inline int is_highmem_idx(enum zone_type idx) |
1da177e4 | 478 | { |
e53ef38d | 479 | #ifdef CONFIG_HIGHMEM |
1da177e4 | 480 | return (idx == ZONE_HIGHMEM); |
e53ef38d CL |
481 | #else |
482 | return 0; | |
483 | #endif | |
1da177e4 LT |
484 | } |
485 | ||
2f1b6248 | 486 | static inline int is_normal_idx(enum zone_type idx) |
1da177e4 LT |
487 | { |
488 | return (idx == ZONE_NORMAL); | |
489 | } | |
9328b8fa | 490 | |
1da177e4 LT |
491 | /** |
492 | * is_highmem - helper function to quickly check if a struct zone is a | |
493 | * highmem zone or not. This is an attempt to keep references | |
494 | * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. | |
495 | * @zone - pointer to struct zone variable | |
496 | */ | |
497 | static inline int is_highmem(struct zone *zone) | |
498 | { | |
e53ef38d | 499 | #ifdef CONFIG_HIGHMEM |
1da177e4 | 500 | return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM; |
e53ef38d CL |
501 | #else |
502 | return 0; | |
503 | #endif | |
1da177e4 LT |
504 | } |
505 | ||
506 | static inline int is_normal(struct zone *zone) | |
507 | { | |
508 | return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; | |
509 | } | |
510 | ||
9328b8fa NP |
511 | static inline int is_dma32(struct zone *zone) |
512 | { | |
fb0e7942 | 513 | #ifdef CONFIG_ZONE_DMA32 |
9328b8fa | 514 | return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; |
fb0e7942 CL |
515 | #else |
516 | return 0; | |
517 | #endif | |
9328b8fa NP |
518 | } |
519 | ||
520 | static inline int is_dma(struct zone *zone) | |
521 | { | |
522 | return zone == zone->zone_pgdat->node_zones + ZONE_DMA; | |
523 | } | |
524 | ||
1da177e4 LT |
525 | /* These two functions are used to setup the per zone pages min values */ |
526 | struct ctl_table; | |
527 | struct file; | |
528 | int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, | |
529 | void __user *, size_t *, loff_t *); | |
530 | extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; | |
531 | int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *, | |
532 | void __user *, size_t *, loff_t *); | |
8ad4b1fb RS |
533 | int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *, |
534 | void __user *, size_t *, loff_t *); | |
9614634f CL |
535 | int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, |
536 | struct file *, void __user *, size_t *, loff_t *); | |
0ff38490 CL |
537 | int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, |
538 | struct file *, void __user *, size_t *, loff_t *); | |
1da177e4 LT |
539 | |
540 | #include <linux/topology.h> | |
541 | /* Returns the number of the current Node. */ | |
69d81fcd | 542 | #ifndef numa_node_id |
39c715b7 | 543 | #define numa_node_id() (cpu_to_node(raw_smp_processor_id())) |
69d81fcd | 544 | #endif |
1da177e4 | 545 | |
93b7504e | 546 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
547 | |
548 | extern struct pglist_data contig_page_data; | |
549 | #define NODE_DATA(nid) (&contig_page_data) | |
550 | #define NODE_MEM_MAP(nid) mem_map | |
551 | #define MAX_NODES_SHIFT 1 | |
1da177e4 | 552 | |
93b7504e | 553 | #else /* CONFIG_NEED_MULTIPLE_NODES */ |
1da177e4 LT |
554 | |
555 | #include <asm/mmzone.h> | |
556 | ||
93b7504e | 557 | #endif /* !CONFIG_NEED_MULTIPLE_NODES */ |
348f8b6c | 558 | |
95144c78 KH |
559 | extern struct pglist_data *first_online_pgdat(void); |
560 | extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); | |
561 | extern struct zone *next_zone(struct zone *zone); | |
8357f869 KH |
562 | |
563 | /** | |
564 | * for_each_pgdat - helper macro to iterate over all nodes | |
565 | * @pgdat - pointer to a pg_data_t variable | |
566 | */ | |
567 | #define for_each_online_pgdat(pgdat) \ | |
568 | for (pgdat = first_online_pgdat(); \ | |
569 | pgdat; \ | |
