]> Git Repo - linux.git/blame - arch/arm/mm/mmu.c
ARM: 9104/2: Fix Keystone 2 kernel mapping regression
[linux.git] / arch / arm / mm / mmu.c
CommitLineData
d2912cb1 1// SPDX-License-Identifier: GPL-2.0-only
d111e8f9
RK
2/*
3 * linux/arch/arm/mm/mmu.c
4 *
5 * Copyright (C) 1995-2005 Russell King
d111e8f9 6 */
ae8f1541 7#include <linux/module.h>
d111e8f9
RK
8#include <linux/kernel.h>
9#include <linux/errno.h>
10#include <linux/init.h>
d111e8f9
RK
11#include <linux/mman.h>
12#include <linux/nodemask.h>
2778f620 13#include <linux/memblock.h>
d907387c 14#include <linux/fs.h>
0536bdf3 15#include <linux/vmalloc.h>
158e8bfe 16#include <linux/sizes.h>
d111e8f9 17
15d07dc9 18#include <asm/cp15.h>
0ba8b9b2 19#include <asm/cputype.h>
3f973e22 20#include <asm/cachetype.h>
ebd4922e 21#include <asm/sections.h>
d111e8f9 22#include <asm/setup.h>
e616c591 23#include <asm/smp_plat.h>
d111e8f9 24#include <asm/tlb.h>
d73cd428 25#include <asm/highmem.h>
9f97da78 26#include <asm/system_info.h>
247055aa 27#include <asm/traps.h>
a77e0c7b
SS
28#include <asm/procinfo.h>
29#include <asm/memory.h>
ca15ca40 30#include <asm/pgalloc.h>
c12366ba 31#include <asm/kasan_def.h>
d111e8f9
RK
32
33#include <asm/mach/arch.h>
34#include <asm/mach/map.h>
c2794437 35#include <asm/mach/pci.h>
a05e54c1 36#include <asm/fixmap.h>
d111e8f9 37
9254970c 38#include "fault.h"
d111e8f9 39#include "mm.h"
de40614e 40#include "tcm.h"
d111e8f9 41
7a1be318
AB
42extern unsigned long __atags_pointer;
43
d111e8f9
RK
44/*
45 * empty_zero_page is a special page that is used for
46 * zero-initialized data and COW.
47 */
48struct page *empty_zero_page;
3653f3ab 49EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
50
51/*
52 * The pmd table for the upper-most set of pages.
53 */
54pmd_t *top_pmd;
55
1d4d3715
JL
56pmdval_t user_pmd_table = _PAGE_USER_TABLE;
57
ae8f1541
RK
58#define CPOLICY_UNCACHED 0
59#define CPOLICY_BUFFERED 1
60#define CPOLICY_WRITETHROUGH 2
61#define CPOLICY_WRITEBACK 3
62#define CPOLICY_WRITEALLOC 4
63
64static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
65static unsigned int ecc_mask __initdata = 0;
44b18693 66pgprot_t pgprot_user;
ae8f1541
RK
67pgprot_t pgprot_kernel;
68
44b18693 69EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
70EXPORT_SYMBOL(pgprot_kernel);
71
72struct cachepolicy {
73 const char policy[16];
74 unsigned int cr_mask;
442e70c0 75 pmdval_t pmd;
f6e3354d 76 pteval_t pte;
ae8f1541
RK
77};
78
79static struct cachepolicy cache_policies[] __initdata = {
80 {
81 .policy = "uncached",
82 .cr_mask = CR_W|CR_C,
83 .pmd = PMD_SECT_UNCACHED,
bb30f36f 84 .pte = L_PTE_MT_UNCACHED,
ae8f1541
RK
85 }, {
86 .policy = "buffered",
87 .cr_mask = CR_C,
88 .pmd = PMD_SECT_BUFFERED,
bb30f36f 89 .pte = L_PTE_MT_BUFFERABLE,
ae8f1541
RK
90 }, {
91 .policy = "writethrough",
92 .cr_mask = 0,
93 .pmd = PMD_SECT_WT,
bb30f36f 94 .pte = L_PTE_MT_WRITETHROUGH,
ae8f1541
RK
95 }, {
96 .policy = "writeback",
97 .cr_mask = 0,
98 .pmd = PMD_SECT_WB,
bb30f36f 99 .pte = L_PTE_MT_WRITEBACK,
ae8f1541
RK
100 }, {
101 .policy = "writealloc",
102 .cr_mask = 0,
103 .pmd = PMD_SECT_WBWA,
bb30f36f 104 .pte = L_PTE_MT_WRITEALLOC,
ae8f1541
RK
105 }
106};
107
b849a60e 108#ifdef CONFIG_CPU_CP15
20e7e364
RK
109static unsigned long initial_pmd_value __initdata = 0;
110
ae8f1541 111/*
ca8f0b0a
RK
112 * Initialise the cache_policy variable with the initial state specified
113 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
114 * the C code sets the page tables up with the same policy as the head
115 * assembly code, which avoids an illegal state where the TLBs can get
116 * confused. See comments in early_cachepolicy() for more information.
ae8f1541 117 */
ca8f0b0a 118void __init init_default_cache_policy(unsigned long pmd)
ae8f1541
RK
119{
120 int i;
121
20e7e364
RK
122 initial_pmd_value = pmd;
123
6b3142b2 124 pmd &= PMD_SECT_CACHE_MASK;
ca8f0b0a
RK
125
126 for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
127 if (cache_policies[i].pmd == pmd) {
128 cachepolicy = i;
129 break;
130 }
131
132 if (i == ARRAY_SIZE(cache_policies))
133 pr_err("ERROR: could not find cache policy\n");
134}
135
136/*
137 * These are useful for identifying cache coherency problems by allowing
138 * the cache or the cache and writebuffer to be turned off. (Note: the
139 * write buffer should not be on and the cache off).
140 */
141static int __init early_cachepolicy(char *p)
142{
143 int i, selected = -1;
144
ae8f1541
RK
145 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
146 int len = strlen(cache_policies[i].policy);
147
2b0d8c25 148 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ca8f0b0a 149 selected = i;
ae8f1541
RK
150 break;
151 }
152 }
ca8f0b0a
RK
153
154 if (selected == -1)
155 pr_err("ERROR: unknown or unsupported cache policy\n");
156
4b46d641
RK
157 /*
158 * This restriction is partly to do with the way we boot; it is
159 * unpredictable to have memory mapped using two different sets of
160 * memory attributes (shared, type, and cache attribs). We can not
161 * change these attributes once the initial assembly has setup the
162 * page tables.
