]>
Commit | Line | Data |
---|---|---|
2874c5fd | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
64470f1b RS |
2 | /* LRW: as defined by Cyril Guyot in |
3 | * http://grouper.ieee.org/groups/1619/email/pdf00017.pdf | |
4 | * | |
5 | * Copyright (c) 2006 Rik Snel <[email protected]> | |
6 | * | |
6c2205b8 | 7 | * Based on ecb.c |
64470f1b | 8 | * Copyright (c) 2006 Herbert Xu <[email protected]> |
64470f1b RS |
9 | */ |
10 | /* This implementation is checked against the test vectors in the above | |
11 | * document and by a test vector provided by Ken Buchanan at | |
12 | * http://www.mail-archive.com/[email protected]/msg00173.html | |
13 | * | |
14 | * The test vectors are included in the testing module tcrypt.[ch] */ | |
6c2205b8 | 15 | |
700cb3f5 HX |
16 | #include <crypto/internal/skcipher.h> |
17 | #include <crypto/scatterwalk.h> | |
64470f1b RS |
18 | #include <linux/err.h> |
19 | #include <linux/init.h> | |
20 | #include <linux/kernel.h> | |
21 | #include <linux/module.h> | |
22 | #include <linux/scatterlist.h> | |
23 | #include <linux/slab.h> | |
24 | ||
25 | #include <crypto/b128ops.h> | |
26 | #include <crypto/gf128mul.h> | |
64470f1b | 27 | |
217afccf EB |
28 | #define LRW_BLOCK_SIZE 16 |
29 | ||
171c0204 | 30 | struct priv { |
700cb3f5 | 31 | struct crypto_skcipher *child; |
217afccf EB |
32 | |
33 | /* | |
34 | * optimizes multiplying a random (non incrementing, as at the | |
35 | * start of a new sector) value with key2, we could also have | |
36 | * used 4k optimization tables or no optimization at all. In the | |
37 | * latter case we would have to store key2 here | |
38 | */ | |
39 | struct gf128mul_64k *table; | |
40 | ||
41 | /* | |
42 | * stores: | |
43 | * key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 }, | |
44 | * key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 } | |
45 | * key2*{ 0,0,...1,1,1,1,1 }, etc | |
46 | * needed for optimized multiplication of incrementing values | |
47 | * with key2 | |
48 | */ | |
49 | be128 mulinc[128]; | |
171c0204 JK |
50 | }; |
51 | ||
700cb3f5 | 52 | struct rctx { |
700cb3f5 | 53 | be128 t; |
700cb3f5 HX |
54 | struct skcipher_request subreq; |
55 | }; | |
56 | ||
64470f1b RS |
57 | static inline void setbit128_bbe(void *b, int bit) |
58 | { | |
8eb2dfac HX |
59 | __set_bit(bit ^ (0x80 - |
60 | #ifdef __BIG_ENDIAN | |
61 | BITS_PER_LONG | |
62 | #else | |
63 | BITS_PER_BYTE | |
64 | #endif | |
65 | ), b); | |
64470f1b RS |
66 | } |
67 | ||
217afccf EB |
68 | static int setkey(struct crypto_skcipher *parent, const u8 *key, |
69 | unsigned int keylen) | |
64470f1b | 70 | { |
217afccf EB |
71 | struct priv *ctx = crypto_skcipher_ctx(parent); |
72 | struct crypto_skcipher *child = ctx->child; | |
73 | int err, bsize = LRW_BLOCK_SIZE; | |
74 | const u8 *tweak = key + keylen - bsize; | |
64470f1b | 75 | be128 tmp = { 0 }; |
171c0204 | 76 | int i; |
64470f1b | 77 | |
217afccf EB |
78 | crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); |
79 | crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) & | |
80 | CRYPTO_TFM_REQ_MASK); | |
81 | err = crypto_skcipher_setkey(child, key, keylen - bsize); | |
217afccf EB |
82 | if (err) |
83 | return err; | |
84 | ||
64470f1b RS |
85 | if (ctx->table) |
86 | gf128mul_free_64k(ctx->table); | |
