]>
Commit | Line | Data |
---|---|---|
6053ee3b IM |
1 | /* |
2 | * kernel/mutex.c | |
3 | * | |
4 | * Mutexes: blocking mutual exclusion locks | |
5 | * | |
6 | * Started by Ingo Molnar: | |
7 | * | |
8 | * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <[email protected]> | |
9 | * | |
10 | * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and | |
11 | * David Howells for suggestions and improvements. | |
12 | * | |
0d66bf6d PZ |
13 | * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline |
14 | * from the -rt tree, where it was originally implemented for rtmutexes | |
15 | * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale | |
16 | * and Sven Dietrich. | |
17 | * | |
6053ee3b IM |
18 | * Also see Documentation/mutex-design.txt. |
19 | */ | |
20 | #include <linux/mutex.h> | |
1b375dc3 | 21 | #include <linux/ww_mutex.h> |
6053ee3b | 22 | #include <linux/sched.h> |
8bd75c77 | 23 | #include <linux/sched/rt.h> |
9984de1a | 24 | #include <linux/export.h> |
6053ee3b IM |
25 | #include <linux/spinlock.h> |
26 | #include <linux/interrupt.h> | |
9a11b49a | 27 | #include <linux/debug_locks.h> |
6053ee3b IM |
28 | |
29 | /* | |
30 | * In the DEBUG case we are using the "NULL fastpath" for mutexes, | |
31 | * which forces all calls into the slowpath: | |
32 | */ | |
33 | #ifdef CONFIG_DEBUG_MUTEXES | |
34 | # include "mutex-debug.h" | |
35 | # include <asm-generic/mutex-null.h> | |
36 | #else | |
37 | # include "mutex.h" | |
38 | # include <asm/mutex.h> | |
39 | #endif | |
40 | ||
0dc8c730 | 41 | /* |
cc189d25 WL |
42 | * A negative mutex count indicates that waiters are sleeping waiting for the |
43 | * mutex. | |
0dc8c730 | 44 | */ |
0dc8c730 | 45 | #define MUTEX_SHOW_NO_WAITER(mutex) (atomic_read(&(mutex)->count) >= 0) |
0dc8c730 | 46 | |
ef5d4707 IM |
47 | void |
48 | __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) | |
6053ee3b IM |
49 | { |
50 | atomic_set(&lock->count, 1); | |
51 | spin_lock_init(&lock->wait_lock); | |
52 | INIT_LIST_HEAD(&lock->wait_list); | |
0d66bf6d | 53 | mutex_clear_owner(lock); |
2bd2c92c WL |
54 | #ifdef CONFIG_MUTEX_SPIN_ON_OWNER |
55 | lock->spin_mlock = NULL; | |
56 | #endif | |
6053ee3b | 57 | |
ef5d4707 | 58 | debug_mutex_init(lock, name, key); |
6053ee3b IM |
59 | } |
60 | ||
61 | EXPORT_SYMBOL(__mutex_init); | |
62 | ||
e4564f79 | 63 | #ifndef CONFIG_DEBUG_LOCK_ALLOC |
6053ee3b IM |
64 | /* |
65 | * We split the mutex lock/unlock logic into separate fastpath and | |
66 | * slowpath functions, to reduce the register pressure on the fastpath. | |
67 | * We also put the fastpath first in the kernel image, to make sure the | |
68 | * branch is predicted by the CPU as default-untaken. | |
69 | */ | |
7918baa5 | 70 | static __used noinline void __sched |
9a11b49a | 71 | __mutex_lock_slowpath(atomic_t *lock_count); |
6053ee3b | 72 | |
ef5dc121 | 73 | /** |
6053ee3b IM |
74 | * mutex_lock - acquire the mutex |
75 | * @lock: the mutex to be acquired | |
76 | * | |
77 | * Lock the mutex exclusively for this task. If the mutex is not | |
78 | * available right now, it will sleep until it can get it. | |
79 | * | |
80 | * The mutex must later on be released by the same task that | |
81 | * acquired it. Recursive locking is not allowed. The task | |
82 | * may not exit without first unlocking the mutex. Also, kernel | |
83 | * memory where the mutex resides mutex must not be freed with | |
84 | * the mutex still locked. The mutex must first be initialized | |
85 | * (or statically defined) before it can be locked. memset()-ing | |
86 | * the mutex to 0 is not allowed. | |
87 | * | |
88 | * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging | |
89 | * checks that will enforce the restrictions and will also do | |
90 | * deadlock debugging. ) | |
91 | * | |
92 | * This function is similar to (but not equivalent to) down(). | |
93 | */ | |
b09d2501 | 94 | void __sched mutex_lock(struct mutex *lock) |
6053ee3b | 95 | { |
c544bdb1 | 96 | might_sleep(); |
6053ee3b IM |
97 | /* |
98 | * The locking fastpath is the 1->0 transition from | |
99 | * 'unlocked' into 'locked' state. | |
6053ee3b IM |
100 | */ |
101 | __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath); | |
0d66bf6d | 102 | mutex_set_owner(lock); |
6053ee3b IM |
103 | } |
104 | ||
105 | EXPORT_SYMBOL(mutex_lock); | |
e4564f79 | 106 | #endif |
6053ee3b | 107 | |
41fcb9f2 | 108 | #ifdef CONFIG_MUTEX_SPIN_ON_OWNER |
2bd2c92c WL |
109 | /* |
110 | * In order to avoid a stampede of mutex spinners from acquiring the mutex | |