163 */
ca8f0b0a
RK
164 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
165 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
166 cache_policies[cachepolicy].policy);
167 return 0;
168 }
169
170 if (selected != cachepolicy) {
171 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
172 cachepolicy = selected;
173 flush_cache_all();
174 set_cr(cr);
11179d8c 175 }
2b0d8c25 176 return 0;
ae8f1541 177}
2b0d8c25 178early_param("cachepolicy", early_cachepolicy);
ae8f1541 179
2b0d8c25 180static int __init early_nocache(char *__unused)
ae8f1541
RK
181{
182 char *p = "buffered";
4ed89f22 183 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
184 early_cachepolicy(p);
185 return 0;
ae8f1541 186}
2b0d8c25 187early_param("nocache", early_nocache);
ae8f1541 188
2b0d8c25 189static int __init early_nowrite(char *__unused)
ae8f1541
RK
190{
191 char *p = "uncached";
4ed89f22 192 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
193 early_cachepolicy(p);
194 return 0;
ae8f1541 195}
2b0d8c25 196early_param("nowb", early_nowrite);
ae8f1541 197
1b6ba46b 198#ifndef CONFIG_ARM_LPAE
2b0d8c25 199static int __init early_ecc(char *p)
ae8f1541 200{
2b0d8c25 201 if (memcmp(p, "on", 2) == 0)
ae8f1541 202 ecc_mask = PMD_PROTECTION;
2b0d8c25 203 else if (memcmp(p, "off", 3) == 0)
ae8f1541 204 ecc_mask = 0;
2b0d8c25 205 return 0;
ae8f1541 206}
2b0d8c25 207early_param("ecc", early_ecc);
1b6ba46b 208#endif
ae8f1541 209
b849a60e
UKK
210#else /* ifdef CONFIG_CPU_CP15 */
211
212static int __init early_cachepolicy(char *p)
213{
8b521cb2 214 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
b849a60e
UKK
215}
216early_param("cachepolicy", early_cachepolicy);
217
218static int __init noalign_setup(char *__unused)
219{
8b521cb2 220 pr_warn("noalign kernel parameter not supported without cp15\n");
b849a60e
UKK
221}
222__setup("noalign", noalign_setup);
223
224#endif /* ifdef CONFIG_CPU_CP15 / else */
225
36bb94ba 226#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
4d9c5b89 227#define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
b1cce6b1 228#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 229
7619751f 230static struct mem_type mem_types[] __ro_after_init = {
0af92bef 231 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
232 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
233 L_PTE_SHARED,
0af92bef 234 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 235 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
236 .domain = DOMAIN_IO,
237 },
238 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 239 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 240 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 241 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
242 .domain = DOMAIN_IO,
243 },
6a22d824 244 [MT_DEVICE_CACHED] = { /* ioremap_cache */
bb30f36f 245 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
246 .prot_l1 = PMD_TYPE_TABLE,
247 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
248 .domain = DOMAIN_IO,
c2794437 249 },
1ad77a87 250 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 251 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 252 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 253 .prot_sect = PROT_SECT_DEVICE,
0af92bef 254 .domain = DOMAIN_IO,
ae8f1541 255 },
ebb4c658
RK
256 [MT_UNCACHED] = {
257 .prot_pte = PROT_PTE_DEVICE,
258 .prot_l1 = PMD_TYPE_TABLE,
259 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
260 .domain = DOMAIN_IO,
261 },
ae8f1541 262 [MT_CACHECLEAN] = {
9ef79635 263 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
264 .domain = DOMAIN_KERNEL,
265 },
1b6ba46b 266#ifndef CONFIG_ARM_LPAE
ae8f1541 267 [MT_MINICLEAN] = {
9ef79635 268 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
269 .domain = DOMAIN_KERNEL,
270 },
1b6ba46b 271#endif
ae8f1541
RK
272 [MT_LOW_VECTORS] = {
273 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 274 L_PTE_RDONLY,
ae8f1541 275 .prot_l1 = PMD_TYPE_TABLE,
a02d8dfd 276 .domain = DOMAIN_VECTORS,
ae8f1541
RK
277 },
278 [MT_HIGH_VECTORS] = {
279 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 280 L_PTE_USER | L_PTE_RDONLY,
ae8f1541 281 .prot_l1 = PMD_TYPE_TABLE,
a02d8dfd 282 .domain = DOMAIN_VECTORS,
ae8f1541 283 },
2e2c9de2 284 [MT_MEMORY_RWX] = {
36bb94ba 285 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
f1a2481c 286 .prot_l1 = PMD_TYPE_TABLE,
9ef79635 287 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
288 .domain = DOMAIN_KERNEL,
289 },
ebd4922e
RK
290 [MT_MEMORY_RW] = {
291 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
292 L_PTE_XN,
293 .prot_l1 = PMD_TYPE_TABLE,
294 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
295 .domain = DOMAIN_KERNEL,
296 },
ae8f1541 297 [MT_ROM] = {
9ef79635 298 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
299 .domain = DOMAIN_KERNEL,
300 },
2e2c9de2 301 [MT_MEMORY_RWX_NONCACHED] = {
f1a2481c 302 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 303 L_PTE_MT_BUFFERABLE,
f1a2481c 304 .prot_l1 = PMD_TYPE_TABLE,
e4707dd3
PW
305 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
306 .domain = DOMAIN_KERNEL,
307 },
2e2c9de2 308 [MT_MEMORY_RW_DTCM] = {
f444fce3 309 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 310 L_PTE_XN,
f444fce3
LW
311 .prot_l1 = PMD_TYPE_TABLE,
312 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
313 .domain = DOMAIN_KERNEL,
cb9d7707 314 },
2e2c9de2 315 [MT_MEMORY_RWX_ITCM] = {
36bb94ba 316 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
cb9d7707 317 .prot_l1 = PMD_TYPE_TABLE,
f444fce3 318 .domain = DOMAIN_KERNEL,
cb9d7707 319 },
2e2c9de2 320 [MT_MEMORY_RW_SO] = {
8fb54284 321 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
93d5bf07 322 L_PTE_MT_UNCACHED | L_PTE_XN,
8fb54284
SS
323 .prot_l1 = PMD_TYPE_TABLE,
324 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
325 PMD_SECT_UNCACHED | PMD_SECT_XN,
326 .domain = DOMAIN_KERNEL,
327 },
c7909509 328 [MT_MEMORY_DMA_READY] = {
71b55663
RK
329 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
330 L_PTE_XN,
c7909509
MS
331 .prot_l1 = PMD_TYPE_TABLE,
332 .domain = DOMAIN_KERNEL,
333 },
ae8f1541
RK
334};
335
b29e9f5e
RK
336const struct mem_type *get_mem_type(unsigned int type)
337{
338 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
339}
69d3a84a 340EXPORT_SYMBOL(get_mem_type);
b29e9f5e 341
a5f4c561
SA
342static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
343
344static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
345 __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
346
347static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
348{
349 return &bm_pte[pte_index(addr)];
350}
351
352static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
353{
354 return pte_offset_kernel(dir, addr);
355}
356
357static inline pmd_t * __init fixmap_pmd(unsigned long addr)
358{
e05c7b1f 359 return pmd_off_k(addr);
a5f4c561
SA
360}
361
362void __init early_fixmap_init(void)
363{
364 pmd_t *pmd;
365
366 /*
367 * The early fixmap range spans multiple pmds, for which
368 * we are not prepared:
369 */
2937367b 370 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
a5f4c561
SA
371 != FIXADDR_TOP >> PMD_SHIFT);
372
373 pmd = fixmap_pmd(FIXADDR_TOP);
374 pmd_populate_kernel(&init_mm, pmd, bm_pte);
375
376 pte_offset_fixmap = pte_offset_early_fixmap;
377}
378
99b4ac9a
KC
379/*
380 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
381 * As a result, this can only be called with preemption disabled, as under
382 * stop_machine().
383 */
384void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
385{
386 unsigned long vaddr = __fix_to_virt(idx);
a5f4c561 387 pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
99b4ac9a
KC
388
389 /* Make sure fixmap region does not exceed available allocation. */
d624833f 390 BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START);
99b4ac9a
KC
391 BUG_ON(idx >= __end_of_fixed_addresses);
392
b089c31c
JM
393 /* we only support device mappings until pgprot_kernel has been set */
394 if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
395 pgprot_val(pgprot_kernel) == 0))
396 return;
397
99b4ac9a
KC
398 if (pgprot_val(prot))
399 set_pte_at(NULL, vaddr, pte,
400 pfn_pte(phys >> PAGE_SHIFT, prot));
401 else
402 pte_clear(NULL, vaddr, pte);
403 local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
404}
405
ae8f1541
RK
406/*
407 * Adjust the PMD section entries according to the CPU in use.
408 */
409static void __init build_mem_type_table(void)
410{
411 struct cachepolicy *cp;
412 unsigned int cr = get_cr();
442e70c0 413 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
ae8f1541
RK
414 int cpu_arch = cpu_architecture();
415 int i;
416
11179d8c 417 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 418#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
419 if (cachepolicy > CPOLICY_BUFFERED)
420 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 421#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
422 if (cachepolicy > CPOLICY_WRITETHROUGH)
423 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 424#endif
11179d8c 425 }
ae8f1541
RK
426 if (cpu_arch < CPU_ARCH_ARMv5) {
427 if (cachepolicy >= CPOLICY_WRITEALLOC)
428 cachepolicy = CPOLICY_WRITEBACK;
429 ecc_mask = 0;
430 }
ca8f0b0a 431
20e7e364
RK
432 if (is_smp()) {
433 if (cachepolicy != CPOLICY_WRITEALLOC) {
434 pr_warn("Forcing write-allocate cache policy for SMP\n");
435 cachepolicy = CPOLICY_WRITEALLOC;
436 }
437 if (!(initial_pmd_value & PMD_SECT_S)) {
438 pr_warn("Forcing shared mappings for SMP\n");
439 initial_pmd_value |= PMD_SECT_S;
440 }
ca8f0b0a 441 }
ae8f1541 442
1ad77a87 443 /*
b1cce6b1
RK
444 * Strip out features not present on earlier architectures.