87 | ||
88 | /* initialize multiplication table for Key2 */ | |
171c0204 | 89 | ctx->table = gf128mul_init_64k_bbe((be128 *)tweak); |
64470f1b RS |
90 | if (!ctx->table) |
91 | return -ENOMEM; | |
92 | ||
93 | /* initialize optimization table */ | |
94 | for (i = 0; i < 128; i++) { | |
95 | setbit128_bbe(&tmp, i); | |
96 | ctx->mulinc[i] = tmp; | |
97 | gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table); | |
98 | } | |
99 | ||
100 | return 0; | |
101 | } | |
171c0204 | 102 | |
c778f96b OM |
103 | /* |
104 | * Returns the number of trailing '1' bits in the words of the counter, which is | |
105 | * represented by 4 32-bit words, arranged from least to most significant. | |
106 | * At the same time, increments the counter by one. | |
107 | * | |
108 | * For example: | |
109 | * | |
110 | * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 }; | |
111 | * int i = next_index(&counter); | |
112 | * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 } | |
113 | */ | |
114 | static int next_index(u32 *counter) | |
64470f1b | 115 | { |
c778f96b | 116 | int i, res = 0; |
64470f1b | 117 | |
c778f96b | 118 | for (i = 0; i < 4; i++) { |
fd27b571 AB |
119 | if (counter[i] + 1 != 0) |
120 | return res + ffz(counter[i]++); | |
121 | ||
c778f96b OM |
122 | counter[i] = 0; |
123 | res += 32; | |
64470f1b RS |
124 | } |
125 | ||
fbe1a850 OM |
126 | /* |
127 | * If we get here, then x == 128 and we are incrementing the counter | |
128 | * from all ones to all zeros. This means we must return index 127, i.e. | |
129 | * the one corresponding to key2*{ 1,...,1 }. | |
130 | */ | |
131 | return 127; | |
64470f1b RS |
132 | } |
133 | ||
ac3c8f36 OM |
134 | /* |
135 | * We compute the tweak masks twice (both before and after the ECB encryption or | |
136 | * decryption) to avoid having to allocate a temporary buffer and/or make | |
137 | * mutliple calls to the 'ecb(..)' instance, which usually would be slower than | |
138 | * just doing the next_index() calls again. | |
139 | */ | |
140 | static int xor_tweak(struct skcipher_request *req, bool second_pass) | |
64470f1b | 141 | { |
700cb3f5 | 142 | const int bs = LRW_BLOCK_SIZE; |
700cb3f5 | 143 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
700cb3f5 | 144 | struct priv *ctx = crypto_skcipher_ctx(tfm); |
ac3c8f36 OM |
145 | struct rctx *rctx = skcipher_request_ctx(req); |
146 | be128 t = rctx->t; | |
700cb3f5 | 147 | struct skcipher_walk w; |
c778f96b OM |
148 | __be32 *iv; |
149 | u32 counter[4]; | |
700cb3f5 | 150 | int err; |
64470f1b | 151 | |
ac3c8f36 OM |
152 | if (second_pass) { |
153 | req = &rctx->subreq; | |
154 | /* set to our TFM to enforce correct alignment: */ | |
155 | skcipher_request_set_tfm(req, tfm); | |
156 | } | |
64470f1b | 157 | |
ac3c8f36 | 158 | err = skcipher_walk_virt(&w, req, false); |
aec286cd EB |
159 | if (err) |
160 | return err; | |
c778f96b | 161 | |
aec286cd | 162 | iv = (__be32 *)w.iv; |
c778f96b OM |
163 | counter[0] = be32_to_cpu(iv[3]); |
164 | counter[1] = be32_to_cpu(iv[2]); | |
165 | counter[2] = be32_to_cpu(iv[1]); | |
166 | counter[3] = be32_to_cpu(iv[0]); | |
64470f1b | 167 | |
700cb3f5 HX |
168 | while (w.nbytes) { |
169 | unsigned int avail = w.nbytes; | |
170 | be128 *wsrc; | |
171 | be128 *wdst; | |
172 | ||