111 | * more or less simultaneously, the spinners need to acquire a MCS lock | |
112 | * first before spinning on the owner field. | |
113 | * | |
114 | * We don't inline mspin_lock() so that perf can correctly account for the | |
115 | * time spent in this lock function. | |
116 | */ | |
117 | struct mspin_node { | |
118 | struct mspin_node *next ; | |
119 | int locked; /* 1 if lock acquired */ | |
120 | }; | |
121 | #define MLOCK(mutex) ((struct mspin_node **)&((mutex)->spin_mlock)) | |
122 | ||
123 | static noinline | |
124 | void mspin_lock(struct mspin_node **lock, struct mspin_node *node) | |
125 | { | |
126 | struct mspin_node *prev; | |
127 | ||
128 | /* Init node */ | |
129 | node->locked = 0; | |
130 | node->next = NULL; | |
131 | ||
132 | prev = xchg(lock, node); | |
133 | if (likely(prev == NULL)) { | |
134 | /* Lock acquired */ | |
135 | node->locked = 1; | |
136 | return; | |
137 | } | |
138 | ACCESS_ONCE(prev->next) = node; | |
139 | smp_wmb(); | |
140 | /* Wait until the lock holder passes the lock down */ | |
141 | while (!ACCESS_ONCE(node->locked)) | |
142 | arch_mutex_cpu_relax(); | |
143 | } | |
144 | ||
145 | static void mspin_unlock(struct mspin_node **lock, struct mspin_node *node) | |
146 | { | |
147 | struct mspin_node *next = ACCESS_ONCE(node->next); | |
148 | ||
149 | if (likely(!next)) { | |
150 | /* | |
151 | * Release the lock by setting it to NULL | |
152 | */ | |
153 | if (cmpxchg(lock, node, NULL) == node) | |
154 | return; | |
155 | /* Wait until the next pointer is set */ | |
156 | while (!(next = ACCESS_ONCE(node->next))) | |
157 | arch_mutex_cpu_relax(); | |
158 | } | |
159 | ACCESS_ONCE(next->locked) = 1; | |
160 | smp_wmb(); | |
161 | } | |
162 | ||
41fcb9f2 WL |
163 | /* |
164 | * Mutex spinning code migrated from kernel/sched/core.c | |
165 | */ | |
166 | ||
167 | static inline bool owner_running(struct mutex *lock, struct task_struct *owner) | |
168 | { | |
169 | if (lock->owner != owner) | |
170 | return false; | |
171 | ||
172 | /* | |
173 | * Ensure we emit the owner->on_cpu, dereference _after_ checking | |
174 | * lock->owner still matches owner, if that fails, owner might | |
175 | * point to free()d memory, if it still matches, the rcu_read_lock() | |
176 | * ensures the memory stays valid. | |
177 | */ | |
178 | barrier(); | |
179 | ||
180 | return owner->on_cpu; | |
181 | } | |
182 | ||
183 | /* | |
184 | * Look out! "owner" is an entirely speculative pointer | |
185 | * access and not reliable. | |
186 | */ | |
187 | static noinline | |
188 | int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) | |
189 | { | |
190 | rcu_read_lock(); | |
191 | while (owner_running(lock, owner)) { | |
192 | if (need_resched()) | |
193 | break; | |
194 | ||
195 | arch_mutex_cpu_relax(); | |
196 | } | |
197 | rcu_read_unlock(); | |
198 | ||
199 | /* | |
200 | * We break out the loop above on need_resched() and when the | |
201 | * owner changed, which is a sign for heavy contention. Return | |
202 | * success only when lock->owner is NULL. | |
203 | */ | |
204 | return lock->owner == NULL; | |
205 | } | |
2bd2c92c WL |
206 | |
207 | /* | |
208 | * Initial check for entering the mutex spinning loop | |
209 | */ | |
210 | static inline int mutex_can_spin_on_owner(struct mutex *lock) | |
211 | { | |
1e40c2ed | 212 | struct task_struct *owner; |
2bd2c92c WL |
213 | int retval = 1; |
214 | ||
215 | rcu_read_lock(); | |
1e40c2ed PZ |
216 | owner = ACCESS_ONCE(lock->owner); |
217 | if (owner) | |
218 | retval = owner->on_cpu; | |
2bd2c92c WL |
219 | rcu_read_unlock(); |
220 | /* | |
221 | * if lock->owner is not set, the mutex owner may have just acquired | |
222 | * it and not set the owner yet or the mutex has been released. | |
223 | */ | |
224 | return retval; | |
225 | } | |
41fcb9f2 WL |
226 | #endif |
227 | ||
7918baa5 | 228 | static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count); |
6053ee3b | 229 | |
ef5dc121 | 230 | /** |
6053ee3b IM |
231 | * mutex_unlock - release the mutex |
232 | * @lock: the mutex to be released | |
233 | * | |
234 | * Unlock a mutex that has been locked by this task previously. | |
235 | * | |
236 | * This function must not be used in interrupt context. Unlocking | |
237 | * of a not locked mutex is not allowed. | |
238 | * | |
239 | * This function is similar to (but not equivalent to) up(). | |
240 | */ | |
7ad5b3a5 | 241 | void __sched mutex_unlock(struct mutex *lock) |
6053ee3b IM |
242 | { |
243 | /* | |
