]>
Commit | Line | Data |
---|---|---|
0a8165d7 | 1 | /* |
7bc09003 JK |
2 | * fs/f2fs/gc.c |
3 | * | |
4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | |
5 | * http://www.samsung.com/ | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify | |
8 | * it under the terms of the GNU General Public License version 2 as | |
9 | * published by the Free Software Foundation. | |
10 | */ | |
11 | #include <linux/fs.h> | |
12 | #include <linux/module.h> | |
13 | #include <linux/backing-dev.h> | |
14 | #include <linux/proc_fs.h> | |
15 | #include <linux/init.h> | |
16 | #include <linux/f2fs_fs.h> | |
17 | #include <linux/kthread.h> | |
18 | #include <linux/delay.h> | |
19 | #include <linux/freezer.h> | |
20 | #include <linux/blkdev.h> | |
21 | ||
22 | #include "f2fs.h" | |
23 | #include "node.h" | |
24 | #include "segment.h" | |
25 | #include "gc.h" | |
26 | ||
27 | static struct kmem_cache *winode_slab; | |
28 | ||
29 | static int gc_thread_func(void *data) | |
30 | { | |
31 | struct f2fs_sb_info *sbi = data; | |
32 | wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; | |
33 | long wait_ms; | |
34 | ||
35 | wait_ms = GC_THREAD_MIN_SLEEP_TIME; | |
36 | ||
37 | do { | |
38 | if (try_to_freeze()) | |
39 | continue; | |
40 | else | |
41 | wait_event_interruptible_timeout(*wq, | |
42 | kthread_should_stop(), | |
43 | msecs_to_jiffies(wait_ms)); | |
44 | if (kthread_should_stop()) | |
45 | break; | |
46 | ||
47 | f2fs_balance_fs(sbi); | |
48 | ||
49 | if (!test_opt(sbi, BG_GC)) | |
50 | continue; | |
51 | ||
52 | /* | |
53 | * [GC triggering condition] | |
54 | * 0. GC is not conducted currently. | |
55 | * 1. There are enough dirty segments. | |
56 | * 2. IO subsystem is idle by checking the # of writeback pages. | |
57 | * 3. IO subsystem is idle by checking the # of requests in | |
58 | * bdev's request list. | |
59 | * | |
60 | * Note) We have to avoid triggering GCs too much frequently. | |
61 | * Because it is possible that some segments can be | |
62 | * invalidated soon after by user update or deletion. | |
63 | * So, I'd like to wait some time to collect dirty segments. | |
64 | */ | |
65 | if (!mutex_trylock(&sbi->gc_mutex)) | |
66 | continue; | |
67 | ||
68 | if (!is_idle(sbi)) { | |
69 | wait_ms = increase_sleep_time(wait_ms); | |
70 | mutex_unlock(&sbi->gc_mutex); | |
71 | continue; | |
72 | } | |
73 | ||
74 | if (has_enough_invalid_blocks(sbi)) | |
75 | wait_ms = decrease_sleep_time(wait_ms); | |
76 | else | |
77 | wait_ms = increase_sleep_time(wait_ms); | |
78 | ||
79 | sbi->bg_gc++; | |
80 | ||
408e9375 | 81 | if (f2fs_gc(sbi) == GC_NONE) |
7bc09003 JK |
82 | wait_ms = GC_THREAD_NOGC_SLEEP_TIME; |
83 | else if (wait_ms == GC_THREAD_NOGC_SLEEP_TIME) | |
84 | wait_ms = GC_THREAD_MAX_SLEEP_TIME; | |
85 | ||
86 | } while (!kthread_should_stop()); | |
87 | return 0; | |
88 | } | |
89 | ||
90 | int start_gc_thread(struct f2fs_sb_info *sbi) | |
91 | { | |
1042d60f | 92 | struct f2fs_gc_kthread *gc_th; |
7bc09003 JK |
93 | |
94 | gc_th = kmalloc(sizeof(struct f2fs_gc_kthread), GFP_KERNEL); | |
95 | if (!gc_th) | |
96 | return -ENOMEM; | |
97 | ||
98 | sbi->gc_thread = gc_th; | |
99 | init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); | |
100 | sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, | |
101 | GC_THREAD_NAME); | |
102 | if (IS_ERR(gc_th->f2fs_gc_task)) { | |
103 | kfree(gc_th); | |