445 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
446 * without extended page tables don't have the 'Shared' bit.
1ad77a87 447 */
b1cce6b1
RK
448 if (cpu_arch < CPU_ARCH_ARMv5)
449 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
450 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
451 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
452 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
453 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
454
455 /*
b1cce6b1
RK
456 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
457 * "update-able on write" bit on ARM610). However, Xscale and
458 * Xscale3 require this bit to be cleared.
ae8f1541 459 */
d33c43ac 460 if (cpu_is_xscale_family()) {
9ef79635 461 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 462 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
463 mem_types[i].prot_l1 &= ~PMD_BIT4;
464 }
465 } else if (cpu_arch < CPU_ARCH_ARMv6) {
466 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
467 if (mem_types[i].prot_l1)
468 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
469 if (mem_types[i].prot_sect)
470 mem_types[i].prot_sect |= PMD_BIT4;
471 }
472 }
ae8f1541 473
b1cce6b1
RK
474 /*
475 * Mark the device areas according to the CPU/architecture.
476 */
477 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
478 if (!cpu_is_xsc3()) {
479 /*
480 * Mark device regions on ARMv6+ as execute-never
481 * to prevent speculative instruction fetches.
482 */
483 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
484 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
485 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
486 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
ebd4922e
RK
487
488 /* Also setup NX memory mapping */
489 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
b1cce6b1
RK
490 }
491 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
492 /*
493 * For ARMv7 with TEX remapping,
494 * - shared device is SXCB=1100
495 * - nonshared device is SXCB=0100
496 * - write combine device mem is SXCB=0001
497 * (Uncached Normal memory)
498 */
499 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
500 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
501 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
502 } else if (cpu_is_xsc3()) {
503 /*
504 * For Xscale3,
505 * - shared device is TEXCB=00101
506 * - nonshared device is TEXCB=01000
507 * - write combine device mem is TEXCB=00100
508 * (Inner/Outer Uncacheable in xsc3 parlance)
509 */
510 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
511 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
512 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
513 } else {
514 /*
515 * For ARMv6 and ARMv7 without TEX remapping,
516 * - shared device is TEXCB=00001
517 * - nonshared device is TEXCB=01000
518 * - write combine device mem is TEXCB=00100
519 * (Uncached Normal in ARMv6 parlance).
520 */
521 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
522 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
523 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
524 }
525 } else {
526 /*
527 * On others, write combining is "Uncached/Buffered"
528 */
529 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
530 }
531
532 /*
533 * Now deal with the memory-type mappings
534 */
ae8f1541 535 cp = &cache_policies[cachepolicy];
bb30f36f
RK
536 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
537
1d4d3715 538#ifndef CONFIG_ARM_LPAE
b6ccb980
WD
539 /*
540 * We don't use domains on ARMv6 (since this causes problems with
541 * v6/v7 kernels), so we must use a separate memory type for user
542 * r/o, kernel r/w to map the vectors page.
543 */
b6ccb980
WD
544 if (cpu_arch == CPU_ARCH_ARMv6)
545 vecs_pgprot |= L_PTE_MT_VECTORS;
1d4d3715
JL
546
547 /*
548 * Check is it with support for the PXN bit
549 * in the Short-descriptor translation table format descriptors.
550 */
551 if (cpu_arch == CPU_ARCH_ARMv7 &&
ad84f56b 552 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
1d4d3715
JL
553 user_pmd_table |= PMD_PXNTABLE;
554 }
b6ccb980 555#endif
bb30f36f 556
ae8f1541
RK
557 /*
558 * ARMv6 and above have extended page tables.
559 */
560 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
1b6ba46b 561#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
562 /*
563 * Mark cache clean areas and XIP ROM read only
564 * from SVC mode and no access from userspace.
565 */
566 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
567 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
568 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
1b6ba46b 569#endif
ae8f1541 570
20e7e364
RK
571 /*
572 * If the initial page tables were created with the S bit
573 * set, then we need to do the same here for the same
574 * reasons given in early_cachepolicy().
575 */
576 if (initial_pmd_value & PMD_SECT_S) {
f00ec48f
RK
577 user_pgprot |= L_PTE_SHARED;
578 kern_pgprot |= L_PTE_SHARED;
579 vecs_pgprot |= L_PTE_SHARED;
580 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
581 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
582 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
583 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
2e2c9de2
RK
584 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
585 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
ebd4922e
RK
586 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
587 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
c7909509 588 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
2e2c9de2
RK
589 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
590 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
f00ec48f 591 }
ae8f1541
RK
592 }
593
e4707dd3
PW
594 /*
595 * Non-cacheable Normal - intended for memory areas that must
596 * not cause dirty cache line writebacks when used
597 */
598 if (cpu_arch >= CPU_ARCH_ARMv6) {
599 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
600 /* Non-cacheable Normal is XCB = 001 */
2e2c9de2 601 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
e4707dd3
PW
602 PMD_SECT_BUFFERED;
603 } else {
604 /* For both ARMv6 and non-TEX-remapping ARMv7 */
2e2c9de2 605 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
e4707dd3
PW
606 PMD_SECT_TEX(1);
607 }
608 } else {
2e2c9de2 609 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
e4707dd3
PW
610 }
611
1b6ba46b
CM
612#ifdef CONFIG_ARM_LPAE
613 /*
614 * Do not generate access flag faults for the kernel mappings.
615 */
616 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
617 mem_types[i].prot_pte |= PTE_EXT_AF;
1a3abcf4
VA
618 if (mem_types[i].prot_sect)
619 mem_types[i].prot_sect |= PMD_SECT_AF;
1b6ba46b
CM
620 }
621 kern_pgprot |= PTE_EXT_AF;
622 vecs_pgprot |= PTE_EXT_AF;
1d4d3715
JL
623
624 /*
625 * Set PXN for user mappings
626 */
627 user_pgprot |= PTE_EXT_PXN;
1b6ba46b
CM
628#endif
629
ae8f1541 630 for (i = 0; i < 16; i++) {
864aa04c 631 pteval_t v = pgprot_val(protection_map[i]);
bb30f36f 632 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
633 }
634
bb30f36f
RK
635 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
636 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 637
44b18693 638 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 639 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
36bb94ba 640 L_PTE_DIRTY | kern_pgprot);
ae8f1541
RK
641
642 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
643 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
2e2c9de2
RK
644 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
645 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
ebd4922e
RK
646 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
647 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
c7909509 648 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
2e2c9de2 649 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
ae8f1541
RK
650 mem_types[MT_ROM].prot_sect |= cp->pmd;
651
652 switch (cp->pmd) {
653 case PMD_SECT_WT:
654 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
655 break;
656 case PMD_SECT_WB:
657 case PMD_SECT_WBWA:
658 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
659 break;
660 }
905b5797
MS
661 pr_info("Memory policy: %sData cache %s\n",
662 ecc_mask ? "ECC enabled, " : "", cp->policy);
2497f0a8
RK
663
664 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
665 struct mem_type *t = &mem_types[i];
666 if (t->prot_l1)
667 t->prot_l1 |= PMD_DOMAIN(t->domain);
668 if (t->prot_sect)
669 t->prot_sect |= PMD_DOMAIN(t->domain);
670 }
ae8f1541
RK
671}
672
d907387c
CM
673#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
674pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
675 unsigned long size, pgprot_t vma_prot)
676{
677 if (!pfn_valid(pfn))
678 return pgprot_noncached(vma_prot);
679 else if (file->f_flags & O_SYNC)
680 return pgprot_writecombine(vma_prot);
681 return vma_prot;
682}
683EXPORT_SYMBOL(phys_mem_access_prot);
684#endif
685
ae8f1541
RK
686#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
687
0536bdf3
NP
688static void __init *early_alloc(unsigned long sz)
689{
8a7f97b9
MR
690 void *ptr = memblock_alloc(sz, sz);
691
692 if (!ptr)
693 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
694 __func__, sz, sz);
695
696 return ptr;
0536bdf3
NP
697}
698
c7936206
AB
699static void *__init late_alloc(unsigned long sz)
700{
28bcf593 701 void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
c7936206 702
b4ed71f5 703 if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
61444cde 704 BUG();
c7936206
AB
705 return ptr;
706}
707
3ed3a4f0 708static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
f579b2b1
AB
709 unsigned long prot,
710 void *(*alloc)(unsigned long sz))
ae8f1541 711{
24e6c699 712 if (pmd_none(*pmd)) {
f579b2b1 713 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
97092e0c 714 __pmd_populate(pmd, __pa(pte), prot);
24e6c699 715 }
4bb2e27d
RK
716 BUG_ON(pmd_bad(*pmd));
717 return pte_offset_kernel(pmd, addr);
718}
ae8f1541 719
f579b2b1
AB
720static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
721 unsigned long prot)
722{
3ed3a4f0 723 return arm_pte_alloc(pmd, addr, prot, early_alloc);
f579b2b1
AB
724}
725
4bb2e27d
RK
726static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
727 unsigned long end, unsigned long pfn,
f579b2b1 728 const struct mem_type *type,
b430e55b
AB
729 void *(*alloc)(unsigned long sz),
730 bool ng)
4bb2e27d 731{
3ed3a4f0 732 pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
24e6c699 733 do {
b430e55b
AB
734 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
735 ng ? PTE_EXT_NG : 0);
24e6c699
RK
736 pfn++;
737 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
738}
739
37468b30 740static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
e651eab0 741 unsigned long end, phys_addr_t phys,
b430e55b 742 const struct mem_type *type, bool ng)
ae8f1541 743{
37468b30
PYC
744 pmd_t *p = pmd;
745
e651eab0 746#ifndef CONFIG_ARM_LPAE
24e6c699 747 /*
e651eab0
S
748 * In classic MMU format, puds and pmds are folded in to
749 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
750 * group of L1 entries making up one logical pointer to
751 * an L2 table (2MB), where as PMDs refer to the individual
752 * L1 entries (1MB). Hence increment to get the correct
753 * offset for odd 1MB sections.