244 | * The unlocking fastpath is the 0->1 transition from 'locked' | |
245 | * into 'unlocked' state: | |
6053ee3b | 246 | */ |
0d66bf6d PZ |
247 | #ifndef CONFIG_DEBUG_MUTEXES |
248 | /* | |
249 | * When debugging is enabled we must not clear the owner before time, | |
250 | * the slow path will always be taken, and that clears the owner field | |
251 | * after verifying that it was indeed current. | |
252 | */ | |
253 | mutex_clear_owner(lock); | |
254 | #endif | |
6053ee3b IM |
255 | __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath); |
256 | } | |
257 | ||
258 | EXPORT_SYMBOL(mutex_unlock); | |
259 | ||
040a0a37 ML |
260 | /** |
261 | * ww_mutex_unlock - release the w/w mutex | |
262 | * @lock: the mutex to be released | |
263 | * | |
264 | * Unlock a mutex that has been locked by this task previously with any of the | |
265 | * ww_mutex_lock* functions (with or without an acquire context). It is | |
266 | * forbidden to release the locks after releasing the acquire context. | |
267 | * | |
268 | * This function must not be used in interrupt context. Unlocking | |
269 | * of a unlocked mutex is not allowed. | |
270 | */ | |
271 | void __sched ww_mutex_unlock(struct ww_mutex *lock) | |
272 | { | |
273 | /* | |
274 | * The unlocking fastpath is the 0->1 transition from 'locked' | |
275 | * into 'unlocked' state: | |
276 | */ | |
277 | if (lock->ctx) { | |
278 | #ifdef CONFIG_DEBUG_MUTEXES | |
279 | DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired); | |
280 | #endif | |
281 | if (lock->ctx->acquired > 0) | |
282 | lock->ctx->acquired--; | |
283 | lock->ctx = NULL; | |
284 | } | |
285 | ||
286 | #ifndef CONFIG_DEBUG_MUTEXES | |
287 | /* | |
288 | * When debugging is enabled we must not clear the owner before time, | |
289 | * the slow path will always be taken, and that clears the owner field | |
290 | * after verifying that it was indeed current. | |
291 | */ | |
292 | mutex_clear_owner(&lock->base); | |
293 | #endif | |
294 | __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath); | |
295 | } | |
296 | EXPORT_SYMBOL(ww_mutex_unlock); | |
297 | ||
298 | static inline int __sched | |
299 | __mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx) | |
300 | { | |
301 | struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); | |
302 | struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx); | |
303 | ||
304 | if (!hold_ctx) | |
305 | return 0; | |
306 | ||
307 | if (unlikely(ctx == hold_ctx)) | |
308 | return -EALREADY; | |
309 | ||
310 | if (ctx->stamp - hold_ctx->stamp <= LONG_MAX && | |
311 | (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) { | |
312 | #ifdef CONFIG_DEBUG_MUTEXES | |
313 | DEBUG_LOCKS_WARN_ON(ctx->contending_lock); | |
314 | ctx->contending_lock = ww; | |
315 | #endif | |
316 | return -EDEADLK; | |
317 | } | |
318 | ||
319 | return 0; | |
320 | } | |
321 | ||
322 | static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww, | |
323 | struct ww_acquire_ctx *ww_ctx) | |
324 | { | |
325 | #ifdef CONFIG_DEBUG_MUTEXES | |
326 | /* | |
327 | * If this WARN_ON triggers, you used ww_mutex_lock to acquire, | |
328 | * but released with a normal mutex_unlock in this call. | |
329 | * | |
330 | * This should never happen, always use ww_mutex_unlock. | |
331 | */ | |
332 | DEBUG_LOCKS_WARN_ON(ww->ctx); | |
333 | ||
334 | /* | |
335 | * Not quite done after calling ww_acquire_done() ? | |
336 | */ | |
337 | DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire); | |
338 | ||
339 | if (ww_ctx->contending_lock) { | |
340 | /* | |
341 | * After -EDEADLK you tried to | |
342 | * acquire a different ww_mutex? Bad! | |
343 | */ | |
344 | DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww); | |
345 | ||
346 | /* | |
347 | * You called ww_mutex_lock after receiving -EDEADLK, | |
348 | * but 'forgot' to unlock everything else first? | |
349 | */ | |
350 | DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0); | |
351 | ww_ctx->contending_lock = NULL; | |
352 | } | |
353 | ||
354 | /* | |
355 | * Naughty, using a different class will lead to undefined behavior! | |
356 | */ | |
357 | DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class); | |
358 | #endif | |
359 | ww_ctx->acquired++; | |
360 | } | |
361 | ||
362 | /* | |
363 | * after acquiring lock with fastpath or when we lost out in contested | |
364 | * slowpath, set ctx and wake up any waiters so they can recheck. | |
365 | * | |
366 | * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set, | |