104 | return -ENOMEM; | |
105 | } | |
106 | return 0; | |
107 | } | |
108 | ||
109 | void stop_gc_thread(struct f2fs_sb_info *sbi) | |
110 | { | |
111 | struct f2fs_gc_kthread *gc_th = sbi->gc_thread; | |
112 | if (!gc_th) | |
113 | return; | |
114 | kthread_stop(gc_th->f2fs_gc_task); | |
115 | kfree(gc_th); | |
116 | sbi->gc_thread = NULL; | |
117 | } | |
118 | ||
119 | static int select_gc_type(int gc_type) | |
120 | { | |
121 | return (gc_type == BG_GC) ? GC_CB : GC_GREEDY; | |
122 | } | |
123 | ||
124 | static void select_policy(struct f2fs_sb_info *sbi, int gc_type, | |
125 | int type, struct victim_sel_policy *p) | |
126 | { | |
127 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | |
128 | ||
129 | if (p->alloc_mode) { | |
130 | p->gc_mode = GC_GREEDY; | |
131 | p->dirty_segmap = dirty_i->dirty_segmap[type]; | |
132 | p->ofs_unit = 1; | |
133 | } else { | |
134 | p->gc_mode = select_gc_type(gc_type); | |
135 | p->dirty_segmap = dirty_i->dirty_segmap[DIRTY]; | |
136 | p->ofs_unit = sbi->segs_per_sec; | |
137 | } | |
138 | p->offset = sbi->last_victim[p->gc_mode]; | |
139 | } | |
140 | ||
141 | static unsigned int get_max_cost(struct f2fs_sb_info *sbi, | |
142 | struct victim_sel_policy *p) | |
143 | { | |
144 | if (p->gc_mode == GC_GREEDY) | |
145 | return (1 << sbi->log_blocks_per_seg) * p->ofs_unit; | |
146 | else if (p->gc_mode == GC_CB) | |
147 | return UINT_MAX; | |
148 | else /* No other gc_mode */ | |
149 | return 0; | |
150 | } | |
151 | ||
152 | static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) | |
153 | { | |
154 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | |
155 | unsigned int segno; | |
156 | ||
157 | /* | |
158 | * If the gc_type is FG_GC, we can select victim segments | |
159 | * selected by background GC before. | |
160 | * Those segments guarantee they have small valid blocks. | |
161 | */ | |
162 | segno = find_next_bit(dirty_i->victim_segmap[BG_GC], | |
163 | TOTAL_SEGS(sbi), 0); | |
164 | if (segno < TOTAL_SEGS(sbi)) { | |
165 | clear_bit(segno, dirty_i->victim_segmap[BG_GC]); | |
166 | return segno; | |
167 | } | |
168 | return NULL_SEGNO; | |
169 | } | |
170 | ||
171 | static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) | |
172 | { | |
173 | struct sit_info *sit_i = SIT_I(sbi); | |
174 | unsigned int secno = GET_SECNO(sbi, segno); | |
175 | unsigned int start = secno * sbi->segs_per_sec; | |
176 | unsigned long long mtime = 0; | |
177 | unsigned int vblocks; | |
178 | unsigned char age = 0; | |
179 | unsigned char u; | |
180 | unsigned int i; | |
181 | ||
182 | for (i = 0; i < sbi->segs_per_sec; i++) | |
183 | mtime += get_seg_entry(sbi, start + i)->mtime; | |
184 | vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec); | |
185 | ||
186 | mtime = div_u64(mtime, sbi->segs_per_sec); | |
187 | vblocks = div_u64(vblocks, sbi->segs_per_sec); | |
188 | ||
189 | u = (vblocks * 100) >> sbi->log_blocks_per_seg; | |
190 | ||
191 | /* Handle if the system time is changed by user */ | |
192 | if (mtime < sit_i->min_mtime) | |
193 | sit_i->min_mtime = mtime; | |
194 | if (mtime > sit_i->max_mtime) | |
195 | sit_i->max_mtime = mtime; | |
196 | if (sit_i->max_mtime != sit_i->min_mtime) | |
197 | age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), | |
198 | sit_i->max_mtime - sit_i->min_mtime); | |
199 | ||
200 | return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); | |