754 * (See arch/arm/include/asm/pgtable-2level.h)
24e6c699 755 */
e651eab0
S
756 if (addr & SECTION_SIZE)
757 pmd++;
1b6ba46b 758#endif
e651eab0 759 do {
b430e55b 760 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
e651eab0
S
761 phys += SECTION_SIZE;
762 } while (pmd++, addr += SECTION_SIZE, addr != end);
24e6c699 763
37468b30 764 flush_pmd_entry(p);
e651eab0 765}
ae8f1541 766
e651eab0
S
767static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
768 unsigned long end, phys_addr_t phys,
f579b2b1 769 const struct mem_type *type,
b430e55b 770 void *(*alloc)(unsigned long sz), bool ng)
e651eab0
S
771{
772 pmd_t *pmd = pmd_offset(pud, addr);
773 unsigned long next;
774
775 do {
24e6c699 776 /*
e651eab0
S
777 * With LPAE, we must loop over to map
778 * all the pmds for the given range.
24e6c699 779 */
e651eab0
S
780 next = pmd_addr_end(addr, end);
781
782 /*
783 * Try a section mapping - addr, next and phys must all be
784 * aligned to a section boundary.
785 */
786 if (type->prot_sect &&
787 ((addr | next | phys) & ~SECTION_MASK) == 0) {
b430e55b 788 __map_init_section(pmd, addr, next, phys, type, ng);
e651eab0
S
789 } else {
790 alloc_init_pte(pmd, addr, next,
b430e55b 791 __phys_to_pfn(phys), type, alloc, ng);
e651eab0
S
792 }
793
794 phys += next - addr;
795
796 } while (pmd++, addr = next, addr != end);
ae8f1541
RK
797}
798
84e6ffb2 799static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
20d6956d 800 unsigned long end, phys_addr_t phys,
f579b2b1 801 const struct mem_type *type,
b430e55b 802 void *(*alloc)(unsigned long sz), bool ng)
516295e5 803{
84e6ffb2 804 pud_t *pud = pud_offset(p4d, addr);
516295e5
RK
805 unsigned long next;
806
807 do {
808 next = pud_addr_end(addr, end);
b430e55b 809 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
516295e5
RK
810 phys += next - addr;
811 } while (pud++, addr = next, addr != end);
812}
813
84e6ffb2
MR
814static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
815 unsigned long end, phys_addr_t phys,
816 const struct mem_type *type,
817 void *(*alloc)(unsigned long sz), bool ng)
818{
819 p4d_t *p4d = p4d_offset(pgd, addr);
820 unsigned long next;
821
822 do {
823 next = p4d_addr_end(addr, end);
824 alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
825 phys += next - addr;
826 } while (p4d++, addr = next, addr != end);
827}
828
1b6ba46b 829#ifndef CONFIG_ARM_LPAE
1bdb2d4e
AB
830static void __init create_36bit_mapping(struct mm_struct *mm,
831 struct map_desc *md,
b430e55b
AB
832 const struct mem_type *type,
833 bool ng)
4a56c1e4 834{
97092e0c
RK
835 unsigned long addr, length, end;
836 phys_addr_t phys;
4a56c1e4
RK
837 pgd_t *pgd;
838
839 addr = md->virtual;
cae6292b 840 phys = __pfn_to_phys(md->pfn);
4a56c1e4
RK
841 length = PAGE_ALIGN(md->length);
842
843 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
4ed89f22 844 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
29a38193 845 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
846 return;
847 }
848
849 /* N.B. ARMv6 supersections are only defined to work with domain 0.
850 * Since domain assignments can in fact be arbitrary, the
851 * 'domain == 0' check below is required to insure that ARMv6
852 * supersections are only allocated for domain 0 regardless
853 * of the actual domain assignments in use.
854 */
855 if (type->domain) {
4ed89f22 856 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
29a38193 857 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
858 return;
859 }
860
861 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
4ed89f22 862 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
29a38193 863 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
864 return;
865 }
866
867 /*
868 * Shift bits [35:32] of address into bits [23:20] of PMD
869 * (See ARMv6 spec).
870 */
871 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
872
1bdb2d4e 873 pgd = pgd_offset(mm, addr);
4a56c1e4
RK
874 end = addr + length;
875 do {
84e6ffb2
MR
876 p4d_t *p4d = p4d_offset(pgd, addr);
877 pud_t *pud = pud_offset(p4d, addr);
516295e5 878 pmd_t *pmd = pmd_offset(pud, addr);
4a56c1e4
RK
879 int i;
880
881 for (i = 0; i < 16; i++)
b430e55b
AB
882 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
883 (ng ? PMD_SECT_nG : 0));
4a56c1e4
RK
884
885 addr += SUPERSECTION_SIZE;
886 phys += SUPERSECTION_SIZE;
887 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
888 } while (addr != end);
889}
1b6ba46b 890#endif /* !CONFIG_ARM_LPAE */
4a56c1e4 891
f579b2b1 892static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
b430e55b
AB
893 void *(*alloc)(unsigned long sz),
894 bool ng)
ae8f1541 895{
cae6292b
WD
896 unsigned long addr, length, end;
897 phys_addr_t phys;
d5c98176 898 const struct mem_type *type;
24e6c699 899 pgd_t *pgd;
ae8f1541 900
d5c98176 901 type = &mem_types[md->type];
ae8f1541 902
1b6ba46b 903#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
904 /*
905 * Catch 36-bit addresses
906 */
4a56c1e4 907 if (md->pfn >= 0x100000) {
b430e55b 908 create_36bit_mapping(mm, md, type, ng);
4a56c1e4 909 return;
ae8f1541 910 }
1b6ba46b 911#endif
ae8f1541 912
7b9c7b4d 913 addr = md->virtual & PAGE_MASK;
cae6292b 914 phys = __pfn_to_phys(md->pfn);
7b9c7b4d 915 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 916
24e6c699 917 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
4ed89f22
RK
918 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
919 (long long)__pfn_to_phys(md->pfn), addr);
ae8f1541
RK
920 return;
921 }
922
1bdb2d4e 923 pgd = pgd_offset(mm, addr);
24e6c699
RK
924 end = addr + length;
925 do {
926 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 927
84e6ffb2 928 alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
ae8f1541 929
24e6c699
RK
930 phys += next - addr;
931 addr = next;
932 } while (pgd++, addr != end);
ae8f1541
RK
933}
934
1bdb2d4e
AB
935/*
936 * Create the page directory entries and any necessary
937 * page tables for the mapping specified by `md'. We
938 * are able to cope here with varying sizes and address
939 * offsets, and we take full advantage of sections and
940 * supersections.