367 | * as the fastpath and opportunistic spinning are disabled in that case. | |
368 | */ | |
369 | static __always_inline void | |
370 | ww_mutex_set_context_fastpath(struct ww_mutex *lock, | |
371 | struct ww_acquire_ctx *ctx) | |
372 | { | |
373 | unsigned long flags; | |
374 | struct mutex_waiter *cur; | |
375 | ||
376 | ww_mutex_lock_acquired(lock, ctx); | |
377 | ||
378 | lock->ctx = ctx; | |
379 | ||
380 | /* | |
381 | * The lock->ctx update should be visible on all cores before | |
382 | * the atomic read is done, otherwise contended waiters might be | |
383 | * missed. The contended waiters will either see ww_ctx == NULL | |
384 | * and keep spinning, or it will acquire wait_lock, add itself | |
385 | * to waiter list and sleep. | |
386 | */ | |
387 | smp_mb(); /* ^^^ */ | |
388 | ||
389 | /* | |
390 | * Check if lock is contended, if not there is nobody to wake up | |
391 | */ | |
392 | if (likely(atomic_read(&lock->base.count) == 0)) | |
393 | return; | |
394 | ||
395 | /* | |
396 | * Uh oh, we raced in fastpath, wake up everyone in this case, | |
397 | * so they can see the new lock->ctx. | |
398 | */ | |
399 | spin_lock_mutex(&lock->base.wait_lock, flags); | |
400 | list_for_each_entry(cur, &lock->base.wait_list, list) { | |
401 | debug_mutex_wake_waiter(&lock->base, cur); | |
402 | wake_up_process(cur->task); | |
403 | } | |
404 | spin_unlock_mutex(&lock->base.wait_lock, flags); | |
405 | } | |
406 | ||
6053ee3b IM |
407 | /* |
408 | * Lock a mutex (possibly interruptible), slowpath: | |
409 | */ | |
040a0a37 | 410 | static __always_inline int __sched |
e4564f79 | 411 | __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, |
040a0a37 | 412 | struct lockdep_map *nest_lock, unsigned long ip, |
b0267507 | 413 | struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) |
6053ee3b IM |
414 | { |
415 | struct task_struct *task = current; | |
416 | struct mutex_waiter waiter; | |
1fb00c6c | 417 | unsigned long flags; |
040a0a37 | 418 | int ret; |
6053ee3b | 419 | |
41719b03 | 420 | preempt_disable(); |
e4c70a66 | 421 | mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); |
c0226027 FW |
422 | |
423 | #ifdef CONFIG_MUTEX_SPIN_ON_OWNER | |
0d66bf6d PZ |
424 | /* |
425 | * Optimistic spinning. | |
426 | * | |
427 | * We try to spin for acquisition when we find that there are no | |
428 | * pending waiters and the lock owner is currently running on a | |
429 | * (different) CPU. | |
430 | * | |
431 | * The rationale is that if the lock owner is running, it is likely to | |
432 | * release the lock soon. | |
433 | * | |
434 | * Since this needs the lock owner, and this mutex implementation | |
435 | * doesn't track the owner atomically in the lock field, we need to | |
436 | * track it non-atomically. | |
437 | * | |
438 | * We can't do this for DEBUG_MUTEXES because that relies on wait_lock | |
439 | * to serialize everything. | |
2bd2c92c WL |
440 | * |
441 | * The mutex spinners are queued up using MCS lock so that only one | |
442 | * spinner can compete for the mutex. However, if mutex spinning isn't | |
443 | * going to happen, there is no point in going through the lock/unlock | |
444 | * overhead. | |
0d66bf6d | 445 | */ |
2bd2c92c WL |
446 | if (!mutex_can_spin_on_owner(lock)) |
447 | goto slowpath; | |
0d66bf6d PZ |
448 | |
449 | for (;;) { | |
c6eb3dda | 450 | struct task_struct *owner; |
2bd2c92c | 451 | struct mspin_node node; |
0d66bf6d | 452 | |
b0267507 | 453 | if (use_ww_ctx && ww_ctx->acquired > 0) { |
040a0a37 ML |
454 | struct ww_mutex *ww; |
455 | ||
456 | ww = container_of(lock, struct ww_mutex, base); | |
457 | /* | |
458 | * If ww->ctx is set the contents are undefined, only | |
459 | * by acquiring wait_lock there is a guarantee that | |
460 | * they are not invalid when reading. | |
461 | * | |
462 | * As such, when deadlock detection needs to be | |
463 | * performed the optimistic spinning cannot be done. | |
464 | */ | |
465 | if (ACCESS_ONCE(ww->ctx)) | |
ec83f425 | 466 | goto slowpath; |
040a0a37 ML |
467 | } |
468 | ||
0d66bf6d PZ |
469 | /* |
470 | * If there's an owner, wait for it to either | |
471 | * release the lock or go to sleep. | |
472 | */ | |
2bd2c92c | 473 | mspin_lock(MLOCK(lock), &node); |
0d66bf6d | 474 | owner = ACCESS_ONCE(lock->owner); |
2bd2c92c WL |
475 | if (owner && !mutex_spin_on_owner(lock, owner)) { |
476 | mspin_unlock(MLOCK(lock), &node); | |
ec83f425 | 477 | goto slowpath; |
2bd2c92c | 478 | } |
0d66bf6d | 479 | |
0dc8c730 WL |
480 | if ((atomic_read(&lock->count) == 1) && |