201 | } | |
202 | ||
203 | static unsigned int get_gc_cost(struct f2fs_sb_info *sbi, unsigned int segno, | |
204 | struct victim_sel_policy *p) | |
205 | { | |
206 | if (p->alloc_mode == SSR) | |
207 | return get_seg_entry(sbi, segno)->ckpt_valid_blocks; | |
208 | ||
209 | /* alloc_mode == LFS */ | |
210 | if (p->gc_mode == GC_GREEDY) | |
211 | return get_valid_blocks(sbi, segno, sbi->segs_per_sec); | |
212 | else | |
213 | return get_cb_cost(sbi, segno); | |
214 | } | |
215 | ||
0a8165d7 | 216 | /* |
7bc09003 JK |
217 | * This function is called from two pathes. |
218 | * One is garbage collection and the other is SSR segment selection. | |
219 | * When it is called during GC, it just gets a victim segment | |
220 | * and it does not remove it from dirty seglist. | |
221 | * When it is called from SSR segment selection, it finds a segment | |
222 | * which has minimum valid blocks and removes it from dirty seglist. | |
223 | */ | |
224 | static int get_victim_by_default(struct f2fs_sb_info *sbi, | |
225 | unsigned int *result, int gc_type, int type, char alloc_mode) | |
226 | { | |
227 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | |
228 | struct victim_sel_policy p; | |
229 | unsigned int segno; | |
230 | int nsearched = 0; | |
231 | ||
232 | p.alloc_mode = alloc_mode; | |
233 | select_policy(sbi, gc_type, type, &p); | |
234 | ||
235 | p.min_segno = NULL_SEGNO; | |
236 | p.min_cost = get_max_cost(sbi, &p); | |
237 | ||
238 | mutex_lock(&dirty_i->seglist_lock); | |
239 | ||
240 | if (p.alloc_mode == LFS && gc_type == FG_GC) { | |
241 | p.min_segno = check_bg_victims(sbi); | |
242 | if (p.min_segno != NULL_SEGNO) | |
243 | goto got_it; | |
244 | } | |
245 | ||
246 | while (1) { | |
247 | unsigned long cost; | |
248 | ||
249 | segno = find_next_bit(p.dirty_segmap, | |
250 | TOTAL_SEGS(sbi), p.offset); | |
251 | if (segno >= TOTAL_SEGS(sbi)) { | |
252 | if (sbi->last_victim[p.gc_mode]) { | |
253 | sbi->last_victim[p.gc_mode] = 0; | |
254 | p.offset = 0; | |
255 | continue; | |
256 | } | |
257 | break; | |
258 | } | |
259 | p.offset = ((segno / p.ofs_unit) * p.ofs_unit) + p.ofs_unit; | |
260 | ||
261 | if (test_bit(segno, dirty_i->victim_segmap[FG_GC])) | |
262 | continue; | |
263 | if (gc_type == BG_GC && | |
264 | test_bit(segno, dirty_i->victim_segmap[BG_GC])) | |
265 | continue; | |
266 | if (IS_CURSEC(sbi, GET_SECNO(sbi, segno))) | |
267 | continue; | |
268 | ||
269 | cost = get_gc_cost(sbi, segno, &p); | |
270 | ||
271 | if (p.min_cost > cost) { | |
272 | p.min_segno = segno; | |
273 | p.min_cost = cost; | |
274 | } | |
275 | ||
276 | if (cost == get_max_cost(sbi, &p)) | |
277 | continue; | |
278 | ||
279 | if (nsearched++ >= MAX_VICTIM_SEARCH) { | |
280 | sbi->last_victim[p.gc_mode] = segno; | |
281 | break; | |
282 | } | |
283 | } | |
284 | got_it: | |
285 | if (p.min_segno != NULL_SEGNO) { | |
286 | *result = (p.min_segno / p.ofs_unit) * p.ofs_unit; | |
287 | if (p.alloc_mode == LFS) { | |
288 | int i; | |
289 | for (i = 0; i < p.ofs_unit; i++) | |
290 | set_bit(*result + i, | |
291 | dirty_i->victim_segmap[gc_type]); | |
292 | } | |
293 | } | |
294 | mutex_unlock(&dirty_i->seglist_lock); | |
295 | ||
296 | return (p.min_segno == NULL_SEGNO) ? 0 : 1; | |
297 | } | |
298 | ||
299 | static const struct victim_selection default_v_ops = { | |
300 | .get_victim = get_victim_by_default, | |