941 */
942static void __init create_mapping(struct map_desc *md)
943{
944 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
945 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
946 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
947 return;
948 }
949
7a1be318 950 if (md->type == MT_DEVICE &&
1bdb2d4e
AB
951 md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
952 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
953 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
954 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
955 }
956
b430e55b 957 __create_mapping(&init_mm, md, early_alloc, false);
1bdb2d4e
AB
958}
959
c7936206
AB
960void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
961 bool ng)
962{
963#ifdef CONFIG_ARM_LPAE
84e6ffb2
MR
964 p4d_t *p4d;
965 pud_t *pud;
966
967 p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
5c6360ee 968 if (WARN_ON(!p4d))
84e6ffb2
MR
969 return;
970 pud = pud_alloc(mm, p4d, md->virtual);
c7936206
AB
971 if (WARN_ON(!pud))
972 return;
973 pmd_alloc(mm, pud, 0);
974#endif
975 __create_mapping(mm, md, late_alloc, ng);
976}
977
ae8f1541
RK
978/*
979 * Create the architecture specific mappings
980 */
981void __init iotable_init(struct map_desc *io_desc, int nr)
982{
0536bdf3
NP
983 struct map_desc *md;
984 struct vm_struct *vm;
101eeda3 985 struct static_vm *svm;
0536bdf3
NP
986
987 if (!nr)
988 return;
ae8f1541 989
c2938eeb 990 svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
8a7f97b9
MR
991 if (!svm)
992 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
993 __func__, sizeof(*svm) * nr, __alignof__(*svm));
0536bdf3
NP
994
995 for (md = io_desc; nr; md++, nr--) {
996 create_mapping(md);
101eeda3
JK
997
998 vm = &svm->vm;
0536bdf3
NP
999 vm->addr = (void *)(md->virtual & PAGE_MASK);
1000 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
c2794437
RH
1001 vm->phys_addr = __pfn_to_phys(md->pfn);
1002 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
576d2f25 1003 vm->flags |= VM_ARM_MTYPE(md->type);
0536bdf3 1004 vm->caller = iotable_init;
101eeda3 1005 add_static_vm_early(svm++);
0536bdf3 1006 }
ae8f1541
RK
1007}
1008
c2794437
RH
1009void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1010 void *caller)
1011{
1012 struct vm_struct *vm;
101eeda3
JK
1013 struct static_vm *svm;
1014
c2938eeb 1015 svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
8a7f97b9
MR
1016 if (!svm)
1017 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1018 __func__, sizeof(*svm), __alignof__(*svm));
c2794437 1019
101eeda3 1020 vm = &svm->vm;
c2794437
RH
1021 vm->addr = (void *)addr;
1022 vm->size = size;
863e99a8 1023 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
c2794437 1024 vm->caller = caller;
101eeda3 1025 add_static_vm_early(svm);
c2794437
RH
1026}
1027
19b52abe
NP
1028#ifndef CONFIG_ARM_LPAE
1029
1030/*
1031 * The Linux PMD is made of two consecutive section entries covering 2MB
1032 * (see definition in include/asm/pgtable-2level.h). However a call to
1033 * create_mapping() may optimize static mappings by using individual
1034 * 1MB section mappings. This leaves the actual PMD potentially half
1035 * initialized if the top or bottom section entry isn't used, leaving it
1036 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1037 * the virtual space left free by that unused section entry.
1038 *
1039 * Let's avoid the issue by inserting dummy vm entries covering the unused
1040 * PMD halves once the static mappings are in place.
1041 */
1042
1043static void __init pmd_empty_section_gap(unsigned long addr)
1044{
c2794437 1045 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
19b52abe
NP
1046}
1047
1048static void __init fill_pmd_gaps(void)
1049{
101eeda3 1050 struct static_vm *svm;
19b52abe
NP
1051 struct vm_struct *vm;
1052 unsigned long addr, next = 0;
1053 pmd_t *pmd;
1054
101eeda3
JK
1055 list_for_each_entry(svm, &static_vmlist, list) {
1056 vm = &svm->vm;
19b52abe
NP
1057 addr = (unsigned long)vm->addr;
1058 if (addr < next)
1059 continue;
1060
1061 /*
1062 * Check if this vm starts on an odd section boundary.
1063 * If so and the first section entry for this PMD is free
1064 * then we block the corresponding virtual address.
1065 */
1066 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1067 pmd = pmd_off_k(addr);
1068 if (pmd_none(*pmd))
1069 pmd_empty_section_gap(addr & PMD_MASK);
1070 }
1071
1072 /*
1073 * Then check if this vm ends on an odd section boundary.
1074 * If so and the second section entry for this PMD is empty
1075 * then we block the corresponding virtual address.
1076 */
1077 addr += vm->size;
1078 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1079 pmd = pmd_off_k(addr) + 1;
1080 if (pmd_none(*pmd))
1081 pmd_empty_section_gap(addr);
1082 }
1083
1084 /* no need to look at any vm entry until we hit the next PMD */
1085 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1086 }
1087}
1088
1089#else
1090#define fill_pmd_gaps() do { } while (0)
1091#endif
1092
c2794437
RH
1093#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1094static void __init pci_reserve_io(void)
1095{
101eeda3 1096 struct static_vm *svm;
c2794437 1097
101eeda3
JK
1098 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1099 if (svm)
1100 return;
c2794437 1101
c2794437
RH
1102 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1103}
1104#else
1105#define pci_reserve_io() do { } while (0)
1106#endif
1107
e5c5f2ad
RH
1108#ifdef CONFIG_DEBUG_LL
1109void __init debug_ll_io_init(void)
1110{
1111 struct map_desc map;
1112
1113 debug_ll_addr(&map.pfn, &map.virtual);
1114 if (!map.pfn || !map.virtual)
1115 return;
1116 map.pfn = __phys_to_pfn(map.pfn);
1117 map.virtual &= PAGE_MASK;
1118 map.length = PAGE_SIZE;
1119 map.type = MT_DEVICE;
ee4de5d9 1120 iotable_init(&map, 1);
e5c5f2ad
RH
1121}
1122#endif
1123
08b84240 1124static unsigned long __initdata vmalloc_size = 240 * SZ_1M;
6c5da7ac
RK
1125
1126/*
1127 * vmalloc=size forces the vmalloc area to be exactly 'size'
1128 * bytes. This can be used to increase (or decrease) the vmalloc
c01914ef 1129 * area - the default is 240MiB.
6c5da7ac 1130 */
2b0d8c25 1131static int __init early_vmalloc(char *arg)
6c5da7ac 1132{
79612395 1133 unsigned long vmalloc_reserve = memparse(arg, NULL);
4f706b07 1134 unsigned long vmalloc_max;
6c5da7ac
RK
1135
1136 if (vmalloc_reserve < SZ_16M) {
1137 vmalloc_reserve = SZ_16M;
c01914ef 1138 pr_warn("vmalloc area is too small, limiting to %luMiB\n",
6c5da7ac
RK
1139 vmalloc_reserve >> 20);
1140 }
9210807c 1141
f572f5cb 1142 vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET);
4f706b07
RKO
1143 if (vmalloc_reserve > vmalloc_max) {
1144 vmalloc_reserve = vmalloc_max;
c01914ef 1145 pr_warn("vmalloc area is too big, limiting to %luMiB\n",
9210807c
NP
1146 vmalloc_reserve >> 20);
1147 }
79612395 1148
4c1b7a76 1149 vmalloc_size = vmalloc_reserve;
2b0d8c25 1150 return 0;
6c5da7ac 1151}
2b0d8c25 1152early_param("vmalloc", early_vmalloc);
6c5da7ac 1153
c7909509 1154phys_addr_t arm_lowmem_limit __initdata = 0;
8df65168 1155
374d446d 1156void __init adjust_lowmem_bounds(void)
60296c71 1157{
b10d6bca
MR
1158 phys_addr_t block_start, block_end, memblock_limit = 0;
1159 u64 vmalloc_limit, i;
98562656 1160 phys_addr_t lowmem_limit = 0;
60296c71 1161
b9a01989
NP
1162 /*
1163 * Let's use our own (unoptimized) equivalent of __pa() that is
1164 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1165 * The result is used as the upper bound on physical memory address
1166 * and may itself be outside the valid range for which phys_addr_t
1167 * and therefore __pa() is defined.