173 | wsrc = w.src.virt.addr; | |
174 | wdst = w.dst.virt.addr; | |
64470f1b | 175 | |
64470f1b | 176 | do { |
ac3c8f36 | 177 | be128_xor(wdst++, &t, wsrc++); |
700cb3f5 | 178 | |
64470f1b RS |
179 | /* T <- I*Key2, using the optimization |
180 | * discussed in the specification */ | |
ac3c8f36 | 181 | be128_xor(&t, &t, &ctx->mulinc[next_index(counter)]); |
700cb3f5 | 182 | } while ((avail -= bs) >= bs); |
64470f1b | 183 | |
ac3c8f36 | 184 | if (second_pass && w.nbytes == w.total) { |
c778f96b OM |
185 | iv[0] = cpu_to_be32(counter[3]); |
186 | iv[1] = cpu_to_be32(counter[2]); | |
187 | iv[2] = cpu_to_be32(counter[1]); | |
188 | iv[3] = cpu_to_be32(counter[0]); | |
189 | } | |
190 | ||
700cb3f5 HX |
191 | err = skcipher_walk_done(&w, avail); |
192 | } | |
64470f1b | 193 | |
700cb3f5 HX |
194 | return err; |
195 | } | |
196 | ||
ac3c8f36 | 197 | static int xor_tweak_pre(struct skcipher_request *req) |
700cb3f5 | 198 | { |
ac3c8f36 | 199 | return xor_tweak(req, false); |
700cb3f5 HX |
200 | } |
201 | ||
ac3c8f36 | 202 | static int xor_tweak_post(struct skcipher_request *req) |
700cb3f5 | 203 | { |
ac3c8f36 | 204 | return xor_tweak(req, true); |
64470f1b RS |
205 | } |
206 | ||
ac3c8f36 | 207 | static void crypt_done(struct crypto_async_request *areq, int err) |
700cb3f5 HX |
208 | { |
209 | struct skcipher_request *req = areq->data; | |
700cb3f5 | 210 | |
b257b48c HX |
211 | if (!err) { |
212 | struct rctx *rctx = skcipher_request_ctx(req); | |
213 | ||
214 | rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; | |
ac3c8f36 | 215 | err = xor_tweak_post(req); |
b257b48c | 216 | } |
700cb3f5 HX |
217 | |
218 | skcipher_request_complete(req, err); | |
219 | } | |
220 | ||
ac3c8f36 | 221 | static void init_crypt(struct skcipher_request *req) |
64470f1b | 222 | { |
ac3c8f36 | 223 | struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); |
700cb3f5 | 224 | struct rctx *rctx = skcipher_request_ctx(req); |
ac3c8f36 | 225 | struct skcipher_request *subreq = &rctx->subreq; |
700cb3f5 | 226 | |
ac3c8f36 OM |
227 | skcipher_request_set_tfm(subreq, ctx->child); |
228 | skcipher_request_set_callback(subreq, req->base.flags, crypt_done, req); | |
229 | /* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */ | |
230 | skcipher_request_set_crypt(subreq, req->dst, req->dst, | |
231 | req->cryptlen, req->iv); | |
700cb3f5 | 232 | |
ac3c8f36 OM |
233 | /* calculate first value of T */ |
234 | memcpy(&rctx->t, req->iv, sizeof(rctx->t)); | |
64470f1b | 235 | |
ac3c8f36 OM |
236 | /* T <- I*Key2 */ |
237 | gf128mul_64k_bbe(&rctx->t, ctx->table); | |
64470f1b RS |
238 | } |
239 | ||
ac3c8f36 | 240 | static int encrypt(struct skcipher_request *req) |
64470f1b | 241 | { |
ac3c8f36 OM |
242 | struct rctx *rctx = skcipher_request_ctx(req); |
243 | struct skcipher_request *subreq = &rctx->subreq; | |
64470f1b | 244 | |
ac3c8f36 OM |
245 | init_crypt(req); |
246 | return xor_tweak_pre(req) ?: | |
247 | crypto_skcipher_encrypt(subreq) ?: | |
248 | xor_tweak_post(req); | |
700cb3f5 HX |
249 | } |
250 | ||
251 | static int decrypt(struct skcipher_request *req) | |
252 | { | |
ac3c8f36 OM |
253 | struct rctx *rctx = skcipher_request_ctx(req); |
254 | struct skcipher_request *subreq = &rctx->subreq; | |
255 | ||
256 | init_crypt(req); | |