301 | }; | |
302 | ||
303 | static struct inode *find_gc_inode(nid_t ino, struct list_head *ilist) | |
304 | { | |
305 | struct list_head *this; | |
306 | struct inode_entry *ie; | |
307 | ||
308 | list_for_each(this, ilist) { | |
309 | ie = list_entry(this, struct inode_entry, list); | |
310 | if (ie->inode->i_ino == ino) | |
311 | return ie->inode; | |
312 | } | |
313 | return NULL; | |
314 | } | |
315 | ||
316 | static void add_gc_inode(struct inode *inode, struct list_head *ilist) | |
317 | { | |
318 | struct list_head *this; | |
319 | struct inode_entry *new_ie, *ie; | |
320 | ||
321 | list_for_each(this, ilist) { | |
322 | ie = list_entry(this, struct inode_entry, list); | |
323 | if (ie->inode == inode) { | |
324 | iput(inode); | |
325 | return; | |
326 | } | |
327 | } | |
328 | repeat: | |
329 | new_ie = kmem_cache_alloc(winode_slab, GFP_NOFS); | |
330 | if (!new_ie) { | |
331 | cond_resched(); | |
332 | goto repeat; | |
333 | } | |
334 | new_ie->inode = inode; | |
335 | list_add_tail(&new_ie->list, ilist); | |
336 | } | |
337 | ||
338 | static void put_gc_inode(struct list_head *ilist) | |
339 | { | |
340 | struct inode_entry *ie, *next_ie; | |
341 | list_for_each_entry_safe(ie, next_ie, ilist, list) { | |
342 | iput(ie->inode); | |
343 | list_del(&ie->list); | |
344 | kmem_cache_free(winode_slab, ie); | |
345 | } | |
346 | } | |
347 | ||
348 | static int check_valid_map(struct f2fs_sb_info *sbi, | |
349 | unsigned int segno, int offset) | |
350 | { | |
351 | struct sit_info *sit_i = SIT_I(sbi); | |
352 | struct seg_entry *sentry; | |
353 | int ret; | |
354 | ||
355 | mutex_lock(&sit_i->sentry_lock); | |
356 | sentry = get_seg_entry(sbi, segno); | |
357 | ret = f2fs_test_bit(offset, sentry->cur_valid_map); | |
358 | mutex_unlock(&sit_i->sentry_lock); | |
359 | return ret ? GC_OK : GC_NEXT; | |
360 | } | |
361 | ||
0a8165d7 | 362 | /* |
7bc09003 JK |
363 | * This function compares node address got in summary with that in NAT. |
364 | * On validity, copy that node with cold status, otherwise (invalid node) | |
365 | * ignore that. | |
366 | */ | |
367 | static int gc_node_segment(struct f2fs_sb_info *sbi, | |
368 | struct f2fs_summary *sum, unsigned int segno, int gc_type) | |
369 | { | |
370 | bool initial = true; | |
371 | struct f2fs_summary *entry; | |
372 | int off; | |
373 | ||
374 | next_step: | |
375 | entry = sum; | |
376 | for (off = 0; off < sbi->blocks_per_seg; off++, entry++) { | |
377 | nid_t nid = le32_to_cpu(entry->nid); | |
378 | struct page *node_page; | |
379 | int err; | |
380 | ||
381 | /* | |
382 | * It makes sure that free segments are able to write | |
383 | * all the dirty node pages before CP after this CP. | |
384 | * So let's check the space of dirty node pages. | |
385 | */ | |
386 | if (should_do_checkpoint(sbi)) { | |
387 | mutex_lock(&sbi->cp_mutex); | |
388 | block_operations(sbi); | |
389 | return GC_BLOCKED; | |
390 | } | |
391 | ||
392 | err = check_valid_map(sbi, segno, off); | |
2b50638d | 393 | if (err == GC_NEXT) |
7bc09003 JK |
394 | continue; |
395 | ||
396 | if (initial) { | |
397 | ra_node_page(sbi, nid); | |
398 | continue; | |
399 | } | |
400 | node_page = get_node_page(sbi, nid); | |
401 | if (IS_ERR(node_page)) | |
402 | continue; | |
403 | ||
404 | /* set page dirty and write it */ | |
405 | if (!PageWriteback(node_page)) | |
406 | set_page_dirty(node_page); | |