481 | (atomic_cmpxchg(&lock->count, 1, 0) == 1)) { | |
ac6e60ee | 482 | lock_acquired(&lock->dep_map, ip); |
b0267507 | 483 | if (use_ww_ctx) { |
040a0a37 ML |
484 | struct ww_mutex *ww; |
485 | ww = container_of(lock, struct ww_mutex, base); | |
486 | ||
487 | ww_mutex_set_context_fastpath(ww, ww_ctx); | |
488 | } | |
489 | ||
ac6e60ee | 490 | mutex_set_owner(lock); |
2bd2c92c | 491 | mspin_unlock(MLOCK(lock), &node); |
ac6e60ee CM |
492 | preempt_enable(); |
493 | return 0; | |
494 | } | |
2bd2c92c | 495 | mspin_unlock(MLOCK(lock), &node); |
ac6e60ee | 496 | |
0d66bf6d PZ |
497 | /* |
498 | * When there's no owner, we might have preempted between the | |
499 | * owner acquiring the lock and setting the owner field. If | |
500 | * we're an RT task that will live-lock because we won't let | |
501 | * the owner complete. | |
502 | */ | |
503 | if (!owner && (need_resched() || rt_task(task))) | |
ec83f425 | 504 | goto slowpath; |
0d66bf6d | 505 | |
0d66bf6d PZ |
506 | /* |
507 | * The cpu_relax() call is a compiler barrier which forces | |
508 | * everything in this loop to be re-loaded. We don't need | |
509 | * memory barriers as we'll eventually observe the right | |
510 | * values at the cost of a few extra spins. | |
511 | */ | |
335d7afb | 512 | arch_mutex_cpu_relax(); |
0d66bf6d | 513 | } |
2bd2c92c | 514 | slowpath: |
0d66bf6d | 515 | #endif |
1fb00c6c | 516 | spin_lock_mutex(&lock->wait_lock, flags); |
6053ee3b | 517 | |
ec83f425 DB |
518 | /* once more, can we acquire the lock? */ |
519 | if (MUTEX_SHOW_NO_WAITER(lock) && (atomic_xchg(&lock->count, 0) == 1)) | |
520 | goto skip_wait; | |
521 | ||
9a11b49a | 522 | debug_mutex_lock_common(lock, &waiter); |
c9f4f06d | 523 | debug_mutex_add_waiter(lock, &waiter, task_thread_info(task)); |
6053ee3b IM |
524 | |
525 | /* add waiting tasks to the end of the waitqueue (FIFO): */ | |
526 | list_add_tail(&waiter.list, &lock->wait_list); | |
527 | waiter.task = task; | |
528 | ||
e4564f79 | 529 | lock_contended(&lock->dep_map, ip); |
4fe87745 | 530 | |
6053ee3b IM |
531 | for (;;) { |
532 | /* | |
533 | * Lets try to take the lock again - this is needed even if | |
534 | * we get here for the first time (shortly after failing to | |
535 | * acquire the lock), to make sure that we get a wakeup once | |
536 | * it's unlocked. Later on, if we sleep, this is the | |
537 | * operation that gives us the lock. We xchg it to -1, so | |
538 | * that when we release the lock, we properly wake up the | |
539 | * other waiters: | |
540 | */ | |
0dc8c730 | 541 | if (MUTEX_SHOW_NO_WAITER(lock) && |
ec83f425 | 542 | (atomic_xchg(&lock->count, -1) == 1)) |
6053ee3b IM |
543 | break; |
544 | ||
545 | /* | |
546 | * got a signal? (This code gets eliminated in the | |
547 | * TASK_UNINTERRUPTIBLE case.) | |
548 | */ | |
6ad36762 | 549 | if (unlikely(signal_pending_state(state, task))) { |
040a0a37 ML |
550 | ret = -EINTR; |
551 | goto err; | |
552 | } | |
6053ee3b | 553 | |
b0267507 | 554 | if (use_ww_ctx && ww_ctx->acquired > 0) { |
040a0a37 ML |
555 | ret = __mutex_lock_check_stamp(lock, ww_ctx); |
556 | if (ret) | |
557 | goto err; | |
6053ee3b | 558 | } |
040a0a37 | 559 | |
6053ee3b IM |
560 | __set_task_state(task, state); |
561 | ||
25985edc | 562 | /* didn't get the lock, go to sleep: */ |
1fb00c6c | 563 | spin_unlock_mutex(&lock->wait_lock, flags); |
bd2f5536 | 564 | schedule_preempt_disabled(); |
1fb00c6c | 565 | spin_lock_mutex(&lock->wait_lock, flags); |
6053ee3b | 566 | } |
ec83f425 DB |
567 | mutex_remove_waiter(lock, &waiter, current_thread_info()); |
568 | /* set it to 0 if there are no waiters left: */ | |
569 | if (likely(list_empty(&lock->wait_list))) | |
570 | atomic_set(&lock->count, 0); | |
571 | debug_mutex_free_waiter(&waiter); | |
6053ee3b | 572 | |
ec83f425 DB |
573 | skip_wait: |
574 | /* got the lock - cleanup and rejoice! */ | |
c7e78cff | 575 | lock_acquired(&lock->dep_map, ip); |
0d66bf6d | 576 | mutex_set_owner(lock); |
6053ee3b | 577 | |
b0267507 | 578 | if (use_ww_ctx) { |
ec83f425 | 579 | struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); |
040a0a37 ML |
580 | struct mutex_waiter *cur; |
581 | ||
582 | /* | |
583 | * This branch gets optimized out for the common case, | |
584 | * and is only important for ww_mutex_lock. | |
585 | */ | |
040a0a37 ML |
586 | ww_mutex_lock_acquired(ww, ww_ctx); |
587 | ww->ctx = ww_ctx; | |
588 | ||
589 | /* | |
590 | * Give any possible sleeping processes the chance to wake up, | |