570 | pgdat = next_online_pgdat(pgdat)) | |
8357f869 KH |
571 | /** |
572 | * for_each_zone - helper macro to iterate over all memory zones | |
573 | * @zone - pointer to struct zone variable | |
574 | * | |
575 | * The user only needs to declare the zone variable, for_each_zone | |
576 | * fills it in. | |
577 | */ | |
578 | #define for_each_zone(zone) \ | |
579 | for (zone = (first_online_pgdat())->node_zones; \ | |
580 | zone; \ | |
581 | zone = next_zone(zone)) | |
582 | ||
d41dee36 AW |
583 | #ifdef CONFIG_SPARSEMEM |
584 | #include <asm/sparsemem.h> | |
585 | #endif | |
586 | ||
07808b74 | 587 | #if BITS_PER_LONG == 32 |
1da177e4 | 588 | /* |
a2f1b424 AK |
589 | * with 32 bit page->flags field, we reserve 9 bits for node/zone info. |
590 | * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes. | |
1da177e4 | 591 | */ |
a2f1b424 | 592 | #define FLAGS_RESERVED 9 |
348f8b6c | 593 | |
1da177e4 LT |
594 | #elif BITS_PER_LONG == 64 |
595 | /* | |
596 | * with 64 bit flags field, there's plenty of room. | |
597 | */ | |
348f8b6c | 598 | #define FLAGS_RESERVED 32 |
1da177e4 | 599 | |
348f8b6c | 600 | #else |
1da177e4 | 601 | |
348f8b6c | 602 | #error BITS_PER_LONG not defined |
1da177e4 | 603 | |
1da177e4 LT |
604 | #endif |
605 | ||
c713216d MG |
606 | #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ |
607 | !defined(CONFIG_ARCH_POPULATES_NODE_MAP) | |
b159d43f AW |
608 | #define early_pfn_to_nid(nid) (0UL) |
609 | #endif | |
610 | ||
2bdaf115 AW |
611 | #ifdef CONFIG_FLATMEM |
612 | #define pfn_to_nid(pfn) (0) | |
613 | #endif | |
614 | ||
d41dee36 AW |
615 | #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) |
616 | #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) | |
617 | ||
618 | #ifdef CONFIG_SPARSEMEM | |
619 | ||
620 | /* | |
621 | * SECTION_SHIFT #bits space required to store a section # | |
622 | * | |
623 | * PA_SECTION_SHIFT physical address to/from section number | |
624 | * PFN_SECTION_SHIFT pfn to/from section number | |
625 | */ | |
626 | #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) | |
627 | ||
628 | #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) | |
629 | #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) | |
630 | ||
631 | #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) | |
632 | ||
633 | #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) | |
634 | #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) | |
635 | ||
636 | #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS | |
637 | #error Allocator MAX_ORDER exceeds SECTION_SIZE | |
638 | #endif | |
639 | ||
640 | struct page; | |
641 | struct mem_section { | |
29751f69 AW |
642 | /* |
643 | * This is, logically, a pointer to an array of struct | |
644 | * pages. However, it is stored with some other magic. | |
645 | * (see sparse.c::sparse_init_one_section()) | |
646 | * | |
30c253e6 AW |
647 | * Additionally during early boot we encode node id of |
648 | * the location of the section here to guide allocation. | |
649 | * (see sparse.c::memory_present()) | |
650 | * | |
29751f69 AW |
651 | * Making it a UL at least makes someone do a cast |
652 | * before using it wrong. | |
653 | */ | |
654 | unsigned long section_mem_map; | |
d41dee36 AW |
655 | }; |
656 | ||
3e347261 BP |
657 | #ifdef CONFIG_SPARSEMEM_EXTREME |
658 | #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) | |
659 | #else | |
660 | #define SECTIONS_PER_ROOT 1 | |
661 | #endif | |
802f192e | 662 | |
3e347261 BP |
663 | #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) |
664 | #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT) | |
665 | #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) | |
802f192e | 666 | |
3e347261 BP |
667 | #ifdef CONFIG_SPARSEMEM_EXTREME |