407 | f2fs_put_page(node_page, 1); | |
408 | stat_inc_node_blk_count(sbi, 1); | |
409 | } | |
410 | if (initial) { | |
411 | initial = false; | |
412 | goto next_step; | |
413 | } | |
414 | ||
415 | if (gc_type == FG_GC) { | |
416 | struct writeback_control wbc = { | |
417 | .sync_mode = WB_SYNC_ALL, | |
418 | .nr_to_write = LONG_MAX, | |
419 | .for_reclaim = 0, | |
420 | }; | |
421 | sync_node_pages(sbi, 0, &wbc); | |
422 | } | |
423 | return GC_DONE; | |
424 | } | |
425 | ||
0a8165d7 | 426 | /* |
7bc09003 JK |
427 | * Calculate start block index that this node page contains |
428 | */ | |
429 | block_t start_bidx_of_node(unsigned int node_ofs) | |
430 | { | |
ce19a5d4 JK |
431 | unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4; |
432 | unsigned int bidx; | |
7bc09003 | 433 | |
ce19a5d4 JK |
434 | if (node_ofs == 0) |
435 | return 0; | |
7bc09003 | 436 | |
ce19a5d4 | 437 | if (node_ofs <= 2) { |
7bc09003 JK |
438 | bidx = node_ofs - 1; |
439 | } else if (node_ofs <= indirect_blks) { | |
ce19a5d4 | 440 | int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); |
7bc09003 JK |
441 | bidx = node_ofs - 2 - dec; |
442 | } else { | |
ce19a5d4 | 443 | int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); |
7bc09003 JK |
444 | bidx = node_ofs - 5 - dec; |
445 | } | |
ce19a5d4 | 446 | return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE; |
7bc09003 JK |
447 | } |
448 | ||
449 | static int check_dnode(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, | |
450 | struct node_info *dni, block_t blkaddr, unsigned int *nofs) | |
451 | { | |
452 | struct page *node_page; | |
453 | nid_t nid; | |
454 | unsigned int ofs_in_node; | |
455 | block_t source_blkaddr; | |
456 | ||
457 | nid = le32_to_cpu(sum->nid); | |
458 | ofs_in_node = le16_to_cpu(sum->ofs_in_node); | |
459 | ||
460 | node_page = get_node_page(sbi, nid); | |
461 | if (IS_ERR(node_page)) | |
462 | return GC_NEXT; | |
463 | ||
464 | get_node_info(sbi, nid, dni); | |
465 | ||
466 | if (sum->version != dni->version) { | |
467 | f2fs_put_page(node_page, 1); | |
468 | return GC_NEXT; | |
469 | } | |
470 | ||
471 | *nofs = ofs_of_node(node_page); | |
472 | source_blkaddr = datablock_addr(node_page, ofs_in_node); | |
473 | f2fs_put_page(node_page, 1); | |
474 | ||
475 | if (source_blkaddr != blkaddr) | |
476 | return GC_NEXT; | |
477 | return GC_OK; | |
478 | } | |
479 | ||
480 | static void move_data_page(struct inode *inode, struct page *page, int gc_type) | |
481 | { | |
482 | if (page->mapping != inode->i_mapping) | |
483 | goto out; | |
484 | ||
485 | if (inode != page->mapping->host) | |
486 | goto out; | |
487 | ||
488 | if (PageWriteback(page)) | |
489 | goto out; | |
490 | ||
491 | if (gc_type == BG_GC) { | |
492 | set_page_dirty(page); | |
493 | set_cold_data(page); | |
494 | } else { | |
495 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | |
496 | mutex_lock_op(sbi, DATA_WRITE); | |
497 | if (clear_page_dirty_for_io(page) && | |
498 | S_ISDIR(inode->i_mode)) { | |
499 | dec_page_count(sbi, F2FS_DIRTY_DENTS); | |
500 | inode_dec_dirty_dents(inode); | |
501 | } | |
502 | set_cold_data(page); | |
503 | do_write_data_page(page); | |
504 | mutex_unlock_op(sbi, DATA_WRITE); | |
505 | clear_cold_data(page); | |
506 | } | |
507 | out: | |
508 | f2fs_put_page(page, 1); | |
509 | } | |
510 | ||
0a8165d7 | 511 | /* |
7bc09003 JK |