1168 */
4c1b7a76 1169 vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET -
f572f5cb 1170 PAGE_OFFSET + PHYS_OFFSET;
b9a01989 1171
00d2ec1e
MR
1172 /*
1173 * The first usable region must be PMD aligned. Mark its start
1174 * as MEMBLOCK_NOMAP if it isn't
1175 */
b10d6bca
MR
1176 for_each_mem_range(i, &block_start, &block_end) {
1177 if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1178 phys_addr_t len;
00d2ec1e 1179
b10d6bca
MR
1180 len = round_up(block_start, PMD_SIZE) - block_start;
1181 memblock_mark_nomap(block_start, len);
00d2ec1e 1182 }
b10d6bca 1183 break;
00d2ec1e
MR
1184 }
1185
b10d6bca
MR
1186 for_each_mem_range(i, &block_start, &block_end) {
1187 if (block_start < vmalloc_limit) {
98562656 1188 if (block_end > lowmem_limit)
374d446d
LA
1189 /*
1190 * Compare as u64 to ensure vmalloc_limit does
1191 * not get truncated. block_end should always
1192 * fit in phys_addr_t so there should be no
1193 * issue with assignment.
1194 */
98562656 1195 lowmem_limit = min_t(u64,
374d446d
LA
1196 vmalloc_limit,
1197 block_end);
c65b7e98
RK
1198
1199 /*
965278dc 1200 * Find the first non-pmd-aligned page, and point
c65b7e98 1201 * memblock_limit at it. This relies on rounding the
965278dc
MR
1202 * limit down to be pmd-aligned, which happens at the
1203 * end of this function.
c65b7e98
RK
1204 *
1205 * With this algorithm, the start or end of almost any
965278dc
MR
1206 * bank can be non-pmd-aligned. The only exception is
1207 * that the start of the bank 0 must be section-
c65b7e98
RK
1208 * aligned, since otherwise memory would need to be
1209 * allocated when mapping the start of bank 0, which
1210 * occurs before any free memory is mapped.
1211 */
1212 if (!memblock_limit) {
965278dc 1213 if (!IS_ALIGNED(block_start, PMD_SIZE))
1c2f87c2 1214 memblock_limit = block_start;
965278dc 1215 else if (!IS_ALIGNED(block_end, PMD_SIZE))
98562656 1216 memblock_limit = lowmem_limit;
c65b7e98 1217 }
e616c591 1218
e616c591
RK
1219 }
1220 }
1c2f87c2 1221
98562656
LA
1222 arm_lowmem_limit = lowmem_limit;
1223
c7909509 1224 high_memory = __va(arm_lowmem_limit - 1) + 1;
c65b7e98 1225
9e25ebfe
DB
1226 if (!memblock_limit)
1227 memblock_limit = arm_lowmem_limit;
1228
c65b7e98 1229 /*
965278dc 1230 * Round the memblock limit down to a pmd size. This
c65b7e98 1231 * helps to ensure that we will allocate memory from the
965278dc 1232 * last full pmd, which should be mapped.
c65b7e98 1233 */
9e25ebfe 1234 memblock_limit = round_down(memblock_limit, PMD_SIZE);
c65b7e98 1235
374d446d
LA
1236 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1237 if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1238 phys_addr_t end = memblock_end_of_DRAM();
1239
1240 pr_notice("Ignoring RAM at %pa-%pa\n",
1241 &memblock_limit, &end);
1242 pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1243
1244 memblock_remove(memblock_limit, end - memblock_limit);
1245 }
1246 }
1247
c65b7e98 1248 memblock_set_current_limit(memblock_limit);
60296c71
LB
1249}
1250
ae7ba761 1251static __init void prepare_page_table(void)
d111e8f9
RK
1252{
1253 unsigned long addr;
8df65168 1254 phys_addr_t end;
d111e8f9
RK
1255
1256 /*
1257 * Clear out all the mappings below the kernel image.
1258 */
c12366ba
LW
1259#ifdef CONFIG_KASAN
1260 /*
1261 * KASan's shadow memory inserts itself between the TASK_SIZE
1262 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
1263 */
1264 for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
1265 pmd_clear(pmd_off_k(addr));
1266 /*
1267 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
1268 * equal to MODULES_VADDR and then we exit the pmd clearing. If we
1269 * are using a thumb-compiled kernel, there there will be 8MB more
1270 * to clear as KASan always offset to 16 MB below MODULES_VADDR.
1271 */
1272 for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
1273 pmd_clear(pmd_off_k(addr));
1274#else
e73fc88e 1275 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
d111e8f9 1276 pmd_clear(pmd_off_k(addr));
c12366ba 1277#endif
d111e8f9
RK
1278
1279#ifdef CONFIG_XIP_KERNEL
1280 /* The XIP kernel is mapped in the module area -- skip over it */
02afa9a8 1281 addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
d111e8f9 1282#endif
e73fc88e 1283 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
d111e8f9
RK
1284 pmd_clear(pmd_off_k(addr));
1285
8df65168
RK
1286 /*
1287 * Find the end of the first block of lowmem.
1288 */
1289 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
c7909509
MS
1290 if (end >= arm_lowmem_limit)
1291 end = arm_lowmem_limit;
8df65168 1292
d111e8f9
RK
1293 /*
1294 * Clear out all the kernel space mappings, except for the first
0536bdf3 1295 * memory bank, up to the vmalloc region.
d111e8f9 1296 */
8df65168 1297 for (addr = __phys_to_virt(end);
0536bdf3 1298 addr < VMALLOC_START; addr += PMD_SIZE)
d111e8f9
RK
1299 pmd_clear(pmd_off_k(addr));
1300}
1301
1b6ba46b
CM
1302#ifdef CONFIG_ARM_LPAE
1303/* the first page is reserved for pgd */
1304#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1305 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1306#else
e73fc88e 1307#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1b6ba46b 1308#endif
e73fc88e 1309
d111e8f9 1310/*
2778f620 1311 * Reserve the special regions of memory
d111e8f9 1312 */
2778f620 1313void __init arm_mm_memblock_reserve(void)
d111e8f9 1314{
d111e8f9
RK
1315 /*
1316 * Reserve the page tables. These are already in use,
1317 * and can only be in node 0.
1318 */
e73fc88e 1319 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
d111e8f9 1320
d111e8f9
RK
1321#ifdef CONFIG_SA1111
1322 /*
1323 * Because of the SA1111 DMA bug, we want to preserve our
1324 * precious DMA-able memory...
1325 */
2778f620 1326 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
d111e8f9 1327#endif
d111e8f9
RK
1328}
1329
1330/*
0536bdf3 1331 * Set up the device mappings. Since we clear out the page tables for all
a5f4c561
SA
1332 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1333 * device mappings. This means earlycon can be used to debug this function
1334 * Any other function or debugging method which may touch any device _will_
1335 * crash the kernel.
d111e8f9 1336 */
ff69a4c8 1337static void __init devicemaps_init(const struct machine_desc *mdesc)
d111e8f9
RK
1338{
1339 struct map_desc map;
1340 unsigned long addr;
94e5a85b 1341 void *vectors;
d111e8f9
RK
1342
1343 /*
1344 * Allocate the vector page early.
1345 */
19accfd3 1346 vectors = early_alloc(PAGE_SIZE * 2);
94e5a85b
RK
1347
1348 early_trap_init(vectors);
d111e8f9 1349
a5f4c561
SA
1350 /*
1351 * Clear page table except top pmd used by early fixmaps
1352 */
1353 for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
d111e8f9
RK
1354 pmd_clear(pmd_off_k(addr));
1355
7a1be318
AB
1356 if (__atags_pointer) {
1357 /* create a read-only mapping of the device tree */
1358 map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
1359 map.virtual = FDT_FIXED_BASE;
1360 map.length = FDT_FIXED_SIZE;
1361 map.type = MT_ROM;
1362 create_mapping(&map);
1363 }
1364
d111e8f9
RK
1365 /*
1366 * Map the kernel if it is XIP.