257 | return xor_tweak_pre(req) ?: | |
258 | crypto_skcipher_decrypt(subreq) ?: | |
259 | xor_tweak_post(req); | |
64470f1b RS |
260 | } |
261 | ||
700cb3f5 | 262 | static int init_tfm(struct crypto_skcipher *tfm) |
64470f1b | 263 | { |
700cb3f5 HX |
264 | struct skcipher_instance *inst = skcipher_alg_instance(tfm); |
265 | struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst); | |
266 | struct priv *ctx = crypto_skcipher_ctx(tfm); | |
267 | struct crypto_skcipher *cipher; | |
64470f1b | 268 | |
700cb3f5 | 269 | cipher = crypto_spawn_skcipher(spawn); |
2e306ee0 HX |
270 | if (IS_ERR(cipher)) |
271 | return PTR_ERR(cipher); | |
64470f1b | 272 | |
2e306ee0 | 273 | ctx->child = cipher; |
700cb3f5 HX |
274 | |
275 | crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) + | |
276 | sizeof(struct rctx)); | |
277 | ||
64470f1b RS |
278 | return 0; |
279 | } | |
280 | ||
700cb3f5 | 281 | static void exit_tfm(struct crypto_skcipher *tfm) |
64470f1b | 282 | { |
700cb3f5 | 283 | struct priv *ctx = crypto_skcipher_ctx(tfm); |
171c0204 | 284 | |
217afccf EB |
285 | if (ctx->table) |
286 | gf128mul_free_64k(ctx->table); | |
700cb3f5 HX |
287 | crypto_free_skcipher(ctx->child); |
288 | } | |
289 | ||
d099ea6e | 290 | static void crypto_lrw_free(struct skcipher_instance *inst) |
700cb3f5 HX |
291 | { |
292 | crypto_drop_skcipher(skcipher_instance_ctx(inst)); | |
293 | kfree(inst); | |
64470f1b RS |
294 | } |
295 | ||
700cb3f5 | 296 | static int create(struct crypto_template *tmpl, struct rtattr **tb) |
64470f1b | 297 | { |
700cb3f5 HX |
298 | struct crypto_skcipher_spawn *spawn; |
299 | struct skcipher_instance *inst; | |
300 | struct crypto_attr_type *algt; | |
301 | struct skcipher_alg *alg; | |
302 | const char *cipher_name; | |
303 | char ecb_name[CRYPTO_MAX_ALG_NAME]; | |
b9f76ddd | 304 | u32 mask; |
ebc610e5 HX |
305 | int err; |
306 | ||
700cb3f5 HX |
307 | algt = crypto_get_attr_type(tb); |
308 | if (IS_ERR(algt)) | |
309 | return PTR_ERR(algt); | |
310 | ||
311 | if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask) | |
312 | return -EINVAL; | |
313 | ||
b9f76ddd EB |
314 | mask = crypto_requires_sync(algt->type, algt->mask); |
315 | ||
700cb3f5 HX |
316 | cipher_name = crypto_attr_alg_name(tb[1]); |
317 | if (IS_ERR(cipher_name)) | |
318 | return PTR_ERR(cipher_name); | |
319 | ||
320 | inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL); | |
321 | if (!inst) | |
322 | return -ENOMEM; | |
323 | ||
324 | spawn = skcipher_instance_ctx(inst); | |
325 | ||
b9f76ddd EB |
326 | err = crypto_grab_skcipher(spawn, skcipher_crypto_instance(inst), |
327 | cipher_name, 0, mask); | |
700cb3f5 HX |
328 | if (err == -ENOENT) { |
329 | err = -ENAMETOOLONG; | |
330 | if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)", | |
331 | cipher_name) >= CRYPTO_MAX_ALG_NAME) | |
332 | goto err_free_inst; | |
333 | ||
b9f76ddd EB |
334 | err = crypto_grab_skcipher(spawn, |
335 | skcipher_crypto_instance(inst), | |
336 | ecb_name, 0, mask); | |
700cb3f5 HX |
337 | } |
338 | ||
ebc610e5 | 339 | if (err) |
700cb3f5 | 340 | goto err_free_inst; |
64470f1b | 341 | |
700cb3f5 | 342 | alg = crypto_skcipher_spawn_alg(spawn); |
64470f1b | 343 | |
700cb3f5 HX |
344 | err = -EINVAL; |
345 | if (alg->base.cra_blocksize != LRW_BLOCK_SIZE) | |