591 | * so they can recheck if they have to back off. | |
592 | */ | |
593 | list_for_each_entry(cur, &lock->wait_list, list) { | |
594 | debug_mutex_wake_waiter(lock, cur); | |
595 | wake_up_process(cur->task); | |
596 | } | |
597 | } | |
598 | ||
1fb00c6c | 599 | spin_unlock_mutex(&lock->wait_lock, flags); |
41719b03 | 600 | preempt_enable(); |
6053ee3b | 601 | return 0; |
040a0a37 ML |
602 | |
603 | err: | |
604 | mutex_remove_waiter(lock, &waiter, task_thread_info(task)); | |
605 | spin_unlock_mutex(&lock->wait_lock, flags); | |
606 | debug_mutex_free_waiter(&waiter); | |
607 | mutex_release(&lock->dep_map, 1, ip); | |
608 | preempt_enable(); | |
609 | return ret; | |
6053ee3b IM |
610 | } |
611 | ||
ef5d4707 IM |
612 | #ifdef CONFIG_DEBUG_LOCK_ALLOC |
613 | void __sched | |
614 | mutex_lock_nested(struct mutex *lock, unsigned int subclass) | |
615 | { | |
616 | might_sleep(); | |
040a0a37 | 617 | __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, |
b0267507 | 618 | subclass, NULL, _RET_IP_, NULL, 0); |
ef5d4707 IM |
619 | } |
620 | ||
621 | EXPORT_SYMBOL_GPL(mutex_lock_nested); | |
d63a5a74 | 622 | |
e4c70a66 PZ |
623 | void __sched |
624 | _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) | |
625 | { | |
626 | might_sleep(); | |
040a0a37 | 627 | __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, |
b0267507 | 628 | 0, nest, _RET_IP_, NULL, 0); |
e4c70a66 PZ |
629 | } |
630 | ||
631 | EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); | |
632 | ||
ad776537 LH |
633 | int __sched |
634 | mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) | |
635 | { | |
636 | might_sleep(); | |
040a0a37 | 637 | return __mutex_lock_common(lock, TASK_KILLABLE, |
b0267507 | 638 | subclass, NULL, _RET_IP_, NULL, 0); |
ad776537 LH |
639 | } |
640 | EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); | |
641 | ||
d63a5a74 N |
642 | int __sched |
643 | mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) | |
644 | { | |
645 | might_sleep(); | |
0d66bf6d | 646 | return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, |
b0267507 | 647 | subclass, NULL, _RET_IP_, NULL, 0); |
d63a5a74 N |
648 | } |
649 | ||
650 | EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); | |
040a0a37 | 651 | |
23010027 SV |
652 | static inline int |
653 | ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) | |
654 | { | |
655 | #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH | |
656 | unsigned tmp; | |
657 | ||
658 | if (ctx->deadlock_inject_countdown-- == 0) { | |
659 | tmp = ctx->deadlock_inject_interval; | |
660 | if (tmp > UINT_MAX/4) | |
661 | tmp = UINT_MAX; | |
662 | else | |
663 | tmp = tmp*2 + tmp + tmp/2; | |
664 | ||
665 | ctx->deadlock_inject_interval = tmp; | |
666 | ctx->deadlock_inject_countdown = tmp; | |
667 | ctx->contending_lock = lock; | |
668 | ||
669 | ww_mutex_unlock(lock); | |
670 | ||
671 | return -EDEADLK; | |
672 | } | |
673 | #endif | |
674 | ||
675 | return 0; | |
676 | } | |
040a0a37 ML |
677 | |
678 | int __sched | |
679 | __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) | |
680 | { | |
23010027 SV |
681 | int ret; |
682 | ||
040a0a37 | 683 | might_sleep(); |
23010027 | 684 | ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, |
b0267507 | 685 | 0, &ctx->dep_map, _RET_IP_, ctx, 1); |
85f48961 | 686 | if (!ret && ctx->acquired > 1) |
23010027 SV |
687 | return ww_mutex_deadlock_injection(lock, ctx); |
688 | ||
689 | return ret; | |
040a0a37 ML |
690 | } |
691 | EXPORT_SYMBOL_GPL(__ww_mutex_lock); | |
692 | ||
693 | int __sched | |
694 | __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) | |
695 | { | |
23010027 SV |
696 | int ret; |
697 | ||
040a0a37 | 698 | might_sleep(); |
23010027 | 699 | ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, |
b0267507 | 700 | 0, &ctx->dep_map, _RET_IP_, ctx, 1); |
23010027 | 701 | |
85f48961 | 702 | if (!ret && ctx->acquired > 1) |
23010027 SV |
703 | return ww_mutex_deadlock_injection(lock, ctx); |
704 | ||
705 | return ret; | |
040a0a37 ML |
706 | } |
707 | EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible); | |
708 | ||
ef5d4707 IM |
709 | #endif |
710 | ||
6053ee3b IM |
711 | /* |
712 | * Release the lock, slowpath: | |
713 | */ | |
7ad5b3a5 | 714 | static inline void |
ef5d4707 | 715 | __mutex_unlock_common_slowpath(atomic_t *lock_count, int nested) |
6053ee3b | 716 | { |
02706647 | 717 | struct mutex *lock = container_of(lock_count, struct mutex, count); |
1fb00c6c | 718 | unsigned long flags; |
6053ee3b | 719 | |