1367 * It is always first in the modulearea.
1368 */
1369#ifdef CONFIG_XIP_KERNEL
1370 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 1371 map.virtual = MODULES_VADDR;
02afa9a8 1372 map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
1373 map.type = MT_ROM;
1374 create_mapping(&map);
1375#endif
1376
1377 /*
1378 * Map the cache flushing regions.
1379 */
1380#ifdef FLUSH_BASE
1381 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1382 map.virtual = FLUSH_BASE;
1383 map.length = SZ_1M;
1384 map.type = MT_CACHECLEAN;
1385 create_mapping(&map);
1386#endif
1387#ifdef FLUSH_BASE_MINICACHE
1388 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1389 map.virtual = FLUSH_BASE_MINICACHE;
1390 map.length = SZ_1M;
1391 map.type = MT_MINICLEAN;
1392 create_mapping(&map);
1393#endif
1394
1395 /*
1396 * Create a mapping for the machine vectors at the high-vectors
1397 * location (0xffff0000). If we aren't using high-vectors, also
1398 * create a mapping at the low-vectors virtual address.
1399 */
94e5a85b 1400 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
d111e8f9
RK
1401 map.virtual = 0xffff0000;
1402 map.length = PAGE_SIZE;
a5463cd3 1403#ifdef CONFIG_KUSER_HELPERS
d111e8f9 1404 map.type = MT_HIGH_VECTORS;
a5463cd3
RK
1405#else
1406 map.type = MT_LOW_VECTORS;
1407#endif
d111e8f9
RK
1408 create_mapping(&map);
1409
1410 if (!vectors_high()) {
1411 map.virtual = 0;
19accfd3 1412 map.length = PAGE_SIZE * 2;
d111e8f9
RK
1413 map.type = MT_LOW_VECTORS;
1414 create_mapping(&map);
1415 }
1416
19accfd3
RK
1417 /* Now create a kernel read-only mapping */
1418 map.pfn += 1;
1419 map.virtual = 0xffff0000 + PAGE_SIZE;
1420 map.length = PAGE_SIZE;
1421 map.type = MT_LOW_VECTORS;
1422 create_mapping(&map);
1423
d111e8f9
RK
1424 /*
1425 * Ask the machine support to map in the statically mapped devices.
1426 */
1427 if (mdesc->map_io)
1428 mdesc->map_io();
bc37324e
MR
1429 else
1430 debug_ll_io_init();
19b52abe 1431 fill_pmd_gaps();
d111e8f9 1432
c2794437
RH
1433 /* Reserve fixed i/o space in VMALLOC region */
1434 pci_reserve_io();
1435
d111e8f9
RK
1436 /*
1437 * Finally flush the caches and tlb to ensure that we're in a
1438 * consistent state wrt the writebuffer. This also ensures that
1439 * any write-allocated cache lines in the vector page are written
1440 * back. After this point, we can start to touch devices again.
1441 */
1442 local_flush_tlb_all();
1443 flush_cache_all();
bbeb9209
LS
1444
1445 /* Enable asynchronous aborts */
9254970c 1446 early_abt_enable();
d111e8f9
RK
1447}
1448
d73cd428
NP
1449static void __init kmap_init(void)
1450{
1451#ifdef CONFIG_HIGHMEM
4bb2e27d
RK
1452 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1453 PKMAP_BASE, _PAGE_KERNEL_TABLE);
d73cd428 1454#endif
836a2418
RH
1455
1456 early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1457 _PAGE_KERNEL_TABLE);
d73cd428
NP
1458}
1459
a2227120
RK
1460static void __init map_lowmem(void)
1461{
b10d6bca
MR
1462 phys_addr_t start, end;
1463 u64 i;
a2227120
RK
1464
1465 /* Map all the lowmem memory banks. */
b10d6bca 1466 for_each_mem_range(i, &start, &end) {
8df65168
RK
1467 struct map_desc map;
1468
6e121df1
LW
1469 pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n",
1470 (long long)start, (long long)end);
c7909509
MS
1471 if (end > arm_lowmem_limit)
1472 end = arm_lowmem_limit;
8df65168
RK
1473 if (start >= end)
1474 break;
1475
6e121df1
LW
1476 /*
1477 * If our kernel image is in the VMALLOC area we need to remove
1478 * the kernel physical memory from lowmem since the kernel will
1479 * be mapped separately.
1480 *
1481 * The kernel will typically be at the very start of lowmem,
1482 * but any placement relative to memory ranges is possible.
1483 *
1484 * If the memblock contains the kernel, we have to chisel out
1485 * the kernel memory from it and map each part separately. We
1486 * get 6 different theoretical cases:
1487 *
1488 * +--------+ +--------+
1489 * +-- start --+ +--------+ | Kernel | | Kernel |
1490 * | | | Kernel | | case 2 | | case 5 |
1491 * | | | case 1 | +--------+ | | +--------+
1492 * | Memory | +--------+ | | | Kernel |
1493 * | range | +--------+ | | | case 6 |
1494 * | | | Kernel | +--------+ | | +--------+
1495 * | | | case 3 | | Kernel | | |
1496 * +-- end ----+ +--------+ | case 4 | | |
1497 * +--------+ +--------+
1498 */
a2227120 1499
6e121df1
LW
1500 /* Case 5: kernel covers range, don't map anything, should be rare */
1501 if ((start > kernel_sec_start) && (end < kernel_sec_end))
1502 break;
1e6b4811 1503
6e121df1
LW
1504 /* Cases where the kernel is starting inside the range */
1505 if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) {
1506 /* Case 6: kernel is embedded in the range, we need two mappings */
1507 if ((start < kernel_sec_start) && (end > kernel_sec_end)) {
1508 /* Map memory below the kernel */
ebd4922e
RK
1509 map.pfn = __phys_to_pfn(start);
1510 map.virtual = __phys_to_virt(start);
6e121df1 1511 map.length = kernel_sec_start - start;
ebd4922e 1512 map.type = MT_MEMORY_RW;
ebd4922e 1513 create_mapping(&map);
6e121df1
LW
1514 /* Map memory above the kernel */
1515 map.pfn = __phys_to_pfn(kernel_sec_end);
1516 map.virtual = __phys_to_virt(kernel_sec_end);
1517 map.length = end - kernel_sec_end;
ebd4922e 1518 map.type = MT_MEMORY_RW;
ebd4922e 1519 create_mapping(&map);
6e121df1 1520 break;
ebd4922e 1521 }
6e121df1
LW
1522 /* Case 1: kernel and range start at the same address, should be common */
1523 if (kernel_sec_start == start)
1524 start = kernel_sec_end;
1525 /* Case 3: kernel and range end at the same address, should be rare */
1526 if (kernel_sec_end == end)
1527 end = kernel_sec_start;
1528 } else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) {
1529 /* Case 2: kernel ends inside range, starts below it */
1530 start = kernel_sec_end;
1531 } else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) {
1532 /* Case 4: kernel starts inside range, ends above it */
1533 end = kernel_sec_start;
ebd4922e 1534 }
6e121df1
LW
1535 map.pfn = __phys_to_pfn(start);
1536 map.virtual = __phys_to_virt(start);
1537 map.length = end - start;
1538 map.type = MT_MEMORY_RW;
1539 create_mapping(&map);
a2227120
RK
1540 }
1541}
1542
6e121df1
LW
1543static void __init map_kernel(void)
1544{
1545 /*
1546 * We use the well known kernel section start and end and split the area in the
1547 * middle like this:
1548 * . .
1549 * | RW memory |
1550 * +----------------+ kernel_x_start
1551 * | Executable |
1552 * | kernel memory |
1553 * +----------------+ kernel_x_end / kernel_nx_start
1554 * | Non-executable |
1555 * | kernel memory |
1556 * +----------------+ kernel_nx_end
1557 * | RW memory |
1558 * . .
1559 *
1560 * Notice that we are dealing with section sized mappings here so all of this
1561 * will be bumped to the closest section boundary. This means that some of the
1562 * non-executable part of the kernel memory is actually mapped as executable.
1563 * This will only persist until we turn on proper memory management later on
1564 * and we remap the whole kernel with page granularity.