d5706310 | 346 | goto err_free_inst; |
64470f1b | 347 | |
700cb3f5 | 348 | if (crypto_skcipher_alg_ivsize(alg)) |
d5706310 | 349 | goto err_free_inst; |
64470f1b | 350 | |
700cb3f5 HX |
351 | err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw", |
352 | &alg->base); | |
353 | if (err) | |
d5706310 | 354 | goto err_free_inst; |
64470f1b | 355 | |
700cb3f5 HX |
356 | err = -EINVAL; |
357 | cipher_name = alg->base.cra_name; | |
64470f1b | 358 | |
700cb3f5 HX |
359 | /* Alas we screwed up the naming so we have to mangle the |
360 | * cipher name. | |
361 | */ | |
362 | if (!strncmp(cipher_name, "ecb(", 4)) { | |
363 | unsigned len; | |
64470f1b | 364 | |
700cb3f5 HX |
365 | len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name)); |
366 | if (len < 2 || len >= sizeof(ecb_name)) | |
d5706310 | 367 | goto err_free_inst; |
64470f1b | 368 | |
700cb3f5 | 369 | if (ecb_name[len - 1] != ')') |
d5706310 | 370 | goto err_free_inst; |
64470f1b | 371 | |
700cb3f5 | 372 | ecb_name[len - 1] = 0; |
64470f1b | 373 | |
700cb3f5 | 374 | if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, |
616129cc CJ |
375 | "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) { |
376 | err = -ENAMETOOLONG; | |
d5706310 | 377 | goto err_free_inst; |
616129cc | 378 | } |
d38efad2 | 379 | } else |
d5706310 | 380 | goto err_free_inst; |
700cb3f5 HX |
381 | |
382 | inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC; | |
383 | inst->alg.base.cra_priority = alg->base.cra_priority; | |
384 | inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE; | |
385 | inst->alg.base.cra_alignmask = alg->base.cra_alignmask | | |
20a0f976 | 386 | (__alignof__(be128) - 1); |
700cb3f5 HX |
387 | |
388 | inst->alg.ivsize = LRW_BLOCK_SIZE; | |
389 | inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) + | |
390 | LRW_BLOCK_SIZE; | |
391 | inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) + | |
392 | LRW_BLOCK_SIZE; | |
393 | ||
394 | inst->alg.base.cra_ctxsize = sizeof(struct priv); | |
395 | ||
396 | inst->alg.init = init_tfm; | |
397 | inst->alg.exit = exit_tfm; | |
398 | ||
399 | inst->alg.setkey = setkey; | |
400 | inst->alg.encrypt = encrypt; | |
401 | inst->alg.decrypt = decrypt; | |
402 | ||
d099ea6e | 403 | inst->free = crypto_lrw_free; |
700cb3f5 HX |
404 | |
405 | err = skcipher_register_instance(tmpl, inst); | |
d5706310 | 406 | if (err) { |
700cb3f5 | 407 | err_free_inst: |
d099ea6e | 408 | crypto_lrw_free(inst); |
d5706310 EB |
409 | } |
410 | return err; | |
64470f1b RS |
411 | } |
412 | ||
413 | static struct crypto_template crypto_tmpl = { | |
414 | .name = "lrw", | |
700cb3f5 | 415 | .create = create, |
64470f1b RS |
416 | .module = THIS_MODULE, |
417 | }; | |
418 | ||
419 | static int __init crypto_module_init(void) | |
420 | { | |
421 | return crypto_register_template(&crypto_tmpl); | |
422 | } | |
423 | ||
424 | static void __exit crypto_module_exit(void) | |
425 | { | |
426 | crypto_unregister_template(&crypto_tmpl); | |
427 | } | |
428 | ||
c4741b23 | 429 | subsys_initcall(crypto_module_init); |
64470f1b RS |
430 | module_exit(crypto_module_exit); |
431 | ||
432 | MODULE_LICENSE("GPL"); | |
433 | MODULE_DESCRIPTION("LRW block cipher mode"); | |
4943ba16 | 434 | MODULE_ALIAS_CRYPTO("lrw"); |