1fb00c6c | 720 | spin_lock_mutex(&lock->wait_lock, flags); |
ef5d4707 | 721 | mutex_release(&lock->dep_map, nested, _RET_IP_); |
9a11b49a | 722 | debug_mutex_unlock(lock); |
6053ee3b IM |
723 | |
724 | /* | |
725 | * some architectures leave the lock unlocked in the fastpath failure | |
726 | * case, others need to leave it locked. In the later case we have to | |
727 | * unlock it here | |
728 | */ | |
729 | if (__mutex_slowpath_needs_to_unlock()) | |
730 | atomic_set(&lock->count, 1); | |
731 | ||
6053ee3b IM |
732 | if (!list_empty(&lock->wait_list)) { |
733 | /* get the first entry from the wait-list: */ | |
734 | struct mutex_waiter *waiter = | |
735 | list_entry(lock->wait_list.next, | |
736 | struct mutex_waiter, list); | |
737 | ||
738 | debug_mutex_wake_waiter(lock, waiter); | |
739 | ||
740 | wake_up_process(waiter->task); | |
741 | } | |
742 | ||
1fb00c6c | 743 | spin_unlock_mutex(&lock->wait_lock, flags); |
6053ee3b IM |
744 | } |
745 | ||
9a11b49a IM |
746 | /* |
747 | * Release the lock, slowpath: | |
748 | */ | |
7918baa5 | 749 | static __used noinline void |
9a11b49a IM |
750 | __mutex_unlock_slowpath(atomic_t *lock_count) |
751 | { | |
ef5d4707 | 752 | __mutex_unlock_common_slowpath(lock_count, 1); |
9a11b49a IM |
753 | } |
754 | ||
e4564f79 | 755 | #ifndef CONFIG_DEBUG_LOCK_ALLOC |
6053ee3b IM |
756 | /* |
757 | * Here come the less common (and hence less performance-critical) APIs: | |
758 | * mutex_lock_interruptible() and mutex_trylock(). | |
759 | */ | |
7ad5b3a5 | 760 | static noinline int __sched |
a41b56ef | 761 | __mutex_lock_killable_slowpath(struct mutex *lock); |
ad776537 | 762 | |
7ad5b3a5 | 763 | static noinline int __sched |
a41b56ef | 764 | __mutex_lock_interruptible_slowpath(struct mutex *lock); |
6053ee3b | 765 | |
ef5dc121 RD |
766 | /** |
767 | * mutex_lock_interruptible - acquire the mutex, interruptible | |
6053ee3b IM |
768 | * @lock: the mutex to be acquired |
769 | * | |
770 | * Lock the mutex like mutex_lock(), and return 0 if the mutex has | |
771 | * been acquired or sleep until the mutex becomes available. If a | |
772 | * signal arrives while waiting for the lock then this function | |
773 | * returns -EINTR. | |
774 | * | |
775 | * This function is similar to (but not equivalent to) down_interruptible(). | |
776 | */ | |
7ad5b3a5 | 777 | int __sched mutex_lock_interruptible(struct mutex *lock) |
6053ee3b | 778 | { |
0d66bf6d PZ |
779 | int ret; |
780 | ||
c544bdb1 | 781 | might_sleep(); |
a41b56ef ML |
782 | ret = __mutex_fastpath_lock_retval(&lock->count); |
783 | if (likely(!ret)) { | |
0d66bf6d | 784 | mutex_set_owner(lock); |
a41b56ef ML |
785 | return 0; |
786 | } else | |
787 | return __mutex_lock_interruptible_slowpath(lock); | |
6053ee3b IM |
788 | } |
789 | ||
790 | EXPORT_SYMBOL(mutex_lock_interruptible); | |
791 | ||
7ad5b3a5 | 792 | int __sched mutex_lock_killable(struct mutex *lock) |
ad776537 | 793 | { |
0d66bf6d PZ |
794 | int ret; |
795 | ||
ad776537 | 796 | might_sleep(); |
a41b56ef ML |
797 | ret = __mutex_fastpath_lock_retval(&lock->count); |
798 | if (likely(!ret)) { | |
0d66bf6d | 799 | mutex_set_owner(lock); |
a41b56ef ML |
800 | return 0; |
801 | } else | |
802 | return __mutex_lock_killable_slowpath(lock); | |
ad776537 LH |
803 | } |
804 | EXPORT_SYMBOL(mutex_lock_killable); | |
805 | ||
7918baa5 | 806 | static __used noinline void __sched |
e4564f79 PZ |
807 | __mutex_lock_slowpath(atomic_t *lock_count) |
808 | { | |
809 | struct mutex *lock = container_of(lock_count, struct mutex, count); | |
810 | ||
040a0a37 | 811 | __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, |
b0267507 | 812 | NULL, _RET_IP_, NULL, 0); |
e4564f79 PZ |
813 | } |
814 | ||
7ad5b3a5 | 815 | static noinline int __sched |
a41b56ef | 816 | __mutex_lock_killable_slowpath(struct mutex *lock) |
ad776537 | 817 | { |
040a0a37 | 818 | return __mutex_lock_common(lock, TASK_KILLABLE, 0, |
b0267507 | 819 | NULL, _RET_IP_, NULL, 0); |
ad776537 LH |
820 | } |
821 | ||
7ad5b3a5 | 822 | static noinline int __sched |
a41b56ef | 823 | __mutex_lock_interruptible_slowpath(struct mutex *lock) |
6053ee3b | 824 | { |
040a0a37 | 825 | return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, |
b0267507 | 826 | NULL, _RET_IP_, NULL, 0); |
040a0a37 ML |
827 | } |
828 | ||
829 | static noinline int __sched | |
830 | __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) | |
831 | { | |
832 | return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0, | |
b0267507 | 833 | NULL, _RET_IP_, ctx, 1); |