512 | * This function tries to get parent node of victim data block, and identifies |
513 | * data block validity. If the block is valid, copy that with cold status and | |
514 | * modify parent node. | |
515 | * If the parent node is not valid or the data block address is different, | |
516 | * the victim data block is ignored. | |
517 | */ | |
518 | static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, | |
519 | struct list_head *ilist, unsigned int segno, int gc_type) | |
520 | { | |
521 | struct super_block *sb = sbi->sb; | |
522 | struct f2fs_summary *entry; | |
523 | block_t start_addr; | |
524 | int err, off; | |
525 | int phase = 0; | |
526 | ||
527 | start_addr = START_BLOCK(sbi, segno); | |
528 | ||
529 | next_step: | |
530 | entry = sum; | |
531 | for (off = 0; off < sbi->blocks_per_seg; off++, entry++) { | |
532 | struct page *data_page; | |
533 | struct inode *inode; | |
534 | struct node_info dni; /* dnode info for the data */ | |
535 | unsigned int ofs_in_node, nofs; | |
536 | block_t start_bidx; | |
537 | ||
538 | /* | |
539 | * It makes sure that free segments are able to write | |
540 | * all the dirty node pages before CP after this CP. | |
541 | * So let's check the space of dirty node pages. | |
542 | */ | |
543 | if (should_do_checkpoint(sbi)) { | |
544 | mutex_lock(&sbi->cp_mutex); | |
545 | block_operations(sbi); | |
546 | err = GC_BLOCKED; | |
547 | goto stop; | |
548 | } | |
549 | ||
550 | err = check_valid_map(sbi, segno, off); | |
2b50638d | 551 | if (err == GC_NEXT) |
7bc09003 JK |
552 | continue; |
553 | ||
554 | if (phase == 0) { | |
555 | ra_node_page(sbi, le32_to_cpu(entry->nid)); | |
556 | continue; | |
557 | } | |
558 | ||
559 | /* Get an inode by ino with checking validity */ | |
560 | err = check_dnode(sbi, entry, &dni, start_addr + off, &nofs); | |
2b50638d | 561 | if (err == GC_NEXT) |
7bc09003 JK |
562 | continue; |
563 | ||
564 | if (phase == 1) { | |
565 | ra_node_page(sbi, dni.ino); | |
566 | continue; | |
567 | } | |
568 | ||
569 | start_bidx = start_bidx_of_node(nofs); | |
570 | ofs_in_node = le16_to_cpu(entry->ofs_in_node); | |
571 | ||
572 | if (phase == 2) { | |
573 | inode = f2fs_iget_nowait(sb, dni.ino); | |
574 | if (IS_ERR(inode)) | |
575 | continue; | |
576 | ||
577 | data_page = find_data_page(inode, | |
578 | start_bidx + ofs_in_node); | |
579 | if (IS_ERR(data_page)) | |
580 | goto next_iput; | |
581 | ||
582 | f2fs_put_page(data_page, 0); | |
583 | add_gc_inode(inode, ilist); | |
584 | } else { | |
585 | inode = find_gc_inode(dni.ino, ilist); | |
586 | if (inode) { | |
587 | data_page = get_lock_data_page(inode, | |
588 | start_bidx + ofs_in_node); | |
589 | if (IS_ERR(data_page)) | |
590 | continue; | |
591 | move_data_page(inode, data_page, gc_type); | |
592 | stat_inc_data_blk_count(sbi, 1); | |
593 | } | |
594 | } | |
595 | continue; | |
596 | next_iput: | |
597 | iput(inode); | |
598 | } | |
599 | if (++phase < 4) | |
600 | goto next_step; | |
601 | err = GC_DONE; | |
602 | stop: | |
603 | if (gc_type == FG_GC) | |
604 | f2fs_submit_bio(sbi, DATA, true); | |
605 | return err; | |
606 | } | |
607 | ||
608 | static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, | |
609 | int gc_type, int type) | |
610 | { | |
611 | struct sit_info *sit_i = SIT_I(sbi); | |
612 | int ret; | |
613 | mutex_lock(&sit_i->sentry_lock); | |
614 | ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, type, LFS); | |