668 | extern struct mem_section *mem_section[NR_SECTION_ROOTS]; | |
802f192e | 669 | #else |
3e347261 BP |
670 | extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; |
671 | #endif | |
d41dee36 | 672 | |
29751f69 AW |
673 | static inline struct mem_section *__nr_to_section(unsigned long nr) |
674 | { | |
3e347261 BP |
675 | if (!mem_section[SECTION_NR_TO_ROOT(nr)]) |
676 | return NULL; | |
677 | return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; | |
29751f69 | 678 | } |
4ca644d9 | 679 | extern int __section_nr(struct mem_section* ms); |
29751f69 AW |
680 | |
681 | /* | |
682 | * We use the lower bits of the mem_map pointer to store | |
683 | * a little bit of information. There should be at least | |
684 | * 3 bits here due to 32-bit alignment. | |
685 | */ | |
686 | #define SECTION_MARKED_PRESENT (1UL<<0) | |
687 | #define SECTION_HAS_MEM_MAP (1UL<<1) | |
688 | #define SECTION_MAP_LAST_BIT (1UL<<2) | |
689 | #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) | |
30c253e6 | 690 | #define SECTION_NID_SHIFT 2 |
29751f69 AW |
691 | |
692 | static inline struct page *__section_mem_map_addr(struct mem_section *section) | |
693 | { | |
694 | unsigned long map = section->section_mem_map; | |
695 | map &= SECTION_MAP_MASK; | |
696 | return (struct page *)map; | |
697 | } | |
698 | ||
699 | static inline int valid_section(struct mem_section *section) | |
700 | { | |
802f192e | 701 | return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); |
29751f69 AW |
702 | } |
703 | ||
704 | static inline int section_has_mem_map(struct mem_section *section) | |
705 | { | |
802f192e | 706 | return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); |
29751f69 AW |
707 | } |
708 | ||
709 | static inline int valid_section_nr(unsigned long nr) | |
710 | { | |
711 | return valid_section(__nr_to_section(nr)); | |
712 | } | |
713 | ||
d41dee36 AW |
714 | static inline struct mem_section *__pfn_to_section(unsigned long pfn) |
715 | { | |
29751f69 | 716 | return __nr_to_section(pfn_to_section_nr(pfn)); |
d41dee36 AW |
717 | } |
718 | ||
d41dee36 AW |
719 | static inline int pfn_valid(unsigned long pfn) |
720 | { | |
721 | if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) | |
722 | return 0; | |
29751f69 | 723 | return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); |
d41dee36 AW |
724 | } |
725 | ||
726 | /* | |
727 | * These are _only_ used during initialisation, therefore they | |
728 | * can use __initdata ... They could have names to indicate | |
729 | * this restriction. | |
730 | */ | |
731 | #ifdef CONFIG_NUMA | |
161599ff AW |
732 | #define pfn_to_nid(pfn) \ |
733 | ({ \ | |
734 | unsigned long __pfn_to_nid_pfn = (pfn); \ | |
735 | page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ | |
736 | }) | |
2bdaf115 AW |
737 | #else |
738 | #define pfn_to_nid(pfn) (0) | |
d41dee36 AW |
739 | #endif |
740 | ||
d41dee36 AW |
741 | #define early_pfn_valid(pfn) pfn_valid(pfn) |
742 | void sparse_init(void); | |
743 | #else | |
744 | #define sparse_init() do {} while (0) | |
28ae55c9 | 745 | #define sparse_index_init(_sec, _nid) do {} while (0) |
d41dee36 AW |
746 | #endif /* CONFIG_SPARSEMEM */ |
747 | ||
75167957 AW |
748 | #ifdef CONFIG_NODES_SPAN_OTHER_NODES |
749 | #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid)) | |
750 | #else | |
751 | #define early_pfn_in_nid(pfn, nid) (1) | |
752 | #endif | |
753 | ||
d41dee36 AW |
754 | #ifndef early_pfn_valid |
755 | #define early_pfn_valid(pfn) (1) | |
756 | #endif | |
757 | ||
758 | void memory_present(int nid, unsigned long start, unsigned long end); | |
759 | unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); | |
760 | ||
1da177e4 LT |
761 | #endif /* !__ASSEMBLY__ */ |
762 | #endif /* __KERNEL__ */ | |
763 | #endif /* _LINUX_MMZONE_H */ |