6053ee3b | 834 | } |
040a0a37 ML |
835 | |
836 | static noinline int __sched | |
837 | __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, | |
838 | struct ww_acquire_ctx *ctx) | |
839 | { | |
840 | return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0, | |
b0267507 | 841 | NULL, _RET_IP_, ctx, 1); |
040a0a37 ML |
842 | } |
843 | ||
e4564f79 | 844 | #endif |
6053ee3b IM |
845 | |
846 | /* | |
847 | * Spinlock based trylock, we take the spinlock and check whether we | |
848 | * can get the lock: | |
849 | */ | |
850 | static inline int __mutex_trylock_slowpath(atomic_t *lock_count) | |
851 | { | |
852 | struct mutex *lock = container_of(lock_count, struct mutex, count); | |
1fb00c6c | 853 | unsigned long flags; |
6053ee3b IM |
854 | int prev; |
855 | ||
1fb00c6c | 856 | spin_lock_mutex(&lock->wait_lock, flags); |
6053ee3b IM |
857 | |
858 | prev = atomic_xchg(&lock->count, -1); | |
ef5d4707 | 859 | if (likely(prev == 1)) { |
0d66bf6d | 860 | mutex_set_owner(lock); |
ef5d4707 IM |
861 | mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); |
862 | } | |
0d66bf6d | 863 | |
6053ee3b IM |
864 | /* Set it back to 0 if there are no waiters: */ |
865 | if (likely(list_empty(&lock->wait_list))) | |
866 | atomic_set(&lock->count, 0); | |
867 | ||
1fb00c6c | 868 | spin_unlock_mutex(&lock->wait_lock, flags); |
6053ee3b IM |
869 | |
870 | return prev == 1; | |
871 | } | |
872 | ||
ef5dc121 RD |
873 | /** |
874 | * mutex_trylock - try to acquire the mutex, without waiting | |
6053ee3b IM |
875 | * @lock: the mutex to be acquired |
876 | * | |
877 | * Try to acquire the mutex atomically. Returns 1 if the mutex | |
878 | * has been acquired successfully, and 0 on contention. | |
879 | * | |
880 | * NOTE: this function follows the spin_trylock() convention, so | |
ef5dc121 | 881 | * it is negated from the down_trylock() return values! Be careful |
6053ee3b IM |
882 | * about this when converting semaphore users to mutexes. |
883 | * | |
884 | * This function must not be used in interrupt context. The | |
885 | * mutex must be released by the same task that acquired it. | |
886 | */ | |
7ad5b3a5 | 887 | int __sched mutex_trylock(struct mutex *lock) |
6053ee3b | 888 | { |
0d66bf6d PZ |
889 | int ret; |
890 | ||
891 | ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath); | |
892 | if (ret) | |
893 | mutex_set_owner(lock); | |
894 | ||
895 | return ret; | |
6053ee3b | 896 | } |
6053ee3b | 897 | EXPORT_SYMBOL(mutex_trylock); |
a511e3f9 | 898 | |
040a0a37 ML |
899 | #ifndef CONFIG_DEBUG_LOCK_ALLOC |
900 | int __sched | |
901 | __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) | |
902 | { | |
903 | int ret; | |
904 | ||
905 | might_sleep(); | |
906 | ||
907 | ret = __mutex_fastpath_lock_retval(&lock->base.count); | |
908 | ||
909 | if (likely(!ret)) { | |
910 | ww_mutex_set_context_fastpath(lock, ctx); | |
911 | mutex_set_owner(&lock->base); | |
912 | } else | |
913 | ret = __ww_mutex_lock_slowpath(lock, ctx); | |
914 | return ret; | |
915 | } | |
916 | EXPORT_SYMBOL(__ww_mutex_lock); | |
917 | ||
918 | int __sched | |
919 | __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) | |
920 | { | |
921 | int ret; | |
922 | ||
923 | might_sleep(); | |
924 | ||
925 | ret = __mutex_fastpath_lock_retval(&lock->base.count); | |
926 | ||
927 | if (likely(!ret)) { | |
928 | ww_mutex_set_context_fastpath(lock, ctx); | |
929 | mutex_set_owner(&lock->base); | |
930 | } else | |
931 | ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx); | |
932 | return ret; | |
933 | } | |
934 | EXPORT_SYMBOL(__ww_mutex_lock_interruptible); | |
935 | ||
936 | #endif | |
937 | ||
a511e3f9 AM |
938 | /** |
939 | * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 | |
940 | * @cnt: the atomic which we are to dec | |
941 | * @lock: the mutex to return holding if we dec to 0 | |
942 | * | |
943 | * return true and hold lock if we dec to 0, return false otherwise | |
944 | */ | |
945 | int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) | |
946 | { | |
947 | /* dec if we can't possibly hit 0 */ | |
948 | if (atomic_add_unless(cnt, -1, 1)) | |
949 | return 0; | |
950 | /* we might hit 0, so take the lock */ | |
951 | mutex_lock(lock); | |
952 | if (!atomic_dec_and_test(cnt)) { | |
953 | /* when we actually did the dec, we didn't hit 0 */ | |
954 | mutex_unlock(lock); | |
955 | return 0; | |
956 | } | |
957 | /* we hit 0, and we hold the lock */ | |
958 | return 1; | |
959 | } | |
960 | EXPORT_SYMBOL(atomic_dec_and_mutex_lock); |