615 | mutex_unlock(&sit_i->sentry_lock); | |
616 | return ret; | |
617 | } | |
618 | ||
619 | static int do_garbage_collect(struct f2fs_sb_info *sbi, unsigned int segno, | |
620 | struct list_head *ilist, int gc_type) | |
621 | { | |
622 | struct page *sum_page; | |
623 | struct f2fs_summary_block *sum; | |
624 | int ret = GC_DONE; | |
625 | ||
626 | /* read segment summary of victim */ | |
627 | sum_page = get_sum_page(sbi, segno); | |
628 | if (IS_ERR(sum_page)) | |
629 | return GC_ERROR; | |
630 | ||
631 | /* | |
632 | * CP needs to lock sum_page. In this time, we don't need | |
633 | * to lock this page, because this summary page is not gone anywhere. | |
634 | * Also, this page is not gonna be updated before GC is done. | |
635 | */ | |
636 | unlock_page(sum_page); | |
637 | sum = page_address(sum_page); | |
638 | ||
639 | switch (GET_SUM_TYPE((&sum->footer))) { | |
640 | case SUM_TYPE_NODE: | |
641 | ret = gc_node_segment(sbi, sum->entries, segno, gc_type); | |
642 | break; | |
643 | case SUM_TYPE_DATA: | |
644 | ret = gc_data_segment(sbi, sum->entries, ilist, segno, gc_type); | |
645 | break; | |
646 | } | |
647 | stat_inc_seg_count(sbi, GET_SUM_TYPE((&sum->footer))); | |
648 | stat_inc_call_count(sbi->stat_info); | |
649 | ||
650 | f2fs_put_page(sum_page, 0); | |
651 | return ret; | |
652 | } | |
653 | ||
408e9375 | 654 | int f2fs_gc(struct f2fs_sb_info *sbi) |
7bc09003 | 655 | { |
7bc09003 | 656 | struct list_head ilist; |
408e9375 | 657 | unsigned int segno, i; |
7bc09003 | 658 | int gc_type = BG_GC; |
408e9375 | 659 | int gc_status = GC_NONE; |
7bc09003 JK |
660 | |
661 | INIT_LIST_HEAD(&ilist); | |
662 | gc_more: | |
408e9375 JK |
663 | if (!(sbi->sb->s_flags & MS_ACTIVE)) |
664 | goto stop; | |
7bc09003 JK |
665 | |
666 | if (has_not_enough_free_secs(sbi)) | |
408e9375 | 667 | gc_type = FG_GC; |
7bc09003 | 668 | |
408e9375 JK |
669 | if (!__get_victim(sbi, &segno, gc_type, NO_CHECK_TYPE)) |
670 | goto stop; | |
7bc09003 | 671 | |
408e9375 JK |
672 | for (i = 0; i < sbi->segs_per_sec; i++) { |
673 | /* | |
674 | * do_garbage_collect will give us three gc_status: | |
675 | * GC_ERROR, GC_DONE, and GC_BLOCKED. | |
676 | * If GC is finished uncleanly, we have to return | |
677 | * the victim to dirty segment list. | |
678 | */ | |
679 | gc_status = do_garbage_collect(sbi, segno + i, &ilist, gc_type); | |
680 | if (gc_status != GC_DONE) | |
7bc09003 | 681 | break; |
7bc09003 | 682 | } |
408e9375 | 683 | if (has_not_enough_free_secs(sbi)) { |
7bc09003 | 684 | write_checkpoint(sbi, (gc_status == GC_BLOCKED), false); |
408e9375 | 685 | if (has_not_enough_free_secs(sbi)) |
7bc09003 JK |
686 | goto gc_more; |
687 | } | |
408e9375 | 688 | stop: |
7bc09003 JK |
689 | mutex_unlock(&sbi->gc_mutex); |
690 | ||
691 | put_gc_inode(&ilist); | |
7bc09003 JK |
692 | return gc_status; |
693 | } | |
694 | ||
695 | void build_gc_manager(struct f2fs_sb_info *sbi) | |
696 | { | |
697 | DIRTY_I(sbi)->v_ops = &default_v_ops; | |
698 | } | |
699 | ||
700 | int create_gc_caches(void) | |
701 | { | |
702 | winode_slab = f2fs_kmem_cache_create("f2fs_gc_inodes", | |
703 | sizeof(struct inode_entry), NULL); | |
704 | if (!winode_slab) | |
705 | return -ENOMEM; | |
706 | return 0; | |
707 | } | |
708 | ||
709 | void destroy_gc_caches(void) | |
710 | { | |
711 | kmem_cache_destroy(winode_slab); | |
712 | } |