1565 */
1566 phys_addr_t kernel_x_start = kernel_sec_start;
1567 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1568 phys_addr_t kernel_nx_start = kernel_x_end;
1569 phys_addr_t kernel_nx_end = kernel_sec_end;
1570 struct map_desc map;
1571
1572 map.pfn = __phys_to_pfn(kernel_x_start);
1573 map.virtual = __phys_to_virt(kernel_x_start);
1574 map.length = kernel_x_end - kernel_x_start;
1575 map.type = MT_MEMORY_RWX;
1576 create_mapping(&map);
1577
1578 /* If the nx part is small it may end up covered by the tail of the RWX section */
1579 if (kernel_x_end == kernel_nx_end)
1580 return;
1581
1582 map.pfn = __phys_to_pfn(kernel_nx_start);
1583 map.virtual = __phys_to_virt(kernel_nx_start);
1584 map.length = kernel_nx_end - kernel_nx_start;
1585 map.type = MT_MEMORY_RW;
1586 create_mapping(&map);
1587}
1588
d8dc7fbd 1589#ifdef CONFIG_ARM_PV_FIXUP
7a1be318 1590typedef void pgtables_remap(long long offset, unsigned long pgd);
d8dc7fbd
RK
1591pgtables_remap lpae_pgtables_remap_asm;
1592
a77e0c7b
SS
1593/*
1594 * early_paging_init() recreates boot time page table setup, allowing machines
1595 * to switch over to a high (>4G) address space on LPAE systems
1596 */
b089c31c 1597static void __init early_paging_init(const struct machine_desc *mdesc)
a77e0c7b 1598{
d8dc7fbd
RK
1599 pgtables_remap *lpae_pgtables_remap;
1600 unsigned long pa_pgd;
1601 unsigned int cr, ttbcr;
c8ca2b4b 1602 long long offset;
a77e0c7b 1603
c0b759d8 1604 if (!mdesc->pv_fixup)
a77e0c7b
SS
1605 return;
1606
c0b759d8 1607 offset = mdesc->pv_fixup();
c8ca2b4b
RK
1608 if (offset == 0)
1609 return;
a77e0c7b 1610
463dbba4
LW
1611 /*
1612 * Offset the kernel section physical offsets so that the kernel
1613 * mapping will work out later on.
1614 */
1615 kernel_sec_start += offset;
1616 kernel_sec_end += offset;
1617
d8dc7fbd
RK
1618 /*
1619 * Get the address of the remap function in the 1:1 identity
1620 * mapping setup by the early page table assembly code. We
1621 * must get this prior to the pv update. The following barrier
1622 * ensures that this is complete before we fixup any P:V offsets.
1623 */
1624 lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1625 pa_pgd = __pa(swapper_pg_dir);
d8dc7fbd 1626 barrier();
a77e0c7b 1627
39b74fe8
RK
1628 pr_info("Switching physical address space to 0x%08llx\n",
1629 (u64)PHYS_OFFSET + offset);
a77e0c7b 1630
c8ca2b4b
RK
1631 /* Re-set the phys pfn offset, and the pv offset */
1632 __pv_offset += offset;
1633 __pv_phys_pfn_offset += PFN_DOWN(offset);
a77e0c7b
SS
1634
1635 /* Run the patch stub to update the constants */
1636 fixup_pv_table(&__pv_table_begin,
1637 (&__pv_table_end - &__pv_table_begin) << 2);
1638
1639 /*
d8dc7fbd
RK
1640 * We changing not only the virtual to physical mapping, but also
1641 * the physical addresses used to access memory. We need to flush
1642 * all levels of cache in the system with caching disabled to
1643 * ensure that all data is written back, and nothing is prefetched
1644 * into the caches. We also need to prevent the TLB walkers
1645 * allocating into the caches too. Note that this is ARMv7 LPAE
1646 * specific.
3bb70de6 1647 */
d8dc7fbd
RK
1648 cr = get_cr();
1649 set_cr(cr & ~(CR_I | CR_C));
1650 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1651 asm volatile("mcr p15, 0, %0, c2, c0, 2"
1652 : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
a77e0c7b 1653 flush_cache_all();
3bb70de6
RK
1654
1655 /*
d8dc7fbd
RK
1656 * Fixup the page tables - this must be in the idmap region as
1657 * we need to disable the MMU to do this safely, and hence it
1658 * needs to be assembly. It's fairly simple, as we're using the
1659 * temporary tables setup by the initial assembly code.
3bb70de6 1660 */
7a1be318 1661 lpae_pgtables_remap(offset, pa_pgd);
3bb70de6 1662
d8dc7fbd
RK
1663 /* Re-enable the caches and cacheable TLB walks */
1664 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1665 set_cr(cr);
a77e0c7b
SS
1666}
1667
1668#else
1669
b089c31c 1670static void __init early_paging_init(const struct machine_desc *mdesc)
a77e0c7b 1671{
c8ca2b4b
RK
1672 long long offset;
1673
c0b759d8 1674 if (!mdesc->pv_fixup)
c8ca2b4b
RK
1675 return;
1676
c0b759d8 1677 offset = mdesc->pv_fixup();
c8ca2b4b
RK
1678 if (offset == 0)
1679 return;
1680
1681 pr_crit("Physical address space modification is only to support Keystone2.\n");
1682 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1683 pr_crit("feature. Your kernel may crash now, have a good day.\n");
1684 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
a77e0c7b
SS
1685}
1686
1687#endif
1688
a5f4c561
SA
1689static void __init early_fixmap_shutdown(void)
1690{
1691 int i;
1692 unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1693
1694 pte_offset_fixmap = pte_offset_late_fixmap;
1695 pmd_clear(fixmap_pmd(va));
1696 local_flush_tlb_kernel_page(va);
1697
1698 for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1699 pte_t *pte;
1700 struct map_desc map;
1701
1702 map.virtual = fix_to_virt(i);
1703 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1704
1705 /* Only i/o device mappings are supported ATM */
1706 if (pte_none(*pte) ||
1707 (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1708 continue;
1709
1710 map.pfn = pte_pfn(*pte);
1711 map.type = MT_DEVICE;
1712 map.length = PAGE_SIZE;
1713
1714 create_mapping(&map);
1715 }
1716}
1717
d111e8f9
RK
1718/*
1719 * paging_init() sets up the page tables, initialises the zone memory
1720 * maps, and sets up the zero page, bad page and bad page tables.
1721 */
ff69a4c8 1722void __init paging_init(const struct machine_desc *mdesc)
d111e8f9
RK
1723{
1724 void *zero_page;
1725
463dbba4 1726 pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n",
6e121df1
LW
1727 kernel_sec_start, kernel_sec_end);
1728
4b5f32ce 1729 prepare_page_table();
a2227120 1730 map_lowmem();
3de1f52a 1731 memblock_set_current_limit(arm_lowmem_limit);
6e121df1
LW
1732 pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit);
1733 /*
1734 * After this point early_alloc(), i.e. the memblock allocator, can
1735 * be used
1736 */
1737 map_kernel();
c7909509 1738 dma_contiguous_remap();
a5f4c561 1739 early_fixmap_shutdown();
d111e8f9 1740 devicemaps_init(mdesc);
d73cd428 1741 kmap_init();
de40614e 1742 tcm_init();
d111e8f9
RK
1743
1744 top_pmd = pmd_off_k(0xffff0000);
1745
3abe9d33
RK
1746 /* allocate the zero page. */
1747 zero_page = early_alloc(PAGE_SIZE);
2778f620 1748
8d717a52 1749 bootmem_init();
2778f620 1750
d111e8f9 1751 empty_zero_page = virt_to_page(zero_page);
421fe93c 1752 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1753}
b089c31c
JM
1754
1755void __init early_mm_init(const struct machine_desc *mdesc)
1756{
1757 build_mem_type_table();
1758 early_paging_init(mdesc);
1759}
78e7c5af
AK
1760
1761void set_pte_at(struct mm_struct *mm, unsigned long addr,
1762 pte_t *ptep, pte_t pteval)
1763{
1764 unsigned long ext = 0;
1765
1766 if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1767 if (!pte_special(pteval))
1768 __sync_icache_dcache(pteval);
1769 ext |= PTE_EXT_NG;
1770 }
1771
1772 set_pte_ext(ptep, pteval, ext);
1773}
This page took 2.273185 seconds and 4 git commands to generate.